& MAS&ALHUSETT‘S
CINSTITUTE OF
L TECHNOLOGY

COMIT/LCS/TR31T.

f‘*“RFFFRhN(L Ay
- MANUAL

..f"-’""’(“&z*}n S, Bml\c
_ George J. C‘mutg
i ‘Chm{c}; >her R Eliot

B S - "
£ A .
N - L e T . B

- OSESTTECHNOLOG '} ‘*U PARE. CAMBRIDGE, MASSACHUSETTS 02139

NIL Reference Manual

corresponding o

Release 0.286

January 1984

Glenn S. Burke
George J. Carrette

Christopher R. Eliot

This report describes ongoing research at the Laboratory for Computer Scicnce of the
Massachusctts Institute of Technology. Support for this rescarch was provided by the Defense
Advanced Rescarch Projects Agency of the Department of Defensc monitored by the Office of
Naval Rescarch under contract N00015-75-C-066 1 and NO00014-83-K-0125, and by Digital
. Equipment Corporation of Maynard Massachusctts, with grants of cquipment.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
CAMBRIDGE MASSACHUSETTS 02139

Abstract

This document describes NIL, a New Implcmcmatmn of Lisp. NIL is currcmly under
development on the DEC VAX under the VAX/VMS opcrating system.

Acknowledgments

The chapter on defstruct is a workover of the chapter appearing in [3]. by Alan Bawden:
added inaccuracics arc solely the fault of GSB. however. The chapter on the loop macro is a
revision of an carlier published memo [5] which also has appeared in Lisp Machine manuals [12].

The chapter on flavors was written in part by Patrick Sobalvarro. The editor and its
documentation arc the work of Christopher Eliot.

The interfaces to many functions and facilitics, and some of the terminology used in this
document. arc taken or derived from those used in the COMMON LIsP manual [1]: in particular.
the terminology used for describing scope and exienr in chapter 3.

The section on format (section 19.6, page 187) is a reworking of a chadpter appcaring in [3].
parts of which had carlicr appeared in [12] and arc the work of Guy Sicele.

Dedication

This publication is dedicated to Randy Davis, may his 750 never crash.

Note

Any comments, suggestions, or criticisms will be weclcomed. Please send Arpa or Chaos.
network mail to BUG-NIL@MIT-MC.

Those not on the Arpanct may send U.S. mail to
Glenn S. Burke
Laboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

The Arpa nctwork mail distribution list for announcements pertaining to NIL is normally used
for announcements about the facilitics described here. Contact the author to be placed on it.

Document History
P;arhcr versions of this document were distributed as NIL Notes for Release 0 (in two revisions),
and NIL Notes for Release 0.259. This update corresponds to NIL release 0.286, Lisp system
version 286. It will be revised and reissued with each new NiL. release; becausc of the constant
changes, it is not the picture-perfect copy we would like,

Additional Publications

This manual, and other publications, arc available from the lab for Computer Science
Publications office :

MIT LCS Publications

545 Technology Square

Cambridge. MA 02129 : :
who should be contacted directly for blblmgmphy price, and nrdcrmg mformatum Publications
of the MIT Artificial Intclligence laboratory may also be of interest to some; they should be
contacted separatcly, as MIT AI Lab Publications, at the same building address.

© Copyright by the Massachusetts Institute of Technology; Cambridge, Mass. 02139

Permission to copy all or part of this material is granted, provided that the copics are not made
or distributed for resale, the MIT. copyright notice and the title of this document and its date
appcar. and that notice is given that copying is by pcrmission of Massachusetts Institute of
Technology.

NII. Minual i Summary Table of Contents

Summary Table of Contents

1. Introduction e e v e e e e e e e e e e e e e e 1
2 D TP R 3 3
3. Scope, Fxtent.andBinding e
4. Predicates o 0 e 16
S. ProgrammingConstructs P 22
6. DCClarations i i e 4]
T SCQUETICOS & . v v v v e 48
SR 1T e 56
9. SvMbOIS L e 65
10, NUMDOIS & o v it it e e e e e et e e e et e e e e e e e e e e e e e e e e e e 71
11. Characters. v v . .. e e e e e e e e e e e e e e 94
D N 5 - O 103
13, SUINES. . . . o o o e 112
14, Hashing. o i i i e e e e e e e e e e e e e 118
15, Packages . o v v o o e 121
16, DOfSIIUCE & . . o o i i e 125
17. The LOOP eration MAacro . . v v vt v v i e e e e e e e e e e e e e e e e e e 144
18. TheFlavorFacility o o i i i e i e e e e e e e s e et e et e e e e e 170
19. Input, Output, and Streams v vt L el e e e e e e e e e e e e 179
20. Syntax. e 213
21. DcbuggingandMetering oo oL e e e e e e e e e e e e 220
0 2 ¢ 0 v P 229
23. Environment EnQUITies 0 o 0ttt e e e e e e e e e e e e e e e e e e 232
24, Compilalion. o i i i e e e e e e e e e e e e e e e e e e e 243
25. Introductiontothe STEVE editor o i v i v v i i i e e e e 249
26. The Patch Facility . « o oo o v v e e e e e e e e e e e e e e e e 280
27. Talking toNIL L . o e e e e e e e e e e e 287
28. Peripheral Utilities. e e e e e e e e e e e e e e e e e e e 295
29. Forcign LanguageInterface o i v i i i i e e e e e e e e e 298
30 What Will BreaK. . . . o v v v v i bt ee e e e e e o e o s o s o e s oo ae e a e 301
RO OTENCES. & v v v v v v v v v v e o e o o o st e e e e e e e e e e e e e 307
ConceptIndex.t i v v i it i e e e e e e e e e e s e e e e e e e 308
MessageIndex. . . . v v v v v i i i e e e e e e e e e e e e 310
ResourceIndex @ e 311
Variable and ConstantIndex. s ee s s ma e ae s s ee e e e e 312
Function, Macro,and Special FormIndex oo o v it il i oo n e 314

23-DEC-83

Table of Contents ') i ' : NI Manual

* Table of Contents

Lntroduction. e e e e 1
LI Conventions . . ., .. . e 1
2 Data'types e 3
201 Numbers. B 3
2.L.1 Rationals., R 3
7,3 Hloading-point Numbers (01T 4
%13 Complex Numbers. 5
2.2 Characters R, 5
23 Symbols, ... B e e e e e e e 6
24 bissandConses L T 6
25 amaysand Sequences., LD 7
poSetuIes. L 7
27 Functions.o T e e e e e e e e, 7
2.8 Random Internal T YPES e e 8
281 Minisubrs, s
282 Modules. 1T S e e e e e e e e e 8
2.8.3 Internal Markers.,, S e e e e e e e e e e e e e 8
2.8.4UnusedTypes............................. 9
29 Coercion L. e e e e A 9
3. Scope, Extent, and Binding e e e e T S 11
3.1 Lambda Application e e e e e e e e e e e e e e e e 13
4. Predicates. e ate e T 16
4.1 Type Predicates., R T T P S 16
13 ypeSpecifiers. . L LT 16
4.1.2 General Type Predicates, e e e e e, 18
413 Specific Type Predicates [111t 18
4.2 Equality Predicates S e e ee e e e e e e e, 20
3. Programming Constructs et e e e e e, 2
5.1 Compositions. , . . . e et et e e e e e e e e e B)
5.2 DefiniionForms B T TR 2
5.2.1 Defining Functions. B 22
g22 DefiningMacros. DI 23
3.2.3 Defining Variables. R 24
5.2.4 Controlling Evaluation Time e e e e e e e e e e e 25
5.3 Binding and Assignment o5 ey e S e e e e e e e 25
5.3.1 Dynamically Binding Variable Variables R 27
5.4 Conditionals e e e e e v e e e e D T 28
5.5 Function Invocation. . , S e e e e e e, 30
5§ Meration Constructs. . .,,]I 31
3.6.1 Mapping Functions " e e e e e P) |
362 Other lteration Forms, [0[] 2
5.6.3 Block and Tagbody. T S e e k7

23-DEC-83

NI. Manual - iii , ‘ Table of Contents

57 Non-localFlowofControl. 35
5.8 Multiple Values @ e e e e e e e e e e e e e e e e e e 36
5.9 Generalizved Variables oL e e e e e e 38
SJ0 Property Lists~ o L o e e e e e e e e e e e e e e e 39
6. Declarations L L L e e e e e e e e e e e e e e e e e 41
6.1 LocalDeclarations o e e 4]
6.1.1 TheSpecial Declaration, e e e e e 43
6.1.2 Declarations Affecting Variable Bindings. 44
6.1.3 Declarations Affecting Compilation Strategies 45
6.2 Proclamations: Global Declarations, 46
0.3 Declaring the Typesof Forms. e e e e e e e e e e e e e e 47
7. Sequences e et e e e e et e e e e e e e . 48
7.1 Accessing SCQUENCES . . . v v v v i v e e e e e e e e e e e e e e e e 49
7.2 Creating New SCquUenCes v v v et et e et e e e e e e e e e 50
7.3 Scarching through Sequences. o v i i i it v e 51
7.4 Miscellancous Operations onSequences. v o vt v v v b e e e e . 52
7.5 Ieration overSequences v v vt v e e e s e e e e e e e e e e e e 54
7.6 SortingSequences . . oL .. Lol e s e . e e e e e e .. 55
B ListS L e e e e e e e e e e e 56
8.1 Creating, Accessing, and Modifying List Structure. 56
8.2 SUbSHIULION i it s e e e e e e e e e e e e e e e e . 60
R UsinglistsasSets, e e e e e e e e e e e e e €1
84 Association LISIS i L e i e e e e e e e e e e e e e e e 63
9.8ymbols e e e e e e e e e e e e 65
9.1 TheProperty List. i i i o it i e e e et e e e e e e ee e e 65
92 ThePrintName i i i e i i e e e e e e e e e 66
93 Creating Symbols. i i i i e e e e e e e e e e e e 66
94 TheValucandFunctionCells. 68
9.5 Additiomal Names i i i it it e e e e e e e e e e e e e 69
9.6 Symbol Concatentation. v v v v v v v o v v b v e e e e e e 70
97 Internal Routines. i i i i it et e e e e e e e e e e e e 70
10 Numbers i i it e e e e e e e e e e e e e e e e e 71
10.1 Types. Contagion, Coercion,andConfusion 71
1011 TheTypes . . . o i i i i e et e e e e e e e e e e e e e e e 71
10.1.2 ContagionandCoercion i it i i bt et e 72
1013 Confusion v i it i e e e e e e e e e e e e e e e e 72
10.2 Predicateson Numbers i it e e e e e e e e 73
103 Comparisonson Numbers. o 0 o i vt it it e e e e 73

- 104 ArithmeticOperations. o v v v vt v v v s e e et e en e e e n e 74
10.5 lrrational and Transcendental Functions. e e e e e e e 76
10.5.1 Exponential and LogarithmicFunctions. 76
10.5.2 Trigonomctricand Related Functions. 77
10.6 Numeric TypeConversions v 0 v v v v i e e e e e e e e e 78
10.7 Intcger Conversion and Specialized Division. 79

23-DEC-83

‘Fable of Contents v ' v NI Manual

10.8 logical OperationsonNumbers B 81
10.9 Byte Manipulation Functions. P A A 84
10.10 RandomNumbers e e e e e ... 8
10.11 Fixnum-Only Arithmetic . ~ e e e e e e e, 8T
10.11.1 Comparisons. e e el e e e e e e e e e 87
10.11.2 Arithmetic Operauons e e e e e e e e e e ee e e e 87
10,113 BitsandByteso e e e eiete e el e e e 88
10114 The Super-Pomitives & . . . o 0t it v s e e e v e i e e e e e e e e e e e e e 90
10.12 Double-Float-Only Arithmetic o o 0 o e e e e s v e e e e it ee e e s 90
10.13 Decomposition of Floating Point Numbers ., e e e e e e 91
10.14 ImplementationConstants L Lo s e e e 92
11. Characters. e e e e e e e e et e e e e e e e e 9%
111 PredicatesonCharacters. o o o o o oo e e e e s e e 94
" 11.2 Character Constructionand Selection. L 0 0 i i vt it e e e e e s e e e e 96
1.3 Character Conversions. . . & v v v v e vt v v v o v 0 e e b e o o vt o o i a oe o v s 96
11.4 Internal Error Checking Routines o 0 v it i i e e e e e e e e 97
11.5 Low-level Interfaces, v v v v vt v v s ee e R D S 98
11.6 The NIL Character Set. & v v i i v i i e e e e e e e et e e e e e e e e e 9
11.7 Primitive Font Definitions e e e e et e e e et e e e e e e e 100
120 Arrays. . . v v e i h e e e e e T A 103
12.1 Array Creation, Access, and Attributes e e e e e e e e e e e 103
122 ArrayElement Types o o v v v v oo w Ve e e e e i e e e e e e 104
123 FIHTPOINIEIS . v o v v v o e v e e e e s e st e e v e s e oia o e o e o e e n oie s s s 105
124 Displaccd AITays. . . . o o v v e 107 -
12.5 Modifying Array Sizes and Charactenstxcs e e it e e e e m e e e e e e e e e e e 107
12.6 Special Vector Primitives. o . v o i i it i i e e e e e e e e e e e e e .. . 108
127 SIMple VOCLOTS. & v v v v v v v i e e v v e e e U A S P 108
128 Bit ATTayS . . v v v vt e i e e e e e e e e e e e e e e e e e 109
12.8.1 Simple Bit Vectors v v v i i i e e e e e e e e e e e e e e e e 110
13, SHNES. & o v i i i e e e e e e e e e e et e e e e e i e e e e e e e e e 112
13.1 String Coercion e e e e e e e e e e e e e i e e e e s 112
13.2 String Comparison. & ittt e i e e it e e e e e i e e e e e e e e e 113
13.3 Extracting CharactersfromStrings. e e e e e 114
13.4 String Creation b h e e s e b s e e e e n e e e e s e 114
135 More String Functions.« .0 o ottt s e e e e e 115
13.6 Implementation Subprimitives. eie el e ee v e C e ee ee 116
14. Hashing S T A 118
141 HashTables. v a v N 118
14.1.1 Additional Hash-TablePredicates. v ¢ o v v v vt v it vttt v i e n v 118
142 HashFunctions . . . v oo v v v oo R e e e e P L
143 SymbolTables. e e s e e ee e e e e e . 119
15. Packages. e e e e e e b e A s e e e e e e 121
151 Modules. 0. e e et e e e e e e e e s e wee & e e e e 123

23-DEC-83

NII. Manual _) ; v ‘Table of Contents

16, DOfStruct . . . o o s s e e e e e e e e e e e e e e e e e e e 125
16.1 Introduction. e e e e e e e e e e e e e 125
162 ASimpleExample e e e e e e e e e e e 125
16.3 Syntax of defStruct e e e e e e e e e e e e e e 126
16.4 Optionstodefstruct e e e e e e e e e e e e e e e e e 127
1641 itype.o e e e e e e e e e e e e e e e e 127
16.4.2 1CONSIIUCIOT . . & & v v i vt e i e e e e e e e e e e e e e e 128
164.3 :alterant L L L. e e e e e e e e e e e e e e e e e e 129
1644 mamed.t v e e e e e e e e e 131
1645 :predicate e 131
164.6 :print. e e e ey e e e e e e e e e e e e 131
164.7 :default-pointer e e e e e e e e e 132
164.8 :conc-name. e e e e e e e e e e e e e e e 132
1649 tinclude e e e e e e e e e e e e e e e 133
16410 ccopier i . e s e e i e e e e e e e e e e 134
164.11 class-symbol e e e e e e e e 134
16.4.12 :sfa-function e e e e e e e e e e e e e e e e 134
164.13 sfa-name L o e e e e e e e e e e e e e e e e 135
164.14 size-symbol. & . . L. L L L e e e e e e e e e e e e e 135
16.4.15 :size-macro e e e e e e e e e e e e e e e e 135
16.4.16 :initial-offset e e e e e e e e e e e 135
16417 but-first i . it e e e e e e e i e e e e e e e 135
16.4.18 :callable-accessors. e e 136
16.4.19 tevai-when L L e e e e e e e e e e e e 136
16420 (PTOPEIY .« « v v i it e 136
16421 ATypeUsed AsAnOption. ¢ oo v it v v ittt v v onn 136
16422 OtherOplions. . . & v v v vt vt v et e vt o et s e ae e e 137
16.5 The defstruct-description Structure oo e e e 137
16.6 ExtensionstodefStruct. L. it e e e e e e e e e e e s 138
166.1 ASimpleExample i e e e e e e e 138
16.6.2 Syntax of defstruct-define-type i it e e e e e 139
16.6.3 Options to defstruct-define-type. o oo v v e e e 139
16.6.3.] 100NS . . . L L. i e e e e e et e e e e e e e e e e e e 139
16.6.3.2 tref . . L. L e e e e e e e e e et e e e e e e e 140
16633 tpredicatet e e e e e e e e 141
16634 toverhead i i i i et e e e e e e e e e e e e 141
16635 :named et e e e et e e e e e e e 141
16636 ckeywords. 0t e e e e e e e e e e e e e e e e 142
16.6.3.7 :defStruct-options + . « v v ¢ v v 4 v v b e e e e e e e e e 142
16638 :defStruct i i i e e e e e e e e e i e e e s 142
16639 copier S 143
16.6.3.10 :implementations. o . i b e e e e e e e e 143
17. The L.OOP lterationMacro e e et e e e e e e e 144
171 Introduction.t i i i e e e e e e e e e e e e e e e e e e 144
172 Clauses T e 145
17.2.1 Itcration-Driving Clauses. e e e e e e e e e e 146

23-DEC-83

‘Table of Contents A ¢ ; N1l Manual

1722 Bindings oL L oo e e e e e e e Y e e 149
17.2.3 Entranccand Exit, e e e N e e e e e v e e e e 150
17.2.4 Side Effects. B T B T Y I TP M S S 151
1728 Values e e e e e e e e e e e e e e e - 151
1726 Endtests e e e e e e e e e e e e e e .. 153
17.2.7 Aggregated Boolean lcsts 154
17.2.8 Conditionalization e e e e e ee e e e e 154
17.2.9 Miscellancous OtherClauses o0 o . .. B P e e e e e e 156
173 loopSynonyms e e e e e e e e e e e e e e L. 157
O T 0 PN I8 oA P 157
175 Destructuring . . o o 0 0 v o e e s e e e e e e e e e e e e e e e 158
17.6 'I'he lteration Framework S A . 159
17.7 ltcration Paths. e e s e aiee e e e e e e e i e i e e e e 161
17.7.1 Pre-DefinedPaths.o 000 0o vi e e e e e e e e el 162
17.7.1.1 ‘The Interned-SymbolsPath e e e e e e e e e e 162
17.7.1.2 Sequence lteration. L0 e aahea e e e e 163
1772 DefiningPaths o o0 o v ... e e e e e e e e e e e e 164
17.7.2.1 AnExamplePath Definition 000, 167
18. The FlavorFacility. o o v i i i e e e e e e e e e e e e e e e e e e 170
181 Introduction. . . . o i v vt ot e e e e e e e e e e e e e e e s ... 170
18.1.1 Object-oriented Programming. ¢« o v i it i it e e e e e e 170
18.1.2 Object-oriented Programming Using Flavors. e e e . L. 1N
18.2 System-Defincd Messages0 L oL TR 176
18.3 MessageDefaultso B [I 177
19. Input. Output,and Streams. S e e e s ee s e ae e e b 179
19.1 StandardStreams e e e b e e @ e e e e e e el e v e 179
19.2 Stream Creationand Operations e e e e e e s e s e e e 180
19,3 Input FURCHONS . . . i v v e e e e i e e e e e e et e e e e e e ek e e s 183
19.3.1 AsCliInpuL . & e i e e e e e e e e e e e e e e e e e e 183
1932 Binarylnput e e e i et e e e e e e e 184
19.4 Output Functions BT e i e e 184
1941 AscHOUtput & .« . Lt it i e i e e e e e e e e e e e e e aiae e e e e 185
19.4.2 BinaryOutput ., e e e e e e h e e e e e e e e e e e 186
195 FormattedQutput. o i it i i i e e e e e e e 186
9.6 FOrmat i i it i it it i e e i e e et e e e e e e e e e e e e 187
19.6.1 The Operators e e e e e et e e e b e e e e et e e e e e . 188
1962 Definingyourown v v v i i e e . . O 194
19.7 QueryingtheUser.o v v v v v o v PO S e e. 197
19.8 Filesystem Interface . . . & v v v v v v v it e e e e e e e e e ... 197
198.1 Pathnames . . . o v o vt i vt i it e e e e e e e 198
19.8.1.1 Pathname Functions e e e e e e e e e a e 199
19.8.1.2 Mergingand Defaulting P 200
198.2 Opening Files. v i vt it e e e i e e e e e e e e e e e e e e 202
198.3 Other FileOperations. . & .« vt i v it v vt e it e b e ot e et e o aa e oo o as 203
19.8.4 File Matching. T . 204

23-DEC-83

NIL Manual vii Table of Contents
1985 1.0ading Files. . . v v v v v e e e e e e e e e e e 204
1986 File Attribute LAstS . o+ v v v v o v e e e e e e e e e e e e e e e 205
19.8.7 Internals for VMS Record Management Services o oo oL 207

19.8.7.1 DAtASITUCIUICS © v v v v v v v v e e v ee o s o s o o o e e s o o s e 207
19.8.72 RMSand RelatedHacking. oo s 208
199 Terminal 170 o i v e e e e e e e e e i e e e e e e e e e e 209
19.9.1 Modifying the Terminal Characteristics. o o v o v v v v v v e o 211
19.9.2 Making More Terminal Streams e e e e e e e e 211
19.9.3 Display TFY MeSSages . . o v v v v v v v v it v e e e e v oo e e 212
20. SYNIAX. . & v v v e e e et e e e e e e e e e e e e e e e e e 213
20.1 What the Reader Tolerates. A 213
20.1.1 BackQUOLe . . . & v v v v e e e e e e e e e e e e e e e e e 216
20.2 The Lisp Reader. R O O 217
2021 Introduction . o v o v v v e e e e e e e e e 217
2022 Reader EXICNSIONS & « v v v v o v v v e e e e e it e e e e 218
2023 Readtable . . - o v it i e e e e e e e e e e e e e e e 218
202.4 AlternativeSyntax O P 219
21. Debuggingand Metering o v v v b oo e e e e e e 220
21.1 FlowofControl. et e e e e e e e e e e e e e e 220
2111 Tracing. . o o v o v o v o e e i e e e e e e e e e e e e e e e e e 220
21.12 WhodocsWhat,tandWhere« ¢ vt v vt v vt o v v v v o 21
212 ExaminingObjects . . . v v v v v o i o e e e e e e e e s e e e e 222
213 Debugand Breakpoints . . o« v v v v v v i e e e e e e e e e e 222
214 MELeTiNg . .« v v v o v e e e e e e e e e e 223
2141 TIMING. . . v v v v ot e e e e e e e e e s e e e e e e e 223
2142 FunctionCalling ¢ v i v i i i i e e e ... 224
21.5 SystemManagement i e e e h v e e e e e e e e e e e 226
2151 Anexample L e e e e e e e e e e e e e e e e 226
2152 "Source(Re)Compilation™. o oo e 227
215.3 InformationinModules et e e e e e e e e e 228
21.5.4 Related Utilities e e e et e e e e e e e e e e 228
21.6 Verification. e s e e e e s e s e s e e e e e e e e 228
22, EITOIS. « v v v o o o vt o a s s 2 s oo et e e e e e e e 229
23. Environmemt Enquiries . . . v v v v v v v e v i e e e e e e e e e e 232
23] The HOStENVITONMENE .+ « v v ¢ ¢ ¢ & o ¢ s o s o c o s o s o o s s Ce .. 2232
23.2 Maclisp-Compatible Status Enquirieso oo 232
23.3 Privileges. P 233
234 MemoryUSage . . .« . v v v v v bt e e e e e e e 234
235 TimeandDate . . v v v v v v e e e e e e e e e e e e e e e e e 234
2351 TheMainFunctions e e e e et e e e e e e 235
2352 PrintingDatesand Times. o ot v i i v i e e e 235
2353 NamingS. . . ¢ v o v v o v o v vt v o v o o mm sttt 236
2354 TiMeZOMES . & &« v v v o ot o o b e e s e et e e e e e 238
23.5.5 Miscellancous Other Functions. e et e e e e 238

23-DEC-83

Tabie of Contents . o vii N NIL. Manual

23.5.6 Variations in Daylight Savings Time. e e e A 239
23.5.7 Internal Conversions O B 240
23.5.8 BrainDamage B e e e e e e e e e e e 240
23.6 Job/Process and System Information. e e e e e e e e e 241
24. Compilation e e e ... 243
24.1 Interaction Control, . . ., S i . o, 246
24.2 Efficiency. Optimization. and Benchmarking 177 246
25. Introduction to the STEVE editor. e e e e e e e 249
25.1 Introduction. S e e e e e e e, 249
222 GewingStartedl 249
233 BditingHiles. 250
254 Modifying the buffer. T e e e e e e e e 254
254.1 The Simplest Commands . . ., T 254
25.4.2 Now that you know the SimplestCommands, """ 255
23421 Numeric Arguments]l 255
25422 ControbX B R T 256
25.4.2.3 Meta-X and Control-Meta- e 256
25.4.2.4 Marks and Regions. oo 257
25.4.2.5 Killing and Unkillingo o 257
25.4.2.6 List Oriented Commands. e e e e T 258
25.4.2.7 *more* . . . B T 258
25.4.2.8 Aborts. B S T S R 258
25.5 MajorModes B 258
25.6HclpandSclfDocumentation......,.....................-....259
25.7 Glossary of Commands B R ST . e e e e e 260
2371 Special Character Commands]['/ s 261
2312 Control Character Commands. |/ /1 ttreeees 261
25.7.3 Meta Key commands | e e i e e e e e e, 264
25.74 Control-Meta Commands. . . ., R 266
25.1.5 Control-X Commands. e e e e e e e e e e e e 268
25.7.6 Meta-X Commands. U 271
25.8 Extending theEditor. e e e e e e e e Cee e ce. 0274
25.8.1 Editor Functions sie s eh e el e e e e e e e e 274
25.8.2 Editor Objects I T S c .. 275
25.8.3 Other Functions and Conventions. . , e e e e e e e e 2T
26. The Patch Facility, P DS 280
26.1 User Functions, T S . 281
26.2 Patch System Information . P S e e e e e e e e e 282
26.3 Adding Patches ‘e e L 282
26.4 Defining Paich Systems N e e e e e e . T 284
27.TalkingtoNIL............,.....f. e e e e “ see e . 287
271 Startwp, T e e e e 287
272 The ToplevelLoop. . . . oo, oL L. 1T e e e 288

273 Entering and ExitingNIL e e e e e e e e e e e e e e 288

23-DEC-83

NIIL. Manual . ix Table of Contents

274 VMS e e e e e e e e e e e e e e e e e e 290
275 Installation L .. e e e e e e e e e e e e e e e e 291
27.6 How the NIL.Control Works e e e e e e e e e e e e e e 293
28. Peripheral UBHEOS. © « « v v v v o e e e e e e e e e e e e e e e 295
28.1 The Predicate Simplifier. B T 295
282 AMINIFMYCIN. & . . e e e e e e e e e e e e e e 296
28.3 Maclisp Compatibility for Macsyma P 297
29. ForcignlanguageInterface ¢ ¢ i i it i e e e e e 298
201 Introduction. i . e e e e e e e e e e e e e et e e e 298
29.2 Kcernel and System-Services. e aah e e e e e e e e e 298
29.3 VMS object files. e e e e s s e e s e e e e e e e 299
204 DataConverSiON . . v v v vt v @t e i e e e e e e e s e e e e e e s 299
205 lowerlevel foutineS v vt it e e e e e e e e e e e e e e e e e 300
30. What Will BreaK. i i i it it e et e e et e et e e e e, 301
30.]1 What Broke Sincc Release0.259. oo 301
302 FutureChanges. . v . v v v v v v v 0 v v e e e e i e e e e e e e s 303
30.2.1 Default Floating-Point Format 0 it v vii v v v v v v o o 303
30.2.2 NewPackageFacility. oo oo v i i oo 303
30.2.3 Vector-push and Vector-push-extend v o0 v v v v v v v 303
3024 Multiple Values v o i v v i i i e e e e i e e e 303
30.2.5 Variable Naming Conventions e e e e e e e e e e 305
W26 Garhage Collection. v i it i e ee e e e, 308
3027 Error System v ittt e e e e e e e e e e e e e e e e 305
RefeIenCeS. &« v v v v v v et et e e e e b e e e e e et s e e e e e e e 307
ConceptIndex. i . it i it i e e s e e e e 308
MessageIndex.0t i e e et e e e e s 310
ResourceIndex i v e v vt i vt vt et e b e a s et e e .. o311
Variableand ConstantIndex. ¢t ¢t it b v e e v v v o e v o c ... 312
Function, Macro, and Special FormIndex e e s e e s 314

23-DEC-83

Nil. Manual . 1 Introduction

1. Introduction

Nii., which stands for New Implementation of lisp, is a dialect of 1ISP which runs on the
DEC VAX. NIL currently runs under the VMS operating system. It will likely be converted to run
under UNIX (TM) at some point, but there is no cffort underway to do so right now.

NIL is a dialect of COMMON LISP. COMMON LISP is essentially a formal specification of the
Lisp language such that programs which conform to that specification may be transported without
modification from onc COMMON LiSP implementation to. another, and be expected to run.
compatibly. As of this writing. the COMMON 11SP manual has just gonc to press: this manual has
thercfore developed into documentation of a:subsct of COMMON TSP facilities which are currently
supported by NIl and a large number of N1t -specific things.

This document schizophrenically attempts to cover three arcas. Onc is "primer”
documentation; thosc things which must be known for any programming to get done. In this
casc. attémpts arc made to point out what of these things arc COMMON LISP compatible. Another
is the sct of things which migkt be expected to change incompatibly, due o COMMON ISP
conversion. - ‘The third is those waich are part of the N core Virrwal Machine. as it is being
developed more formally. ‘These include, for example. functions like %string-replace. which arc
suitable low-level primitives for a VAX (or other byte-machine, like perhaps an IBM-370) to
provide. l.astly, therc are certain parts of Nil. which have undcrgone large amounts of recent
devclopment, and arc fairly stable, and which mayv provide functionality for users in various
domains; the 170 system, for example. Much of the provided documentation will be of things
wintitil ate obscenely iow-ievei: sometimes, this is 10 point out piaces where the impiementauon
falls short of the design: often too. to document these for those who may find it useful
debugging. or in performing implementation-dependent activities; and occasionally, to explicitly
notc how the implcmentation differs from the general and portable semantics (as in the case of
numbers und eq).

1.1 Conventions

All otherwise unqualified rational numbers in this manual are in decimal, not octal (as has
been the practice in certain other manuals, notably [9] and [12]). Special qualifying syntax for
forcing the interpretation of rational numbers in other radices is described in section 2.1, page 3.

There are a couple conventions for the forming names of functions and variables coming into
use from within the COMMON LISP community.

Generally, variables whose values are special and which may be modified during the course
of program opecration have names which begin and end with an asterisk; for instance,
spackage=. Lexical variables, and constants defined with defconstant (page 24), are normally
named without thesc asterisks. For instance, NIL dcfines the constants pi and most-positive~
double-float. This is a convention only and does not affect the opceration of the NIL interpreter
or compiler; howcever, the possibility exists that (in the futurc) the compiler will use the prescnce
or absence of such asterisks to choose a course of action if it encounters a free reference to an
undeclared variable. (Special and lexical variable reference is discussed in chapter 3, page 11.)

MC:NIL.MAN:INTRO 18 23-DEC-83

Conventions 2 ' NI. Manual

“The names of predicate functions in NI and COMMON LISP arc typically formed by suffixing

" e

the character "p” to the end of a descriptive name. For instance. consp is a predicate which is

truc if its argument is a cons, and lessp (which actually is a MACLISP, not COMMON LISP,
function) compares numbers and (when given two arguments) returns t if the first is less than the
sccond. If the name itsclf is hyphenated, then "-p" is suffixed: upper-case-p is a predicate
which tells if a character is upper-case. 1f, however, the predicatec name is formed by prefixing a
specializing name to an existing predicate name, then the final "p” would not have hyphenation
added to it: - string-lessp is a predicate can be used. to compare strings using a standard collating
scquence, the name being formed by prefixing “string-" to "lessp”. There are, of course, many
cxceptions to this, and this convention docs not climinate all ambiguity, but it helps. A good
number of NI functions did not follow this convention in carlier versions of Nil; many of these
have been fixed, and the old names made synonymous with the new names for the time being.

"

MC:NILMAN;INTRO 18 ‘ - 23-DEC-83

Vod e ek

Nil. Manual . K} Data Types

2. Data Types

This chapter provides an overview of some -of the data types used in NI, their uses, and
their syntax (their printed representation). Those not strongly familiar with LISP should go over
this lightly to get some idea of the sorts of objccts which NIL offers, and procced to the next
chapter; others might want to read it anyway to see what NIL provides which may differ from
other Lisp dialects. Most of the scctions here have later chapters devoted to them, which give
much more complete information on the types, how they may be used, and the functions which
can manipulatc them. Also, more complete -information on the syntax used for these types is
presented in chapter 20. page 213.

2.1 Numbers

The Ni1. (and cCOMMON 11SP) hierarchy of numerical types looks like this:
number
rationa®
integer
fixnum
bignum
ratio
float
short-float
single Tlocat
double-float
Tong-float
complex
Collectively, the non-complex numbers are referred to in. NI as the type non-complex-number;
the term real is not used because of potential confusion with floating-point. Note that there is no
guarantee that the above types might not be further subdivided or grouped for the convenience of
the implementation.

2.1.1 Rationals

L3

The integer data type is intended to rcpresent mathematical integers. There is no magnitude
limit on them other than that imposed by memory or addressing limitations.

In NIL, those integers which can be fit in a 30 bit ficld in twos-complement are fixnums,
which are rcpresented in such a way that no storage is consumed. For integers not in this range,
bignums are used. Generic arithmetic functions automatically choose the appropriate
representation.

The printed representation of intcgers ordinarily uses decimal notation, optionally preceeded
by a sign character and optionally followed by a decimal point. The sharpsign reader macro
(section 20.1, page 214) may be used to input rational numbers in other radices; for instance,

MC:NILMAN;TYPES 36 ' 23-DEC-83

Numbers ; 4 NIl Manual

259 i The intcgcr 259

259. : The integer 259
#0403 ; entered in octal
#b100000011 ; entered in binary

A ratio is the type used to represent non-integer rational numbers. It consists logically of
integer components which arc its mumerator and denominator (which are accessible by functions of

 the same names). The external interface is defined such that a ratio will always appear to be in

reduced form (whether or not it is).. and the denominator will always be positive. (COMMON 1ISP
scz it can’t be zero, infinity freaks.) ‘The arithmetic routines which deal with rational numbers
tranparcntly convert between ratios, bignums, and fixnums as appropriate. Ratios are denoted -
scparating the numerator and the denominatory by a /: thus, the ratio three-halves is 3/2.

- 2.1.2 Floating-point Numbers

CoMMON LISP allows for four kinds of floating-point représcmati(ms.y which must meet the
following criteria: :

Format Binimum Precision Minimum Exponent Size
Short 13 bits - 7 bits
Single 24 bits 8 bits
Double 50 bits 8 bits
Long ~ 580 bits 4 8 bits
N1 provides all of these formats, with the following specs: ,
Type ’ ‘Precision Exponent
short-float 19 bits 8 bits
single-float 24 bits 8 bits
double-float 56 bits 8 bits
lTong-float 113 bits 16 bits

The long-float type requires microcode support to avoid software emulation.

Floating-point numbers in NIL are syntactically distinguished from integers in that they must
have a decimal point followed by at least one digit. (This is more rigid than the COMMON LiSP
spccification.) So, for instance, 10 and 10. are both the integer ten, but 10.0 is floating-point 10.
The. various formats of floating-point number arc. syntactically - distinguished by the use of the
character used in exponential notation. For example, 10.0d0 is double-float tcn; 10.0s0 is short-
float ten, 10.010 is long-float ten, and 10.0e0 is single-float ten. When exponential notation is
not used, the type of float is determined by the user-modifiable variable «read-default-fioat-
formats (page 72). COMMON LISP specifics that the default type of float is single-float, both for
rcadin and the valucs of various irrational or trancendental mathematical functions when they are
given rational arguments (c.g.. sqrt). However, in NIL, the default is currently double-float,
because this NIL release is the first to supply any format other than double-float. The default
will be changed in a future release.

MC:NUMAN:TYPES 36 ' : 23-DEC-83

Nil. Manual 5 Characters

2.1.3 Complex Numbers

Complex numbers in NIL represent a point in the complex planc in cartesian coordinates.
Their printed representation shows these coordinates:
#C (realpart imagparg)
The recal and imaginary parts may be extracted with the realpart and imagpart functions.

The rcal and imaginary components of complex numbers must both be cither rational
numbers, or floating point numbers of the same floating-point format.

Rational numbers and complex numbers with rational componcents collectively constitute the
gaussian-rational NIl data type. Many. but not all, rational number functions have been
cxtended to operate on gaussian rationals in NI, for instance numerator. denominator. and
mod. In order to provide what we call a seamless extension of the rational numbers to the
complex plane, a gaussian rational with a zero imaginary part is not of type complex. but just
the rational number. This interconversion may be compared with that which interconverts between
fixnums and bignums as nccessary. Gaussian rationals which have integer components (i.c..
intcgers. and complex nu.nbers with integer componcents) are the NIl type gaussian-integer,
which is of coursc a subtypce of gaussian-rational. - Certain integer functions in NiL. have been
extended to operate on gaussian integers; these include ged. oddp. and evenp. The gaussian
rational and gaussian intcger cxtensions in NIL are not defined by comMMoN 1isp, and should
therefore be considered experimental and potentially subject to change. For this reason. feedback
on their usage and utility is desired in order that these extensions can be cvaluated.

Complex numbers with floating point components always have components of the same
floating-point format. Such a number is always of typc complex, cven if the imaginary part is.
zero.

2.2 Characters

NIL provides a data type for representing characters. Characters are the things one
manipulates when doing “character 1/0™ on streams. They are the things one gets out of, and
puts into, strings. Having a separate data type allows them to maintain their identity within the
lisp (as opposed to being an intcrpretation placed on fixnums, for instance). Chapter 11 is
devoted to this.

Characters in NIL use #\ syntax for input and output, as shown below. Note that if the
character after the #\ stands alone, it is taken literally. If it occurs after a prefix such as
“control-", then it will be treated like an ordinary token, so may nced to have a preceding
backslash to inhibit case translation or just to allow proper token parsing.

#\a ;Lowercase "a".
#\A ; Uppercase "a".
#\Control-a ; Uppercase "a", with the control bit.
#\Meta-\a s Lowercasc "a”. with the meta bit.

Some characters have names, which may be used in place of the character itself:
#\Rubout , ;' The "rubout™ or "delete” character
#\Hyper-Space : The "spacc” character with the hyper bit.

MC:NILMAN:TYPES 36 23-DEC-83

Symbols ‘ . 6 : NH. Manual

Only a subsct of all possible characters arc allowed to be contained in strings. These comprise
the string-char data type. It happens that in Nib. these arce those characters which have no font.
or bits attributes (both are 0).

2.3 Symbols

Symbols are what are used as names in lisp. They can name functions, and variables (the
two uses of which arc syntactically distinguishable by the 1isP cvaluator). Symbols have a name,
also called the print name or pname, which is a string containing the characters used in the
printed representation of the symbol. A symbol also has a property list or plist associated: with it
This is a list of alternating "indicators™ and. “values”, allowing one to store unidirectional
associations on the svimbol. - A svmbol also has a package. which points to the "name space” it is
assaciated with (chapter 15, page 121). :

The symbol nil is special. It is used both to represent doolean false, and the empty list. Its
altcrnate printed representation is (). the empty list. It has the data type null. which is both a
subtype of symbol and a subtse of list. and is the only object of that type. lhts value is not
allowed to be changed. Otherwise, it is treated the samce as other symbols (it has a property list
etc.).

The symbol t is used to represent boolean truth. lhis value is also not allowed to be changed.

‘Symbols are often ‘used as keywords. Because of the existence of multiple namespaces
(packages). this might present a problem because two symbols read into different namespuces
might not be the same.. This is solved by having special keyword symbols, or just keywords for
short. - A symbol which is typed in preceded by a colon (and nothing clse) is read into the
namespace (package) for keywords. Thus, all symbols so designated are the same (they are eq).
Keywords are sclf-cvaluating, and their values arc not allowed to be modificd.

Notationally, tokens which cannot be interpreted as anything clse are taken to be symbols,
except that tokens consisting entirely of unslashified dots are supposed to cause a syntax error.
Thus, 1.0e+4 will rcad as a floating-point number, but 1.0e+4a will read as a symbol. More
complete details on input syntax are in chapter 20, page 213.

2.4 Lists and Conses

A cons is the type which makes LISP what it is. In simpler lisps, it may be the only data
type which can be used to associate more than onc object. A cons makes a binary association: it
has two components, its car and its cdr, which are accessed by just those functions. It is thus
the datastructure of choice for representing binary trees.

A list, when considered to be a data-type, is the union of the types cons and nuli—that is,
it is cither a cons, or the symbol nil- (thc cmpty list). That is- why the alternate - printed
representation of nil is (). (Sec scction 20.1, page 214 for exposition of the printed representations
of conscs and lists.)

MC:NILMAN:TYPES 36 | 23-DEC-83

NII. Manual o 7 7 Arrays and Sequences

Often, a list is a conceptual sequence which has a discrete end. In this context, the cdr of
the last cons of the list must be nil. In text (and crror messages), the phrase "proper list” is
used to distinguish between just a cons (or nil) and an actual list whose final cdr is nil. For
instance, the cons .

(a . b)
is of the type list, but if given as a list argument to the member function (page 61) would cause
an crror which would say that it was not a proper list.

2.5 Arrays and Sequences

Arrays in N1 are a very general type. One dimensional arrays arc the type vector. Arrays
can be specialized as to the types of clements they may contain. A onc dimensional array (a
vector) which can only contain "string characters” (sec the string-char-p function. page 19) is a
string. A onc dimensional array which is allowed to hold only objects of type bit (that is. the
integers O or 1) is a bir vector. Arrays arc discussed fully in chapter 12, page 103.

The type sequence is the union of the types list and vector. There arc a large number of
sequence functions in NIi, - which operatc on both lists and vectors, viewing cither as just a
sequence of objects. One therefore has available the same general sequence operations, to be used
on whatever particular type of datastructure was chosen for the task at hand; they may be lists,
to make adding. deleting. splicing., etc.. casy, or vectors of a particular type suitable for the
application—strings, bit vectors, etc. The functions for operating on sequences are described in
chapter 7. page 48.

2.6 Structures

NiL. provides a structure or record definition facility. This is supplicd by the defstruct
function (page 125), which is essentially the same one used in both MACLISP and LISP MACHINE
1I1sP. In NIL, the normal way defstruct is uscd defines a type, and the structures created can be
distinguished with typep. Additionally, such types interface to the NIL flavor system, which may
be used to give them methods for such things as how they should print and pretty-print.

2.7 Functions

There are several different things which can be "functions” in NIL. Most basically, there is
the type compiled-function (also known as subr). This corresponds to a function created by the
NIL compiler, or part of the NIL kernel. It may also be created "on the fly" for the purpose of
interfacing compiled code to interpreted code; in NIL, functional cvaluation of an interpreted
function will result in an objcct of type compiled-function.

Functional objects which implement “environment transfer” (which is discussed in a later
chapter) are of the type closure. The most commonly secn specialization of this type is that used
in the interpreter, the type interpreter-closure.

MC:NILMAN:TYPES 36 23-DEC-83

Random Internal Types 8 ‘ , NI Manual

2.8 ‘Rand}om Internal Types

Here are some of the internally used types in Nil. While they should generally not be scen,
they may pop up on occasion either themselves or as a result of errors.

2.8.1 Minisubrs

The minisubr type is somewhat gratuitous; it will be flushed as a scparate type someday, and
its type bits. rcused by somcthing more useful. A minisubr is a special routine within the NIL.
kerncl: such routines arc called with the vaAx JSB instruction. However, they tend to have
various assorted ‘

2.8.2 Modules

A module. as a type. is the structure used by NI to contain a collection of compiled
functions and the constants and - Jatastructures they reference. When the compiler compiles a file,
it produces a module. When the garbagecollector (haha) relocates things, it relocates the module
as a block. The use of the namc module for this primitive datastructure is a bit pretentious, so it
will probably be called something like compiled-code-module in the future. '

2.8.3 Internal Markers
The type siinternal-marker is used for various things in NI, none of which should
ordinarily be visible to (or touched by) the user. Objects of this type are mcant to be checked

for by things like the debugger and garbage-coliector (to, for. instance, parse stack frames), and
~ manipulating them out of context will confuse these programs.

These objects print out as #! followed by the name followed by !. For instance,

#1AFM-31 3 Stack marker for 3-arg function
; call frame
#1PC-MARK] ; Next slot on stack is a PC

#!DOUBLE-FLOAT-MARK! : Next two stack entries are the
; representation of a double-float
#!NULL~ARG] ‘ + Stack slot is for an argument which
: s+ has not yet been computed, in a
s+ function call frame.

MC:NIL.MAN:TYPES 36 v 23-DEC-83

NII. Manual . 9 Coercion

2.8.4 Unused Types

There are a number of unused type codes in NIL. Certain internal routines, upon
encountering them, bomb- out to the VMS dcbugger because your NiL is then undoubtedly losing
its lunch. :

2.9 Coercion

coarce object type
If object is alrcady of the type fype, then it is simply returned; otherwise, it is converted
to be of that type.

Only certain forms of cocrcion are defined. coerce will perform cocrcion of one sequence.
type to another: its capabilitics in this regard arc similar to those of concatenate (page
50). Note. however, that concatenate will al/ways rcturn a copy of the scquence,
whercas coerce will only create a new one if object is not of the proper type already.

coerce also allows some non-sequence coercions, with the following types:

float
Cocrce the object to a floating point number. If object is already a float, it is
returned; otherwise, it is coerced to the default type of float (double-float). Sece
float, page 78.

short-fioat '

single-float

double-float

long-float
Coerce the object to that particular type of floating point number. Again, this is
similar in functionality to what may be obtained by giving float a sccond
argument.

complex
object, which must be a number, is coerced to a complex number. If it is
alrcady complex, it is returned. If it is rational, it is also rcturned; this is
because complex numbers with rational components and a zero imaginary part are
automatically reduced to rationals. If, however, it is a floating-point number,
then a complex number with object as its real component and a floating-point zero
of the same format as object as its imaginary component, is returned.

- {complex float)

(complex short-float)

(complex single-float)

(complex double-float)

(complex long-float)
Effectively, these are like coercing the number to complex, and then returning a
complex number whose realpart and imagpart have been coerced to the specified
floating point type.

character ' ~
Convert object 10 a character. This coercion is only defined for integers (see int-
char, page 96), symbols onc character long, and vectors whose clement-type is a
subtypec of character (i.e., character vectors and strings). Morcover, in the

MC:NILMAN:TYPES 36 23-DEC-83

Cocrcion ‘ ’ : 10 NIL. Manual

integer case, an crror is signalled if the coercion does not succeed (ic.. int-char
would return nil when given the integer object). '

Note that coerce docs not provide for coercion to rational or integer types. This is
because the issue of what to do about truncation or rounding is a matter of . the intent;
the functions rational (pagc 78) and rationalize (page 78) may be used to convert
numbers into rational numbers, and the functions floor, ceiling. truncate, and round
(section 10.7, page 79) are uscful for converting both floating-point numbers and ratios to
integers with various sorts rounding behaviour. '

coerce does not accept all of the general forms of npe that it should: however. most the
simple formats, and certainly all those that are listed above, arc handled properly.

When compiled. calls 1o coerce with a constant sccond argument arc changed by the
compiler into calls 10 a routine specific to the task; a foew of these, most notably the
conversions to (non-complex) floating point, arc handled cspecially cfficiently.

There are a number of other functions which perform specific types of coercions. For
instance, string will cocrce a syinbol or a string to a string.

MC:NILMANTYPES 36 , ' 23-DEC-83

NIL. Manual 11 Scope, Extent, and Binding

3. Scope, Extent, and Binding

The NIL interpreter uses lexical scoping. What this mcans, simply, is that variable references
which arc “textually within” the code which binds them, are valid. Those references which are
not "textually within” the binding form arc not, and will (typically) causc unbound-variable crrors.
Consider the definition '

(defun make-associations (keys single-value)
(mapcar #°'(lambda (key) (cons key single-value)) keys))
which takes a list of keys, and returns an association list associating all of those keys with the
samc single value (perhaps for usc by assoc). ‘The first argument to mapcar. the lambda
expression, s technically a function. (the #' construct is cxplained below.y 1t is. however,
textually within the binding of the argument single-value, so that variable reference is lexical,
and that function works in NiI. as desired. Consider the alternative form
(defun make-associations (keys single-value)
(mapcar #'make-one-association keys))
(defun make-one-association (key)
(cons key single-value))-
which might appear to be cquivai'nt. The reference to single-value in the definition of make-
one-association is not textually within the binding of that variable, hence appears "free™.
Although this function (in the absence of extra declarations, as described below) would: function
"properly” in thc MACLISP or 1I1SP MACHINE LISP interpreters, it will not in NIL. It is interesting
to note that (again without special declarative information) both the MACLISP and LISP MACHINE
LisP compilers will trcat the sccond example as an error (or at least produce incorrect code),
because although the interpreters do not enforce lexical scoping rules, code is compiled that way.

A short note may be in order on the #' construct which appeared above. #’ is an
abbreviation for (function ...), just as ' is an abbreviation for (quote ...). In MACIISP, the two '
arc cquivalent. However, in NI (and to somc extent in 1ISP MACHINE 1ISP to0), use of this
special form is necessary to cause the proper (functional) interpretation of the form being
evaluated. In fact, in the make-associations example, it is that special interpretation which
makes the lexical reference to single-value "work”. If quote was used instead of function, the
example would not work as desired. function (or #°) need not just bc used around lambda
expressions. It may also be used around function names (as in the sccond make-associations
example). The effect of evaluating (function name) is equivalent to what the interpreter does
when it "evaluates” name in the function position of a list being evaluated.

NIL does not restrict one to using only lexical scoping rules. It is possible to declare to NIL
that a variable is special, and should be able to be refcrenced by code nof textually within the
binding construct. Or, perhaps a variable should have a global toplevel value and not be bound
anywhere, or maybe cven have a toplevel value, and be bound in some places. This is the
purpose of the special declaration, which NIL implements compatibly with COMMON LISP, and
which is about the same as it is in LISP MACHINE LISP and MACLISP.

Most of the time, special variables are declared to be special globally. This means that the
NIL interpreter {(and compiler) will always trcat the variable as being special, even if there is no
declaration for it at the place it is bound. As a matter of style, variables declared special arc
usually given names which begin and end with the character = so that they can be visually

MC:NILMAN:BIND 27 23-DEC-83

Scope, Extent, and Binding . 12 NIi. Manual

distinguished from more "ordinary” lexically scoped vamblcs Onc way o globally dcclare a
variablc special is with defvar (page 24). For instance, '
(defvar =leavess)
(defun find-all-Teaves (tree)

(Tet ((+leavess nil)) ; Empty sct of leaves
(find-all-leaves-1 tree) ; Grovel over the tree
sleavess ‘ , - ; And return the leaves found
))

(defun find-all-leaves-1 (tree)
-(cond ((atom tree)
(cond ({(not (memq tree sleavess))
(setq =leaves* (cons tree =leavess)))))
(t (fmd -all-leaves-1 (car tree))
(find-all-leaves-1 (cdr tree)))))
‘There are more esoteric (or SCHEME-like) ways in which the above could have been performed.,
without the use of the special variable »leavess, but the above is fairly straightforward, fairly
cfficient, and will also run (both iiterpreted and -compiled) compatibly in MACLISP and 1isp
MACHINE LISP. :

The above intuitive (or, if you prefer, hand-waving and vague) description can now be used
to more formally define the terms of scope and extent which are used to describe the accessibility
and lifetimes of things, of which variable bindings are one instance. The scope of something tells
where it may be validly referred to. To say that something has Jexical scope then means that it
fitay e uwsed anywiwie “iexiuaily” within te consuruct. which “creates” the object (e.g.. the
lambda-expression which binds a variable). Note that this does not in itself imply that the
reference becomes invalid if that construct is exited. That dimension is the extenr of the object,
which tells the rime during which the object (e.g.. variable binding) is valid. dynamic extent
means that the object (reference) is only valid during the exccution of the construct. indefinite
extent means that there is no such limitation. Variable bindings in the NIL interpreter (which are
not special) have lexical scope and indefinite extent. This means upward funarg capability.

indefinite scope means that there is no restriction on where a valid reference may occur from.
This. is the case with special variables; the "free” references may be made from any piece of
code. The bindings of such variables, however, have only dynamic extent; they become invalid
(are "unbound") when the binding construct is exited. This combination of scope and. extent,
which is quite common, is referred to as dynamic scope.

Now, for the pragmatics. The current NIL compiler actually only implements local scope
instead of lexical scope. lts capabilities lie only in dctermining when it is losing. In many cases,
this does not matter because the constructs being used are expanded out into other constructs,
making the references local. This is what happens for mapcar, for instance; in the construct

(let ((zz (computate)))
(mapc #'(lambda (x) (mumblify x 2zz)) some-1ist))
the reference to zz within the lambda expression is a non-local (but lexical) reference. That
expression is recoded by the compiler, however, as an itcration without a scparate function, in
which the reference become local.

MC:NILMAN:BIND 27 S 23-DEC-83

NI1I. Manual . 13 Lambda Application

reference This is actually a moderately standard way to handle lexical variables: rewrite
the form when possible to cause the reterence to become local. The MACLISP compiler
docs this with the mapping functions: cven if the open-code-map switch is turned off, if

such a reference occurs it will expand out the iteration to allow the local reference. '

Environment transfer is implemented with closures. A closurc is cssentially an encapsulation
of a function, and somc portion of a binding environment. The closures with which lexical
cenvironment transfer is performed in the interpreter, interpreter closures, bundic up the lexical
environment as of the time of their creation. Thus,

(setq fn (let ((x 5)) (function (lambda () x))))
=> #<Interpreter-Closure (Anon) 1 259ABC>
(funcall fn)
=> 5
Onc may test for a closure in gencral with (typep x 'closure). or with the closurep predicate
(page 19). g

Nit actually has the capability for giving "dvnamic” variables indefinite cxtent. This can be
used to implement old-fashioned closures: as creai:d by the Lisp Machine closure function (which
exists in NIL). ' :

In NiL. what has been said for variables as far as scope, extend. binding, and shadowing is
concerned, is equally true for funcrions. Variable value and function value are handled in
virtually identical fashions. ‘The primary differences between the two are that the interpreter does
not warn you when you create 2 new toplevel special funciion value (it docs when you cicate a
new toplevel special variable valuc when the variable is not globally declared special), and the
compiler makes its special assumption quictly.

The design of the NIl binding mechanism is described by White in [13].

3.1 Lambda Application

Application of a lambda cxpression in NIL is much like that of LISP MACHINE LISP. A lambda

expression is of the general form

(Vambda lambda-list {declaration}s {form}s)
In the simplest case, lammbda-list is a (possibly empty) list of variable names, which are the formal
paramcters to the lambda cxpression when it is treated as a function. There must be as many
arguments to the lambda-expression as there are variables. Thus,

((lambda (a b c) (list abc)) 12 (+ 3 4))

=> (1217)

The lambda-list may also contain special symbols which begin with the character &. These are
often called lambda list keywords, but they are "keywords” only in the general sense, ie., they
are not typed in with a preceding colon. They are typically used to drive the matching of the
formal paramecters (variables) in the lambda list with the values they should be bound to. There
arc basically just four such keywords, cach of which is optional, and which should appecar in the
order they are shown in:

&optional .

The items from the &optional to the next &-keyword (or end of the lambda-list) describe

MC:NILLMAN:BIND 27 23-DEC-83

L.ambda Application ' 14 NIH. Manual

optional arguments to the function. Fach such item may be of onc of the following
forms: ‘ ‘ '
variable : : ‘ ‘
If a corresponding argument is supplied, then variable will be bound to that.
Otherwise, it will be bound to nil.
(variable) ~
Samec as an isolated variable. .
(variable inir-form) :
If there is a corresponding argument, then variable is bound to that. If not, then
init-form-is cvaluated, and variable bound to that result. ‘The evaluation of inir-
Jorm is performed in an environment where all of the variables in the kimbda list
to the left of this onc have been bound already.
(variable init-form init-p-var) .
Just like the previous format. - Additionally. init-p-var will be bound to t if there
was an argument supplicd, nil if not. ‘
&rest :
There must be cxactly onc item between 31 &rest keyword and the next &-keyword (or
thc. end of the lambda-list). This variable is bound to a list of all the remaining
arguments to the function.
&key , ,
The items between &key and ecither &aux or the end of the lambda-list describe
keyworded arguments to the function. These are arguments which arc passed by keyword
rather than by position: when given, it must be preceded by the keyword naming which
argument it is. The function fll is detined with the lambda list
(sequence item &key (start 0) end)
which mecans it takes two required arguments (sequence and iten), and two keyworded
arguments (siart and end). The calls
{(fill sequence new-item :start start :end end)
(fi11 sequence new-item :end end :start start)
are cffectively the same. All keyworded arguments are by default optional. The
specification of a keyworded argument in. the lambda list is normally the same as that of
an optional argument; thus, if no :start keyword and associated value is specified in a
call to fill, the start parameter defaults to 0, and for end, the default is nil. The name
of the vanable is used to generate the keyword which flags that particular parameter.
Additionally, with the non-atomic forms of optional paramcter specification, a list of the
actual keyword which should be used and the variable to bind the argument to may be
used instcad. For example, if it were desired that the keyword :start be used to flag the
starting index, but that the formal parameter be named i, then the lambda-list could have
been written as
(sequence item &key ((:start i) 0) end)
It is important to notc that if both &key and &rest are given, then the list the &rest
variable is bound to is the same list from which the keyworded arguments are extracted.
This is sometimes uscful if the arguments are going to be passed cn-mass to some other
function using apply, or perhaps to reconstruct the original arguments to the function in
“order to signal an error.
&aux
Bindings specified with &aux are for awuxiliary variables; they have no correspondence to
the "arguments” given to the lambda expression. The only things which may follow &aux

MC:NILMAN:BIND 27 A 23-DEC-83

Nil. Manual) ; 15 Lambda Application

in the lambda list are bindings specs for these auxiliary variables, which may take onc of
the following forms:
variable
variable will be bound to nil.
(variable)
variable will be bound to nil. However, becausc this syntax may cventually be
either disallowed or made to mean something clse, onc should use either just
variable or (variable nil).
(variable init-form)
init-form is evaluated. and variable bound to the result.
The first &aux /mit-form is evaluated within the environment produced by the preceding
portion of the lambda list. As cach &aux binding specification is processed, the variable
is bound. and will be available to any following inir-forms. Because the stuff with &aux
has little to do with the lambda application, it may be clearer for the body of the lumbda
cxpression to be wrapped ‘in let (page 26) or let+ (page 26). in fact, the portion of the
lambda list following &aux could be given as the binding-list to letx, and have the same
meaning. :

The use of &rest in NIl results in consing. If the keyword &restv is used in place of &rest,
then the variable will be bound to a stack vector rather than to a list. This is an object which is
of the type simple-vector, but has only dynamic extent; it loses its validity when the function
with &restv in its lambda-list is exited. Essentially, the stack vector is just a pointer into the
stack where the valucs are stored. This feature should be used with great care.

MC:NILMAN:BIND 27 23-DEC-83

Predicates 16 NH. Manual

4. Predicates
4.1 Type Predicates

4.1.1 Type Specifiers

A type specifier is an expression which may be used to express a data-type constraint.
nil No object is of the type nil; nit is a subtype of all types.

t . All objects are of the type t. For instance,’
(make-array °(10 10) :element-type t)
makes an 10x10 array which can hold objects of any type.

npe-name
This is the most common form of typc specifier; just a type name, for instance number,
double-float. - string. npe-name may be the name of a flavor defined with defflavor
(page 173). the name of a structurc defined by defstruct (page 125) (assuming defstruct
is not told to implement the structurc in some other fashion), or one of the many NIL
types noted in various places in this document.

(not 1ype-specifier) , :
All objects which are nor of type type-specifier.

(and 151 152 . ten)
The intersection of the types corresponding to the given type specifiers.

(or tsi ts] ... tsn)
The union of the types corresponding to the given type specifiers.

{member x/ x2... xn)
This describes a type which is one of the objects x/, x2, .. xn. Equality is defined by

eql (page 20).

(satisfies function-name)
An object is a "member” of this type if function-name returns a non-null value when
applied to it, otherwise it is not. :

~There are some more complex forms which are used variously as synonyms for, and
constraints on, more general types. For instance:

(integer low high)
An object is of this type if it is an intcger between Jow and high., low and high may be
integers, in which casc the boundary check is inclusive, lists of integers, in which case the
boundary check is exclusive, or the atom e, which signifies infinity of the appropriate
sign. Thus, (integer O) is a type specifier for all non-negative integers, and (integer
(0) «) or (integer 1) for all positive integers.

(signed-byte size)
(unsigned-byte size)
An objeet is of these types if it can be rcpresented in the appropriate form in twos-

MC:NILMAN:PRED 29 23-DEC-83

NII. Manual) 17 , Type Predicates

complement notation in a ficld of the specified size. (Without a hidden-bit convention.)
Thus, (signed-byte 3) is the same as (integer -4 3). and (unsigned-byte 3) is the
samc as (integer 0 7). -

bit Either O or 1.

(array element-1ype dimensions)

An object is of this type if it is an array with "the same” clement type and dimensions as
those specified. dimensions may be the symbol -« (or not supplicd), which matches an
array of any rank and dimensions. Otherwise, it should be a list: it then matches an
array whose rank is the length of the list. ‘The clements of the list may be cither the
symbol +. or a non-negative integer which is the size of the corresponding dimension.
For instance. the dimensions list (3 4 5) refers to a 3x4x5 array, and (3 * 5) an array
whose first dimension is 3. second is of any size, and third is 5.

There are two different contexts the type specifier can be used in, and they affect the
interpretation of the element-type. These are
declaration : _
in which something is being declared to take on values of this ty)e (declarations
are discussed in chapter 6). What the type specifier says is that the type is the -
samc as would be rcturned by make-array were it given an clement-type of
element-type and dimensions conforming to dimensions.
discrimination .
which is really just usc of the type specifier as a second argument to typep. In
this casc, the qucstion being asked is whether dic object buing tosied b of exacily
this type.
These two "questions” are different becausce of the way make-array (page 103) interprets
its element-type argument, which is fully discussed in section 12.2, page 104. Basically,
what you get from make-array is an array whose clement-type is the closcst specialization
to the specificd element-type which make-array can provide.

Finally, the element-type can be », which means any element type at all. Thus, (array t
dims) is a not a subtype of (array * dims), because the former only refers to arrays
which can hold clements of any type, whereas the latter includes bit arrays, string-char
arrays, etc,

(simple-array element-type dimensions)
This is likc (array element-type dimensions), but additionally states that the array has been
created without any "fancy options”; see chapter 12, page 103.

(vector element-type size)
This is equivalent to (array element-type (size)).

MC:NILMAN:PRED 29 : 23-DEC-83

Type Predicates - .18 | NIL Manual

4.1.2 General Type Predicates

typep object &optional type-specifier
If only onc argument is supplicd, this is (somcwhat) like MACLISP typep, and rcturns the

cxact implementation type of object. In Nii., this is usually somcthing too spccific to be
worth looking at. :

Otherwise, returns t if object is of type fype-specifier, nil otherwise. Scc the description of
type specifiers, above.

subtypep npe-specifier-1- type-specifier-2
subtypep attempts to determine if nype-specifier-l is a sublypc of npc-spm ifier-2. It
returns two values; the second will be t if the relation could. be determined. nil if it could
not be. ‘the first is t if the relation can be determined and gype-specifier-1 is in- fact a
subtype of nype-specifier-2, nil otherwise.

In N1. if the type specifiers are atomic type names and nype-specifier-l i a subtype of
type-specifier-2. then subtypep will probably succced in determining this. »* fype-specifier-
1 is nor a subtype of ppe-specifier-2, then subtypep may fail to be able to determine the
relation, because it may not know that particular supertypes are mutually exclusive.

For instance, ' ;
(subtypep ‘fixnum ’'number) => {t, t}

(subtypep 'character ’number) => {nil, t}
(subtypep 'number ’fixnum) => {nil, t}

(subtypep °(satisfies fixnump) ’number) =>" {nil, nil}

4.1.3 Specific Type Predicates

null object o , : .
This returns t if object is nil, nil otherwise. Stylistically, null is used to test for object
being the empty list, whereas not (page 28), which is functionally equivalent because of
the empty-list/boolean-false duality of nil, is used to test for boolean falseness. This is
why constructs of the form

(if (not (null x)) frob-non-null-x frob-nul]-x)
are so prevalent.

symbolp object '
Returns t if object is a symbol, nil otherwise.

consp object
Returns t if object is a cons, nil otherwise. This is the same as (not (atom object)).

Yistp. object
consp or nuil,

MC:NII.MAN:PRED 29 ‘ oo 23-DEC-83

NIl. Manual 19 Type Predicates

fixnump object
characterp object
These test for the exact types fixnum and character.

string-char-p character :
Tells if character is a character which may be stored in a string. This will be a type of
sorts in COMMON LISP, such that a string is a vector with clements of type string-char.
Note that string-char=-p requires its argument to be a character, as opposcd to just any
object; it is not really a general type predicate.

In N1, this is characters with bits and fonr of 0 (sce chapter 11).

stringp object

vectorp object
Tell it object is a string or vector respectively. ‘These are cquivalent to doing (typep
object 'string) and (typep object 'vector).

numberp object
floatp object
These are the same as (typep object 'number) and (typep object 'float) respectively.

closurep object
Tells if object is a closure.

The following arc supported for MACLISP compatibility:

pairp object
This is synonymous with consp. Once upon a time, the name for cons in NIL. was pair,
and the function pairp was installed in MACLISP. Now, NiL. and COMMON LISP call a cons
a cons.

bigp object
{(typep object 'bignum)

Tixp object
Equivalent to integerp. i.e., (typep object ’integer). This name should be avoided
because of possible confusion with fixnump.

flonump object
This is the same as (typep object 'double-float), for historical reasons, not the same as
fioatp. It is provided for MACLISP compatibility only.

MC:NIL.MAN:PRED 29 : 23-DEC-83

Equality Predicates S 20 . ' NIt Manual

4.2 Equality Predicates
Note also null (pagce 18) and not (page 28), for testing for nil.
a'q Xy ‘ ’

This tells if x and y are the exact samc object. Implementationally, this is truc if_x and y
are the same "pointer”. For instance,

{setq =foo+ (cons ‘a 'b)}) => (a . b)
(eq sfoos sfoos) =t
{setq sbar» (cons ‘a b)) =>. (a . b)
(eq *foos =bars) => nail

Philosophically, what this predicate says is that if onc can side-cffect the object x, then
the cquivalent side-effect “will happen to » simultancously: in other words. they are
functionally indistinguishable. There arc certain kinds of objects which have absolutely no
internal structure. and thus cannot be side-cffected. ‘These objects have the behaviour that
two of them created the same will then be eq. As a rule, for code transportability,
resilience. and clarity, this behaviour is something which should not be deperided on. In
NII, it happens that objects of type fixnum and character. among some other more
obscure oncs, cxhibit this behaviour; this may not be true in other LISP implementations,
however (it is not in MACLISP, for instance). For comparisons of such objccts, eq is not
the proper test; eql is.

eql x y
eql i a prodicate for testing for cquality on non-structured objects. It s tuc if x and 5
arc both numbers of the same type and numerically equal, or if x and y are both- objects
of type character and represent the same character, or (otherwise) if they are the same
object (eq). This is the default predicate for many functions such as member and subst,

and also for the case special form (page 29)..

equal x y . : -
Fairly standard equal. Numbers, characters, symbols, and most random types are
compared as by eql.” Conses are equal if their cars and cdrs are equal. Arrays are
considered equal only if they are eq, with the following exceptions:

(1) Two strings are equal if they have the same length and their corresponding
characters are equal. Note that they therefore will not be equal if any of those
characters differ in case, making this incompatible with LISP MACHINE LISP usage.

(2) Two bit vectors are equal if they have the same length, and the same clements. ,

(3) In NIL, and in NIL only (not COMMON LISP), two gencral vectors are equal if
they have the same length and equal components. The lengths are determined as
by length, that is, the fill pointer of a vector is used if it has one. This
exception to the COMMON LISP dcfinition is to compensate for an carlier definition
of equal which compared arrays by comparing their elements if they had the same
rank, dimensions, and element-types, and should not be depended upon.

equal is implemented recursively, so may fail to terminate (or blow out with stack
overflow) on circular structures.

MC:NILMAN:PRED 29 ' : 23-DEC-83

NII. Manual . 21 Fquality Prcdiczuc_s

equalp x y
This is a more "general” version of equal. Numbers are considered to be equalp if they
arc numerically cqual; type conversion will occur if needed to perform the comparison
(scc =, page 73). Characters arc compared with char-equal (page 95). so arc considered
equalp cven if they differ in case. Conscs are equalp if their respective cars and cdrs
arc equalp. Arrays arc equalp if they have the same rank and dimensions, and if their
corresponding clements are equalp: thus, a string will be equalp to a general vector
containing equalp characters:
(equalp #(#\F #\o #\o) "foO") => ¢

equalp. likc equal. is implemented recursively so may dic on circular structures.

MC:NILMAN:PRED 29 ‘ 23-DEC-83

Programming Constructs 2 ' NIl Manual

S. Programming Constructs

The NI special and toplevel forms.

5.1 Compositions

progn

{form}*
progn cvaluates cach of the forms, and returns the value of the last. It is, therefore, a
way 1o get multiple expressions in a position where only one is called for.
(progn) <=> nil
(progn form) <=> form
and
(progn form-1 form-2-... ﬁmn-n)
evaluates all of the Jorms, returning. the result of the cvaluation of form-n.

Back in the olden days of 11SP. many special forms only allowed a single cxpression
where we now allow multiple expressions to be evaluated in sequence; for instance, in the
conscquents of the cond special form (page 28). 'This often nceessitated the explicit use
of the progn spceial form in such places, and is where the term implicit progn., which

. describes a situation where such multiple forms are allowed, comes from.

progil

prog2

first-form {form}*

progl cvaluates firsi-form, and saves the value: then it cvalnates all of the other Sforms,
but instcad of returning the value of the last like progn docs, it returns the valuc saved

from the the cvaluation of first-form.

Sfirst-form second-form {form}*
This is entircly cquivalent to
(progn firsi-forn (progl second-form form..)) '
In other words, it evaluates all of the forms in order, and returns the value (it saved) of
the second.

5.2 Definition Forms

5.2.1 Defining Functions

defun

name lambda-list {declaration}* [documentation) {form}*
Defines name as a function, equivalent to a lambda expresszon formed using the lambda
list, dcclaratnons‘ and forms.

For MACLISP-compatibility, the following idiosyncratic syntaxes are recognized specially:
(1) If lambda-list is the atom macro, then this is assumed to be a MACLISP-style
macro definition, and is transformed appropriately.
(2) If lambda-list is a non-null atom, then this is considered to be a MACLISP lexpr
definition. name will be defincd as a function of a variable number of arguments,

MC:NILLMAN:PCONS 81 ‘ 23-DEC-83

NIH. Manual . 23 Definition Forms

and the symbol lambda-list bound to that number. The functions arg and setarg
may then be used (compatibly with MACLISP) to access the arguments,

(3) If lambda-list is the atom fexpr. then this is assumed to be a MACLISP-style fexpr
definition, ‘and an attempt is madc to turn it into a NIl special form. Note, of
course, that duc to cvaluator semantics this will usually not work (calls to eval
will, for instance, utilize a new lexical contour).

In principle, name is a gencral function specifier ("function-spec™) as is done in LISP
MACIHINE 11SP. However, these have not been put into NI yet, so onc additional
idiosyncratic syntax (also MACLISP compatible) is recognized: name may be a list of the
form (name propname), in which case the function is placed on the propname property of
nanme. ‘That is, one can do somcthing like

(defun (foo hack) (x y)

(list (* (sinh x) (cos y)) (* (cosh-x) (sin y))))

with the result that ‘

(funcall (get 'foo 'hack) x y)
will invoke a compiled function to perform that computation.

5.2.2 Defining Macros

A LISP macro differs from an ordinary function in that the code of the macro is run, not'to
ebtain a valuc for the form, but rather to obtain a new form to be used in place of the original
form. In 118P_ this is not done throush anv strange and miraculous string-nrocessing and
substitution, but by 1ISP codc itsclf: LiSp. program code is just 11SP data, which can be
manipulated and constructed by ordinary LISP programs. When a macro call is encountered by a
LISP compiler, the code for the macro is run then and there, during the compilation, to construct
the new form which must be compiled instcad. For that reason, LISP macros. while general LISP
functions, should not depend on their dynamic environment (although if properly arranged they
may have global declarative or definitional information around).

defmacro name pattern {declarations}* {documentation}* {form}*
This is the preferred way for macros to be defined. name is defined as a macro. When a
call to name is encountered by the interpreter or compiler, the list of arguments to name
(specifically, the cdr of the calling form) is matched against pattern; the forms are then
evaluated in an environment where the variables specified by pattern are bound to the
components of the arguments which they match, and the resulting value is used in place
of the original form. '

pattern is generally a pattern of symbols and conses, but it may also have in it
intermixed, &optional, &rest, and &body. (&body is treated just like &rest by
defmacro pattern matching. However, it is supposed to be an indication to a code
formatter (pretty-printer, or an editor) that the following forms are a "body" rather than
just a sequence of more arguments.) The following defines foo as a macro to be
synonymous with car:

(defmacro foo (x)
. (list ’car x))
In NIiL, the &mumble keywords need not be "top-level” within the pattern:

MC:NILMAN:PCONS 81 . 23-DEC-83

Definition Forms .24 ‘ NIL. Manual

macro

(defmacro with'—output-to‘string' ((var &optional string)
&body form)
.)

Especially uscful for constructing code in the bodies of macros is the backquote rcader

macro, scction 20.1.1, page 216.

Eventually, defmacro will be extended to support these additional lambda-list keywords:
&key keyspecl keyspec2 ..
Pretty much like the nrdmar) use of &key in lambda lists (sccmm 3.1, page 13).
&whole variable
Binds variable 1o the macro cun form. so that one m.'xy get & handle on the cntire
form,

name bel {declarations}* [documentation) {form}*
Primitive macro definition. -~ You probably shouldn’t use this, at lcast not for routine
macro- definitions.

The macro function reccives. onc- argument., which is the macro call form; thus. bv/
should be a lambda list for a function of exactly one argument. It is possible that this

will change in the future, so one should stick to defmacro if at all possible.

5.2.3 Defining Variables

defvar var [init [documentation]] -

Globally declares var w0 be special. If there is an init form specified, then when this
form is loaded (evaluated), if var is not alrcady bound (dynamically), it will be set to the
~value of init.

defparameter var init [documentation)

This is like defvar, only var is always set to the valuc of init.

defconstant var init [documentation]

Similar, and additionally states that the value of var is not intended to change. A
corrcctable error is signaled if, when - this form is loaded (evaluated), var has a value not
equal to the value of iniz. (Continuing from this error will sct var to its new value;
continuing from similar errors not signalled by defconstant may not do the update.)

The NIL compiler will, at its discretion, utilize the (defined or implied by init being a
constant) value of var inline. So if you will be changing the value of a defconstant
variable out from under other compiled code, you should perhaps be using defparameter.

MC:NII.MAN:PCONS 81 ; ' ’ 23-DEC-83

NII. Manual 25 Binding and Assignment

5.2.4 Controlling Evaluation Time

Macros often nced to return multiple forms to be processed as if they all appeared
independently at toplevel. For instance, defvar and its variants could all be trivially implemented
as macros (if thcey aren't alrcady). In NI, they may be returned within a progn special form.
For instance, a simplificd defparameter, which did not handle documentation, could have- been
written like this: _

(defmacro defparameter (variable value-form)
‘(progn (proclaim '(special ,variable))
(setq .variable .value-form)))
proclaim and declarations arc described in chapter 6, page 41. “The Mac1isp hack where the first
clement of the progn had to be the form (quote compile) is not needed (but will work just fine).

This behaviour and the special casing only applies to toplevel forms.

eval-when kwd-list {form}* :
This is as if cach of the forms appeared at toplevel, but were only there to be processed
at the times specified by kwd-list. ‘The allowable keywords for kwd-list arc

eval
When the eval-when form is evaluated by the interpreter.

load _
When the forms of the eval-when are loaded compiled (they will be treated as if

thev were scen at tonlevel by the compiler; e.g., defuns will be compiled, et}

e LN

compile
The forms will be cvaluated immediately when processed by the compiler. Note
that eval-when kcywords arc nor symbols in the keyword package (that is, you
don’t type them in with a colon in front).
Note that for historical reasons, these: "keywords" are only keywords in the general
sensc—they are not symbols in the keyword package (typed in with a colon prefix).

5.3 Binding and Assignment

setq {variable value}*
setq changes the values of variables.
(setq a (f) b (g))
makces the value of a be the result of evaluating (f), then makes the value of b be the
result of evaluating (g). The value rcturned by setq is the last valuc stored/computed,
which in this case is what b now will evaluate to, and what (g) evaluated to.

The choice of whether to change the lexical or dynamic value of the variable which setq
makes is the same as that which would be madc by the cvaluator in evaluating the
variable; and if therc is no binding of the variable, setq crcates a global dynamic value
for it. .

MC:NILMAN:PCONS 81 23-DEC-83

Binding and Assignment ‘ p 26 NH. Manual

psetq {variable valuc}*
psetq is syntactically like setq. but it updates the variables in parallel. That is, all of the
values are computed, before any of the varigbles are side-cffected. A common. idiom
which uscs this is
(psetq x y y x)
which cxchanges the values of x and y.

psetq always returns nil.

et ({variable valuc}*) {declaration}® {form}* »
let cvaluates all of the values. and then binds all of the varigbles to the corresponding
values. All of the values arc computed before any of the bindings are performed.
(let ((a (f)) (b (g)))
Jorms...)

cvaluates (f) and (g), then binds a to the result from: the cvaluanon of (f) and b to the
result of the cvaluation of (g). and then evaluates all of the forms: the value of the last
form is returned as the value of the let. ”

Various other constructs in Nil. accept a list of lists of variables and valucs syntactically
the same as that used by let. This is what is meant by the term Jetlist.

In NI let will accept. in place of a variable, a pattern used for destructuring. The
variables within the pattern are bound to the corresponding parts of the value. This is
similar to the interface to destructuring used by defmacro; see i, page 21, for more
information on this pattern-dirccted: destructuring.

Because COMMON LISP let is not defined to- support destructuring, it is recommended that,
if destructuring is used. it be hidden in a macro. This will make it both easier to read
(all the cxtra parentheses needed to use let with destructuring make it hard to read), and
also make it easicr to change should let cventually be changed to nor support
destructuring (at which time there will be a primitive provided which does). For instance,
the NIL compiler defines the macro debind-args to destructure argumem lists of forms
being compiled:
(defmacro debind-args (arg'hst pattern form &body body)
‘{let ((.,arglist-pattern (cdr ,form))) ,@body))

Eventually NIL will provide somec. special forms and functions for getting at the
destructuring and argument-list matching functionality provided by defmacro.

Yets ({(variable value)}*y {declaration}* {form}*
Syntactically, let+ is similar to let. However, rather than binding the variables in parallel,
it binds them sequentially. That is, when cach value form is cvaluated, the corresponding
variable is bound to that value, and the following values are evaluated in that
environment. For instance,
(lets ((a forml) (b form2))
conpule)

first evaluates fornl, and binds a to that valuc. Then, it cvaluates fornn2, and binds b
‘to that valuc. Finally, it evaluates compute and returns that value as the value of the
lete.

MC:NH.MAN:PCONS 81 : 23-DEC-83

Nil. Manual - 27 o Binding and Assignment

5.3.1 Dynamically Binding Variable Variables

The routines in this section may be used to bind variables which are not known at code-
writing (or compile) time. ‘They all bind the special (dynamic) value of the variable.

‘There are four variations on how the variables may be bound. Which is uscd is a matter of
which is best suited for the particular task at hand. Basically, the variations ail involve how the
valuc is computed.

progv varlist vallist forms...
progv binds cach of the variables in varfist to the corresponding values in vallist. If there
arc too many values in vallist, the cxtras arc ignored. If there are too few, then the
extra variables will be bound "unbound”. Fach of the forms is then cvaluated in an
cavironment in which the variables arc so bound:; they are all bound dynamically.

progv is defined by coMMON-11sP. None of the following special forms are, however.

The following three special forms all take an a-list as a specification of what variables 0 bind
to what values. The car of cach entry in the a-list is the variable to be bound. If the-cdr is nil
(thc cntry has a length of 1), then the variable will be bound "unbound”. Otherwisc. the cadr
{(not the cdr) of the entry tells what value the variable should be bound to: the cxact
interpretation varics with the special form in use. In all cascs, the bindings are performed
scquentially: each variable is bound to its valuc before the value for the next variable to be
bound is determined. ’

progw a-list forms...
The second element of each entry in a-list is a form to eval to get the value to bind the
variable to.

progwq a-list forms...
This is sort of a trivial special-case of progw. The second clement of cach entry in a-list
is the actual valuc to bind the variable to; no evaluation is performed.

progwf a-list forms...
This function may not yet be in the existing NIL,

This is a variant of progw more in keeping with a LISP implementation in which things
get compiled. The sccond element of each entry in a-/ist is a function to be called on no
arguments to dctermine the value to bind the variable to. This is much more practical
than progw because it can climinate a lot of interpreter overhead.

The typical usc of these special forms is to provide a dynamic environment, the specification
‘of which may be augmented modularly, and hence might not be totally known to the writer of
the code which performs the binding. progw and its variants are usually more convenient for this
purposc than progv. because the specification of the cnvironment is in a single datastructure,
which might be kept around as the valuce of a variable. Note however that progw, progwq., and
progwf arc not defined by COMMON-LISP. progw is defined by LISP MACHINE LISP, but progwq
and progwf arc not.

MC:NILMAN:PCONS 81 v 23-DEC-83

Conditionals 28 : NI Manual

5.4 Conditionals

At predicate consequent [elseform)

not x

it cvaluates predicate. If the result is not false (ie. not nil). then the result of the if is
the result of evaluating consequent. Otherwise, if elseform is specified, the result of the if
is the result of evaluating elseform, otherwise ni, :

not is used logically to invert the sense of a predicate. That is, it is by convention used
to test for the object representing boolean false. Because of the empty-list/boolean-false
duality of the symbol nil, it is functionally cquivalent to null (page 18). which logically
checks for the empry fist which is represented by the type named null. ‘Thus, one often
sees constructs of the form , :
(if (not (nulY 1)) consequent elseforn)

because null is used to check for empty-listness (for instance, being at the end of an
iteration down a list), and the not is used to invert the sense, so that the consequent will
be run if there is in fact something left o the list I

cond {(hmiicul(’ {consequent} %)+

General historical cond. Each predicate 1o the cond is cvaluated, in order. If the result
of an evaluation is false, then the cond cvaluates the corresponding consequents in that
“clause”, returning as its value the value(s) of the last one, unless there were no
consequents, in which case the value of the cond is the value of the predicate cvaluation.
{cond (p1 o)
(P2 c2)
(te))
is equivalent to
(if pl ¢l
(if p2 2 e))
however cond allows multiple consequents, and also may more clearly show the selection
by clearly listing the sequentially processed tests.

If all of the predicales are false, then cond returns nil,

when predicate-form { consequent-form} *

(when predicate-form
consequent-]
consequent-2
consequent-n)
o |
(cond (predicate-form
consequent-1
consequent-2
- censecguent-n))
If predicate-form cvaluates non-null, then the consequent-forms are evaluated in order and
the value(s) of the last one returned as the valuc of the when form; otherwise, the when
form returns nil.

MC:NIT.MAN:PCONS 81 e o 23-DEC-83

NII. Manual) 29 Conditionals

unless predicate-form {consequent-form}*

(unless predicate-form
consequent-1
consequent-2

consequent-n)
==>
(when (not predicate-form)
consequeni-1
consequent-2

consequent-n)
==>
(cond ((not: predicate)
consequeni-1
. consequent-2

consequent-n))

and {form}*

Evaluates each form, and if any rcturns nil, and immediately returns nil without
cvaluating any subsequent forms; otherwise, the result of the and is the value(s) of the
last form. (and) =>t. '

or {form}*

Evaluates cach form, and if onc returns a non-null result, that value is returned by or
without evaluating any of the following forms. (or) => nil.

or is supposcd to return exactly one value, no matter how many were produced by the
cvaluation of a form, except for the last form which is evaluated tail-recursively (with
respect 10 multiple value propagation). It doesn't currently behave quite this way.

case keyform {(({key*}) {consequeni}*)}*

A dispatch form utilizing the eql predicate. In general,
(case keyform
((key-1-1 key-1-2 ...) form-1-1 form-1-2 ...)
((key-2-1 key-2-2 ...) form-2-1 form-2-2 ...)

is essentially the same as
(let ((tem keyform))
(cond ((or (eql tem ‘'key-/-1) (eql tem ‘key-I-2) ...)
Jorm-I-1 form-1-2 ...)
((or (eql tem 'key-2-1) (eql tem ‘key-2-2) ...)
Jorm-2-1 form-2-2)
ced))
Since the keys are constant, however, it is possible for the compiler to determine the
cheapest way to perform the comparisons; scc eql, page 20. In fact, if there are a
modcrate number of fixnum keys in a small range, the NIL compiler may use the VAX
CASE instruction to perform the dispatching.

MC:NILMAN;PCONS 81 23-DEC-83

Function Invocation - e .30 ‘ NIL. Manual

In place of a list of keys, onc may usc a single atomic key. Also. the symbols t and
otherwise arc special-cased and cause that "clause™ to a/ways be sclected; no subscquent
clauses will be examined. For example, '
(case (= 2 2)
(1 'one)
(2 'two)
(3 ’three)
(t 'many))
=> many .
Note that if one nceds to usc nil. t, or otherwise as kcys. they should be enclosed in a
list: - otherwise, nil will be-interpreted as an empty list of keys. and t and otherwise as
signifying the "otherwise” clause.

This. function is what selectg thought it would once be, and may be used in place of
MACLISP caseq. :

typecase objeci {{ivpe-specifier {form}*)}* :
typecase cxamines cach of its "clauscs” in turn.: If object is of the type specified by that
pe-specifier (see typep. page 18). then the forns in that clause arc evaluated. and the
vatlue of the last form is returncd by typecase. If a ype-specifier is onc of the symbols t
or otherwise, then that clause will always be selected, and all subsequent clauscs. will be
ignored. '
tynacase can cofien produce moderately better code than repeated
factoring out opcrations nceded for more than onc of the checks. ‘The NI typecase does
not yel do any clever pointer-type dispatch, however. S

Aalle o Simame Buss
LR IXEN AN AS J U T N VY

Remember that cach "key” is a type specifier: it necd not be just a type name, and it is
definitely not a list of type names. To test for more than one type in onc key, use (or

typel type2 ...).

5.5 Function Invocation

Often the function one desires to call is not constant; for instance, it may have been passed
in as an argument (like the second argument to sort, page 55, or as a :test keyworded argument
to member, page 61, or somcthing obtained from a property list, hash table, or association list).
NiL does not support the old "functional variable” interpretation of a functional form; that is, in
a form like (foo x y). the function called is never obtained from the value of a variable foo.
Instcad. because the “name space” for functions and variables is completely distinct, so special
functions arc provided for invoking functions which are obtained by "normal” evaluation.

funcall function &rest args :
funcall calls function on all of the arguments in args. It is nor a special form; the
Junction is cvaluated in the regular fashion, and that valuc should be a function. For
instance, sort (page 55), which could be defined something like
{defun sort (sequence pred &key key) ...)
could invoke its pred argument with somcthing like

MC:NIL.LMAN:PCONS 81 : 23-DEC-83

NI. Manual 31 Iteration Constructs

(funcall pred (elt sequence i) (elt sequence j))

apply function &rcst args -
apply is somewhat like funcall, but the last of the args is a list of the remaining
argumcnts to invoke funcrion on. That is, if apply is called like A
(apply fhal a2 ... an list)
then fir will be invoked like ’
(funcall fiial a2 ... an el e2 ... em)
where el ¢2 ... em arc the clements of list.

Often, the last argument to apply is a list which is the value of an &rest variable. In
Nil. this list may instcad be a simple vector (it must be simple), as might be obtained by
usc of &restv instcad of &rest.

Note that the MACLISP apply function only accepts two arguments, if you don’t count the
optional third argument which is an cvaluation environment.

lexpr-funcall fiunction &rest args
Old name for what is now donc by apply. lexpr-funcall, unlikc apply. is compatible
with MACLISP.

5.6 Iteration Constructs

5.6.1 Mapping Functions

mapc funcrion list &rest more-lists

mapl function list &rcst more-lists

mapcar function list &rest more-lists

maplist function list &rest more-lists

mapcan function list &rest more-lists

mapcon function list &rest more-lists -
These are the standard complement of LISP mapping functions, which iterate down all of
the lists in parallel. They accumulate results in three different ways, and apply function in
two different ways. In all cases, if more than one list is supplied, they are stepped in
parallel and the itcration terminates when the end of the shortest one is reach.

mapc and mapl each returns its first argument as its value; that is, they are typically for
effect. mapc applics function to the cars of successive sublists, that is, to the elements of
the lists, whereas mapl applies function to the sublists themselves. Thus,

{mapc #'print '(a b c))

prints

a

b

c
- whercas

(mapl #'print '(a b c))
prints

MC:NILLMAN:PCONS 81 : 23-DEC-83

lieration Constructs v . 32 N1. Manual

(a b c)

(b c)

(c) | | \
Both return /ise. their first argument. Note that the function is not called on the null list,
cven though that might be thought of as a sublist. Random cxample where the return
value is useful:

(mapl #°(lambda (subl)

(rplacd subl (delete (car subl) (cdr subl))))
some-list)

climinates (destructively) all duplicate clcmcm_s fmm smne-hst

mapl is what used to be called map in MACL Isp. map is now a generic sequence
function (page 54).

mapcar and maplist cach returns a list. of the results of applying function to their
- successive arguments:, for mapcar. as with mapc, the arguments are the clements of the
lists, and for maplist. as with mapl. they are the sublists themselves. For example:

(mapcar #'(lambda (x y) (plus x y))

‘(1.2 3) (9 10 11))

=> (10 12 14)
That could have been written as

(mapcar #'plus ...)

mancan and mapeen “splice togethor™ the results of applying Jfhncrica w0 its successive
‘arguments, using (essentially) nconc. Onc. common usc of mapcan is to mapcar
conditionally: '
{mapcan #'(lambda (x) (and (pred x) (list (fx))))
some-1list)
is kind of like doing (mapcar #'f some-list) having first deleted those elements: which do
not satisfy pred. .

Bécause of the constrained nature of the iteration, mapcar, maplist, mapcan, and
mapcon probably generate better code than you (or even something like the loop macro)
could write for gencrating the return value. :

| 5.6.2 Other Iteration Forms

dotimes (var count [endforml) {declaration}* {tag | form}*
var is stepped from 0 (inclusive) to the value of count (exclusive); for each value, each of
the forms is cvaluated. When the iteration terminates, the value of endform is returned.
The "body” of dotimes is a "tagbody” body (see tagbody). Atomic tags may be inserted
among the forms and jumped to with go (page 34), to produce strange and wondrous
unstructured code.

Additionally, dotimes cstablishes an implicit block named nil around the dotimes form
(scc block); one may thus usc return (or return-from with a block name of nil) to exit
and rcturn a valuce(s) from the dotimes, without mnnmg exitform. block and tagbody
are described in scction 5.6.3, page 34.

MC:NILMAN:PCONS 81 » : 23-I)EC-83

NIl. Manual) 33 Iteration Constructs

dolist (var list [endform)) {declaration}* {tag | form}*

Similar to dotimes. but steps var through the clements of lisr, the way mapc (page 31
docs.

dovector (var vector) {declaration}* {tag | form}*

Similar to dolist. but for vectors. dovector will work on any type of vector; its name
and cxistence dates from the carly days of NIL when all vectors were simple vectors. If
vector is going 10 be of some known specialized type, onc might be ablc to get better
code by uscing one of the specialized loop constructs available in NI, as discussed in
scction 17.7.1.2. page 163.

do ({var [init [sicp]]}*) (endiest {endform}*) {declaration}* {tag | form}*

doe

do is a more general iteration construct. ‘The specified variables are bound in parallel (as
by let, page 26) to the valucs of the corresponding initial valucs. These are their valucs

for the first iteration. For all subscquent itcrations, the variables which have step forms

specified arc all set in parallel to the values of thosc step forms. (That is. the values of
all of the step forms are computed before any of the assignments have been made.)

On cach iteration, endrest is cvaluated. If the result is not nil, then the iteration
terminates and evaluates the endforms as an implicit progn (returning nil if there arc no
endforms). Otherwise, the "body” of the do is . interpreted as by tagbody (page 34).
Thus,

(do (...) (nil) 1agbody...)
ic idiomatic for looping forever, and '

(do (...) (t ...) tagbody...)
will never get around to interpreting the forms in tagbody.

do cstablishes an implicit block named nil around the entirc do form: scc section 5.6.3.
page 34.

As a special hack for MACLISP code, if endiest is not specified (and hence no endforms
could be specified), then the body of the do is interpreted exactly once, and nil returned;
that is. the do should have been written as prog (page 35), except that MACLISP prog
does not accept initial values for the variables.

The MACLISP "old style do" is also supported in NIL. This takes the form
(do var init step endtest tagbody. . .)
and is equivalent to
(do ((var init step)) (endiest)
tagbody. . .)
New code should not use this format.

Special form
({(var [init [step])}*) (endtest {endform}*) {declaration}* {1ag | form}*
This is like do, except that the variables are bound to their initial values sequentially (like
lete (pagc 26) rather than let). and the steps arc also performed scquentially (like setq
rather than psetq).

MC:NILMAN;PCONS 81 23-DEC-83

Iteration Constructs : 34 NIL. Manual

Sce also the loop macro, page 144. loop is a "programmable itcration facility”, which allows
onc to combine various sorts of iterations (such as thosc provided by dotimes and dovector) with
various sorts of result accumulation (such as those provided by mapcar, mapcan, every, some,
and other things such as summing and counting). Because it is complicated, it is documented
fully in chapter 17, page 144. An carlier version of that chaptcr appcared as [5]. which is
cxpcctcd to be revised similarly. -

5.6.3 Block and Tagbody

block and tagbody together implement the flow-of-control functionality provided by standard
prog. prog could have been implemented as a macro m terms of these and let. and in fact is
described in that fashion by COMMON LiSP.

block name {declaration}* {fbrm}‘
block cvaluates the forms. If a lexically apparcm return-from is cvaluated with a tag of
name (or name is nil and a return is cvaluated). then the value(s) of the form given to
return or return-from are returncd as the value of the block form. Otherwise, the block
form returns-the value(s) of the cvaluation of the last form. '

Note that the argument to return or. return-from is evaluated in the environment in
which it occurs, nor the environment where the block was established.

roturn Jorm ; : :
Evaluates form, and returns- the value(s) it rcturns from the ncarest lexically apparent
block with a name of nil. Many spccial forms implicitly cstablish blocks named- nil, such
as prog. do, dolist, dotimes, dovector, and (usually) loop.

Notc that this differs subtly from 1ISP MACIHNE LISP. In LISP MACHINE 1ISP, return
returns from the innermost prog (i.e., block) which is nor named t. In NIL (and COMMON
LISP), a return to a block name of nil only matches a block name of nil, and the block
name t is not distinguished in any way.

return-from name fonn
Evaluates form, and returns thc value(s) it returns from the nearcst lexically apparent
block with a name of name. name is not evaluated.

tagbody {tag | form}*
The body of a tagbody is cxamined sequentially. If a form is atomic, then it is a tag and
is ignored, otherwise it is cvaluated. If during the evaluation a lexically apparent call to
go is evaluated with an argument of one of the tags, then control is returned to that
point within the tagbody form. which resumes its interpretation. 1If the interpretation
reaches the cnd of the tagbody, the result is nil.

go lag :
tag is not evaluated. Control is returned to the ncarest lexically apparent tagbody form
with a tag namc of g, which rcsumes interpretation of the tagbody at the form
following that tag.

MC:NII MAN:PCONS 81 | 23-DEC-83

NIl. Manual : 35 Non-Local I"low of Control

It is important to note that the name matching of block/return-from and tagbody/go is
lexical. For instance,
(defun f (x)
(block foobar
(g #' (lambda (x) (return-from foobar x))} x)))
(defun g (fn x)
(1ist (block foobar
(funcall fn x))))
(f "foo) => foo .
not (foo). The NI compiler cannot handle this cxample, however. Also, the named block only
has dynamic extenr: if an attempt is made to return o a lexically apparent block construct which
has been cxited, the interpreter will complain,

prog varlist {decluration}* {wg | form}*
Standard prog. varlist may be a list of variables, or a list of lists of variables and their
initial values. They will be bound in parallel. prog can be built from the above
primitives:
(et varlist
the declarations
(block nil
(tagbody the ragsand forms)))

For compatibility with LISP MACHINE LISP, if the first "argument” to prog is a non-null
atom, thicn that is uscd as the naine of tie bluwk, with the vailist fuliowing.

progs varlist {declaration}* {tag | form}*
Like prog. but binds the variables sequentially rather than in parallel, ie.. like using lets
(page 26) rather than let.

5.7 Non-Local Flow of Control '

catch rag {form}*
COMMON LISP catch. g is evaluatcd and the result saved. Then, if during the

evaluation of the forms, if a throw to that tag (as tested for by eq) occurs, the catch
form so named will rcturn the values given to the throw. The tag so named has dynamic
extent.

The tag to catch is allowed to be any LISP object. This means that onc can generate a
guarantced unique tag by. (for instance) (ncons nil), or by using a datastructure which is
somehow associated with the control point of the catch. This is, in fact, how the NIL
interpreter implements the block and tagbody constructs; it uses the datastructures in
which it stores its control-flow information as tags to catch.

Notc that this is incompatible with the standard MACLISP catch function documented in
the 1974 manual ([9]). However, PDP10 MACLISP has been bitching and moaning about
use of catch for somec year or more now, advising the use of =catch instcad (which is
equivalent to NIL's catch). :

MC:NILMAN:PCONS 81 23-DEC-83

Multiple Values : .36 NIL. Manual

throw rag form : ;
tag and form arc cvaluated. Control is returned from the ncarest catch: cstablished with a
tag eq to the valuc of g, and that catch then returns all the values produced by form.

special form because of multiple value passback. of course that doesn't work reliably yet...

Note that this is incompatible with the old-fashioned MACIISP throw function. However,
“in PDP10. MACLISP throw has been out of vogue for some time, supplanted by =throw,
which has syntax and scmantics identical to this throw, and which is supported in NiL.

unwind-protect prorected-form {cleanup-form}* ‘ »
protected-form is cvaluated. and the result returned. - Upon cexit, the cleanup-forms arc
cvaluated. No matter how the cxit is achieved (throw, crror, whatever).

~In principle. unwind-protect returns whatever cxtra valucs protected-form did. In the
current implementation, this cannot: be- guarantced because no state is saved around the
evaluation of the cleanup-forms.

scatch g {form}*
Old namc for what is now catch. Will be supported and identical to what catch is now
indcfinitely. for the sake of MACLISP programs, which use this name with identical syntax.
(Notc however that MACLISP catch allows g to be a list of tags, which mcans. it can't be
just any object.)

sthrow rag form ,
Old name for what is now throw. Will be supported and identical to what throw is now
indcfinitely, for the sake of MACLISP programs, which use this name with identical syntax.

This scems to be an ordinary function. But then multiple-valuc passback is unreliable.

5.8 Multiple Values

documentation

NiL contains a kludgey implementation of multiple values, similar to what exists in LISP
MACHINE LiSP. The implementation is based on the hack put into MACLISP some time ago, and .
suffers from approximately the same deficiencies: namely, that multiple values passed back to
forms receiving a single value "normally” might hang around and be picked up later if no other
multiple-value passing is done.

‘values &rest values ;
Returns as many values as it is given arguments; the first valuc being the first argument,
etc. It is permissible for there to be no values.

MC:NIL.LMAN:;PCONS 81 S 23-DEC-83

NII. Manual 37 Multiple Valucs

values-1ist /ist
Returns as multiple values all the clements of liss.

values-vector vector v
Because NI makes such great use of vectors, this is provided also; it returns all the
elements of vecror as multiple values.

For cxample, in Nii. values is defined by
(defun values (&restv vec)
(values-vector vec))
Of course. the Nit compiler will open-compile a call to values.

multiple-value variables values-form
The variables in variables, which must be a list of variables, are sct to the corresponding
multiple values returned by the cvaluation of values-form. Extra valucs are ignored: if too
few valucs are returned, the extra variables are sct to nil.

multiple-value always returns exactly onc value, the value of the first value returned by
values-form (or nil if nonc were rcturned).

In NIL, as in LISP MACHINE LISP, one may use nil in place of a variable to cause the
corresponding value to be ignored. This is specifically disallowed by COMMON LISP, and
should not be uscd. The preferred way to handle this uscs multiple-value-bind, bclow.

The name of this will be changed to multiple-value-setq by COMMON 11SP...

multiple-value-bind variables values-form {declaration}* {form}*
Somewhat like multiple-value, except the variables ‘in variables are bound to the values
produced by values-form, and cach of the forms cvaluated in that environment.

Note that, although in NIL nil may be used as a placcholder in variables for a value
which will not be used, it may not in. COMMON LISP. The preferred way to ignore a
value is to use a name for it, and declare that name to be ignored; for instance,
(mulitiple-value-bind (quo rem) (%bignum-quotient-norm x y)
(declare (ignore quo))
(hack-about-with rem))
This additionally provides the benefit of having the value "documented” by virtue of
being associated with a named variable.

multiple-value-1ist jform
Jorm is evaluated, and all of the values it produces are returned as a list. For example:
(multiple-value-list (values 1 2)) => (1 2)
(multiple-value-list (values)) => nil

multiple-value-progl first-form {form}*
This is like progt (page 22). but returns all of the valucs produced by the evaluation of
first-form. progl is supposed to rcturn only the first value, mever the other valucs;
however, in the current multiple value implementation NIL uses, this cannot be depended
on.

MC:NILMAN:PCONS 81 ‘ 23-DEC-83

Generalized Variables . 38 ' NII. Manual

5.9 Generalized Variables

setf {pluce value}*
setf is sort of a generalized setq. Essentially, a setf form cxpands into the code nccdcd
to store cach value into cach place. For example, just as
(setq x 3)
stores 3 into X,
, (setf (car 1) 5)
stores 5 into the car of the value of I As with setq. multiple place/value pairs are
handled scquentially. '

setf always returns the last value stored.

setf works on variables, all defined. car/cdr functions, array and scquence accessing
functions (aref, elt. wvref. char, bit), get, various attribute accessors (symbol-plist,
symbol-value, symbol-function. ctc.). and all accessors defined by cither defstruct or
defflavor. In fact. it is the canonical (and the only formally defined) way to modify slots
of structures defined with defstruct. It also operates on a number of low-level NIL
primitives, including nibble. get-a-byte, and get-a-byte-2c.

setf also operates on certain other forms whose "inversions” are not strictly sidc-effecting,
by performing the setf on an argument of the function (which must be valid as a place to
setf). Thesc include Idb and load=-byte. For instance, the side-effect performed by
is the same as

(setf place (dpb. val bytespec place))
although the return value should be different.

The setf methodology. is even more helpful when the logical operation being performed on
the place is "read-modify-write”. This means that the place needs to only be specified once in the
form. '

As of this writing,. the COMMON LISP. compatible setf has not yet been installed in NIL, so
not all of the following macros may be in the NIL when it is released. This pertains to incf,
decf, shiftf, and rotatef, and anything having to do with how one might define such a macro.
setf, push, and pop have been in NIL for some time already.

push item place
Approximately
(setf place (cons item piace))
except that order of evaluation is preserved, and the forms of place are cvaluatcd only
once.

pop place
Approximately
(prog1 (car place) (setf place (cdr place))
but the forms in place arc cvaluated only once. In otherwords, pop treats the contents of
place as a list stack: it returns the top of the stack and pops it.

MC:NII.MAN:PCONS 81 | | | 23-DEC-83

NIi. Manual Lo -39 S Property Lists

inct place &optional (delta 1)
Scts place w place plus delta.

decf place &optional (defta 1)
Sets place to place minus delta.

shiftf placel place? ... placen forn
(shiftf place form) .
is just like using setf.
(shiftf placel place2 form)
stores the value of place2 into plucel, and then the value of form into placel.

rotatef placel place? ... placen :
rotatef “rotates” the value of the places. The value of place? is stored into placel.
place3 into place2 cic., and placel into placen, all in parallcl.

5.10 Property Lists

A property list is a list of cven length, of alternating indicators and values. This is, of course,
the same datastructurc which is the property list of a symbol. Note that this is not the same as a
disembodied property list, which has odd length. COMMON LISP has gencralized the property list
mechanism so that is attached ncither specifically to symbols or disembodiced propcrty lists, but
rather interfaces to generalized variables.

Note: as of this writing, the COMMON 11SP compatible setf, on which both remf and setf on (
getf are dcpendent. has not been installed in NIL. As a result, there is a chance they might not
appear in this relecase.

getf place indicator &optional default
getf fetches the value under the indicator mdlcator from the property list which place
evaluates to. If no such indicator exists, then default is returned. The standard MACLISP
get function could have been written as
(defun get (x indicator)
(typecase x
(symbol (getf (symbol-plist x) indicator))
(cons (getf (cdr x) indicator))
(t error)))

It is not really necessary for place to actually be a generalized variable. However, getf
may be used with setf (and all such similar constructs), in which case place obviously
must be such a thing. MACLISP putprop could have been written as
(defun putprop (x value indicator)
(typecase x

{symbol (setf (getf (symbol-plist x) indicator) value))

(cons (setf (getf (cdr x) indicator) value))

(t error)))

MC:NILMAN:PCONS 81 : 23-DEC-83

Property Lists 44 ; - NIl Manual

The utility of getf is that it may be used to manipulate "property lists” stored in places
other than symbols or the cdr of a cons. Onc might, for instance, definc a structure
with defstruct (page 125) which has one slot used to hold a property list:
(defstruct (frobozz :named :conc-name)
initial-data
plist
(hyperspace shift-count 0))
Then. items in the “property list” may be accessed by
(getf (frobozz-plist frobozz) indicator)
and sct by
(setf (getf (frobozz-plist fmbw") indicator) valut') o
- One may also do such things as
(incf (getf (frobozz-plist frubozz) indicator))
to increment a value stored on the property list,

remf place mdtcator
remf removes an mdmmrlmluc pair fmm the property list in place. In order to do so.
place must be a generalized variable usable with setf. remf rcturns nil if there was no
such pair for indicator, t otherwise. '

get-properties place names

get-properties allows onc to search for a set of properties. It looks down the property
list in place: when an indicator is found which is in the list names, then it returns three
valucs: the valuc under that indicator. the indicator, and the sublist of Hic propaiy dist
beginning with the indicator. (Thus, the car of that sublist is the-indicator, and the cadr
the value. ‘This last value is what is returned by the MACLISP getl function, page 69.) If
nonc of the indicators specified in names are found, then all three values get-properties
returns arc nil. :

Not only can get-properties be used for scarching for more than one indicator at once,
but the third value returned can be fed back to get-properties to continue searching
from that (or some later) point in the property list.

Note also the property-list function get (page 65) and remprop (page 65).

MC:NIL.MAN:PCONS 81 | 23-DEC-83

NIL Manual . 41 eclarations

6. Declarations

In LISP. there is only one declaration that affects program semantics (and is thus the only one
needed to make them run correctly): the special declaration. All other declarations are for the
purposc of providing extra information about the program—this information may be for the
compiler, for a code analyzer, or just as documcntation. for humans. ‘The asscrtions made by
declarations may be tested by the LISP interpreter or compiler in order to find program crrors,
and may bc used to direct compilation sxmtcglcs so incorrect declarations arc illegal and may
causc crroncous results.

6.1 Local Declarations

The normal declaration mechanism associates the declaration information with a particular
context. cstablished by some special form or construct. This is what happens with a lambda-
expression, for instance, which is "described” as '

((1ambda lambda-list {dz’claranon}* {form}=)

{form}+)
A deciaration is cither a form

(declare {decl-spec})
or a form which is a macro call which expands into such a declare form. Declarations are
handled specially by the forms they are within; it is an error for them to occur in other contexts,
even though this may not be detected. The various special forms which accept declarations show
where those declarations may appear in thcir descriptions in this mianual. Typically, this is just
preceding any "body" forms, as in the above cxamples. A decl-spec is a list, the car of which
must be a symbol which is recognized as naming some declaration; the possible symbols, and
what they mean, are shown a bit below.

Individual declarations fall into two categorics: those which affect variable bindings, and those
which do not. Those which do, associate with bindings performed by the special construct they
are associated with. For instance, both

(lambda (a b ¢) (declare (type long- float c)) ...)
(tet ((a (f)) (b (g)) (c (h)))
(declare (type long-float c))
ved)
say that the variable c is being bound to something of type long-float, and that that particular
"instantiation” of ¢ will always have a long-float as its value. The declaration in effect "attaches”
to the binding of the variable; only that particular binding is affected. The declaration in
(Tet ((x (f)))
(declare (type x single-float))
(let ((x (cons x y))) ...)
ces)

only affects the outer binding of x, and makes no statement about the inner binding. The
declaration in

MC:NILMAN:DCLS 31 23-DEC-83

Iocal Declarations . 42 ' NII.-Manual

(Tet ((x (f)))
(declare (type simple-vector v})
ce)
is in crror, because Lhcrc is no variable v bcmg buund in the construct the declare is assuc:atcd
with, let :

The other catcgory of declaration is the pervasive declaration, which docs not associate with
variable bindings. ‘TheSe have lexical scope. delimited by the form the declaration occurs in. This
sort of declaration is in effect for all parts of the special form: this includes such things as forms
which arc cvaluated to obtain values for variables being bound. even if those forms arc not
strictly part of the "body” of the special form. For insmncc the optimize declaration -in

(let ((x (T)))
(declare (type x single-float) (optimize (speed 3)))
(Tet ((x (cons x y))) ,
(mapc #'(lambda (2) ...) x)
o)) ‘
is "in cffect” cverywhere within the outer let, unless it were to be locally shadowed by another
optimize dcclaration hidden in onc of the forms represented by the clipses. The form (f) to
which the x in the outer let is being bound, is affectied by that declaration. On the other hand,
in the similar construct ;
((1ambda (x) ‘ :
(declare (type x s1ngle float) (Ophmue (Speed 3)))
oo
| (f)) |
the form (f) is not under the mﬂuence of the optlm:ze declaration. However, the form (g) in
((1ambda (x &optional (y (g)))
(declare (type x single-float) (optimize (speed 3)))
)
(1))
is within the scopce of the optimize declaration. Of course, one doesn’t normally write lambda
combinations like that "in-line” in code, but associates them with named functions by use of
defun; the function definition ‘
(defun frobnicate (x &optional (y (g)))
(declare (type x single-float) (optimize (speed 3)))
) o .

has the same declaration scoping.

MC:NILMAN:DCLS 31 : 23-DEC-83

NiI. Manual . » 43 1.ocal Declarations

6.1.1 The Special Declaration

(special var! var2 ... varn) _
The special declaration differs from all other declarations in two ways:
« |t is the only declaration which affects program semantics, and

= it is the only declaration which can both "attach 0" variable bindings, and also bc a

pervasive declaration.
This duality is partly for convenience, but also follows from what this declaration docs.

For thosc variables in the special declaration which are being bound by the special form the
declaration is associated -with, for instance x in
(Tet ((x (f)))
(declare (special x y))
SJorms...)
the dcclaration is an inmmediate. or variable-binding declaration. It says that the special value of
x should be bound. so that x has dynamic rather than lexical scope. As a consequence of this,
unshadowed references to x within the forms will refer to the special value of x—the one it was
bound to, which is no doubt what is desired. This does not affect bindings which are not so
declared: in
(Tet ((x ((T)))
(declare (special x y))
(let ((x (g))) ;X number 3
... X ...) ixnumber4
) :

the inner binding of x is a lexical, rather than spccial, binding, because therc is no special

declaration for it. This binding shadows the outer (special) binding of x, with the result that -

reference 1o x within that inner let refers to the lexical value, which gives what (g) evaluated to.
This, then, is all really the samc as how the type declaration associated, as was described above,

If. however, there are variables being declared special for which there no bindings, then the
special declaration for them is a pervasive declaration, which affects their reference (it will still not
affect inner bindings). For instance, in both

(Tet ((x (f)))
{(declare (special x y))
R 2 |

(let ((x (f)))
(declare (special x y))
(et ((x (9)))
cee X o
cee Y o0l))
the reference to y amidst the clipses is a special reference, due to the special declaration for y.
Note that by contrast the reference to x between clipses is lexical becausc of the shadowing effect
of that inner lexical binding.

and

The example function find-all-leaves from chapter 3, on page 12 (q.v.), can be rewritten as

MC:NILMAN;DCLS 31 23-DEC-83

Local Declarations | 44 ' NII. Manual

(defun fihd—a]lfleaves (tree)

(let ((sleaves+* nil)) ; Empty sct of leaves
(declare (special sleavess+)) A
(find-all-leaves-1 tree) -3 Grovel over the tree
sleavess , ; And return the leaves found
)) '

(defun find- al) leaves-1 (tree)
(declare (special <«leavess»))
(cond ((atom tree)
(cond ((not {memq tree »leavess))
(setq sleaves» (cons tree »leaves+)))))
(t (find-all-leaves~1 (car tree))
(find-all-leaves-1 (cdr tree)))))
to demonstrate the common uscs of the special declaration. The declaration in find-all-leaves is
an immediare declaration; it causcs =leaves#* to be' dynamically bound. In find-all-leaves-1, it
is a pervasive declaration which says that the references to sleaves+ within that function are
references to the special value of =leaves». It happens that in find-all-leaves-1, both the
interpreter and compiler would figure out that the references to +leavess would have to be
special references because they are “free” references (there is no lexically apparent binding),
however the compiler would issue a warning about this. So, that declaration serves to tell the
compiler, the interpreter, and a reader of the code, that the refercnces to »leavess in find-all-
trees-1 are deliberately special.

6.1.2 Declarations Affecting Variable Bindings

Here are the other declarations NIL accepts which associate with variables being bound. It is
an crror for a variable to be specified in one of them, when it is not being bound by the
construct the declaration is associated with.

(ignore varl var2 ... varn)
This says that the specified variables, although bound by the associated construct, are not actually
‘used. Its purpose is to tell the NiL compiler that you are aware that you will not ever reference
the values of those variables; otherwise, it might warn you that the variable is never referenced.

One common use for this declaration is for arguments to functions which are given, but
(possibly because of an early state of development) not used. For instance,
(defun program-deterministic-p (program)
(declare (ignore program))
nil) »
which defines a function which takes a program as an argument, and returns t if it can be
determined that is dcterministic and it is, nil otherwise. The other common use is with special
binding constructs where somcthing must be specified positionally, but what is obtained from that
position is not needed. For instance,
(defun mod (x y)
(multiple-value-bind (quo rem) (floor x y)
(declare (ignore quo})
rem))
which is how mod could .be dcfined; see page 8l1—mod is deﬁned to be the second value

MC:NILMAN:DCLS 31 | 23-DEC-83

NIL Manual . 45 Local Declarations

returned by thec COMMON LISP floor function.

In the current NIL compiler, a variable declared with ignore but actually referenced, will
probably not be detected, and will produce (crroncous) code just as if the variable had never
been bound.

(type type var-l var-2 ... varn)

(type var-l var-2 ... varn)
Thesc declare that the specified variables are of the type type. For the first form, fype may be -
any valid type specifier (sece section 4.1.1, page 16). For the second, only certain type specifiers
which are symbols will be recognized: in the current NIL compiler, ‘only fixnum is rccognized.
(The symbols flonum and notype are recognized for MACLISP compatibility.)

The current NIL compiler simply recognizes this declaration and throws it away.

6.1.3 Declarations Affecting Compilation Strategies

These dec-arations make no statements about the program, so (in the absence of compiler
bugs!) can have no effect other than efficiency on programs which are correct.

(optimize (quality-1 value-1) (quality-2 value-2) ...)
The optimize declaration is used to tell the compiler how it should go about making decisions
when it compiles code, in.a fairly gencral way; there are four different qualities which may be
specified. Each may take on a value which is an integer from 0 to 3 (inclusive); O says that that
aspect should be discounted completely, and 3 says that it is very important. The default value
for each is 1. The qualities are: '
speed
Speed is of the essence. The compiler should try harder to make the code run faster.
Obviously, doing so is going to have to trade off against at least one of the other
following qualities—if it did not, then the compiler wouldn’t have to make a choice.
space :
This quality attempts to quantify for the compiler how important compactness of code is.
safety
This attempts to quantify to the compiler how important the "safety” of the code is. The
exact meaning of this is somewhat hazy; the NIL compiler takes it to mean that operations
should detect erroneous inputs and situations when possible, or barring that, at least do
things so that they might be less likely to trash your environment irrevocably in such a
situation. '
compilation-speed
The speed of compilation. In the NIL compiler, specifying a higher value for this quality
will make it do a bit less in the way of minor or special-case optimizations which do not
affect program operation all that much, individually.
What the NIL compiler does for the various values of these qualities is discussed in scction 24.2,
page 246.

MC:NILMAN;DCLS 31 : 23-DEC-83

Proclamations: ‘Global Declarations . 46 ' NIiI. Manual

(inYine function-1 function-2 ...)

(notinline function-1 function-2 ...)
The inline declaration says that the compiler should attempt to code calls to the named functions
“in linc"—that is, essentially code the body of the function in place of the call to the function.
The notinline declaration says that this should not be done. Because the NI compiler normally
inline-codes anything it knows how to, the mhne declaration is really only useful m NIL to
shadow a notinline declaration.

‘There are a couple rcasons why onc might specify that a function not be coded inline. First,
things like trace (page 220) can only "trace” the function call if there actually is a function call.
Sccond. inline compilation, while it does not always climinate error checking, sometimes
aggravates debugging by causing an error to be signalled other than where it would have been in
the interpreted code, or (worse yet) causes some other crror to happen.

‘The compiler is free to ignore the inline declaration: if it does not know how to inlinc -a
function. it simply cannot do so. However, anything declared notinline will be compiled as a
function call. It is an error to spccify this for a special form. c.g.. cond. and it is pmbably
meaningless and [« addition an error to do-so for a macro.

It is important to note that many functions in Nl provide an intermediate possibility between
complcte open-compilation without error checking. and calling the regular function: there is a
large body of special subroutines in the NIL kernel which have calling sequences optimized for
how the compiler can compile calls to them, but which do error checking. This means that, for

o Y
those routines, one docc not lose error checking b} not huu‘}b the routine coded a3 a function

call. although onc docs losc trace capability. and the visibility of the function call on the stack
when it is examined with the debugger. Whether such routines code as these “minisubr” calls or
are completely coded inline without error checking (where that is possible) is gencrally controlled
by the optimize declaration. The detailed low-level specifics of this arc: discussed in scction 24.2,
page 246. :

6.2 Proclamations: Global Declarations

Often one wants to make declarations "globally”. For instance, to. assert that a particular
- variable is always special, to set an optimization parameter for the compilation of entire file, etc.
The function proclaim is used for this.

proclatm &rest dcl-specs
Each dcl-spec is a dceclaration specification (just like for declare—sec the beginning of the
previous section). However, it is put into force “"globally”. Many of the declarations one
may make with proclaim are similar to those onc might locally declare with declare,
“however their semantics are different because of their global nature. They are listed
below. .

Note: it scems the COMMON LISP proclaim only takes onc dcl-spec argument?
It is important to note that proclaim subsumces previous usage of declare which was not in a

special position (as described in the previous section). While declare in NiL is still accepted in
"abnormal” positions (and might continue to be indefinitely for MACLISP compatibility), use of -

MC:NIL.MAN:DCLS 31 23-DEC-83

NIil. Manual e 47 .) ‘ Declaring the Types of Forms

proclaim is reccommended to cmphasize the nature of the declaration. Also, remember that
proclaim evaluatces its argument. :

The NIL compiler will recognize calls to proclaim at top-level within a file, and, if the
argument to it is constant (i.c., it is quoted), put that declaration in force for the remainder .of
the compilation, in addition to outputting it to the file; that it, it is as if it gets wrapped by
(eval-when (eval compile load) ...) (scc eval-when, page 25). :

(special var] var2 ... varn)
A special proclamation not only globally declares that all of the named variables should be
referenced special. but also that all bindings should be special. However, one normally uscs
defvar (page 24) without an initialization form to globally declare a variable special, or. when
giving an initialization. uscs defvar or defparameter.

(type upe var-l var-2 ... varn)
Syntactically, this is thc samec as the rcgular type dcclaration. However, the type information is
associated with the special valuss of the variables, not with lexically bound variables of the same
names, so. this is typically pzired with a special proclamation, or with defvar (page 24),
defparameter (page 24). or defconstant (page 24).

NIL, of course, ignorcs this right now.

6.3 Declaring the Types of Forms

Often one might want to associate type information with a form, where there is no. variable !
being bound. The the special form allows one to do this.

the npe-specifier form
the declares that the value returned by the evaluation form is of the type type-specifier.
Were the compiler to do nifty things with type constraining, use of this could greatly
enhance its ability to optimize; currently, the compiler generally throws away the type
information, with the exccption of a rare misguided special-form which explicily looks for
a the form. The NIL interpreter, however, does verify that the rcturned value is of the
specified type.

The type-specifier may be any valid type specifier, and also may be of the form
' (values (ypespec-1 typespec-2 ... lypespec-n)
in which case the returned values must be of the specified types.

MC:NILMAN:IDCLS 31 23-DEC-83

Sequences . 48 NIL. Manual

7. Sequences

A scquence is considered to be cither a list or a vector (which is by definition a one-
dimensional array). NIL supports a number of operations on sequences, which may be applied
cquivalently to lists, vectors, strings, and bit-vectors.

Many scquence function take srarr and end arguments to delimit some subpart of the sequence
being operated on. As a gencral rule, the siart is inclusive, and the end is exclusive: thus the
length of the subscquence is the difference of the end and the starr. ‘The' start typically defaults
to 0. and the end to the length of the sequence. Also, the end. where it is an optional
argument, may be explicitly specified as nil. and will still default to the length of the sequence.
Thus. « ~ ‘

(find item sequence)
scarches the entire. scquence,
(find item sequence :start 5)
and ‘
(find item sequence :s:art 5 :end nil)
“scarch from element number § onward,
(find item sequence :end 5)
checks the first five clements, and
(find item sequence :start 5 :end 10)
scarches the subscquence (which has a length of 5) which consists of the elcmcnts with indices 5
6, 7, 8 and 9.

Functions which operate on two scquences generally take the start and end for cach of the
scquences scparately; these are keyworded arguments named :start! and :endt! to specify the
subsequence of the first sequence. and :start2 and :end2 to specxfy the subscquence of the second
sequence. Sce, for instance, replace (page 52).

Many sequence functions (and many other functions) perform comparisons of various sorts.
For instance, find scarches for an item in a sequence. (find item sequence) looks for an- element
of sequence which is eql to item, and returns that element. The particular test used may be
customized: a different test function may be specified by use of the :test keyworded argument, as
in _

(find item sequence :test #'equal) :
which uses equal rather than eql. The sense of the test can be reversed by using :test-not
instead of :test: :

(find item sequence :test-not #'equal)
returns the first clement of sequence which is nor equal to item,

Often, what onc wants to compare against is not each element of the sequence, but some
subpart of each clement. For this, rather than composmg a new :test function, one may specify
a key function. For instance,

(find irem sequence :key #'car) » ‘
will return the first clement of sequence whose car is egl to item. This may also be used with
test or :test-not. Notc that the key function is only applicd to clements cxtracted from
sequences,- never to things like the item argument to find.

MC:NILMAN;SFQUEN 19 ' ' 23-DEC-83

NI1l. Manual . 49 Accessing Sequences

Another class of functions do “scarching" by mecans of a unary predicate. These functions
invariably come in pairs; onc in which the test is satisfied if the test function returns a non-nil
value. and onc in which the test is satisfied if the test function returns nil: for instance,
position-if and position-if-not, and assoc-if and assoc-if-not. Often these functions also take
a :key keyworded argument also: if that is specified, then that function is applicd to the datum
being tested and the result given to the test function. For the sequence functions, the datum is
the clement of the sequence being examined.

Finally. for things which go grovelling through sequences scquentially, one may specify the
direction by use of the :from-end keyworded argument, which if not nil mecans that the result
will be as if the subscquence was processed from the higher to lower indices. rather than from
lower to higher. Unless explicitly specified for a particular function. it may not be depended on
that the sequence is actually processed in that order. only that the end result is the same: for this
reason. it is generally a bad idea if the comparison or key functions have any side cffects, or
depend on the ordering of the clements on which they are called.

7.1 Accessing Sequences

81t sequence index o
This is the general sequence access function. It returns the indexth clement of sequence:.
the index is taken to be zero-origined. This will work generally on lists. vectors, strings
(which are by definition vectors anyway), etc. Onc may modify an clement of a sequence
by using setf For inctance,
(setq v (make-vector 10))
=> #(nil nil nil nil nil nil nil nil nil nil)
(setf (elt v 5) 'foo)
=> foo
And now,
v => #(nil nil nil nil nil foo nil nil nil nil)
It is an error for index to be negative, or not less than the length of sequence as defined
by length. This means that it is an error to index pass the end of a list (in this elt
differs from nth, page 57), and also in its treatment of vectors with fill pointers (the fill
_ pointer defines the length—to access anywhere within such a vector, use aref (page 103)).

length sequence
Returns the length -of sequence. If sequence is a vector with a fill pointer, the fill pointer
is returned. In NIL, length will detect a circular list, and signal an error; in other
implementations, it may fail to terminate—contrast the definition of list-length, page 59.

If sequence is a list, it is an error for it to not terminate in nil—in this, length differs
from previous implementations of NIL.

MC:NILMAN:SEQUEN 19 23-DEC-83

Creating New Sequences : 50 NIl Manual

7.2 Creating New Sequencés

Many functions which create sequences take an argument which is the type of sequence to be
created: it is typically called the resulr-type, or perhaps just the pe. This may be, in general, a
type qpccnﬁcr suitable for use with typep. but must of course be a subtype of sequence—that is,
a subtype of list or vector. The type of sequence crcated will be the: most specific type of
scquence which is a subtype of that specified type. At this time, the NI sequence code has not
becn integrated with the NIL array type code, so it is possible that complicated type specifications
will not work. The following types will always work: list, string. simple-string. bit-vector.
simple-bit-vector, simple-vector, and vector. vector, which is rcally an abbreviation for the
type specifier (array = (#)). i.c.. a onc-dimensional array of unspccnﬁcd clement-type, will create a
vector of clement-type t, ie.. a general vector.

- -make-sequence resull-iype size &kcy initial-element
Makes -a sequence of the given type and size. ‘The types of most interest are list. string,
vector. and bit-vector. - If the :initial-element kcyworded argument is given, then the
scquence is initialized with that clement. Otherwise, the initialization depends on the type
of the scquence. For instance,
(make-sequence 'list 5 :initial-element t)
= (ttttt)
{make-sequence ’'string 5§ :initial-element #\»)
=> "sxsse"

I1)y roct
concetenate rocult-npe &rost sequences

Creates a sequence of type resuli-nype (as might be given to make-sequence), and stores
in it the concatenation of all the clements of sequences. For instance,
(concatenate ’'string "foo" "bar" "baz")
=> ~ "foobarbaz"
(concatenate 'list "foo" "bar"” ’(1 2))
=> (#\f #\o #\o #\b #a #r 1 2)

- subseq sequence start &optional end
Returns a sequence of the same general type as seguence, containing clements from start
up to (but not including) end.

(subseq "foo on you" 4) => "on you"
{subseq "foo on you" 4 6) => "on"
(subseg "foo on you" 4 3) => isanerror
(subseq '{(a b ¢c d) 1 3) => (b ¢)

Note that the result of subseq never shares with the original scquence. Thus, (subseq
list 5) is not the same as (nthcdr 5 list). In fact, subseq would signal an error in this
case if the list did not have at lcast 5 elements,

The result of subseq will always be a simple scquence; if, for instance, seguence is an
adjustable array of element-type string-char and has a fill pointer, the result will just be
a simple string.

-MC:NILMAN::SEQUEN 19 23-DEC-83

NII. Manual . .) Scarching through Scquences

copy-seq sequence
Copics the sequence sequence. This might be necessary if the result is going to be
modified, for instance. The result of copy-seq will always be a simple sequence, as
described under subseq. : '

Sce also the map function, page 54, which produces a sequence of the results of applying a
function to the corresponding clements of some input sequences.

7.3 Searching through Sequences

find item sequence &key from-end start end test test-not key
find scarches through the specified subsequence of sequence until it finds an clement which
satisfies the specified comparison against izem, in which case it returns that clement; if no
match is found. find returns nil. If a non-null from-end argument is specified, then the
result (if there is a match) will be the "rightmost” clement which matches ifem, otherwise
it will be the "leftmost”.

find-1if rest sequence &key from-end start end key _

find-if-not rtest sequence &kcy from-end start end key
find-if returns an clement of the specifed subsequence of sequence which satisfies the
function rest, or nil if no such clement is found. If a key argument is specified, then rest
is called on the result of calling key on an clement of the scquence; otherwise, frest is
called on the element directlv. If a non-null from-end argument is specified. then the
result will be the rightmost such clement within the subscquence; otherwise, it will be the
leftmost.

find-if-not is similar, but succeeds if the result of calling zest is nil.

position item sequence &key from-end start end test lest-not key
If there is an clement of the specified subsequence of sequence which matches irem
according to the specified test, then position returns its index (the index within sequence,
not within the subsequence); otherwise, position returns nil. If a non-null from-end
argument is specified. then the result is the index of the leftmost clement satisfying the
test; otherwise, it is the index of the rightmost such element.

position-1f test sequence &key from-end start end key

position-1f-not test sequence &key from-end start end key
position-if returns the index of an element within the specified subscquence which
satisfics the test function test. If key is specified, it is a function called on the element of
the sequence, and that result is given to fest instcad of the clement itsclf. If a non-null
Sfrom-end argument is specified, then the index will be of the rightmost such clement;
otherwise, of the leftmost. If no such element is found in the subsequence, nil is
returned. As with position and all similar functions, the index is the index within
sequence, not within the subsequence.

position-if-not is similar, but succeeds if the result of calling zest is nil.

MC:NILMAN::SEQUEN 19 23-DEC-83

Miscellancous Opcrations on Sequences .52 : o - NIL Manual

count item sequence &kcy from-end start end test test-nor key

count rcturns the count of clements within the specified subsequence of sequence which
satisfy the specified comparison against item. The test function may depend on the order
in which the clements are processed: if a non-null from-end argument is specified, then
the clements will be processed from right to left (i.c., decrcasing indices); otherwise, from
left to right (increasing indices). As usual, the first argument to the test is item, and the
sccond is the clement of sequence if no key is specified, otherwise the result of calling key
on the clement.

count-1f Jest sequence &key from-end start end key

count-1f-not rest sequence &key from-end swart end key
count-if rcturns the count of the clements of subsequence which satisfy the unary
predicate test. If no key is specified. test is called on the clements of the subsequence;
~otherwisc, it is called on the result of applying key to cach element. If a non-null from-
end argument is specified, then the clements are processed fmm right o left (dccreasing
indiccs), otherwise from left to right.

count-if-not is similar, but reverses the sense of fest.

7.4 Miscellaneous Operations on Sequences

reverse sequence
Returns a copy of seauence wnh the eclements in the opposite nrder

nreverse sequence : v
Reverses sequence, destructively; it does not create a copy. Note that if sequence is a list,
onc should always usc the return value of nreverse; that is. do something like

(setgq 1 (nreverse 1))
rather than just
, (nreverse 1)
This is in general true for all destructive list operations, such as sort and delq. The
reason is that although the cons cells of the input list are reused, the pointer rcturned is
not necessarily the same as the original "first” cons of the list, :

4171 sequence element &key start end
Replaces the clements of sequence with element, from start (default 0) up to end (default
length of the sequence).
(setga (012345 86))
(fi11 a nil :start 2 :end 4)
=> (0 1 nil nil 4 5 6)
And now,
" a => (01 nil nil 45 6)

replace sequencel sequence? &key startl endl start2 end2
Replaces the elements of the specified subscquence of sequencel by the elements of the
specified subsequence of sequence2.

MC:NILMAN:SEQUEN 19 : 23-DEC-83

Iteration over Sequences .54 o Nil. Manual

substitute-1f new rest sequence &key from-end siart end key count
substitute-1f-not new rtest sequence &key jrom'md start end key count
Similar, by extension.

nsubstitute new old sequence &Xkcy from-end -start end test test-not key count
‘The destructive version of substitute; . sequence is modified.

nsubstitute-1f new test sequence &key from-end start end key count
nsubstitute-1if-not new rest sequence &key from-end start end key count
Similar.

7.5 Iteration over Sequences

The following functions itcrate a user-specified function over one or more scquences in various
ways.

map resuli-type function &rest sequences
This is the general sequence mapping function. Note that this is different from the
MACLISP and LISP MACLINE LISP map function, which is renamed to mapl by COMMON
LISP. i

The result is a new sequence of type result-type (see section 7.2, page 50), containing the
results of applying finction 1o the elements of sequences. ‘There must be at least one
sequence specified: funcrion gets as many arguments as there arc sequences—first it gets
called on all of the first (index 0) clements, then on all the sccond clements, ctc. The
itcration terminates when the end of any of the sequences is reached, so the result will
have the same length as the shortest input sequence.
{(map *list #'cons "abc" '(a b c de f))
=> ((#\a . a) (#\b . b) (#\c . c))

If result-type is list, and the input sequences are all lists, then this is effectively the same
as mapcar (page 31).

some predicate &rest sequences
some applics the function predicate to the corresponding elements of sequences (of which
there must be at least one), in order. If the result of some application is not nil, then
some immediately terminates the iteration and returns that value; if all the applications
returncd nil, some returns nil.

The predicatc may depend on being called on the elements of the sequences in order.
Only as many elements as therc are in the shortest sequence are processed.

The effect of this may also be obtained by use of the thereis clause in the loop macro
(page 144).

MC:NILMAN:SEQUEN 19 | | 23-DEC-83

NIl. Manual

(setq v (make-sequence
=> #{nil nil nil nil
(replace v. (1 2 3 4.5

=>

v =>

#(12 345 6 nil
#(12 3 456 nil

53

‘vector
nil nil
6))

nil nil
nil nil

Miscellancous Opcerations on Sequences -

10))
nil nil nil nil)

nil)
nil)

The number of elements transfered is the minimum of the lengths of the two
subscquences,. i.e.,

(min (- endl startl) (- end2 start2))

remove irem sequence &key from-end start end ftest - test-not key count
remove rclurns a copy. of sequence of the same general type. cxcept that clements within
the specified subsequence which match item according to the specified test are not copied.
If the count argument is-specified. then it should be a non-negative integer which limits
the number of matching clements which get “ignored”: if it is not specified, «f/ matching
-clements within the specified subscquence will be missing from the result. The from-end
flag is only recally meaningful if a count is specified: if a non-null from-end is. specified,
then the rightmost count clements of the specified subssquence will be missing from the
result, otherwise the leftmost. '

-

remove-1if resr sequelzée &key from-end start end key count
remove-1if-not rest sequence &kcy from-end slart end key count
Like all similar cxtensions.

llnu‘- (.(lulll

&key key
This is the destructive version of remove, q.v.; it will - attempt to use sequence to .
construct its result. ‘The result may or may not be eq to sequence. and sequence may or
may not be actually modified to produce the result; NIL will attempt to do this the "best
way” it can. For this rcason, delete should only be used for value, necver strictly for

effect.

[+ 9
1
ot

rvct\l-nnf’ ctret sl tant e

nt aes
SoQUEHTT N CNG 5IQET CNiG - TS S3i §iiGe

L&Y

delete will succeed in side-cffecting sequence to produce its result if sequence is (1) a list,
(2) an adjustable vector of any type, or (3) a vector with a fill pointer. The result is still
not guarantced to be eq to sequence.

delete-1if frest sequence &key from-end start end key count
delete-1P-not flest sequence &key from-end start end key count
Sim_ilar, by extension.

substitute new old sequence &key. from-end start end test test-not key count
substitute returns a new sequence in which the elements within the specified subsequence
matching old according to the specified test have new substituted. While substitute does
not modify sequence, the result may share with sequence; in particular, if sequence is a
list, the result may share a tail.

If a count argument is specificd, then this is a non-negative intcger which limits the
number of substitutions made. In this case. specifving a non-null from-end argument
causcs the rightmost count clements matching old to undergo substitution, otherwisc the
leftmost.

23-DEC-83

MC:NH.MAN:SEQUEN 19

NII. Manual . 5 Sorting Sequences

every predicate &rest sequences ;
l.ike some, but rcturns t if the result of applying predicate to the clements of sequences is
never nil; if some application of predicate is nil, then every terminates immediately and
returns nil, '

The cffect of this may also be obtained by use of the always clause in thc loop macro
(page 144).

notany predicate &rest sequences
Returns t if the result of applying the function predicate to the corresponding elements of
sequences i always nil; if the result of that application is not nil. then notany
immcdiately terminates the itcration and returns. nil.

The cffect of this may also be obtained by use of the never clause in the loop macro
(page 144). '

notevery predicate &rest sequences .
If the result of some application of predicate 10 the corresponding clements of sequences is
nil. then notevery terminates its iteration and: returns t; otherwise, it returns nil.

7.6 Sorting Sequences

sort sequence predicate &key key
This is the COMMON LISP sort function; when it is used without a key, it is MACLISP
compatibic.

sequence is destructively sorted according to the predicate predicate, which receives two
arguments and should return a non-null value only if its first argument is strictly less than
its second argument. If key is specified, then it is a function of one element which is
applied to the sequence element before being passed on to the predicate.

For MACLISP compatibility, if sequence is a list, then the sort is stable; equivalent pairs of
items (those where the two keys are neither strictly less than cach other) remain in their
original order. When sequence is a vector, a quicksort algorithm is used.

sortcar sequence predicate
This is provided for MACLISP compatibility. It is just like
(sort sequence predicate :key #°'car)

stable-sort sequence predicate &key key
Like sort, but guaraniees that the sort will be stable (see sort). If sequence is a vector,
then a bubble sort is used.

MC:NIL.MAN:SEQUEN 19 23-DEC-83

Lists 56 - NIi. Manual

8. Lists

Note also consp ‘(page 18), !jstp (page 18).

8.1 Creating, Accessing, and Modifying List Structure

‘car cons

cdr cons

C....P cons :
N1 defines all compositions of car and cdr up to four levels deep: for instance, (cddar
cons) is cqm\ alent to (cdr (cdr (car cons))).

Actually, cons may be cithcr a cons or nil; the car and cdr of nil are alway's nil.

Normally in NIL, car, cdr, and their compositions compile into special subroutine calls
into the Ni. kernel which do crror checking. but are much faster than function calling.
Directing the compiler to producc. faster code by usc of the s; eed quality in the optimize
declaration will cause all of thesc accesses to be completely inline coded, without
checking: sec scction 24.2, page 246. (In NI, car and cdr cach tke only onc
instruction.) ' '

All of these functions may be used with setf in order to update the particular component
of cons.

rplaca cons: new-car

rplacd cons new-cdr ‘
rplaca modifics the car of cons to be new-car, and returns cons: rplaca modifies the
cdr. Scc also setf (scction 5.9, page 38) whlch can be used to update any of the above
‘car/cdr references.

“These functions, and the use of setf with car, cdr, and friends, are normally coded by
the NIL ‘compiler as special subroutine calls into the -NIL kernel which do argument
checking, but are faster than function calls. Use of the speed quality with the optimize
declaration may override this; see section 24.2, page 246.

Tirst list
second list
third list
fourth list
Tifth list
sixth list
seventh list
eighth liss
- ninth list
tenth list
car, cadr, ctc. Thesc may all be used with setf.

MC:NILMAN:LIST 37 B | 23-DEC-83

NH. Manual ‘ 57 Crcating, Accessing, and Modifying List...

Note that thc names of these functions use onc-origin indexing:
(third x) <==> (nth 2 x)

rest list :
cdr. This may be used with setf.

nth index list :
Returns the indexth clement of list, zero origined. Note also that this takes its arguments
in a different order thanelt (and other more specialized sequence accessors).

If index is not less than the length of list, nth returns nil by analogy to car and cdr. In
this it also differs from elt.

nthcdr nrimes list
 Returns list after ntimes cdrs have been taken on it.

Note also the * reader-macro (section 20.1.1, page 216), which is convenient for creating list
structure in template form, cspecially if large portions of it arc constant, and push (page 38) and
pop (page 38) which can be used to maintain a list in FIFO form in an arbitrary setfable placc.

cons x y
Makes a cons whose car is x, and whose cdr is y.

ncons x
Fquivalent to (cons x nil).

Xcons x y
"Exchanged™ cons. Equivalent to (cons y x). This function is not normally used; it is
inherited from MACLISP, where its existence is mainly for the bencefit of the compiler in
rewriting calls to list into calls it could chain together the computations of better:
(list x y 2)
==> (xcons (xcons (ncons z) y) x)

11st &rest elements
Returns a freshly created list of its arguments.

(1ist) => il
(list 'x) = (x)
(Vist 'x 'y) = (xy)

1ists first-thing &rcst other-things
Sort of like list, but the last argument to list» is used as the cdr of the final cons,
instead of nil. Alternatively, it may be thought of as many nested conses:

(listes ‘a) => a
(liste 'a 'b) => (a . b)
(list* ’a 'b ’'c) => (ab . c)
(list= 'a b nil) => (a b)

MC:NILMAN:LIST 37 23-DEC-83

Creating, Accessing, and Modifying List... . 58 - NIIL. Manual

make-11st sizeof-list &Kkcy initial-element
Creates a list of nils size-of-list long, whose clements are initial-element (which defaults to
nil).

append &rcst lists

(append x y) returns a list which has first all of the elements of x, fo)lowcd by all of
the clements of y; for instance,

(append "(a b) *(x y)) => (a b xy)
The subpart of this list (in the example, the cddr) is the original last argument to
append: append- ncver copics its last argument.

(append Xy z)

=> (append x {append y z))

When given one argumcm. append rcturns that argumcm with no arguments. it returns
nil.

If just copying a list is dcsired, it is stylistically betier to use (copy‘list‘vlisl) (page 59)
rather than (append list nil).

revappend list! lis1?
This is like (append (reverse listl} list2), but is more cfficient because it only has to
make one pass over list!.

tast list _
Returne the last cons of lisr (not the hcr n!cmnnrn unless Jicr ic pil, in which case it
returns nil. In NIL, fast deals properly with a non-null last cdr of /isz. The only non-
cons it will accept as an argument howeyver is nil. B
(last (1 2 3 45)) => (5)
(last '(a b . c)) =>. (b . ¢)
{(last nil) => nil

nconc &rest lists
: Joins together all of the hsls by destructively modifying them. Specifically, for each of
the lists which is not nil, the final cons (as might be returned by last) is modified by
rplacd to be the next list. '
(setq 11 *(a b))
(setqg 12 '(x y)) :
(nconc 11 12) => (ab xy)

and now,
11 => (abxy)

One should be careful, however, about using nconc strictly for effect (i.e., not using the
returned value), because if the first list is nil (the cmpty list) the desired side-effect will
not occur.

nreconc listl list2
‘This is like {(nconc (nreverse listl) Izslz) but can be faster because it only has to make
on¢ pass over listl.

MC:NIIL.MAN:LIST 37 P . 23-1DEC-83

Nil. Manual 59 - Creating, Accessing, and Maodifying List...

Tist-length Jiss
list-length returns the length of the list Jiss. If Jist is circular, then list-length returns
nil—in this it differs from length, which in NIL. will signal an crror but in other COMMON
LISP implementations may fail to terminate.

It is an error for list to not terminate with nil (assuming it is not circular). In this, list-
length differs from its implementation in previous rcleases of NiL.

copy-list list
Copies the top-level conses of /isz. This may be used to replace the common idiom
(append list ())
and. additionally, handles a non-null last cdr of list gracefully.
copy-alist a-list :
Like copy-list. and additionally, each top-level clement of a-/isr which is a cons has that
first cons copiced also (nor the entire top-level of the a-list entry).

Note that this function name contains "alist", a term which is spelled "a-list™ everywhere
clse now.

This replaces the LISP MACHINE LISP function copyalist, which cxists identically in NIL.

copy-tree Iree :
Returns a copy of tree. Recurses through both the car and the cdr. terminating at non-
conses. That is, only conses are copied. 'This replaces the old MACLISP idiom
(subst nil nil 1ree)
which has been changed incompatibly by COMMON LISP (page 60).

This function is the COMMON 1ISP equivalent of the 1ISP MACHINE LISP copytree
function, which is defined in NIL as a synonym for copy-tree.

butlast list &optional (n1])
This returns a copy of lisz, but without the last n elements. If the length of the list is
less than or equal to n, nil is returned.
(butlast *(1 2 3)) = (1 2)
(butlast *(1 2 3) 2) => (1)
(butlast (1)) = nil
(butlast nil) = nil

nbutlast /ist &optional (n/)
Destructive version of butlast; the last n elements of list are “spliced out”, by rplacd.
nbutlast should be used for value, however, because if the length of the list is less than
or equal to n, nil is returned and no "splicing" is performed.

tailp sublist list
tailp rcturns t if sublist is a sublist of Iist, nil otherwise. What this means is that after
taking some number of cdrs of list (possibly zcro), onc gets to a list eq to list.

MC:NILMAN:LIST 37 ‘ 23-DEC-83

Substitution » . 60 ' ' Nil. Manual

Y440 list sublist v ,
If (tailp sublist list) is truc, Idiff ("list difference™) returns a list of the clements of fisr up
to but not including sublist. This is the same as
(nbutlast list (length sublist))

If (tailp sublist list) is false, Idiff simply returns a copy of list.

8.2 Substitution

‘These functions are cxtensions of the subst and sublis functions which arc defined by
MACHISP and LISP MACIHINE 11SP. Note that they by default use eqgl 1o test for cquality; this is
incompatible with MACLISP and an carly relcase of Nit., in which subst used equal but sublis
used eq (but only worked on symbols). A different test may be specified by usc of the test
keyworded ‘argument: this is a predicate of two arguments used to test "equality”. 1f it is more
convenient, the sense of the predicate may be reversed by use of the :test-not keyword.

Notc also that these functions only descend through list structure (“trees”):; they do not ook
inside of vectors, arrays, or other structures.

subst new old tree &key test test-not” key
Returns a copy of rree, with -new substituted when a of the trec matches old according to
the test. :

This is incompatible with- MACLISP subst, in that the result is nor guarantced to always
copy even if substitution is not performed. The MACLISP idiom (subst nil nil rree) is
replaced by the copy-tree function (page 59). Bc on the lookout for the use of this
idiom in old code, for it can causc obscure bugs when uncopied structure is modified.
The Nib. compiler will warn about usc of this idiom and turn the subst into a call to
copy-tree if (1) therc are no keyworded arguments supplied (2) new and old are constants
determinable at compile-time and (3) their values are eqgl. The runtime function cannot
detect this idiom. :

nsubst new old tree &key test test-not key
Like subst, but does not copy: the new components are destructively stored in tree.
However, this should be used for value, for if tree matches old. the result is new but no
bashing of list siructure is done. :

sublds alist tree &key lest test-not key »
Like subst, but performs substitution for several things at once. a-list is an association
list of the objects to match, and their replacements. For example,
(sublis *({yes . no) (t . nil)) ’(t generally means yes))
=> (nil generally means no) '
sublis, remember, looks at cars and cdrs equivalently. If we attempt to invert the above
cxample, we get
(sublis *((no . yes) (nilt . t)) '(nil generally means no}))
=> (1t generally means yes . t)

MC:NILMAN:LISTI? | | 23-DEC-83

NIL Manual - 61 Using Lists as Scts

nsublis a-list 1ree &key test test-not key
Like sublis, but destructive. Sce also nsubst.:

8.3 Using Lists as Sets

Onc common use of lists is as scts of objects. NIL. (and COMMON LISP) provide a complement
of functions for doing this.

All of the functions take similar arguments. Normally, -they use eql as their predicate, so that
they work on numbers properly also. If this is not suitable for the purpose, then a predicate may
be specified by giving it as the :test keyworded argument. For instance,

(union *((a b) (b) (c)) *((d) (e) (a b) (b)) :test #'equal)
=> ((a b) (b) (c) (d) (e))
The sense of the predicate can be reversed by using :test-not instead of :test.

Sometimes the clements of the set are datastructures of some sort,. and onc desires to only
compare onc part of the datastructure, but not write a predicate to compare things. If the :key
keyworded argument is used. then that is a function which will be applied to cach clement as it
is tested, and the results of that will be given to the cquality predicate, rather than. the clements
themselves. For example,

(union *((a) (b) (c)) "((d) (e) (a) (b)) :key #'car)

=> ((a) (b) (c) (d) (e))

The :key-specified function is only applied to clements cxtracted from lists. never to single irem
arguments given to any of these functions (such as member, below). The ordering of the result
may not bc depended on; ncither may the result if cither of the inputs contains duplicate
elements (as defincd by the predicate), nor the particular choice of clement (that is, the one from
the first list or the onc from the second list). Thus,

(union "((a) (b x) (c)) '((d) (e) (e) (b y)) :key #'car)
might rcturn cither of the sets

((a) (b x) (c) (d) (e))
or

((a) (b y) (c) (d) (e))

since they are equivalent according to the test criteria.

member item list &kcy test test-not key
If item is a member of list according to the specified test (which defaults to #'eql), then
member returns the sublist whose car satisfied the test. Otherwise, nil is returned. The
other functions in this section arc implemented in terms of this. Note that if a function is
specified with :key, it is only applied to items of lisz, not to item.

Note that the default predicate for member, #'eql, is incompatible with MACLISP member.
This provides consistency with all other similar functions.

memq item list
This is member with a test of #'eq. memgq is not defincd by COMMON LISP, but is
inhcrited from MACLISP. It is specially handled by the NIL compiler.

MC:NILLMAN:LIST 37 23-DEC-83

Using Lists as Sets

union Iistl Jiss2 &key

Tho Anctesneion o+ : e m S O0tained

s st r—reay UL UL CHCCL,

T vens ey

intarcamtice oo : 2 arc used to construct .the result,

set-difference /ist/ Jis) &key test test-nor key , :
Returns the set difference of list/ and list2 (a list of the clements of Jisi/ which are not
present in /ise2, according 1o the predicate),

nset—differencek listl list2 &key rest lest-not key ,
Destructive set-difference; the result is constructed from the conses of /isr/ and/or Jisr2.

Returns a list of the clements which occur in cither list! or list2, but not both, according
to the predicate, :

nset-exclusive-or Jis;/ list2 &key test test-not key
Destructive set-exclusive-or: the result is constructed from the conscs of Jisi/ and/or.
lise2, ' ‘ ’

subsetp /ist/ lisy? &key rest test-nor key :
Returns t if /ist/ is a subsct of (but not necessarily a proper subset of) list2, nil otherwise,

'adjoin item list &key fest lest-not key

If item is a2 member of list according to the specified test, this just returns Jist: otherwise,

it conses item onto the front of list, and returns that. adjoin could have been defined as

(defun adjoin (item list &rest keyworded-args
8key test test-not key)
(if (apply #'member item list keyworded-args)
Yist :
o (cons item list))) -
which also shows the utility of the &rest keyword combined with 8key.

MC:NILMAN:LIST 37 ‘ , 23-DEC-83

NIil. Manual : o 6 Association Lists

8.4 Association Lists

Association lists arc an abstraction built from lists which are uscful in many cascs. An
association list (or a-list, somctimes misspelled alist in this document), is a list, all clements of
which arc conses: the car of cach cons is the key, and the edr of cach cons is the data
associated with that key. Association lists differ slightly from just lists used as sequences utilizing
a key of car (or cdr): if an cntry in an association list is the atom nil, then it will be ignored
totally. Functions which deal with more general sequences or lists, such as member, find, and
position. would blindly apply the supplicd key (c.g.. car) to nil, and try matching this against
the item being scarched for.

There arc two common ways in which association lists arc used. For onc. what is being
constructed is basically just a table with cntries of a single key. In this. the entrics in the a-list
arc conses of the key and the data associated with the key, and onc uses assoc with an
appropriatc test to do the lookup: the data of the key may be replaced by using rplacd on the
result of the assoc, assuming assoc did not return nil. There are two potential disadvantages
with this approach. First, the lookup is lincar, so the lookup time grows lincarly with the length
of the table. How much this matters depends on the efficiency of the equality predicate in use;
eq is cxtremely fast. and eql is fairly fast, so this could matter a fair amount if they are the
predicates in use. Second. because a-lists arc constructed out of conscs, they can be. scattered all
over virtual memory and causc poor paging performance; it is possible for each cons in an a-list
to lic on a different page. If cntries are only rarcly added to or removed from the table (entire
entrics, not just update of the car or cdr of an a-list cntry), it might be reasonable to cnsure
that the alist lics in fairly contiguous virtual memory Dy cupying i with copy-aiisi {page 59)
when something is added to it. Some rough guesses, with a test of eq: if the a-list has over 50
entries, it is probably better to use a hash table. For 70 or 80, a hash table is virtually
guaranteed to be better, unless most of the lookups will succeed, and find entries near to the
front. For between 5 and 10 cntries, an a-list is almost undoubtedly best, and can be optimized
by copying with copy-alist. For values between 10 and 50, the decision on which to use
requires balancing additions and deletions against wasting time (and creating garbage) using copy-
alist. Probably it is best to only do the copying with copy-alist for tables which are not updated
in the "normal course of program running”, i.e., which might only be updated when new files are
loaded.

The other common use of a-lists is where the implicit ordering of a list comes into play. One
entry in the association list might have the same kcy as another which occurs "later” in the a-list;
since association lists are always searched in left-to-right order, the first occurence will shadow any
other occurences. A simple LISP lexical interpreter might use an association list to hold the lexical
variable bindings, for instance. "Binding” pushes the new variable/value pair on the front of the
“environment” a-list, and "unbinding” pops the entry off. For this sort of use, hash tables do
not present an altcrnative without some hairy hacking of "contexts”.

A third possible use of an a-list is for two-way associations; that is, the car and cdr may
both be viewed as keys used to look up the other: one uses assoc to find the entry by the car
key, and rassoc to find the cntry by the cdr key. Hash tables do not provide this sort of
service; if a-list lookup time is prohibitive in a particular case, the alternative is to use fwo hash
tables.

MC:NILMAN;LIST 37 23-DEC-83

Association Lists ' . o4 NII. Manual

assoc irem a-list &key lest 1est-not
Scarches a-list for an entry whosc- car matches irem according to the specified test. If one
is found, that cons is returned; otherwise nil is returned. If a non-null result is returned,
the datum of it may be modificd by use of rplacd..

Note also that since the dcfault test is #’eql, this is incompatible with MACLISP assoc.
To retain the same cffect, one must use

(assoc item a-list :test #'equal)
or simply assq (below). Of course, often the choice of assoc in MACLISP is because irem
is a number, so equal is not nceded in Ni because eqgl compares numbers correctly.

rassoc iem a-list &key lest test-noi key
like assoc, cxcept Lhat iten is matchcd against cach datum in @-/isr, rather than cach

key.

assq item whsl
This is. inherited from MACT ISP and aho is defined by 11SP MACIHINE LISP; it is not
“defined by COMMON LISP. It is identical to
(assoc item a-list :test #'eq)
Compilation of assq does nor produce any diffcrent code than the above form, so the
choice between the two is between COMMON LISP compatibility and verbosity in the source
code.

rassa item o-list
This is inhcrited from LISP MACHINE LISP; it is not defined by COMMON 11sP. It is the
same as ‘
(rassoc item a-l1ist :test #'eq)
See assq (above) for more qualifications.

acons key datum a-list
This is the same as
(cons (cons key datum) a-list)
but shows the intent better.

pairliis keys data &optional a-list
Returns an a-list made by associating keys and data and adding them to the front of a-list
(which defaults to nil). keys and data must be lists of the same length.
(pairlis '(foo bar) ’'("Foo" "Bar") '((baz . "Baz")))
=> ((foo . "Foo") (bar . "Bar") (baz . "Baz"))

The result will share structure with a-/ist (that is, (tailp a-list pairlis-result) is t), so
modifications to the associations in the returned result will affect those assocations in a-list
also, ‘

MC:NH MAN:LIST 37 ' 23-DEC-83

NII. Manual | 65 ; Symbols

9. Symbols

9.1 The Property List
See also section 5.10, page 39, which deals \yith property lists in a more gencral way.

symbol-plist symbol
Returns the property list of symbol. Unlike the MACLISP plist function, this only works
on symbols. not discmbodicd property lists.

symbol-plist may bc used with setf to change the property list of a symbol. This is -
generally not recommended practice, however, because doing so might cause. propertics
essential to the NIL system 1o be lost. :

get symbol indicator
Standard MACLISP get. ‘The value storcd under indicator on the property list of symbol is
returned; if there is no such value, nil is returned. As in MACLISP, symbof :nay also be a
disembodicd property list. Unlike in MACLISP, get does not arbitrarily check the type and
then return nil if it is neither a symbol nor a list; in NIL one gets an error for an invalid

type.

For both MACLISP compatibility and convenience, get is not going to disappear in the
future. -

putprop sywmbol value indicator
Standard MACLISP putprop. If symbol alrcady has an indicator property, this replaces it
with value, otherwisc puts a ncw onc. As in MACLISP, spmbol may also be a disembodicd
- property list. ‘

CoMMON LisP does not define putprop; rather, one uscs setf with getf (page 39).
putprop is not going to be flushed from NIL, however. Note also that putprop takes its
arguments in a diffcrent order from the “"standard setf order” in which the value being
stored comes last.

remprop symbol indicator }

: Standard MACLISP remprop. If symbol has an indicator property, then that is removed by
being spliced out of the property list, and the sublist of the property list whose car is the
value (being removed) is returned. If there is no such property, nil is returned. For
instance, if one does

(putprop 'kitty ‘yu-shiang ’flavor)
then
(remprop 'kitty ’'flavor)
=> (yu-shiang and maybe some sublist of the property list)

~ See also the remf macro, page 40, for removing properties from property lists stored in
arbitrary places.

MC:NILMAN:SYMBOL 30 o 23-DEC-83

‘The Print Name) 66 NIl Manual

Note: COMMON 11sP does not define the actual value returned by remprop. only that it
will be null if the property was not found, non-null if it was. The valuc returned by NiL
remprop is compatible with MACLISP, and will be retained for that compatibility.

9.2 The Print Name

symbol-name symbol
Returns the name of symbol, which is a string.

Note that a string which is a symbol name should never be mridiﬁcd: ncither should the
name of a symbol be changed.

In NI, the name of . symbol will always be a simple string,

The name of a symbol has variously been called a print_name and a pname, terms which
arc being phased out but still pervade the NIt implementation,

samepnamep syml/ svmn2
Returns t if sym/ and sym2 have equal print names. Case is significant. syml and sym2
may be strings too. Either (or both) of the symbols may be spccified as strings instead.

Samepnamep is really just a MACLISP function. It is obsoleted by string= (page 113),
because the string comparison functions in NIL will accept symbols and perform the
comparison on- their names.

9.3 Creating Symbols

make-symbol pname
Makes a new uninterned symbol whose print-name is the string pname. It will have no
value or function bindings, no package, and an empty property list.

That the print-name (as returned by symbol-print-name) of the returned symbol will be
€q to pname should not be depended upon.

copy-symbol sym &optional copy-props
If copy~props is nil, then this is the same as (make-symbol (symbol-name sym)); that is,
it returns a virgin symbol with the same print-name as sym. If copy-props is not nil, then
the value and function definition and property-list and package of sym will be copied to
the new symbol.

Actually, the current dynamic bindings. (value and function) of sym are copied to the new
global dynamic bindings of the new symbol.

Copy-symbol with a null copy-props argument is a reasonable way to generaic a unique
symbol which is somewhat mncmonic although not completely visually unique. The NIL
compiler copics symbols like if-false to generate tags, for instance; no new print name is
created, just the basic symbol structure, on which propertics can be placed. If the symbol
is 1o be used as a variable in macro expansions, however, it may be better to use

MC:NILMAN:SYMBOIL. 30 23-DEC-83

NIL. Manual . 67 Creating Symbols

gentemp (bclow).

gensym &optional x :
Standard inhcrited-from-MACLISP gensym. gensym crcates ncw uninterned symbols. ‘The
print namc of the symbol is constructed by prepending a single character prefix to the
decimal representation of a counter which gets incremented every time gensym is called.
The name has been around for so long that automatically gencrated names are commonly
refered to as gensyms, and the act of doing so as gensyming.

(gensym) rcturns such a constructed symbol.

(gensym nume) scts the prefix 0 be aame, which must be a string or a symbol. and
then mikes a gensym. {(In MACLISP, only the first character of name is used: in N, the
cntire name is.)

(gensym integer) scts the counter to integer, and then makes a gensym. infeger must
not be negative.

gentemp &optional prefix package
gensym crecates a symbol in a manner similar to gensym. but interns it in package
(which decfaults to the current package). Additionally, gentemp guarantces that the
symbol is unique by continuing to increment its internal counter until it succeeds in
constructing a symbol which has nor already been interned in package.

Unlikc gensym. thc prefix argument to gentemp is not "sticky”; that is, it docs not
default to the last one supplied. If it is not supplied, it defaults to t. Also, there is no
provision for resetting the intcrnal counter. ’

Use this for creating variables for usc in macro cxpansions, because the symbol can be
typed in. Also, gentemp will leave some information around so that code analyzers or
the compiler can sce that the variable is a generated variable so may be optimized away
without loss of debugging information. (Normally such a test would be that the symbol is
not interned. i.c., it was crcated by gensym or copy-symbol. This does not work for
gentemp because gentemp interns the symbol so it can be typed in for debugging.) In
NIL, gentemp-crcated symbols are flagged by having a non-null si:gentemp-marker
property.

symbol-package symbol
This rcturns the "home package” of symbol, or nil if symbol does not have one (it is not
interned). '

MC:NIL.MAN:SYMBOL. 30 : 23-DEC-83

‘The Valuc and Function Cells - 68 | : NH. Manual

9.4 The Value and Function Cells

Sce also chapter 3, page 11 for discussion about scope, extent, and binding. and chapter 3,
page 11 for a description of the NIL internal mechanism for performing variable and function
binding.

Special implementation qualification: because of the hairy valuce cell mechanism in Nil., value
cells are not just allocated in the heap,. so (due to lack of code to do some relocation right now)
there is an assembly-time limitation on hoew many may be created. - Thus,. generating symbols and
using the value cells to store things may not work as well as you cxpected (an crror complaining
NEW_SLINK wants to grow the SLINK occurs). 'This limitation is not a function of the
mechanism but rather of the lack of garbage-collector, however, ‘

symbol-value symbol
Returns the current dynamic (special) value ‘of symbol.

symbol-value may he used with setf.

boundp symbol
Returns t if symbol has a defined dynamic (special) value, nil otherwisc. Note that
(setq sfoos 1) => 1
(let ((=foo= 3)) ,
(declare (special »foo»))
(makunbound **foo*)
(boundp 'sfoox))
=> pil
»fo0e => 1

makunbound symbol ; ,
"Undefines" the current dynamic value of symbol.

An error is signalled if symbol is a constant (as defined by defconstant).

symbol-function symbol
Returns the current dynamic (special) function value of symbol. The result of symbol-
function on a symbol defined as a macro or special form is undcfined in COMMON LISP.
In NiL, special form definitions are not storcd here, but other kinds of function
definitions are. ‘ ‘

symbol-function may be used with setf.

fboundp symbol ,
Returns t if symbol has a defined dynamic function value, nil otherwise. (Like boundp.)

fmakunbound symbol
Analogous to makunbound.

- MC:NILMAN;SYMBOL 30 o 23-DEC-83

NIl. Manual . : 69 o Additional Names

9.5 Additional Names

Some other MACLISP-compatible, LISP MACHINE LISP-compatible, and older NiL-compatible
names.

symeval symbol
Same as symbol-value, page 68.

set symbol value)
Samec as (setf (symbol-value symbol) value).

fsymeval symbol
Same as symbol-function. page 68.

fset symbol function ‘
Same as (setf (symbol-function symbal) function).

gut-pname symbol
Samc as symbol-name, page 66.

plist symbol :
Same as symbol-plist. page 65. Note that this is nos exactly the samec as the MACLISP
plist function (maybe it should be made to be?). The MACLISP plist function "works” on
discmbodicd property lists (specifically, it takes the cdr of a list) — this is sort of an
artifact of thc MACLISP implcmentation.

setplist symbol new-plist ,
The same as (setf (symbol-plist- symbol) new-plist). The same MACLISP-compatibility
qualifications hold as for plist.

getl symbol indicator-list
Standard MACLISP getl. Returns the subpart of the property list of symbol beginning with
the first indicator found in the list indicator-list, or nil if none was found. As in
MACLISP, symbol may also be a disembodied property list. Essentially, this is the third
value returned by
(get-properties
(if (symbolp symbol) (symbol-plist symbol) (cdr symbol))
indicator-list)

copysymbol symbol &optional copy-props
MACLISP name for copy-symbol (page 66). Note that in MACLISP, however, copy-props
is a required argument.

MC:NILMAN;SYM BOIL. 30 23-DEC-83

Symbol Concatentation : .- 70 : NI Manual

9.6 Symbol Concatentation

The following routines are not defined by common LISP, but are fairly useful in their own
right by macros ctc. ‘ ' '

symbolconc &rest frobs :
symbolconc returns a new symbol (interned in the current package) whose name s the
concatenation of the names of. frobs. Typically, cach Srob is a symbol, however

symbolconc also allows it to be a fixnum (in which. case it decimal printed

representation is used), a string, or a character (which must be convertible to a string,
Le. satisfy string-char-p), »

' si:package—symbolconc package-spec &rest Jfrobs
Similar 1o symbolconc. but uses the package specified by package-spee as the package in
which the resultant symbol is interned. package-spec may be cither a package or the name
of a package. - :

9.7 Internal Routines

%symbol-cons string
Internal symbol conser. Creates a symbol with string as its name, (Note there is no
mechanism provided for modifying the name of 3 symbol.) siring must be a simple string.

The following routines are the primitives from which the carlier routines could be built. They
are open-coded by the compiler, and work- on all symbols including nil. They are intended for
low-level code like that which might be found in intern. However, they arc (for the most part)
now being phased out in favor of just using the ordinary functions (c.g. symbol-name) and the
optimize declaration (sce scction 24.2, page 246). :

Xsymbol-name symbol
Returns the print name of the symbol symbol.

xsymbol-package symbol
Returns the contents of the package cell of symbol. May be used with setf.

%symbol~pHst Symbol ~
“Returns the property list of symbol. May be used with setf.

Xsymbol-1ink symbol , ‘
This returns the contents of the link cell of symbol. This is the thing used to implement
the totally hairy NiL value cell scheme, which is not actually described in this manual,

MC:NILMAN:SYMBOL. 30 : : ' 23-DEC-83

NII. Manual) 71 Numbers

10. Numbers

10.1 Types, Contagion, Coercion, and ConquiOn

10.1.1 The Types

Nii. provides several different representations for numbers. It provides. integers, of essentially
unlimited precision, and floating-point. Ther¢ is also the ratio data type. for representing non-
integer rational numbers. ‘The complex data type has been added. but may not yct be
trustworthy for anything other than simple arithmetic operations, and has not yet been specialized
to a point where any significant "crunch" might be performed on it

L4

NIt integers arc currently of two kinds. ‘There are fixnums and bignums. Fixnums have 30
bits of precision. including the sign, and are represented without consing (i.c. no memory
consumption). Integers which require more than 30 bits to represent are implemented as bignums.
Bignums arc an cxtended data-type, and can grow te any size, limited only by whatever: system
paramcter happens to be limiting the growth of your NI, and your patience. ’

There arc four primitive floating-point formats supported in NIL, as described in section 2.1,
page 3. These are -

short-float
This is implemented as a single-float (vaAx f_float format) with some of thc fraction
bits truncated. so that it can fit into a NIL pointer without any memory consumption. = All
operations on this type cssentially convert it to a single-float to perform the operation, and
then pack it back (truncating some of the fraction bits) when it is returned. 5 of the
fraction bits get truncated, leaving 19, or about § decimal digits of precision. Because the
cxponent is the saume as for single-fioat, it has closc to the same range, however.

single-float
This corresponds to the vax f_float format; this provides 24 bits of precision (about 7
decimal digits), and a range of about 2.9¢-39 to 1.7e+38. :

double-float
This utilizes the vaX d_float format, which has 56 bits of precision (about 16 decimal
digits). The exponent format is identical to that of single-float, so the range is
essentially the same.

long-float
This utilizes the vaAX h_float format. This has a whopping 113 bits of precision (33
decimal digits), and binary exponent range from -16383 to +16383. This is a range of
about 8.4¢-4933 to 59e+4931. Because the machine instructions which operate on this
format of float are not supported by all vaAX hardware, NIL makes use of a vMS-supplied
condition handler to cause emulation of the missing instructions. As a compromise, it also
tries to avoid such instructions when it can (for instance, just for data movement).

MC:NILMAN:NUMBER 70 : 23-DEC-83

I) . ‘; L

Types, Contagion, Coercion, and Confusion .. 72 ' Nil. Manual

10.1.2 Contagion and Coercion

Most of the NiI. arithmetic functions are generic. That is, they accept numbers of any type
(subject to the semantics of the function. of course), and automatically “coerce™ as nccessary
when there are mixed types. Coercion is mainly a function of the ﬂoatmg point types. For
instance, division of integers might yicld a rauo

(/7 23) => 2/3 ,
However, rational numbers are always "normalized”, and automatically "convert” back to integers:

(+ 173 273) => 1 : '
When a floating-point. number meets an integer or. a floating-point number of a “shorter” type,
the lfatter is converted automatically to: the format of the former before the operation proceeds:

(« 2 2.0s0) => '4.0s0

(*+ 2 2.0d0 2.0s0) => 8.0d0
Such contagious conversion is never performed in the other direction; floating point numbers are
never. converted to mtcgcrs Just because the result might be integral, for example. or to a shorter
forreat of float.

Complcx numbers in NIL are restricted to having components which are cither both rational,
or both floats of the same format. A complex number with rational components: will automatically
be converted back to a rational (non-complex) number if the result of a computation gives a zero
imaginary part. This never occurs if the components are floats:

(* #c(0 1) #c(0 1)) => -1
(+ #c(0.0 1.0) #c(0.0 1.0)) => #c(-1.0 0.0)

10.1.3 Confusion

As was described in scction 2.1, page 3, the format of a floating-point number may be
sclected by use of a particular character as the cxponent specifier. Thus, 2:0s0 is. short-float,
2.0f0 is single-float, 2.0d0 is double-flioat, and 2.0l0 is long-float. COMMON LISP specifies -
that the default format is single-fioat. This is the format which is used when a floating-point
number is read in, and cither no exponent character is used, or one of e is used (e.g., 2.59e10).
This is also the format spccified as being returned by exponential, transcendental, or irrational
functions when given rational inputs. NiL has historically had a default (in fact, - it used to be the
only) format of double-float. Becausc single-float (and short and long) are all quite new to NIL,
the default format is stiil double-float. That is, currently

(typep 2.59 ’'double-float) => t

(typep (log 3/4) 'double-float) => ¢t
However, this will be changed. The NIL reader/printer combination has been twiddled somewhat
so that. while the default format chosen by read is double-float, the printer will always print
the exponent character which will force the format.

sread-default-float-formate , Variable
This variable (which is defined by COMMON LISP) names the type of float which read
should createc when it encounters one which does not specify the format. 1t should have
as its valuc short-float. single-fioat, double-float, or long-float. The COMMON LISP
default for this is single-float.

MC:NILMAN:NUMBER 70 ' 23-DEC-83

NIil. Manual 73 - Predicates on Numbers

As a special interim hack, N1 allows this variable to have nil as its valuc. This is taken
to mecan (to the reader) to produce double-float by default. but (to the printer) to not
usc an "unspccified” format on output. That is, with sread-default-float-format+* being
nil, the printer will never produce "1.0", but rather "1.0d0".

It is strongly recommended that explicit use of coercion (using the float function, page 78) be
made wherever the type of the result might matter, when using functions which must convert into
floating-point before procceding. This includes things like log sin, and sqrt. Note also that
certain operations on complex numbers with rational components, such as abs. implicitly usc
these other functions: for instance,

(abs #c(3 4)) => 5.0d0

10.2 Predicates on Numbers

Note also the type predicates numberp. bignump. integerp. fixnump. floatp. ratiop.
rationalp. and complexp.

zerop number ,
Returns t if number is integer, floating-point, or complex zero, nil otherwise.

plusp non-complex-number
minusp non-complex-number
Return t if non-complex-number is of the appropriate sign. nil otherwise.

oddp integer
evenp integer
Return t if integer is odd (even), nil otherwise.

In NIL (but not COMMON LISP), oddp and evenp have been extended to gaussian integers.
evenp is defined as divisibility by 1+/, and oddp as being not evenp. This definition
has the property that exactly half of the gaussian integers are odd and half are even.
While there is a remote possibility that this definition will be changed, 1 consider it very
unlikely. ;

10.3 Comparisons on Numbers

= number &rest more-numbers
/= number &rest more-numbers
< number &rest more-numbers
> number &rcst more-numbers
<= number &rest more-numbers
>= number &rest more-numbers
These functions each take one or more arguments. If the sequence of arguments satisfics

a certain condition:

MC:NILMAN:NUMBER 70 23-DEC-83

Arithmetic Operations . 74 NII. Manual
= all the same
/= all different
< monotonically increasing .
> monotonically decreasing
<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false.

Complex: numbers arc only acceptable as arguments to = and / the others require

their arguments to be non-complex.
These functions also have fixnwm-only and double-float-only versions.

greaterp ruml num2 &rest more-numbers
Tessp numl num?2 &rest more-numbers
These are implemented as synonyms of < and >, and exist for MACLISP compatibility.

me: number &rest more-numbers

min rmumber &rest more-numbers
Generic max/min. Works on any non-complex numbers. Note also the cxistence of
max& and min& (page 87), which only work on fixnums, and max$ and min$ (page 91),
which only work on double-floats.

10.4 Arithmetic Operations

+ &rest numbers

plus &rest numbers B
Returns the sum of all of the numbers, performing type cocrcion as appropriate. If there
are no numbers, O is returned. The name plus is retained for MACLISP compatibility.
Note also the fixnum-only + &, and double-float-only +$.

1+
addl number
(plus number 1)
The name add1 is retained primarily for MACLISP compatibility.

- number &rest numbers ‘
With one argument, - returns the negative of that argument. With more than one
argument, it subtracts all of the others from the first. Type coercion is performed as
necessary. Note also the fixnum-only -&, and double-float-only -$ functions.

difference number &rest numbers ~
When given more than one argument, difference subtracts from the first argument all the
others, and returns the result. When given onc argument, difference returns it. This is
noteworthy because it is compatible with the MACLISP difference function, and it is
incompatible with - above.

MC:NILMAN:NUMBER 70 | | - 23-DEC-83

NIil. Manual . 75 Arithmetic Operations

1- number
subl number
(- number 1)
The name sub1 is retained for MACLISP compatibility.

minus number
This is the same as (- number); the name is retained for MACLISP compatibility.

« &rest numbers

times &rest numbers
Returns the product of all of the numbers. cocrcing as appropriate. The identity for this
operation is 1. The name times is retained for MACLISP compatibility.

/ number &rest numbers

‘Fhis is the gencric rationalizing. division function. With one argument, / reciprocates the 1
argument; with more than one, it divides the first by all the others. and rcturns the |
result. 7/ will return a ratio if the mathematical quotient of two integers is not an exact

integer; truncating integer division is peiformed by the MACLISP compatible quotient

function, and various sorts of truncation and rounding (not limited to foating-point

inputs) arc provided by the floor, ceiling. truncate, and round functions (scction 10.7,

page 79).

quotient number &rcst more-numbers
This is the MACHISP-compatible quotient function. When given more than one argument,
quotient divides the first by all the others, and returns the result. With one argument,
returns that argument. ‘

If quotient is given integer arguments, it performs truncating division (scc truncate, page
79). However, if any of the arguments are ratios, it will instcad do rational division, like
/. ' :

conjugate number
Returns the complex conjugate of number, which is number itself if number is not
complex.

gcd &rest integers
Returns the greatest common divisor of the integers. With no arguments, gcd returns 0.

In NIL, gcd works on all gaussian integers. The result will always lie within the first
quadrant, or along the positive real axis.

Ycm integer &rest more-integers
’ Returns the least common multiple of the integers.

Like ged. fem in NIL works on all gaussian integers.

MC:NII.MAN:NUMBER 70 23-DEC-83

2

Irrational and ‘Transcendental Functions 76 : NII. Manual

10.5 Irrational and Transcendental Functions

Remember that the functions in this section which must perform their operations in floating-
point, - will convert rational numbers to double-float currently, but to single-float in the future.

pi Constant

The value of this constant is pi, in the longest ﬁoatmg—poml format available; in NIL, this
is a long-float. To usc a shorter format of pi, for instance double-float, onc should use
something likc one of the forms ‘

(+ (float pi 0.0d0) n)

(+ (coerce pi ‘'double-float) n)
to avoid having the value of pi cause coercion to long-float in- your computations. Uscs
of both coerce and float like the above will be optimized by the compncr into the
appropriate value.

If olhcr similar constants are added to. NiL, they also will be in long-float format. and
should be treated similarly. :

10.5.1 Exponential and Logarithmic Functions

exp number
Returns e raised to the power number, where e is the base of the natural logarithms. - If
number is a float, the answer is computed and returned in the same format: if it is
rational, it is first converted to double-float.

expt base-number power-number
Returns base-number raised to the power powernumber. If base-number is a rational
numbcer and the power-number is an integer, the calculation will be exact and the result
will be a rational number. Otherwise, the calculation devolves into floating-point, and will
usc a logarithmic computation if power-number is not an integer.

log number &optional base
Returns the logarithm of number in the base base which defaults to e, the basc of the
natural logarithms.. The rules of contagious coercion apply here; number and base are
converted to the largest format of the two, unless both are rational, in which case they
are converted to double-float.

It is an error if number is zero, unless base is zero, in which case the log is taken to be
zero.

sqrt number
Returns the principal square root of number. If number is rational, it is converted to a
double-float first; sqrt in NIL never produces a rational number even if number might
have a rational square root. even though this is not disallowed by COMMON LISP.

If number is a negative non-complex number. a complex number is returned.

MC:NIL.LMAN;NUMBER 70 : ‘ ‘ 23-DEC-83

NIl. Manual . _ 7 ., lrrational and Transcendental Functions

isqrt integer
Integer squarc-root: the argument must be a non-negative integer, and the result is the
greatest integer less than or cqual to the exact positive square root of the argument.

10.5.2 Trigonometric and Related Functions

abs number
Returns the absolute valuc of the argument, which may be any type of number.

When applied to the complex plane, abs rcturns the distance of the point from the
origin, which is

(sqrt (+ (expt realpart 2) (expt imagpart 2))).
Thus. for complex numbers. the result will always be floating-point because there is a
sqrt hidden away in the computation. Applications which requirc only comparing
distances from the origin may use the above form without the sqrt operation; this is
donc. for instance, by the internal code for ged of complex integers.

signum number
By dcfinition,
(signum x) <=> (if (zerop x) x (/ x (abs x))) N
signum of an rational number will return -1, 0, or 1 according to whether the number
is ncgative, zcro, or positive. For a floating-point number, the result will be a floating-
point number of the same format with onc of the mentioned three values.

signum of a complex number is a complex number of the same phase but with unit
magnitude. As a result, it will always be a complex number with floating-point
components (sce the discussion under abs, above).

sin radians

cos radians

tan radians :
Standard trig functions. The number radians will be converted to a double-float if it is
rational. These accept complex arguments.

asin number

acos number
asin returns the arcsine of the argument, and acos the arccosine. The result is in
radians. number will be converted to a double-float first if it is rational; it may also be
complex. -

Note that (asin -5), for instance, results in a complex answer.

atan y &optional x
Fairly standard arctangent.

With onc argument (which may be complex), the arctangent is rcturned: for a non-
complex argument, the result is between -»/2 and =/2 (exclusive). More gcncrally, the
following definition is used:

MC:NILMAN:NUMBER 70 ‘ 23-DEC-83

Numeric Type Conversions | .18 | Nil. Manual

atan(z) = -i*log((1+iez)*sqrt(1/(1+2~2)))

With two arguments. ncither may be complex. - The arctangent of y/x is returned, and
the signs of y and x are used to derive quadrant information. Also, x may be zero as
long as y is not zero. The result will be between -# (exclusive) and # (inclusive).

sinh number
cosh number
tanh number
Hyperbolic sinc, cosine, and tangent. aumber may be complex.

asinh manber

acosh number

atanh number
Etc.

10.6 Numeric Type Conversions

float number &optional other
If other is not supplied, then if number is a float of any type, it is returned; otherwise, it
is converted to a float of the default format, which is currently double-flioat, but will be
single-float in the future.

If other is supplied, then it must be a floating-point number. mumnber is converted to a

float of the same type. Thus. ‘
(float frob 0.0f0)

causcs explicit conversion of frob to a single-float. Note that this will convert to a shorter

format also.

The NI compiler contrives to recognize the cascs where float is given a constant other
argument, and call special efficient routines for converting to the given type.

rational number ,
This converts number to .a rational number. If it is alrcady rational, it is returned.
Otherwise, a rational number is computed corresponding to the precise representation of
the number. For instance,

(rational (float 7/11 0.0s0)) => 333637/524288
It is always the case that for a floating-point number f,
(= (float (rational) N) => t

rationalize number , :
If number is rational, it is returned. Otherwise, the floating-point representation is taken
to be an approximation of a rational number, and that rational number is returned. For
instance,
(rationalize (float 7/11 0.0s0)) => 7/11
rationalize is not the most cfficicnt coercion routine around...

MC:NILMAN:NUMBER 70 23-DEC-83

NII. Manual 79 Integer Conversion and Specialized Division

complex realpart &optional (imagpart 0)
This constructs a complex number with real part of realpart, and imaginary part of
imagpart. If realpart is rational and imagpart is cither (integer) 0 or not supplied. then
the result is just realpart, because complex numbers with rational components and a. zero
imaginary part automatically turn back into rational (non-complex) numbers. If cither
argument is floating-point, then both components will be converted to the longest floating
point format of the two. For instance,

{complex 5 3) => #c(5 3)
(complex 1/5 3.0d0) => #c(0.2d0 3.0d0)
(complex 2.510 0.7s0) => #c(2.510 0.710)
(complex 2) => 2 ‘
_(complex 2.0) => #c(2.0 0.0)

10.7 Integer Conversion and Specialized Division

truncate number &optional divisor

floor number &optional divisor

ceiling number &optional divisor

round number &optional divisor :
These functions serve two similar purposes. They may be used to convert from a floating-
point number to an integer in various uscful ways, and. they can also perform
-division/remainder operations similarly.

If only onc argument is given, it is converted to an integer by the appropriatc method: -
by truncation for truncate, by rounding towards ncgative infinity for floor, by rounding
; towards positive infinity for ceiling, or by rounding towards the ncarest integer for round.
(The NIL and COMMON 11sP round will round an cxact half by rounding towards the even
' integer; in this it may differ from rounding in other languages.) Two values are returncd:
the first is the result of the conversion, and the second is the remainder for the operation.
If number is an integer, then the first value is that integer and the sccond is 0. If it is a
ratio, then the sccond will also be a ratio, and if it is a float, then the second will be a
float of the same format. For example,

1t Ry RS e s s

et s
e

MC:NILMAN:NUMBLER 70 : 23-DEC-83

ES
S
5

Integer Conversion and Specialized Division =~ 80 NIi. Manual
(truncate 2.5) - => {2, 0.5}
(truncate 5/2) ~ => {2, 1/2)
(truncate -2.5) => {-2, -0.5}
(truncate -5/2) => {-2, -1/2}
(ceiling 2.5) . => {3, -0.5}
(ceiling 5/2) => {3, -1/2}
(ceiling -2.5) => {-2, -0.5}
(ceiling -5/2) => {-2, -1/2}
(floor 2.5) => {2,-0.5)
(floor 5/2) => {2, 1/2}
(floor -2.5) => {-3. 0.5}
(floor -5/2) => {-3, 172}
(round 2.5) => {2, 0.5}
(round -2.5) => {-2, -0.5}
(round 2.6) => {3. -0.4)
(round -2.6) o= (-3, 0.4)
(round 3.5) => {4, -0.5)
(round -3.5) => {-4, 0.5}

If the divisor argument is given, . the first value is the result of integer conversion of the
result of dividing mumber by divisor, after the appropriate type of rounding or truncation
is performed. ‘The sccond value is the remainder for that division after the
rounding/truncation. ‘That is, if the values arc g and r, then

(= mumber {+ {* g divisory r)) => 1
For instance,

(truncate 5 2) = {2, 1}
(truncate -5 2) => (-2, -1}
(truncate 5 -2) => {-2, 1}
(truncate -5 ~2) = {2, -1}
(floor 5 2) => {2, 1}
(floor -5 2) = {-3, 1}
(floor 5 -2) = {-3, -1}
(floor -5 -2) => {2, -1}

What this means is, if truncate is given two integer arguments, then the two values are
the quoticnt and remainder, as obtained by those functions. If floor is given two integer
arguments, then the second valuc is the standard mod (page 81).

rem number divisor
When rem is given integer arguments, it is identical to the MACLISP remainder function.
More generally, however, it performs the truncate opcration on its two arguments, and
returns the sccond value from that as its value.

remainder number divisor
This is identical to rem. The name is retained for MACLISP compatibility: if number and
divisor arc both integers (which is all the MACLISP remainder function accepts). then the
operation is the same,

MC:NILMAN:NUMBER 70 23-DEC-83

NI. Manual . 81 Logical Operations on Numbers

Onc slight discrepency cxists with the MACLISP remainder function: in MACI ISP,
remainder will accept a divisor argument of O and return number. ‘This is incompatible
with the definition of rem (and also with fixnum open-compilation of remainder. in
MACLISP!) because of the implicit division involved—in NI, a divisor of O results in a
division-by-zero error.

mod number divisor
When number and divisor are both integers, then mod is the standard "modulus” function.
More generally. mod performs the floor operation on its two arguments, and returns the
sccond valuc from that as its value.

Note that by virtue of its definition in terms of floor which is a kind of division, a
divisor of zero results in a division-by-zero error.

ffloor number &optional divisor

ftruncate mumber &optional divisor

fceiling number &optional divisor

fround sumber &optional divisor
‘These functions behave just like floor. truncate. ceiling. and round. cxcept that the first
value returned is converted to a float if it is not. While this is fairly uscless for rational
arguments, it can result in some cfficiency gain for arguments of type float. Note that if
both arguments are rational, only the first value will be a double-float, not the second.

10.8 Logical Operations on Numbers

The logical operations in this section treat integers as if they wecre represented in two's-
complement notation. ‘ '

One common use of integers in this manner is as sets; each bit which is "on" (is 1) in the
integer represents the presence of a particular item in the set. If the integer is negative, then it is
an infinitc set. because the sign is virtually extended to infinity. The presence of a particular item
in a set can be tested for with logbitp; one refers to the item by its zero-origined bit index.
Other sct operations can be performed with the various boolean functions: logand pcrforms
intersection, logior performs union, logxor performs set-exclusive-or, and logandc2 performs
set-difference. A new set with an item represented by bit-index index added can be constructed
by a form like

(dpb 1 (byte 1 index) integer)

logbitp index integer
logbitp. is true if the bit in integer whose index is index (that is, its weight is (expt 2
index)) is a one-bit; otherwise, it is false. '

Togior &rest integers

logxor &rest integers

logand &rest integers

logeqv &rest integers
These return the bit-wise logical inclusive or, exclusive or. and. or equivalence (also
known as exclusive nor) of their arguments. If no arguments arc given, the results are O

MC:NILMAN:NUMBER 70 23-DEC-83

Logical Opcrations on Numbers 2 ~ NH.Manual

for logior and logxor. and -1 for logand and logeqv. which arc the identitics for those
operations. Note also the fixnum-only versions of these, logior&, logxor&, logand&, and
logeqvé (page 88). '

Tognand integerl integer2

Tognor integerl integer2

logandcl integer! -integer2

logandc2 integerl integer2

logorcl integerl integer?

Togorc2 integerl integer? :
These arc the other six non-trivial bit-wisc’ logical opcrations on two arguments. Because
they arc not commutative or associative, they take exactly two arguments rather than any
number.

~The "c1" and "c2" in some of the above names should be read as "having C()mpicmcnlcd
argument 1 (or 2)"; for instance, logorct is the logical or of the logical complement of
integerl, with integer2.

logandc1 and logandc2 arc often used as bit-clearing functions. However, the ordering
given to such names as bit-clear or logclr is often confusing (and historically, has been
incompatible from one macro-package to another). logande1 returns integer2 with all bits
which arc on in integerl, clecarcd; logandc2 rcturns integerl, after clearing any bits
which are sct in integer2,

boole op integerl integer?
The function boole takes an operation op and two integers, and returns an integer
produced by performing the logical opcration specified by op on the two integers.

'There are sixteen variables (the names of which arc listed below) which have the boolcan
functions as their values; the boolecan functions are rcpresented as fixnums from 0 to 15
(inclusive). ,

The NIL implementation of boole: defines the boolean functions such that they map into
the standard "truth table™ used in MACLISP. That is;, if the binary representation of op is
abed, then the truth table. for the boolean operation is

y

|0 1

0ja ¢
x |

1}b d

For cxample, the boolcan function 4 has binary representation 0100. This shows that the
result will have a bit set only when the corresponding bit of integer! is 1 and integer? is
0. This is the logandc2 operation. New code, especially that intended to be transported
between COMMON LISP implementations, should never rely on this—this coincidence is
provided only for MACLISP compatibility.

 MC:NILMAN:;NUMBER 70 - ~ 23-1DEC-83

NIl. Manual . 83 l.ogical Operations on Numbers

Also for MACLISP compatibility, when Nl boole receives more than three arguments, it
goces from left to right, thus:

(boole k x y z) <=> (boole k (boole k x y) z)
In certain cascs it may accept less than three arguments. Again, new code should not rely
on this behaviour.

lognot integer
Returns the bit-wise logical not of its argument. Every bit of the result is the complement
of the corresponding bit in the argument.

logtest inicgerl integer?
- logtest is a predicate which is truc if any of the bits designated by the 1°s in infegerl arc
1's in imeger?. '
(logtest x) <=> (not (zerop (logand x y)))
except that it can be done more cfficiently. ‘becausce it does not have to actually compute
the logand. ‘

ash nteger count
Shifts integer arithmetically left by counrt bit positions if count is positive, or right -count
bit positions if counr is negative. The sign of the result is always the same as the sign of
integer.

The actual implementation of ash works on, and will producc, bignums. There is also an

In practice, count is only allowed to be a fixnum...

logcount inreger
If integer is non-negative, logcount rcturns the number of "1" bits on in its twos-
complement representation. If it is negative, then the number of "0 bits in that
representation is rewrned; this is then the same as the count of "1" bits in the logical
complement of it.

integer-length integer
integer-length returns the zero-origined index of the sign bit of the ficld needed to
represent infeger in twos-complement notation. That is, any integer / may be represented
in- twos-complement notation in a ficld (1+ (integer-iength /)) long. If integer is non-
negative, then it may be represented in unsigned binary form in a ficld (integer-length
integer) long. For instance,
(integer-length 5) => 3
because the binary representation of § is ...0101.

The following two functions are provided for MACLISP compatibility. They both do some
semblance of manipulation of the binary representation of intcgers. However, the results of these
functions arc defined in terms of the absolute value of the integer they arc cxamining—beccausce in
NIL. integers are oriented towards manipulation of their twos-complement representation, these
routines may not be particularly efficient on ncgative integers.

MC:NILLMAN:NUMBER 70 23-DEC-83

| Byte Manipulation Functions . 84 ‘ NIL. Manual

haulong integer : .
Returns the number of significant bits in the absolute value uf mtegcr The precise
computation performed is cellmg(lugZ(abs(mleger)+l)). ’

For example:
(haulong 0) => 0
(haulong 3) => 2
(haulong 4) => 3

(haulong -7) => 3
haulong is provided for MACTISP compatibility: integer-length should be used in
preference. ~

haipart integer count
This function exists: primarily for MACLISP compatibility. Its functionality is subsumed by
the byte manipulation functions Idb and dpb, which arc described in the following
section. .

haipart rcturns the high count bits of the bmary representation of thc absolute valuc of
integer, or the low -count bus if count is ncgative.

10.9 Byte Manipulation Functions

There are various functions in NiL and COMMON 1ISP to dcal with arbitrary-width contiguous
ficlds -of bits within integers. These functions are not restricted to operations on fixnums, but
rather -deal with the twos-complement representation of arbitrarily large integers.

Most of these functions use an object called a byre specifier. This object is used to refer to a
field within an integer, which is determined by the size of the ficld, and the position of the ficld
within an integer. Both of these must be non-negative integers.

byte size position

byte constructs a byte specifier. You may not depend on the format of the object
returnced, only that it will be acceptable for use as a byte specifier by the following
functions; in particular, the type of the object returned by byte may not be distinct. In
general, the restrictions on the magnitude of size and position are implementation
‘dependent. In NIL, they may be any non-ncgative fixnums. Byte specifiers in which the
size and position will both fit in an unsigned ficld 15 bits long (that is, they are both
integers from 0 to 32767 inclusive) are represented more efficiently than others.

byte-size bytespec
byte-position bytespec _
byte-size returns the size "component” of bytespec, and byte-position returns the
- position "component”.

MC:NII.MAN:NUMBER 70 ; : 23-DEC-83

NII. Manual 85 ‘ Byte Manipulation Functions

1db bytespec integer
bytespec specifies a field of inreger to be cxtracted. ‘That field extracted from the twos-
complement binary representation of integer is returned as a non-negative integer. For
instance, the low three bits can be extracted using the byte specifier constructed by (byte
3 0): '
(1db (byte 3 0) 15) => 7 :15is...0111111 in binary
(1db (byte 3 0) 14) > 6 ;145 ...0111110 in binary
(1db (byte 3 0) -3) => 5 :-4is ...1111101 in binary
‘The third group of three bits can be extracted using the byte specificr (byte 3 6):
(1db (byte 3 6) 15) => 0 :15is..0000111111 in binary
(1db (byte 3 6) 63) => 7 :63is..0111111111in binary
(1db (byte 3 6) -3) => 7 ;-3is..1111111101 in binary

f

ldb may be used with setf (page 38). if the form inreger is a valid place argument to
-setl. Rather than modityving the intcger itsclf. doing setf on a Idb form will "nest” like
(setf (1db byiespec integer) newbyte)
==> . -
(seuf integer (dpb newbyte bytespec integer))

1db-test bytespec integer
(1db-test bytespec integer)
<==> (not (zerop (1db bytespec integer)))
While a Idb-test can in gencral be donc more ecfficiently than the second form. it
provavly s not donc specially yei in Nii.

dpb newbyte bytespec integer
dpb is sort of the inversc of Idb. It returns an integer with the same binary
representation as integer. cxcept that the ficld referred to by byrespec is replaced by the
twos-complement binary represention of newbyte.
(dpb 3 (byte 3 0) 0) => 3
(dpb 7 (byte 3 0) 0) > 7
(dpb 0 (byte 3 0) -1) => -8

mask-f1e1d bytespec integer
This does not seem to be in yet?

mask-field rcturns an integer whose binary representation is all zeros, except in the field
referred to by bytespec, which has the same bits as that field in inreger. That is,
(mask-field byrespec integer)
<=>
(dpb (1db bytespec integer) bytespec 0)
<=>
(ash (1db bytespec integer) (byte-position bytespec))

If the intcger is being used as the representation of a set (section 10.8, page 81), then
mask-field could be considered to be performing an intersection opcration on the set
represented by integer. and the set of all objects whose bit positions correspond to the
positions within the ficld specified by bytespec.

MC:NIL.LMAN:NUMBER 70 23-DEC-83

Random Numbers) 86 Nil. Manual

deposit-f1ield newbyre bytespec integer
This does not seem 1o be in yet?

This is the "inverse” of mask-field. deposit-byte returns an intcger which is the same
as. integer, cxcept that the field referred to by bylesper is contains instcad the bytespec
ficld of newbyre. “That is, it is like

(dpb (1db bytespec newbyte) bytespec integer)

10.10 Random Numbers

random &optional modulus random-state
If no modulus argument is given, then this is compatible with the MACLISP . random
function of no arguments: it returns a number randomly distributed over the range of all
fixnums. (COMMON 11SP does not define random of no arguments.) Otherwise, the
answer rewurned by random is a number of the same type evenly distributed bctwccn 7¢r0
(inclusive) and modulus (exclusive).

If random-stare is supplied. it must be an object of type random-state; this is what
holds the state of the random number generator. If it is not supplicd. then the global
random.number state (the value of srandom-states) is used.

The random number returned is random over "all its bits"; random-state is used to
computc a sequence of random bits which are used to construct the result. For-a. floating-
point number, this is uscd as the significand (fraction) of a constructed number which is
scaled to the appropriate range: for an integer, a scquence of bits is constructed
approximately 10 bits longer man that necded for the result, and then a modulus
opcratmn performed.

srandom-states Variable
This holds the global random state used by default by random. One may, for instance,
lambda-bind this variable to a new object of type random-state to save and restore the
~state of the random number generator.

make-random-state &optional state
This crcates a ncw random-state object. If state is nil or not supplied, then a copy of
the current value of srandom-states is rcturncd. If suare is t, then a new random-state
_is returned, seeded from the time. Otherwise, state should be a random state; its state .
is copied.

When NIL is first loaded up, the random-state object in #random-states is always in the

same state. It may be sceded from the current time by doing
(setq *random-states (make-random-state t))

if that is necessary for applications. There is, however, no officially defined way to get a
“known" random-statc from which the same sequence of pscudo-random numbers may be
generated, other than copying one with make-random-state and saving it. If this is found to be
nccessary (for instance to reproducibly debug a program which uses the random number
gencrator), the form

MC:NILMAN:NUMBER 70 | | | 23-DEC-83

NIl. Manual . 87 ' Fixnum-Only Arithmetic

(si:make-random-state-internal)
will crcate a new random-state the same as the one NIL starts up with.

For MACLISP compatibility, the random option to the status and sstatus muacros is supported.
(status random) rcturns a copy of the current value of srandom-state*; (sstatus random
random-state) restores *random-state* to a copy of that. One may also resced by doing (sstatus
random integer).

10.11 Fixnum-Only Arithmetic

Currently, the NIl compiler does not make any use of type declarations to help it decide to
inline-code arithmetic routines. Primarily for this rcason, NIL provides a full complement of
fixnum-only and double-float-only arithmetic routines, which will be inline-coded by the compiler
(when possible and reasonable) into fairly cfficient code.

In Nii. as in MACLISP, the totally open-compiled fixnum-only routines behave "as the machine
docs”; that is, overflow is generally not detected. Note that the VAX hardware detects division by
zero, however, and those routines not compiled as machine instructions, such as ~&, may detect
overflow and signal an crror.

10.11.1 Comparisons

=& number &rest more-numbers
/=2& number &rest more-numbers
<& number &rest more-numbers
Y& number &rest more-numbers
=& number &rest more-numbers
>=& number &rest more-numbers
Fixnum-only versions of the =, /=, £, etc. functions.

max& fixnum &rest more-fixnums

min& fixnum &rest more-fixnums
Fixnum-only max and min.

10.11.2 Arithmetic Operations

+& &rest fixnums
Fixnum-only + (plus).

.~& fixnum &rest more-fixnums
One arg: unary negation. Otherwise, fixnum-only subtraction,

MC:NIL.MAN;NUMBER 70 23-DEC-83

Fixnum-Only Arithmetic 88 | NI Manual

«& &rest fixnums
Fixnum-only multiplication.

/& fixnum &rest' more-fixnums
Fixnum-only division. With onc argument. reciprocates, which seems singularly uscless to
me; since this is truncating division, reciprocation is an crror if the argument is zero, one
if it is one, otherwisc zero.

\& fixnuml fixnum2 ,
Fixnum-only remainder.: Although there is no COMMON LISP \ function to make the
fixnum-only (as inherited from MACLISP) \ function change incompatibly, the name of \
is being changed ‘to \& for consistency. Note that this function must nommlly be typed
in as \\&, bccause \ is the "quoting” chdractcr in NIL.

1+& fixnum
1-& fixnum ,
Fixnum-only 1+ and 1-.

abs& fixnum
Fixnum-only abs.

signum& fixnum
Fixnum-only signum.

~& fixnuml fixnum2
Fixnum-only expt. It is an crror for the result to. exceed the range representable by a -
fixnum. :

10.11.3 Bits and Bytes

logand& &rest fixnums
logior& &rest fixnums
logxor& &rest fixnum
logeqv& &rest fixnums
lognand& fixnuml fixnum2
lognor& fixnuml fixnum2
Yogandci& fixnuml fixnum2
Togandc2& fixnuml fixnum2
logorcl& fixnuml fixnum2
Togorc2& fixnuml fixnum2
Fixnum-only boolean functions

boole& op fixnuml fixnum2
Fixnum-only boole.

MC:NILMAN:NUMBER 70 ’ 23-DEC-83

NIl. Manual) 89 ; Fixnum-Only Arithmetic

Tognot& fixnum
Fixnum-only lognot.

lTogtest& fixnuml fixnum?2
Fixnum-only logtest.

Togbitp& index fixnum
Fixnum-only logbitp. This is defined for an index larger than the number of bits in a
fixnum; however. index must be a fixnum.

ash& fixnum count
Fixnum-only ash. Shifting by a positive courr may shift bits into the sign position, thus
changing the sign of the result (and losing bits). It is an error if count is not of type
(signed-byte 8), that is, between -128 and 127 inclusive.

'logcou/nt& Sixnum
Not yet in?

haulong& fixnum
Not inlinc-coded, but prov xdcd for completeness (see, perhaps, %fixnum-haulong, <not-
yet-written>). Maybe this should be diked. sincce haulong should dispatch just as rapidly.

1db& bytespec fixnum :
Fixnum-only idb. This is not strictly a version of generic Idb which takes a fixnum
sccond argument. but rather a version of low-level fixnum byte-extraction which takes a
general bytespec as an argument: it is an crror for the byic to cxtend outside of the
fixnum (for the position plus the size of the bytespec to be grecater than 30).

dpb& newbyie bytespec fixnum
As Idb& is to Idb, so dpb& is to dpb. Other Idb& restrictions apply.

set-1db& bytespec fixnum newbyte
Maybe this shouldn’t be here, but it is in case setf gets used on Idb&

Back in the olden days when there were few thoughts about integers greater than 34359738367
(or something like that), the byte-specifier to Idb and its friends used to be designated as ppss.

The interpretation of this is that, if you consider ppss to be a 4-digit octal number, the number

(octal) pp tells the position of the byte being referenced, and the ss the size. In order that a byte
specifier not be so restricted in the size of the "byte" it is referencing (since the pp can be
upwards-compatibly extended to the left but the ss cannot), NIL has incompatibly abandoned that
format. So that code which uses this old format may be trivially converted, however, the old
functionality may be obtained with the %ldb and %dpb functions, below.

%1db ppss fixnum :
Extracts the bytc defined by ppss (as described above) from fixnum. It is an error if the
byte so referenced lies outside of the fixnum (that is, the size plus the position is greater
than 30).

MC:NILMAN:NUMBER 70 : 23-DEC-83

Double-Float-Only Arithmetic -9 NII. Manual

Xdpb val ppss fixnum
Returns a fixnum which is fixnum with the byte defined by ppss replaced by the fixnum
val (truncated as nccessary). It is an error if the byte so referenced lies outside of the
fixnum (that is, the size plus the position is greater than 30).

10.11.4 The Super-Primitives
Getting closer still to the hardware...

load-byte fivuum position size
‘This is the primitive N1I extract-a-byte-from-a-fixnum function. In the style of many NI
primitives, and in the style of the VAX byte-extracting instructions. it takes arguments of
position and size (different ordering from the byte function). It is an crror for the byte
described by position and size to lic out of bounds of the internal representation of a
fixnum (30 bits).

deposit-byte fixmum position size newbyte .
Modifies the byte, as per load-byte. Note argument ordering is different from dpb in
that newbyte comes last. This is to make it convenient for setf to use.

sys:%fixnum—plus-with-overﬂow—trapp1ng x 'y overflow-code...
sys:%Hxnum-differance—with-overﬂow—tra’pp‘lng Special form
x y overflow-code...
sys:%Hxnum-t‘lmes—with—overf‘low-trapp1ng x y overflow-code...
sys:%Hxnum-ash~w1th-overf’low-trapp'lng x y overflow-code...
These are special forms which primarily exist for the benefit of implementing generic
arithmetic functions. The appropriatc binary opcration on x and y. inlinc-coded, is
performed; if afterwards there has been no overflow, that result is returned. Otherwis A
overflow-code is run, and the resultant value returned.

Only the compiler knows how to use these right now.

10.12 Double-Float-Only Arithmetic

NIL provides some functions (like those in MACLISP) which operate only on double-floats. It is
unlikely that corresponding functions will be provided for other floating-point types when they are
added, however; inline-coded arithmetic on such numbers will be handled by declarations to the
compiler eventually. '

+$ &rest double-floats
*$ &rest double-floats
-$ double-float &rest more-double-floats
/8 double-floar &rest more-double-floats
148 double-float
1-$ double-float
Double-float-only stuff. Essentially this is maclisp-compatible.

MC:NILMAN:NUMBER 70 ' 23-DEC-83

NIL. Manual 91 Decomposition of Floating Point Numbers

abs$ double-float
Double-float-only abs.

max$ &rest double-floats
min$ &rest double-floats

~8$ double-float fixnum
The double-float only exponentiation function.

10.13 Decomposition of Floating Point Numbers

~ All of the following routines arc defined by COMMON 11sP. The basic. premisc is that a
floating point number is represented by some number of digits in a base 5. multiplied by b to
some cxponent, with a sign. In NH. on the VAX, b is of course 2 for the primitive floating-point
data types, so the exponent is a binary cxponent.

float-radix floar
This returns the radix & of floar. For the Ni1. primitive float data types (short-float.
single-float, double-float, and long-fioat), it always returns 2.

decode-float floar
This function returns three values:

(1) The significand of float. This is a number between 1/4 (inclusive) and 1
(cxclusive). which represents the bits of floar. The sole exception is for zero, for
which the returncd significand is zcro (of the same floating-point type as floar).

(2) The exponent of floar. This is -an integer which, if usced to scale the significand
(using scale-float, below), will produce a number with the samc absolute value
as floar. ‘ ,

(3) The sign of float; this is either 1.0 or -1.0, in the same floating-point format as
Sfloat. | :

Thus, ,
(multiple-value-bind (significand exponent sign)
(decode-~float float)
(= float (= (scale-float significand exponent) sign)))
=> t

scale-tTloat float integer
This is like doing ,
(* float (expt b integer)) v

where b is the radix of floar. It is done, of course, somewhat more efficiently and
without danger of any sort of intermediate overflow or underflow if the final result can be
represented. It is an error if the final result cannot be represented; scale-float will signal
an crror. (In a future NIL with a smarter compiler and type declarations, however, it may
be the case that open-compilation of this function will not signal an error.)

Those familiar with the PDP10 MACLISP fs¢ function will recognize this as being somewhat
of the same thing, although it is not subject to the kludges that fsc is (partly because the
VAX does not represent unnormalized floating point numbers).

MC:NILMAN:NUMBER 70 ; ‘ 23-DEC-83

Implementation Constants . o 9 - NIl. Manual

float-sign floar &optional other
If other is not supplicd. then this returns the sign of floar, 1.0 or -1.0. in the same
format as floar. This is the same as the third valuc rcturned by decode-float.

If other is supplied, then the effect is of transfering the sign of float to other: the result
will be of the same floating-point format and absolute value as other, but have the same
sign as float.

float-digits flow .
This returns the number of base b digits in the representation of floar. In N, this is a
constant for any particular onc of the primitive floating-point types. Specifically, short-
float has 19, single-float has 24. double-fioat has 56, and long-float has 128.

float-precision floar
This (he said while looking the other way) is the same as float-digits cxcept that it
returns O for zero.

integer-decode-float floar
This returns three values, like decode-float. The difference is that the significand is
returncd as an integer, and the cxponent differs accordingly. ‘The magnitude of the
integer is such that it is between 2~p (exclusive), and 2~(p-1) (inclusive), where p is the
precision of fleat (as would be returned by float-precision). If the float radix is 2 as it is
for the NiL primitive floating types, then the integer will have the same number of bits
(integer-lenath nage R3) ac the nrocision, Again, an excention for zerp ovists; the first

valuc will then be 0.

10.14 Implementation Constants

most-positive-fixnum _ Constant
most-negative-fixnum Constant
These have as their values the most positive and negative fixnums representable in NIL;
integers of the same sign but greater magnitudes have to be represented as bignums.
Because NIL uses twos-complement representation for fixnums, the absolute value of
most-negative-fixnum is onc greater than most-positive-fixnum,

most-positive-short-float Constant
most-positive-single-float Constant
most-positive-double-float Constant
most-positive-long-float Constant

These have as their values the most positive numbers of the corresponding formats which
can be represented.

most-negative-short-float Constant
most-negative-single-float v Constant
most-negative-double-float ‘Constant
most-negative-long-float Constant

These have as their values the most negative numbers of the corresponding formats which
can be represented.

MC:NILMAN;NUMBER 70 23-DEC-83

NII. Manual S 93 Implementation Constants
least-positive-short-float : Constant
least-positive-single-float Constant
least-positive-double-float : ; : Consiant
least-positive-long-float Constant

These have as their values the smallest numbers of the coﬁcsponding formats that can be
represented. which are still positive.

least-negative-short-float Constant
least-negative-single-fioat ' ‘ Consiant
least-negative-double-float , ’ , Constant
least-negative-long-float Constamt

‘These have as their values the most positive negative numbers representable in the
corresponding formats.

short-float-epsilon ‘ Constant
single-float-epsilon Constant
double-float-epsilon : Constant
long-float-epsilon : Constant

‘These have as their values the smallest positive numbers which, when added to 1.0 of the
corresponding format, produce a different answer.

short-float-negative-epsilon Constant
single-float-negative-epsilon _ , ' : Constant
double-float-negative-gpsiton , - Coinsiaiii
Tong-float-negative-epsilon Constam

These are broken and wrong.

MC:NILMAN:NUMBER 70 - ' 23-DEC-83

Characters 94 NIi. Manual

11. Characters

In NIL, characters arc rcpresented as a scparate data type. This provides multiple benefits;
among them, the object maintains somc semantic identity when it appears in code (it is obvious
that it is a "character”), and since it docs maintain its identity as a character, the rcad/print/read
"fixed-point” is capable of functioning across differing LISP implementations that internally utilize
different character sets {(e.g., ASCll vs. EBCDIC).

Characters in NIL have three different attributes: their code, their bits, and their font. The
code defines the basic ("root”) character. The bits are used as modifiers. Typically. an input
processor (such as the editor, or even the prescan for the toplevel Lisp read-cval-print loop) will
treat a character without any bits as "ordinary” and assumc it is part of the text being typed in,
but trcat a character with some bits as being a command. Four of the special bits are named:
they are control, meta, super, and hyper. The font of the character defines how certain things
about the character are defined: for instance, equating characters of different fonts (char-equal),
whether a character is upper or lower case, alphabetic, or a digit (upper-case-p etc.), and how
to do case conversion (char-upcase). While NIl does not. yet really define "fonts”, there is a
mechanism for how such definitions can interface to the low-level character manipulation
primitives which utilize such things (section 11.7, page 100).

NIL character objects are immediate-pointer structures; they require no storage. Most of the
routines which construct, dissect, and compare characters are open-coded by the compiler.

--------- ==

The NIL characicr sct has not yet been cleancd up with respect v the confusion Leiween e
ASCII control characters and the characters it uscs with the control bit. See section 11.6, page 99.

char-code-1imit Constant
char-font-1imit : Constant
char-bits-1imit Constant

These variables have as their values the upper exclusive limits on those attributes of
characters. The values should not be changed. It happens that, in the VAX
implementation, all three are 256 so that each quantity will fit into an 8-bit byte.

11.1 Predicates on Characters

standard-char-p character
This returns t if character is one of the "standard" ASCII characters. These are all the
ordinary graphic characters (alphanumecrics and punctuation characters), plus Space and
Return, Only characters with 0 font and bits attributes can be standard.

graphic-char-p character
Returns t if character is a graphic (printing) character; that is, it has a single glyph
representation. No character with non-zero bits attribute is graphic. Whether or not a
character is graphic depends on its font.

MC:NILMAN;CHAR 33 23-DEC-83

NIL Manual : | 95 | | Predicates on Characters

alpha-char-p character

upper-case-p character

Tower-case-p character

both-case-p character

alphanumericp character
Predicates on character objccts All arc nil for characters with any bits; othcrwise, they
depend on the font.

char= character &rcst- more-characters

char< character &rest more-characters

char<{= character &rcst more-characters

char) character &rcst more-characters

char>= character &rest more-characters

char/= character &rest more-characters ,
These routines collate or compare characters. The comparison is dependent on the bits,
font, and case of the characters. Each routine returns t if all pairwise combinations of its
arguments satisfy the appropriate predicate, nil otherwise; if a single argument is given,
the result is t.

char= is the primitive function for telling if the characters are “"the same character”—that
is, if their code, bits, and font are all the same. It is what is used by eql and equal for
comparing characters. char/ = returns t if none of the pairs of characters are char=.

= AanAd alar\ Anllaea th

- ‘ A3 - . H - |
char{, char{=, ¢ch , and char> cellate the characiers according to somc unspecificd

collating scquence, What is guaranteed is that the upper-case alphabetics, the lower-case
alphabetics, and the digits will not be interspersed within the collating scquence, and,

within each of these sets, they follow the obvious_tol]ating order.

el d
sl s

char-equal character &rest more-characters

char-lessp character &rest -more-characters

char-greaterp character &rest more-characters

char-not-lessp character &rest more-characters

char-not-greaterp character &rvest more-characters
These routines compare characters independently of font, b:ts and case. This does not
mean that only the code portion of the characters is compared, but rather a font-
dependent canonicalization is performed on the characters before they are compared.
Thus, for two characters in different fonts, it is possible for them to not be char-equal
even if they have the same code (one might be a "greek” character and the other .
“roman"), and conversely it is possible for them to be the same even with different codes
(one might be upper-case and the other lower-case). ‘

MC:NILMAN:CHAR 33 T 23-DEC-83

Character Construction and Selection . 9% NIL Manual

11.2 Character Construction and Selection

character frobozz :
Cocrces frobozz to a character. It may be a character, a fixnum, in which case char-int
is applicd. or a string. symbol, or character vector of length 1, in which case that single
character is returned. This is what is used: by the coerce function (page 9).

char-code character

char-bits character

char-font character
‘These three functions extract those attributes (as fixnums). All arc cfficiently open-coded
by the compiler, and accept only character objects,

code-char code &optional (birs0) (font 0)
Creates. a character with code, bits, and font of code, bits, and font, unless that is not
possible in the implementation, in which case nil is returned. In other words, it is an
crror for code. bits, or font to not be non-negative integers, however they need not be
less than char-code-limit, char-bits-limit, and char-tont-limit respectively.

make-char char &optional (bits0) (font 0) ' ,
Creates a character with code of the the code of char, and with bits and font of birs and
Jont, unless that is not possible in the implementation, in which case nil is returned.
make-char could have been defined as
_ (defun maka-char (char &optional (bits 0) (font 0))
(code-char (char-code char) bits font))

11.3 Character Conversions

char-upcase char

char-downcase char
Upper- or lower-casify char, preserving the font and bits attributes of it. Note in
particular that these functions just return char if it has a non-zero bits attribute, because
such a character is not alphabetic and hence not subject to having its case changed.

char-1int char :
Returns a non-negative integer (in NIL, this will be a fixnum) encoding of the character
char. If the bits and font of char are 0, this is the same as char-code. This is useful
for hashing, and certain character-fixnum conversions such as those needed for the
MACLISP tyi function are defined in terms of char-int.

int-char integer
If there is some character ¢ for which (char-int ¢) equals integer, that character is
returned; otherwise, nil is returned.

MC:NILLMAN:CHAR 33 23-DEC-83

NII. Manual . 97 Internal Error Checking Routines

char-name char x » :
Returns the name of the chamctcr char if it has onc.” Supposcdly, all characters which
have zero font and bits attributes and which are non-graphic (sce graphic-char-p) have
namcs.

In NIL, the name of a character is by convention a symbol in the keyword package.

name-char sym ~
’ The argument sym must be a symbol. If the symbol is the name of a character object.
that objecct is returned: othcrwnc nil is. rcturned :

In N1, character name symhnls arc symbols in the keyword package.

digit-char-p digit &optional (radix 10) ‘
digit-char-p is a scmi-predicate. If digir, which must be a character, is a digit in radix
radix. then the weight of that digit is returned, otherwise nil is returned. By definition. a
character with non-zero bits is not a digit. so for that digit-char-p will always return nil.

digit-char weight &optional (radix 10y (font 0) :

If it is possible to construct a character with the given bits and font which has the weight
weight in radix radix, then such a character is returned. otherwise nil is returned. weight
must be a valid weight for the radix (a non-ncgative integer less than radix). Note the
similarity to make-char (page 96) also.

(digit-char 5) => #\5

(digit-char 10) => nil

(digit-char 10 25) => #\A
Note that unlike make-char, digit-char docs not take a birs argument. This is because
a character with a non-zcro bits attribute is by definition not a digit. :

11.4 Internal Error Checking Routines

The following may be of use to users writing their own routines for dealing with characters.
(They should eventually be supplanted by more general type-checking macros, which will probably
turn into calls to these routines...)

si:require-character character
Error-checks that character is in fact a character. This is what is called by (for example)
the interpreted version of char~code.

si:require-character-fixnum mleger
Error-checks that integer is in fact an integer for whxch there is a charactcr representation:
that is, on which int-char would return a character. All such integers in NIL happen to
be non-negative fixnums.

MC:NILMAN:CHAR 33 23-DEC-83

Low-1.evel Interfaces - . 98- “ NH. Manual

1L.5 Low-Level Interfaces

%int-char Soxnum
Non-check version of int-char. It is an error for Jixnum to not be the integer encoding
of a valid character object, as would be returned by char-int.

The following four routines define digitness in the NIL character set. at a low level. These
routines do not depend on the fonr of the character (if they take a character as an input); rather,
they define the basic conversions for the “standard” NiI. character sct (NIL's interpretation of
ASCII).

%valid-digit-radix-p radix
This defines the valid range of radices which %digit-char-in-radix operates on. ‘The
radix must be a fixnum.

%digit-char-in-radix-p char radix
Primitive predicate for testing whether the character object char is a digit character in the
fixnum radix radix (which must be a valid numeric radix).

Xdigit-char-to-weight char
For any char which satisfies %digit-char-in-radix-p, this will return the weight of that
digit.

Xdigit-weight-to-char weight
‘This inverts %digit-char-to-weight.

The following two routines perform low-level case mapping for the NiL character set.

%char-upcase-code code
Xchar-downcase-code code
These routines perform low-level case mapping for the NIL character set. code must be a
valid character code; the returned value is a character with O bits and font attributes.

For example, if NiL did not provide low-level support for multiple fonts,
(char-equal ¢l ¢2)
would be the same as
(char= (%char-upcase-code (char-code c/))
(%char-upcase-code (char-code ¢2)))
The actual definition of char-equal is somewhat different in that the translation and
canonicalization of the characters depends on their font.

MC:NILMAN:CHAR 33 23-DEC-83

NI Manual , _ 99 "!‘hc NII. Character Sct

11.6 The NIL Character Set

i As can be scen, the format of character objects in NiL provides for a basic eight-bit root
character (dcfined by the code), which can then have both birs and fonr attributes added to it
However, the 170 devices NIL must dcal with only handle (at most) cight-bit charactcrs——oftcn
only seven. ,

In principle, NIL will utilize an cight-bit character set; half of these will be graphic characters
(the normal ASCIl graphics. plus special symbols), and the other half reserved, format effectors
(such as lincfeed, backspace). and special commands for things like the cditor and debugger
(Abort. Resume. Clear-Screen, that kind of thing). Al of these characters will then be able o
have birs and fomt attributes added.

To dceal with this on (for instance) an ordinary sceven-bit ASCH terminal. N1t will have tw do
three things in the future. These are not done now, but are noted because they have bearing on
the representation of character objects and input from devices.

I Turn ordinary ASCIF control characters into the N wversion of the controf character. For
instance. the ASCH character with code of 1. which is what vou get when tyvping Conrrol-
A on a standard ASCH keyboard. will turn inw the character 4 (uppCl’de A) with the
Control bit set.

L2}

Provide "prefix” character-level commands' in various places in order that other characters
with bits may be entered. (this is what is done in the editor).” For instance. in the current
inmt nrocessnr used by the reader, the character Congrol-\- is "prefix meta”—it "reads”

another character and returns that with the meta bit added.

3 Provide some quoting or escape convention for inputting the extended graphic characters,
since the codes for them arc now normally being interpreted as characters with the
Control bit set.

Secondanly, there will probably also be some translation of the actual codes involved, but that is
irrelevant unless one is looking at the actual codes used in characters (which one gencrally should
not).. For instance, of the 256 "normal” characters, the low 128 would be graphics, and the high
128 the others. Some sort of symmetry would be maintained by having the Ascll format effectors
and Rubour have their ASClI values plus 128. The others would be new characters to be used as
various sorts of commands, but mostly left reserved for expansion. This is, in fact, approximately
how the LISP MACHINE LISP character set is defined. v

Unfortunately, none of this is done right now. When the character Conirol-A is typed on an
ASCIHl terminal, it is read in as the character whose code is 1, not as what is actually the character
Control-A.. The editor, for instance, does some of the abovementioned transmutations on its
input, and any prefixing commands for adding bns supphcd by other input processors would be
modeled after those used in. the editor.

The algorithm which may be used to translate ASCH into what is currently used in NIL is this.
Given an cight-bit character. if the code has the high bit sct (it is greater than 127 decimal), then
subtract out that bit. and remcember to add the Aeia bit to the character which will be cventually
obtained. (This bit is- what would be sct by a terminal with a Mera key: such .capability normally
nceds to be enabled by somcthing like

MC:NIL.MAN:CHAR 33 23-DEC-83

Primitive Font l.)cﬁnilions . 100 NI Manual

$ set term/eightbit
1o DCL.) Now we have a seven-bit character. If the seven-bit code is less than 32, and if it is not
one of the codes for Backspace, Tab. Linefeed, or Rewurn (8, 9, 10, and 13 respectively), then
add 64 1o it, and sct the Control bit. Adding 64 forms the corresponding uppcrcasc-alphabctic or
punctuation character. Thus, 1 turns into Control-A (65 plus Control), and 135 turns “into
Control-Meta-G (135 = 128 + 7, = Meta 4+ Control + 73 which is G).

11.7 Primitive Font Definitions

This section details how "fonts”™ arc described at a low level in N1 in order to be interfaced
to the character primitives described in this chapter. The contents of this section can be safcly
ignored by anyone who isn’t going to try to define fonts and interface them to Nil.

First, remember that the code portion of a character is exactly 8 bits.

There are several "attributes™ of a font which we necd to encode in such a way that certain
operations become trivial. They are these:

conversion 1o upper -case

conversion to lower-case
These want to be done rapidly

testing for certain attributes
the predicates upper-case-p, graphlc -char- -p. both-case-p. ctc.

comparison of characters of different fonis
Two goals arc desired here. It may be desirable for two characters in different fonts with
the same code to not be char-equal. because they represent different things. It might
also be desirable for two characters in different fonts with different codes to be char-
equal—one might be p, the other P.

geiting weights of digits

obraining digit characters from weights

For efficiency, all of these goals are implemented through table lookup. There are several
special variables whose values are simple vectors which contain one entry for each possible font
(256 entries in each vector). In the initial NIL environment, all of the entries of each vector are
initialized to the same thing.

Before thesc tables get listed, there are a couple of conventions which must be explained first.
The first is what is called internally a translation table for characters. This is just a simple-string
or simple-bit-vector 256 bytes (2048 bits) long. for doing code-to-code translation. For instance,
translation to upper-case for a particular font utilizes such a table. The NIL primitives are defined
such that it does not matter whether this datastructure is a simple-bit-vector or a simple-string.
Another such datastructure is a synfax table. This is the samc as a translation table, but each
byte within the table is treated instead as a bit-mask with one bit set for each attribute about the
code being defined. Both of these concepts will be abstracted away from characters in a future
NIL.

The atuributes about a font we define are these:
upper-case translation table
lower-case translation table

MC:NH.MAN:CHAR 33 23-DEC-83

NI1l. Manual ; 101 Primitive Font Definitions

Each font has one of cach of these. char-upcase works by returning a new character of
the same font, with a code which is the result of extracting the byte from the upper-case
translation table at the code index. (If the character has non-zero bits it is just returned
however.)

syntax table 4
A syntax table (as described above) with syntax bits for the character primitives graphic-
char-p, upper-case-p, lower-case-p, both-case-p, alphanumericp, and alpha-
char-p. Constants for thesc bits arc defined below.

digit weight 1able
This is a simple vector 256 long with one entry for cach character code. All entries are
fixnums. Thosc cntries corresponding to characters which cannot cver be interpreted as
digits should be -1 all others should have the weight of the digit.

digit char 1able '
This is a simple-string (it must not be a simple-bit-vector) used for conversion from a digit
-weight to the corresponding character. The length of the string is the maximum radix
which can be handled in that font, and all cntrics in-between must be valid. For
ir-tance, in the standard such table. the entry at index 9 is the character 9. and the
entry at index 12 is the character C.

the 1ypeface
‘The format of this objcct is ‘not defined: the typefaces of different fonts arc compared
with eq by such predicates as char-equal. This is discussed later.

typeface canonicalization table ,
This is a simple vector 256 long, which is used to produce a canonicalization of a
character within a typeface. The ciements ot the vector are fixnums. When two characters
of the samc typeface are compared, the code of cach character is used as an index into
this table (there is onc per font, remember), and that result is used for the comparison.
This allows a typeface to have, among several fonts, more than 256 characters.

si:note-primitive-font jfonr-number &Kkey upper-case-translations syntax-table
lower-case-translations. typeface backwards-reference digit-weight-table
digit-char-table typeface-canonicalization ,
This assigns all of the information described above to the font font-number. Appropriate
defaults are assigned for those entries which are nil.

The following constants define syntax bits used in the Syméx table used. For each, the "$v_"

"

constant has as its value the position of the bit within the ficld (byte), and the "$m_" constant a
mask for testing the bit (with logtest&, for instance) or setting it (with logior&).
si:charsyntax$v_graphic Constant
si:charsyntax$m_graphic Constant

This bit tells if the character is graphic; that is, if it should satisfy graphic-char-p.

si:charsyntax$v_upper_case Constant
si:charsyntax$m_upper_case Constant
This bit tells if the character is upper case (should satisfy upper-case-p).

MC:NILLMAN:CHAR 33 : 23-DEC-83

Primitive Font Definitions 102 : NIl Manual

si:charsyntax$v_lower_case ' Constant
si:charsyntax$m_lower_case ' - ; ' Constant.
This tells if the character is lower case. :

si:charsyntax$v_both_case | ~ Constant

si:charsyntax$m_both_case ' Constant
This tells if the character sausﬁcs both-case-p (page 95)

si:charsyntax$v_digit ~ | _ Constant

si:charsyntax$m_digit Constant
This tells if the character is a (decimal) digit character.

si:charsyntax$v_standard , . Constant

si:charsyntax$m_standard ' Constant
This tells if the character, were it if font 0, is a standard char (standard-char-p. page
94). v

si:charsyntax$v_alpha ‘ Constant

si:charsyntax$m_alpha ' Constant

‘This tells if the character is ulphabctic. If the character is cither upper or lower case,
then it must have this bit set also. It is hypothetically possible, however, for a character
- to be alphabetic but neither upper or lower case.

Character comparison ala char-egual. char-lessp. etc.. is performed as follows. We assime
that it is possible to group characters into logical "typcfaccs"' canonicalizations within a typeface
arc valid, and comparisons of characters of different typefaces are not. Each font has associated
with it one such typcface, and the assumption is that many different fonts map to just a few
typefaces. When two characters are compared, if their typefaces are the same, then the codes of
the characters are translated into fixnums by obtaining the codeth clements of the typeface
canonicalization tables, and the results compared in the appropriate manner (= for char-equal, <
for char-lessp, ctc.). If the typefaces are different, then the characters arc not equal; for
ordering, they are compared in a manner consistent with chard, NIL does not do anything at all
with the typeface object described here; all that is done with typefaces is to compare them with
eq to do this character comparison.

MC:NHI MAN:CHAR 33 | ‘ | 23-DEC-83

NII. Manual) 103 Arrays

12. Arrays

Arrays in NII. encompass a large number of varied objects which sharc certain features and
aspects of usage. NIl arrays may range in rank (number of dimensions) from 0 to about 250. Al
array indices in NIL arc zero origined. One-dimensional arrays are vecrors, arc of the type vector,
and may be used by the various scquence functions (in chapter 7). Restrictions on the types of
the clements of an array (its element type) can result in special storage and access strategies. The
data in multidimensional arrays is always stored in row-major order; this is compatible with
MACLISP, although normally it does not matter.

12.1 Array Creation, Access, and Attributes

make-array dimensions &key element-type displaced-to displaced-index-offset adjustable
, Sfill-pointer
This is the general array creation function. dimensions may be an integer, in which case
the rank of the created array will be once (it will be a vector). or a list of integers which
arc the sizes of the correspondiv: dimensions of the array.

The array will be created to hold objects of type element-iype. If this is not supplied, t is -
assumed, and the created array will be able to hold any lisp objects. The most common
types. aside from t, arc bit (which crcates a bit-array). and string-char (which creates a
string-char-array). The special types which NIL supports, and their conscquences, are

discussed in section 122, page 10,
:

If fill-pointer is not null, then the array must be one-dimensional (a vector). It will be
created with a fill pointer initialized to fill-pointer, which must be between zero and the
size of the array (inclusive). Fill pointers arc discussed in section 12.3, page 105.

Normally, the size of an array may not be changed (other than by modification of its fill
pointer if it has one). This allows the implementation some leeway to provide for more
efficient access and storage. However, if adjustable is specified and not nil, then the array
will be created in such a way that its size (and its displacement attributes) can be
modified later by adjust-array. Modification of array size and attributes is discussed in
section 12.5, page 107.

The displaced-to and displaced-index-offset arguments control array displacement; that is
where one array can "point into” another. This is discussed in section 12.4, page 107.

aref array &rest indices
Returns the element of array addressed by the indices. The number of indices must
match the rank of the array, and each index must lie between zero (inclusive) and the
size of the corresponding dimension of the array (exclusive).

If the array is onc dimensional (i.c., a vector) and has a fill pointer. the fill pointer is not
used to decide the range of the array which may be validly referenced:; aref may be used
to access all clements of such an array. In this, it differs from elt (page 49).

MC:NILMAN:ARRAY 36 23-DEC-83

Array Element Types B Lo 104 , NIL. Manual

An array clement may be set by using setf with aref.

array-rank array
Returns the rank of array.

array-dimension array dimension-number
Returns the size of the dimension dmzenswn-number of array. The dimension number
must be between zero (inclusive) and the rank of the array (exclusive).

"array-dimensions array.
Returns a list of the sizes of the dxmcnsmns of the array.

array-element-type array ;
Returns the clement-type of aerray. This is not necessarily the same as what was-given as
the elemeni-rype argument to- make-array:. rather, it is the actual clement-type used to
implement the array, which will be a supertype of the originally specified clement-type.
This is discussed further below,

- 12.2 Array Element Types

Arrays may be restricted to contain only a certain type of clement: this restriction is the
element type of the array. -Some clement-types are distinguished in that the arrays will then be of
a particular distinguishable type. - For instance, arrays with clement-type of string-char. are
string-char-arrays. and onc-dimensional arrays of clement-type string-char (which arc therefore
also vectors) arc of type string. - Similarly, the types bit-array and bit-vector arc distinguished. -
There are other type restrictions (most of which result in special storage strategies for the data)
which do not result in the array itself being of a particular type: nevertheless, the element-type of
an array may be obtained. with the array-element-type function (page 104),

When an array is created with a particular clement type, the system chooscs the most specific
element type it offers which can satisfy the requirement. For instance, if an array is requested of
element type (double-float 0.0 1.0) (double-floats between zero and one), a double-float array
will be created. Similarly, for an array with element-type symbol. the element-type t will be
used. array-element-type returns the type actually used; the requested clement-type is. forgotten.

There are several array types currently defined by NiL. Most of them are riot, particularly
uscful right now, because NIL does not yet have a smart enough compiler to cause declarations
- about array element types to do anything smart with the array accessing.

bit The array can only hold bits (the integers 0 and 1). A one-dimensional array of element-
type bit is of the type bit-vector. If it not adjustable, not displaced, and has no fill
pointer, then it will be a simple-bit-vector, and is specially implemented (less storage
overhead, and faster access), and can be accessed cfficiently with sbit (page 109). Many
NIL. complex datastructures. including the current implementation of bignums and more
complex arrays which hold bits, small bytes, and binary data (such as double-floats), are
built from simple bit vectors. Because of their utility, bit arrays are discussed further in
‘scction 12.8, page 109. :

MC:NILLMAN:ARRAY 36 23-DEC-83

NIl Manual ST 105 Fill Pointers

string-char
‘The array can only hold characters which satisfy the predicate string-char-p (page 19).
A onc-dimensional array of this clement-type is of type string. A string that is not
adjustable, not displaced, and has no fill pointer is of the typc simple-string; this is
implemented more cfficiently than a more general string; and can be cfficiently accessed
with the schar function (page 114). Chapter 13 is devoted to strings.

character
The array can hold only characters (but they may be any type of characters). This
provides no advantage over the clement-type t in the current implementation; in a later
NIL, vectors of clement-type character will be acceptable to the string functions (chapter
13). :

(unsigned-byte 8)
(signed-byte 8)
(unsigned-byte 16)
(signed-byte 16)
Store those integers which are representable in tio respective ficlds.

double-float ,
The double-floats are stored packed in machine representation. Until the - compiler has
sufficient power to specially handle accesses to arrays of this type. there is no particular
benefit to their use. because a gencric array reference to a double-float array will have to
cons the number to return it.

An array of clomeni-type t can hold any lisp object. If suichi an aivay 15 one-dincusionai,
not adjustable. not displaced, and has no fill pointer, then it is a simple vector (of the
type simple-vector). Such a vector is-espccially efficient, and may be accessed with the

svref function (page 109).

i d

12.3 Fill Pointers

The fill-pointer option to make-array allows one to create a vector of varying length. It is
only applicable to one-dimensional arrays. The fill pointer of a vector is an integer which may
range from O to the size of the vector. It is used as the length of the vector; the value of the fill
pointer will be returncd by length (page 49). and used as the length by all sequence and string
functions; in fact, by cverything except for aref (and its variants such as char and bit). The
contents of the array at and beyond the fill pointer are still considered valid; they just are not
considercd when the array is viewed as a sequence.

A string with a fill pointer is reputed to be similar to a PL/I varying string, although such a
comparison is beyond the realm of this author’s knowledge.

To find the actual allocated length of a vector which has a fill pointer, use array-dimension
with a dimension number of 0. array-dimension always returns the allocated length.

MC:NIL . MAN:ARRAY 36 : 23-DEC-83

Fill Pointers , . 106 - NH. Manual

array-has-fi11-pointer-p array
This returns t if array has a fill pointer (implying that it is a vcctor) nil otherwise. 1t is
an crror for array to not be an array.

f111-pointer vector ‘
This returns the fill pointer of vecror, which must be a vector with a fill pointer. This
may be used with setf.

vector-push vecior object)
vector must be a vector with a fill pointer. If the fill pointer is a valid index into the
vector (that is. its value is less than the allocated length of the vector). then vector-push
stores - object into that slot, increments the fill pointer. and returns the original
(unincremented) fill pointer (which addresses where the object was stored). If the fill
pointer is the same as the allocated length (the only other valid situation), then vector-
push returns nil.

Note that the .fxrgumcm order to vector-push differs from that of the push macro (page
38). ‘This will be incompatibly changed in the future, at which time verntor-push will
contrive to figure out which. argument is which from their types.

vector-push-extend vecror object &optional extension
This is like vector-push. but whercas vector-push will return nit if the vector is “full”,
vector-push-extend will instcad call adjust-array to increase the size of vecror in order
that it might do the push. Thue it never returns nil. If exrension is supplicd and not nil,
then that is the amount by which the size of vector is incremented by - adjust- array, if
necessary; otherwise, some random guess based on the current size is used.

In order for adjust-array to succeed in increasing the size of vecror, vector must have
been created with the :adjustable option to make-array; see section 12.5, page 107.

The ordering of the arguments vector and object will be reversed in the future; see
vector-push, above.

vector-pop vector
This is the inverse of vector-push. The fill pointer of vector is decremented, and the
object addressed by that index is returned. The fill pointer must not already be zero.

reset-fil11-pointer vecior &optional (index 0)
Resets the fill pointer of vector, which must have one. If index is not specified, O is
assumed. '

This function is obsoleted by the use of fill-pointer with setf.

One common use of vectors with fill pointers is as buffers. For example, the NIL compiler
uses a vector with a fill pointer for allocating a table of value cell indices to be referenced by the
code it is compiling. It creates a vector with make-array, specifying that the array is adjustable,
and giving it an initial fill pointer of 0. ‘Then, it uses vector-push-extend to add a new cntry,
and the valuc that returns is the index into this table. vector-push-extend takes care of
increasing the size of the vector if the initial guess as to its size was too small.

MC:NILMAN:ARRAY 36 ’ 23-DEC-83

NII. Manual . 107 Displaced Arrays

This same technique can be used for generating text, if the vector is a string (that is, make-
array was given string-char as thc :element-type keyword). This is how some string
accumulating primitives work.

With vector-pop. vectors with fill pointers can also be used as stacks.

12.4 Displaced Arrays

Arrays may be created which do not have data of their own, but in fact "share™ data with
some other array. These are displaced arravs. ‘The uses for displaced arrays vary. Onc might
want to access the clements of a multi-dimensional array as if it were a vector; this could be
done by

(make-array size :displaced-to other-array)
which returns a vector which will access the clements of other-array in row-major- ordcr With
displacement, a displaced index offser may also be specified. Conceptually, when an array is
accessed. a single index is computed from the indices and dimensions of the array: this is the
index into the row-major-order data. ‘This index then has the displaced-index-offser added to- it
to get the index into the data for the array being displaced to.

Another potential use for displaced arrays is to reference some “substructure” of an array
which implicitly has some "structure”. This causes modification of the displaced array to modify
the referenced subpart of the original array. In general, however, it is not appropriatc to usc
array displacement as a substitute for a subseqg opcration (page 50): it is intended for cases
where modification of one must implicitly modify the other, although if the subscquence is large
it may bc worthwhile.

Efficiency note: displaced arrays which are displaced to non-adjustable arrays access at just
about the same speed as normal arrays (not counting those which are cspecially cfficient, namely
simple vectors, simple strings, and simple bit vectors). Arrays displaced to adjustable arrays are a
touch slower. At this time, the NIL compiler docs not know how to inline code any non-vector
array access, however, so aref (or use of it with setf) will produce general function call unless
there is exactly one index. ‘

12.5 Modifying Array Sizes and Characteristics

Normally, an array may not have the size of its dimensions or other attributes changed once
it is crcated (other than modification of its fill pointer; section 12.3, page 105). If a non-null
:adjustable option is given to make-array, however, the array will be created such that this is
possible.

adjust-array array dimensions &key displaced-to displaced-index-offset element-1ype
Jill-pointer
adjust-array interprets dimensions just as make-array docs. The array is modified to
have the new dimensions; however, its rank may not be changed.

If fill-pointer is specificd, then array must have originally been created with a fill pointer;
the value of fill-pointer is used as the new one.

MC:NII MAN:ARRAY 36 23-DEC-83

Special Vector Primitives . 108 : Nil. Manual

The remaining options will not be detailed at this time. adjust-array currently only
works on-one-dimensional arrays, so although not gencrally uscful yct it has cnough to
keep vector-push-extend happy

12.6 Special Vector Primitives

These functions are around in NIL. for historical reasons. They should gencrally not be. used
in new code, for reasons which will become clear from reading the descriptions. They are
documented because they are used all over the place in NI itsclf still. and vref in particular is
generated internal by the compiler from the usc of aref.

vref vecror index
‘T'his is absolutely identical to aref when aref is gwcn a vector and a single index. aref is
the preferred function to use in code: the Nit. compiler compiles aref of a single index as
a call 10 this internal vector-referencing subroutine.

Because this is the same as aref on a ’(me-dimcnsiunal array, it is interesting (o note that
(for a vector with a fill pointer) vref docs not use the vector-length to check if the index
is in range.

vector-length vecror ~
For historical reasons, this is the same as length but only accepts a vector as an
argument. If the vector has a fill pointer. this is not the same as (array-dimension
vector 0). which is the quantity used by vref for bounds checking,

12.7 Simple Vectors

Vectors of element-type t which are not adjustable and have no fill pointer are implemented
as the primitive data type simple-vector. (This was called simple-general-vector in the
previous NIL release. Do nor misinterpret the name simple-vector to mean one encompassing
vectors of other element types.) This type is extensively used in NIL as a building block for more
complicated datastructures in NIL. including less simple arrays. There are special routines for
creating and manipulating them, which are coded efficiently by the NIL compiler.

Vectors of this type may be checked for with typep; of course.

make-vector size &key initial-contents initial-element
Makes a vector of element-type t, size long. Because no comphcated array options can be
specified, this will always be a simple vector.

This may be called make-simple-vector in the fumre but the name make vector will
be preserved indefinitely.

MC:NILMAN:ARRAY 36 : 23-DEC-83

Nil. Manual) 109 Bit Arrays

vector &rest elements
This makes a simple vector whose clements arc initialized to elements. ‘T'hat is,
(vector 1 2 3) => #(1 2 3)

svref simple-vector index
References a simple vector. This routine is entirely open-coded by the compiler, with no
error checking; to retain runtime type and bounds checking, aref must be used.

svref may be used with setf.
This function used to be called sgvref: that name is still around.

simple-vector-length vecror
Returns the length of the simple vector vecror.

" This used to be called simple-~general-vector-length (yow!). that name is still around.

12.8 Bit Arrays

Arrays which contain only bits, which can be uscd to represent boolcan true and false, are
useful in various applications. Therc are several functions which perform boolcan operations on
arrays of this element type.

BBit arrays may bc more or iess appropriatc for a particular application than integers used 10
represent a sequence of bits. Bit arrays (or bit-vectors) may be side-cffected: intcgers may not.
Integers however may be used to represent infinite sets, because they are virtually extended with
their sign; see also scction 10.8, page 81. Bit arrays, of course, may bc multi-dimensional.

bit bit-array &rest subscripts
Just like aref (page 103), but only works on arrays of element-type bit.

setf may be used with bit.

sbit bit-array &rest subscripts :
This is just like bit, but is only for use on simple bit arrays. This can result in much
more efficient code, especially if the bit-array is one-dimensional.

setf may be used with sbit.

bit-and bit-array-1 bit-array-2 &optional result-bit-array
bit-d1or bit-array-1 bit-array-2 &optional result-bit-array
bit-xor bit-array-1 bit-array-2 &optional result-bit-array
bit-eqv bir-array~! bit-array-2 &optional result-bit-array
bit-nand bir-array-1 bit-array-2 &optional - result-bit-array
bit-nor bit-array-/ bit-array-2 &optional resulr-bit-array
bit-andcl birarray-1 bir-array-2 &optional result-bit-array
bit-andc2 bit-array-! bir-array-2 &optional resulr-bit-array
bit-orcl bir-array-! bit-array-2 &optional resuli-bit-array
bit-orc2 bir-array-1 bit-array-2 &optional result-bit-array

MC:NIL MAN:ARRAY 36 23-DEC-83

Bit Arrays : .10 ‘ NIl Manual

These crunch together bir-array-1 and bir-array-2. performing the appropriate bitwise
logical operation. bit-array-1 and bit-array-2 must have the same rank and dimensions.. If
result-bit-array is nil or not specified, then the result is a freshly created bit array of the
same rank and dimensions. If it is t, then the results are stored in bit-array-1.
Otherwise, it must be a bit array- of the same rank and dlmcnsmns as the other two, and
the results are stored into it.

bit- nat bit-array &optional result-bit-array ; :
Performs a bitwise logical negation on the contents of bzl—arm} If: result-bir-array is nil or
not specificd. then the result is returned as a freshly created bit array of the same rank
and dimensions as bit-array. If resul-bit-array is t. then bir-array is side-effected with the
results. - Otherwise, result-bit-array should be the a bit array of the same rank and
dimensions as bit-array. and will have the results stored into it ' '

12.8.1 Simple Bit Vectors

In NH. a one-dimensional bit array whxch is ‘not adjustable. not displaced, and has no- fill
pointer. s represented as the' primitive type simple-bit-vector. which is represented more
cfticiently than a more general bit array. Simiple bit vectors arc used as building blocks for more
complicated structures which contain binary data, such as the more complicated bit arrays. and
cven arrays of clement-type double-float. There arc primitives for accessing variable length fields
from them as (possibly sign-cxtended) fixnums (but nor genceral integers, yet), and primitives for
treating them as-if they were sequences of eight-hit hytes

Once upon a time the name for this type was bits. This name still lingers in places, but is
being replaced by simple-bit-vector. :

make- b‘lt vector size &kcy muml—elemem initial-contents
~ Creates a simple-bit-vector size long. If neither initial-element nor initial-contenis are
specified, the contents of the created bit-vector arc undefined. The current implementation
of NIL storage allocation requires that all allocated datastructure be initialized, so in fact
~ the bit-vector will always be initialized to zeros,‘ but this could change in the future.

If mmal-elemem is. specified, it must be either O or 1, and the elements of the bit vector
are initialized to that.

If initial-contents is specified, then it should be a bit vector, and the created bit vector is
initialized to the contents of initial-contents. If initial-contents is longer than size, the
extra elements are ignored: if it is shorter, then the contents of the remaining elements of
the created bit vector are undefined (just as they are if neither :initial-element nor
sinitial-contents are specified). It is an crror to specify both initial-element and initial-
contents.

simple-bit-vector-length simple-bit-vector
Returns the length of simple-bit-vector.

MC:NILMAN:ARRAY 36 ' 23-DEC-83

NIl. Manual . 111 . ; Bit Arrays

nibble simple-bit-vector skip lake
Returns the scquence of bits fake long from simple-bit-vector, starting at skip. as a
fixnum. fake may range from zero to the number of bits representable in a fixnum (30);
however, if the last, the result will include the sign bit so may be unacceptable for
certain applications. The result is zero-extended. '

setf may be uscd with nibble to replace the field.
nibble-2¢c simple-bit-vector skip 1ake
like nibble, but the result is sign-extended. That is, the result is interpreted as a signed
binary valuc from the referenced field.
setf may be used with nibble-2¢ to replace the ficld.
get-a-byte simple-bii-vector byte-index.
Interprets simple-bit-vector as a sequence of type (unsigned-byte 8). and returns the byre-
indexth byte. '
setf may be used with get—a-byte.'
get-a-byte-2c simple-bit-vector byte-index
Interprets simple-bit-vector as a scquence of type (signed-byte 8), and returns the byte-

indexth byte.

setf may be uscd with get-a-byte-2¢c.

MC:NILMAN:ARRAY 36 ' 23-DIFC-83

Strings L 112 NI1. Manual

13. Strings

- Strings are vectors of characters which satisfy the predicate string-char-p (page 19).
Although the generic scquence and array primitives operate on strings, there are two reasons for
having additional functions for strings. For one, it is convenient for atomic symbols to be used in
place of strings: symbols arc not cocrced to strings by sequence functions, but they are for most
of the string functions. Additionally, many of the string functions which compare characters do so
indcpendent of the character case: the scquence. funcnons arc generally based on the eql prcd:cate
(page 20), so arc casc dependent. :

Eventually. the string functions will be generalized to handle arguments which are general
character sequences (that is. of type (vector character). vectors which can hold any characters.
not just those which arc string-char-p). Until then, - functions which can be given character
arguments which contain non-zero bits and font attributes: may not behave correctly if that is
done.

13.1 String Coercion

string fivbozz
This is a COMMON 1ISP function for domg coercion to a string, If frobozz is a string, it is
returned: if it is a symbol, its. namc (symbol-name. page 66) is returned.

For backwards comnatibility’ with earlier versions of NIt and cnmﬂ'znhthv with 11SpP
MACHINE 1ISP, string will also cocrce characters and integers to strings.. A character is
converted to a string one character long, having that character as its sole clement: the
character must satisfy string-char-p (page 19) for this to succeed. An integer is
converted to a string like a character, after first applving int-char (page 96). which of
course must succeed in makmg a character for the string cocrcion to succeed.

to-string frobozz
This routine believes itself to be a coercer of sequences to strings. It is a superset of
string; it additionally will accept any sequence, and interpret that as a sequence of
characters; it thus may be used to convert lists or vectors of characters to strings; the
contained characters will be coerced to characters using to-character. Bit vectors will be
converted into strings of the characters "1" and "0"

This routine belicves that nil is a sequence of no clements, so is not the appropnate
routine for coercing symbols to strings; string (above) is.

For sequence to string coen:ion. one should probably be using coerce (page 9) anyway.

MC:NILMAN:STRING 54 n 23-DEC-83

NIl. Manual . 113 String Comparison

13.2 String Comparison

When routines dcal with boundaries within strings, there are two different conventions
applied. Many functions take range argumecnts as the lower inclusive bound and the upper
exclusive bound (generally named starr and end). These arguments conveniently default to 0 and
the length of the string (typically). As a general rule, an upper cxclusive bound may be explicitly
specificd as nil producing bechavior as if it were not specified; this is often necessary in order for
following optional arguments to be specified.

The other commonly used substring convention is for a starting index and a count (gencerally
named start and count) o be specified. (This convention is used primarily by subprimitives, and
old NIt functions. not COMMON LISP functions.) The substring in question is that starting at the
index. and proceeding for count characters. Having a specified count run off the string is an
crror, and an cxplicit specification of a count of nil is not allowed. Just about all of the routines
which still follow this subsequence convention arc low-level NIl functions, in which the count is a
required argument, so the question of how it defaults if not specified should not arise any more.
Routines using this convention sometimes name these arguments skip and rake rather than start
and count.

string-equal swingl string? &key (startl 0) (siart20) endl end?

' This returns t if the subsequence of string! from start] (inclusive) to end! (exclusive) is
cqual (using casc-independent character comparison, ala char-equal (page 95)) to the
subscquence of string? from start2 (inclusive) to end2 (exclusive). The subsequences are
guaranteed to he unequal if the subseguence lengths differ,

As a special upwards-compatibility hack, string-equal will accept optional position
arguments instead of keyword arguments. :

string-not-equal siring! siring2 &kcey (start! 0) (siar120) endl end?
The opposite of string-equal. Similarly, the subscquences are guaranteed uncqual if their
lengths differ.

string-lessp stringl string2 &key (startl 0) (start20) end! end2

string-not-lessp stringl string? &key (startl 0) (start20) endl end2?

string-greaterp stringl string2 &key (start! 0) (stari20) end! end2

string-not-greaterp stringl siring2 &kcy (startl 0) (start20) endl end2
Each of these returns t if the specified subscquences satisfy the specified ordering
predicate. Basically, the comparison is dctermined by the first character in the
subsequences which differs (see char-lessp etc., page 95), unless the subsequences are
equal, in which case a shorter subsequence is "less than”.

As a special upwards-compatibility hack, string-lessp (but not the other functions) will
accept its arguments positionally rather than by-keyword.

string= stringl string? &kcy (siartl 0) (start20) endl end?
string/= stringl string2 &key (startl 0) (star12 0) end! end?
string< siringl siring2 &key (start] 0) (star120) endl end?
string<= siringl string2 &kecy (startl 0) (start20) endl end2
string>= siringl string2 &key (startl 0) (start20) endl end2

MC:NILMAN:STRING 54 : » 23-DEC-83

Extracting Characters from Strings 114 : NIL. Manual

string> swringl string2 &key (startl0) (start20) endl end2
‘These functions are similar to thosc above, but do a case dependent character comparison;
that is, they compare the characters like char = etc. (page 95), rather than char-equal.

13.3 Extracting Characters from Strings

char siring index ~ ‘ ‘
Returns the indexth character (zcm-ongmcd) of the string strmg ‘as a character object.
string must be a strmg

Because string must bc a string, the result nf char will aiways satisfy string-char-p- (page
19), with all that that implics.

schar simp/e-slring index
‘This. is like char except that the-string must be a simple string. This routinc can be
“efficiently coded by the NIL compiler. ' '

like char. schar may bc used with setf to store into the string.

13.4 String Creation

make-string length &key :initial-element
iiakes a string fengri fong, Since no complicated array options may be specitied. this will
always be a simple-string. - initial-element. must. be a character which satisfies string-
char-p; if it is specified, the returned string contains that character in every element.

If initial-clement is not supplied. the contents of the returned string is undefined by
COMMON LISP. NIL, which abhors uninitialized memory, will initialize it to zeros- (which
happen to be, but may not always be, the character #\Null). If NIL were to be
transported to another operating system with different virtual memory facilities, then this
could change incompatibly. :

string-length string ' »
Returns the length of the string string. string must be a string; it is not coerced.

For COMMON LISP, this function is superceded by the generic length function (page 49).
There should be no noticeable efficicncy difference between length and string-length. Of
course, string-length will complain if its argument is not a string, whercas length will
accept any sequence, including nil.

string-upcase string &key (start0) end
string-downcase swring &key (start0) end
Returns a copy of srring with all characters converted as by char-upcase (or char-
downcase). If start and/or end are supplied, then only the spccificd subscquence of the
result is affected: the result always is the same length as siring. That is, string- upcase
.“could have been defined as :

MC:NILMAN:STRING 54 : v : 23-DEC-83

NIl. Manual : } nus More String Functions

(defun string-upcase (string &key (start 0) end)
(nstring-upcase (copy-seq string) :start start :end end))

If no characters of the string are affected by the conversion, one may not depend: on
whether the result is siring itself or a copy of it; to guarantee a copy, usc copy-seq and
nstring-upcase, as in the above example. .

nstring-upcase siring &key (starr0) end

nstring-downcase string &key (start0) end
These routines destructively convert all of the characters in the specified subsequence of
string 10 upper- or lower-case. sfring is returned.

string-trim character-bag string
string-left-trim character-bag string
string-right-trim character-bag string
These routines return a substring of string resulting from trimming the characters in the
sequence character-bag from one or both ends of string. If no characters are trimmed,
one may not depend on whether the result is siring itself or a copy.
(string-trim °(#\space #\tab) " This is a test. ")
=> "This is a test."
(string-left-trim ' (#\space #\tab) " This is a test. ")
=> "This is a test. "

13.5 More String Functions

The functions in this section are not provided by COMMON LISP, but are typically inherited
from 1ISP MACHINE 1ISP, and are heavily used in NIL. That is also why they have not yet been
converted to take keyworded arguments (although some of them may be in the future).

string-append &rest strings
Returns a string which is the concatenation of all the sirings. The arguments are coerced
to strings using string; in this it differs from the generic sequence function concatenate
(page 50), which will not accept symbols, but will accept sequences (of characters) other
than strings. '

substring string start &optional end
Returns the substring of string (coerced to a string using string) from the index siart up
to but not including end, which defaults to the length of string if nil or not specified. If
the specified subscquence is the entire string, one may not depend on whether the
returned result is string itsclf, or a copy; to guarantee a copy, subseq (page 50) may be
used—however, subseq neither restricts its input to strings nor coerces symbols to strings.

string-reverse string

string-nreverse srming
These are pretty much superceded by reverse (page 52) and nreverse (page 52). Note
that for string-nreverse, siring must be a rcal string because it is destructively reversed;
string-reverse will accept a symbol and return a string.

MC:NILLMAN:STRING 54 : 23-DEC-83

Implementation Suhprimili\?cs . 116 | NIl. Manual

stri ng-search-char char siring &optional (from 0). 10
string-reverse-search-char char siring &optional from (10 0)
string-search-not-char char siring &optional (from0) 1o
string-reverse-search-not-char char string &optional from (t100)

string-search-sat charset string &optional (from0) to
string-reverse-search-set charser siring &optional from (10 0)
string-search-not-set charset string &optional (from0) to
string-reverse-search-not-set charser string &optional from (1o 0)
char-set is coerced into a sequence of characters: it should be a string, or a list or vector
of objects acceptable to character (page 96).

string-search kcy siring &optional (from0) to ‘
string-reverse-search key swing &optional from (10 0)

13.6 Implementation Subprimitives

The routines described . in this section are very fast routines primitives: which arc oriented
towards being open-compiled. As such. they perform very few niceties like argument defaulting.
The versions available in the interpreter probably will do some error checking,. but don’t count on
it. These arc the stuff of which higher-level routines arec made. Those ~which take string
arguments only accept sxmplc strings.

Xstring-cons length fill-character A
Creates a primitive string Jength long, filled Mth the character fill-character. Calls to
make-string will compile into calls to. this, if possible, so one should not go out of the
way to use this.

%string-posq character string index count
This scarches through string starting at index and proceeding for count characters for the
~ character character. 1f it is found., then the index at which it occurs is returned;
otherwise nil is returned. This primitive only looks at the code attribute of character,
ignoring the rest,

xstring-eqv stringl string2 indexl index2 count :
Returns t if the substrings of swring! and string2 defined by index!, index2, and count
are string =—that is, the same, with case being significant.

%string-replace desiination source destination-index source-index count
This transfers count characters from the simple-string source to the simple string
destination, starting at the given indices. |

%string-translate destination source {translation-table destination-index source-index count
This is a slightly hairicr version of %string-replace. Insicad of the characters being
transferred litcrally, the code of each character taken from the string source is used as an
index in the string translation-table to obtain the code to store instcad. For example,
string-upcase could be defined

MC:NILMAN:STRING 54 _ - 23-DEC-83

NIl. Manual , n Implementation Subprimitives

(defun string-upcase (string
&aux (len (string-length string)))
(%#string-translate :
(make-string len) string =:character-upcase-table
0 0 len))
where «:character-upcase-table has as its value a string char-code-limit long whose
ith character is the uppercase version of the character with code i. Note that this
definition of string-upcase is not correct if the input string is not a simple-string, and
note also how this relates to how string-char-p is defined.

String hashing in NI is ultimately performed by the CRC instruction.

%string-hash swring cre-table start count

‘This performs a hash computation on the substring of string starting at character srarr and
proceeding for count characters. cre-table must be a simple bit vector 512 bits (16 vax
longwords) long; it should contain the hash polynomial for use by the CRC instruction.
Scveral hash polynomial tables arc provided (they arc listed below). The hash
computation is initially -1: the result is returned as a signed NI fixnum—that is, a 32-bit
word with the top two bits shifted off. Consult the vax architecture manual, or some
other DIXC documentation, to sct up other hash polynomials.

For this to be properly uscful for incrementally generating CRC computations. this
primitive will have to be changed to somchow input and output full 32-bit quantities;

mitiva ~ * NIL
such 2 primitive should be available in some future ?

+;autodin-ii-hash-polynomial Variable
s:ccitt-hash-polynomial Variable
s:crc-16-hash-polynomial Variable

This is the one NIL uscs for doing intern and sxhash of strings.

MC:NILMAN:STRING 54 : 23-DEC-83

Hashing 18 NI Manual

14. Hashing

NIL. supports a COMMON Lisp compatible hash- table facility. This will eventualIy include the
ability to have a hash-table from which associations can be garbage-collected. '

14.1 Hash Tables
The following routines are COMMON 1ISP compatible:

make-hash-table &kcy :test :rehash-threshold rehash-size :size
Creates a hash. wble. The test may be one of #'eq. #’eql. or #'equal. NiL
additionally provides. some others it is able to perfornm significant optimizations on as
primitive (scc helow). Note that for NIi. to usc ‘some predicate it must know how to
computc a hash code compatible with that predicate’s notion of cquality: thus, not just
any predicate is acccpmblc

gethash key hash-table &optional dejau!t
This returns two values. If there is an entry for key in uash-mb{c then this returns as its
values the value associated with key. and t. Otherwise, it returns defawlt, and nil.

gethash may be used with setf to add an entry to (or replace an entry in) a hash table.

remhash key hash-table ‘ ’
Removes the entry associated with key from hash-table.

clrhash hash-labié
Removes all entries from hash-table.

hash-table-count #hash-table
' Returns the number of entries in hash-table.
14.1.1 Additional Hash-Table Predicates

NIL additionally offers the foliowmg predicates for hash-tables:
- string-equal ‘

string= -

associating hashing routines with predicates, making this list extensible?

MC:NII.MAN:HASH 20 | 23-DEC-83

NI. Manual . 119 Hash Functions

14.2 Hash Functiohs

A hash function for cquality predicate (p x/.x2) is a function which returns the same value
for all x which are cquivalent according to p. The standard 11sP hashing function is sxhash,
which is defined according to the equal predicate. sxhash is inherited from MACLISP, and is
defined by COMMON LISP and LISP MACHINE LISP.

Other hash functions are defined by NiL. for use with other cquality predicates. Usually they
arc not necded. because they are implied in the use of a hash table utilizing a particular cquality
predicate. By convention, all N1 hashing functions return a non-negative fixnum: it is a fixnum
for casc of computation, and non-ncgative to make modulus operations more trivial.

sxhash object
‘This is the general 11sp hashing function. based on the predicate equal (page 20). # It
reurns a non-negative integer: in NI, this will always be a fixnum. ‘Two objects which
arc equal should always sxhash to the same thing. If this is not true, then any hash
tables which usc sxhash and equal will break. Note that because NI will have a
relocating garbage collector, the hash of an object should never be a function of the
address of anything.

string-equal-hash string
This function returns a non-negative fixnum such that for all strings. which arc string-
equal, their hashes computed by this function will be cqual.

string=-hash siring
Similar; defined by the predicate string= (page 113).

sys:sxhash-combine {hash}+
This macro might be useful to writers of :sxhash methods or special hashing functions. It
is a canonical way to combine a fixed number of hash codes. For cxample, the sxhash
of a cons does
(sys:sxhash-combine (sxhash (car x)) (sxhash (cdr x)))

The hashes are rotated some fixed amount determined by the number of arguments, and
crunched together in some canonical fashion. (There may be a limitation on the number
of arguments which aré handled, but this will work for some moderate number of
arguments.)

14.3 Symbol Tables

Although one can use packages to implement symbol tables, and this has becn recommended
in the past, it is now better to use a hash table based on the appropriatc predicate, and storing
an appropriate object as the value. For example, if one had been using a package as a symbol
table and then using the symbol after interning it. a hash table could be used using string-equal
or string=as the predicate (as appropriate) and putting a symbol in as the value, Depending on
what the symbol is uscd for, it may be better to use a defstruct-created object instcad: attributes
can be accessed faster off of this than as propertics on the plist of a symbol. Sccondarily, there is
a moderate space incfficiency to generating lots of value cells in NI, so instcad of generating
symbols and using their value cells to store things is also better to use a specialized structure.

MC:NILMAN:HASH 20 23-DEC-83

Symbol Tables 120 NIL Manual -~

When the NIl package system is redone. the internal portion of that which does simple
symbol-table hacking will be made available for applications where that is truly needed.

MC:NILMAN:HASH 20

23-DEC-83

NIl Manual . - 121 Packages

15. Packages

Sketchy. This is all going to break, ecither as a result of COMMON LISP or complete
reimplementation and redesign or both.

undersianding of simple obarrays/oblists and interning is assumed below

The basic ideca of packages is that if all programs in a large messy environment like NII. ‘use
the same name-space for symbols (the traditional oblist or ebarray), then either they will probably
run into problems with naming conflicts, or cvery programmer is going to have to go out of his
way to ensurc that cach program’s names will be unigue to that program. For example. by
having naming conventions like reader-do-this and reader-frob-uncertainly or (hch heh) pkg-

find-package and pkg-create-package. (I didn't name them, they came from 1ISP MACHINE
1iSP.)

Packages arc an attempt to solve this by allowing cach program (or "package™) to have its
own name-space, but allowing inhcritance of symbols from other name-spaces. Each package may
be considered to he a symbol table (or oblist or obarray). which has a "supcrior” package. ‘The
act of interning a string in a package (to find or create the symbol it should correspond to)
involves looking in that package's symbol table. 1f there is a symbol with that print name there,
then that symbol is returncd. Otherwise, try the package's superior package, ctc. If one gets to
the "top of the trec” and no symbol has been found, then a symbol is created with the given
print name. and inscrted into the symbol table of the original package.

The NIl package hicrarchy looks approximatcly like this:
keyword
global
.
sys
system-internals
compiler
file-system
gc
format
user
The GLOBAL package has in it all of the symbols which are intended to be used (shared) by
everyone. They include function names like car and variable names like char-code-limit. The
user package is the package which NIL starts out in, for users to randomly use. New isolated
packages should be created under global, like user and format are.

The sys package is sort of a global package for the NIL system. It is initialized to contain
those symbols which modules in system-internals, file-system, etc. should share.

The keyword package is for keywords: symbols like :which-operations. Note that it is not
under global. The result of this is that typing in :open results in a different symbol from typing
in open in any other package. resulting in the symbol :open being identified with the keyword
package. and the printing functions then being able to print it as :open rather than open.

MC:NILMAN:PACKAG 17 23-DEC-83

Packages .12 NI Manual

A little thought about the usc of the sys and global packages in the above description will
show that they should not be ordinary packages like the "terminal nodes” of the package-tree.
Adding symbols o them results in significant behavior change. For this reason, it is supposed to
be disallowed by normal interning, and only donc by the globalize function (page 122). This
check is not done currcmly Anyway, it is likely that a different .scheme - will be concocted
eventually. ‘ ' ‘

pkg-find-package nameorpackage &Optional losing-mode k under-pkg
If nmnc-orparkage is not a pdckagc then the name is luokcd up and the package
returned.

pkg-create-package name s&;wiarpackage

pkg-goto &optional name
Sctqs pakcage to the pkg-find- package of name: convenient for setting the mplcvcl’
value (for which it is mtcndcd)

package Variable
globalize name &optional in-package
intern siring-orsymbol &optional package

intern-soft siring-orsymbol &optional package ,
Non-side-effecting version: if no existing symbol is found. nothing is done and nil is
returned. :

mapatoms function &optional (pkg package) (do-superiors?) '
Calls function on all symbols in pkg (which is run through pkg find-package first, so
may be a package name). If do-superiors? is not nil, then the "superior” packages of pkg
are examined also. More generally, if do-superiors? is nil, the "intcrnal” symbols only of
pkg arc iterated over: otherwise, all symbols accessible from pkg are. function could
conceivably be called more than once on t.he same symbol.

This is not open-compiled by the NIL compﬂer so may suffer from lexical vs local
variable problems.

MC:NILMAN:PACKAG 17 , 23-DEC-83

Nil. Manual 123 Modules

15.1 Modules

COoMMON LISP dcfines a fairly simple way in which one may namec modules. declare that they
have been loaded, and cause them to be loaded if they have not been. While this is intended to
be used as a part of the COMMON LISP package system, it is fairly independent and can be used
without it. Here it is. :

In this sense. a module (not to be confused with the NIi. data type module which will be
renamed someday) is simply an independent subsystem which is treated as a unit. A module can
come from onc or more files; the number is. irrelevant other than to the loading process.
CoMMON 11SP modules are referenced by name: functions which take a module name may be
given cither a string or a symbol. In the module name, case matters, so. for instance, "LSB" is
not the same module name as "isb".

smodules» , Variable
This variable has as its value a list of the names of all the modules which have been
provided (scc below). The implication is that these modules have been loaded.

provide module-name :
This puts module-name on the list *modules*. A filc loaded as part of a module shoula
contain a call to provide to tell NIL that that module has been provided.

require module-name &optional pathname
require is used to load a module if it has not alrcady been loaded. 1f madule-name is
alrcady provided, then require docs nothing. If pathname is unspecified or nil, then the
pathname (or pathnamcs) which neced to be loaded in order to provide module-name are
determined in some system-dependent manner; the method NIL uses is described below.
Otherwise, pathname may be either a single pathname or a list of pathnames; those
pathnames are loaded.

require signals an error if after loading the pathname(s), module-name has not been
provided. V

In NIL, there is an in-core "directory” of module names and the pathnames which must be
loaded to provide those modules. This directory can be augmented by the note-module-
pathname function (below). If the desired module name is not there, then require will check for
some out-of-corc files, and load them if it has not done so already; these files should contain
calls to note-module-pathname. The files checked for are all named MODULES.DAT, and are
searched for on the following directories, in order:

(1) The user's home directory (see user-homedir-pathname, page 199)

(2) The uscr’s working directory (user-workingdir-pathname, page 200)

(3) and NILSDISK:[NIL.SITE], which is the dircctory where files specific to a particular

NIL installation are kept.
It is allowable, of course, for any or all of these files to be missing.

MC:NILMAN:PACKAG 17 ' 23-DEC-83

Modules . 124 ‘ NI Manual

note-module-pathname module-name pathname
This declares that in order to provide module-name, pathname must be loaded. pathname
may also be a list of pathnames. :

Eventually, higher-level ways of defining packages, systems, and modules will be defined,
and use of note-module-pathname will be phased out. '

The only modules known about in advance by the NIL system right now LSB and SIMP. Of
course, as of this writing, the facilities documented in this section haven’t even been installed yet,
so there will probably be scveral more shortly.

MC:NILMAN;PACKAG 17 B 23-DEC-83

NI. Manual . 125 ' Defstruct

16. Defstruct

16.1 Introduction

This chapter is a modification of the description of defstruct appearing in the Maclisp
Extensions Manual [3]. There are three sorts of changes:

(1) Deletion of topics not applicable’ to NiL;

(2) Deletion of things which do not yet work in NIL;

(3) Modifications of the defaults, as the NH. defstruct is intended to be upwards-compatible

with the COMMON 11Sp defstruct.

For these reasons. some of the wording may scem a bit strange, in that the original document is
concerned with helping users write code compatible in differing Lisp implementations. defstruct
is part of the COMMON 11SP standard (but not all the parts of it), and the documentation on it
will be fixed in the future. Any inaccuracies in this modification of it arc purcly the fault of
GSB.

‘The keywords which are used in defstruct arc all interned -in the keyword package, just like
other keywords in Nit. For compatibility. with MACHISP programs, however. defstruct will accept
those nor in the keyword package. Conversely, the MACLISP defstruct will check for symbols
which have a leading ™" in their names. In NIL, onc should use the colons for stylistic
consistency.

16.2 A Simple Example

defstruct
defstruct is a macro defining macro. The best way to explain how it works is to show a
sample call to defstruct, and then to show what macros are defined and what cach of
them does.

Sample call to defstruct:
(defstruct (elephant (:type :1list))
color
(size 17.)
(name (gensym)))
This form cxpands into a whole rat’s nest of swff, but the effect is to define five macros:
elephant-color, elephant-size, elephant-name, make-elephant and alter-elephant. Note that
none of thesc symbols appeared in the original form, they were created by defstruct. The
definitions of color, size and name are easy, they expand as follows:
(elephant-color x) ==> (car x)
(elephant-size x) ==> (cadr x)
(elephant-name x) ==> (caddr x)

You can sce that defstruct has decided to implement an clephant as a list of three things; its
color, its size and its namec. The expansion of make-elephant is somewhat harder to explain,
let’s look at a few cases:

MC:NILMAN:DEFSTR 91 23-DEC-83

Syntax of defstruct 126 NIl Manual

(make-elephant) ' ==> (list nil 17. (gensym))
(make-elephant :color ’pink} => (list 'pink 17. (gensym))
(make-elephant :name 'fred :size 100)

: ==> (list nil 100 'fred)

As you can scc, make-elephant takes a. "setg-style” list of part namecs and forms, and
expands into-a call to list that constructs such an elephant. Note that the unspecified parts get
defaulted to picces of code specified in the original call to defstruct. Note also that the order of
the setg-style arguments is ignored in constructing the call to list. (In the cxample, 100 is
cvaluated before 'fred cven though 'fred came first in the make-elephant form:) Carc should
thus be taken in. using code with side cffects within- the scope of a make-elephant. (This
particular behaviour will be "fixed” by COMMON LisP, but has not yet been worked into NII.)
Finally, take note of the fact that the (gensym)-is cvaluated every sime a new elephant is created
(unless you override it).

The cxp]ar;ati()n of what alter-elephant docs is delayed until section 16.4.3, page 129.

So now you know how to construct a new elephant and how to examine the parts of an
clephant. but how do you change the parts of an alrcady cxisting clephant? The answer is to use
the setf macro (scction 8.9, page 38). :

(setf (elephant-name x) °'bill) ==> (setf (caddr x) 'bill)
which is what you want. : '

And that is just about all there is to defstruct; you now know enough to use it in your code,

but if you want to know about all its intcresting features, then read on.

16.3 Syntax of defstruct

The general form of a defstruct form is:
(defstruct (name option-1 option-2 ... option-n)
slot-description-1
slot-description-2

slot-description-m)

name must be a symbol, it is used in constructing names (such as "make-elephant™) and it is
given a defstruct-description property of a structure that describes the structure completely.

Each option-i is cither the atomic name of an option, or a list of the form (oprion-name arg .
rest). Some options have defaults for arg; some will complain if they are present without an
argument; some options complain if they are present with an argument. The interpretation of rest
is up to the option in question, but usually it is expected to be nil.

‘Fach slor-description-j is cither the atomic namec:of a slot in the structure, or a list of the
form (slor-name init-code)., or a list of byte ficld specifications. init-code is used by constructor
macros (such as make-elephant) to initialize slots not specified in the call to the constructor. 1
the init-code is not specificd, then the slot is initialized to whatever is most convenient.” (In the
elephant cxample, since the structurc was a list, nil was used. If the structurc had been a

MC:NILMAN:DEFSTR 91 I o | 23-DEC-83

NI, Manual : 127 Options to defstruct

fixnum array, such slots would be filled with zeros.)

A byte ficld specification looks like: (fleld-name bytespec) or (field-name bytespec init-code).
Note that since a byte ficld spccification is always a list, a list of byte field specifications can
never be confused with the other cases of a slot description. The byte field feature of defstruct
may be undergoing change in Nil. due to the incompatible change of bytespee format (see section
10.9. page 84). so is discouraged for the present.

16.4 Options to defstruct
The following scctions document cach of the options defstruct understands in detail.

On the Lisp Machine and in NI, all these defstruct options are interned on the keyword
package.

16.4.1 :type

The type option specifies what kind of lisp object defstruct is going to use to implement
your structure, and how that implementation is going to be carried out. The :type option is
illegal without an argument. If the :type option is not specified. then defstruct will choose an
appropriate default: in NIL. defstruct will impiement the structure as a vector-like object, which
will be defined as a type whose name is the name given to defstruct. Onc can then check for
objects ot this type with typep. (hhis differs from the way defstruct currently operates in
MACLISP and 1ISP MACHINE 1ISP.) It is possible for the user to teach defstruct ncw ways to
implement structures, the interested reader is referred to scction 16.6, page 138, for more
information. Many uscful types have alrcady been defined for the user. A table of these "built
in" types follows. ‘

Jdist
Uses a list. This is the default in MULTICS MACLISP.

:named-list
Like :list, except the car of each instance of this structure will be the name
symbol of the structure, This is the only "named" structure type defined on
Multics and is the default named type there. (Sec the :named option documented
in scction 16.4.4, page 131.)

tree
Creates a binary tree out of conses with the slots as leaves. The theory is to
reduce car-cdring to a minimum. The :include option (scction 16.4.9, page 133)
does not work with structures of this type.

lists

Similar to :list, but the last slot in the structure will be placed in the cdr of the
final cons of the list. Some people call objects of this type "dotted lists”. The
iinclude option (scction 16.4.9, page 133) docs not work with structures of this
type.

MC:NILLMAN:DEEFSTR 91 23-DEC-83

Options to defstruct o128 ' NII. Manual

:array : ,
Uscs an array object (nor a symbol with an array property). This is the default on
Lisp Machines. Eventually, many of the same hairy array options which defstruct
supports on the Lisp Machine will be supported in NiL; at this time, howevcr

NI users are advised to just usc the default, or perhaps :vector. '

:sfa : ‘
Uses an SFA. The constructor macros for this type accept the keywords :sfa-
function and :sfta-name. Their arguments (cvaluated, of course) arc used,
respectively, as the function and the printed representation of the SFA. Sece also
the :sfa-function (section 16.4.12. page 134) and :sfa-name (scction 16.4.13. page
135) options. (SFAs arc available in N1 for compatibility with PDP-10 MACLISP,
‘They should not normally be used, and are not documented in the NI manual.)

wvector ' ,
Uses an vector. This will be a simple-vector.

:named-vector
Like vector, except clement number 0 always contains the name symbol of the
structure. Note that this is nor the default named type in NiL, extend is.

:extend ;
“This is the default named type in NIL. Normally you don’t need to know that it
has thic weird name, because this has been the default defstruct type if named is
specified for a while, and it is now the default type period. See also the :class-
symbol option (section 16.4.11, ‘page 134).

16.4.2 :constructor

The :constructor option specifies the name to be given to the constructor macro. Without an
argument, or if the option is not present, the name defaults to the concatenation of "make-" with
the name of the structure. If the option is given with an argument of nil, then no constructor is
defined. Otherwise the argument is the name of the constructor to define. Normally the syntax
of the constructor defstruct defines is:

(constructor-name
keyword-1 - code-1
keyword-2 code-2

.o .

keyword-n code-n)

Each keyword-i must be the name of a slot in the structure. or onc of the special keywords
allowed for the particular type of structure being constructed. All of these keywords are symbols
interned in the keyword package, although for upwards-compatibility (this is new bchaviour) that
is not required. For cach keyword that is the namce of a slot. the constructor expands into code
to makc an instance of the structure using code-i to initialize slot keyword-i. Unspecified slots
defuult o the forms given in the original defstruct form, or, if none was given there, to some
convenient value such as nil or 0.

MC:NILMAN:DEFSTR 91 . : : 23-DEC-83

NII. Manual ' 129 Options to defstruct

For keywords that arc not names of slots, the use of the corresponding code varies. Usually
it controls some aspect of the instance being constructed that is not otherwise constrained. ‘The
only one of these which is used in NIL is the :sfa-function option (section 16.4.12, page 134).

If the :constructor option is given as (:constructor name arglist), then instcad of making a
keyword driven constructor, defstruct defines a "function style” constructor. The arglist is used
to. describe what the arguments to the constructor will be. In the simplest case something like
(:constructor make-foo (a b ¢)) dcfines make-foo to bec a threc argument constructor macro
whosc arguments arc uscd to initialize the slots named a, b and ¢.

In addition. the keywords &optional. &rest and &aux. arc recognized in the argument list.

They work in the way you might expect, but there are a few fine points worthy of explanation:
(:constructor make-foo
(a &optional b (c 'sea) &rest d &aux e (f ‘eff)))

This defines make-foo to be a constructor of one or more arguments. The first argument is used
to initialize the a slot. The sccond argument is used to initialize the b slot. If there isn't any
sccend argument. then the default value given in the body of the defstruct (if given) is used
instcad. ‘The third argument is used to initialize the ¢ slot. If there isn't any third argument.
then the symbol sea is used instcad. ‘The arguments from the fourth one on are collected into a
list and used to initialize the d slot. If there are three or less arguments, then nil is placed in the
d slot. The e slot is not initialized. It's value will be something convenient like nil or 0. And
finally the f slot is initialized to contain the symbol eff.

The b and ¢ cases were carcfully chosen to allew the user o specify all possible behaviors.
Note that the &aux "variables™ can be used to completely override the default initializations given -
in the body.

Since there is so much freedom in defining constructors this way, it would be cruel to only
allow the :constructor option to be given once. So, by special dispensation, you arc allowed to
give the :constructor option more than once, so that you can dcfine scveral different constructors,
each with a different syntax.

Note that even these "function style” constructors do not currently guarantee that their
arguments will be evaluated in the order that you wrote them.

16.4.3 :alterant

The :alterant option defines a macro that can be used to change the value of several slots in
a structure together. Without an argument, or if the option is not present, the name of the
alterant macro defaults to the concatcnation of "alter-" with the namc of the structure. If the
option is given with an argument of nil, then no alterant is defined. Otherwise the argument is
the name of the alterant to define. The syntax of the alterant macro defstruct defines is:
(alterant-name code

slot-name-1 code-1

slot-name-2 code-2

slot-name-n code-n)
code should evaluate to an instance of the structure; each code-i is evaluated and the result is

MC:NILMAN:DEFSTR 91 ‘ 23-DEC-83

Options to defstruct : 130 NI Manual

made to be the value of slot slor-name-i of that structure. The slots arc all altered in parallel
afier all code has been cvaluated. (Thus you can use an alterant macro to exchange the contents
to two slots.) As for the keyworded constructor macro, the slof-name-i should be symbols interned
in the keyword package, although (again) that is not required.
Example:
(defstruct (lisp-hacker (:type :list)
:conc-name
:default-pointer
:alterant)
(favorite-macro-package nil)
(unhappy? t)
(number-of-friends 0))

(setq lisp-hacker (make-lisp-hacker))
Now we can perform a transformation:
(alter-1lisp-hacker lisp-hacker
favorite-macro-package 'defstruct
number-of-friends 23.
unhappy? nil)

==> ((lambda (G0009)

((1ambda (G0011 G0O010)
(setf (car G0009) ’defstruct)
(setf (caddr GUUUY) GUO11)
(setf (cadr G0009) G0010))

23.

nil))

Tisp-hacker)

Although it appears from this example that your forms will be evaluated in the order in
which you wrote them, this is not currently guaranteed.

Alterant macros are particularly good at simultancously modifying several byte fields that are
allocated from the same word. They produce better code than you can by simply writing
consecutive setfs. They also produce better code when modifying several slots of a structure that
uses the :but-first option (section 16.4.17, page 135). '

For defstruct types whose accessors take more than one argument, all of those arguments
must be supplied to the alterant macro in place of just the usual one. (See scction 16.6.3.2, page
140 for how accessors with more than one argument can come to be, there are no built-in
defstruct types with this property.)

MC:NILMAN:DEFSTR 91 23-DEC-83

NIl: Manual . 131 Options to defstruct

16.4.4 :named

This option tells defstruct that you desire your structure to be ‘a "named structure”. In PDP-
10 MACLISP this mcans you want your structure implemented with a :named-hunk, :named-list
or :named-vector. On a Lisp Machine this indicates that you desirc cither a :named-array or a
:named-array-leader or a :named-list. On Multics this indicates that you desire a :named-list.
In NI this indicates that you desire a :extend, a :named-vector or a :named-list. defstruct
bascs its decision as to what named type to use on whatever value you did or didn't give to the
type option: in NI, the default named type is :extend. and :named is the dcfault—the
significance of this was cxplained in scction 16.4.1, page 127. It is an crror to use this option
with an argument.

16.4.5 :predicate ‘

The :predicate option causcs defstruct to gencrate a predicate to recognize instances of the
structure. Naturally it only works for some defstruct types. Currently it works for all the named
types as well as the types :sfa {PDP-10 MACLISP and NI only) and :extend (NI only). ‘The
argument to the :predicate option is the name of the predicate. If it is present without an
argumcnt, then the namc is formed by concatenating "-p™ to the end of the name symbol of the
structure. If the option is not present. then no predicate is generated. Example:

(defstruct (foo :named :predicate)
foo-a
foo-b)
defines a single argument function, foo-p, that is true only of instances of this structure.

16.4.6 :print

The :print option allows the user to control the printed representation of his structure in an
implementation independent way:
(defstruct (pair :named
(:print "{~S . ~§}"

(pair-first pair)
(pair-second pair)))

pair-first

pair-second)

The arguments to the :print option are used as if thcy were arguments to the format function
(page 187). except that the first argument (the stream) is omitted. They are evaluated in an
environment where the name symbol of the structure (pair in this casc) is bound to the instance
of the structure to be printed.

This option presently only works on Lisp Machines and in NIL, using the defstruct types
:named-array and :extend respectively. We hope to make it work in PDP-10 MACLISP for the
:named-hunk type soon. In MULTICS MACLISP, this option is ignored. Notice that if you just
specify the :named option without giving an explicit :type option, cach defstruct implemcentation
will default to a named type that can control printing if at all possible.

MC:NILMAN:DEFSTR 91 23-DEC-83

-Options to defstruct : 132 . ‘ : lel. Manual

16.4.7 :default-pointer

Normally the accessors are defined to be macros of exactly one argument. (They check!) But
if the :default-pointer option-is present then they will accept zero or one argument. When used
~ with one argument, they bchave as before, but given no arguments, they expand as if they had
been called on the argument to the :default-pointer option. An example is probably called for:

(defstruct (room (:type :tree)
(:default-pointer "current roome=s))
(room-name 'y2}) :
(room-contents-list nil))
Now the accessors expand as follows: ,
{(room-name x) ==> (car x)
{room-name) ==> (car sscurrent-roomss)

If no argument is given to the :default-pointer option. then the name of the structure is
used as the "default pointer”. .default-pointer is most often used in this fashion.

16.4.8 :conc-name

Frequently all the accessor macros of a structure will want to have names that begin the same
way; usually with the name of the structure followed by a dash. The :conc-name option allows
the user to specify this prefix. Its argument should be a symbol whose print name will be
concatcnated onto the front of the slot names when forming the accessor macro names. If the
argument is not given, then the name of the structure followed by a dash is used, as it is if the
“:conc-name option is not present, (This is different than it used to bet) If it is desired that the -
slot names, as specificd, be used as the accessor macros, then (:conc-name nil) may be used.
An cxample illustrates a common use of the :conc-name option along with the :default-pointer
option:

(defstruct (location :default-pointer
:conc-name)
(x 0)
(y 0)
(z 0))
Now if you say
{setq location (make- location x 1 y 34 z 5))
it will be the case that
(location-y)
will return 34. Note well that the name of the slot ("y") and the name of the accessor macro for
that slot ("location-y") are different.

MC:NIEMAN:DEFSTR 91 . 23-DEC-83

NII. Manual . 133 Options to defstruct

16.4.9 :include

The :include option inserts the definition of its argument at the hecad of the new structure's
definition. In other words, the first slots of the new structure are cquivalent to (i.e. have the
same names as, have thc same inits as, ctc.) the slots of the argument to the :include option.
The argument to the :include option must be the name of a previously defined structure of the
samc type as the new one. If no type is specified in the new structure, then it is defaulted to
that of the included one. It is an crror for the :include option to be present without an
argument. Note that :include docs not work on certain types of structures (c.g. structures of type
itree or clistx). Note also that the :conc-name, :default-pointer, :but-first and :caliable-
accessors options only apply to the accessors defined in the current defstruct: no new accessors
are defined for the included slots.

An cxample: ‘
(defstruct (person (:type :list))
name
age
sex)

(defstruct (spaceman (:include person)
(:conc-name nil)
:default-pointer)
helmet-size -
(f
Now we can make a spaceman like this:
(setq spaceman (make-spaceman :name 'buzz
:age 45.
:sex t
:helmet-size 17.5))
To find out interesting things about spacemen:
(helmet-size) ==> (cadddr spaceman)
(person-name spaceman) ==> (car spaceman)
(favorite-beverage x) ==> (car (cddddr x))

As you can sce the accessors defined for the person structure have names that start with
"person-" and they only take one argument. The names of the accessors for the last two slots of
the spaceman structure are the same as the slot names, but they allow their argument to be
omitted. The accessors for the first three slots of the spaceman structure are the same as the
accessors for the person structure.

Often, when one structure includes another, the default initial values supplied by the included
structure will be undesirable. These default inital values can be modificd at the time of inclusion
by giving the :include option as: '

(:include name new-init-1 ... new-init-n)
Each new~init-i is either the name of an included slot or of the form (included-slot-name new~init).
If it is just a slot name. then in the new structure (the onc doing the including) that slot will
have no initial value. If a new initial value is given, then that code replaces the old initial value
code for that slot in the new structure. The included structure is unmodified.

MC:NILMAN:DEFSTR 91 23-DEC-83

Options to defstruct ‘ - 134 NH. Manual

16.4.10 :copier

This option causes defstruct to generate a single argument function that will copy instances of
this structure.” The argument to the :copier option is the name of the copying function. If this
option is present without an argument, then the namc is formed by concatenating “copy-" with
the name of the structure. '

Example:
(defstruct (coat-hanger (:type :list) :copier)
current-closet
wire-p)
Generates a function: approximately like:
(defun copy-coat-hanger (x)
(list (car x) (cadr x)))

16.4.11 :class-symbol

For use with the :extend defstruct type availuble only in N1t (section 1641, page 128). this
option ullows the user to control how the flavor definition is performed. ‘Lhis option must be
given a variable name as an argument: the value of that variable is used as the flavor (class)
object of the object which the defstruct-defined constructor will crcate. defstruct will not define
the flavor.

This option was originally implemented for bootstrapping purposes, so that typed objects in
NIl could be created before the flavor system was fully loaded. Fventually it will be fully
outmoded by cxtensions to the flavor system, which already has the capability of defining accessor
macros for instance variables.

16.4.12 :sfa-function

Available in PDP-10 MACLISP and in NIL, this option allows the user to specify the function
that will be used in structures of type :sfa. Its argument should be a piece of code that evaluates
to the desired function. Constructor macros for this type of structure will take :sfa-function as a
keyword whose argument is also the code to evaluate to get the function, overriding any supplied
in the original defstruct form.

If :sta-function is not present anywhere, then the constructor will use the name-symbol of
the structure as the function.

MC:NILMAN:DEFSTR 91 ’ 23-DEC-83

NII. Manual 135 Options to defstruct

16.4.13 :sfa-name

Available only in PDP-10 MACLISP and NIL, this option allows thc user to specify the object
that will be used in the printed representation of structures of type :sfa. lts argument should be
a picce of code that cvaluates to that object. Constructor macros for this type of structure will
take :sfa-name as a keyword whosc argument is also the code to cvaluatc to get the object to
use, overriding any supplied in the original defstruct form.

If :sfa-name is not present anywhere, then the constructor will use the name-symbol of the
structure as the function.

16.4.14 :size-symbol

The :size-symbol option allows a user 1o specify a symbol whose value will be the "size” of
the structure. The exact meaning of this varics, but in general this number is the one you would
nced to know if you were going to allocate one of these structures yourself. The symbol will
have this value both at compile time and at run time. If ths option is present without an
argument. then the name of the structure is concatenated with "-size” to produce the symbol.

16.4.15 :size-macro

Similar to :size-symbol. A macro of no arguments is defined that expands into the size of
the structure. ‘the name of this macro defaults as with :size-symbol.

16.4.16 :initial-offset

This option allows you to tell defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argumcnt, which must be a
fixnum, which is the number of slots you want defstruct to skip. To make use of this option
requires that you have some familiarity with how defstruct is implementing you structure,
otherwise you will be unable to make use of the slots that defstruct has left unused.

16.4.17 :but-first

This option is best explained by example:
(defstruct (head (:type :1ist)
(:conc-name nil)
(:default-pointer person)
(:but-first person-head))

nose
mouth
eyes)
So now the accessors expand like this:
(nose x) ==> (car (person-head x})
(nose) ==> (car (person-head person))

MC:NILMAN:DEFSTR 91 23-DEC-83

Options to-defstruct . o 136 NIl Manual

The theory is that :but-first's argument will likely be an accessor from some other structure,
and it is never cxpected that this structure will be found outside of that slot of that other
structure. (In the cxamplc I had in mind that there was a person structure which had a slot
accessed by person-head.) It is an crror for the :but-first option to be used wuhout an
argument.

16.4.18 :callable-accessors

This option controls whether the accessors defined by defstruct will work as "functional
arguments” (as the first argument to mapcar. for cxample). On the Lisp Machine and in NIL
accessors are callable by default; but in PDP-10 MACHSP it is expensive to make this work, so
they arc only calluble if you ask for it. (Currently on Multics the feature doesnt work at all..)
‘The argument to this option is nil to indicate that the feature should be turned off, and t 0
the feature on. If the option is present with no argument, - then the feature is turned on.

16.4.19 :eval-when

Normally the macros defincd by defstruct are defined at eval-time, compile-time and at load-
time. ‘this option allows the user to control this bchavior. (:eval-when (eval compile)). for
example, will cause the macros to be defined only when the code is running interpreted and
inside the compiler, no trace of defstruct. will be found when running compiled code. (Sce eval-
when, page 25.)

Using the :eval-when option is preferable to' wrapping an eval-when around a defstruct .
form, since nested eval-whens can interact in unexpected ways.

- 16.4.20 :property

For each structure defined by defstruct, a propcrty list is maintained for the recordmg of
arbitrary properties about that structure.

The :property option can be used to give a defstruct an arbitrary property. (:property
property-name value) gives the defstruct a property-name property of value. Neither argument is
cvaluated. To access the property list, the user will have to look inside the defstruct-description
structurc himself, he is referred to section 16.5, page 137, for more information.

16.4.21 A Type Used As An Option

In addition to the options listed above, any currently defined type (a legal argument to the
‘type option) can be used as a option. This is mostly for compatibility with the old Lisp Machine
defstruct. 1t allows you to say just fype when you should be saying (type fpe). Use of this
featurc in new code is discouraged. It is an error to give an argument to a type uscd as an
option in this manner.

MC:NILMAN:DEFSTR 91 ’ - ‘ 23-1)EC-83

NII. Manual . : 137 . The defstruct-description Structure

16.4.22 Other Options

Finally, if an option isn’t found among those listed above. defstruct checks the property list
of the name of the option to see if it has a non-null :defstruct-option property. If is does have
such a property, then if the option was of the form (option-name value), it is trcated just like
(:property option-name value). That is, the defstruct is given an option-name property of value.
If such an option is uscd without an argument, it is trcated just like (:property oprion-name t).
That is, it is treated as if the argument was t.

‘This provides a primitive way for the uscr to define his own options to defstruct. Scveral of
the options listed above arc actually implemented using this mechanism.

16.5 The delstruct-description Structure

This scction discusses the internal structures uscd by defstruct that might be uscful to
programs that want to interface to defstruct nicely. The information in this scction is also
necessary for anyone who is thinking of defining his own structure types (scction: 14.6. page 138).
lLisp Machine and NI programmers will find that the symbols found only in this section are all
interned in the "systems-internals” package ("SI™ for short).

Whenever the user defines a new structure using defstruct. defstruct creates an instance of
the defstruct-description structurc. This structure can be found as the defstruct-description
property of the name of the structure: it contains such useful information as the name of the
structure. the number of slots in the structure, etc.

The defstruct-description structure is defined something like this: (This is a bowdlerized
version of the real thing, I have left out a lot of things you don't nced to know unless you are
actually rcading the code.)

(defstruct (defstruct-description
(:default-pointer description)
(:conc-name defstruct-description-))
name
size
property-alist
slot-alist)

The name slot contains the symbol supplied by the user to be the name of his structure,
somcthing like spaceship or phone-book-entry.

The size slot contains the total number of slots in an instance of this kind of structure. This
is not the samc number as that obtained from the :size-symbol or :size-macro options to
defstruct. A named structure, for example, usually uses up an extra location to store the name
of the structure, so the :size-macro option will get a number one larger than that stored in the
detstruct description.

The property-alist slot contains an alist with pairs of the form (property-name . property)
containing propertics placed there by the :property option to defstruct or by property names used
as options to defstruct (sce scction 16.4.20, page 136, and scction 16.4.22, page 137).

MC:NILMAN:DEFSTR 91 23-DEC-83

Extensions to defstruct : 138 NIi. Manual

The slot-alist slot contains an alist of pairs of the form (slor-name . slot-description). - A slot-
description- is an instance of the. defstruct-slot-description structure. The defstruct-slot-
description structure is defined something like this: (another bowdlerized defstruct)

(defstruct (defstruct-slot-description
(:default-pointer slot-description)
(:conc-name defstruct-slot-description-))
number
Ppss
init-code
ref-macro-name)

The number slot contains the number of the location of this slot in an instance of the
structure. Locations arc numbered starting with- 0, and continuing up. to onc less than the size of
the structure. The actual location of the slot is determined by the reference consing code -
associated with the type of the structure. Sce section 16.6. page 138. '

‘The ppss slot contains the byie specifier code for this slot if this slot is a2 byte ficld of its
Jocation. If this slot is the entire location. then the ppss slot contains: nil.

The init-code slot contains the initialization code supplicd for this slot by the user in his
defstruct form. If there is no initialization code for this slot then the init-code slot contains the
symbol %%defstruct-empty%%.

-

The. ref-macro-name slot coptaing the symhol that is dnﬁnr‘“ ag an accessor that roferencos

this slot.

¢
t
3

16.6 Extensions to defstruct

defstruct-define-type
The macro defstruct-define-type can be used to teach defstruct about new types it can
use to implement structures.

16.6.1 A Simple Example

Let us start by exammmg a sample call 10 defstruct-define-type. This is how the :list type
of structurc might have been defined:
(defstruct-define-type :list

(:cons {initialization-list description keyword options)
:list
(cons 'list initialization-list))

(:ref (slot-number description argument)
(list 'nth slot-number argument))) .

This is the minimal example. We have provided defstruct with two pieces of code. one for
consing up forms to construct instances of the structure, the other to cons up forms to reference
various elements of the structure,

MC:NIL.MAN:DEFSTR 91 23-DEC-83

NIl. Manual . 139 Extensions to defstruct

From the example we can sce that the constructor consing code is going to be run in an
environment where the variable initialization-list is bound to a list which is the initializations to
the slots of the structure arranged in. order. The variable description will bc bound to the
defstruct-description structure for the structure we are consing a constructor for. (Sce scction
16.5, page 137.) The binding of the variable keyword-options will be described later. Also the
symbol :list appcars after the argument list, this conveys some information to defstruct about how
the constructor consing code wants to get called.

The reference consing code gets run with .the variable slot-number bound to the number of
the slot that is 10 be referenced and the variable argument bound to the code that appeared as
the argument to the accessor macro. The variable description is again bound to the appropriate
instance of the defstruct-description structure.

This simple example probably tells you enough to be able to go ahecad and implement other
structure types. but more details follow.

16.6.2 Syntax of defstruct-define-type

The syntax of defstruct-define-type is
(defstruct-define-type ype
option-1

oplion-n)
where cach option-i is cither the symbolic name of an option or a list of the form (oprion-i
rest). (Actually option-i is the same as (option-i).) Different options interpret rest in different
ways.

The symbol nype is given a defstruct-type-description property of a structurc that describes
the type completely.
16.6.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by defstruct-define-type.

16.6.3.1 :cons

The :cons option to defstruct-define-type is how the user supplies defstruct with the
necessary code that it nceds to cons up a form that will construct an instance of a structure of
this type.

The :cons option has the syntax:
{ :cons (inits description keywordsYy kind
body)

body is some code that should construct and return a picce of code that will construct,
initialize and return an instance of a structure of this type.

MC:NILMAN:DEFSTR 91 _ 23-DEC-83

Extensions to defStruct : . 140 ‘ NH. Manual

The symbol inits will be bound to the code that the constructor conser should use to initialize
the slots of ‘the structure. ‘The exact form of this argument is determined by the symbol kind.
There arc currently two kinds of initialization. There is the :list kind, wherc inits is bound to a
list of initializations, in the correct order, with nils in uninitialized slots. And there is the :alist
kind. where inits is bound to an alist with pairs of the form (slot-number . init-code). '

The symbol description will be bound to the instance of the defstruct-description structure
(scction 16.5. page 137) that defstruct maintains for this particular structure. This is so that the
constructor conser can find out such things as the total size of the structure it is suppmcd to
create.

The symbol keywords will be bound to a alist ‘with pairs of the form (kevword . value),
where cach Aeyword was a keyword supplied to the constructor macro that wasn't the name of a
slot. and value was the "code” that followed the keyword. (Sce section 16.6.3.6, page 142, and
scction 16.4.2, page 128.) ‘ '

It is an crror not to supply the :cons option to defstruct-define-type.

16.6.3.2 :ref

The :ref option to defstruct-define-type is how the user supplics defstruct with the
necessary code that it needs to cons up a form that will reference an instance of a structure of
this type. ’

The :ref option has the syntax:
(:ref (number descnpnon arg~l ... arg-n)
body)

body is some code that should construct and return a picce of code that will reference an
instance of a structure of this type.

The symbol number will be bound to the location of the slot that the is to be referenced.
This is the same number that is found in the number slot of the defstruct slot descnptson_
structure (sccuon 16.5, page 137).

The symbol description will be bound to the instance of the defstruct'descriptidn structure
that defstruct maintains for this particular structure.

The symbols arg-i are bound to the forms supplied to the accessor as arguments. Normally
there should be only onc of these. The Jasr argument is the one that will be defaulted by the
:default-pointer option (scction 16.4.7, page 132). defstruct will check that the user has supplied
exactly n arguments to the accessor macro before calling the reference consing code.

It is an error not to supply the :ref option to defstruct-define-type.

MC:NILMAN:DEFSTR 91 ’ ‘ 23-DEC-83

NIiI. Manual 141 , Extensions to defstruct

16.6.3.3 :predicate

The :predicate option to defstruct-define-type is how defstruct is told how to produce
predicates for a particular type when the :predicate option to defstruct is used (scction 16.4.5,
page 131). Its syntax is: ‘

(:predicate (description name)
body)

The variable description will be bound to the defstruct-description structurc maintained for
the structure we are to generate a predicate for. "The variable name is bound to the symbol that
is 0 be defined as a predicate. body is a picce: of code to cvaluate to return the defining form
for the predicate. A typical use of this option might look like:

(:predicate (description name)
‘(defun ,name (x)
(and (frobbozp x)
(eq (frobbozref x 0)
*.(defstruct-description-name)}))))

16.6.3.4 :overhead

The :overhead option to defstruct-define-type is how the user declares to defstruct that the
implementation of this particular type of structure “uscs up” some number of slots locations in the
obicct actuallv constructed. ‘This option is used by various "named™ tvpes of structures that store
the name of the structure in one location.

The syntax of :overhead is:
(:overhead n) '
where # is a fixnum that says how many locations of overhead this type needs.

This number is only used by the :size-macro and :size-symbol options to defstruct. (See
section 16.4.15, page 135, and section 16.4.14, page 135.)

16.6.3.5 :named

The :named option to defstruct-define-type controls the use of the :named option to
defstruct. With no argument the :named option mecans that this type is an acceptable "named
structure”. With an argument, as in (:named fype-name), the symbol type-name should be that
name of some other structurc type that defstruct should use if somcone asks for the named
version of this type. (For example, in the definition of the :list type the :named option is used
like this: (:named :named-list).)

MC:NIL.MAN:DEFSTR 91 23-DEC-83

Extcnsions to defstruct) 142 , NI Manual

16.6.3.6 :keywords

The :keywords option to defstruct-define-type. allows the user to define constructor
keywords (section 16.4.2. page 128) for this type of structure. (For example the make -array
constructor keyword for structures of type :array on Lisp Machines.) The syntax is:

(:keywords keyword-1 ... keyword-n)
where cach keyword-i is a symbol that the constructor conscr expects to find in the keywords alist
(scction 16.6.3.1, page 139). '

16.6.3.7 :defstruct-options

The :defstruct-options option to defstruct-define-type is similar to the :keywords - option.

It is used to define new options that may appear in the options part of a defstruct for a structure
of this type. lts syntax is:

(:defstruct-options option-I ... option-n) ~
‘This defines cach option-i to be a option to defstruct that can be used with structures of - this
tvpe. For example. the :array defstruct type for the Lisp Machine uscs the :defstruct-options
option as tollows:

(:defstruct-options :make-array)

Currently this just works by giving cach oprion-i a non-null :defstruct-option property (sce
section 16.4.22. page 137). but soon it will check to be sure that each opnom is only used as an
option with structures of this type. ~

’16.6.3.8 :defstruct

The :defstruct option to defstruct-define-type allows the. user to run somc code and return
some forms as part of the expansion of the defstruct macro. :

The :defstruct option has the syntax:
(:defstruct (description)

body)

body is a piece of code that will be run whenever defstruct is expanding a defstruct form
that defines a structure of this type. The symbol description will be bound to the instance of the
defstruct-description structure that defstruct maintains for this particular structure.

The value rcturned’ by the :defstruct option should be a list of forms to be included with
those that the defstruct expands into. Thus, if you only want to run some code at defstruct
expand time, and you don't want to actually output any additional code, then you should be
carcful to return nil from the code in this option.

MC:NILMAN:DEFSTR 91 ' 23-DEC-83

NI Manual . 143 Extensions to defstruct

16.6.3.9 :copier

‘The :copier option to defstruct-define-type allows the user to tell defstruct how to gencrate
the copicr functions required by the :copier option to defstruct (scction 16.4.10, page 134). This
option is cntircly optional, because defstruct alrcady has cnough information to write an adcquate
copicr function for any given type given the information supplicd to the :ref and :cons options to
defstruct-define-type. Howecver, it is somectimes desirable to teach defstruct a berrer way to
copy a particular type of structurc.

The :copier option has the syntax:
(:copier (description name)
budy’)

Similar to the :predicate option. description is bound to the instance of the defstruct-
description structurc maintained for this structure, name is bound to the symbol to be defined:
and body is some code to evaluate to get the defining form. For example:

(:copier (description name)
‘(defmacro ,name ({x)
‘{copy-frobboz .x)))

16.6.3.10 :implementations

The :implementations option to defstruct-define-type is primarily useful to the maintainers
of defstruct in kecping control of the variations in defstruct types available in different
implementations. Its syntax is: ' : '

(:implementations arg-/ ... arg-n)

This makes the defstruct-define-type in which it appears only take cffect in those
implementations of LISP in which (status feature arg-i) is true for at least one of the arg-i.

MC:NILMAN:DEFSTR 91 23-DEC-83

The LOOP Iteration Macro . | 144 B NIl Manual

17. The LOOP Iteration Macro

- 17.1 Introduction

loop is a LISP macro which provides a programmable iteration facility.. The same loop
module operates compatibly in 1ISP. MACHINE LISP, MACLISP (PDP-10 and MULTICS), and NIL, and
a modcratcly compatible package was developed for the MDL. programming cnvironment. {oop
was inspired by the "FOR™ facility of CLISP in INTERLISP; however. it is not compatible and
differs in several details. L ”

‘The general approach is that a form introduced by the word loop generates a single program
loop. into which a large variety of features can be incorporated. The loop consists of some
initdalization - (profoguc) code. a body which may be cxecuted several times. and some exit
(epilogue) code. Variables may be declared local to the Joop. ‘The features are concerned with
loop variables, dcciding when to end the iteration, putting user-written code into the loop,
returning a value from the construct, and iterating a variable through various real or virtual sets
of values.

The loop form consists of a scrics of clauses. cach introduced by a keyword symbol. Forms
appearing in or implied by the clauses of a loop form arc classed as those to be executed as
initialization code, body code, and/or exit code: within cach part of the template that loop fills
in, they arc cxccuted strictly in the order implied by the original composition. Thus, just as in
ordinarv Lisp code. sidc-cffects mav be used. and one picce of code may depend on following
another for its proper operation. ‘This is the principal philosophy difference from INTERLISP's
"FOR" facility. :

Note that loop forms are intended to look like stylized Fnglish rather than LisP code. There
is a notably low dcnsity of parentheses, and many of the keywords are accepted in several
synonymous forms to allow writing of more cuphonious and grammatical- English. Some find this
notation verbose and distasteful, while others find it flexible and convenient. The former are
invited to stick to do.

Here are some examples to illustrate the use of loop.

(defun print-elements-of-list (list-of-elements)
(loop for element in list-of-elements
do (print element)))

The above function prints each element in its argument, which should be a list. It returns
nil.

MC:NILMAN;I.OOPIM 319 ‘ 23-DEC-83

NII. Manual . , 145 . Clauscs

(defun gather-alist-entries (list-of-pairs)
(loop for pair in list-of-pairs
collect (car pair))).

gather-alist-entries - takes an association list and rcturns a list of the "keys"; that is,
(gather-alist-entries '((foo 1 2) (bar 259) (baz))) returns (foo bar baz).

defun extract-interesting-numbers (start-value end-value
g
(loop for number from start-value to end-value
when (interesting-p number) collect number))

The above function takes two arguments. which should be fixnums, and returns a list of all
the numbers in that range (inclusive) which satisfy the predicate interesting-p.

,(defun find-maximum-element (an-array)
(loop for i from O below (array-dimension an-array 0)
maximize (aref an-array i)))

find-maximum-element returns the maximum of the clements of its argument, a onc-
dimensional array.

(defun my-remove (object list)
(1oop for element in list

unless {equal cobject element) colleoct cleoment

AR
17

my-remove is like the COMMON LISP function remove, utilizing the equal predicate. (This is
like MACLISP delete, but copics the list rather than destructively splicing out clements.)

(defun find-frob (1list)
(1oop for element in list
when (frobp element) return element
finally (ferror nil "No frob was found in the list ~S"
Tist)))

This returns the first element of its list argument which satisfies the predicate frobp. If none
is found, an error is generated.

17.2 Clauses

Internally, loop constructs a prog which includes variable bindings, pre-iteration (initialization)
code, post-iteration (exit) code, the body of the iteration, and stepping of variables of itcration to
“their next valucs (which happens on every iteration after executing the body).

A clause consists of the keyword symbol and any Lisp forms and kcywords which it deals
with. For cxample,
(loop for x in 1 do (print x)),
contains two clauses, "for x in (car foo)" and "do (print x)". Certain of the parts of the
clause will be described as being expressions, e.g. (car foo) in the above. An expression is a

MC:NILLMAN:L.OOPTM 319 23-DEC-83

Clauscs ’ : 146 NII. Manual

single 11 form. Obviously, it must be followed immediately by cither the end of the loop form,
or by a loop keyword. Certain clauses take what is called a multiple expression; this may bc a
single Lisp form, or a scrics of forms implicitly collected with progn. A multiple expression is
terminated by the next following atom, which is taken to be a keyword. As a general rule, loop
clauses which utilize 1ISP forms deal only with single expressions, with the exception of those for
which the forms are evaluated for effect: specifically, only the do, initially, and finally clauses
allow multiplc cxpressions. :

This syntax differs slightly from carlier versions of loop (which are probably still in usc in
11sp implementations other than Ni1), in which al/ cxpressions were trcated as multiple
expressions. The reason: for the change is twofold: first. a common syntactic crror in using. loop
is to accidentally omit the do keyword (causing the expressions meant to be executed for effect to
become part of the preceding clause). Sccond. it is anticipated that foop will support an “implied
do” sometime in the future, making this omission in fuct syntactically correct.

loop uscs print-name cquality to comparc' keywords so that loop forms may bc written
without package prefixes; in- 1isP implementations that do not have packages, eq is used for
comparison.

Bindings and iteration variable steppings may be performed cither sequentially or in parallel:
this affects how the stepping of one iteration variable may depend on the valuc of another. The
syntax-for distinguishing the two will be described with the corresponding clauses. When a set of
~things is "in parallcl”, all of the bindings produced will be performed in parallel by a single

. inA 1 i indince will lha marfivmmad incids af that hindina Aanviesnomant
!l!mbd.’! b!..dmg. SJbSC.,LC:}! blnd-uo} Wiy ol i HO pttiMed u.SR - A Luu Vil Cu'vu(lnnuau.

17.2.1 Iteration-Driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop and takes
on a new value on cach successive iteration. Note that if more than one. iteration-driving clause is |
.used in the same loop, several variables are created which all step together through their values;
when any of the iterations terminates, the entire loop terminates. Nested iterations are not
gencrated; for those, you need a seccond loop form in the body of the loop. In order to not
produce strange interactions, itcration driving clauses are required to precede any clauses which
produce "body" code: that is, all except those which produce prologue or cpilogue code (initially
and finally), bindings (with), thc named clausc, and the iteration tcrmination clauses (while and
untit).

Clauses which drive the iteration may be arranged to perform their testing and stepping either
in series or in parallel. They are by default grouped in serics, which allows the stepping
computation of one clause to use the just-computed values of the iteration variables of previous
- clauses. They may be made to step "in parallel”, as is the case. with the do ‘special form, by
"joining" the itcration clauses with the keyword and. The form this typically takes is something
like

(loop ... Tor x = (f) and for y = init then (g x) ...) :
which scts x to (f) on cvery iteration, and binds y to the value of inir for the first iteration, and
on cvery iteration thercafter scts it to (g x), where x still has the value from the previous
itcration. Thus, if the calls to f and g arc not order-dependent, this would be best written as

MC:NILMAN:1.00PTM 319 23-DEC-83

NIl. Manual . 147 Clauscs

n

(loop ... for y = init then (g x) for «x (f) ...)
because, as a general rule, parallel stepping has more overhead than sequential stepping.
Similarly, the example :

(loop for sublist on some-list

and for previous = 'undefined then sublist
..)
which is equivalent to the do construct
(do ((sublist some-Tist (cdr sublist))
(previous 'undefined sublist))
((null sublist) ...)
oY)
in terms of stepping. would be better written as

(loop for previous = 'undefined then sublist

for sublist on some-1list

--)

When iteration driving clauses arc joined with and, if the token following the and is not a
keyword which introduces an iteratian driving clause, it is assumed to be the same as the keyword
which introduced the most recent clause; thus, the above example showing parallel stepping could |
have been written as . ‘ ”
(loop for sublist on some-list
and previous = 'undefined then sublist

--)

because die keyword for is impiied after the and.

The order of evaluation in iteration-driving clauses is that those cxpressions which are only
cvaluated once arc evaluated in order at the beginning of the form, during the variable-binding
phase, while those expressions which arc evaluated cach time around the loop are cvaluated in
order in the body.

One common and simple iteration driving clause is repeat:

repeat expression
This cvaluates expression (during the variable binding phase), and causes the loop to
iterate that many times. expression is expected to evaluate to a fixnum. If expression
evaluates to a zero or negative result, the body code will not be executed.

All remaining iteration driving clauses arc subdispatches of the keyword for, which is
synonomous with as. In all of them a variable of iteration is specified. Note that, in general, if
an -iteration driving clause implicitly supplies an endtest, the value of this itcration variable as the
loop is exited (i.c., when the cpilogue code is run) is undefined. (This is discussed in more detail
in section 17.6.)

Here are all of the varicties of for clauses. Optional parts are enclosed in curly brackets. The
data-types as used here are discussed fully in section 17.4.

for var {duta-1ype} in exprl {by expr2}
This itcrates over cach of the clements in the list expr/. If the by subclause is
present. expr? is cvaluated once on entry to the loop to supply the function to be
used to fetch successive sublists, instcad of cdr.

MC:NIL.MAN:;1.OOPTM 319 23-DEC-83

Clauscs . 148 | NII. Manual

tor var {data-1ype} on expri {by expr2}
‘This is like the previous for format, cxcept that var is set to successive sublists of the
list instead of successive clements. Note that since var will always be a: list, it is not
mecaningful to specify a data-type unless var is a destructuring pattern, as described in
~ the section on destructuring, page 158. Note also that loop uses a null rather than an
atom test to implement both this and the preceding clause. :

for var {data-1ype} = expr ‘ ~
On cach iteration, expr is cvaluated and var is set to the result

for var {data-type} = expri then expr?
var is bound to expr! when the loop is entered, and set o expr? (re-evaluated) at all
but the first iteration. Since expr/ is cvaluated during the binding phase, it cannot
reference other iteration variables sct before it; for that, use the following:

for var {duata-1vpe} tirst expri then expr2
This sets var to expr/ on the first iteration, and to expr2 (re-cvaluated) on cach
succeeding iteration. The cvaluation of both expressions is performed inside of the
loop binding cnvironment, before the loop body. This allows the first valuc of var to
come from the first value of some other iteration variable, allowing such constructs as
(1oop for term in poly
for ans first (car term)
; then (gcd ans (car term))
finally (return ans))
for var {daia iype) from exprl (1o cxpil} {by exprl} :
This performs numeric iteration. vaer is initialized o expr/, and on cach succceding
iteration is incremented by expr3 (default 1). If the to phrase is given, the iteration
terminates when var becomes greater than expr2, Fach of the expressions is evaluated
only once. and the to and by phrases may be written in cither order. downto may
be uscd instead of to, in which case var is decremented by the step value, and the
endtest is adjusted accordingly. If below is used instcad of to, or above instcad of
downto, the iteration will be terminated before expr? is reached, rather than after.
Note that the to variant appropriate for the direction of stepping must be used. for the
endtest to be formed correctly: ie. the code will not work if expr3 is negative or
zero. If no limit-specifying clause is given, then the dircction of the stepping may be
specified as being decreasing by using downfrom instead of from. upfrom may also
be uscd instcad of from; it forces the stcpping direction to be increasing. The data-
type dcfaults to fixnum. Thus, the idiom for stepping through a typical COMMON LISP
start/end range in which the start is inclusive and the end is exclusive, is
for var from sitart below end

for var {data-type} being exprand its path ...

for var {data-type} being {eachithe} path ...
This provides a user-definable iteration facility. parh names the manner in which the
iteration is to be performed. The ellipsis indicates where various path dependent
preposition/cxpression pairs may appear. Sce the scction on ltcration Paths (page 161)
for complete documentation.

MC:NILMAN:LOOPTM 319 | © 23-DEC83

NI1I. Manual 149 Clauscs

17.2.2 Bindings

The with keyword may be used to cstablish initial bindings, that is, variables which are local
to the loop but arc only sct once, rather than on cach iteration. The with clause looks like:
with var! {data-1ype} { = exprl}
{and var2 {data-type} { = expr2}}...
If no expr is given, the variable is initialized to the appropriate value for its data type, usually
nil.

with bindings linked by and arc performed in paralicl; thosc not linked are performed
scquentially. ‘That is,
(loop with a = (foo) and b = (bar) and c
cel)
binds the variables like
{(lambda (a b ¢} ...)
(foo) (bar) nil)
whereas .
(loop with a = (foo) with b = (bar a) with ¢ ...)
binds the variables like
((7ambda (a)
((1ambda (b)
((lambda (c) ...)
nil))
{(bar a)))
(foo))
All expr's in with clauscs are cvaluated in the order they arc written, in lambda expressions
surrounding the generated prog. The loop expression
(loop with a = xa and b = xb
with ¢ = xc
for d = xd then (f d)
and e = xe then (g e d)
for p in xp
with g = xg
|
produces the following binding contour, where t1 is a loop-generated temporary:
((lambda (a b)
((1ambda (c¢)
{(lambda (d e)
((lambda (p t1)
((lambda (q) ...)
xq))
nil xp))
xd xe))
xc))
xa xb) ;
Because all cxpressions in with clauses arc cvaluated during the variable binding phase, they are
best placed ncar the front of the loop form for stylistic reasons.

MC:NII.MAN:L.OOPTM 319 23-DEC-83

Clausces . - 150 ‘ NI, Manual

For binding morc than onc variable with no particular initialization, onc may usc the

construct

with variable-list {data-type-list} {and ...}
as in : ,
with (i j k t1 t2) (fixnum fixnum fixnum)
A slightly shorter way of writing this is :

with (i j k) fixnum and (t1 t2) ...
These are cases of destructuring which loop handles specially; destructuring and data type
keywords arc discussed in scctions 17.5 and 17.4. »

QOccasionally there are various implementational reasons for a variable nof to be gncn a local
type declaration. If this is necessary, the nodeclare clause may be used:

nodeclare variable-list
The variables in variable-list are noted by loop as not requiring local type declarations.
Consider the following: '
(declare (special k) (fsxnum k))
(defun foo (1) ,
(Toop for x in 1 as k fixnum = (f x) ...))
If k did not have the fixnum data-type keyword given for it, then loop would bind it
to nil, and some compiiers would complain. On the other hand, the fixnum keyword
also produces a local fixnum declaration for k: since k is special, some compilers will
complain (or error out).. The solution is to do:
(defun foo (1)
(loop nodeclare (k) ;
for x in 1 as k fixnum = (f x) ...))
which tells loop not to make that local declaration. The nodeclare clause must come
before any reference to the variables so noted. Positioning it incorrectly will cause this
clausc to not ke effect, and may not be diagnosed. It happens that this clause was
introduced due to some peculiar behavior of the MULTICS MACLISP compiler, and
should not be needed in other implementations.

17.2.3 Entrance and Exit

initially multiple-expression
This puts multiple-expression into the prologue of the iteration. It will be evaluated
before any other initialization code other than the initial bindings. For the sake of
good style, the initially clause should therefore be placed after any with clauses but
before the main body of the loop. initially is one of the few loop clauses which are
allowed to be followed by multiple expressions; these expressions will be treated as an
implicit progn.

finally multiple-expression
This puts multiple-expression into the epdague of the Ioop which is evaluated when
the iteration terminates (other than by an cxplicit return). For stylistic reasons, then,
this clausc should appear last in the loop body. Note that certain clauscs may
gencrate code which terminates the iteration without running the epilogue code; this
behavior is noted with those clauses. Most notable of these are those described in the
scction 17.2.7, Aggregated Boolean Tests. This clause may be used to cause the loop

MC:NILMAN:LOOPTM 319 ‘ 23-DEC-83

NI1. Manual . 151 Clausecs

to return values in a non-standard way:
(loop for n in 1
sum n into the-sum
count t into the-count
finally (return (quotient the-sum the-count)))
Like initially and do, finally may be followcd by multiple expressions.

17.2.4 Side Effects

do multiple-expression

doing multiple-expression
multiple-cxpression is cvaluated cach time through the loop. as shown in the print-
elements-of-list cxample on page 144. ‘The do keyword may be followed by
multiple cxpressions.

17.2.5 Values

The following clauses accumulate a . return value for the iteration in some manner. ‘The
general form is
type-of-collection expr{data-1ypc} {into var}
where 1ype-of-collection is a loop keyword, and expr is the thing being "accumulated” somchow.
If no into is specified. then the accumulation will be returned when the loop terminates. If there
is an into. then when the cpilogue of the loop is rcached. var (a variable automatically bound
locally in the loop) will have been set to the accumulated result and may be used by the epilogue
code. In this way. a user may accumulate and somehow pass back multiple values from a single
loop. or use them during the loop. It is safe to rcference these variables during the loop. but
they should not be modified until the epiloguc code of the loop is reached. For example,
(loop for x in list
collect (foo x) into foo-list
collect (bar x) into bar-list
collect (baz x) into baz-list
finally (return (1ist foo-list bar-list baz-1list)))
has the same effect as
(do ((g0001 1ist (cdr g0001))
(x) (foo-1list) (bar-list) (baz-list))
((null g0001)
(list (nreverse foo-list)
(nreverse bar-list)
(nreverse baz-1list)))
(setq x (car g0001))
(setq foo-list (cons (foo x) foo-list))
(setq bar-list (cons (bar x) bar-1list})
(setq baz-1list (cons (baz x) baz-list)))
cxcept that loop arranges to form the lists in the correct order. obviating the nreverses at the
cnd, and allowing the lists to be examined during the computation.

collect expr {into var}

MC:NIL.MAN:LLOOPTM 319. 23-DEC-83

Clausces 152 NII. Manual

collecting ...
This causes the values of expr on each iteration to be collected into a list.

ncong expr {into var}
nconcing ...
append ...
appending ...
These arc like collect, but the results are spliced together.
(loop for i from 1 to 3
nconc (list i (» i i)))
=>(1124389) ;
The difference is that, for nconc, the valuc of expr is not copied before being
spliced. not that the cntire list being accumulated is repeatedly copied during the
iteration. This is significant in that onc may get ahold of the intermediate result while
the iteration is in progress by usc of into, and thar list does get destructively modified.

count expr {into var} {data-1ype}
counting ..
If expr cvaluates non-nil, a counter is mcrcmcmcd The dam-lypc’ defaults to fixnum,

sum expr {dara-1ype} {into var}

summing ...
Evaluates expr on cach iteration. and accumulates the sum of all the values. dara-1ype
defaults to number. which for all practical purposcs is notype. Note that specifying
data-type implies that both the sum and the number being summed (thc value of
expr) will be of that type.

maximize expr {data-type} {into var}

minimize ...
Computes the maximum (or minimum) of expr over all itcrations. dara-type defaults
to number. Note that if the loop iterates zero times, or if conditionalization prevents
the code of this clause from being executed, the result will be meaningless. loop may
choose to code the max or min operation itself by just using arithmetic comparison
rather . than calling max or min, if it decms this to be reasonable based on the
particular 11SP implementation and the-declared type of the accumnulation. As with the
sum clause, specifying data-1ype implies that both the result of the max or min
operation and the value being maximized or minimized will be of that type.

Not only may there be multiple accumulations in a loop, but a single accumulation may come
from multiple places within the same loop form. - Obviously, the types of the collection must be
compatible. collect, nconc, and append may all be mixed, as may sum and count, and
maximize and minimize. For example,

(loop for x in "(a b c) for y in *((1 2) (3 4) (5 6))
collect x ‘

append y)
=>(a12b3dché6)

MC:NI{.MAN:1.OOPTM 319 ' : 23-DEC-83

o dimabear e

NIl. Manual) 153 Clausces

: The following computes the average of the entrics in the list list-of frobs:
(loop for x in list-of-frobs
count t into count-var
sum x into sum-var
finally (return (quotient sum-var count-var)))

17.2.6 Endtests

The following clauses may be used to pr(ividc additional control over when the itcration gets
terminated. possibly causing exit code (due to finally) to be performed and possibly returning a
value (c.g.. from collect).

while expr
If expr cvaluates to nil. the loop is cxited. performing cxit code (if any), and
returning any accumulated value, The test is placed in the body of the loop where it
is written. It may appecar between scquential for clauses.

until expr
Identical to while (not expr).

This may be needed, for example. to step through a strange data structure, as in
(1oop for concept = expr then (superior-concept concept)
until (top-of-concept-tree? concept)
.)

The following may also be of use in terminating the itcration:

loop-finish
{loop-finish) causcs the itcration o terminate "normally”, the samce as implicit termination
by an iteration driving clause, or by the use of while or until—the epilogue code (if any)
will be run, and any implicitly collected result will be returned as the value of the loop.
For example,
(loop for x in (1 2 3 45 6)
collect x
do (cond ((= x 4) (loop-finish))))
=> (1 2 3 4)
This particular example would be better written as until (= x 4) in place of the do
clause. Also, the rcadability of loop constructs suffers from the inclusion of a non-
keyword construct which affects the behavior of the iteration because the rcader of the
code may not be expecting it hidden away in the code. (Stylistically it- might be
compared with the use of go.)

MC:NIL.MAN:L.OOPTM 319 23-DEC-83

Clauscs ~ L 154 , NIL. Manual

17.2.7 Aggregated Boolean Tests

All of these clauscs perform somc test, and may immediately terminatc the iteration
depending on the result of that test.

always expr
Causcs the loop to return t if expr always evaluates non-null. 1If expr evaluates to nil,
the loop immediately returns nil, without running the epilogue code (if any, as
spccified with the finally clause): otherwise, t will be returned when the loop finishes,
after the cpilogue code has been run,

never expr '
Causes the loop to return .t if expr never cvaluates non-null. This. is equivalent to
always (not expr). '

thereis expr
I expr cvaluates non-nil, then the iteration is terminated and that value is returned.

without running the cpilogue code.

17.2.8 Conditionalization

These clauses may be uscd to "conditiona!izc" the following clausc. They may precede any of
the side-cffecting or valuc-producing clauses, such as do. collect, always, or return.

when ejrpr -
if expr ' -
If expr evaluates to. nil, the following clause will be skipped, otherwise not.

unless expr :
This is cquivalent to when (not expr)).

Multiple conditionalization -clauses may appear in sequence. If one test fails, then any
following tests in the immediate sequence, and the clause being conditionalized, arc skipped. For
instance,

(loop for x ...
when (f x)
unless (g x)
do ...)
is like
(Yoop for x ...
when (and (f x) (not (g x)))
do ...)

Multiple clauses may be conditionalized under the same test by joining them with and, as in
(1o0op for i from a to b
when (zerop (remainder i 3))
collect i and do (print 1))
which returns a list of all multiples of 3 from a to b (inclusive) and prints them as they are
being collected.

MC:NILMAN:1.OOPTM 319 23-DEC-83

NIl. Manual ‘155 R Clauscs

If-then-clse conditionals may be written using the else keyword, as in
(loop for i from a to b
when (oddp i) :
collect i into odd-numbers
else collect i into even-numbers)
Multiple clauses may appear in an else-phrase, using and to join them in the same way as above.
There is a bug in the handling of multiple else clauses. Beware.

Conditionals may be nested. For example,
(l1oop for i from a to b
when (zerop (remainder i 3))
do (print i)
and when (zerop (remainder i 2))
collect i)
returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a to b.

When else is used with nested conditionals, the "dangling clse” ambiguity is resolved by
matching the eise with the innermost when not alrcady. matched with an else. Here is a
complicated cxample.

(loop for x in 1
when (atom x) |
when (memq x *distinguished-symbolss)
do (processl x)
else when (memg (car. x) sspecial- pref1xest)
collect (process3 (car x) (cdr x))
and do (memoize x)
else do (process4d x))

Uscful with the conditionalization clauses is the return clause, which causcs an explicit return

of its "argument” as the value of the iteration, bypassing any cpilogue code. That is,

when expr! return expr2
is equivalent to

when exprl do (return expr2)
if the loop is not "named” (by usc of the named clause), and to

when exprl do (return-from name expr2)
if the loop is named name. In other words, return arranges to always return from the loop it is
a part of.

Conditionalization of one of the "aggregated boolean value" clauses simply causes the test
which would causc the iteration to terminate early not to be performed unless the condition
succeeds. For example,

(loop for x in 1
when (significant-p x)
do (print x) (princ "is significant.")
and thereis (extra-special-significant-p x))
does not make the extra-special-significant-p check unless the significant-p check succccds

MC:NILMAN:1.OOPTM 319 23-DEC-83

Clauses . 156 NiL. Maijuul

The format of a conditionalized clause is typically somcthing like
when cxprl keyword expr? -
If expr2 is the keyword it, then a variable is generated to hold the value of exprl, and that
variable gets substituted for expr2. Thus, the composition
when exprreturn it
is equivalent to the clause
thereis expr
and onc may collect all non-null values in an iteration by saymg
when expression collect it ,
If multiple clauses are joined with and. the it keyword may only be used in the first. 1f multiple
whens. unlesses. and/or ifs occur in sequence. the value substituted for it will be [hd[of the last
test performed.” ‘the it keyword is not recognized in an else-phrase.

17.2.9 Miscellancous Other Clauses

~named name : .
This gives the block (prog) which loop generates a name of namie, so that onc may
use the return-from form o return explicitly out of that particular loop:
(loop named sue

PR Y

do (loop ... do (return-from sue‘-value) A |

.e)

The return-from form chewn causes yalue to be immediately returned as the value of
the outer loop. Only onc namc may be given to any particular loop construct. This
feature does not exist in the MACLISP version of loop. since MACLISP does not support

"named progs" or COMMON LISP blocks.

return expression
Immediately returns the value of expression as the value of the loop, without running
the cpilogue code. This is most uscful with some sort of conditionalization, as
discussed in the previous section. Unlike most of the other clauses, return is not
considered to "generate body code”, so it is allowed to occur between iteration .
clauses, as in ' -
" (loop for entry in list
~when (not (numberp entry))
return (error ...)

as frob = (times entry 2)

R
If one instcad desires the loop to have some return value when it finishes normally,
onc may place a call to return or return-from (as appropriate) in the cpilogue (with
the finally clause, page 150). return always returns from the loop it is a part of, that
is, it turns into a call to return if the loop is not "named”, return-from if it is.

»

MC:NILMAN:L.OOPTM 319 | - 23-DEC-83

NIil. Manual) . 157 - L.oop Synonyms

17.3 Loop Synonyms

define-loop-macro keyword _
May bc uscd to make keyword, a loop keyword (such as for), into a Lisp macro which
may introduce a loop form. For cxample, afier evaluating
(define-loop-macro for),
onc may now writc an jteration as
(for i from 1 below n do ...)

This facility exists primarily for dichard users of a predecessor of loop. lts unconstrained usc
is not rccommended. as it tends to decrcase the transportability. of the code and ncedlessly uses
up a function name.

17.4 Data Types

In many of the claus¢ descriptions, an optional data-type is shown. A data-1ype in this sense
is an atomic symbol. and is recognizable as such by loop. These arc used for declaration and
initialization purposcs: for example, in

(loop for x in 1 .

maximize x flonum into the-max

sum x flonum into the-sum

cel) : ‘
the flonum data-tvpe kevword for the maximize clause savs that the resilt of the max operation
and its "argument” (x). will both be flonums: hence loop may choose to code this opcration
specially since it knows there can be no contagious arithmetic. The flonum data-type keyword for
the sum clause bchaves similarly. and in addition causes the-sum to be correctly initialized to
0.0 rather than 0. The flonum keywords will also cause the variables the-max and the-sum to
be declared to be flonum, in implementations where such a declaration cxists. In general, a
numeric data-type more specific than number, whether cxplicitly specified or defaulted, is
considered by loop to be license to generate code using type-specific arithmetic functions where
reasonable. The following data-type keywords are recognized by loop (others may be defined; for
that, consult the source code):

fixnum An implementation-dependent limited range integer.

fionum An implementation-dependent limited precision floating point number. Note that
NIL interprets flonum to mean double-float.

small-flonum ‘ ’ .
This is recognized in the LISP MACHINE LISP implementation only, where its only
significance is for initialization purposes, since no such declaration exists.

short-float

single-float

double-float

long-fioat Thesc arc only recognized in the NIL implementation of loop currently, although
they will probably be recognized in future loop implementations in 1ISP MACHINE
1isp which supports numbers of these types (these are the COMMON LISP types).

integer Any intcger (no range restriction).

MC:NILMAN:1 OOPTM 319 _ 23-DEC-83

Destructuring 18 ‘ NII. Manual

number Any number.

notype Unspccified type (i.c.. anything clise). This name is inherited from MACLISP.

Note that explicit specification of a non-numeric type for an 0pcration which is numeric (such
as the summing clause) may causc a variable to be initialized to nil when it should be 0.

If local data-type declarations must be inhibited, onc can use the nodeclare clause, which is
described on page 150.

17.5 Destructuring

Destructuring provides one with the ability to "simultancously” assign or bind multiple
variables to componcents of some data structure. ‘Typically this is used with list structurc. For
example, » :
(loop with (foo . bar) = "(a b c) ...)
has the cffect of binding foo to a and bar to (b ¢).

loop’s destructuring support is intended to. parallel if not augment that provided by the host
LISP implcmentation. with a goal of minimally providing destructuring over list structurc patterns.
Thus, in Lisp implementations with no system destructuring support at all, one may still use list-
structurc patterns as loop iteration variables, and in with bindings. In NIL, loop also supports
destructuring over vectors (they should be general vectors, i.c., have element-type t).

Onc may specify the data types of the components of a pattern by using a corresponding
pattern of the data type keywords in place of a single data type keyword. ‘This syntax remains’
unambiguous becausc wherever a data type keyword is possible, a loop keyword is the only other
possibility. ‘Thus, if one wants to do

(loop for x in 1
as i fixnum = (car x)
and j fixnum = (cadr x)
and k fixnum (cddr-x)
ces)
and no reference to x is needed, one may instead write :
(loop for (i j . k) (fixnum fixnum . fixnum) in 1 ...)
To allow some abbreviation of the data type pattern, an atomic component of the data type
pattern is considered to state that all components of the corresponding part of the variable pattern
are of that type. That is, the previous form could be written as
‘ (loop for (i j . k) fixnum in 1 .,.)
This generality allows binding of multiple typed variables in a reasonably concise manner, as in
(loop with (a b c¢) and (i j k) fixnum ...)
which binds a, b, and c to nil and i, j, and k to O for use as temporaries during the iteration,
and declarcs i, j, and k to be fixnums for the benefit of the compiler.

MC:NILMAN:LOOPTM 319 | ~ 23-DKEC-83

NIIL. Manual) : 159 ; The Ieration I-ramework

! (defun print-with-commas (list)

1 (loop for (item . more?) on list

i do (princ item)

' "when more? do {(princ ", ")))
‘ will generate the output h

! Foo, Bar, Baz

5 when called on the list ("Foo" "Bar" "Baz").

In 11SP implementations where loop performs its own destructuring, notably MULTICS MACLISP
and 11SP MACHINE LISP, onc can cause loop to use alrcady provided destructuring support
instcad:

si:loop-use-system-destructuring? Variable

‘This variable only cxists in loop implementations in 1iSps which do not provide
destructuring support in the default environment. 1t is by default nil. If changed, then
loop wi'l behave as it does in 11SPs which do provide destructuring support: destructuring
binding will be performed using let. and destructuring assignment will be performed using
desetq. Presumably if one’s personalized environment supplics these macros, then one
should sct this variable to t; there is, however, little (if any) cfficiency loss if this is not
done.

17.6 The Iteration Framework

This scction describes the way loop constructs iterations. It is necessary if you will be writing
your own iteration paths, and may be useful in clarifying what loop does with its input.

loop considers the act of stepping to have four possible parts. Each iteration-driving clause
has some or all of these four parts, which are executed in this order:

pre-step-endlest
This is an endtest which determines if it is safe to step to the next value of the
iteration variable.

steps Variables which get "stepped”. This is internally manipulated as a list of the form (var/
vall var2 val? ...); all of those variables are stcpped in parallel, meaning that all of the
vals are cvaluated before any of the vars are set

post-step-endtest
Sometimes you can’t see if you are donc until you step to the next value; that is, the
endtest is a function of the stepped-to value.

pseudo-steps
Other things which nced to be stepped. This is typically used for internal variables
which arc more convenicently stepped here, or to set up iteration variables which are
functions of some internal variable(s) which arc actually driving the iteration. This is a
list like steps, but the variables in it do not get stepped in parallel.

MC:NIL.LMAN:1.OOPTM 319 23-DEC-83

The heration Framework - 160 ~ NII. Manual

The above alone is actually insufficient in just about all iteration driving clauses which loop
handles. What is missing is that in most cases the stepping and testing for the first time through
the loop is different from that of all other times. So, what loop dcals with is two four-tuples as
above; onc for the first iteration, and onc for the rest. The first may be thought of as describing
code which immediately precedes the loop in the prog,. and the sccond as following the body
code—in fact, loop does just this, but severcly perturbs it in order to reducc code duplication.
Two lists of forms are constructed in parallel: one is the first-iteration endtests and steps, the
other the remaining-iterations endtests and steps. These lists have dummy entries in them so that
~identical cxpressions will appear in the same position in both. When loop is donc parsing all of
the clauses. these lists get merged back together such that corresponding identical expressions in
buoth lists are not duplicated: unless they are “simple™ and it is worth doing.

‘Thus. one may get some duplicated code if onc has multiple iterations. Alternatively, loop
may decide to use and test a flug variable which indicates whether onc iteration has been
performed. In gencral. sequential iterations have less overhead than paraliel- iterations, both from
the inherent overhead of stepping multiple variables in parallel, and from the standpoint of
potential code duplication.

One other point which must be noted about parallel stepping is that although the user
iteration variables arc guarantced to be stepped in parallel, the placement of the endiest for any
particular iteration may be cither before or afier the stepping. A notable case of this is

(loop for i from 1 to 3 and dummy = (print ’foo)
collect i)
=> {1 2 3Jj) i
but prints foo four times. Certain other constructs, such as for var on, may or may not do this
depending on the particular construction.

This problem also means that it may not bc safe to cxamine an iteration variable in the
epiloguc of the loop form. As a gencral rule, if an iteration driving clause implicitly supplies an
endtest, then one cannot know the state of the itcration variable when the loop terminates.
Although one can guess on the basis of whether the iteration variable itsclf holds the data upon
which the endtest is based, that guess may be wrong. Thus,
(loop for subl on expr
finally (f subl))
is incorrect, but
(loop as frob = expr while (g frob)
finally (f frob))
is safe because the endtest is explicitly dissociated from the stepping.

MC:NIL.MAN:1.OOPTM 319 | C 23-DEC-83

NI1. Manual 6 leration Paths

17.7 1teration Paths

Iteration paths provide a mechanism for user extension of iteration-driving clauses. The
interface is constrained so that the definition of a path nced not depend on much of the internals
of loop. The typical form of an iteration path is ,

for var {data-iype} being {each|the} pathname {prepositionl exprl}...
pathname is an atomic symbol which is defined as a loop path function. The usage and
defaulting of dara-type is up to the path function. Any number of preposition/expression - pairs
may be present: the prepositions allowable for any particular path- are defined by that path. For
cxample,

(1oop for x being the elements of some-sequence from 1 to 10

L)

To cnhance readability, iteration path names are usually defined in both the singular and plural
forms: this particular example could have been written as

(loop for x being each element of some-sequence from 1 to 10

-)

Another format, which is not so generally applicable, is

for var {data-1ype} being expr(). and its path-name {prepositionl exprl}. ..
In this format. var takes on the value of exprO the first time through the loop. Support for this
format is usually limited to paths which step through some data structure, such as the "superiors”
of something. Thus, we can hypothesize the cdrs path, such that

(loop for x being the cdrs of "(a b c . d) collect x)

> ({b ¢ . dj (¢ . d) d)
but

(loop for x being '(a b c . d) and its cdrs collect x)

=> ((abc.d) (bc.d) (c.d)d)
To satisfy the anthropomorphic among you, his, her. or their may be substituted for the its
keyword. as may each. Egocentricity is not condoned. Some example uses of iteration paths are
shown ‘in section 17.7.1.

Very often, iteration paths step internal variables which the user does not specify, such as an
index into some data-structure. Although in ‘most cascs the user docs not wish to be concerned
with such low-level matters, it is occasionally uscful to have a handle on such things. loop
provides an additional syntax with which one may provide a variable name to be used as an
“internal” variable by an iteration path, with the using "prepositional phrase”. The using phrase
is placed with the other phrases associated with the path, and contains any number of
keyword/variable-name pairs:

(loop for x being the elements of seq using (index i)
eed)
which says that the variable i should be used to hold the index of the sequence being stepped
through. The particular keywords which may be used arc defined by the iteration path; the index
keyword is recognizcd by all loop sequence paths (scction 17.7.1.2). Note that any individual
using phrasc applics to only one path; it is parsed along with the "prepositional phrases”. It is
an crror if the path docs not call for a variable using that keyword.

By special dispensation, if a path-name is not recognized, then the default-loop-path path
will bc invoked upon a syntactic transformation of the original input. Essentially, the loop
fragment ~

MC:NII.MAN:1.OOPTM 319 23-DEC-83

licration Paths : . 162 ‘ - NH. Manual

for var being frob
is taken as if it were

for var being default-loop-path in frob
and :
for var being expr and its frob ...
is taken as if it were

for var being expr and its defau?t loop path in frob
Thus, this "undefined path-name hook™ only works if the default-foop-path path is defined.
Obviously. the use: of this "hook” is competitive, since only one such hook may be in use, and
the potential for syntactic ambiguity exists if frob is the namc of a defined iteration path. 'This
feature is not for casual use: it is intended for use by large systems which wish to usc a special
syntax for some feature they provide.

17.7.1 Pre-Deﬁned Paths

loop comes with two pre-defined iteration path functions: one implements a mapatoms-like
iterition path facility. and the other is used for defining iteration paths for stepping through
SCQUCNCCS.

17.7.1.1 The Interned-Symbols Path

The interned-symbols itcration path is likc a mapatoms (or COMMON LISP do-symbols) for
loop. ,
(loop for sym being interned-symbols ...)
iterates over all of the symbols in the current package and its superiors (or, in Maclisp, the
current obarray). ‘This is the same sct of symbols which mapatoms iterates over, although not
necessarily in the same order. ‘The particular package to look in may be specified as in

(loop for sym being the interned-symbols in package ...)
which is like giving a second argument to mapatoms.

In LISP implementations with some sort of hierarchical package structure such as LISP
MACHINE LISP and NIL, one may restrict the iteration to be over just the package specified and
not its superiors, by using the local-interned-symbols path:

(1oop for sym being the local-interned-symbols {in package}
eed) '

Example:

(defun my-apropos (sub-string &optional (pkg package))

(loop for x being the interned-symbols in pkg
when (string-search sub-string x)
when (or (boundp x) (fboundp x) (plist x))
do (print-interesting-info x)))

In the LISP MACHINE LISP and NIL implcmentations of loop, a package specified with the in
preposition may be anything acceptable to the pkg-find-package function. The code gencrated
by this path will contain calls to internal loop functions, with the cffect that it will be transparent
to changes to the implementation of packages. In the MACLISP implementation, the obarray must
be an array pointer, notr a symbol with an array property.

MC:NILMAN:1.OOPTM 319 , 23-DEC-83

NIl Manual - . 163) lteration Paths

17.7.1.2 Sequence Iteration

One very common form of itcration is that over the elements of somc object which is
accessible by means of an integer index. loop defines an iteration path function for doing this in
a gencral way, and provides a simple interface to allow uscrs to define iteration paths for various
kinds of “indcxable” data.

define-loop-sequence-path

(define-loop-sequence-path path-name-or-names

fetch-fun size-fun v

sequence-rype defauli-var-rype)
path-name-or-names is cither an atomic path name or list of path names. fetch-fun is a
function of two arguments: the sequence. and the index of the item tw be fetched.
(Indexing is assumed to be zero-origined.) size-fim is a function of onc argument, the
sequence: it should return the number of clements in the sequence. sequence-iype is the
name of the data-type of the scquence, and defaulr-var-iype the name of the data-type of
the clements of the sequence. These last two items are optional.

The NIL implementation of loop utilizes the COMMON LISP scquence manipulation primitives
to define both element and elements as itcration paths:
(define-loop-sequence-path (element elements)

elt length)
Then. the loop clause
for var being the clements of scgucnce

will step var over the clements of sequence, starting from 0. The scquence path function also
accepts in as a synonym for of.

The range and stepping of the iteration may be specified with the usc of all of the same
keywords which arc accepted by the loop arithmetic stepper (for var from ...); they are by, to,
downto, from, downfrom, below, and above, and arc interpreted in the same manner. Thus,

(loop for var being the elements of sequence
from 1 by 2
R |
steps var over all of the odd elements of sequence, and
{(loop for var being the elements of seguence
downto 0

o) .

steps in "reverse” order.

The NiL implementation of loop defines the following additional sequence iteration paths.
Basically, they are all special cases of the gencral elements path, but can generate better code
because they may know how to access the sequence better. (If NIL's compiler were smarter, one
would be able to get the same cffect with type declarations, but that is not the case yct.) Each
iteration path name is defincd in both the singular and plural form.

vector-elements
This will iterate over any type of vector. There really isn't a good reason to use this
over the elements itcration path anymore.

MC:NILMAN:1.OOPTM 319 | 23-DEC-83

Itcration Paths , 164 , NI Manual

characters

string-elements _ :
This itcrates over the characters of a string. char is used to reference them, hence
the itcration variable defaults to type string-char. '

bits

bit-vector-elements
This iterates over the bits in a bit-vector; the itcration variable is declared to be bit,
as it can take on only O or 1 as values.

The following arc the special cases which may be of somewhat more interest. becausc they
can generate much betier code knowing that the sequence is of a particular simple type:

simple-vector-elements
‘The sequence must be a simple vector.

simple-string-elements ;
The scquence must be a simple string.

simg: 2~bit-vector-elements
‘The sequence must be a simple bit vector.

All such sequence iteration paths allow one to specify the variable to be used as the index
variable, by usc of the index keyword with the using prepositional phrase, as described (with an
example) on page 161.

17.7.2 Defining Paths

This section and the next may not be of imcresz to thosc not interested in defining their own
itcration paths.

) A loop iteration clause (e.g. a for or as clause) produccs, in addition to the code which
defines the iteration (section 17.6), variables which must be bound, and pre-iteration (prologue)
code. This breakdown allows a user-interface to loop which does not have to depend on or know
about the internals of loop. To complete this separation, the itcration path mechanism parses the
clausc before giving it to the user function which will return those items. A function to genecrate
code for a path may be declared to loop with the define-loop-path function:

define-loop-path

(define-loop-path path-name-or-names path-function

list-of-allowable-prepositions

datum-1 datum-2 ...) :
This defines path-function to be the handler for the path(s) path-name-or-names, which
may be either a symbol or a list of symbols. Such a handler should follow the
conventions described below. The danwn-i are optional; they are passed in to path-
Sunction as a list.

The handler will be called with the following arguments:

path-name :
The name of the path which caused the path function to be invoked.

MC:NILMAN:(OPATH 11 23-DEC-83

NIL. Manual) 165 lteration Paths

variable
The "iteration variable”.

data-1ype »
The data type supplied with the iteration variable, or nil if none was supplied.

prepositional-phrases
‘This is a list with cntries of the form (preposition expression), in the order in which
they were collected. This may also include some supplied implicitly (c.g. an of phrase
when the iteration is inclusive. and an in phrasce for the default-loop-path path): the
ordering will show the order of cvaluation which should be followed for the
CXPressions.

inclusive?
This is t if variable should have the starting point of the path as its valuc on the first
itcration (by virtue of being specified with syntax like for var being expr and its
pathname), nil otherwise. When t, expr will appear in prepositional-phrases with the
of preposition; for cxample, for x being foo and its cdrs gets prepositional-phrases
of ((of foo)). ’

allowed-prepositions : ’
This is the list of allowable prepositions declared for the pathname that causced the
path function to be invoked. It and data (immediatcly below) may be used by the
path function such that a single function may handle similar paths.

data This is the list of "data” declared for the pathname that caused the path function to
be invoked. It may, for instance, contain. a canonicalized pathname. or a sct of
functions or flags to aid the path function in determining what to do. In this way,
the same path function may be able to handle different paths.

The handler should return a list of ¢ither six or ten clements;

variable-bindings
This is a list of variables which need to be bound. The entries in it may be of the
form variable, (variable expression), or (variable expression data-type). Note that it is
the responsibility of the handler to make sure the iteration variable gets bound. All of
these variables will be bound in parallel; if initialization of one depends on others, it
should be done with a setq in the prologue-forms. Returning only the . variable
without any initialization cxpression is not allowed if the variable is a destructuring
pattern.

prologue-forms
This is a list of forms which should be included in the loop prologue.

the four items of the iteration specification
Thesc are the four items described in section 17.6, page 159: pre-step-endtest, steps,
post-step-endtest, and pseudo-steps.

another four items of iteration specification
If these four items are given. they apply to the first iteration, and the previous four
apply to all succceding iterations; otherwise, the previous four apply to all iterations.

MC:NII. MAN:1.OOPTM 319 : 23-DEC-83

lteration Paths ‘ - 166 : NH. Manual

Here are the routines which arc used by loop to compare keywords for cquality. - In all cascs,
a foken may be any LISP object, but a keyword is cxpected to be an atomic symbol. In certain
implementations these functions may be implemented as macros.

s1:Toop-tequal tken keyword :
This is the loop token comparison function. token is any Lisp object; keyword is the
keyword it is to bc compared against. It returns t if they represent the same token,
comparing in a manner appropriate for the implementation.

si:loop-tmember token kevword-list ;
The member variant of si:loop-tequal.

si1:loop-tassoc twhken keyword-alist
The assoc variant of si:loop-tequal.

‘The following mucro turns into the "proper” code for generating a temporary variable in a
particular 11SP implementation.

s1:Toop-gentemp Koptional profis

This expands into a call to the proper function for constructing a temporary variable.
Depending on how it expands, the form prefix may not get used (so it should not have
interesting side cffects!). In NI {(and ecventually in some other implementations), this
utilizes the gentemp function so that the gencrated variable will be interned and
somewhat mnemonic: in this case. prefix (which should be a symbol or a string) will he
used as a prefix of the gencrated symbol. * In - other implementations, si:loop-gentemp
will expand to just a call to gensym, and throw away prefix.

If gentemp does get used but prefix is not supplied, then the prefix loopvar- is used so
that the variable is identifiable as originating with loop. :

If an iteration path function desires to make an internal variable accessible to the user, it
should call the following function instead of si:loop-gentemp:

si:loop-named-variable keyword _ ,
This should only be called from within an itcration path function.. If keyword has been
specified in a using phrase for this path, the corresponding variable is returned;
otherwise, si:loop-gentemp is called and that new symbol returned. Within a given path
function, this routine should only be called once for any given keyword. '

If the user specifics a using preposition containing any keywords for which the path
function does not call si:loop-named-variable, loop will inform the user of his error.

MC:NIL.MAN:L.OOPTM 319 : ' ‘ 23-DEC-83

NII. Manual 167 licration Paths

17.7.2.1 An Example Path Definition

Here is an example function which defines the string-characters iteration path. This path
steps a variable through all of the characters of a string. It accepts the format
(loop for var being the string-characters of srr ...)

The function is defined to handle the path by
(define-loop-path string-characters string-chars-path

(of))

MC:NILMAN:1.OOPTM 319 23-DEC-83

Heration Paths . 168 ' NH. Manual

Here is the function: ‘
(defun string-chars-path (path-name variable data-type
prep-phrases inclusive?
allowed-prepositions data
&aux (bindings nil)
_ {prologue nil)
string-var
index-var
size-var)

(declare (ignore allowed-prepositions data))

(setq string-var (si:loop-gentemp *loop-string-)
index-var (si:loop-gentemp ’loop-index-)
size-var (si:loop-gentemp 'loop-size-))

;: To iterate over the characters of a string. we need

; to save the string, save the size of the string,

; step an index variable through that range, setting

; the user’'s variable to the character at that index.

Default the data-type of the user’'s variable:

(cond ((null data-type) (setq data-type string-char)))

; We support exactly one "preposition”, which is

: required, so this check suffices:

(cond ((null prep-phrases)

(ferror nil "OF missing in ~S iteration path of ~S"
path-name variable))) ’

; We do not support "inclusive" iteration:

(cond ((not (null inclusive?))

(ferror nil
"Inclusive stepping not supported in ~S path ~
of ~S (prep phrases = ~:S)"
path-name variable prep-phrases)))
; Set up the bindings
(setq b1nd1ngs (1ist (list variable nil data-type)
~ (list string-var (cadar prep-phrases))
(list index-var 0 ’fixnum)
(list size-var 0 'fixnum)))
; Now set the size variable
(setq prologue (list ‘(setq ,size-var (string-length
.string-var))})

; and return the approprlate stuff, explained below,

(1ist bindings
prologue
‘(= ,index-var ,size-var)
nil
nil
(list variable ‘(char ,string-var ,index-var)

index-var ‘'(1+ ,index-var))))

MC:NIL.MAN:LOOPTM 319 , 23-DEC-83

NII. Manual o 169 s Itcration Paths

The first clement of the returned list is the bindings. The sccond is a list of forms w0 be
placed in the prologue. ‘The remaining clements specify how the iteration is to be performed.
This example is a particularly simple case, for two reasons: the actual “variable of iteration”,
index-var, is purcly internal (bcing gensymmed), and the stepping of it (1+) is such that it
may be performed safely without an endtest. Thus index-var may be stepped immediately " after
the sctting of the user's variable, causing. the iteration specification for the first iteration to be
identical to the itcration specification for all remaining iterations. This is advantagcous from the
standpoint of the optimizations loop is able to perform. although it is frequently not possible due
to the semantics of the iteration (c.g., for var first exprl then expr2) or to subtletics of the
stepping. 1t is safe for this path to step the user’s variable in the pseudo-steps (the fourth item of
an iteration specification) rather than the "real” steps (the sccond), because the step value can
have no dependencies on any other (user) iteration variables. Using the pscudo-steps gencrally
results in some cfticiency gains,

If onc desired the index variable in the above definition to be user-accessible through the
using phrase feature with the index keyword, the function would need to be changed in two
ways. First. index-var should be set to (si:loop-named-variable ‘index) instcad of the call to
si:loop-gentemp. Sccondly, the cfficiency hack of -stepping the index variable ahcad of }e
itcration variable must not be done. This is cffected by changing the last form to be
(list bindings prologue
nil
(1ist index-var '(1+ ,index-var))
‘(= ,index-var ,size-var)
(1ist variable “{char ,string-var ,i1ndex-var))
nil '
nil
‘(= ,index-var ,size-var)
(1ist variable *(char ,string-var ,index-var)))
Note that although the sccond ‘(= ,index-var ,size-var) could have becn placed carlier (where
the sccond nil is), it is best for it to match up with the equivalent test in the first iteration
specification grouping.

MC:NILMAN:L.OOPTM 319 ’ 23-DEC-83

‘The Flavor Facility 170 NIL. Manual

18. The Flavor Facility

18.1 Introduction

~Languages such as Smalltalk and Act-1 are designed to encourage a style of programming
called object-oriented programming. - LISP MACHINE LISP offers a facility for . object-oriented
programming as well; it is calicd the Flavor System. or just flavors. Nii. offers a morc primitive
version of flavors than is available on the Lisp Machine. but unless you do quite comphcatcd
things with ﬂamrs you will probably never notice the difference.

18.1.1 Object-oriented Programming

Suppose you were writing a file system. You might have scveral different types of files,
including. for cxample, binary files: and text files. If you wrotc a program to print files on a
user's temminal. and you wanted it to print ASCH characters when the user printed a text file, but
octal numbers when the user printed a binary file, you might implement it as follows:

(typecase file
(binary (octaliy-print file))
(text (ascii-print file)))
That is, you might dispatch off the type of the file, calling the appropriate function to print the
file. It might be nicer, however, to keep the information about how the file should be printed
with the file itself. That is. the method used for printing itsclf could be part of the information
contained in cach file. we could simply decide that every type of file we will support in our
operating system will know how to perform certain operations, and we could specify printing on a
terminal to be one of them. Then we would implement the above as
(send file :print-contents)
where :print-contents is the name of a method that could be specified for each type of file.

On simply looking at the differences between the two samples of code, onc¢ might notice that
the sccond expresses much more clearly and compactly what we are doing: printing the file. We
trust whoever defined this type of file object to have defined a reasonable :print-contents method
for it, and we don’t worry any further about type-dispatching and the like. Thus object-oriented
programming constructs can have the cﬂ‘cct of freeing the programmer from an cxtra level of
detail. -

This should sound familiar even to users who have not used flavors, because it is similar to
generic arithmetic in COMMON Lisp. In fact, operations that work for more than one type of
object (like the imaginary :print-contents above) are called generic operations.

Another thing we might notice about the object-oriented way of doing things is described by
its name. We might say somewhat fancifully that the files in our example above have been raised
from the realm of “inanimate data™ to being objects that can do things. A file has become an
object that knows how to print itself, and can be asked to do so.

MC:NILMAN:FLLAVOR 44 23-DEC-83

NI, Manual . o 171 Introduction

Objects can know of things besides their methods for performing operations, and this brings
up another advantage of object-oriented programming. which is uscful cven when one is not
planning on implementing operations that will work on a large class of objects. Two objects of
the same type will share the same methods for performing an opcration. But two objects -of the
same type can still have distinct state. They can have instance variables: variables that are local
to cach instantiation, in much thc same way that scoped variables are local to a function call.
For cxample, the file objects we were discussing above could have variables :author and :write-
date, and cach objcct would have its own value for these variables.

18.1.2 Object-oriented Programming Using Flavors

When we use flavors to write object-oriented code. the objects themselves are not flavors.
They arc instamtiations of flavors. - The flavor of an object is actually its type. We definc -a flavor
using defflavor. "The definition of a flavor looks like

(defflavor flavor-name instance-variables
component-flavors
optionl option2...)

The flavor-name can be any symbol, the instance-variables a (possibly null) list of symbols
(variables) and their initial values, the component-flavors a list of flavors, and the options will be
described further below. A more concrete example is:

(defflavor bicycle ((wheel-size nil) (gear-ratios nil)
: {selected-gear nil)

(distance-travelled nil))
()
:gettable-instance-variables
:settable-instance-variables)

The option :gettable-instance-variables will cause a method that will return the value of
that instance variablc to be defined for cach of the instance variables. :settable-instance-
variables will cause a method that will allow us to set the value of that instance variable to be
generated for each instance variable.

If we want to create an instantiation of the flavor bicycle, we usec make-instance:
{setq my-bike (make-instance 'bicycle))
returns
#<BICYCLE 12878B8>
or something like it. This object can be described:

MC:NILMAN:FLLAVOR 44 23-DEC-83

Introduction P V)i ‘ NII. Manual

(describe my-bike)

The instance at address 1287B8 is of flavor BICYCLE and is 4
Q's long. It directly or indirectly includes flavors (BICYCLE
VANILLA-FLAVOR), and is of the types (BICYCLE VANILLA-FLAVOR).
The 4 instance variables are:

WHEEL-SIZE NIL

GEAR-RATIOS NIL

SELECTED-GEAR NIL

DISTANCE-TRAVELLED NIL
NIL

We can cause an instantiation of a flavor to cxeccute a method with send. ‘The methods
created upon definition of a flavor with the option :settable-instance-variables have the names
of the instance variables appended to “"set-". but arc in the keyword package. Thus we could set
the value of wheel-size like this:

(send my-bike :set-wheel-size 27).
The methods created on definition of a flavor with the option :settable-instance-variables arc
the same as the names of the variables, but are in the keyword package. So we could get the
value of :wheel-size like this:

(send my-bike :wheel-size)

27

We can dofine mcthods for the flavor we've crcated with the funciion defmethod.

send object message &rest args ‘
This is the basic message-passing primitive. It should be uscd instcad of funcall, which
has been used in the past in ISP MACHINE LISP.

lexpr-send object message &rest args
This is to send as lexpr-funcall (which is apply (page 31), as it is defined now) is to
funcall.

There must be at least one arg given, and the last one must be either a list or a vector.
The object is sent message with arguments of all of the other args followed by all the
elements of the last arg.

send-forward object message {arg}*
This is only valid within the lexical scope of a defmethod definition.

Let the flavor which this method was dcfined on be called flav. send-forward then does
a send, but starts scarching for methods to handle message after flav.

n.b. send-forward is ncither as cfficient as it should be nor as efficient as one would like,
yet. Note that it can be used to acheive many of the same cffects as method combination.

MC:NIL.MAN:FI.AVOR 44 ' : 23-DEC-83

NIl. Manual 173 Introduction

lexpr-send-forward object message {arg}*
l.ikc lexpr-send. but docs send-forward.

make-instance flavor-name &rést keyworded-arguments .
This is the primary instantiation function. The keyworded-arguments arc alternating
keywords and values. Typically, they specify initial values for the instance variables which -
arc initable (as specified with the :initable-instance-variables option to defflavor). They
may also be arbitrary keywords which are checked for validity against thosc specified with
the sinit-keywords option to defflavor, which (merged with the cinit-plist specification to
defflavor) will be passed as arguments to the :init method of the flavor.

defflavor flavor-name instance-variables included-flavors options...

Slavor-name is the name of the flavor being defined. After it is defined. it is acceptable as a
sccond argument to typep (page 18), which will return t if given a sccond argument of flavor
name and a first argument of an instantiation of flavor-nume, or any other flavor which dircctly or
indircctly includes flavor-name. -

instunce-variables is a list of instance variables or lists of instance variables and forms to cval
to obtain their initial valucs. These are not necessarily all of the instance variables of the
instance: some may be inhcrited from other flavors. which flavor-name is being built from.
However, compiled flavor methods for flavor-name may not know about those inherited instance
variables. so if you "know” that a flavor is going to have certain variables and nced to use them,
vou chould include them here. (Note that in the current NIU instance varichle inheritance s
performed when the defflavor form is compiled, so one will not reccive a diagnostic about this.
The inheritance will be deferred in in some later release, however, to provide for other features,
including the ability to not have the component flavors of flavor-name defined when the deffiavor
is being compiled or interpreted.)

If an atomic instance variable is specificd in the instance variables list, then the instance
variable is initialized "unbound” by make-instance (assuming no initialization was specified with
make-instance). This will cause an unbound variable refercnce in the NIL interpreter; external
("outside accessible™) references will just pick out the unbound pointer. as will compiled
references to the instance variable, and probably cause some spastic bchavior later.

Otherwise, the instance variable specification should be a list of the instance variable and an
initialization form, which will be evaluated to determinc the initial value. (NIL. actually does not
usc eval, but stores the value either as a constant, if it sclf-cvaluates, or as a function of no
arguments which evaluates the inidalization form; this function will be compiled when the
defflavor form is compiled.)

The following defflavor options all dcal with instance variables which must be listed in the
instance-variables given for the defflavor. They may appear as atomic options, like :gettable-
instance-variables and :settable-instance-variables in thc bicycle cxample (page 171), in
which case they refer to all of the instance-variables of the defflavor, or listed with those hey
pertain to, as in ‘

MC:NILMAN:FLLAVOR 44 ; 23-DEC-83

Introduction : _ 174 N Manual

(defflavor frob (var-1 var-2 var-3) ()
:gettable-instance-variables - ‘ _
(:settable-instance-variables var-1 var-2))
in which var-1, var-2, and var-3 are all :gettable, but only var-1 and var-2 are :settable.
" :gettable -instance-variables
Causes automatic generation of mcthods which wnll fetch- the values of the spcmﬁcd
instance variables. Each method name is the name of the variable interned in the
keyword package. ‘Thus in the bicycle cxample, onc may send a bicycle the :distance-
travelled message to find how far the bicycle has traveled.
:settable-instance-variables
Causes automatic gencration of mcthods which will replace the values of the specified
instance variables. - Fach method takes exactly one argument. the new value. The method
name- will be the concatentation of "SEF-" and the instance variable name, interned in
the keyword package.

:initable -instance-variables
‘This specifies which instance variables mdy be trivially initialized by make- lnstance (and
instantiate-flavor). For those which may be. it is done by specifving a keyword which is

the instance variable name interned in the kcyword package followed by the value. For
example,

(make-instance ‘'bicycle :wheel-size 26)
:outside-accessible-instance-variables
This causcs automatic goncration of macios which access e specificd nstance variabies
without sending messages. In principle this is more cfficient than scnding the message: it

of course, requires that the instance have such instance variables. ‘This is most uscful .

when the instancé variables are ordercd (sce below): otherwise, some lookup has to be
performed.
:ordered -instance-variables

The instance variabics will be ordered in the instance in cxactly the order they are listed
here, starting from slot 0. This can be done to allow super-fast external accessing, or

simply because other low-level code (like VMS asscmbly language routines) needs to be
able to understand the structure.

:special-instance-variables
don’t work.

:functional-instance-variables
no workee.

Other options. Many of the instantiation-time checks are not performed, and some are sort of

meaningless in the current implementation. This is becausc this implementation performs all
inheritance computations at eval or compile time.

rrequired-flavors

‘The favors listed are required to be included in any flavor which includes this one.
make-instance is supposcd to barf if that is not the casc.

:required-instance-variables
The instance variables listed are required to be defined by any flavor which includes this

MC:NI.MAN:FL.AVOR 44 23-DEC-83

g b RN bR s i R A

ERAIE L SRR s

NIl. Manual . 175 Introduction

one, and make-instance is supposed to barf if that is not the case.

rrequired-methods

Any flavor including this flavor is required to support the listed methods. This is alledgely
checked at instantiation time. '

:no-vanilla-flavor

Do not include vanilla-flavor, as is donc by defauit.

included-flavors

Sort of like building the flavor from the named flavors, but they are made to come last
always. where is the inheritance-order and vanilla-flavor insertion and this explained?

flavor-not-instantiable

This flavor is not itself instantiable. This should be specified for things which arc not
complete in themselves, but mixin flavors—flavors which are mecant to be mixed in to
provide some aspect of other flavors.

;init-keywerds

Allowatic keywords which make-instance will pass along to the init message when a
flavor is instantiated.

:default-init-plist

Alternating keyword-values, which are supplied to the :init message when a flavor is
instantiated, unless the keyword was supplied alrcady to make-instance.

:documentation

ummmm

defmethod (flavor-name message-name [message-type}) arglist body...

Defines a method message-name for flavor. message-type is not supported, do not use it.
arglist is any lambda-list acceptable to Nik. self will be bound (lexically) for the
evaluation of body. '

Lexical instance variables are correctly enclosed by the NIL interpreter in this version of
NIL. The only time this can fail is if there is any funny stuff with how the definition is
being performed, like evaluating a defmethod inside the lexical environment of another
defmethod or a defun. This would not work compiled anyway.

defmethod-primitive (favor-name message-name) arglist body...

This is used to define a method withour interfacing to deal with the self variable or the
instance variables. The arguments which the gencrated function receives will be the object,
the map vector, the message, and the other arguments. This routine exists primarily for
primitive low-level method-generation code, as that which might be used by defstruct.

MC:NILMAN:FLLAVOR 44 : 23-DEC-83

System-Defined Messages 176 NIl Manual

18.2 System-Defined Messages

Here are some of the mcssagcx the system uses to deal with objects defined by defflavor. and
what thcy mean.

:print-self strcam level slashifi~p . :
The object should print itsclf to the stream stream. level is the recursion level of printing,
and should be compared against the dynamic value of prinlevel. . slashifi=p being non-null
mcans that the output should maybe bc re-readable; it is being done by print rather than
princ.

If you usc this in a non-trivial fashion (specifically, - if the object will be printed in a non-
atomic fashion). then it might be reasonable to define methods for the pretty-printer using
the :pp-dispatch and :pp-anaphor-dispatch methods, and define: the non-pretty-printing
:print-self method in terms of how the pretty- pnmmg is performed. This is described in

(71

sequal other-object
‘The method should return t if its object is equal to other-object, nil if it is not. other
object will be of the exact same type as the object recciving the message (a conscquence
of the formal definition of equal, page 20). This mcssage is also used by eql (page 20)
on numgcrical types which arc.not “primitive” NIL data types.

:sxhash
The object should return a hash encoding of itself, such that two objects which are equal
have the same hash. See the description of sxhash, page 119, for the semantics which
must be enforced, and note also the default :sxhash method, page 177.

ceval
Allows extending the evaluator in strange and wondrous ways to handle evaluation of non-
list forms. Note that certain types which arc defined to self-cvaluate do so by special casc
checks in the interpreter, so one cannot change the evaluation behaviour of those types
The compiler can’t handle these extensions however.

:funcall argument-vector ;
‘This is what happens by default when a funcall is performed on an instance. argument-
vector is a stack vector (section 3.1, page 15) of the arguments.

sdescribe Zarguments?
This is what is used by the describe function (page 222).

texhibit-self siream

:select-nth n

:store-nth n value

' These are uscd by the exhibit function (page 222) to definc how exhibition is performed
on objects of the given type. Basically, exhibition is initiated by sending the object a
:exhibit-self message; it should respond by printing out the appropriate information, and
returning the number of “slots” or “indices” which it includcs. (Iry exhibiting various
NIL objccts to sce the format: do nof include the clear-screen in the display. The indices

MC:NILMAN:FL.AVOR 44 ' 23-DEC-83

NIL. Manual . 17 Message Defaults

printed out in the initial display arc printed by this mecthod.) Then, the object will be
sent (as the uscr interacts) :select-nth and :store-nth messages to sclect and store the
corresponding components. Generally, there is no need to define such a method for
ordinary flavors, as the method inherited from vanilla-flavor will show the instance
variable names etc.

:pp-dispatch formar-description?

:pp-anaphor-dispatch
These arc used by the N pretty-printer [7]. :pp-dispatch is used to control formatting;
to usc this you will neced to consult the pretty-printer documentation. :pp-anaphor-
dispatch is used to detect circularities in the structure being printed: all that is normally
needed is to call the function pp-anaphor-dispatch on cach of the components which
will be printed by the :pp-dispatch mecthod. ‘These mcthods should be defined in pairs,

so that they refer to the same set of components. :
\

18.3 Message Defaults
Here are some of the messages provided by vanilla-flavor, and what they -do.

:print-self stream level “slashify-p
Prints somcthing vaguely informative.

:get-handler-for message-name
Returns the handler function for the message message-name, or nil. In NI, this is.
necessarily of type compiled-function. '

:operation-handled-p message-name
Returns a non-null valuc if the object supports a message message-name, nil otherwise.

:send-1f-handles message &rest args
If the object supports message, then it is sent that message with arguments of whatever
args were passcd; otherwise, nil is returned.

:which-operations
A list of all of the messages which the object handles is returned. This is computed
dynamically and cached on a per-flavor basis.

:equal
By default, two objects are equal only if they are eq. If the object has interesting
criterial components, it must define an equal message to compare them.

:sxhash
The default :sxhash simply returns a hash computation on the name of the flavor. The
rcason for this is that if two objects are equal, their sxhashes must be equal. So, if the
object doecs anything intcresting for the :equal message, it should probably dcfine a
compatible :sxhash message so that different objects will hash differently.

MC:NIIMAN:FLAVOR 4 23-DEC-83

Message Defaults - 178 - NH. Manual

:exhibit-self siream
:select-nth ,
:store-nth n value
The default exhibition method displays the all of the instance variables of the instance,

and their values. The select and storc methods just allow one to ferch and modify the
variables by index.

‘pp-dispatch Jormat-description? ’
The default ‘Pp-dispatch ‘method pretty-prints © the object the way it prints (via :print-
self). and treats it as atomic. If you define a ‘print-self method for something, the :pp-

dispatch method may ot function as desired. in that it will not do any formatting of the
compaonents. : ‘

:pp-anaphor-dispatch _ ‘ :
‘The default ‘PP -anaphor-dispatch mcthod docs nothing. on the grounds that the :pp-
dispatch method will not be printing any components, '

MC:NILMAN;FLAVOR 44 s : 23-DEC-83

NII. Manual 179 Input, Output, and Strcams

19. Input, Output, and Streams

Input and output in NIL is performed by operations on sfreams. Some strcams can operate in
only one dircction (input or output), and some can operate in both.

streamp x
Returns t if x is a strcam, nil otherwise.

Most operations on streams are performed by functions which tuke the stream as one of its
arguments. possibly defaulted. - Although ultimately the strcam operations turn into message-
passing using the flavor system, these functions are the perferred way to do things, as they
perform what mediation might be necessary between the desired effect and the strcam’s
capabilitics.

19.1 Standard Streams

The following variables have as their valucs: streams used for various purposcs. In the future,
the names will be changed to have * characters at both ends: ¢.g.. standard-input will become
sstandard -inputs.

standard-1input Variable
This is used as the default stream for various input functions, and for the toplevel and
breaklevel loops.

standard-output Variable
This is used as the default stream for various output functions, and for the toplevel and
breaklevel loops.

terminal-io Variable
The valuc of terminal-io is ordinarily the stream which connects to the user’s console.

error-output Variable
This is the stream to which error messages should be sent. Normally, it directs output
through the value of terminal-io (but sce comments below), but it could be made to
send them to a file, for instance. (This may not be used properly yet.)

query-io Variable
This stream is uscd to ask questions of the user. Normally it uses the terminal, but could
be made to (for instance) log both the input and the output of the transactions.

strace-outputs Variable
This is the stream to which output from tracing (see the trace function, page 220) is sent.

All of the above strcams, with the exception of terminal-io, are initially bound to synonym
strcams which pass all operations on to the stream which is the value of terminal-io.

MC:NILMAN:NEWIO 27 ' 23-DEC-83

\

Stream Creation and Operations . 180 ’ NIL Manual

The value of terminal-io should not normally be changed; to change where various input and
output is sent. the appropriate other stream(s) should be modified. There arc occasions when it
might be rcasonable to change the value of terminal-io, however, which is why the other streams
arc supposed to indirect through the value of it: fancy graphics or window hacking might
necessitate making a completely new stream for it. This type of thing will be dealt with in some
later version of this document. ' ‘

Nit. additionally. defines the followmg strecams, which should probably be flushed, or at least
renamed with something more in line with the above vanablcs

msgfiles : Variable
‘This is used for random kinds of message pumum which will not require mtcracuon on
the part of the uscr. The compiler. for instance, prints its notifications here.

si:debug-1nput ; Variable
si:debug-output Variable
‘These are the input and output streams used by the current interactive decbugger. When
the next debugger is in use, it will be using some combination of error-output and
query-io.

19.2 Stream Creation and Operations

open what &rest keyworded-arguments
The open function is the function used for creating strcams which interface to 170
devices in Nir. It is likely that this will change in the future, such that cach specific type
of "opening” has its own specialized function (e.g., for “files”, “"terminals”. possibly other -
devices). in which case open will be for "files”.

First, keyworded-arguments is put into a canonicalized form. Essentially, open is
considered to ke altermating keyword/value arguments. However, for MACLISP
‘compatibility, if open is given exactly two arguments, the second is interpreted as cither a
~ single keyword, or a list of single keywords, which are mapped specially into the standard
open keyword arguments. Thus, in NIL, '
(open pathname ’out)
opens pathname as a standard buffered ascii output file, and
(open pathname)
opens pathname as an ordinary buffered ascii input file.

open attempts to determine the way in which to actually perform the open by looking at
the options. 1 am being very vaguc about this because it is going to change somewhat,
but hopefully will remain. upwards compatible. If there is a :type keyword, then the
argument to that is used to tell open what type of open is bemg performed. The
interesting oncs right now are

«dsk :
which says that what should be interpreted as a pathname, and the open will
refer to a file in some ﬁlcsystcm The specifics of this for V™S are discussed later
in (page 202).

MC:NH.MAN:NEWIO 27 ; 23-DEC-83

:d'\sp\a\]’ﬁy
hich i Wk Aty but sels
ore momug,h\y y

d’\scx\ssc

A 0o qype W
Kevwort .-m;'umcnls.
and (his €& \o Afg

Stream Creation and Operations . 182 ‘ : - NI Manual

make-synonym-stream symbol
‘This makes a synonym stream.. Such a strcam directs (most) operations on it to the
current dynamic binding of the variable symbol. In this way, the stream produced can
always be indirecting to another strecam, cven whcn the valuc of symbol changes by its
being bound or setqed.

make-string-output-stream &optional &key (line-length 79) (line-number 1)
(:page-length 60) (:page-number 1) (:character-position 0)
‘This creates a stream which will accumulate all output given to it. ‘This output may be
obtained as a string by get-output-stream-string. below. ’

The aptions are used to initialize various parameters of the strcam, so that formatting may
be performed to it. By special dispensation to- COMMON 11SP, if make-string-output-
stream is given cxaub one argument, that is the line length.

get-output-stream- str‘ing sIrmg-uulpui-slrmm :
string-output-strearn should be a’ strcam grc.:tcd by make-string-output-stream. ‘This
returns all of the text accumulated since the last call to get-output-stream-string on this
stream. or the stream’s creation, as a string.

with-output-to-string (var . options) body...
This binds var to a strcam which will accumulate all output sent to it as a string, which
will be returned when with-output-to-string rcturns. The oprions which the strcam may
he ereated with are nassed directlv to make-string-putnut-stream, qv, The stream so
created has only dynamic extent: it is allocated as a resource, and deallocated on cxit
from with-output-to-string. As such, with-output-to-string can bc more cfficient than
calling make-string-output-stream and get-string - output-stream-string yourself.

make-string-{input-stream swing &optional &kcy (:startQ) :end
This rcturns a stream which, when rcad from, will producc the characters of string from
start to end (defaultly the end of the string). The behaviour of the stream is undcﬁned if
- string is modified during the reading.

with-input-from-string (var siring . options) body...
This cvaluates body in an environment in which var is bound to a stream created by
make-string-input-stream with a string of srring and cxtra options options.

The stream so created, however, has only dynamic extent., The stream is allocated on
entry and deallocated on exit for later reuse, so with-input- from string can be more
efficient than doing this yourself.

MC:NIL.MAN:NEWIO 27 ' 23-DEC-83

NII. Manual . 183 Input Functions

19.3 Input Functions

First some functions not specific to ascii input strcams (nccessarily). listen and clear-input
could. conccivably be meaningful on strange. peripheral devices (dreamer. aren’t i7).

1isten &optional inpurstream i
‘This will return nil if there is no input immediately available from input-sream, non-null
otherwise. On a terminal, the intent is that it tells whether the user has typed some input
which has not been rcad yet. On non-interactive streams it should be true except at end-
of-file: most streams probably don’t support it yet.

clear-input &optional inpui-stream
Flushes buftcred input from input-stream. This only works on the terminal right now. (It
isn’t really. meaningful for non-intcractive strcams.)

19.3.1 Ascii Input

Most of the functions which read input take arguments inpur-stream and eof-value. In general,
if input-stream is nil or not supplied, it defaults to the value of standard-input; if it is the atom
t. the value of terminal-io will be used. ' :

If no eofvalue is specificd. then an error will-be signalled at end-of-file, otherwise the eof
value will be rcturned. Specifying an eof-value of nil is not equivalent to specifying no eof-value.

When input is rcad from an interactive strcam, the characters typed will be cchoed at the -
user. For those functions which do some significant amount of reading, such as readline or read,
rubout processing will be provided. In -this case, specifying an eofvalue means that if the user
attempts to "rub out” past the beginning of what he was typing. the function will return eof
value, instead of requiring him to type a complete expression (line, s-expression, whatever the
function calls for).

What actually happens right now is that specifying an eofvalue when reading from an
interactive stream, dies.

read-char &optional input-stream eof value
Reads one character from input-stream.

This doesn’t seem to take eof-value yet?

peek-char &optional input-stream eof-value
This definition is wrong. The arguments should be peek-type, input-siream, eof-value. It
will eventually be fixed.

Peck at a character in the input strcam. Like read-char, but the next call to read-char
will return the same character.

MC:NILMAN:NEWIO 27 ; 23-DEC-83

Output Functions 184 NH. Manual

unread-char character &optional input-stream)
Undoes a read-char. peek-char, in the simplc casc, could have been (sometimes, is)
defined as being a read-char followed by an unread-char of the character just read.

Input streams arc only required to support the ability to back up onc character: multiple
unread-chars without intervening read-chars arc an error.

readline &optional input-stream eof-value
Reads a linc of text from inpur-stream and returns it. as-a string.. A sccond value is
returned. which is t if end-of-file was rcached, nil otherwise.

read &optional input-stream cof-value
Reads one s-expression from inpus-stream. and returns it. Rceading and rcader syntax -is
discussed in scction 16.3, page 126.

19.3.2 Binary Input

The semantics of binary input arc stream specific. In gencral. integers of some significance
arc rcad. and NI places no special interpretation on any particular values. ‘The only sort of
binary input NIL supports, however, only rcads unsigned cight-bit bytes from disk files.

read-byte input-stream &optional eof-value
Reads onc byte from input-stream and returns it as an integer, unless end of file is
reached. in which casc the normal end-of-file bechaviour occurs. ’

19.4 Output Functions

Similar to the input functions, if an optional owtput-stream argument is not supplied to an
output function, it defaults to the value of standard-output.

First some functions applicable to both ascii and binary streams.

force-output ourput-stream
The purpose of force-output is to ensure that no output which may have been produced
is sitting around in anyonc's buffers. If outpui-stream is buffered by NIL, the output
should be sent to the operating system (or whatever), and if necessary, the operating
system told to send the contents of its buffers off to their eventual destination.

In practice this doesn’t do anything yet in NIL.

finish-output ouiput-stream
This is like force-output, and additionally does not return until the output has actually
reached its destination.

If a strcam does not handle this, which no currently implemented NIL streams do, a
force-output is done, q.v.

MC:NILMAN:NEWIO 27 23-DEC-83

NII. Manual . - 185 _ - Output Functions

clear-

194.1

write-

output owiput-stream

The purpose of this is to cause as lirtle as possible of any output alrcady sent to outpui-
stream w reach its destination: just as force-output attempts to get all buffers sent off,
clear-output attempts to gcet all buffers flushed.

This is primarily intended for terminals, although it could be meaningful for random
other devices (ascii and binary). It docs not do anything, and is not really cxpected to,
to a random disk file.

It doesn’t do anything to anything in NiL.

Ascii Output

char char &optional output-stream
Writes char (0 output-stream.

terpri &optional outpur-stream

fresh-

oustr

1ine &aptional - output-stream
terpri performs a newlinc on ouipui-stream.

fresh-line docs so, unless it can determine that the "cursor” is at the left margin.

fresh-line is supposed to return t if it performed a newline, nil otherwise. terpri always
returns nil, for historical rcasons.

string &optional output-stream (start0) count

Standard NIL string-output. Outputs the characters of string, starting at index start and
procceding for count characters, to output-stream. ‘This is not defined by COMMON 118p,
but has been in NIL for some time and is extremely uscful for doing efficient output
becausc it passes a pscudo-substring defined by start and count along to the strcam. Most
NIL streams do this more efficiently than single-character output, especially the terminal
stream. '

write-string siring &optional stream
write-11ine string &optional stream

princ
prini
print

Writes the characters of string to stream. write-line follows them by a newline (terpri,
page 185). In NIL this is almost always faster than using a loop of write-chars.

object &optional output-stream
object &optional output-stream
object &optional output-stream
Standard Maclisp-style printing functions.

prin1 is the basic printing function. which attempts to output the printed representation of
object 10 output-stream in such a way that it might be reconstructable with read. No

~newline or whitespace of any kind is output before or after, so delimiters of some sort

might be nceded between successive calls,

MC:NILMAN:NEWIO 27 23-DEC-83

Formatted Output . 186 ; : NIL. Manual

print adds thosc necessary delimiters: it does a terpri first, and writes a space character
afterwards.

princ is pretty much the same as print except it does not try to make the . output
rcadable with read, but rather outputs things "literally” insofar as that is possible with
arbitrary Lisp objects. Strings, - for cxample, arc written as if by oustr—simply their
contents. Symbols have their print-names written as for strings. ctc. Numbers are
generally printed the same as they are by prini.

19.4.2 Binary Output

write-byte integer binan-output-stream
Writes the byte integer o binan~output-stream.

Note that the order of arguments here is the reverse of what the MACLISP out fiinction
takes. Because of earlier confusion, the write-byte function accepis its arguments in either
order right now. ‘ : : '

It is an crror if integer docs not fit in the byte size the strcam deals with. How is this
defined? ' Probably by the stream. le. the bytes could be signed or not, the current ones are
not and are 8-bits, so integer can range from 0 to 255.

write-bits binan~-output-siream bits
Writes the bit-vector bits to binan=-output-siream. . The intent of this is that bits is taken to
be a concatenation of many ‘bytes of data of whatever size the stream deals with.

It is an error for the size (in bits) of birs to not be an exact multiple of the byte size of
the stream. ' ‘ ,

This function is provided primarily to help speed up the NIL compiler in creating VASL
files. The semantics may change some as additional forms of binary strecams are added to
NIL.

This may in fact be flushed.

19.5 Formatted Output

Sce also format, which is sufficiently complex (and, in NIL, somewhat programmable) that it
a scparate section devoted to it (section 19.6, page 187).

pretty-prinl object &optional stream
Similar to prin1, but outputs object in (what is hoped to be) a significantly more acsthetic
format, with indentation showing ncsting depth ctc. The output starts wherever the cursor -
happens to be on stream; pretty-print may be used to do this on a new line.

pretty-prin1 assumes that object is actually LISP code, and bascs its formatting behaviour
on stylistic conventions uscd for indenting various program constructs. pretty-print-
datum may be used if object should not have these heuristics applied.

MC:NILMAN:NEWIO 27 23-DEC-83

NII. Manual 187 - Format

In N, pretty-prin1 attempts to determine thc cxmcncc of circular structure, and show
this somchow without blowing up.

The pretty-printer itself is described in much more detail in [7].

pretty-print object &optional stream .
pretty-prin1, with a terpri first and output of a spacc character after. 'fhis, pretty-print
is to pretty-prin1 as print is to prin1.

pretty-prinli-datum object &optional siream
l.ike pretty-prin1. but decs nor assume that object is 11SP code.

pretty-print-datum ()b}(’(‘l &optional stream
Similar.

19.6 Format

This section is a quick reworking of the chapter on format which appeared in [3]. It omits
topics specific to implementations of: format other than NII's, and includes references to
differences between what NIL currently provides, and the ~dcfinition: of format provided by
COMMON LISP. It is not known at this time how the COMMON LISP dcfinition of format will affect
the MACLISP implementation, which utilizes the same source code as the Nil. implementation right
now. The NIL version of format will of course be made to conform to the COMMON LISP
definition.

format destination control-string &rest args :
format is uscd to produce formatted output. format outputs the characters of control-
string, cxcept that tilde ("~") introduces a directive. The character after the tilde,
possibly preceded by arguments and modifiers,. specifies what kind of formatting is ‘desired.
Some directives use an element of args to create their output.

The output is sent to destination. 1f destination is nil, a string is created which contains the
output. If destination is t, the output is sent to the "default output destination”, the value of
standard-output (page 179). Otherwise, destination should be an output stream.

?format destination control-string &rest . args
This is equivalent to format except that destination is interpreted just like the stream
argument to print—nil means "the default” (the value of standard-output), and t means
"the terminal” (the value of terminal-io). This only exists in MACLISP and NIL.

A dircctive consists of a tilde, optional decimal numeric paramecters scparatcd by commas,
optional colon (™:") and atsign ("@") modifiers, and a single character indicating what kind of
directive this is. The alphabetic case of the character is ignored. Examples of control strings:

"~gh ; This is an S dircctive with no parameters.
"~3,4:0s" : 'This is an S dircctive with two parameters, 3 and 4,
: ; and both the colon and atsign flags.

MC:NILMAN;NEWIO 27 : 23-DEC-83

Format) 188 ‘ NIl. Manual

format includes some coxtremely complicated and specialized features. It is not necessary to
understand all or even most of its features to usc format cfficiently. 'The beginner should skip
over anything in the following documentation that is not immediatcly useful or clear. 'The more
sophisticated features arc there for the convenience of programs with complicated formatting
requircments.

Sometimes a numeric parameter is used to specify a character, for instance the padding
character in a right- or left-justifying operation. In this casc a single quote (') followed by the
desired character may be used as a numeric argument. For example. you can usc

“nb .t 0d"
to print a decimal number in five colimnns with lcading zeros (the first two parameters to ~D are
the number of columns and the padding character).

In place of a numeric parameter to-a directive,. you can put the letter v, which takes an
argument from args as a paramecter to the dircctive. Normally this should be a number but it
doesn’t really have to be. This feature allows variable column-widths and the like. Also, you can
usc the character # in place of a parameter; it represents the number of arguments remaining. to
be processed.

It is possible to have a dircctive name of more than one character. The name neced simply be
enclosed in backslashes ("\"); for example,
(format t "~\\now\\" (status daytime))
The backslashes above are doubled, because backslash is the quoting character in COMMON LISP.
Because of this, the forward-clash charaeter (/) will probably be made synonymous with backslash,

but as of yet it has not been. As always, case is ignored here. There is no way to quote a
backslash in such a construct. No multi-character operators come with format.

Once upon a time, various strange and wonderful interpretations were made on control-string
when it was ncither a string nor a symbol. - Somc of these are still supported for compatibility
with existing code (if any) which uses them; new code, however, should only use a string or
symbol for control-string.

19.6.1 The Operators

Here are the operators.

~A arg, any LISP object, is printed without slashification (like princ). ~nA inserts spaces
on the right, if neccessary, to make the column width at least n.
~mincol,colinc,minpad, padcharA is the full form of ~A, which allows alcborate control
of the padding. The string is padded on the right with at least minpad copies of
padchar;, padding characters are then inscrted colinc characters at a time until the total
width is at least mincol. The defaults are O for mincol and minpad, 1 for colinc, and
space for padchar. The atsign modifier causes the output to be right-justificd in the
field instecad of left-justified. (The same algorithm for calculating how many pad
characters to output is used.) The colon modifier causes an arg of nil to be output as

0.
~S This is identical to ~A cxcept that it uses prin1 instead of princ.

MC:NILMAN:FORMAT 7 | 23-DEC-83

~D Decimal output. arg is printed as a decimal integer. ~n,m,0D uses a column width
of n, padding on the left with pad-character m (default of space). using the character
o (default comma) to scparate groups of three digits. ‘These commas are only inserted
if the : modifier is present. Additionally. if the @ modifier is present. then the sign
character. will be output unconditionally: normally it is only output if the integer is
negative. If arg is not an integer, then it is output (using princ) right-justificd in a
field n wide, using a pad-character- of m, with dccimal output radix and trailing
decimal point suppression.
If arg is not an integer. then it is output in the specified ficld (as by ~A). in
decimal. ~
~0 Octal output. Just like ~D: if arg is not an integer. it is output (as by ~A). in octal.
~B Similar, but binary (basc 2).
~pP If arg is not the integer 1, ‘a lower-case "s" is printed. ("P" is for “plural”.) ~:P
does the same thing, after backing up an argument (like "~:+", below): it prints a
lower-case s if the Jasr argument was not 1. ~@P prints "y" if the argument is 1, or ‘
"ies™ if it is not. ~:@P docs the same thing, but backs up first.
Example: :
(format nil "~D Kitt~:@P" 3) => "3 Kitties"
~ ~» ignores one arg. ~n#+ ignores the next n arguments. » may be negative, ~:s
backs up onc arg; ~n:¢ backs up » args.
~n@= is an "absolutc goto™; it “"gocs to" the nth argument.
This directive only affects the "local” args, if control is within somcthing like ~{.
~% Outputs a newline. ~n% outputs n newlines. No argument is used.
~& Performs a fresh-line on the output strecam (page 185). ~n& outputs n-1 newlines
after the fresh-line. ;
~X Outputs a space. ~nX outputs n spaces. No argument is used. This directive is
changing in COMMON LISP to mean "hexidecimal output” (done like ~D); to get the
cffect of the old ~X, one can use ~T, or some construct utilizing ~< or ~{.
- Outputs a tilde. ~n~ outputs n tildes. No argument is used.
~newline ‘
Tilde immediately followed by a newline ignores the newline and any whitespace at
the beginning of the next line. With a :, the whitespace is left in place. With an @,
the newline is left in place.. This dircctive is typically used when a format control
string is too long to fit nicely into one line of the program:
(format the-output-stream "~&This is a reasonably ~
; long string~%")
which is equivalent to formating the string
"~&This is a reasonably long string~%"
~ Outputs a formfeed. ~u| outputs n formfecds. No argument is used.

NII. Manual

189 Format

MC:N1IL.MAN:FORMAT 7 | 23-DEC-83

Format

1900 NII. Manual

In the current implementation, ~| will do something like try to clear the screen on a
terminal. However, this will be changed: the intent of ~| is to output the page
scparator character, which might be inconvenient to type in or have sitting in the
middle of a format string in oncs source file. ‘To get the old behavior, usc
~:]—cventually ~| will be changed.

Spaces over to a given column. The full form is ~destination incrementT. which will
output sufficient spaces to move the cursor to column destination. If the cursor is
alrcady past column destination, it will output spaces to move it to column
destination + increment k. for the smallest integer value k possible. increment defaults
to 1. ‘This is implemented by the format-tab-to function, page 196. On certain
strcams. this may not actually output spuccs, but may usc cursor positioning: thus,
onc should not depend on ~'I' "erasing” text by the typing of spaces.

‘This will be changed slightly to climinatc a common and unsightly fencepost.
Currently ~T will do nothing if the “cursor” is exactly at column destination;
however, it will be changed so that spacing will be done then too.

In the future, ~@T will do relative positioning.

~Q uscs onc argument. and applies it as a function to params. 1t could thus be used
to, for example, get a specific printing function interfaced to format without defining
a specific operator for that operation, as in
(format t "~&; The frob ~vQ is not known.~%"
froch 'frob-printeor)

The printing function should obey the conventions described in section 19.6.2, page -
194. Note that the function to ~Q follows the arguments it will get, because they are
passed in as format parameters which get coliected before the operator's argument.

Not in COMMON 11SP.

~[strO~;strl ~;... ~;strn~] is a set of alternative control strings. The alternatives (called
clauses) arc scparated by ~; and the construct is terminated by ~]. For cxample,
"~[Siamese ~;Manx ~;Persian ~;Tortoise-Shell ~;Tiger ~;Yu-Hsiang ~Jkitty".
The argth alicrnative is selected; O selects the first. If-a numeric parameter is given
(i.e. ~n[). then the paramecter is used instead of an argument (this is uscful only if
the parameter is "# ™). If arg is out of range no alternative is sclected. After the
sclected alternative has been processed, the control string continues after the ~].

- ~[strO~;strl ~;... ~;strn~:.default~] has a dcfault case. If the lasr ~; used to separate

clauses is instead ~:;, then the last clause is an "elsc” clause, which is performed if
no other clause is selected. For example, "~[Siamese =~;Manx ~;Persian
~;Tortoise-Shell ~;Tiger ~;Yu-Hsiang ~:;Unknown ~] kitty".

~[~1ag00,1ag01.... ;str0~1agl0,.. strl...~] allows the clauses to have explicit tags. The
parameters to cach ~; arc numeric tags for the clausc which follows it. That clause is
processed which has a tag matching the argument. If ~:a/,a2,b1,b2,..; is uscd, then
the following clause is tagged ot by single values but by ranges of valucs a/ through
a2 (inclusive), b/ through b2, ctc. ~:; with no paramcters may be used at the ond
to denote a default clause. For example, "~[~'+,'-,'»,'//;0perator ~'A'Z'a,'z;letter
~'0,'9;digit ~:;other ~]".

MC:NII.MAN:FORMAT 7 23-DEC-83

NII. Manual . 191 IFormat

~:[false~;true~] sclects the false control string if arg is nil. and sclects the true
control string otherwise.

~@[rrue~] tests the argument. If it is not nil, then. the argument is not used up,
but is the next one to be processed, and the onc clause is processed. If it is nil, then
the argument is used up, and the clause is not processed.
(setqg prinlevel nil prinlength 5)
(format nil "~@[PRINLEVEL=~D~]~@[PRINLENGTH=~D]"
prinlevel prinlength)
=> " PRINLENGTH=5"

If there is no paramcter, then arg is printed as a cardinal English number, c.g. four.
With the colon modifier, arg is printed as an ordinal number, c.g. fourth. With the
atsign modifier. arg is printed as a Roman numeral. c.g. 1V. With both atsign and
colon. arg is printed as an old Roman numeral, c.g. 1L

If there is a paramecter, then it is the radix in which to print the number. " The flags
and any remaining parameters arc used as for the ~D dircctive. Indeed, ~D is the
same as ~10R. 'The full form here is therefore ~radix,mincol ,padchar ,commacharR.

arg is cocrced to a character code. With no muodifiers, ~C simply outputs this
character. ~@C outputs the character so it can be read in again using the # reader
macro: if there is a named character for it, that will be used. for cxample
" #\Return"; if not, it will be output like "#/A". ~:C outputs the character in
human-readable form, as in "Rewrn”., "Mota-A". -:@C is like L, and

additonally might (if warranted and if it is known how) parcnthetically statc how the
character may be typed on the uscr's keyboard.

To find the name of a character. ~C looks in two places. The first is the value of
the symbol which is the value of format:+/# -var, which is inidalized to be the
variable which the # reader macro uses. It is not nccessary for the value of
format:«/ # -var to be bound. The second place is *format-chnames; this is usced
primarily to handie non-printing characters, in casc the # reader macro is not loaded.
Both of these are a-lists, of the form ((name . code) (name . code) ...).

The Maclisp/NIL format has no mechanism for telling how a particular character
necds to be typed on a keyboard, but it docs provide a hook for one. If the value of
format:stop-char-printer is not nil, then it will be called as a function on two
arguments: the character code, and the character name. If there were bucky-bits
present, then they will have been stripped off unless there was a defined name for the
character with the bits present. The function should do nothing in normal cases, but
if it does it should output two spaces. and then the how-to-type-it-in description in
parcntheses. See scction 19.6.2, page 194 for information on how to do output within
format. ’

~mincol ,colinc,minpad ,padchar<text~> justifics rext within a ficld mincol wide. r1ext
may be divided up into segments with ~;—the spacing is evenly divided between the
text segments. With no modifiers, the leftmost text scgment is left justified in the
ficld. and the rightmost text segment right justified; if there is only one. as a special
case, it is right justificd. The colon modifier causcs spacing to be introduced before

MC:NILMAN:FORMAT 7 23-DEC-83

Format . 192 NIl Manual

the first text segment: the atsign modifier causes spacing to be added after the last.
minpud, default 0, is the minimum number of padchar (default space) padding
characters to be output between cach segment. If the total width needed to satisfy
these constraints is greater than mincol, then mincol is adjusted upwards in colinc
increments. coline defaults 10 1. For example,

(format nil "~10<foo~;bar~>") => "foo bar"
(format nil "~10:<foo~;bar~>") => " foo bar"
(format nil "~10:@<foo~;bar~>") => " foo bar "
(format nil "~10<foobar~>") => " foobar"
(format nil "~10:@<foobar~>") =>- " foobar "

(format nil "$~10.,, »<~3f~>" 2.59023)
=> "Sexrsxss? 59"

If ~~ is used within a ~< construct, then only the clauses which were completely
processed are used. For cxample,
(format nil "~15<~S~;~"~S~;~~~S~>" ‘'fo0)

=> ”) ~F00"
(format nil "~15<~§~;~"~§~;~"~5~>" 'fo0 ’'bar)
=> "FQO BAR"

(format nil "~15<~S~;~*~§~;~~~S5~>" 'fo0 'bar 'baz)
=> "FOO BAR BAZ"

If the first clause of a ~< is terminated with ~:; instcad of ~;, then it is used in a
special way., AN of the clauscs arc processed (subject v ~°, of counse). but tie finst
onc is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit on the current line of output, it is output, and the
text for the first clause is discarded. ' If, however, the padded text will not fit on the
current line, then the text for the first clause is output before the padded text.” The
first clausc ought to contain a carriage return. The first clause is always processed,
and so any arguments it refers to will be used:; the decision is whether to usc the
resulting piece of text, not whether to process the first clause. If the ~:; has a
numeric parameter n, then the padded text must fit on the current line with »
character positions to spare to avoid outputting the first clause’s text. For example,
the control string
ey <% ~1r ~S~>an S} AT
can be used to print a list of items separated by commas, without breaking items over
line boundarics, and beginning each line with “;;”. The argument 1 in ~1:; accounts
for the width of the comma which will follow the justified item if it is not the last
element in the list, or the period if it is. If ~: has a sccond numeric parameter,
then it is used as the width of the line, thus overriding the natural line width of the
output stream. To make the prcceding example use a line width of 50, one would
write '
"~%is ~{~<~%;; ~1,50:; ~S~>~~ ~} ~%"

Note that the segments ~< brecaks the output up into are computed "out of context"
(that is. they arc first recursively formatted into strings). Thus, it is not a good idea
for any of the segments to contain relative-positioning commands (such as ~T and
~8), or any line breaks. If ~:; is used to produce a prefix string, it also should not
use relative-positioning commands.

MC:NILMAN:FORMAT 7 23-DEC-83

NI1. Manual 193 ’ ~ Format

~{str ~}
This is an iteration construct. The argument should be a list. which is used as a sct
of arguments as if for a recursive call to format. ‘The string sir is used repeatedly as
the control string. Fach iteration can absorb as many clements of the list as it likes.
If before any itcration step the list is cmpty, then the iteration is terminated. Also, if
a numeric parameter # is given, then there will be at most # repetitions of processing
of str.

~:{str~} is similar, but the argument should be a list of sublists. At cach repetition
step onc sublist is used as the sct of arguments for processing sir: on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed. » '

~@{str~} is similar to ~{sir~}. but instcad of using onc argument which is a list.
all the remaining arguments are used as the list of arguments for the itcration.

~:@{sir~} combincs the features of ~:{srr~} and ~@{sr~}. All the remaining
- arguments are used, and each one must be a list. On each itcration one argument is
uscd as a list of arguments.

Terminating the repetition construct with ~:} instead of ~} forces str to be processed
at least once even if the initial list of arguments is null (however, it will not override
an cxplicit numeric parameter of zero).

If stris null, then an argument is used as str. It must be a string, and precedes any

arguments processcd by the iteration. As an example, the following are cquivalent:
(apply (function format) (list* stream string args))
(format stream "~1{~:}" string args)

“This will use string as a formatting string. The ~1{ says it will be processed at most

once, and the ~:} says it will be processed at least once. Therefore it is processed

exactly once, using args as the arguments.

~} Terminates a ~{. It is undefined elsewhere.

~- This is an escape construct. If there are no more arguments remaining to be
processed, then the immediately enclosing ~{ or ~< construct is terminated. (In the
latter case, the ~< formatting is performed. but no more. clauscs are processed before
doing the justification. The ~~ should appear only at the beginning of a ~< clause,
because it aborts the entire clause. It may appear anywhere in a ~{ construct) If
there is no such cnclosing construct, then the - entire formatting operation is
terminated. : '

If a numcric paramcter is given, then termination occurs if the parameter is zero.
(Hence ~~ is the same as ~# ~.) If two parameters are given, termination occurs if
they are cqual. If threc are given, termination occurs if the second is between the
other two in ascending order. :

If ~~ is uscd within a ~:{ construct, then it merely terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediately. To terminate the cntire

MC:NILMAN:FORMAT7 , fLg, : 23-DEC-83

Format . 194 NIL. Manual

iteration process, usc ~:7.

~nG This is the old form of ~n@s+. above. In COMMON 1isP. ~G is a floating-point
format dircctive derived from FORTRAN G format. New code should use ~@s.

~F Reserved for fixed-ficld floating-point format.
~E Reserved for exponential floating-point format.
~$ This is not yer defined in NI1I..

~rdig Ildig field,pudchar$ prints arg. a flonum. with cxactly rdig digits after the
decimal point. ‘The default for rdig is 2. which is convenient for printing amounts of
money. At least Lfig digits will be printed. preceding the decimal point; leading zcros
will be printed if there would be fewer than Lfig. ‘the default for Ildig is 1. 'The
number is right justified in a field field columns long, padded out with padchar. The
colon modifiecr means that the sign character is to be at the beginning of the field,
before the padding, rather than just to the lefi of the number. The atsign modifier
says that the sign character should always be output.

In somc implementations, if arg is unrcasonably large, it will be printed in
~field,,, padchar@A format: i.c. it will be princ’ed right-justified in the specified ficld
width. This will not happen in the Maclisp implementation, bccause the range
prov1ded by flonums is not cxtremely large.

~\ This is not really an opcrator. If one desires to usc a multi-character format operator,
it may be piaced within backsidshes, as i ~\now\ tor the now operator. Sce. page
188. :

19.6.2 Defining your own
Everything in this section is defined in the MACLISP and NIL implementations of format only.

define-format-op
This may be used in two formats:
~ (define-format-op operator varlist body-forms...)

and :
(define-format-op operator character)
The operator may be a character, string, symbol, or fixnum code for a character (in NIL,
it is coerced using the string function, page 112). Whichever, it is canonicalized (into
upper case) and will be interned into the same package which format resides in. For
example, the format operator for filde could be defined as

(define-format-op \~ #\~)
For the first format, the type of operator is determined by decodmg varlist, which may
have one of the following formats: '

{params-var)

An operator of exactly zero argumcms params-var will. get bound to the
paramecters list.

 (params-var arg-var)
An opcrator of exacuy one argument params-var will get bound to the

MC:NILMAN;FORMAT 7 23-DEC-83

NI1. Manual . 195 Format

parameters list, and arg-var to the argument.

(params-var . args-var)
An opcrator of a variable number of args; params-var will get bound to the
parameters list, and args-var to the remaining arguments to format (or to the
recursive ~{ arguments). The operator should return as its value some sublist
of args-var, so that format knows how many were uscd.

A definition for the appropriate function is produced with a bvl derived from the variables
in varlist and a body of body-forms. (The argument ordering in the function produced is
compatible with that on the Lisp Machine, which is arg-var (if any) first, and then
params-var.) ’

standard-output Variable
Output from format opecrators should be sent to the stream which is the value of
standard-output.

format:colon-flag) Variable
format:atsign-flag Variable
These tcll whether or not we have scen a colon or atsign respectively while parsing the
parameters to a format operator. They arc only bound in the toplevel call to format, so
are only recally valid when the format operator is first called; if the operator does more
parameter parsing (like ~[does) their values should be saved if they will be needed.

The params are passed in as a list. This fist, however, may be tcmporary storage only; one
should not allow it to be "passed back” from the call to the format operator without being copied
first. Also, it is recommended that format params be referenced with elt, and their length
obtained with length, in order that they may be rcimplemented as some sort of sequence in the
future (which will probably be a stack-allocated vector for NIL),

Conceptually, format operates by performing output to some strecam. In practice, this is what
occurs in most implementations; in Maclisp, there are a few special SFAs used by format. This
may not be possible in all implementations, however. To get around this, format has a
mechanism for allowing the output to go to a pseudo-stream, and supplics a set of functions
which will interact with these when they are used.

format-tyo character :
tyos character to the format output destination. character may be either an object of type
character, or the fixnum code for a character.

format-princ object
princs object to the format output destination.

format-prinl object
prin1s frob to the format output destination.

MCNILMAN:FORMAT 7 23-DEC-83

Format 196 "~ NIL Manual

format-lcprinc siring capitalize?
This outputs string. which must be a string or symbol, to the format output destination
in lower-case. 1f capitalize? is not nil, then the first character is converted to upper case
rather than lower. ‘

format-terpri
Docs a terpri to the format output destination.

format-charpos

format-1inel ~
Return' the charpos. and linel of the format output destination. Since in the MACLISP
implementation multiple output destinations may be implicitly in use (via outfiles, for
instance), this attempts to choose a representative one. The terminal is preferred if it is
invotved. ~

format-fresh-1ine
This performs the fresh-line opcratmn to the default format destination. . The hair
involved in this is mostly subsumed by the fresh-line function in NIL.

format-tab-to desiination &optional increment
This implements ~T to the current format destination (q.v.). In NIL, it will utilize the
:tab-to message if that is supported. - Otherwise, if it can determine the “current position”
of the format destination, it will output the proper number of spaces; all elsc fallmg, two
spaces will he ontnut.

format-formfeed
Performs a formfeed on the format outpuz dcstmauon In NiL, this will. send the’
:formfeed message to the strecam if that is supported, the :clear-screen message if that is
supported, otherwise just output the page scparator character. The :formfeed message is
supported by a number of NIL streams, and is dcsxgned for just this use.

format flatc ,
(format-flatc forml form2 ... formn)
The forms arc evaluated in an environment similar to that used inside of format: the
various format output-performing routines' such as format-tyo and format-princ may be
used to "perform output”. In all but the MULTICS MACLISP implementation, standard-
output will be a stream which simply counts the characters output—it will only support
the :write-char operation.

MC:NILMAN:FORMAT?7 : 23-DEC-83

NIf. Manual ' 197 o Querying the User

19.7 Querying the User

The following routines arc built on the fquery function, which is modcled after that of LISP
MACHINE LISP. fquery is complicated and subject to change, however, and is not itself
documented here. Of the following routines, y-or-n-p and yes-or-no-p arc defined by
COMMON LISP; the others are not. ' :

y-or-n-p &optional message stream
This prints message 10 stream (which defaults to the value of query-io), and then reads a
character from stream. It returns t or nil depending on whether the character signified a
positive or necgative responsc: space and rubout are accepted in place of y and n.
Because it is so casy to gel a mistaken rcspnnxc from this routine. it should be used for
anticipated questions only.

Because it is used for both input and output, siream must be bi-directional.

yes-c.r-no-p &optional message stream
This is similar 0 y-or-n-p. but requircs a morc complete answer. Tvpeahecad to stream
is flushed (with clear-input. page 183). and it feeps. before reading a complete "yes” or
"no" followed by a newline.

format-y-or-n-p Jformait-string &rest format-args
Most the time when y-or-n-p is used, people scem to want to use a format string with
some arguments, This does that. Input and output is done to querv-io. Otherwise. it
bchaves like y-or-n-p.

format-yes-or-no-p format-string &rest fomrat-args
Similar.

19.8 Filesystem Interface

The NIL filesystem interface is designed to allow it to refer to more than one filesysten. The
names of files are not represented as just strings or lists of components, but are objects of type
pathname. The pathname objects for different filesystems or hosts would be of different types,
and opcrations on files in the filesystem are performed with respect to that type. For instance, we
have under development facilities to allow use of the filesystems of TOPS-20 and ITS through
CHAOSNET. At the moment, only the local vMs filesystem is supported.

MC:NII MAN:NEWIO 27 23-DIC-83

l-'ilcSystcm Interface S 198 ~ ‘ NIH. Manual

19.8.1 Pathnames

A pathname has six criterial components.

host .
This component always contains an object which describes the filesystem the pathname
refers to. All pathnames have such a component; no pathnamc may be formed without
such a component. Thus, pathname interpretation is always performed with respect to
some host. :

device
This is normally a string. naming a device.

- directory , , ’
A string naming a directory. or a list of strings, if the directory is structured (that is, if
the pathname is in-a subdirectory). ‘

name :
A string. the "primary” or "root” name of the file.

type
A string. the "type” of the file. ‘This is not necessarily as the extension which will be
used to form the host-specific pathname string: ¢.g.. for a vMs filesystem, a file type of
LISP corresponds to the extension LSP.

version
This is the version of the nathname; usuallyv it is an integer.

A pathname need not refer to an actual file in a filesystem, nor nced all the components .
(other than the host) be present. An unspecified component is rcpresented by nil. Such a
component may be supplicd by later defaulting operations. Components may also contain certain
keywords which are interpreted specially:

:wild

A "wildcard" component.

:newest

:oldest ‘
These are only applicable to the version component of a pathname. They cause the
reference to the filesystem to refer to the newest or oldest version present. Only :newest
is actually supported by the VMS filesystem interface.

-:unspecific ,
If any component in a pathname has this as its value, then the pathname does not refer
to a specific file in the filesystem, but rather to the group of files which match the other
components. This is normally only used for the type or version components, so that one
may refer to the entire group of files with the same device, directory, and name. This
doesn’t have any use in NIL yet; when NIL pathnamcs gain thc ability to have arbitrary
attributes (properties) associated with them, it will be significant.

[implied
If a pathname has this as a component, it means that the device component is a logical

name which will supply the value for that component. This is used as a placcholder for
"pathname merging”. All components other than the host and device components may

MC:NH.MANNEWIO 27 : , 23-DEC-83

NIl Manual . 199 Filesystem Interface

take on this as their value.

rrelative
~ This can only occur within a structured directory component. It is used in the

representation of vMS rooted - directorics. For instance, the VvMS pathname
__DBAQ:[NIL259.] parses into a pathname with the string "__DBAQO" as its device
component, and the list ("NIL259" . :relative) as its directory component. NIL
uscs this in pathname merging.

-elipsis
This is used in representing things like nil$disk:[nil...]. Parsing that into a
pathname would produce a dircctory component of ("NIL" . :elipsis). 1t will

probably be flushed in favor of utilizing just :wild instead.

19.8.1.1 Pathname Functions

pathname thing
thing is coerced into a pathname.

If it is a pathname, it is returncd.

If it is a list. then it is assumed to be a MACIISP namclist: interpretation of this, and
MACLISP compatible pathname handling, is discussed in <not-yet-written>.

If it is a string (or symbol), then the text is examined for a prefix or suffix component, .
followed by a ":", which is a host string: if onc is found. then that is the host used,
otherwise a host is defaulted (the handling of this is pretty spastic right now, but hardly
matters as there is only one host). The string is' then parsed in the manner specific to
that host. and the resultant pathname returned.

pathname-host pathname
pathname-device pathname
pathname-directory pathname
pathname-name pathname
pathname-type pathname
pathname-version pathname ,
These return the components of parthname, which is coerced to a pathname with the

pathname function.

namestring pathname
pathname is coerced to a pathname with the pathname function, and its "standard printed

represcntation” returned, as a string.

user-homedir-pathname &optional host
Returns the user's home dircctory, as a pathname: the name. type., and version

components will be unspecified.

The home directory is where files specific. to the user are looked for (or defaulted to).
Sce, for instance, init-file-pathname, page 200.

MC:NIL.MAN:NEWIQ 27 23-DEC-83

Filesystem Interface 200 NH. Manual

Under vMs. this is obtained by translating the logical name SYSSLOGIN.

user-workingdir-pathname &optional host
Returns the user's working directory, as a pathname: the name, type, and version
components will be unspecified.

For v™s, this is obtained from the RMS default directory string, and the SYS$DISK
logical name. Note that the RMS default is copicd from the command interpreter when
the NIl process is created; temporarily exiting the Nii. and changing the default will not
change the value of this.

‘user-scratchdir-pathname &optional hosr
Returns: as a pathname. the directory of the directory which should be used by programs
for writing “scratch” files. '

The local-vims. host uses the value of the logical name SYS$SCRATCH if that cxists,
otherwise the user's home directory. If for some rcason the device ficld is absent
SYSSDISK is supplied. Note that the value of the logical name is copied from the
command interpreter when the Nit is created. Temporarily exiting from the NI and
changing the logical name definition will have no effect.

init-file-pathname program-name &optional host
This returns the pathname of the user’s init file for program-name on host. program-name
should be a string.

For NIt under vMms, the init file is on the user’'s home directory, and has name NI and
cxtension INL (the file type is INIT). This same convention is used in general by this
function: for an arbitrary program name, the init file is named, essentially,
SYSSLOGIN: program-name. INI

In the NI programming environment, this is more for the use of LISP subsystems than a
general facility (which could do things like determine the init file for logging into the
vax). For example, if you had a system LSB which people loaded into their NIL, or
which was dumped out in-a NIL, it might load an LSB init file. Notc that there is a
problem here if program-name is not valid as a pathname name component for the
particular host. :

19.8.1.2 Merging and Defaulting

Merging and defaulting are the actions used to fill in components missing from a pathname
specification, usually when the pathname is about to be uscd to reference something in the
filesystem. For the most part, this involves supplying the components missing in one pathname
from another. The algorithm used is slightly more complicated, and is described under merge-
pathname-defaults, below. '

In N11., the pathname defaults for a specific application arc maintained in a pathname defaults
object (it will probably be of type fs:pathname-defaults). This cnables modular handling of
supplying of defaults for multiple hosts. pathname "stickincss” for scts of commands. ctc.. The
defaults arc often uscd to supply the host with respect to which some operation must be

MC:NIL.MAN:NEWIO 27 | 23-DEC-83

NII. Manual , 201 Filesystem Interface

performed. such as pathname parsing.

merge-pathname-defaults parhname &optional defaults default-type default-version
This is the main merger. pathname may be anything cocrcible to a ‘pathname. defaults
may be a pathname dcfaults object, a pathname, or a string or symbol (which will be
coerced to a pathname first). defauli-type and default-version may be whatever is allowable
for types and versions.

If it is nccessary. pathname will be. parsed with respect to a host determined from
defaults. If the directory field of it is missing, then that will be supplied by defaults.
There is some question as to what should happen if the device field of pathname is
missing: currently. it is simply filled in from defadts. In the Lisp Machine
implementation of this function. it is supplicd as the default device for the host (perhaps
inconsistently, for instance only when parsed from a string?); probably what should
happen is that whether the device comes from defaul/ts or not is determined by the host.
so that it would if the devices were really structured (with directories in them ctc.), and
would not otherwise (which in Lisp Maahmc Lisp appears to be mainly for the sake of
the ITS operating system).

If pathname has a name supplied, then if the type and version of the resulting pathname
arc defaulted from default-1ype and default-version, as nccessary. Otherwise, the name,
type. and version are defaulted from defaults. Thus:

“(merge-pathname-defaults

"[ril.vas]foo” "sysSdisk:[gsblzz.1sp:3" "vasl")

=> #<local-vms-pathname "node: sys$disk:[nﬂ.vas]foo.vas">»
(merge-pathname-defaults
"[nil.vas]" "sys$disk:[gsbJzz.1sp;3" "vasl")
=> #<local-vms-pathname "node:sys$disk:[nil.vas]zz.1sp;3">
(merge-pathname-defaults
"[nil.vas]=.inp" "sys$disk:[gsb]zz.1sp;3" "lisp")
=> f#f<local-vms-pathname "node:sys$disk:[nil.vas]zz.inp;3">
In the above, it is worth noting that "=" as a pathname component is used as a
placcholder for an unspecified component, and that a file type of lisp is mapped (by the
VMS pathname code) into an extension of Isp, and vasl to vas. The specifics of the
syntax and file-type/extension mapping are described elsewhere.

The default value of defaulr-version is :newest. The default value of default-1ype is "lisp";
however, it is highly recommendcd that this not be depended upon, as it may be changed
to comc from defaults.

Here are some of the pathname defaults in use in NIL.

«Joad-pathname-defaultse Variable
This is used to provide pathname defaults for lfoad, compile-file, and any similar
functions. It is initalized to the user’s working dircctory with name FOO and type LISP
(sce user-workingdir-pathname, page 200).

MC:NILMANNEWIO 27 : 23-DEC-83

Filesystem Interface . 202 _ Nil. Manual

sdefault-pathname-defaultss ’ , Variable
‘This provides supcr-defaults for anything that nceds them, such as open. with-open-file,
and parsing a pathname string out of context. It is initialized to the uscr's working
dircctory with name FOO and type LISP (sce user-workingdir-pathname, page 200).

sscratch-pathname-defaultss Variable
This is used by things which must write. out "temporary” files. Things which use this
should not modify it; it should be left to the user to set default pathnames for hosts
(primarily for thc sake of the device and directory) to say where such files should be
written: Sce user-scratchdir-pathname. page 200.

For cxample. the current Nit. compile function creates a file named aaafoo.vas. and
supplics the device and dircctory from *scratch - pathname-defaultss.

19.8.2 Opening Files

Files are opened with the open function (page 180). or with-open-file (page 181). and may
be closed with ~lose (page 181). open by default assumes that the open is a reference to a file,
so coerces -its fust argument to a pathname, and then creates a stream to the specified file in the
filesystem. NIl currently employs only two modes of file opening. These arc :ascii and :byte
modes.

:ascii will cause the file to be written as variable-length records. with record-attribute of
carriage-rcturn. The existing disk 170 code does not have the intelligence to deal with records
longer than 512 byites, however, so is forced to terminate records when that limit is reached. To
compensate, so that spurious newlines do not get inserted into LISP files, records exactly 512 long
are assumed to not actually be terminated, but “continued™ with the next record, when read as
input.

Hdixnum simply uses fixed-length §12-byte records; this is what vas1 files use.

fs:close-all-files
In case you do mess up and lose track of some files, this will close all open files (which
have. been really opened as streams, not just kludgey temporary opens).” Every known
host object is supposed to keep track of all strecams which it has open, in such a way as
to be sccure against timing screws, so that this may at least be done.

Doing (exhibit fs:«=host-instances#) should give one a handle on the open files, as the
host instances should point to the files they have open. - fs:#host-instances# is the list of
all known hosts, and is used to (among other things) drive host-name lookup.

MC:NILMAN:NEWIO 27 ‘ : 23-DFEC-83

N1 Manual 203 o Filesystem Interface

19.8.3 Other File Operations

probe-file pathname _
If pathname (which is coerced to a pathname with the pathname function) can be opened,

its trucname is returned; otherwise, nil is returned. This may be used to sec if pathname
exists and is accessible. (If a file protection crror occurs, probe-file rcturns nil, although
that may change, as the intent is to see if the file exists.)

Note file-length and filepos arc missing from NIL.

All of the remaining functions in this scction deal with cither a strcam, or with a pathname,
For the former, they perform the operation on the open stream: for the latter, on the file in the
filesystem, which may involve opening the file temporarily, At present. none of them work on
strcams. A future cdition of the filesystem code will contain more code written in 11s. and be
much more versatile in this regard.

For the functions which are described as returning an error- description. this is probably. a
string. but may change to be a more complicated object in the future. (That object should.
however, hine the property that it will print with princ as the crror message.) ‘Tests made on the
return result should be made accordingly: that is. be based on null. or streamp. or listp or
whatever. Signalled crrors are typically signalled as proccedable :io-lossage errors; returning a
value from the error should cause the function to return that as its value.

rename-file file new-name &ontional (errorp1)
Renames file, a filename or a strecam open to a file, to new-name, which must be
coercible to a pathname. If errorp is not nil, then a file-system crror will be signaled as
a LISP error; if it is nil, then an error description will be returncd. If everything goes
fine, nil is returned.

delete-file file &optional (errorp i)
The file named by file, or the file open on the stream file, is deleted. If an error occurs,
then a LISP error will be signaled if error-p is not nil, otherwise an error description will
be returned. If all goes well, nil is returned.

file-creation-date file
This returns the creation date of the file as an integer in universal time format (see
section 23.5, page 234), or nil if this cannot be determined.

f1le-author fie
Returns the name of the author of the file as a string, or nil. For vMs files, the string is
a UIC. eg. "[200,007]", and the group and member numbers are guaranteed to be
padded with leading zeros to at least three digits.

MC:NILMAN:NEWIO 27 23-DEC-83

ilesystem Interface) 204 : NiL. Manual

19.8.4 File Matching

allfiles Ilist-of-pathnames
Returns a list of pathnames matchmg all of thosc in list-of- palhnames This is donc of
course,” by appending together the lists of pathnames which match cach of the pathnames
in list-of-pathnames.

By convention, this matches over all those components not specified in cach. pathname.
wvMs. does not allow matching all devices, however, so the device should be specified, or
will be dcefaulted from somewhere (where? rms default but it shouldn't be). Newest
versions can-be matched also, by using the. appropriate pathname syntax. Note that clipsis
specifications in dircctories. "and star specifications’ in namoes. all work (fortitously.
perhaps. but they work): -c.g. (alifiles "[nil...]286+.+:") rcturns a list of pathnames of
the files with highest version number of all the ﬁlcs in the NI hicrarchy with first three
characters. of their name being "286™.

mapallfiles function list-of pathnames
Calls fiunction on cach pathname which matches pathnames in [list-of-pathnames. This is
essentially equivalent to
(mapc functivn (allfiles Iismy’-mtlmumes))
but calls function on each as it is generated rather than consing up the list.

In fact, allfiles is implemented in terms of mapallfiles.

mapalifiles (and hence alifiles) accept a single symbol/string/pathname in place of a list. It is
unclear what should be donce about this; it is (currently at least) of no use to NIL to deal with
multiple specifications at once, and in fact the original alifiles function in- MULTICS MACL!SP did
not take a list, but only. a single pathname. :

Thcrc is also no kludgy testing in NIL such that if a namelist is specified it must be a fully-
specified namelist (insofar as. explicit "*" componcnts arc specified). Thus using a namelist as a
single pathname will be interpreted as a list of pathnames, potentially resulting (incorrectly) in a
match over all the files on the current dcvxce (That was the reason for the kludgey check in
MACLISP, you see...)

19.8.5 Loading Files

Toad filename &key :verbose :package :set-default-pathname :static :default-pathname
:characters bmary «defaults prmt

verbose
Boolean: print out lots of gubbish about loading. Default is value of sload-
verboses.

:package
override the package specification (if any) obtained from the file.

~ :set-default-pathname
Boolcan: sct the default pathnamce of the pathname-defaults uscd (scc defaults
and :default-pathname, bclow). Default is valuc of -ioad set-default-

MC:NILMAN:NEWIO 27 ‘ 23-DEC-83

NIl Manual . 205 Filesystem Intertace

pathnames.

defaults
Specified pathname-defaults to use in place of the value of sload-pathname-
defaults*. (This one isn’t in COMMON LISP. Not clear it should be heavily used,
but i can sce it has application.)

:default-pathname
Usc this for defaulting, in preference to the pathname-defaults. The defaults are
still set in the defaults specified by :defaults (or its absencce).

:characters

:binary
Boolcan. :binary t implics that the filc is a vash file: :CHARACIERS T implics
that the file is LISP text. By default, the file is cxamined to determine which it is.
And, if no type is specified in filename. first a file with type vas! and then a file
with type lisp will be looked for.

:static .
Boolecan: savs to load the file into the static hcap. Default is valuc of +load-in-
static-areax.

:print
Boolean: if not nil. says that the results of evaluation of forms in the file are to
be printed. Default is nil, and it probably doesn’t work anyway: ccrtainly not for
vasl files.

19.8.6 File Attribute Lists

Not too much detail yet... However. it’s necessary to use it.

If. on the first line of a source file the characters "-*-" appear, then the text from the first "-

*-" 1o the next is parsed as a file attribute list. (Funnyness with multiple lines? Well, anyway, it
works easily on one line.) This text is logically a list of keyword/value pairs, with the values
being either single values or lists of values. The entire construct is made invisible to the
processing language by being placed within its commenting construct.

; -*- Mode:Lisp; Package:Compiler; Base:10; Readtable:NIL -=-
might occur as the first line in a NIL compiler source file. It says that the mode of the file is
lisp (this being for the benefit of text editors), and that the file should be rcad and processed in
the compiler package, decimal radix, and using the NIL readtable. "Lists" of values are provided
for by scparating the individual items by commas, as in

; -+- Mode:Lisp; LSB:ppdef,pretty-print-definition -e-
The parsing of tokens in such a construct is pretty rudimentary and crufty, but essentially things
-are symbols except for a scries of digits (optionally followed by a decimal point) which is a
decimal integer.

File auributes typically translatc into some special binding environment nceded for the
processing of the file (in some context). ‘The following are pre-defined in NiL:

package package-name
The file is processed in the package named package-name.

MC:NILMAN:NEWIO 27 23-DEC-83

Filesystem Interface 206 NI Manual

readtéble readtable-name ,
The file is read in using the rcadiable named readtable-name. Syntax, and rcadtable
naming, is described in scction 16.3, page 126. -

base radix
Binds both the input and output radices, no matter what those damned variables are
named. ‘

radix radix ;
For those who arc confused by base and will be even moreso when the variable is
named sbases.

patch-tile yes-or-no
If ves-or-no is yes (it shouldnt be specificd otherwise), then a variable proclaiming the
patch-file-ness of this file is bound. so that various things can sce it and be clever, like
the helpful function which warns you about redefining a function defined by somcone else
in another file (said function not cxisting yet). -

Isb madule-name,system-name
This is defined by 158 [4]. not NIL (q.v.).

When a file attribute list is parsed. the attribute names arc keywords, and the values arc
cither keywords or integers (or lists of keywords or integers).

:f1le-plist pathname

It parhuame can he opened, then this returns a disembodicd property list with the file
auributes in the cdr, and the trucname of the file in the car. Otherwise, it returns nil.

This probably should be renamed :file-attribute-list.

fs:process-in-load-environment plist funct pathname &rest args
plist should be a parsed file attribute list (with an even number of clements; the cdr of
what is returned by the ‘file-plist message). pathname should be the pathname which the
file attributes were obtained from. :

The environment which is specified by that attribute list is established, and then funct
called with arguments of pathname and whatever args were given.

This is what is used by both load and the compiler. It cnables a stable interface to how
bindings and other environment modifications are obtained from the file attributes.

Examination of the source code (the file [NIL.IOJPATHN.LSP) will show the convention
which is used for defining additional file attributes. It is basically an extension of that defined by
LISP MACHINE LISP.

MC:NIL.MAN:NEWIO 27 ' : 23-DEC-83

NIl Manual . 207 Filesystem Interface

19.8.7 Internals for VMS Record Management Services

NIl contains some primitive routines and datastructurc definitions with which 1/0 can be
performed entirely from LISP code. In fact, recently a special-purpose strecam type was written so
that the cditor could do very fast record 1/0. This is the local-vms-editor-stream stream,
which is in the source file ni1$disk:[nil.io]vlocal.1sp, and can scrve as an example of
how some of these things are used. Some of the other primitives which interface to the filesystem
arc also written in LISP, but are hidden from the strcam code by a functional interface; these are
in the file n11$disk:[nil.vmlispJvmsfile. 1sp.

19.8.7.1 Data Structures

The datastructures used for RMS fab. rab, nam, and xab blocks are all just simple bit vectors
of the appropriate size. There are 11SP macros and constants defined to deal with them: these
definitions were generated from the vMS MDI files. For instance. (si:fak$b_rfm fub) rcturns the
record-format ficld of a fab. (setf (si:fab$b_rfm fab) si:fab$c_var) scts it to the code which says
that the record format is variable-length records. Generally, ficlds of type byte and word arc
fetched/set as fixnums. longword and quadword ficlds are extracted into (freshhy consed) simple-
bit-vectors of the appropriate length; the setting operation replaces the bits of the structure (in the
right position) with the bits of the object it is being sct to, so the operation is invertible. See
also the files ni1$disk:[nil.vmlisp]rmsstr.1sp and '
ni1$disk:[nil.vmlisp}rmssub.1sp.

The following routines create these structures;
si:make-fab
si:make-rab
si:make-nam
si:make-xab code length
Because xab structures vary, one must specify the xab code and its length. For instance,

(si:make-xab si:xab$c_fhc si:xab$c_fhclen)
creates a xab block used for hacking file header stuff.

Resources are defined for fab, rab, nam, and xab structures:
si:fab
si:rab

si:nam

MC:NIL.MANNEWIO 27 23-DEC-83

Filesystem Interface ~ . 208 ; NH. Manual

si:xab code length
- Because xab structures can vary in code and length. - they must be supplicd to the
- resource constructor. The appropriate constants are defined, of course. For instance,
(using-resource (si:xab xabdat si:xab$c_dat si:xab$c_datlen)

)

binds xabdat to0 a xab structure used for obtaining creation and revision dates.

19.8.7.2 RMS and Related Hacking

_ ‘The following functions perform the obvious operation on their argument(s). A status code is
returncd. :

si:rms$close fab
si:rms$create fub
si:rms$display fub
si:rmsSerase fub
st:rmsSextend fub
si:rmsSopen fab
si:rms$connect rab
si:rms$delete rab
si:rms$disconnect rab
si:rms$find rab
si:rms$Tlush rab
si:rms$free rab
si:rms$get rad
si:rms$nxtvol rab
si:rmsSput rab
si:rms$release rab

si:rms$rewind rab

MC:NILMAN:NEWIO 27 ; 23-DEC-83

N1 Manual 209 , ‘Terminal 170

sf:rms$trunc rab

si:rmsSupdate rab

si:rms$wait rab

si:rms$read rab

si:rms$space rab

si:rmsSwrite rab

si:rmsSenter fab

si:rms$parse fab

si:rms$remove fab

si:rms$rename fabl fab2

si:rms$search fab

si:rms$sotddir new-directory-specification
Returns, and maybe updates. the RMS default directory. If new-directony-specification is
il thea Tvee AAFaile i st e A A ebaqenaiion e o mee ey . JTio e oS
1t [E PG IOL I R VIO P FE P R S I S LV T TR I QI E R F Y L U UILEICE WD, it i3 5CL W Ilt'ﬂ"(lll((l()l)’)}l((ljllu“(‘ll,
which must be a simple string. This is a fairly dircct interface to the SYS$SETDDIR
system service. ’

If the return status is not normal (the valuc of si:rms$_normal), it is returned in place of
the string.

si:trnlog logical-name
This performs the trnlog system service on the simple string logical-name. It returns a

simple-string which is the translation, or nil.

19.9 Terminal 170

The current NIL system contains a terminal stream which is translates general operations into
terminal-specific display codes. Characters output to it (via the :write-char message or the write-
char function) arc interpreted as cither display operations (e.g., carriage-return moves the cursor
to the next line or wraps to the top of the screen, and clears the line it moves to). or as graphic
characters (causing certain characters which are nof graphic on typical ascii tcrminals to to be
printed with certain conventions). Line wraparound is performed also.

The best way in which this can be accessed is with the cursorpos function, which is MACLISP
compatible. In fact, the bchaviour of the cursorposable tty stream emulates the behaviour of
terminals under the I'I'S operating system, down to the terminal-width fencepost behaviour due to
the use of the last column to hold the continuation character. (The "keyword character™ argument
to cursorpos, as defined by MACLISP, in fact derives from the sccond character in the cscape

MCNILMANNEWIO 27 23-DEC-83

Terminal 170) 210 : NI Manual

sequence used perform that cursor operation under TTS. Ah well)

cursorpos &optional argl! arg2 arg3
cursorpos is. a MACLISP compatibility function, but it offers an interface to the display
terminal code which may be safely and reliably used. Note that the arguments are
interpreted in rather strange manners... As a general rule, cursorpos is supposed to
return nil if it was not capable of performing that particular operation on the particular
strcam involved, -t otherwise. It is nor the case, however, that it may be used on non-
terminal streams; that is an crror.

(cursorpos)
returns the cursor position of terminal-io-as a pair, (wrm al-position . horizontal-position).
Both positions are measured zero-origined. from the top-left corner of the screen. nil
should be returned if the stream does not have a gencrally movable cursor.

(cursorpos vpos hpos)
Positions the cursor of the stream terminal-io at that position. FEither vpos or hpos may
be nil, in which case the current value is used. »

Otherwise, the first arg to cursorpos should be a symbol (ur character object). which
may take an additional argument. The case is irrelevant.

C: Clcars the screen. ‘The cursor moves to the "home” position (top left corner). On
a non-display, this outputs a newline, 'so always succecds.

Fresh-line. In this instance, the fresh-line function (page 185) is preferred.
"Top.” The cursor is homcd‘, moved to the top left corner.

Home down. Bottom left corner.

rmrm N - >

Clear-to-end-of-line. - From the current posmon to the nght margin is cleared.
The cursor does not move.

m

Clear-to-end-of-screen. Current position to right margin, and all following lines,
are cleared. The cursor does no move.

Move Up a line. Wraps around the screen, does not scroll.
Move Down a line. Wraps around the screen, does not scroil.
Move Forward a character position.

Move Backward a character position. If at the left margin. effectively does U
then moves to the column to the left of the continuation-character column (i.e., it
backs up the amount by which the cursor would have moved for a single-position
printing character). :

W MM O C

K Erase the character the cursor is over (this would not be the last one typed
normally, sce below:)

X B, then K. Simpleminded way to rubout the last character typed.

H hpos
Sct the horizontal position to hpos.

MC:NILMAN:NEWIO 27 23-DEC-83

NI Manual . o 211 Terminal 170

V vpos
Sct the vertical pusition 1o vpos.

1 The insert-line operation
\ The dclete-line operation
~ The inscrt-char operation

the delete-char operation

Additionally. onc may specify a strcam to cursorpos by giving that as the Jasr argument.
The atom t as a strcam means, as with other printing functions. the terminal (the value
of terminal-io). Note. however. that no stream a/so uses the value of terminal-io. rather
than standard-output. Note also that the form

(cursorpos 't)
is interpreted as requesting the cursor position of terminal-io; to do a home-up. one
must use some alicrnate form like

(cursorpos ‘'top)

(cursorpos #\t)

(cursorpos 't 't) ;
This strangeness is also MACLISP compatible...

19.9.1 Modifying the Terminal Characteristics

set-terminal-type terminal-name
Resets the terminal characteristics from the termcap entry found for terminal-name. Sec
<{not-yet-written>.

si:determine-and-set-terminal-type
‘This is the routine called on startup which cither defaults or asks for your terminal type.

sinit-with-termcap rermcap-struct
termcap-struct is what would be returned by si:make-termcap.

19.9.2 Making More Terminal Streams

As noted elsewhere (page 180), open is what may be used to open terminal streams in NIL.
The :type keyword specifics that a terminal stream is requested:

:display-tty
This produccs a terminal stream just like that NIL starts up with. Additional options fed to
open may be uscd to parameterize it; these arc described below.

:cold-load
This produces a "raw" tty which has no display capability. It does perform some ascii-
ification of non-display characters output, but performs no functions like line wraparound.

‘tty
what docs this do? is it left-over from somcthing?

MC:NILMANNEWIO 27 23-DEC-83

Terminal 1/0 om ~ NIL Manual

Interesting additional open keyword arguments which may be specified when opening a
«display-tty:

terminal-type terminal-type-name
The terminal capabilitics description is obtained from the termcap entry for ierminal-type-
name. Since one of these is necessary, you might as well specify the right one rather
than letting it default (the lookup in the database may still be neccessary).

:cold -load-stream cold-load-stream
The first arg to open is ignored. and the innards of cold-load-stream (which must be a tty
strcam as created by the :cold-load open-type) is. extracted to get to the real terminal,
rather than opening a new one. (In the NIt loadup process. first the terminal streams are
sct 10 be a cold-load stream. and then later they are reset o be real display-tty streams
using this. This is less important-now than it used t be, but still comes in- handy on
occasion. It's not clear what use it might be to uscrs.) '

19.9.3 Display TTY Messages

In case you want to hack graphics on another terminal or something... Scc also the source
code in nil1$disk:[nil.io]Jcursor.1sp.

:write-char char
This is what implements write-char to a display terminal, with all the interpretation of
char described earlier.

soustr siring siart count _ .
Note siart and counr are not opnonal Using this results in a significant cfficiency gain
over individual :write-char messages, becausc the stream attempts to pass along as many
block-modc operations as possible 10 VMS.

. :write-raw-char char
This is not actually provided by si drsplay cursorpos- mixin. but is required 10 be.
supported by flavors which mix that in. It is how si:display-cursorpos-mixin expects to
get raw codes out to the terminal. Obviously, then, if you also wish to get raw codes to
the terminal, you may use this message on display tty streams.

sraw-oustr siring start count
Analogous.

MC:NH.MAN:NEWIO 27 » 23-DEC-83

NIl Manual . 213 Syntax

20. Syntax

20.1 What the Reader Tolerates

I will defer detailed discussion of reader input and printed representation to the forthcoming
coMMON 11sP manual [1]. The LISP MACHINE LISP manual [12] also contains a good discussion
of -this. What will be presented here is basically: a summary of what the current NI rcader
accepts, utilizing COMMON 1ISP syntax.

Basically. the 11sp reader rcads characters from a stream and forms tokens out of them.
Certain characters cause additional actions 0 take place: for instance, the (character will cause
multiple (but possibly zero) - expressions up to a matching) to be formed into -a list. Some
characters arc significant only when they are the first non-whitespace character: the # dispatch
macro character behaves like this: #0403 is the integer 259 (# 0 mcaning "read in octal”). but
foo # 0403 is the symbol whose name is the string “"FOO#0403". Aside from these. the basic
rule is that if a number can be formed from the characters of the token. it is: otherwise. it is a
symbol. ‘The sole exception is that the pcriod character (.) is taken as a cons dot. - If a character
is preceded by a backslash (\). then «lf special significance is removed from it, including case
translation, and it is treated as a token constituent.

Thus:

foobar the atomic symbol FOOBAR

foo\bar The atomic symbol whose print name is FOObAR

259.259 A floating point number. (Currently this is a double-float. But sec the later

discussion on floating-point syntax, section 2.1.2, page 4.)
259\ .259 The atomic symbol with print name 259.259.

|FooBar| Vertical bars read a symbol with all characters (cxcept for vertical bar and
backslash) interpreted as constituent characters.. So, this is the symbol whose
print name is FooBar. Backslash may be used to include vertical bars and
backslashes in the symbol.

|Foo\[Bar\\]
Similarly, the symbol whose print name is Foo|Bar\.

259 The decimal integer 259.

259. The decimal integer 259, A trailing decimal point explicitly forces decimal
notation, not floating-point.

-259 The negative decimal integer -259.

+259 The decimal integer 259.

25\9 The symbol 258.

\259 The symbol 259.

1259 | The symbol 259.

MC:NILMAN:SYNTAX 34 23-DEC-83

What the Reader Tolerates ‘ . 214 ’ NI, Manual

1.0d-5 Onc times ten to the minus fifth power, as a double-float. Sce secction 2.1.2,
‘ page 4.
:foo A colon in a token uses the characters on the left to name the package the

- following symbol is to be read into. The "null" package name means the
package into which keywords are read.

si:foo The symbol F0O, read into the package named SI (the system-internals
package).

si:|Foo\|Bar\\] ,
The symbol Foo|Bar\. rcad into the SI package.

foo#0403 The symbol FOO#0403.

If the token consists entirely of . characters (and none have been slashified), then it is illegal
unless there is exactly one; that is a cons dot, which is only legal in list/cons formation. Thus,
oo. is the-symbol whose print name is .FOO., but ... is an crror.

‘The primitive syntax for a cons is

(car . c¢dr)

In this notation, a list of items a, b, and ¢ would be written as
(a . (b . (c . nil))) :

List symax allows us to "clide” a cons dot with a following cons; the dot is climinated, as arc -

the parentheses of the following cons: '
(abh . (e . nil))
(a bc . nil)

and finally, because nil is the same as (),
(a b ¢c)

The following characters terminate token formation, and do somcthing special when
~ encountered: :
(Starts a list or cons, as described above.

) Terminates a list or cons, or some other construct which "matches” with parentheses, such
as #(.

| Vertical bar terminates token formation.

* String syntax. The characters up to thé matchine " form the string; " and \ may be
included by preceding them with \.

' Reads the following expression, and "wraps” it with the function quote. Thus, 'foo reads
as (quote foo).

* "Backquote”. This is used for constructing cxpressions. Backquote is described later
(section 20.1.1, page 216), and also in [3]. :

, Comma is used for performing substitution within backquoted expressions (q.v.).

The # character is a disparch macro character. It reads (optional) digits as a numeric decimal
argument, and then dispatches off of the following character. The following are defined:

MC:NILMAN:SYNTAX 34 - | | 23-DEC-83

NIl. Manual 215 ‘ What the Reader Tolerates

'expression ,
Wraps expression with function, similar to . Thus, #'car reads as (function car).

#(xI x2... xn) .
Reads as a simple general vector n elements long (n may be zero), with those elements.
»bits

Reads in as a simple bit vector whose elements are bits (the digits 0 or 1). Thus, # =100
is a simple-bit-vector of leéngth 3. its clement 0 is 1, and its clements numbered 1 and 2
arc both 0.

Brational
Reads rational, the syntax for a rational number (which, remember. may be an integer)

in binary (basc 2).

Orational
Reads rational in octal.

Xrational
Reads rational in hexidecimal.

radixRrational
Reuds rational in radix radix.

foni\character-or-character-name

Read an object of type character. The \ may be followed by cither a single character
(and then a delimiter), or by a token (rcad as described above). which is interpreted as
the name of a character. - The returned object will have a font attribute of fonr, which
defaults 10 0. #\a is lowercase a, and #\| is the character object for vertical-bar. A
character name may have the names of character bits prepended to it. For instance,
#\hyper-space is the character for space with the hyper bit. If the long form is uscd,
the final character may neced to be slashified to be interpreted correctly. For instance,
\control-a is uppercase a with the control bit, #\control-\a is lowercase a with the
control bit, and # \control-(is an error (the left-paren delimits) which should have been
typed as # \control-\(. '

C(real imag)
A complex number with real part of rea/ and imaginary part of imag.

nAcontents
Reads in as an array of rank n, with contents contents (see make-array, page 103). This
does not work yet. ‘

S(name kwdl vall ... kwdn valn)

General structure syntax, for structurcs defined by defstruct. name is the name of the
defstruct-defined structure. This does not work yet.

+ conditional-expression expression-to-conditionalize
Rcad-time conditionalization. See the Maclisp Extensions Manual.

- conditivnal-expression expression-to-conditionalize
Rcad-time conditionalization. Scc the Maclisp Extensions Manual.

.expression
Reads in as the evaluarion of expression,

MC:NILMAN:SYNTAX 34 23-DEC-83

What the Reader Tolerates , 216 | NH. Manual

,expression : ,
lLoad-time cvaluation. - If the expression is being read normally into Nii, this bchaves like
#.. However, if it is in a file being compiled, the compiler will arrange to have
expression cvaluated at load (i.c., vasload) time, when the containing expression is being
constructed. This does not work yet in NiL.

20.1.1 Backquote

The backquote facility is used for constructing list structure from a template. Typically, most
of the template is constant. and the most common usc is when what is being created is 1ISP code.
inside of macro definitions. In the simplest case, the backquote character () is used instead of
quote ('). and. where substitution inside the template is desired, a form to be cvaluated is
preceded by a comma character. For instance., '

(defmacro push (item place) ,
‘(setf ,place (cons ,item .place)))
This definition reads in as code which is functionally equivalent to
(defmacro push (item place)
{(list “setf place (list ’'cons item place)))
Simple substitution is ¢ten not enough. If the comma in a backgquoted cxpression is immediately
followed by an atsigr. character (@), then, instcad of simple substitution, the item being
substituted is "spliced” into the containing list:
‘(foo .@Bbar mumble)
expands into code functionally like
(cons "foo (append bar '(mumbie)))
For instance, the macro
(defmacro always-returning-nil. (&body body)
‘{progn ,@body nil))
produces expansions
(always-returning-nil)
==> (progn nil)
(always-returning-nil (do-this))
== (progn (do-this) nil)
(always-returning-nil (do-this) (do-that}))
==> (progn {(do-this) (do-that) nil)
The splicing is non-destructive on the expression being substituted, as if the splicing happens by
use of append. ‘

In NIL (but not COMMON LISP), a comma immediately followed by a dot instead of an atsign
is trcated similarly, except that NIL is free to use destructive operations for the splicing; that is,
the splicing is performed as if by nconc (page 58) rather than append.

Backquoted cxpressions may be nested. They should be assumed to be expanded from the
inside out. Consider the following macro definition:
(defmacro defhack (name fn &aux (place-var (gentemp)))
'(defmacro ,name (,place-var) '
, ‘(setf ,,place-var (,',fn ,,place-var))))
In this example. the cxpansion of the outer backquote expression causes the valucs of name, fn,
andplace-var to bc substituted in; this cssentially means that we get (using italics now to show

MC:NILMAN:SYNTAX 34 _ : 23-DEC-83

Nil. Manual . ‘ 217 ' The Lisp Reader

the substitutions)
(defmacro name (place-var)
‘(setf ,place-var (,'fin ,place-var)))
Now, “,fi" means that we substitute in the value of ™fi", which is of course just fir, which is
what we want; on the other hand, we do want the value of place-var to be substituted in here,

so it docs not nced that quote.

To scc another way that this works, onc can manually pscudo-cxpand the inner backquote in
the original defhack definition
(defmacro defhack (name fn &aux (place-var (gentemp)))
‘(defmacro .name (.,place-var)
{list 'setf place-var (list '.fn place-var))))
which indeed produces what we want. Generally, then. one uses "." when one wants the
substituted form to-itself be cvaluated and substituted with the cexpansion of the inner backquote

expression. and ".\" when one wants to substitute in somcthing which is "constant” with respect
to the inner backquote exp-ansion.

As onc final cxtension to’ backquote, NI allows its use with general vector syntax. This will
probably be supported forever and ever. if for no other reason than the NH. compiler/code-
generator cmits instructions as vectors and constructs them that way.

‘#(foo ,(+ 3 7) bar) => #(foo 10 bar)

“Splicing™ syntax (".@" and ".") is not supported here. Neither NIl nor COMMON LISP support
backquote use with array syntax (# A) or structurc syntax (#S).

20.2 The Lisp Reader

20.2.1 Introduction

The NIL reader was designed to be incrementally extensible and to support the implementation
of other languages in NIL. It also addresses some efficiency issues to to take advantage of, but to
also hide, low-level considerations in disk and terminal 1/0.

CoMMON LisP and MACLISP compatible syntax extension functions are provided, along with
readtables for the syntax of NIL, COMMON LISP,MACLISP, and CGOL. The definition of these is in
the file [NIL.LISPIO]JRTBSETUP.LSP.

Note that the default readtable has been set to one conforming to the COMMON Lisp
specification. The only significant difference between this and what MACLISP and LISP MACHINE
LISP users have been using is that the syntax escape character is backslash, instcad of slash. Some
MACLISP programs we have seen are also using what is now the package prefix character ™" as a
‘regular symbol-constituent character. If any of this presents a code porting problem, then set the
readtable to onc of the compatible rcadtables documented later, or specify a readiable in the
modecline of the source files in question. For example:

MC:NILMAN:SYNTAX 34 23-DEC-83

‘The Lisp Reader I 218 N1, Manual

;;-«-Mode:Lisp;Readtable:ML-s-
;; This code uses ":" and "/" as in maclisp.

;;-*-Mode:Lisp;Readtable:LM-e-
+: This code reads using the old lispmachine syntax.

C —t—ModeﬁFortran;Readtable:F,ort.ran-o'- N
C This would work if one defined a readtable for Fortran.

% -+-Mode:Lisp:Readtable:Cgol-»-
This is lisp code in cgol syntax. Yow! %
define fib(x); if x<2 then 1 else fib{x-1)+fib(x- 2)$

;i To get a machsp readtable.

(setq readtable (si:lookup-readtable “ML”))
;1 to get a lispmachine readtable.

(setq readtable (si:lookup-readtable "LM"))

20.2.2 Reader Extensions

For cxotic or cxtensive reader cxtensions, see the documentation on the readuble, and how

the various language readtables are set up, in [NIL.LISPIOJRTBSETUP.LSP and in
TNTL LISPIQ]PARSER LSP, ‘

setsyntax character type vaIue
This is a MACLISP compatibility fcature altering the syntax of the character in the current
rcadtable. fvpe may be macro. splicing, or single. If it is macro or splicing. then
value is a function of no arguments which is invoked when the character is read.

-setsyntax-sharp-macro character type function &optional readtable
This is also a MACLISP compatibility feature. fype can be macro, peek-macro, splicing,
or peek-splicing. function gets called with one argument, wh:ch is either null or the
number between the # and the character. :

20.2.3 Readtable

readtable Variable
The value of thxs variable is a datastructure that controls the behavior of the functwn
read.

si:lookup-readtable name ;
 Returns the readtable corresponding to the syntax named by the string name.

MC:NH.MAN:SYNTAX 34 ~ 23-DEC-83

NII. Manual : 219 , The Lisp Reader

si:enter-readtable name a-readrable
Enters a-readiable giving the syntax for name. name may then appear as a rcadtable
specification in the mode-line of a source-file. :

create-readtable
Returns a naked readtable, with syntax for reading whitepace-delimited symbols.

si:add-number-syntax
Adds syntax for parsing numbers to the current readtable.

si:add-11st-syntax &optional (open #\() (close #\))
Adds syntax for parsing lists to the current readtable.

si:add-package-syntax &optional (char #\:)
Adds syntax for specifing packages to the current readtable.

si:add-escape-char-syntax char
Makes char the syntax-escape-character in-the current readtable.

si:add-prefix-op-macro char operator
Makes char a rcadmacro that returns a list of operator and the next thing read. For
cxample, : ‘ »
(si:add-prefix-op-macro #/' 'quote)

20.2.4 Alternative Syntax

The cGoL. syntax [11] is available by loading the file NILSDISK:[NIL.LISPIO]CGOL.LOD.
Further documentation is in the file NILSDISK:[NIL.MANUALJCGOL.TXT. The implementors
do not reccommend the extensive use of CGOL or any ALGOL-like syntax for LISP programming,
especially in environments where program readability and editability are important long range
considerations. However, some fecl that syntactic varicty taken in moderation is good for the
soul.

cgolread
Reads a CGOL syntax expression.

cgolprint expression
Prints an s-expression lisp program in the CGOL syntax.

Another parser, for a language with syntax compatible with the symbolic algebra system
MACSYMA [8], is available by loading the file NILSDISK:[NIL.VAS]PARSER, which sets up a
readtable named infix. The readmacro character "#3$" has been set up to invoke this parser in
the "NIL" readtable. One could then write the following:

(defun f (v a b x)
#S(v[0,0]:COS((A-B)*X)/(2-2+(A-B)~2)+COS(V[1,1]sX),
v[0,1]:COS{(A+B)*X)/(2-2%(A+B)~2)-V[1,0]*V[0,0],
v{1,0]:v[1,1]=Vv[0,0],
v[1,1]:V[0,1]+V[1,0])$)

MC:NIEMAN:SYNTAX 34 : 23-DEC-83

Debugging and Metcring ‘ . 220 NI Manual

21. Debugging and Metering
21.1 Flow of Control |

2111 Tracing

trace function
trace cnwraps the definition of JSunction so that the arguments it is called with, and the
values it returns, may be scen. Junction is not evaluated. ‘

(defun f (x) (times x x)) => F

(trace f) => (F)
(untrace f) => (F)
(trace f) => (F)

(f 3) sprintout:

#(1 :ENTER F #(3))
#(1 :EXIT F #(9))
‘The printout is a VECTOR. Its clements are:
{0] Recursion level for the given function
[1] :enter or :exit '
[2] Name of the function.
[3] The vector of arguments, or the vector of return values,
Say that you wanted a brcakpoint on entry to f. Then say

(defun f-bp (level direction name vector)
(eq direction ‘:enter))

(trace (f (:break f-bp)))
Presently all trace options work this simple and functional way, the syntax of a trace option is
(:keyword predicate-function-to-call), or simply :keyword which means the same thing as
(‘*keyword t). Options are :noprint, :break, and :info. ‘

One exception: (trace (f ‘menue)) enters a simple menue of various kinds of trace options.

MC:NILMAN:DEBUG 20 | : 23-DEC-83

NII. Manual 221 Flow of Control

21.1.2 Who does What, and Where

who-calls symbo! &optional &key (1ype :function)

This searches all compiled-code modules to find those which reference the gype value-cell
of symbol. 1ype may take on the valucs :function, :value, :local-function, or :local-
value. It defaults to :function, thus finding all modules which call the function symbol.
A npe of walue would find. all those modules which referenced symbol as a special
variable. :local-function and :local-value (which should probably be called :lexical-
anyway) aren't actually useful; they would only find uses where the references were not
compiled away, and all local references are in the current compiler.

Someday this should be smart cnough to do scarching through all defined functions,
including interpreted ones.

whereis finction)
Sfunction should be a symbol or a compiled-function. whereis returns the compiled-code
module (the module-object) which defines function, or nil if that cannot be determined.
It can only determine this for compiled functions.

Somceday (i keep saying that don't i) there will be a more gencral mechanism, so that the
source filc can be determined for all "defined objects”, such as those defined with defvar,
defstruct. defmacro, ctc. Until then, note the following function:

si:module-source-file module
This returns the name of the source file for the module module. The current
implementation .docs this by looking at the vasl file from which module was loaded. so
that file must exist on disk (with the same name).

apropos siring &optional (pkg package)
This scarches through pkg and all of its super-packages (sce chapter 15, page 121), and
returns a list of all of the symbols which contain siring as a substring.

si:apropos-generate /i arg &optional (pkgpackage) (superiors1)
This function maps the function fi over all symbols which contain arg (a string or
symbol) as a substring, in the package pkg (and its superiors, if superiors is not nil).
si:apropos-generate uses mapatoms (page 122); it is possible that fir could be called on
the same symbol more than once, although that will not happen very often in the current
NIL implementation.

The apropos function is defined using this, by
(defvar sapropos-lists)
(defun apropos (arg &optional (pkg package) (superiors t))
(let ((+apropas-=liste ()))
(si:apropos-generate
#'(lambda (x) (push x =apropos-lists))
arg pkg superiors)
‘sapropos-lists)) ;
Onc could write variants of this which test the symbol for specific properties, or with
boundp or fboundp, and which print the results as they are computed rather than

MC:NILMAN:DEBUG 20 ' 23-DEC-83

Examining Objects ‘ 222 NIt Manual

accumulating them in a list.

21.2 Examining Objects

exhibit object

Invokes an interactive structure editor on the object. There is a "7 command to print out
a command menu. The object is sent any of the following messages, :exhibit-self,
:select-nth, :store-nth. Sece the decfinitions for built-in- objects in
"[NIL..SRC]JEXHIBLLSP".

describe object

Says a few things about the object.

21.3 Debug and Breakpoints

dsbug

break

Enters the debugger. Various commands. self documenting via the ™" command. Frrors
by default enter the debugger also. Note that in its current state, stack and argument
information displayed requires an additional level of interpretation placed upon it for it to
be correct. For example, local variable information currently shows. simply the stack
between call frames, including argument frames being computed and "dirty” (non-Lisp)
data. :

tag &optional (predicate-form 1)

break evaluates predicate-form, which defaults to t. If the result of this evaluation is not
nil, then it enters a "break loop™. ":bkpt tag” is printed out, and a recursive read-eval-
print loop is entered. The prompt for reading says n>break>, where »n is the numbcr of
nested break loops currently in force.. Note that 1ag is not evaluated.

break is one of the older dcbugging tools around. It is not nearly as useful as it had
once been, because in a LISP with lexically scoped variables, those values are not apparent
from the brcak loop. In NIL what is probably more uscful would be to insert explicit
calls to (debug) in oncs code, rather than to break. In the future, break will in fact do
that, and its arguments will be a format-stnng and arguments for thce format-string (see
format, page 187). :

sbreak value tag

This is the internal version of break which evaluates both of its arguments normally. This
is also how you can give a non-constant fag argument to the break loop. When break is
changed, this function will go away.

MC:NILMAN:DEBUG 20 " ‘ : 23-DEC-83

NH. Manual . 223 Mctering

21.4 Metering

21.4.1 Timing

timer function &optional (loops) arguments
Calls function with arguments arguments (a list or simple gencral vector), loops times, and
prints out information on how much time was taken. Try, for example,
(timer #'cons 100 #(a b))
Needs some improvement to deal with function-calling and loop overhead: for that reason,
this is not oo uscful with short fast functions.

CoMMON-11SP defines two functions for obtaining compute and clapsed time. Both return
integers in the same units, which can nor be assumed to be fixnums. These units are units of
internal time, which cannot be depended on to be the same in different cOMMON LISP
implementations. They may even differ from once NIt release to another.

internal-time-units-per-second Constunt
This is an integer which is the number of "tics” of internal time per second. It happens
that in N1 this is 100, because that is all the accuracy which VM8 provides at the
moment. It could change in the future, and its value should not be depended on.

get-internal-run-time v
This returns the "run time” of the NIL. process in internal-time-units-per-second units.

get-internal-real-time
This returns a measure of elapsed time in internal-time-units-per-second units. The
time-base for this time measurement may not be depended on: only differences between
the values of two successive calls should be used for anything.

runtime
This is the old name for get-internal-run-time. While it is the same name as the
MACLISP function, it is incompatible—the NIL runtime function returns the run time in
units of hundredths of a second.

elapsed-time
time : 4
elapsed-time returns a measurement of elapsed time, in seconds, as a double-float. Two
such quantities may be compared to determine elapsed time. The origin of this number
may not be depended upon: in MACLISP it is the “system uptime”; in NIL it happens to
bc the double-float representation of the number of seconds since the origin of the
Smithsonian time standard (local time). This quantity is only really accurate to hundredths
of a sccond, even though it is potentially accurate to 100-nanosecond tics.

The synonvm time is provided for MACLISP compatibility. This name should not be used
in ncw programs, and should be changed in old programs. as the namc time will be
changed incompatibly by COMMON 1LISP. Also, there is a LISP MACHINE LISP - time
function which returns clapsed time, but as a fixnum in sixticths of a sccond. The
elapsed-time function will continue to cxist as the functional cquivalent to the MACLISP

MC:NILMAN:DEBUG 20 23-DEC-83

Mctering 224 NH. Manual

time function, however.

si:pagefault-count
This returns the number of pagefaults taken by the process since process creation.
Although this number is interesting to look at to sec if the NIL is thrashing, it must be
taken with several grains of salt due to the way VMS paging/swapping is performed. [The
Jollowing discussion should perhaps be somewhere else, under “performance considerations”?]

The following points arc especially of note. First, this number does not count the
number of faults taken which involved fetching a page from the pagefile (or shared image
file). Rather. it includes those "faults” for pages which still reside in physical memory,
but arc just not containcd within the working sct.” Also, the overhead of doing this
paging is charged t the process runtime. ‘ ‘ :

Presumably, then, if onc scts the working-sct extent (the process parameter/user quota
WSEXTENT) high, then the actual working sct in use will approach the number of pages
of the job which arc resident in physical memory. and the count of pagefaults will better
approximate the number of pagefaults for non-resident pages.

Note also the room function, which verboscly describes the virtual memory usage of the NIL,
including the size of the living-heap (i.c., how much consing has bcen going on).

The MACLISP-compatible status macro provides a getime option which returns the runtime (in
the same units as runtime does) which is the contribution te the process runtime by the garbage-
collector. ‘This is currently, of course, always zero. When the garbage-collector is available, there
will be functions which parallel the above three. which will return the contributions to clapsed-
time, runtime, and pagefaults by the garbage-collector. Note that the values returned by the
- above functions will always include the contributions by the garbage-collector.

-21.4.2 Function Calling

The only type of function call metering which is available in NIL right now is a global
~database of how many function calls (and similar things) of various types have been performed
since the NIL was first loaded up.

This number-of-function-calls metering is basically implemented by the NIL compiler. There
are four tables 10 long; the four tables arc for metering

Junction calls
Direct function calls. As in (defun f {x) (g x)). _

Juncalls
Simple funcalls.

sends
Calis to send. This docs not (unfortunately) include lexpr-send.

applics
Compiled calls to apply (= lexpr-funcall).
The 10 cntrics in cach table count the number of such occurences for zero through eight, and
ninc-or-more arguments. When the compiler compiles (say) a function call of two arguments, it

MC:NILMAN:DEBUG 20 23-DEC-83

NIl Manual . 225 Metering

will sncak in an instruction like
incl w~cl1$call_meter+2(sip)
just before it does the actual function call. This sequence takes four bytes of code.

The intent of this type of metering is to measure how intensively various applications perform
function calling, in order that we might be able to estimate how changes to the function calling
scquence (such as modifications to the function entry code, function call-frame sctup code, or
even microcode support for either of those or the function call itself) might affect the performance
of N1i programs. We have not yet actually done any mcasurements with these meters. However,
in the cvent that they might be useful to people, the functions (which are somewhat dirty and
kludgey) which read them are documented below.

si:get-call-meters ,
This returns an a-list of the values of the various calling meters. The a-list will be 4 long.
and the first clement of cach of these lists is a keyword describing the type of call: the
remaining 10 clements are the number of "calls” of that type for zero through 8. and
(last) ninc or more calls. The kevwords arc

function
Dircct function calls

Huncall
Compited calls to funcall

:send
Compiled calls to send

:apply
Compiled calls to apply (lexpr-funcalil).

si:show-call-meters &optional (meters (si:get-call-meters))
Prints out the meters.

si:subtract-call-meters afiermeters before-meters
Returns a new "meters list” in which all of the numbers are the difference of the after
and beforc values. All of the entries are assumed to be in the same order.

One could get a display of how much function calling (etc.) was going on by doing something
like .
(let ((before (si:get-call-meters})))
(run-program)
(si:show-call-meters (si:get-call-meters) before))

MC:NIL.MAN:DEBUG 20 23-DEC-83

System Management . 226 NIl Manual

21.5 System Management

J

Included arc some minimal utility functions for maintaining subsystems in Nil. These tools
arc not meant to be a comprehensive set, "addressing all the issues™ as they say. Instead, they
address some of the issues, have been found useful, and are used along with individual system
specific procedures for maintaining systems including the editor and MACSYMA.

The practical working procedure on most programs goes something like the. following: There
arc a sct of source files that make up the program. Onc of these files defines a variable set to a
list of these file names, and includes code for loading the files, - creating needed package
namespace(s). and peforming other functions as needed. Day-to-day. works procedes in an
incrementat fasion. changes -are made 10 the sources using the built-in ceditor. and these changes
are tosted and debugged using cditor commands such as. CONTROI-META-C (compile-defun. or
<CCONTROL-7>-C). and META-Z. (evaluate-defun. or <ESC>-7) and other utilites in the system
as nceded. ‘The editor. debugger. evaluator. and ‘exhibitor arc-invoked many times during a days
development cycle. From time to time during cditing the changed files are saved of course, as a
backup against environment crashes. At the end of the day, (or perhaps. during lunch hour. or
after several days). a recompilation of the changed program files may be cflected. using some of
the functions documented in this section,

A somewhat parallel effort is the maintainence of a system that has "users.” The same
methodology as used in a development system is in effect: except that now the full-recompilation-
cvcle time may be months. and there is a definite target-environment which is to receive system

. H A ” R TiY W £ '1';.\
chanase in the form of "patch files” (Sec the documentation of the patch facility)

Some additional functions documented here provide ways to find out somcthing about how
- modules depend on one another.

21.5.1 An example

; This is an example "system-build" file.
(defparameter smy-filese
*("USR:[ME.SYS]TOPLEVEL"
"USR:[ME.SYSJUTILS”
"USR:[ME.SYS]BASIC"))

(defvar smy-moduless ())

(defun load-my-system ()
(setq smy-modultess (mapcar #'load smy-filess)))

(defun recompile-my-files ()
(mapcar #'silent-comfile
(mapcan #'(lambda (x)
(if (utils:source-need-compile? x)
(list x})))
emy-files+)))

MC:NILMAN:DEBUG 20 23-DEC-83

NII. Manual 227 System Management

(defun silent-comfile (x)
(let ((compiler:«messages-to-terminal? ())
(si:print-gc-messages ()))
(comfile x)))

(defvar #my-undefined-functions-alists

())

(defun find-my-undefined-functions ()
(setq =my-undefined-functions-alist* ())
(mapc
#'(lambda (m)
(if (typep m ’'module)
(utils:map-over-module-cells
#'(lambda (module symbol key)
(if (and (eq key :function)
(not (fboundp symbol)))
(let ((a (assq
symbol '
smy-undefined-functions-alist»*)))
(if a ;
(unless (memq module (cdr a))
(push module (cdr a)))
(push
(1ist symbol module)
smy-undefined-functions-alist«)))))

m)))

*smy-modules»)
«smy-undefined-functions-alists)

21.5.2 "Source (Re)Compilation"

utils:vas-source-file filename
Gets the exact name of source file from the object file, filename.

utils:source-need-compile? source-filecname &optional object-directory
If there is no object file, or if the version of the number of the present source file is

greater than the version number of the source from which the object was compiled then
this function returns t.

utils:vas-source-needs-recompile? filename
Gets the source file name for the object filename and checks the version numbers.

23-DEC-83

MC:NILMANDEBUG 20

Verification o . 228 NI Manual

21.5.3 Information in Modules

The exhibit function can be used to look at modules interactively.

21.5.4 Related Utilities

These are sometimes used to store information gathered during system programming, for
example, "bug” cascs, lists of undefined functions, sorted lists of special variables, etc.

utils:print-into-file cxpression &optional filename ,
Prints the expression into the filename which defaults to something gencrated in
sys$scratch. B

utils:pp-into-file expression &optional filename
As in utils:print-into-file above. but uscs the pretty-print function.

21.6 Verification

verify filename .
Expressions are rcad from the file named filename and fed into a normal rcad-eval-print

loop. The filename is merged with a default specification of ni1$disk:[nil.verify].
The input and results are printed both to the value of terminal-io and to an output file.
named fifename with ilic type 1is. (ihis is the ciosest thing o batch processing that we
support.) There are various files in the [nil.verify] directory that arc "verified” before
a rclease of NIL is made. This function is also useful for making bug rcports that are
easy to deal with. For example, say that you found that multiplication of 2.2 and 3.3 did
not work. you could then make a file multbug. 1sp containing the following:

(si:print-herald)

3+ multipliication bug

(errset (times 2.2 3.3))
Then run the verify function on this file and send it and the output in your bug note.
An errset would be nceded around any expression that would otherwise cause a fatal
eITor.

MC:NILMAN:DEBUG 20 , ‘ 23-DEC-83

NII. Manual . 229 Errors

22. Errors

Errors in NIL work by signalling error conditions using signal. The specifics of this are going
to be changing in various ways; however, the basic interfaces for “creating” errors can hopefully
be kept static, at least insofar as the functions can be made to accept and interpret arguments
upwards-compatibly. :

carror proceedable restartable condition-name format-string args
This is what needs to be used to signal correctable crrors. For an crror to be correctable
(in the current scheme), one uses cerror and gives a non-null proceedable argument. The
restartuble argument has to do with saying that the crror can be "restarted” (i.c..
something gets tried over agdin) by throwing to a tag with name error-restart: this is
hardly, if ever. used, and will probably be obsolete quite soon. '

condition-name is the name of the condition being signalled: it is typically. although not
necessarily, a keyword.

Jormai-string 1S a string suitable as an argument to format with cxtra arguments of args:
that is how the crror message is produced. There are. however. conventions on what
particular arguments mean for particular conditions; some of them are described below.

At some point. the error system and how errors (and non-crror conditions) arc signalled
will all change. It should be the case. howcever. that vanilla uscs of cerror, cspecially
those with the error conditions listed below, will continue ¢ work.
check-type pluce nype-specifier &optional description

check-type cxpands into code which verifies that the value of place (which must be a
place suitable for use with setf—see page 38) is of the type nype-specifier. If it is not,
then an crror is signalled and place is updated to the newly-supplied value. Note that
type-specifier is not evaluated.

description is a string which describes the type; for instance, "an integer”, "a prime
number greater than 403". If it is not supplied, then check-type will attempt to
construct such a phrase from rype-specifier; however, the current implementation barely
tries at all, so for now it is probably best to specify it.

; For example,
| ' (defun oddp (x)

? (check-type x gaussian-integer "a guassian integer")
(if (typep x 'complex)

' (if (not (logbitp 0 (realpart x)))

') (logbitp 0 (imagpart x))

! (not (logbitp 0 (imagpart x))))

(logbitp 0 x)))

MC:NII.MAN:ERROR 15 23-DEC-83

Errors ’ 230 ' - NHI. Manual

check-arg place predicate &optional string

check-arg is an older form of check-type. predicate, if it is atomic, is a function of
onc argument to be used to test the value of place:

(check-arg x fixnump "a fixnum")
If it is not atomic, then it is a form to be evaluated to test to see if the value of place is
acceptable: ;

(check-arg x (typep x '(signed-byte 8))

"an eight-bit signed byte")

Even if it werc to try. check-arg would have even more trouble constructing a
~descriptive string on its own than check-type. so it is rccommended that- siring be
supplicd.

For cxample,
(defun fact (x &aux (ans 1))
(check-arg x (typep x ’(integer 0 =))
"a non-negative integer"™)
(do ((i 2 (1+ 1))) ((>= i x) ans)
(setq ang (* i ans))))

Here arc some of the interesting and well-formed error conditions defined in NIL right now,
and the arguments they expect. (Note that extra arguments may always be given.)

:wrong-type-argument fype-name losing-object :
‘This has to be the most common condition used in NIL. fype-name is the name of the
type of ‘object which was cxpected. such as number, and losing-object is the object. (The
type-name is not currently used for anything. and lots of code just puts a fairly random -
symbol there.) The valuc returned is used in place of the value of the wrong type. For
example, a subroutine which arg-checks for fixnum:
(defun si:require-fixnum (x)
(do () ((fixnump x) x) . ,
(setq x (cerror t nil :wrong-type-argument
"~+~S is not a fixnum"
*fixnum x)))) _
Wrong-type-argument checks are so common that it is better to subroutinize or macroify
them rather than writing out loops. See, for instance, check-arg (page 230).

:unbound-variable variable »
variable was not bound. Returning a value uses that as the variable instead.

:undefined-function name :
name is not defined as a function. Returning a value uses that as the function name
instead. \

:wrong- number-of-arguments random
This is handled spastically right now. will probably be superceded by somcthing else. At
least when called from compiled code, returning a value causes that value to be returned
as if from the losing call.

sinvalid-form form :
Jform was not meaningful to eval. The rcturn value is evaluated in place of the bad form.

MC:NH.MAN:ERROR 15 ‘ : ‘ 23-DEC-83

NIl. Manual . 231 i Errors

:io-lossage description form
Sort of a catch-all for random 170 crrors. description is a string describing the crror, and
Jform is the form which produced it; for instance
(delete-file "[foo]bar.baz")
might signal a :io-lossage ecrror with a description of the string
"%RMS-E-DNF, directory not found"
and a form like
(delete-file #<pathname "sys$sysdevice:[foo]bar.baz">)

:symbolic-constant-update symbol &optional value old-value
An attempt 1o update a value cell which is supposed to be constant was detected. In
principle. this can happen to any type of value cell (i.e.. special or lexical »value or
function cclis). although in practice only special value cells are crcated: in- this manner.
The text of the error message gives the context (i.c.. makunbound. set. variable binding,
cic.). The value and old-value are given when convenient for the code generating the error
to do so.

Continuing from this crror continues without having performed the set, Dbinding.
makunbound. or whatever. The revised error system will probably offer @ menu of which
this is onc option, and doing the operation is another.

:symbolic-constant-redefinition symbol old-value new-value
This is somewhat similar to :symbolic-constant-update, but is signalled by (the
primitive uscd by) defconstant (page 24) when the symbol being defined as a constant
has a valuc alrcady which differs froin e one being assigned. Reiurning fiom the enos
‘ignores the value returned and proceeds to modify the value of the symbol.

MC:NIL.LMAN:ERROR 15 23-DEC-83

Environment Enquirics _ . - 232 NIl Manual

23. Environment Enquiries

23.1 The Host Environment

11sp-1mplamentat10n-typo :
This returns a string which is the name of the LISP implementation. In NIL, this string is
"VAX NIL".

'l1sp-1mplamentat’1on—vers1on ,
This function returns a string which describes the versions of the systems Joaded in the
NI dn NI, this is the same as calling (si:system-version -info t) (scc page 282 for
morc details).

machine-type
‘This returns a string which names the type of machine the Nip is running on, such -as
"DEC VAX-11/780".

machine-1instance :
Rewirns o string which is a (supposcdly) unique string naming the machine, such as
"MIT-CORWIN". This name will normally be the same as that used as the "host” name
by the pathname code. \

;host-softwara-type :
The sofiware type of the machine. In NIL, this is always "VMS".

short-site-name _ : :
This returns a short name of the site, for instance "MIT Al Lab", If this was not set up
in the NI site parameters file, it will default to what. is returned by the machine-
instance function.

Tong-site-name
This returns a long name for the site, such as "MIT Artificial - Intelligence Laboratory",
If this was not set up in the NIL site parameters file, it will default to the short site name
(above), or the machine instance,

23.2 Maclisp-Compatible Status Enquiries

(status date) :
returns a list of the year (modulo 100), month, and day of the month.

(status daytime) ;
returns a list of the current hour, minute, and second.

(status dow)
returns a symbol which is the full name of the current day of the week (in' English,
sorry). The package the symbol is interned in is probably system-internals: perhaps it
should be the keyword package, or the value should be a string anyway. '

MC:NILMAN:ENV 37 23-DEC-83

NII. Manual 7 233 : Privileges

(status gctime) .
Returns the runtime contribution of the garbage-collector. This is. of course, always 0 in
the current NIL. :
The first four of thesc may all be obtained by use of the functions in section 23.5, page 234.

23.3 Privileges

get-privileges
This returns a list of keywords naming the privileges the NIl currently has cnabled. The
keywords arc listed below.

set-privileges &rest keywords-and-values
This takes as arguments alternating privilege keywords and flags: if the flag is nil, the
corresponding privilege is disabled. otherwise it ‘is cnabled (if that is possible). set-
privileges returns a list of the privileges which were cnabled when it finished, just as
get-privileges docs. For instance,
(set-privileges :sysprv t :bypass nil) :
(attempts to) wrn on the sysprv privilege. and turn off the bypass privilege.

The privilege keywords defined are
:emkrnl
:cmexec
'sysnam
:grpnam
:allspool
:detach
:diagnose
Jog_io
:group
:acnt
Note that for this privilege, the name used in VMS is noacnt; however, NIL uses acnt
because that is the name used by DCL.
:prmceb
:prmmbx
:pswapm
:altpri
The internal name for this is setpri, however DCL uses altpri, so NIL does also.
:setprv
tmpmbx
:world
:mount
:oper
:exquota
:netmbx
:volpro
;phy_io

MC:NIL.MAN:ENV 37 - © 23-DEC-83

Mcmory Usage : . 234 NII. Manual

:bugchk
;prmgbl
:sysgbl
:pfnmap
:shmem
'sysprv
bypass
:sysick

23.4 Memory Usage

room- &optional stream
room prints out a fairly verbose English description of the virtual memory usage of the
N, and some related information. In particular, onc of the things it tells is an
cstimation of how much space is left for cxpansion of the living heap, which is where all
ordinary consing is performed.

Note also the si:pagefault-count function. page 224.

23.5 Time and Date

(Sec also scction 23.2, page 232.)

Nii. provides a set of functions for manipulating dates and times. A date and tme is
represented in one of two ways: by a universal-time, which is an integer number of seconds from ’
00:00 January 1, 1900 GMT, and as a decoded time, which consists of the following components:

seconds

minutes

hours

date

month

The one-origined month number: January is 1, etc.
year
The full year, e.g., 1983.
day-of-week :
The zero-origined day of the week: 0 is Monday, 1 is Tuesday, and 6 is Sunday.
daylight-savings-time-p '
t or nil, depending on whether the decoded time is daylight savings time.
timezone
The number of the timezone: O is Greenwich time, § is Eastern time, -2 is Eastern
European time, and -4.5 is Indian Standard time.
This decoded tme is not represented in any datastructure, but rather is returned as multiple
valucs by functions which dccode universal-time, or passed as arguments as other functions.

MC:NILMAN:ENV 37 23-DEC-83

NI Manual . 235 Time and Date

23.5.1 The Main Functions

The functions in this scction arc defined by COMMON-1IsP, and all may be referred to
without any package qualification.

get-universal-time
This returns the current time in universal-time format.

get-decoded-time
This returns the current time, decoded, as 9 values: the current sccond. minute, hour,
date. month. year. day-of-week. daylight-savings-time-p. and timcezone. Tt is cffectively
(decode-universal-time (get-universal-time))

decode-universal-time wniversal-time &optional timezone
timezone defaults to the current timezone (sce page 238). ‘This decodes wniversal-time with
respect to rimezone. and returns 8 values: the sccond. minute. hour. date. month. year,
day-of-weck. daylight-savings-time-p. and timezone.

encode-universal-time seconds minutes hours date month year &optional timezone
tiniezone defaults to the current timezone. This encodes the given date and time for the
timezone, and returns a universal-time.

23.5.2 Printing Dates and Times

The following functions are not globalized. but must be referred to with the time: package
prefix. Most of them are the same as those provided by LISP MACHINE LiSP. All of them take a
destination argument. which may be a strcam, t, or nil. t mecans use the value of standard-
output: nil mecans rcturn the result as a string. Note that this is compatible with the way the
format function (page 187) interprets its destination argument, not the way the regular NIL
printing functions do. The destination always defaults to t, meaning print thc output on
standard-output.

time:print-time seconds minutes hours day month year &optional (destination 1)
This prints the specified date and time in brief format, to destination. The format used is
"10/03/83 23:02:59"—the month number, the day in the month, the year (modulo 100),
and the time.

time:print-current-time &optional (destination i)
This does time:print-time of the current time.

time:print-universal-time wuniversal-time &optional (destinationi) timezone
This effectively does decode-universal-time on universal-time and timezone (which
defaults to the current timezone), and then time:print-time of the results to destination.

MC:NII MANENV 37 23-DEC-83

ey

Time and Date 236 NI Minual

time:print-date seconds minutes hours date month year day-of-the-week &optional
(destination 1)
This prints the date in a format like .
Friday the seventh of October, 1983; 11:02:59 pm

time:print-current-date &optional (destinationt)
Prints the current date, in time:print-date format.

time:print-universal-date universal-time &optional (destinationi) timezone
Uses time:print-date to print the decoding of universal-time and timezone.

time:print-brief-universal-time wuniversal-time &optional (destination t) reference-time
‘This prints universal-time in a format like 10/07/83 23:02. However. portions of it will
be omitted if they are the same as the corresponding components. of the universal-time
reference-time (which defaults to the current time). In particular, if the yecar is the same,
it is omitted. and if the month and day arc also the same. the entire date is omitted. So
depending on the reference time, one could get 10/07 23:02 or even just 23:02.

time:print-universal-mail-format-date wuniversul-time &optional (destination n
Prints the date and time specified by wuniversal-time in "mail format™. This is a format
which conforms to that specified in RFC822, “Standard for the format of ARPA Internet
Text Messages” [6]. 1t looks like : :
Fri, 7 Oct 83 23:02:59 EDT

time:print-current-mail-format-date &optional (destination 1
Prints the current date and time, using time:print-universal-mail -format-date.

23.5.3 Namings

, The time package contains a small database of names of months and days of the Wéek. in
various formats. The format is split along two dimecnsions: the mode, for instance :ong,
:medium, or :short, and the Janguage, such as :english. There is a global dcfault for each of

these:

time:+default-languages ; Variable
The dcfault value of this is :english.

time:+default-mode» Variable

The default value of this is :long.

The mode and language are combined (by lookup) into a composite symbol for which the
lookup of the actual text format is performed. For the following functions, one may specify this
composite symbol, such as :long-english, just the mode (long), in which casec the default
language is used. or just the language, in which case the default mode is used. The three
predefined modes are :fong, :medium, and :short. and there are entrics for the languages
:english. :french, :german, :spanish. and :talian. Not all mode/language combinations are
supported: in particular. :medium is treated as a special case, such that if it is not found. :short
is tried instcad. The :short mode typically implics the short standard abbreviation; this is usually
three characters, however it-is two for :german.

MC:NILMAN:ENV 37 23-DEC-83

NIl. Manual) 237 Time and Date

time:month-string monrh &optional modespec .
Returns a string naming the month, in the format specified by modespec. Assuming the
initial default values for time:*default-language* and time:+default-mode+,

(time:month-string 12) => "December"”
(time:month-string 12 :short) => "Dec"
(time:month-string 12 :spanish) => "diciembre"
(time:month-string 9 :medium) => "Sept"
(time:month-string 9 :short) => "Sep"

time:day-of-the-week-string day-of-the-week &optional modespec

Similar: .

(time:day-of-the-week-string 1) => "Tuesday"
(time:day-of-the-week-string 1 :short) => "Tuye"
(time:day-of-the-week-string 1 :medium) => "Tues"
(time:day-of-the-week-string 1 :german) => "Dienstag"

"
v

(time:day-of-the-week-string 1 :short-german) "Di"
time:mode-language-fetch imodespec hash-rable what
This is the primitive which canonicalizes the mode, language. or composite symbol into- a
composite symbol, and looks that up in hash-table. whar is just a descriptive string for
error rcporting. e.g.. "Month namc”. The two above functions use this function to
retrieve vectors from the following hash tables, which are then indexed into to get the
namcs.

time:+*month-strings» ; Variable
‘This is a hash table associating the composite modc/language symbols (c.g., :long-english,
:short-german) with vectors of the strings for the given months. The vectors are zero-
origincd. so 1 must be subtracted from the month number before the aref (or sgvref) is
performed. The vectors are always simple general vectors.

time:»day-of-the-week-stringsse Variable
The hash table for day-of-the-week names.

Thus, time:month-string is defined (modulo error checking) as
(defun month-string (month &optional modespec)
(sgvref (mode-language-fetch
(or modespec sdefault-modes) smonth-stringss
: "Month name string")
(1- month)))
Fetching the vector and indexing into it can be useful if the vector is going to be used repeatedly,
for instance for printing a directory listing.

MC:NILMAN:ENV 37 23-DEC-83

&
L
I3
&
b

"T'ime and Date 238 NI, Manual -

23.5.4 Timezones

stimezones , ‘ ; Variable
The value of this is the current timczone. It should be initialized in the NIL site
initialization file to the correct valuc otherwise, it will be 5, which is Eastcrn time.

time:timezone-string &optional timezone dayhgm-savmgs-p

This returns the canonical three-character string for the timezone, or nil if mc name is not

known to NIL.
(time: t1mezone string 5 nil) > "EST"
(time:timezone-string 5 t) > "ED¥"
(time:timezone-string 0 nil) => "GMT"

timezone defaults to the current timezone. and daylight-savings-p 1o the value of

{time:daylight-savings-p).

"

23.5.5 Miscellaneous Other Functions

time:leap-year-p year
Returns t if year is a leap vear, nil otherwise.

time:daylight-savings-p
Returns t if it is currently daylight savings time. nil otherwise.

time:month-length month year
Rcturns the length of the month month in year.

time:daylight-savings-time-p hour day month year &optional timezone
Returns t if the specified day/time is in “daylight savings timec in the specified timezone
(which defaults to the current timezone), nil otherwise. (The specified hour is assumed to
be standard time.) Note also section 23.5.6, page 239.

time:day-of-the-week (day month year)
Returns the number of the day of the weck of the specxﬁed date.

time:verify-date day month year day-ofweek‘ : »
If day is a day within month which fell on day-ofweek, this returns nil; otherwise, it
returns a string describing the conflict.

time:moonphase &optional universal-time v
Returns the phase of the moon decoded into five values: the (zero-origined) number of
the quarter, the day, hour, minute, and sccond. The quarters are (from 0 to 3) new
moon, first quarter, full moon, and last quarter. This is presumably the uncorrected
mean longitude.

MC:NILMAN:ENYV 37 : 23-DEC-83

[P

NI Manual } 239 _ Time and Date

time:print-moonphase quarter day hour minute second
Prints the phase of the moon in a format like "FM +21).3H.29M.57S.". ‘The first field will
be one of "NM", "FQ", "FM", or "L.Q". Zero-suppression is performed on the other
ficlds; for instance, "FM+2D.29M.",

time:print-current-moonphase &optional (destination i)
Similar.

Note also the get-internal-run-time and get-internal-real-time functions. on page 223.

23.5.6 Variations in Daylight Savings Time

The timezone objects NI uses to store information on particular timerzones include a function
which may bc used to tell if a particular hour. day., month, and ycar (when interpreted as
standard time) is in daylight tme. Most of the initial timezone entries have nil in this component,
which is taken to mecan that the zonc never uscs daylight time. It may be neccessary to patch this
up: some functions and hacks are presented Here to aid in this.

time:zoneconv timezone
If timezone is a timezone object (an object of type time:timezone), it is returned. If it is
a number. then an existing timezone entry for that offset in the list time:*timezones»* is
rcturned. - (Otherwise an error is signalled.)

If the davlight-savings-time predicate NIL supplics is not appropriate for the site (or is just

plain incorrect). it can be patched by
(setf (time:timezone-dst-rule
" (time:zoneconv timezone-offset))
‘beandorfian-daylight-savings-time-p)

where timezone-offset is the offset from GMT of the timezone in question, and beandorfian-
daylight-savings-time-p the predicate which tells whether any particular hour in a particular
year is in daylight savings time.

time:regular-american-daylight-savings-time-p hour day month year
This returns t if hour, day, month, and year is between 1 am of the last Sunday in April
and 1 am of the last Sunday in October (see below).

time:last-sunday-in-april year
Returns the day of the month on which the last Sunday falls in April.

time:last-sunday-in-october year
Returns the day of the month on which the last Sunday falls in October.

Computations like "last Sunday in April” are fairly easy to perform. To find the last dow day
in a month, find the day-of-the-weck of the last day of thc month, and subtract the number of
days it takes to get back to the desired day of the weck. For instance,

(defun last-sunday-in-april (year)
(-& 30 (\\& (-& (+& 7 (day-of-the-week 30 4 year)) 6) 7))
The 30 is the last day in April, 4 the month April; 6 is Sunday, and the 7s and arithmetic with
them doing modulus stuff. Obviously the arithmctic can be simplified to

MC:NILMANENV 37 23-DEC-83

Time and Date . 240 : N1, Manual

(-& 30 (\\& (+& 1 (day-of-the-week 30 4 year)) 7))
Because this actually finds the last day of a particular weekday on' or before some particular day,
it could be usced to find the first Sunday in a month by substituting 7 for the last day of the
month, and the second Sunday by substituting 14. :

23.5.7 Internal Conversio_ns

Internally, NI, time measurements convert the VMS 64-bit integer (number of 100-nanosccond
tics) into a. double-float numbcr of scconds The following subprimitives are provided for the
conversion: '

%convert-time-to-d_ f‘loat simple-bit-vector :
simple-bit-vector should be a simple bit vector: 64 bits long It is assumed to contain the
binary representation of a VMS absolute time. ‘This quantity is returned as a double-float
in scconds, accurate to at least hundredths,

%convert-d_float-to-time double-fluar simple-bit-vector
The inverse of %convert-time-to-d_float; the VMS representation is stored into simple-
bir-vector.

time:convert-vms-time-to-universal-time vms-rime
vms-time is a double-float absolute time representation. as returned by %convert-time-to-
d_fioat (above) or elapsed-time (page 223). 'This converts it to a universal-time. This is
used not only by get-universal-time, but also for the conversion of dates in the
filesystem (as by. for cxample, the file-creation-date and directory functions) into
universal time format. Sce the following section for environmental factors which affect the
interpretation of vms-time.

23.5.8 Brain Damage

The format of universal-time (which is defined by COMMON LISP) is the same as that specified
by the ARPA Internet Time Protocol [10] as a "site-independent, machine-rcadable date and
time." Because it is always an offsct based on GMT, it is unaffected by local time zones; because
this is always a standard time, it does not get confused by local variations (daylight savings time).
~ Because it is absolute, the local time can be computed from it by knowing only the timezone and
whatever rules and information are necessary to determine when daylight savings time takes effect.
(The typical way this is done is a fairly simple perpetual-calender-like computation to see if the
date and time falls between the last Sunday in April, and the last Sunday in October.)

The absolute time used by VMS is an offset (in. 100-nanosecond units) from 00:00 November
17, 1858, in the current local time. No distinction is madc between standard and daylight time.
While this appears to have the bencfit of simplifying life by climinating daylight-savings-time
computations. it has the side cffect that to change to and from daylight time, the basc time must
be modificd. thus changing the only quantity useful for measuring absolute times. There is also the
fact that, in local time, there is an hour which occurs twice (when daylight time is resct to
standard ume), hence for that hour onc cannot determine whether one is actually in daylight or
standard time.

MC:NH.MAN:ENV 37 , 23-DIC-83

A S i AR AR AN N o N

oY i

b vaspie

remw st e

P

N Manual 241 ~ -~ Job/Process and System Information

" Recause NI must use the WMS time to determine the absolute time. get-universal-time (and
- w=mzs which return results based on that quantity, which is just about all the time and date
:'-,f,;:;.v::.\ in this section) can return an incorrect value. Also, the quantitics returned by elapsed-
tme (page 221) and get-internal-real-time (page 223) arc bascd on this, mcaning that if a shift

.~ o oul of dayvlight time occurs and the VMS basc time is changed, clapsed time measured
.- -_~d the shift will be incorrect. There is a variable provided for telling NIL about two potential

«om-wide conventions for bypassing this sort of lossage.

time:esystem-time-kludges Variable
This may take on onc of three values.
nil This is the default. It mecans that the VMS base time is always the local time
(potentially daylight time), and hence subject to complete lossage.
:standard
This mcans that the VMS base time is always based on the standard time for the
current timezone.
:gmt
This means that the: vMS base time is GMT (implies never daylight time).
Fiher of the last two options eliminate the ambigous-hour and incorrect-clapsed-time
probloms which might be suffered otherwise. Of course, they mean that all the WAMS
utthties which show dates and times won’'t work quite right. Oh well,

the ahone varable is examined for conversion of all V™S internal times into universal time.
Voo nendhl, for interpretation of the current time. if the above variable is nil. then the
Lo T Wiiva hainie 5 examiaed. (s B a Jogikal name used/defined by Chiaosner sofiware
anrrgicd by Symbohics, Ine. However, as with other similar logical names used by Nii, the
<.~ manager could put its definition in the system startup file.) If this logical name is defined,
o translates to the string "ON™, then daylight savings time is assumed to be in effect;
ooston o anvthing else is taken to mean that standard time is in effect. If the logical name
~ urdetined. then the time is examined to sce if it might be in daylight time (a computation
w=..h can be wrong necar the times when the change is effected).

~ A

236 Job/Process and System Information

\i oprovides a simple interface to the $getjpi and $getsyi system services. Both of these
<> «mphified somewhat over what is provided by the system services themsclves, in that they will
e~wen values for only one item at a time.

st:getjpi-value item-code
This rewrns a non-negative integer value for the JPI item designated by item-code. item-
cude 1s the integer code for the particular item in question (the same as used by VMS);
the si%jpi macro may be used to get the code for known items by name.

The value returned can have up to 64 bits: it will be a bignum if necessary, and will
never be negative (the 64 bits are returned unsigned). If $getjpi is unhappy in some
way. an error is signalled.

MONHMANENY 37 ' 23-DEC-83

Job/Process and System lnfonnétion . 242 ; NIl Manuzﬂ

s1:getjp1-str1ng item-code
This returns a string ‘comaining the bytes returned by a $get Jpi of item-code. An
internal buffer is used which limits the length of the string to somc moderate number of
Characters (2567). ‘

s1:X3p1 name
nhame may be a symbol or string naming a JPI item. It is not evaluated: the name
lookup is performed at macro-expansion (e.g.. compile) time. T he names arc those used
as the suffix. names for the VMS symbols which -designate the item codes: for instance,
(si:%ijpi ‘imagename) returns the item code to obtain the exccuting image name (this will
be the NI kernel image). ‘ :

si:getsyi-value iem-code '
Similar 10 si:getjpi-value, but for the $getsyi system service,

si:getsyi—string item-code ;
Similar to si:getjpi-string, but for the $getsyi system service,

si:%syi1 name
Similar 1o si:%spi.

The reason the item names for these things are accessed with- these little macros is that these
things are used fairly infrequently, so don’t warrant having much space wasted in the NIL for
assignments of constants to the names or anvthing. So. the names arc stored as strings in tables.

The names can be written as keywords in the calls o make them more stylistically consistent with
other functions such as set-privileges. :

The options available, and their meanings, can normally be obtained from online vMs help
by duing b
help sys $getjpi
and
help sys Sgetsyi

MC:NILMAN:ENV 37 23-DEC-83

NIl. Manual) 243 Compilation

24. Compilation

Compilation is cssentially the process of translating from onc specification into another which
is presumably more efficient, and probably more low-level in some respects. The NIL compiler
translates LISP code into the VAX instructions nccessary to cxccute that code: some of these
instructions may perform the task dircctly, while others may call functions or NII. kernel
subroutines to do it. In any cvent, the end result is intended to exclude the NI interpreter from
the running of the program. The NI. compiler does not output MACRO32 code or anything of the
sort; rather, it represents the code and data itself, and assembles the code. 1I1SP objects
referenced by the code. and whatever other information is needed to help construct that data,
into a compiled code module. "This is what the module data type represents.

When the Nt compiler compiles a file, it first cstablishes the proper environment for the
compilation, as specified by the file’s attribute list (described "in section 19.8.6. page 205). That
done. it rcads and processes cach form in the file. What it does with cach form depends on what
the form is. :

{(proclaim dcl-spec)
If the value of the form delspe¢ can be determined -at compile-time. then the compiler
will attempt to assert that proclamation for at lcast the duration of the compilation. Sce
proclaim, page 46.

(declare {dcl-spec}e)
The del-specs arc processed. and take cffect for at least the remainder of the compilation.
deciare in iy coniext is sort of like prociaim with muitipic uncvaiuated arguments:
however. this usage (non-local declarations) of declare is being phased out and subsumed
by proclaim. It will be probably be supported indefinitely, and will also be accepting
certain MACLISP-style declarations which proclaim will not.

(eval-when kwd-list forms...)
If compile is a member of kwd-list, all of the forms arc cvaluated then and there. Then,
if load is a member of kwd-list, the forms are recursively processed.

(progn forms...)
Jforms are recursively processed. Note that this is identical to (eval-when (load) forms...),

and upwards-compatible with the MACLISP (progn 'compile forms...) hack.

(compiler-let bindings forms...)
Establishes the bindings specified by bindings, then recursively processes forms in that
environment. Sce page 245.

(defun name arglist etc...)

(defun (name property-name) arglist etc. . .)
The function is compiled, and thc appropriate assignment (function cell or putprop) will
be put in the compiler’s output file.

(defmacro name etc...)

(macro name lambda-list etc. . .)
The specifiecd macro definition for name is added to the compilation environment. Then,
the macro is compiled, so will be there when the compiled output file is loaded. It may
not be depended on that name is defined in the LISP environment itsclf; only that code

MC:NIL.LMAN:COMPIL 37 23-DEC-83

Compilation 244 Nil. Manual

being compiled will have the macro run to- produce the cxpansion. -If it is necessary for

the macro to actually be defined: (perhaps in order for it to be calied from within other .
macros, as- opposcd to just expanded in .code being compiled), then the - defmacro or

macro form should be enclosed within an (eval-when {compile ...) ...) form.

(defun name macro lambda-list etc. . .)
The compiler whines at you and turns this into macro. This is provided to catch old
MACLISP code which should probably usc defmacro (or at the very lcast macro) instead.

(defun name fexpr lambda-iist etc...).
The compiler barfs at you and turns this into a special form dcfinition. Calls to it from
compiled code will not work. If mame is only around for users to call interactively.
however, it might just function properly. This is provided only to brute-force through
some . MACLISP programs, . Generally, - special forms or fexprs should be rowritten as
macros. :

(defun name atom eic...) :
The function- definition is assumed to be a MACLISP lexpr. It is transformed approprmtcly,
and compiled, after the compiler gets through giving you a hard time.

(defflavor eic)
Code to perform the flavor definition at load tine is gencrated. Additionally, declarative
information is added to the compilation environment so that defmethods will compile
correctly, and the routines defined for the outsxde -accessible-instance-variables can
be compiled correctly.

{(defmethod eic)
Compiles the code for the defmethod.

anything-else :

If anything-else is a macro call or a call to a funcuon the compiler has spccial rewrite
information about, the macro cxpansion or rewrite is performed, and the compiler tries
again. Otherwise, anything-else will be evaluated at load time. Currently this is done by
compiling the expression, which eliminates load-time dependcencies upon macros.

There are various other forms which implicitly do compile-time processing by virtue of how they

are defined, rather than by the compiler recognizing them specially. For instance, defstruct

(currently) by default expands into the appropriate macro; function, and data definitions, with

appropriate use of eval-when. For this reason, the above list cannot be taken as being all-

inclusive,

compile-file inpur-file &key package set-default-pathname output-file default-pathname
defaults
Compiles inpur-file, storing the vasl file in owtpui-file.

If package is specified, then the file is read in in that package, in spitc of what might be
specified in the source file property list (see section 19.8.6, page 20S).

The inpur-file is defaulted from the default-pathname if any, and then from defaulrs,
which should be a pathname defaults. If ser-default-pathname is not nil, then the default
pathname of defaults (which defaults to the value of sload-pathname-defauitss, page
201) is updated. '

MC:NIL.MAN:COMPHL. 37 N 23-DEC-83

NI Manual . 245 Compilation

output-file defaults to inpur-file with a vasl file type (VMS extension of VAS).

By special dispensation (to those of me who cannot get out of the habit of using this
feature), if cxactly two arguments are given to compile-file, then the first is the input file
and the sccond is the output file. This is typically used like

(compile-file "[nil.io]iofun" "[nil.vas]")
The coMMON LISP definition of compile-file accepts only the keyworded argument outpur-

file.

comfile .. :
Alternate name for compile-file. COMMON 1ISP dcfines the use of the name compile-
file. but not comfile, for whatever that is worth.

compile function
Compiles the interpreted (and in-core) definition of function, in-core. That is,
(defun fact (x)
(if (zerop <) 1 (times x (fact (subl x)))))
(fsymeval ’fact)
=> #<Interpreter-Closure FACT 0 123456>
(compile 'fact)
(fsymeval 'fact)
=> #<SUBR FACT>
In fact, what happens is that the function is compiled into a temporary file and that file
loaded: this is somewhet of 2 kludge 2t the moment. but is done because of limitations
of the NII. module assembiler. - Note in this regard user-scratchdir-pathname (page 200)
and sscratch-pathname-defaults* (page 202).

The above described calling sequence is the interscction of what is provided now, and
what COMMON LISP decfines for compile. The NIL idiosyncracies will be removed
eventually.

compiler-let ({(var va)}* {form}*
When evaluated, this binds dynamically each var to the evaluation of each val, and then
evaluates the forms in that environment, Syntactically, this is like let and lets (page 26).
At this time, there i no guarantee as to whether the variables are bound in parallel or
scquentially, however.

When compiled, however, the binding evaluation of the val/s and binding of the vars is
done at compile time, and then the forms (as a progn) compiled in that environment.
This is onc way to communicate information to the compiler and to macro functions, and
is the only way to set certain compiler switches locally right now.

compiler-let is handled properly as a toplevel form in a file, and is properly tranparent
to things like spccial predicate compilations.

Most of the variables which compiler-let used to be uscful for have be excised from NIL,
primarily because the primitives they controtled the compilation of have become more
generic due to the implementation of COMMON 11SP arrays. The only two such variables
left arc compiler:sopen-compile-carcdr-switch and compiler:*open-compile-xref-

MC:NIL. MAN:COMPIL. 37 23-DEC-83

Interaction Control ‘ . - 246 NIl. Manual

switch, ‘and these are now obsoleted by use of the optimize dcclaration. compiler-let is
still useful, of course, for communication between macros, and that is its intended use
anyway.

24.1 Interaction Control

compiler:»messages-to-terminal? Variable
If this is not nil, then the compiler (compile-file and compile, and cven the 1SB-defined
function Isbcl [4]) will print out verboscly on the terminal. If it is nil. nothing will be
printed. unless errors occur, which is a separate can of worms, By default, this is t.

24.2 Efficiency, Optimization, and Benchmarking

The current NI compiler is incredibly stupid in some ways. Basically, it is an overgrown
onc-pass code gencrator: it takes in a LISP. program, and spits out VAX machine language,
making libcral use of LISP function calls and special subro atines to handle things which are o
bulky or too complex for it to code out itself. ‘This one-pass nature is why it is not capable of
handling complctely genceral lexical variable references (among other things). On the other hand,
it contains what amounts to an immensc (proccdural) databasc for how to compile things, and
how to perform transformations from. some gencral forms to more specific forms which can be
handled more cfficiently. For instance, the form

(member item list) :
is actually coded as a call to si:member-eqgl, which docs not takce keyworded arguments like
member docs (sce page 61). reducing the overhead of the call. Similarly,

{member item list :test #'eq) ,
is coded as a call 0. memq. which is itself implemented as a "minisubr”, a quick (vVAX JSB
instruction) subroutine call to a hand-coded routine in the NiL kernel. Finally, there are many
things the compiler does know how to "do out”, but for various reasons may not choose to. The
most prominent of these arc the functions car, cdr. and their compositions and updates. While
these can be trivially inline coded by the compiler (car and cdr are one instruction each if the
cons is in a register), experience has shown that having error checking for them in compiled code
greatly facilitates debugging, while generally providing only a minor efficiency penalty except in
critical paths.

The general principle of the NIL compiler is, thercfore, that the default settings of the
optimization parameters (sece the optimize declaration on page 45) should provide fairly “safe”
code with error checking, as long as such safety does not carry with it too great an efficiency
penalty. This is in keeping with the philosophy that casual or naive use of NIL should not result
in undcbuggable code, or code which tends to produce "hard™ errors (for instance, reference to
non-cxistent memory instead of a wrong-type-argument error from car).

Even with lack of "optimization” in the traditional compilation sense, the NIL compiler often
has various choices to makc about how to implement certain constructs which involve space,
spced. and safety tradcoffs. One pervasive example of this is in how it scts up and performs
function calls. ‘This is probably the prime example, because it involves not only space, speed,
and safcty compromises, but also compilation-speed. 1 will not go into the fine details (which
would nccessitate explaining how function calling is performed at the VAX machine level), but try

MC:NIL.MAN:COMPIL. 37 23-DEC-83

NIl. Manual 247 FEfficiency, Optimization, and Benchmarking

to bricfly describe it more gencrally. Basically, a function call is handled by the caller "creating”
a call frame on the stack, filling it in, and then performing the actual call. When such a frame
is crcated. it can be recognized as such by a debugger (the current onc doesn’t know beans about
it. but that is beside the point), and, while the arguments arc being computed, it is possible to
tell not only what function is abour to be called, but which arguments to it have been computed
(and what their valucs are), and which have not. If the compiler decides that it is ok to not have
quite this much debugability, it might decide to try to compute somc of the arguments as it
creates the function call argument frame—this can save both space and time, but mecans you
cannot tecll what is going on while it is happening. No matter which way it does this, it may still
have to push varying length blocks of constants on the stack. Even here. there are spacc/time
tradeoffs to be made: for instance. below some threshold. it takes longer to do a block-move
than to do a scrics of moves/pushes. And, there is a decision as to what constant it is that gets
pushed: a marker (recognizable by the debugger). or just zeroes (which can be done more
cfficiently).

Another arca is that of certain functions which can be inlinc-coded. but which are normally
too bulky to make it worthwhile under normal circumstances. memgq is a fine cxample of this.
Normmally. memgq is a minisubr which will give a correctable crror if the list is not a proper list.
and which will detect circularity. If speed is mose important than space and safety. however. the
compiler can inlinc-code the loop. The exact determination is not only a function of the qualitics
specified with optimize. but also the particular circumstances. If the list argument to memq is
known at compile time. then the compiler can verify that it is a non-circular proper list, and thus
no longer has to worry about the "safety” of the call. If in addition the memq is being used for
"predicawe vaiue”, that is, in a context iike

(if (memq item list) then-do-this else-do-this)
where the specific value of the memqg does not matter, then the compiler can just code out the
proper serics of eq checks. How many it will be willing to do this for. is once again a
space/time tradeoff.

There is another class of optimization which can be performed: that is unfolding of common
cases out of a more generic routine. For instance, the 1+ and 1- functions (page 74) are coded
as minisubrs. They are fairly generic, since they can accept arguments of any numeric type: But
a common usage is with arguments which are fixnums. If space is not considered particularly
important. but speed is. then thc compiler can check to see if the argument is a fixnum, and if
so do the addition or subtraction itself without getting into the generic routine. Because the code
only does this on things it has verificd as fixnums, and because it checks for overflow, this
particular optimization does not involve “safety”.

Another aspect of “safety” is how likely the operation being performed is to produce
somcthing “illegal”; in a LISP implementation like NIL. many objects like fixnums and characters
have their data represented in the pointer, and operations on those objects just do operations on
the pointers. For certain trivial operations, of which many of the character functions (chapter 11)
are characteristic, the compiler might choose to produce code which is a bit more circumspect
about what it docs with pointers, what data-types of objects it might generate if given crroneous
inputs, or possibly cven whether it inline codes at all, dcpending on what the result of an
crroncous input might imply. ‘Take, for example, char-upcase: if this were inlinc-coded (it
might not be in this particular version of Nit), it cffectively would be replacing part of the
"address ficld” of the pointer which is its argument, by somcthing cisc. If that argument was not
a character, but (say) a vector, it is quite likely that the resultant object would be unprintable,

MC:NILMAN:COMPIL. 37 23-DEC-83

Efticiency, Optimization, and Benchmarking 248 , ‘ NH. Manual

give garbage when cxamined, and. assuming the cxistence of a garbage-collector, cause the
garbage-collector to fail in the middle of its operation, lcaving the 11sP totally uscless. Many
operations of this nature, while having a moderate amount of overhead if done as. function calls
with crror checking, can be made to at least not ‘return such objects with only a trivial overhead.
While in a sense this masks errors rather than detects them, having your lisp get blown away by
an illegal pointer does not facilitate debugging cither. In this regard, the things which heed the
safety optimization quality will gencrally not inline code at all (depending on their triviality) if the
safety quality is sct to 3. (Also, in gencral, only high-level routines might offer this choice: the
NIt fixnum-only routines, and character "subprimitives”, will always inlinc-code, and not offer this
safety “option”.)

There arc very few -things which recognize the compilation-speed optimization strategy.
These fow include such trivialities as the optimization which would convert (cons x nil) into
(ncons x), which would compile into trivially better. code. The once non-trivial place which
currently handles this is the compilation of function calls—if compilation-speed is turned up, then
they are just done the dumb, safe, casy way, which requires no lookahcad (at the arguments) on
the part of the compiler.

‘Generally. then, the default in Nt is to produce fairly "safc™ code, but not unrcasonably so;
car, cdr, ctc., and structure references, will be done with error checking: function calling will be
optimized as described above, however. because it is so pervasive and the optimization generally
results in a space savings in addition 10 the time savings. Setting the speed higher will result in a
loss of safety in varying degrees for different operations, and some increase in the space used;
scuiing IS¢ spacc Guatity highcr might causc in incrcase w juntiine of die resullani code. but
probably not much. at lecast in the current environment: there are very few things in the current
compilation scheme which arc affected by increasing the importance of only space.

MC:NII.MAN:COMPIL. 37 ' 23-DEC-83

NIl Manual , 249 lnwoduction o the STEVE editor

25. Introduction to the STEVE editor

25.1 Introduction

STEVE is a general purposc screen oriented text editor based upon the EMACS editor. In many
respects STEVE and EMACS are identical, with the primary difference being that STEVE is written in
NIl for the DEC VAX-11 serics computers and can be called dircctly from the NI interpreter.
Those who arc familiar with MACS will be able to use STEVE immcediately, and should skip to
the end of this chapter, as the first part is meant to be an introduction to STEVE.

25.2 Getting Started

There is onc difference between the editor environment and the rest of Nit to bhe aware of.
Because the editor and vMs have conflicting uses for many of the control keys. the editor must
run in "passall” mode. ‘This implics that the normal interrupt cortmands do not normally work in
the cditor. So the first command to learn is the editor command to return to whatever you were
doing before you centered the cditor. It is a two key command. typed by holding down the
“"Control™ key and pressing the "Z" key twice. ‘

Control-Z Control-Z Return-to-superior.
Exit the cditor and rewurn to whoever called it. ‘This is the nommal way to exit from
STIVE.

Now that you know how to exit the editor you may be curious how to enter it. Of course
this is not an editor command, but rather a NIL function.

ed &optional whar-to-edit
Enters the cditor, returning to whatever you were working on before. If you have not
run the editor since starting NIL it will be completcly initialized with one empty buffer.

Normally one types (ed) to the NIL interpreter to get into STEVE. what-to-edit may be a
pathname (or string naming a file), or the name of a function. If given, the editor will
try to find the file or function definition and let you edit it; otherwise the argument is
ignored. There are editor commmands to find files and function definitions anyway, so
the argument is not really very important, except that it can be convcnient, and .can be
used from programs.

MC:NILMAN;EDITOR 18 23-DEC-83

Editing Files 250 : Nil. Manual

25.3 Editing Files

The principle purpose of an editor is to create or modify a file. In broad outline an cditor is
used by rcading a file into a buffer, modifying it somechow and then writing it back to some long
term storage device, generally a disk. Most of the editor commands are concerned with modifying
a buffer, and will be expained later. In order to understand the commands for reading and
writing files one should know about the general structure of STEVE and its buffers.

| NIL |

i i e e s o it

| Editor |
7 \
/ \

| Buffer-1 | | Buffer-2 |

e e i . Sy it s e e e o s e e

| File-1 | | File-2 |

—————— o o o e s o s e ot s W S o

As the diagram shows, the cditor runs inside NiL. and contains any number of buffers, cach
of which is associated with a file. This diagram can be modified by creating a new buffer or
killing one, or by changing the file associated with any buffer. There are editor commands for all
of these operations, and for some more complex combinations of them. The editor always selects
one buffer as the current buffer, and displays a section of it around the cursor.

The format of this display is one of the features of an EMACS style editor like STEVE, and is
the reason it is called a "screen editor”. '

MC:NILMAN:EDITOR 18 : 23-DEC-83

NII. Manual) 251 o -diting Files

|
| This is a picture of what an editor |
| display might look like except that is is very|
| small._ |
| Note that the cursor is at the end of |
| the previous paragraph. |
I]
| |
I |
| |
|STEVE foo (LISP) disk:[crelbar.1sp {3} -- = |
| |
| |

The box in the diagram represents the edges of a terminal screen. The two paragraphs are
the contents of a buffer. 'The single line below that is called the mode line. It contains as niach
information about the current state of the editor as is convenient. From this we see that the
buffer is named "foo™" and that it is associated- with the file "disk:{cre]barlsp”. The notation {3}
after the file name indicates that the current version number is 3. If the file does not cxist on
disk the version number and the braces will be missing from the mode line. ‘the star (*) on the
right of the mode linc indicates that the buffer has been changed so it is not the same as the file
on dish. The current position of die cursor is at the end of the first paragraph. (On most
terminals a cursor shows up as a blinking underscore or box. though this depends upon the exact -
type of terminal. In this chapter we show the cursor as a underlinc (—) since it is fairly difficult
to print a blinking cursor.)

Under the mode line is a blank area of several lines. This is called the mode area and it is
where most error messages and prompts are shown.

We are almost rcady to start expaining the individual editor commands. The only other thing
you should know first is how they are typed. Most STEVE commands arc either one or two
character commands. Since one adds alphabetic characters to the buffer simply by typing them
(not that you know this yet) STEVE must not use alphabetic characters for its commands. Instead
the control characters arc used. (The control characters are typed by holding down the “control”
key and pressing some other key, just as the capital letters are typed by holding down the shift
key.) Since there are not enough control keys for all of STEVE's commands it also uses a meta
key. A Meta key is similar to a shift key or a control key. Now we can have the characters "a",
"A", "Control-A", "Meta-A", and "Control-Meta-A".

Unfortunately most terminals do not have a meta key. Not to worry, though, STEVE is
designed to work without it, just as certain text justifiers are designed to work with terminals
which have no lower case. Three commands are “bit-prefix” commands. Typing one of these will
change the next character you type just as if you had been holding down the corresponding
combination of control and mcta keys.

MC:NILMAN:EDITOR 18 23-DEC-83

Editing Files , 252 ' NIL. Manual

Altmode Prefix-Meta
Pressing Almmode (marked SELECT or ESCAPE on some terminals) will make the next
character a "meta” character. For cxample Altmode F (two characters) is the same as
Meta-F (one character).

Control-~ Prefix-Control
Pressing Control-t (control-uparrow) will make thc next character a comrol" character.
For cxample Control-t F (two characters) is the same as Control-F (one character). On
some ' terminals, notably -the VT100, Control-r is typed as Control-~ (control tilde);
normally, the ~ character is a shified 6, so-onc holds down control, shift, and 6.

Control-Z Prefix-Control-Meta
Pressing Control-7 will make the next character be both a control and a meta character.
For example Control-7Z IF (two characters) is the same as Control-Meta-F (one character).

All of these bit-prefix commands add the quality to the next character. There is no problem
with doing it twice. The two character sequences Control-7 7 -and Control-7Z Control-7Z both are
rcad as Control-Meta-7. :

We arc now ready start expaining the various cditor commands. Thesc are the commands you
will usc to create buffers and write files. All of these commands are safe to use since they will
notice if you arc about to destroy any of your work and ask you if you recally want to do that.

Control-X Control-F Find-File

Find-File will prompt for a file name and you should type it from the keyboard. If there
is a buffer for that file then it will be selected and be the new current buffer. Otherwise
a buffer is created for the file and the file is read in from disk if it exists there. Find-
File is the most common way to rcad a file from disk. It creates a new buffer for each
file which is convenient. When Find-File creates a buffer it uses the file name without
any extention as the buffer name. Since the name of each buffer must be unique this
doesn't work when you are editing two files which. have the same namc but are on
diffcrent directories or have different extensions (file types), so Find-File will notice if you
are doing this and will ask you for a new buffer name to use.

Control-X Control-§ Save-File
Save-File ‘writes the current buffer to its associated file, and changes the mode line to
indicate that the buffer and file are now identical. (This is not done until the output is
complete, so if there is a disk error or some other error you will not think it has been
saved when it hasn’t been.) '

Control-X Control-V Visit-File -
-Control-X Control-R
Visit-File is like Find-File except that it rc-uses the current buffer, destroying its contents.
It is still safc since it will offer to save it if any changes have been made to it.

Control-X Control-W Write-File
Write-File writes the current buﬁ’er to a file, but unlike save file it will prompt you for
the filc name.

MC:NILMANEDITOR 18 : | : | 23-DEC-83

NII. Manual . %3 Fditing Files

As an cxample, supposc that the screen looks like the diagram above. If you type Control-X
Control-W (Write-File) the editor will prompt you for a file name. Assume you want to save the
file into disk:[cre]baz.1sp. You type "disk:[cre]baz.1sp”. The screen will look like
this: ‘ _ ‘

I
| This is a picture of what an editor |
| display might look like except that is is very]|
| small. .

] Note that the cursor is at the end of
| the previous paragraph.

|

|

|

|
|STEVE foo (LISP) disk:[cre]bar.1sp {3} -

|Write File:disk:[crelbaz.isp_
|

Notice that the cursor is temporarily placed in the mode arca. After the command is
complete it will rcturn to the text in the buffer. The editor will fill in an incomplete file
specification for you, using the file specification associated with the buffer. In this cxample the
itie mane couid have been typed as [crejbaz.isp or baz.lsp or just baz since that is the
only part that is changing.

After typing whatever file name you choose you must type Rerurn. Most commands that
prompt you in the modc area require a Return to end the command. Until you press Rerurn you
may change the file name using the delete key and retyping the parts that were wrong. Also the
keys Control-W and Control-U usually delete a word or the whole command letting you start over.
If you delete too far the command is aborted if that is legal, otherwise a bell will sound.

Suppose you hit the Return key now. The buffer will be written, the prompt will be deleted
and the editor will tell you that it has finished. The screen will change showing you what is
happening, and will look like this (though we cannot show you how it changes.)

MC:NIL.MAN:EDITOR 18 23-DEC-83

Modifying the buffer . 254 | NIL. Manual

|
] This is a picture of what an editor |
| display might look like except that is is very]
| small._

] Note that the cursor is at the end of
| the previous paragraph. :

|

I

|

I ' ,
|STEVE foo (LISP) disk:[cre]bar.1sp {1} --
|Writing File...

|Written BAZ.LSP;1[CRE]DISK:

This line...
Then this line

l
|
I
|
I
I
|
I
I
l

Notice that the cursor has returned to the buffer text and that the star (*) has been removed
from the mode line to indicate that the buffer and file are identical. and that the version number
has been changed to 1. This is because the new file name did not exist on disk. Had the file
been saved under its old name the version number would have been incremented by 1 from 3 to
4. Finally the file name in the mode arca has been updated so that Save-File will use the new
filc name. ‘ "

25.4 Modilying the buffer

25.4.1 The Simplest Commands

As 1 hinted before, typing any alphanumeric character will add it to the buffer. In fact
almost any character that you can type without holding down the control key will act like this.
Also, the delete (or rubout) key will delete the last character before the cursor. If you can place
the cursor where you want it and deletc ‘and insert characters then you are alrcady able to make
any editing change you have to. Since it is so simple to change characters in the buffer, STEVE
concentrates on commands to put the cursor where you want it quickly and easily. The first few
such commands are:

Control-F Forward-Character
Control-F moves the cursor forward one character in the buffer. (The end of a line
counts as onc character.) ‘

Control-B Backward-Character ‘
Control-B moves the cursor backward one character in the buffer.

Control-N- Down-Real-Line ,
~ Move straight down to the next line.
Control-P Up-Real-Line

Move straight up to the previous line.

MC:NILMAN:EDITOR 18 ‘ _ o 23-DEC-83

Nil. Manual 255 Madifying the buffer

These are the commands to move up down right and left.

Now you know how to cdit a file! If you can you should probably try to use STEVE to create
a simple file and save it. Print it if you can and compare it to .what you sec on thé screen. Sece
what happens if you try to back up before the beginning of the buffer using Conirol-B or
Control-P. Type enough lines to fill up the screen (use Return to end cach line) then a few
morc. What happens when the cursor is about to move onto the mode line? Now use Control-P
to move back.

25.4.2 Now that you know the Simplest Commands

Now that vou know the simplest commands there are many others that vou should learn.
There are some general facts about the editor which will help you get more out of cach command
which 1 will expain first.,

25.4.2.1 Numeric Arguments

It is possible to give any command a numeric argument. ‘The command or may not use it.
but you can always supply it. In fact, if you don’t supply an argument an argument of one (1) is
implicd. Therc are scveral ways to specify an argument. In all cases the numeric argument is
typed before the command. The most gencral way to specify an argument is:

Control-U Univercal-Argument
Control-U followed by a positive or negative integer specifies that integer as the argument
for the following command. Control-U with no number specifies an argument of four (4).
Control-U Minus with no number is treated specially as an argument of minus 1 (-1).
Some commands treat Control-U with no number differently than Control-U 4.

For terminals with a meta key it may be easy to use the meta-digit keys.

Meta-0, Meta-1, ..., Meta-9, Meta-Minus
Control-Meta-0,..., Control-Meta-9, Control-Meta-Minus
Auto-Argument
Any of the Mectafied numeric digits begin a numeric argument. It is just like Control-U
followed by the digit. Notice that repeated meta digits are multiplied together.

Control-0,..., Control-9, Control-Minus
Auto-Argument-Digit
The control-digits end any previous digit and act as digits in an argument. Thus Conirol-2
Control-3 is the argument twenty-three: (23). Any arguments before or after a sequence of
control-digits will be muliplied by the final control-digit argument. Because most
terminals do not send control-digits these must be specified using the uparrow bit-prefix
(for instance, by typing Control-t 2), so in practice they are not used much. Note that
the Control-Minus must be specified first.

If several arguments are specified they are multiptied together. The primary use of multiple
arguments is to type Control-U several times in a row. Each Control-U multiplies the argument
by four (4). So Comirol-U Comrol-U is sixtcen (16) and Control-U Control-U Control-U is sixty-
four (64). The cursor movement commands trcat the argument as a repeat count (as do most

MC:NILMAN:EDITOR 18 23-DEC-83

Modifying the buffer . 256 | NiI. Manual

commands where that is mecaningful). Somec useful combinations are Control-U Control-U
Control-I’ which moves forward about a quarter of a line, and Control-U Control-N which moves
down four lines. You will find many other "Cliches” or combinations of editor commands which
you usc automatically to do one thing.

25.4.2.2 Control-X

As 1 said before there are not enough keys on a keyboard for all of the commands defined in
SIEVE. The Mera key is one way of getting more characters so STEVE can have. a large number of
single character commands. But it is not enough. To get cven more commands STEVE uscs the
key Control-X as a prefix character. ‘There are many two character commands which begin with
Conrrol-X. What actually. happens is that the cditor normally looks up the command for cach key
in a table. The Control-X key savs that the cditor. should use a different wble for the next key.
‘This greatly expands the number of commands that can be typed.

25.4.2.3 Meta-X and Control-Meta-X

With AMeta and Comrrol-X it is possible to define enough editor commands, but there is
another problem. Eventually there are so many commands that it becomes difficult to remember
them all. For this rcason there is a command, AMera-X. which rcads a command name from the
keyboard and cxeccutes the command. It is casier to remember the name of an unusual command
that to remember which key invokes it. In fact there are many commands which we don’t bother
to define keys for.

You type AMeta-X cither by holding the Mera key and pressing X, or by typing the FEscape
key followed by X. When you type it the cursor is moved to the ccho arca and a colon () is
printed as a prompt. You type the name of the command and then type Return to cxccute it.
Some Meta-X commands take “string” arguments. These can be typed in several different ways. -
The simplest way is to type the command name, then to type an Escape before each argument.
(An extra Escape after the last argument will be ignored.) When the command has been typed
with all of its arguments, press Rerurn to execute it.

There are a number of special features which make it easier to type a Meta-X command. The
Delete (or Rubout) key will delete the last character you have typed. (If vou delete too many
characters the Meta-X command is aborted.) The Control-G key will abort the command at any
time. (Comrol-G will abort a partially typed command almost anywhere in the editor.) Control-W
will delete a word, and Control-U will delete the entire Mera-X command, letting you start over.

The command docs not have to be completely typed, only enough to make it unique.- At any
time you may find out if a command is unique by typing FEscape (or Altmode on some terminals).
The editor will finish as much of the command as it can and type that part of it for you. If it is
not unique the bell will ring. If it is unique the Escape will be typed after the command (it
appears as a dollar sign ($)). You may delete these characters just as if you had typed them if
this is not the command you wanted.

The Space key is another special character. It is like Fscape except that it only completes one
word of the command. If the command is finished it will add an escape after the last word.

MC:NILMAN:EDITOR 18 : 23-DEC-83

NII. Manual . S 25T U Maodifying the buffer

If you type a question mark (?) while typing a Mera-X command you will see a list of all
possible ways to finish the command. This is typed in the upper part of the screen, over the text.
(As soon as the Mera-X command is finished, the text will be re-displayed.) If the list is longer
than one screenful the word “smore*" will appcar on the last line above the mode line. Type
Space to sce the next screenful of commands. Type Control-G to abort the cntire AMeta-X
command. (There are several other commands which use the upper part of the screen
temporarily. All of these will print "+more+" in the bottom line and cxpect either a Space to
continue, or a Control-G to abort. Any other character causes an abort, and is then used as a
command.)

A summary of special Meta-X characters.

Delete Rubout the last character showing in the command.
Escape Completes the command and scparates arguments.
Space Completes a word.

Control-G Abort cverything,. ;

Control-W Rubout a word. Works while typing arguments also.

Control-U Start over. Rubout the entire Meta-X command. (Doesn’t abort.)
? Help.

Most commands which are normally exccuted using Mera-X are smart about their arguments.
~They can determine how many you have typed and will prompt you for any that are required.
Often it is casicr 10 use Meta-X commands this way since the prompt will tell you what kind of
argumcnt W type. Somc commands can do complction for you of otheiwise hiclp wvou type the
arguments. The Control-Meta-X command is a variant of Merwa-X which is designed to take
advantage of this. 'The difference is that the command is cxecuted as soon as it is completed,
either by Escape or Space. Otherwise it is exactly the same as Mera-X.

25.4.2.4 Marks and Regions

Associated with each buffer is a ring which may store up to eight (8) marks. These are buffer
pointers created by certain commands for future reference. There is a command to create a mark
where the cursor is and a command to go to the last mark, and some¢ other commands. The text
between the cursor and the last mark is called the region. Many commands operate on this
region.

25.4.2.5 Killing and Un-killing

Whenever more than one character is deleted it is stored in a place called a kill-ring. Should
you decide that it was a mistake to delete it then you may retricve it with the un-kill command
(Control-Y). This also lets you copy text from one placc to another, by killing it, moving the
cursor and then un-killing it. To make several copies type Control-Y scveral times. The
command un-kill-pop (Mera-Y) will retricve the next to last peice of kilied text. If Mera-Y is
used right after Comrol-Y or Meta-Y the previous un-kill is dcleted first. (Unlike TS EMACS,
Meta-Y can be uscd at any time.)

MC:NILMANEDITOR 18 23-DEC-83

Major Modes : 258 NI. Manual

25.4.2.6 List Oriented Commands

A number of commands operate on "lists". These are normally defined as Lisp lists with
balanced parentheses. This definition is controlled by a syntax table and may vary in different
major. modes (sce below). For example, in 1SB mode the characters { and } are a type a
parcnthesis and will define a list. The editor knows about doublcquotc syntax for strmgs and
vertical-bar syntax for symbols.

25.4.2.7 *more*

A number of commands will' overwrite the text on the screen. There is no need to worry,
the text has not changed and will redisplayed when the current command is finished. If this
overwrite fills the top part of the screen then the word "s+more*" will be printed on the line
above the mode-line. The cditor. will . wait for you to rcad the screen and type a space. The
space will not be put into the buffer. it just indicates that you arc ready to scc th\. next screenful
of information. If you type Control-G it will abort (sce below).

25.4.2.8 Aborts

When the cditor is rcading from the terminal it usually will abort if you type Control-G. The
word "aborted” will appear in the mode area. This is a good thing to try if you are losing,
though it docsn’t work in some places it should.

25.5 Major Modes

When cditing different kinds of documents it is often convenient for some editor commands to
behave slightly differently. For examplc, when editing a program it seems most uscful to have
the Tab key indent the current line so it lincs up with the corresponding syntactic unit above it,
‘but when editing a paper you want the tab key to indent for a paragraph. STEVE has a number
of major modes which are designed for special kinds of editing. Most of the major modes are
very similar, so there is no nced to relearn much when you change modes.

Bolio mode
A mode built on Text mode (sce below) indended for sources to the text justifier Bolio.
Knows about Bolio comments. Also assumes that Bolio is being used to document a Lisp
program, so the paren echo hack is turned on and Mea-. tries to find a function
definition. The Control-Meta digits are used to change to that number font. Control-
Meia-* inserts a "pop font" command.

Fundamental mode
The basic mode upon which most other modes are built. Not used for much editing,
since usually there is a better and more specialized mode for any particular job.

Lisp mode
For cditing 1isP programs. The principle features arc that parcntheses arc matched as
they are typed (try it, it is hard to explain) and that the 7ab key knows how to indent
for LISP code.

MC:NIL.MAN:EDITOR 18 » 23-DIC-83

NIl Manual : : 259 S Help and Sclf Documentation

LL mode

Lisp Listener mode is not really for editing documents, It simulates the 11SP (or NIL) top
level loop by evaluating cach top level form as soon as it is typed. and printing the result
into the buffer. There are several reasons to usc this mode for interactive testing.
Because you are typing at the editor you have its full power to modify a form as you
type it in. You arc not limited to dcletcing the last characters typed as you would be
normally. Even after a form is exccuted you may modify it and re-usc it by backing up
(with Control-P), cditing it, and then re-executing the form with Aera-Z or by crasing
and re-typing the last close paren. Finally. there is a record of what you have done, and '
the results. You may save the buffer and print it. You may add comments as you work.

LSB mode
For editing 158 programs. ‘The primary difference from Lisp mode is that the characters {
and } are also treated as Parentheses.

Test mode
This should be dyked out. It is not useful cxcept for debugging the cditor itsclf.

Text mc-.e
For cditing english (or german or french...) text. Tub is normal and AMeta-. only scarches
the loaded buffers without trying to find the source file through the function definition,
(This may be wrong... comments?) Paragraph commands search for lines which begin with
a white space character rather than for blank lines (as they do in program modcs.)

25.6 Heip and Seilf Documentation

STEVE has a several commands designed to hclp you when you don’t know how do somecthing,
The principle commands arc AMeta-? and Control-Meta-?, which is the more general of the two.
When you type Conrrol-Meta-? the cditor will prompt you in the mode area with:

Help (type ? for options):

You respond with a single character. The choices are
Apropos. (You type a Word to search for.)

Document a Character. (You type the character.)
Describe a command. (You type the command name.)
Document a Key. Identical to C.

Syntax. (You type a character.)

NXOO >

A (Apropos) prints all paragraphs in the help file which contain a string. It is useful for
finding documentation on some concept. Also available through Meta-X Apropos.

C (Character) finds the name of the command that a key is bound to and then treats that just
like D (Describe) would. Also available through Meta-X Describe-Key, (Type the full name.
Meta-X Describe confuses completion.)

D (Describe) searches for a paragraph in the help file which contains the string in the first
line of the paragraph. The help file is structured so that paragraph will be the documentation for
that command when it is fully typed. If this is losing becausc you don't know the full name of
the command try Apropos instcad. Also available through Meta-X Describe.

MC:NIL.MAN:EDITOR 18 23-DIEC-83

Glossary of Commands . 260 NIl Manual

K (key) is another name for C (Character) and Meta-X Describe-Key.

S (Syntax) documents the editor syntax of characters. The character is read using the NIL
function read, so many characters can be typed as themselves. Most others can be typed by
using the quote prefix "\". The possible syntax types are Word- Alphanumeric, Lisp- Alphanumeric,
White-Space, Paren-Open, Paren-close, String-Quote. C, haracter-quote, and Prefix. Also available
through Meta-X Describe-CharSyntax. (Note that Meta-X Describe interferes with completion of
this name.)

25.7 Glossary of Commands

So far you know about how to insert characters into the buffer. give commands arguments
and these communds: ,

Control-F° Forward-Character

Control-B Backward-Character
Control-N Down-Real-Line

Control-P Up-Real-Line

Control-X Control-F ' Ff nd-File

Control-X Control-S Save-Fi le

Control- Y Control-V Visit-File

Control-X Control-R Visit-File

Control-X Control-W Write-File

Delete Backward-Delete-Character

Starting on the next page is a complete list of commands, including these and all others.

MC:NILMAN:EDITOR 18 : 23-DEC-83

NII. Manual 201 Glossary of Commands

Glossary Of STEVE commands

25.7.1 Special Character Commands

Backspace Backward-Character
Move the cursor backward one character or more if given an argument.
Tab Insert-tab (In non-LISP modes)
Insert a tab.
Tab Indent-For-Lisp (In LISP modes)

Indent the current line according to the nesting structure.

Linefeed linefeed
Break the current linc and indent the next line. Equivalent to Rewurn followed by Tab.

Return Crif
Insert a line scparator or just move to the next line if before two blank lines. Skips
comment ender if there is one.

Altmode Bit-Prefix Meta
Make the next character be a Mera character.

Rubout Backward-Delete-Character (in non LISP modes)
Deletes onc character before point. If given an argument kills that many characters before
noint

25.7.2 Control Character Commands

Control-Altmode Exit-Editor
Return to whoever called the editor, gencrally the NIL interpreter.

Control-Space Set-or-pop-mark
With no argument places a mark at point. With an argument pops the last mark and
goes to it

Control-; Indent-for-comment?

Inserts a comment on the current line or adjusts the placement of an existing comment.

Control-< Mark-Beginning
Place a mark at the beginning of the buffer.

Control-= What-Cursor-Position
Prints the X and Y coordinates of the cursor on the screen, the current character and the
number of characters before point and the percentage of the file which that is. Line
scparators count as two characters since that is how many they occupy in a file. See
Count-Lines-Region

Control-> Mark-End -
Place a mark at the end of the buffer.

MC:NIL.MAN:EDITOR 18 23-DEC-83

Glossary of Commands : 262 NI Manual
Control-@ _ Set-or-pop-mark :
With no argument places a mark at point. With an argument pops the last mark and
gocs 1o it.
Control-A Beginning-Of-Line
Move the cursor to the beginning of the current line.
Control-B Backward-Character
Move the cursor back one character or more if given an argument.
Control-C Exit-Editor

Return to whoever called the editor. generally the N interpreter. Control-C should
interrupt the editor as it docs in the rest of NI but because the cditor must be in Passall
mode that is not possible.

Control-D Delete-Character
Delete the character that the cursor is on.
Control-E . End-0f-!ine
| Move the cursor to the end of the curient line.
\
Control-F Forward-Character
Move the cursor forward one character or more if given an argument.
‘ | Control-G ‘ ;
| Control-G will abort the editor if it is reading from the terminal.
- Control-H Rackward-Character
‘ Just like Control-B. Conirol-H is Backspace in seven-bit ASCIL
Control-I Tab

Control-I' does whatever 7Tab would do. In Lisp Mode and its derivatives (see major
modcs. below) this indents according to - the syntax of text as a LISP program. In non-Lisp
modes this is a normal 7ab. '

Control-J Indent-New-Line
Equivalent to Return followed by Tab. Ends the current line and indents the next line.
Control-K Kill-Line

Kill to the end of the current line. If the cursor is at the end of a line it kills the line
scparator. With an argument kills that many. lines. :

Control-L New-Window
Clear the screen and redisplay everything. Useful if the screen is garbaged somehow (for
example if somcone sends you mail). The window is moved to put the cursor in the
middle of the screen. With an argument puts the cursor that many lines from the top of
the screen. With a negative argument counts from the bottom' of the screen.

Control-M ; CRLF
Insert a line scparator or just move to the next line if before two blank lines. Skips
comment cnder if there is onec.

Control-N Down-Real-Line
Move the cursor straight down onc line or more if given an argument.

Control-0 Open-Line ,
Puts a Rerurn right after the cursor. With an argument creates that many blank lines.

MC:NI MAN:EDITOR 18 | 23-DEC-83

NIl. Manual . 263 B Glossary of Commands

Control-pP Up-Real-Line
Moave the cursor up one line or more if given an argument.

Control1-Q Quoted-Insert ,
The next character is treated as an alphanumeric character regardiess of what it is. This is
how to put control characters into the buffer. AMesa characters cannot be put in the
buffer, because they cannot be in NIL strings.

Control-R Reverse-I-Search
Incrementally search backward through the buffer for a string.

Control-S I-Search
Incrementally scarch the butfer for a string.

Control-T Transpose-Characters
Exchange the character before the cursor with the character at the cursor.

Control-U Universal-Arqument
Read an argument for the next command.

Control-Vv Next-S:.reen
Move the window and the cursor forward almost onc screenful. The last two lines of the
window arc now the top two lines. With a numeric argument moves the window and
cursor that many lines.

Control-W Kﬂi-Region
Kill the region between point and mark and save it in the kill ring.

Control-X Prefix-Character
Control-X is a prefix character. Type any character after it for & two character command.

Control-Y Un-Kill
Get the most recent kill out of the kill ring and insert it in the buffer. With an argument
N gets the Nth kill. With just Control-U as an argument, it leaves the cursor before the
un-killed text.

Control-Z Bit-Prefix Control-Meta
Read the next character as a Control-Meta character.

Control-\ Prefix-Meta
Read the next character as a Meta character.
Control-] Abort-Recursive-Edit

Return from a recursive edit without doing anything more.

Control-~ Bit-Prefix Control
Read the next character as a Control character.

Control-Rubout Backward-Delete-Hacking-Tabs
Like Rubour except that a Tab is first cxpanded into spaces. This is useful for indenting
things. In Lisp modes Rubout and Control-Rubout are interchanged.

MC:NIL.MAN:EDITOR 18 23-DEC-83

Glossary of Commands ' 264 NIl Manual

25.7.3 Meta Key commands

Meta-Linefeed Indent-New-Comment-Line
Equivalent to Control-N Meta-;

Meta-Return ' Back-To-Indentation
Put the cursor on the first non white-space charactcr in the current line. (Tabs and spaces
are white-space.)

Meta-Altmode Minibuffer
Start a minibuffer.

Meta-# Change-Font-Word
Change the font of the previous word.

Meta-(; Make-parens 7
Enclose the next LISP expression in parens. With an argument -enclose that muany. 11SP
expressions.

Meta-) ' Move-Over-Right-Paren

Move past the next close parenthesis. then do a Linefeed.

Meta-. Defun-Search-Al1-Buffers
Find a defun. In some modes this will look at the subr object to find the module a
grovel around to find and load the file where the function is defined. In most text modes
(other than boliv) it just searches the loaded buffer.

Meta-; ‘ indent-tor-comment?
Inserts a comment on the current line or adjusts the placement of an existing comment.

Meta-< Goto-Beginning
Put the cursor at the beginning of the buffer.

Meta-= Count-Lines-Region
Prints the number of lines between point and mark in the mode area. Also prints- the
number of buffer characters between point and mark (counting the line separator as one
character. Sec What-Cursor-Position.)

Meta-> Goto-End
Put the cursor at the end of the buffer.
Meta-? Describe-Key
Reads a key from the keyboard and prints its documentation.
Meta-A Backward-Sentence
Move to the end of the previous sentace. |
Meta-B : Backward-Word |
Backup one word. (With an argument backs up that many words.) »
Meta-C Uppercase-initial
Capitalize a word.
Meta-D Kill-word

Kill the next word.

MC:NIL.MAN:EDITOR 18 ' - 23-DEC-83

Nil. Manual) ‘ - 205 e Glossary of Commands

Meta-E Forward-Sentance
Move the cursor to the end of the current sentance.

Meta-Ff Forward-wWord

Move over one word. With an argument moves over that many words.
Meta-H Mark-Paragraph

Put point at the beginning of a paragraph and mark at the end.
Meta-1 Insert-Tab

Puts a tab into the buffer. AMeta-1 docs not change in Lisp modes.

Meta-J Indent-New-Comment-Line
Equivalent to Control-N Meta-;.

Meta-K Kill-Sentence
Kill the sentence after the cursor.

Meta-L Lowercase-Word
Convert the next word to all lowercase characters.

Meta-M Back-To-Indentation
Move the cursor to the first non white-space character in the current line.

Meta-N Down-Comment-Line
If the current line has a blank comment delete it. Then move to the next line and add
or adjust the comment start in the correct column.

Meta-¥ Up-Comment-Line
If the current line has a blank comment delete it. Then move to the previous line and
add or adjust the comment start in the correct column.

Meta-R Move-To-Screen-Edge
With an argumcent move to the beginning of that line on the screen. With a ncgative
argument count from the bottom. With no argument move one third from the top.

Meta-S Center-Line
Centers the non white-space characters in the current line.

Meta-T Transpose-Words
Exchange the words before and after the cursor.

Meta-U Uppercase-Word
Convert the next word to all upper case characters.

Meta-V Previous-Screen :
Move point and thc window back so the two top lines become the two bottom lines.
With an argument move that many lines.

Meta-W Copy-Region
Put the text between point and mark in the kill ring but do not delete it from the buffer.
Meta-[Backward-Paragraph

Move to the beginning of a paragraph. In Lisp modes a paragraph begins with a blank
line. Otherwise a paragraph begins with a line that starts with a white-space character.

Meta-\ Delete-Horizontal-Space
Delcte any spaces or tabs around the cursor.

MC:NIL.MAN:EDITOR 18 23-DEC-83

Glossary of Commands . 266 ‘ . NIL Manual

Meta-] Forward-Paragraph
Move to the end of a paragraph.

Meta-~ Delete-Indentation ,
Join the current line to the previous line and delete white space as appropriate. Leaves
the cursor where the line scparator was, so a Linefeed undoes the cffect of AMeia-1.

Meta-~ ‘ Buffer-Not-Modified
Clears the flag which says the current buffer has been changed. The star ("‘) in the mode
line will be crased. Be careful with this command: wusc it only when you are sure there
have not been any changes to the buffer that vou want saved.

Meta-Rubout Backward-Kill-wWord
Kill the word befor the cursor.

25.7.4 Control-Meta Commands
Control-Meta-Backspace Mark-Defun
Put point at the beginning of a defun and mark at the end.

Control-Meta-Linefeed Indent-New~-Comment-Line
Equivalent to Control-N Meta-; .

Control-Meta-Return Back-To-I'ndenta_ti'on
Move the cursor to the first non white-space character in the current line.
Control-Meta-(Backward-Up-List ‘
Move backward to next enclosing open parenthesis.
Control-Meta-) Forward-Up-List
Move forward to next cnclosing close parenthesis.
Control-Meta-; Ki11-Comment
Kill the cntire comment ficld on the current line.
Control-Meta- Editor-Help

Self documcmatmn function. Type a single character (one of A C. D K, S, or 7) to
select which type of help you want.

Control-Meta-@ Mark-Sexp
Put the mark at the end of the next LISP expression.

Control-Meta-A Begihning -0f-Defun
Backup to the beginning of the current or previous defun. Does not require matched
parentheses or a complete defun.

Control-Meta-B ‘ Backward-Sexp
Move backward over one LISP expression.

Control-Meta-C Compile-Sexp
_ Compile the current defun. Only works for NIL code. The compiled function is loaded
into the current NIL.

Control-Meta-D Down-List
Move to the inside of the next list in the buffer.

"MC:NILMAN:EDITOR 18 23-DEC-83

NIl Manual 267 Glossary of Commands

Controi-Meta-E End-Of-Defun
Move to the end of the current or next defun. Does not require matched parentheses or
a complete defun. '

Control-Meta-F Forward-Sexp
Move forward over one LISP expression.
Control-Meta-H Mark-Defun
Put point at the beginning and mark at the end of the current defun.
Control-Meta-J Indent-New-Comment-Line
Equivalent to Control-N Meta-; .
Control-Meta-kK Kil1-Sexp
Kill the next 1iSP cxpression.
Control-Meta-M Back-To-Indentation
Move the cursor to the first non white-space character in the current line.
Control-Meta-N Forward-List
Move forward over one list.
Control-Meta-0 Split-Line ,
Break a line at the cursor and indent the second half so it starts in the same column.
Control-Meta-P Backward-List '
Move backward over one list.
Control-Meta-q iIndent-Sexp
Apply tab to every line in the LISP cxpression following the cursor except for the first
line.
Control-Meta-R Reposition-Window

‘I'ry to place the beginning of the current defun at the top of the window without moving
the cursor. Does not require balanced parentheses.

Control-Meta-T Transpose-Sexps
Exchange the previous and next LISP expressions.

Control-Meta-uU Backward-Up-List
Move backward to the previous enclosing open parenthesis.

Control-Meta-Vv Scrol1-0Other-Window
In two window mode scrolls the other window forward. With an argument scrolls by
lines.

Control-Meta-W Append-Next-Kill

If the next command is a kill command the previous kill will be appended to it, even if
it would not otherwise be. Has no cffect if the next command is not a kill command.

Control-Meta-X Instant-Extended-Command
Read an extended (named) command from the keyboard and exccute it. If completion
finishes the command name it will be executed instantly, without waiting for a Return.

Control-Meta-[Beginning-0f-Defun
Move to the beginning of the current or previous defun.

MC:NILMAN:EDITOR 18 _ 23-DEC-83

Glossary of Commands . 268 : NI. Manual

Control-Meta-] End-Of-Defun
Move to the end of the current or next defun.

Control-Meta-~ ~ Delete-Indentation
Join the current line to the previous line and delete white space as appropriate. Leaves
the cursor where the line scparator was, so a Linefeed undocs the cffect of Control-
Meta-1 .

Control-Meta-Rubout Backward-Kill1-Sexp
Kill the LISP cxpression before the cursor.

25.7.5 Control-X Commands

Control-X Control-A Toggle-Auto-Fill-Mode ,
With no arg. toggles auto fill mode. With a ncgative arg, turns it off. With a positive
arg. turns it on and sets Fill Column to that number.

Control-X Control-B List-Buffers.
Lists all buffers and their major modes.
Control-X Control-2- Exit-Editor

Retrn to whoever called the editor, generally the NIL interpreter.

Control-X Control-D Directory-Display
List all versions and types of the current file. With an argument rcads a pathname and
Tisis all fles winch mmaich it

Control-X Control-F Find-File
Find-File will prompt for a file name and you should type it from the keyboard. If there
is-a buffer for that file then it will be selected and be the new current buffer. Otherwise
a buffer is created for the file and the file is read in from disk if it cxists there. Find-
File is the most common way to read a file from disk. It creates a new buffer for each
file which is convenient. When Find-File creates a buffer it uses the file name without
any extention as the buffer name. Since the name of each buffer must be unique this
doesn’t work when you are editing two files which have the same name but are on
different directories, or have different extensions (file types) so Find-File will notice if you
are doing this and will ask you for a new buffer name to use.

Control-X Tab Indent-Rigidly ,
With an argument shifts all lines in the region right (or left if negative) that many
columns.

Control-X Control-L Lowercase-Region
Convert all characters between point and mark to lower case.

Control-X Control-N Set-Goal-Column

Control-N and Control-P try to move to the goal column if there is one. With an
argument removes the goal column. Otherwise set it to the current cursor position.

Control-X Control-0 Delete-Blank-Lines
Delete all blank lines following point, and if the current is blank delcte all blank lines
before it. '

MC:NIL.MAN:EDITOR 18 23-DEC-83

NII. Manual . 269 - Glossary of Commands
Control-X Control-P Mark-Page
Put point at the beginning and mark at the end of the current page.
Control-X Control-Q Set-File-Read-Ontly

With positive argument scts file read only.
With negative argument scts buffer read only.
With zero argument allows any access.

Control-X Control-R Visit-File
Visit-File is like Find-File cxcept that it re-uses the current buffer, destroying its contents.
It is still safe since it will offer to save it if any changes have been made to it

Control-X Control-S Save-File
Save-File writes the current buffer to its associated file, and changes the mode line to
indicate that the buffer and file arc now identical. (This is not done untl the output is
complete, so if there is a disk error or some other error you will not think it has been
saved when it hasnt been.)

Control-X Control-T Transpose-Lines
Exchange the current and previous lines.
Control-X Control-U Uppercase-Region
Convert all characters between point and mark to upper case.
Control-X Control-V Visit-File
Visit-File is like Find-File except that it re-uses the current buffer, destroying its contents.
Tt ic ctill eufe cince it will offer 10 save it if any changes have been made o it
Control-X Control-W Write-File

Write-File writes the current buffer to a file, but unlike save file it will prompt you for
the file name.

Control-X Control-X Exchange-Point-And-Mark
Put point where mark is and mark where the point was.

Control-X Altmode Re-Execute-Minibuffer
Evaluate the symbol "+". Meta-X and some other commands setq + appropriately so

this does the right thing.

Control-X # Change-Font-Region
Sets the font number of the region to the argument. Good for Bolio at least.

Control-X (Start-Kbd-Macro
Begins defining a keyboard macro.

Control-X 1 One-Window
Make the current window fill the entire screen and discard all other windows.

Control-X 2 Two-Windows
Split the current window into two windows. Can creatc any number of windows: until
they get two small.

Control-X 3 View-In-Other-Window
Split the current window into two windows but stay in the top half.

Control-X 4 Visit-In-Other-Window
Combines Find-File and two window mode. Asks for a file to find, then displays it in a

MC:NIL.MANEDITOR 18 23-DIC-83

Glossary of Commands 270 NI Manual

new sccond window.

Control-X ;: Set-Comment-Column
Sets the comment column to the current cursor column. Commcm commands try to start
comments in the comment column.

Control-X = What-Cursor-Position
Shows the X and Y coordinates of the cursor on thc screen, the current character and
how far through the buffer you are.

Control-X A Append-To-Buffer
Adds the text of region to the end of another buffer.
Control-X B Select-Buffer
Asks for a buffer name and creates or selects a buffer of that name.
Control-X F Set Fill Column
Scts the fill column to be the argument, if given, or clse the current cursor position.
Control-X G ~ Get-Q-Reg
Asks for the name of a LISP variable and tries to interpret its value as. text to insert into
the buffer.
Control-X H Mark-Whole-Buffer ,
Put point at the beginning of the buffer and mark at the end.
Control-X K Kill-Buffer
Reade a huffer name and kills that buffer,
Control-X L Count-Lines-Page
Prints the number of lines in the current page in the mode area.
Control-X 0 Other-Window
Sclects the next window. ‘
Control-X T Transpose-Regions
Transposes two regions defined by point and the last three marks.
Control-X X Put-Q-Reg ‘

Asks for a lisp variable and saves: the text in the current rcgion there. Designed to be
undone with Get-Q-Reg (Control-X G).

Control-X [: Previous-Page
Move point to the previous page boundary.

Control-X] Next-Page
Move point to the next page boundary.

Control-X Rubout Backward-Kill-Sentence
Kills text to the previous end of sentence,

MC:NIL.MAN:EDITOR 18 ‘ 23-DEC-83

NII. Manual . ’ 271 Glossary of Commands

25.7.6 Meta-X Commands

Apropos v
Scarches the documentation for a string and prints all paragraphs which contain the string.

Auto-Fill-Mode
Toggle auto fill mode. With an cxplicit argument, turn it on if positive, and off if
necgative. 1 forget what 0 does. Unfortunately this does not change the mode line. It will
in the next version.

Bolio-Mode
Bolio mode is built on Text mode, but has features from Lisp mode. In particular Meta-,
does a Find IFunction and the parenthesis balancing hack is turned on. Comments are
Bolio comments. Also. Control-Meta-digit and Control-Meia-* insert a Control-I° followed
by themselves, as font switching commands.

Comment-Region
Adds comments to the beginning of cach linc between point and mark. Can be undone
with Meta-X Uncomment-Region. Won't work for languages with a comment terminator (1
think).

Compile
Compiles the file associated with the current buffer., With a pathname argument compiles
that file instcad. Asks if you want the file loaded when done.

Copy-Mode-Line
Copy the first non-blank line of the last buffer selected to the first line of this buffer. An
argument is the name of a buffer to use instead.

Delete-File
Reads a file name and deletes it. Asks for confirmation.

Describe
Reads a command from the keyboard and searches for documentation on it.

Describe-Char-Syntax
Reads a character and lists its editor syntax. For normal characters just type the character
and Return. For special chracters you must type its symbolic name in accordance with
the current recadtable.

Evaluate
Reads and evaluates one NIL form. Prints the value in the mode area. Passall mode is
turned off during evaluation for safety.

Fundamental-Mode
Sets the major mode for the current buffer to Fundamental.

Help-Meta-X-Commands
Lists the Meta-X commands. This will probably go away and be subsumed under some
more powerful help function.

Kill-Local-Variable
Removes the current buffer's local binding of a variable.

Ki11-Some-Buffers
Asks for cach buffer whether to kill it or save it.

MC:NILMAN:EDITOR 18 23-DEC-83

Glossary of Commands .22 NII. Manuat

Kill-variable
Attempts to makunbound some \anablc May change or go away.

Lisp-Mode
Scts the major mode of the current buffer to Lisp. Turns on the parenthesis ccho hack
and some other features.

LL-Mode
Scts the major mode of the current buﬂ‘cr to LL (Lisp Listencr). lisp Listener mode is
built on Lisp mode, but has the feature that a defun is cvaluated and printed into the
buffer when it is finished. It acts like the top-level loop in many ways, cxcept all input
and output is saved in a buffer. You also get to use Tab and the other cditor features
which help typing 11SP forms.

Local-Bind : ,
Bind some variable o some value when in the current buffer. If prompting for input this
will tell you what the current value is.

LSB-Mode _
Makes the current major be 1.SB. Very similar to Lisp mode, except that { and }. are
also parcnthescs, ‘

Make-Local-Variable
Like half of l.ocal-Bind. Makes the variable local to the current buffer. but doesn't
change its value. Not sure if this is uscful. it is an attempt to sort of be compatible with
EMACS.

Name-KBD-Macro
' If there is a keyboard macro this will allow you to name it and to put it on a key Asks
for the key. then asks for confirmation about that.

Overwrite-Mode
This is not a major mode. It is also not finished. It is supposed to make self-inserting
characters overwrite the existing characters rather that move them over. This much works,
but there is some other hair which is unimplemented.

Query-Replace .
Replace all occurances after point of the first argument with the second argument. Asks
about each replacement. "?" will list the options in the mode area. Space does the
replacement, Rubout does not, Escape exits immediately, Period (.) makes the replacement
then exits, and Comnia makes the replacement; then waits for a Space before continuing
(so you can see the change before moving to the next one).

Rename-Buffer
Change the name of the current buffer.

Rename-File _
Takes two file name arguments. Renames the first to the second.

Reparse -Mode-Line
Reset the major mode and all local variables from the file property list of the file
associated with thc current buffer,

Rep]ace
Replace all occurrences of the first argument with the second argument. Acts

MC:NIEMANEDITOR 18 ' 23-DEC-83

NII. Manual 273 k Glossary of Commands

instantancously (well, as fast as a VAX can go) and lcaves the cursor where it was. Note:
Currently the cursor is left at where the last string was replaced.

Save-Al1-Files
Lets you save any modified buffers. Asks about each onc scparately.

Set-Key
The first argument is a Key and the second is a binding. Control-X keys can be specified
like (#\Control-X #\Control-B). Keys should be specified is accordance with the current
rcadtable.

Set-Variable
sets a LISP variable to some value.

Set-Visited-Filename
Changes the file name associated with the current buffer, but does not change the buffer
or write any files. '

Test-Mode
A major mode build on L1 mode (Lisp Listener) but with passall turned ofl. Not rcally
surc why | did this. cxcept to test the cditor, since Passall is off in 1I. mode when
reading and cvaluating a form,

Text-Mode
The major mode for cditing text. Also try Bolio mode.

Trace-Current-Defun »
Tries to find the name of the current defun and call trace on it. Given and argument will
trace that function instcad.

Uncomment-Region :
Tries to remove comments from a region of commented code. Mcant to be used with
Meta-X Comment-Region.

Underline-Region
If the terminal supports underlining change the visible part of the region so it is
underlined. Waits for you to type a space, then reverts to the nommal display and lets
you continue.

View-Buffer
Shows the contents of a buffer in screenfuls.

View-File
Shows the contents of a file in screenfuls. Until the NIL garbage collector works this is
much less efficient than visiting the file since all of the lines are wasted completely.

View-Kbd-Macro
Shows the scquence of characters in a keyboard macro in the mode area.

View-Mail
This is just a hack which runs View-File over the VMS mail file sys$login:mail.mai.
If it doesn’t work, don't use it.

View-Variable
Prints the value of a 11sp variable. Docsn’t barf if the variable is not bound. Other than
that it is no better than Mera-X Evaluate.

MC:NILLMAN:EDITOR 18 23-DEC-83

Extending the Editor . 274 ‘ NH. Manual

What-Page
Prints the current page number and linc number.

Write-region ' . ,
Writes the text between point and mark to a file. Asks for the file name if it is not
supplicd.

25.8 Extending the Editor

Eventually the internals of the editor will be documcnted pretty completely. Currently the
internals are subject to change. so any cxtention may be broken by future changes to the cditor.
However, as any hacker knows, a program docs not change all that quickly.. So onc may
assume that most of the internals will not change much. "Not being documented” means that 1
don’t know which parts will change and which parts won't, so you pays your monecy and you
takes your chances.

25.8.! Editor Functions

An cditor function s just a NIL function in the package STEvE, Currently the name of the
function as given in th's manual or with the Describe-Key command is the name of the NiL
function. unless that conflicts with some other NI function. (There has been some talk of adding
a consistent prefix or suffix to all cditor commands to distinguish them from other internal editor
functions) S you can call an editor function from NIL very casily, just find out i3 name. Tor
cxample the 1isp form (steve:forward-word) will move the cursor forward one word, just like
Meta-F" would. Numeric arguments are passed in the global variable steve:+arguments.

steve:editor-bind-key key-sequence binding &optional mode-name
key-sequence may. be cither a character object or a list containing two character objects. It
is evaluated. The code field of these characters should not be an ASCII control character;
use the bits field to sclect a control character. A list is interpreted as a two character
command using a prefix: character (generally Control-X). The binding is not evaluated. It
may be a function name, an editor command macro specification or a key indirection.

Normally the binding is a function name to call when the key is typed. The function will :
be called with no arguments.

If the binding is a character object the binding for that character object is used instead.
This is only used for binding Control-I to Tab, so it may not be very robust.

A list is used to define an editor command macro. The car of the list is a function and
the cdr is a list of arguments. When the editor is reading the key as a command the
function is called and .its values are returned as the “key” and command. This is hairy
-and should not be used lightly. Look at the code for numeric arguments and bit-prefixes
to sec how it can be uscd.

The mode-name is used to find the binding table for that majdr mode. The major mode
must be declared when this is cxecuted. The default is to use the current major mode,
which is normally fundamental when not in the editor, i.e. when linking NIL.

MC:NH.MANEDITOR 18 | 23-DEC-83

NIl. Manual . 275 Extending the Editor

If the binding is a symbol then it is also defined as a Afera-X command. Not sure if this
is good but that's the way it is right now.

steve:editor-defun-key key-sequence name &body forms :
A cross between defun and editor-bind-key. Defuns name to be a no argument function
with a body of forms and binds it 1o key-sequence using editor-bind-key. There is some
dcbate about whether to use this function or not.

A number of the cditor functions take optional arguments which arc intended to make it
casier to use them from NI code. Usually these are the arguments which the function uses. For
example one may use the form (query-replace "foo" "bar") from NI code. In particular most
of the word functions take a numecric argument and use that instcad of looking at the value of
steve:sargument*. Some functions have an optional buffer-pointer as an argument. They will
operate on this BP instcad of the current cursor when they receive an argument.

25.8.2 Edtor Objects

There are several special types of objects used by the cditor. These arc steve:buffer,
steve:bp. steve:line. steve:edit-cursor, and steve:window-stream. All of them are flavors.
The general intent is that they should not be changed in any way except by sending messages,
nor should more messages be defined. The instance variables may be looked at using the accessor
macros generated by defflavor, but be carcful because the values arc only valid until somthing
changes.

A buffer object contains cverything about a buffer including the text. It does not contain a
cursor because there may be several cursors into one buffer. An edit-cursor contains a buffer a
window and thc position in the buffer where the upper right hand corner of the window is. An
edit-cursor is also a bp, and as such it is the location of the cursor. A line is quitc complex
and should not be hacked under any circumstances. In addition to a string of characters and the
length of the line it contains a list of the bps which point to that line. Whencver the line
changes these bps must be relocated. A line also contains an index which indicates when it was
last modified. This is used to optimize the redisplay. A bp (Buffer Pointer) is a pointer to some
character in a buffer. The important instance variables are the line and position within the line.
Remember that each line has to point to all bps that point to the line: A window-stream is an
output-strcam with an x-size, y-size and an x-position and a y-position. The redisplay does not
know how to handle windows whose x-position is not zero, or whose x-size is not equal to the
terminal width.

The correct way to create these objects is with these functions.
steve:make-bp buffer line position

Returns a bp pointing to the position character (zero based) in line. buffer may or may
not be ignored. In any case the line must be in the buffer.

MC:NILMAN:EDITOR 18 23-DEC-83

Extending the Editor 276 | NIi. Manual

- steve:make-11ne buffer previous next &optional string :
Returns a line in buffer between previous and next comdmmg string. If next is nil this
will be the end of the buﬂ“cr :

steve:buffer spec &key :create
spec may be a pathname, a buffer name (as a string), a buffer or an edit-cursor. The
value is cither nit or a buffer, which is found or created using spec. The keyword
argument create determines if the buffer is crcated when it does not-exist already. ‘The
default is to create a new buffer, '

stave:point spec &key create
Like buffer cxcept returns an cdit-cursor. The argument create controls whether a butfer
is created in order to build the edit-cursor. (If there is a buffer then an cdit-cursor will
always be returned, regardless. of the value of create. An cdn -cursor must have a bufer.)
The cdu-curxor may or may not have a window.

steve:point-selected spec &key create
Like point cxcept that the cdit-cursor is sclected as the current cursor and its huﬂ"cr is the

current buffer.
This last function uses primitives which are useful in their own right.

steve:select-point poins ‘
Make point be the current cursor and its buffer the current buffer.

steve:select- point-in-current-window point
Like select-point except the window of the current cursor is stolen This is usually the

right way tp seclect a cursor.

Some common -operations on lines. These are done carefully, so as to do the right thing at
the beginning and end of the buffer.

steve:1ine-next line
Return the line after line or nil if at the end of the buffer. This is a macro generated by

deftlavor.

steve:1ine-previous line
Return the line before line or nit if at the beginning of the buffer.

steve:nth-next-1ine line n
Return the line n lines after line. If the end of the buffer is reached. the last line in the

buffer is returned. If »n is O the first argument is returned. If » iS negative, moves
backward. .

stove:nth-previous-1ine line n
Like nth-next-line except moves up for positive n.

MC:NILMAN:EDITOR 18 - 23-DEC-83

NIl Manual . 7 o Extending the Editor

Some operations on bps.

:advance-pos n
Ask the bp to advance by n chars. Linc separators count as 1 character. Bombs back to
the cditor top level at beginning and end of buffer.

:move line n
Place the bp pointing to the nth character of line.

:get-char
Return the character that the bp points to.

:get-char-forward
Return the character that the bp points to and advance over it.

:peek-char-backward
Return the character before the one that the bp points to.

:get-char-backward
Return the character before the one that the bp points to backup to point to it.

Note the unplecasant asymmetry of names. However, none of these can be interpreted as standard
strcam messages.

25.8.3 Other Functions and Conventions
Editor errors.

steve:save-all-files
This is the Meta-X Save-All-Files function. It may be called from outside the editor if the
editor is broken, and may be able to save your buffers.

steve:ed-lose formar-string &restv format-args
Abort any operation immediately. Print the format-string and ring the bell, then return to
the ecditor top-level. The format-string is printed in the mode arca. Passall mode is
turncd off while aborting to the top level, so if a bug causes a rcpetitive error you can
escape by typing Control-C at the right instant. Keep trying, it works, but it may take a
few tries.

steve:ed-warn formar-string &restv format-args
Like ed-lose cxcept the bell is not rung. In general ed-lose is used when the editor
detects an error, and ed-warn is used for predictable events, like the Control-G abort out
of a command reader. I fcel that if the user has alrcady done somcthing to cause an
abort he/she will not want to hear how upset the editor is. The bell is to bring attention
to something unexpected.

MC:NIEMAN:EDITOR 18 23-DEC-83

Iixtending the Editor .8 | NIL Manual

steve:ed-warning formarstring &restv. fonnar-args »
Print _formar-string in the mode arca, and continuc. Does not cause an cxit to the editor
top-level, but continues any operation in progress. '

steve:with-no-passall &body forms
Exccute forms with the terminal not in passall mode. Sets up an unwind-protect form SO
an abort is 0.k.

steve:*editor-device-modes Variable
The cditor sets the terminal to passall mode only if this variable is t. If you write an
cditor function which turns passall off and on you should always use the form:
(send terminal-io :set-device-mode :
:passall steve:»editor-device-modes)

Arguments.

steve:argument?
Use the form (steve:argument?) to dctcnmnc if any Numeric 2 gumcm was given.

steve:c-u-only?
Returns t if the argument was Control-U with no number.

steve:real-arg-sup?
(and (steve:argument?) (not (steve:c-u- onlv"’)))
But more cfficicnt in code and runtime.

steve:buffer-begin? &optional bp
Test whether bp (or the current cursor) is at the very beginning of the buﬂ"er

steve:buffer-end? &optional bp
Similar; test for the end of the buffer.

steve:first-1ine? &optional bp
Returns t if the bp is anywhere in the first line of its buffer.

steve:last-11ne? &optional bp
Analogous.

steve:not-buffer-begin &optional bp
steve:not-buffer-end &optional bp
steve:not-first-1ine &optional bp
steve:not-last-11ine &optional bp
Return to the cditor top level if the bp fails the given test. Otherwise do nothing.

MC:NIL.MAN:EDITOR 18 ‘ 23-DEC-83

NII. Manual 279 Extending the Editor

Redisplay

steve:make-screen-image o
This is poorly named. It used to be different. Now it is the redisplay entire and
complete. Just call it and the screen will be redisplayed. (If a character has been typed it
will exit immediately.)

stove:setup-mode-area
Generate and print a current mode line,

Some functions use the upper arca of the screen 10 print things. ‘The redisplay must be
told that this has happened. This is handled by using several special functions 10 position
the cursor and to do terpri. It is possible that this will be changed and that there will be
a special stream which keeps track of such things. I was sick of defining special purpose
streams when | got to this.

steve:overwrite-start :
Begin to overwrite the display. If there has been some overwriting of the screen since the
last redisplay start after it. Otherwise start at the top.

steve:overwrite-home
Start at the top always.

steve:overwrite-terpri
Move the cursor to the next overwrite line. This will do smores processing as needed.

steve:overwrite-done
Always call this when finished with an overwrite display. This makes overwrite-start begin
in the right place if called beforc a redisplay.

Reading from the terminal.

steve:mx-prompter function format-string &restv fornmnat-args
Prompts in the mode area using format-siring and format-args, then rcads from the
terminal using function. Handles Control-G and has some additional internal hair which
allows completing functions to be defined. May be modified to handle ? as a help key
somchow.

steve:read-file-name
Can only be used as an argument to mx-prompter. Recads a file name and returns it as
a string. Some day this will do completion.

steve:read-buffer-name
Only for use as an argument to mx-prompter. Will do buffer name completion and
respond to 2. Example:
steve:(mx-prompter #'read-buffer-name “"Foo(~a): " foo)

MC:NIl MAN:EDITOR 18 23-DEC-83

The Patch Facility ; . 280 NH. Manual

26. The Patch Facility

The patch facility provides a means by which a program (whatever that might mean) may be
incrementally updated; it essentially a. bookkeeping operation, and is primarily designed for
providing the updates necessary for a dumped-out system. In the context of the patch facility,
such a program unit is called a patchable system; usc of the term system in this context means
the same thing, but may not in other contexts. (Nii. has no more sophisticated system-building
tools currently, although it certainly has whatever: primitives might be needed.)

The design of the NI patch facility is originally derived from the 11SP MACHINE 11SP patch
facility {12]. ‘That was first implemented from scratch in MACHISP, and some time later the
MACTHISE version was copied and modified to be more appropriate for Nit. ‘This is noted because
there arc various design flaws and misfeatures of the facility, which arc inherited and arc duc in
part to the. application of the: techniques used to a different programming environment. A future
release should have a redesigned facility which will correct these things.

Patchable systems have both magjor and minor version numbers. The major vession number
corresponds to a complete new system generation, -like when a NI maintainer (onc of the authors)
loads -up a new NH. having incorporated any fixes into the source files and recompiled any files
which nceded it. 'The minor version number is incremented whenever an update is made. The
updates are maintained on disk: cach one corresponds to a particular file (a paich file) which
implements the fix (usually, some function and variable dcfinitions the same as in a ncwer version
of some source file). A patch direcrory is maintained for cach major version number; it
chiuncraivs (and desciibes) ilic paichies for cach minor version number. Finaily, cach patchabie
system has a paich system definition file. which primarily provides all kinds of default attributes
about the system. which include the current version number and the location of the orher files in
the filesystem (thus the only place a pathname nced ordinarily be specified to the patch facility is
when pointing at the patch system definition file to define the patch system originally)..

A typical cycle of usage for the authors might thus look like this. We have a freshly-made
NIL, say version 175 (the Release 0 version). As bugs are found; they arc accumulated into patch
files. One person might accumulate several fixes over the course of a day into a single patch file.
This might then be the. update which makes Lisp 175.0 become Lisp 175.1. Exportation of the
patch dircctory and the patch files for Lisp 175 to other sites will then allow them to be loaded
by other dumped-out NILs of Lisp- version 175. Eventually, one of us will decide that the
changes are too far-reaching or too numerous, and decide to go on to another system version.
This normally involves ensuring that all updated sources are recompiled, loading up a new NIL,
and telling the patch system we want a new major. version number. Note that the last is
independent, conceptually, from loading up a new NIL: it is an operation which says that what
we have on disk is a new version. A conceptual bug in the distributed NIL is the case with which
one may load up a Nii.-and increment the version number. Unless one is actually modifying the
files which get loaded. one’s site should remain at NIL version 175. If it does not, then a bug

report referring to the NIL version is meaningless to us.

At the end of section 264, page 285. is a description of a more common usage of the patch
system, where it is used for a system which is nor dumped out.

MC:NILMAN:PATCH 25 23-DEC-83

NI Manual A onr _ User Functions

26.1 User Functions

load-patches &rest poorly-designed-keywords :
Loads patches for the specified (or all) systems. This takes keyword arguments in a non-
standard fashion, although that is expected to be changed incompatibly in the future. All
of them cxcept for :systems take no arguments. They are:

:systems list-of-systems
L.oad patches for the specified list of patch systems, rather than all those currently
defined.

:verbose
Be verbose. (Verbosity is forced when there is interaction, of course.) This is the
default.

:silent
Don’t be verbose.

:noselective _
Don’t be interactive, just load the patches. The de’ault is to query the user on
cach patch.

:selective

Query for loading of cach patch. This is the default. Note that one may answer
P instcad of Y or N to the query: this mcans proceed. which will cause all
succceding patches to be loaded non-interactively. load-patches is (supposed to
be) clever to force verbose typeout when it is going to ask, and inhibit it again if
:silent was specified and the loading was proceeded.

The standard NiI. default init file does a
(load-patches :noselective)

to load patches without querying, but verbosely (so that you see what might be taking it

a while during startup).

The following two functions, if given no arguments, print information about all defined
systems; otherwise, about the systems given as arguments.

print-system-modifications &rest systems
This prints information about the systems as they exist in core. For each system, it lists
its (current) status, and lists the minor version numbers that have been loaded, and their
descriptions.

print-system-history &rest systems :
This rcads the patch directory for the named systems off of disk, and displays the
information; all patches and their descriptions are listed (whether or not they have been
loaded), status changes (the system status may change with a particular minor version
number) are noted, and the “in-core” status with respect to all of this is shown.

Note that although the patch directory is read from disk, the patch system must be
dcfined in-core in order for this to know where to look for the patch directory.

MC:NILMAN;PATCH 25 23-DEC-83

2atch System Information , . 282 NIl. Manua!

26.2 Patch System Information

si:system-version-info &optional briefp ,
Returns a string describing the versions and statuses of the patch systems defined. If
briefp is spccified and not nil, then the status information will be abbreviated, some
("insignificant”) systems will not be shown, and the namec of the primary system (“Lisp™)
will-be omitted (it always comes first).

si:get-system-version &optional system
Returns multiple values describing the current vcrsmn of the specificd patch system:
* the major version number,
« the minor version number,
= and the system status keyword.
By some special strange dispensation, if system is not defined as a patch system, nil is
returned as cach of the valucs. '

si:get-system-version-1ist sysiem
This is a vestigial remnant of Maclisp 1mplcmcmatmn Fquivalent to
(multxple value-list (si:get-system-version sysiem))
(in MAC1ISP, the multiple-value support code docs not normally reside in core, and code
which runs interpreted and nceds to examine system version information (for mstance
when loading up a system) might not want to force it to be loaded.)

si‘:pr‘lnt-hara}d &ontional streom Inok-nut-of-core?
This is what prints the startup message. If look-our-of-core? is not nil. then si:print-
herald rcads the patch dircctories off of disk so that it can show what the current versions
and statuses are (what you would get if you do load-patches). With a non-null Jook-out-
of-core?, si:print-herald effectively does a (si:update-system-statuses nil) (q.v.).

si: update system-statuses? sysiem-list :
Looks on disk and corrects (if necessary) the in-core status information for each of the
systems in system-list, or all defined patch systems if that is nil. The reason for this is
that it is possible for the status of a system to change on disk (a particular patch might
be decemed to be broken, or the system might be deemed to be no longer experimental,
for instance). This is done implicitly by load-patches, and by si:print-herald with a
non-null sccond argument.

26.3 Adding Patches

For the following set of functions, a default system/minor-version-number pair is maintained,
from which system-name and minor-version-number are defaulted. The system name originally
defaults to lisp, which is the name of the NIL patchable system. (This should be changed.)
si:add-patch creates a new minor version number, allocates it in the patch directory, and sets
this in-corc default patch version to that. Then onc can (for instance) do (si:compile-load-
patch) to test that patch. If the function does not know which minor version number to deal
with, then it will cycle through all of them, from the "most likely” onc first, asking. Onc way to
force this bechavior is to specify a system but not a minor version number to onc of these
functions.

MC:NILMAN:PATCH 25 ‘ : 23-DEC-83

NII. Manual . S 283 Adding Patches

s1:add-patch &optional system-name description &rest ~ options
This allocates a new minor version number for the patchable system sysiem-name, with a
description of description and cnvironment options of oprions (sce the :environment-
options keyword to the siinitialize- patch system function, on page 285). It then calls
si:re-edit-patch, below. '

si:re-edit-patch &optional system:-name minorversion-number
Creates a patch file for the appropriate file (if necessary), and calls the built-in editor on
it.

si:compile-patch &optional systemi-name minor-version-number ;
Compiles the specified patch. This routine returns several values: the first of which is the
pathname of the compiled file. so that it may be loaded.

si:compile-load-patch &optional system-name minor-version-number
Compites and loads the specified patch.

si:finish-patch &optional s_vsl('m-namé minor-version-number
"Completes™ the specified patch; that is, marks it as finished. If a pach is not
"finished”, then load-patches will not load it (nor any succceding patches).

si:abort-patch &optional system-name minor-version-number
Flushes (aborts) the specified patch. Any patch files are not deleted. however: you should
consider doing that manuallv. If the minor version number was the highest in use. it will
be rcused, in which casc a later si:add-patch will usc the existing text file to start.
Otherwise, there will be a missing minor version number, which is ok. ’

si:set-patch-environment system minor-version-number &rest options
In case you forgot with add-patches. this sets the option environment to oprions. Note
it does not update the file attribute list in the source file of the patch! You must do that
manually.

si: