CARNEGIE-MELLON UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
SPICE PROJECT

Spice Lisp Reference Manual

Guy L. Steele Jr.
Scott E. Fanlman

13 August 1981
N oTAS
o f\":é’ﬁg(; FMn PLW
For pPLW
wisH WE
| RgpLLT 2 oN Swiss Cheese Edition

306\210’ j;‘:\)';m et wiet e Full of Holes — Very Drafty

Spice Document S061
Keywords and index categorics: PE Lisp & DS External
Location of machine-readable file: slm.mss @ CMU

Copyright © 1981 Carnegic-Mellon University

Supported by the Defense Advanced Rescarch Projects Agency, Department of Defense, ARPA QOrder
3597, monitored by the Air Force Avionics Laboratory under contract 133615-78-C-1551,
conclusions contained irn this decument are those of the authors and should not be interpreted as representing
the official policies, cither expressed or implied, of the Defense Advanced Rescarch Projects Agency or the

U.S. Government.

/

I'he views and

‘O"’

SPICE LISP REFERENCE MANUAL

Table of Contents
1. INTRO

1.1. Purpose
1.2. Notational Conventions

2. Data Types

2.1, Numbers
2.1.1. Integers
2.1.2. Floating-point Numbers
2.1.3. Ratios
2.14. Complex Numbers
2.2. Characters
2.3. Symbols
24. Lists and Conses
2.5. Vectors
2.6. Arrays
2.7. Structures
2.8. Functions
2.9. Randoms

3. Program Structure
3.0.1. Stuff I’'m Not Sure Where to Put It Yet
4, Predicates

4.1, Data Type Predicates

4.1.1. Specific Data Type Predicates
4.2, Equality Predicates
4.3. Logical Operators

5. Program Structure

5.1, Constants and Variables
5.1.1. Reference
5.1.2. Assignment
5.2. Function Invocation
5.3. Simple Sequencing
5.4. Environment Manipulation
5.5. Conditionals
5.6. Iteration
5.6.1. General iteration
5.6.2. Simple Iteration Constructs
5.6.3. Mapping '
5.6.4. The Program Feature
5.7. Muliple Values
5.7.1. Constructs for Handling Muitiplc Values
5.7.2. Rules for Tail-Recursive Situations
5.8. Non-local Exits

ek
OO0 00 ~3 HWw W

12
13
13
14
16
17
19
19
20
20

21
21

23
26
30
32

35

36
36
37
39

41
43
47
47
50
52

58
58
60
61

SPICE LISP REFERENCE MANUAL

5.8.1. Catch Forms
5.8.2. Throw Forms

6. FUNC
7. MACRO
8. Declarations

8.1. Declaration Syntax
8.2. Declaration Keywords

9. Symbhols

9.1. The Property List
9.2. The Print Name
9.3. Creating Symbols

10. Numbers

10.1. Predicates on Numbers

10.2. Comparisons on Numbers

10.3. Arithmetic Operations

10.4, Trrational and "Transcendental Functions
10.5. Type Conversions on Numbers

10.6. Logical Operations on Numbers

10.7. Byte Manipulation Functions

10.8. Random Numbers

11, Characters

11.1. Predicates on Characters

11.2. Character Construction and Selection
11.3. Character Conversions

11.4. Character Control-Bit Functions

12. Sequences
13. Manipulating List Structure

13.1. Conses
13.2. Lists
13.3. Alteration of List Structure
13.4. Substitution of Expressions
13.5. Using L.ists as Sets
13.6. List-Specific Sequence Operations
13.7. Association Lists
13.8. Hash Tables
13.8.1. Hashing on EQ
13.8.2. Hashing on EQUAL
13.8.3. Primitive Hash Function

14. Strings

14.1. String Acccss and Modification
14.2. String Comparison

ii

62

67
69
n

71
72

75

75
78
79

81

82
82
84
85
38
91
%4
95

98
101
102
104

107
123

123
124
130
131
132
138
141
146
147
149
149

151

151
152

SPICE LISP REFERENCE MANUAL

14.3. String Construction and Manipulation
14.4. Type Conversions on Strings
14.5. Sequence Functions on Strings

15. Vectors

15.1. Creating Vectors

15.2. Functions on General Vectors {Vectors of LiSP Objects)
15.3. Functions on Bit-Vectors

15.4, Functions on Vectors of Explicitly Specified Type

16. Arrays

16.1. Array Creation

16.2. Array Access

16.3. Array Information

16.4, Array Leaders

16.5. Fill Pointers .
16.6. Changing the Size of an Array

17. Structures

17.1. Introduction to Structures
17.2. How to Use Defstruct
17.3. Using the Automatically Defined Macros
17.3.1. Constructor Macros
17.3.2. Alterant Macros
174.defstruct Slot-Options
17.5. Options to defstruct
17.6. By-position Constructor Macros
17.7. The si:defstruct-description Structure

18. EVAL
19. Input/Qutput

19.1. Printed Representation of LISP Objects
19.1.1. What the read Function Accepts
19.1.2. Sharp-Sign Abbreviations
19.1.3. The Readtable
19.1.4. What the print Function Produces

19.2. Input Functions
19.2.1. Input from ASCII Streams
19.2.2. Input from Binary Streams
19.2.3. input Editing

19.3. Output Functions
19.3.1. Qutput to ASCII Streams-

19.3.2. Output to Binary Streams

19.4. Formatted Output

19.5. Querying the User

19.6. Streams
19.6.1. Standard Strecams

il

153
154
155

161

162
162
166
170

175

175
177
177
178
179
180

183

183
185
186
186
187
187
188
193
194

197
199

199
200
204
211
214
214
214
219
219
219
219
221
221
230
234
234

SPICE LISP REFERENCE MANUAL

19.6.2. Creating New Streams
19.6.3. Operations on Streams
19.7. File System Interface
19.7.1. File Names
19.7.2. Opening and Closing Files
19.7.3. Renaming, Deleting, and Other Operations
19.7.4. Loading Files
19.7.5. Accessing Directories

20, Errors

20.1. Signalling Conditions

20.2. Establishing Handlers

20.3. Error Handlers

20.4. Signalling Errors

20.5. Break-points

20.6. Standard Condition Names

21. The Compiler
22. STORAG

23. LOWLEY
Index

iv

235
236
237
237
240
242
243
244

245

245
246
247
249
251
251

253
255
257
259

SPICE LISP REFERENCE MANUAL

List of Tables

Table 2-1: Hierarchy of Numeric Types

Tahle 19-1: Standard Character Syntax Attributes

Table 19-2: Standard Sharp-Sign Macro Character Syntax
Table 19-3: Standard Readtable Character Attributes

201
205
212

SPICE LiSP REFERENCE MANUAL 1

Acknowledgements

The contributions of Jon L White, Richard Gabriel, and <others> arc hereby gratefully acknowledged. The
organization, typography, and content of this document were inspired in large part by the MacLISP
Reference Manual by David A. Moon and others, and by the LISP Machine Manual by Danic! Weinreb and
David Moon, which in turn acknowledges the cfforts of Richard Stallman, Mike McMahon, Alan Bawden,
and "many pcople too numerous to list",

Apology

For reasons unknown, Xerox has chosen not to provide any font for the Dover which faithfully reflects the
ASCII standard. More precisely, there appears to be no simple way to get correct printed representations of
the 95 standard ASCH printing characters. Many fonts do not have an accent grave; in other the accent grave
~ is identical in appearance to the accent acute. Most fonts have a swung dash in place of the tilde, an uparrow
or caret in place of the circumflex, and/or a Ieftarrow in place of the underscore.

This edition uses the GACHA family of Dover fonts for code. At CMU, at least, GACHA suffers from the
swung-dash, uparrow, and backquote deficiencies. For reference, here are the 95 ASCH printing characters
(the first is the space character) as they appear in the code font in this edition:

P #SU%& ()*+,-./0123466789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]*_
'abcdefghijkimnopgrstuvwxyz{|}~

I hope to correct these problems somehow in future editions.
—Guy L. Steele Jr.

SPICL LISP REFERENCE MANUAL 2

Notes to the Swiss Cheese Edition
This edition is incredibly unpolished. It suffers from the following known deficiencies:
o The necessary type-specific functions for floating-point numbers are not yet included.
e The necessary generic and type-specific functions for complex numbers are not yet included.
o The chapter on macros and defmacro is not yet written.
o The chapter on the evaluator is not yet written,

o The chapter on how programs are expressed as S-expressions (which includes defun, defvar,
defconst, and so on) is not yet written,

¢ There is no coherent description of setf and related special forms.

L«)t‘!'('é W*‘l ~t AMRL) ,»((Laj;]nn;.]
ov{ /}«c\cvt 1754'% CJL.U(Q L\.‘/,/m\
No single entire pass has been made yet to catch inconsistencies, v oy L?ﬂ“”\ bt}

o Nothing is yet written on packages and intern.

Plcase send remarks, corrections, and criticisms to Guy . Stee 1e@CMUA,

SPICE LISP REFERENCE MANUAL 3

1.1. Purpose

Chapter 1
INTRO

hg £Astc 10€A, VATELY THAT TS

o FeHT ngntioN 7 SudseT Fot NAwN

TD ofin
1y SurresEd 0 g cgecrs
wwptw«oﬂfkﬂ&é nA

This manual documents a dialect of LISP called "COMMON LISP", which is intended to meet these goals:

Pow«r:
{

Expressiveness.

Portability.

Compatibility.

CoMMON LisP is a descendant of MACLISP, which has always placed emphasis on
providing system-building tools. Such tools may in turn be used to build the uscr-level
packages such as INTERLISP provides; these packages arc not, however, part of the
COMMON LISP core specification. It is expected such packages will be built on top of the
COMMON LISP core.

CoMMON LISP culls not only from MACLISP but from INYERLISP, other LiSP dialects, and
other porga)nmmg languages what we believe from experience to be the most useful and
understanidable constructs. Constructs which have proved to be awkward or less useful
have been climinated (an example is the store construct of MACLISP).

CoMMON LIsP intentionally excludes features which cannot easily be implemented on a
broad class of machines.

On the one hand, features which are difficult or cxpensive to implement on hardware
without special microcode are avoided or provided in a more abstract and efficiently
implementable form. (Examples of this arc the forwarding (invisible) pointers and
locatives of Lisp Machine Lisp. Some of the problems which they solve arc addressed in
differcnt ways in COMMON LISP.)

On the other hand, features which are uscful only on certain "ordinary" or "commercial”
processors are avoided or made optional. (An example of this is the type declaration
facility, which is uscful in some implementations and completely ignored in others; such
declarations are completely optional and affect only efficiency, never semantics.)
87 ek

Morcover, attention has been paid to making it casy to write programs in such a way as to
depend as little as possible on machine-specific characteristics such as word length, while
allowing some varicty of implementation techniques.

Unless there is a good reason to the contrary. COMMON LISP strives to be compatible with
Lisp Machine Lisp, MaclLise, and INTERLISP, roughly in that order. Incompatibilities
with various L1sP dialects or other fanguages are noted here in the text in specially marked

SPICE LISP? REFERENCE MANUAL 4

paragraphs.

Efficiency. COMMON LISP has a number of features designed to facilitate the production of high-
quality compiled code in those implementations which care to invest effort in an
optimizing compiler. At least one implementation of COMMON LisP will have such a
compiler. This extends the work done in MACLISP to produce extremely efficient
numerical code.

The COMMON LISP documentation is divided into two parts. This document specifies the core language;
any system code is permitted to use constructs documented here. The second part is a collection of
independent modules; the code in each may use anytﬁing in the core language, but may not use another
module unless it is carefully and specifically documented to do so. 7],] LR e a'A\/acLC

Maonbe Trere modides oe a(,'lfw\vm‘

+ LQ/V‘A 4'*\\”\{{ lote e?
1.2. Notational Conventions Py t “

In COMMON LISP the empty list is written " ()", which is not (necessarily) the same as the symbol named
"ni1". The empty list is, as in most LISP dialects, used to mean “falsc” in Boolean tests; therefore "false” is
also written "()". The standard non-false valueis "t".

All numbers in this document are in decimal notation unless there is an explicit indication to the contrary.

Execution of code in L1SP is called evaluation, because executing a picce of code normally results in a data
object called the value produced by the code. The symbol "=>" will be used in examples to indicate
evaluation, For example:

(+45) =>9

means "the result of evaluating the code (+ 4 5) is (or would be, or would have been) 9",

The symbol "==>" will be used in cxamples to indicate macro expansion. For example:
(push x v) ==> (setq v (cons x v))
means "the result of expanding the macro-call form (push x v) is (setq v {(cons x v))". This
implics that the two picces of code do the same thing; the second piece of code is the definition of what the
first does.

The symbol "<=>" will be used in examples to indicate code equivalence. For example:
(- xy) <= (+ x (-y))
means "the value and effects of (- x y) is always the same as the value and cffects of (+ x (- y)) for
any values of the variables x and y". This implics that the two picces of code do the same thing; however,
neither directly defines the other in the way macro-expansion does.

Functions, variables, special forms, and macros are described using a distinctive typographical format, as
shown by these examples:

SPICE LISP REFERENCE MANUAL 5

sample-function arg/ arg2 &optional arg3 argd [Function]
The function sample-function adds together arg/ and arg2, and then multiplies the result by
arg3. 1f arg3 is not provided or is (), the multiplication isn’t done. sample~function then
returns a list whose first element is this result and whose second element is arg4 (which defaults to

the symbol foo).
For example:
. (function-name 3 4) => (7 foo)
ggﬂ .)’/ (function-name 1 2 2 'bar) => (6 bar)
v

Asarule, (sample-function x y) <=> (list (+ x y) 'foo).

In general, the text of actual code appears in this typeface: (cons a b). Names which stand for picces

_of,_cggg (meta-variables) are written in ifalics. In a function description, the names of the parameters appear
in italics for expository purposes. The word "&optional” in the list of parameters indicates that all
arguments past that point are optional; the default values for the parameters are described in the text. The
&optional syntax is actually used in COMMON LISP function definitions for this purpose. Parameter lists
may also contain "&rest", indicating that an indefinite number of arguments may appear.
sample-variable [Variable)
The variable sample-variable specifies how many times the special form sample-
special-form should iterate. The valuc should always be a non-negative integer or () (which
means iterate indefinitely many times). The initial value is 0.

sample-special-form w body [Special form]
‘This evaluates all the forms in body as many times as specified by the global variable sample-
‘%ok . (\l,variable. The body is an implicit progn. sample-special-form returns ().
‘} 3:“ q# For example:
s ¢ (setq sample-variable 3)

\t‘:’: (sample-special-form formml form2)
v This evaluates forml, form2, forml, form2, forml, form2 in that order.
sample-macro var &rest body [Macro)

This evaluates the forms in body (an implicit progn) with the variable var bound to 43. sample-
macro returns what the last form in body returns,

(sample-macro x (+ x x)) => 86
(sample-macro var . body) ==> (let ((var 43)) . body)

In the last example, notice the use of "dot notation”. The "." in (sample-macro var . body) means
that the name body stands for a list of forms, not just a single form.

The term "Lisp reader™ refers not to you, the reader of this document, nor to some person reading 1.1Sp

2\47 Dﬁr/ g

SPICE LISP REFERENCE MANUAL 6

code, but specifically to a LiSP program (the function read (page 211)) which reads characters from an input
stream and interprets them by parsing |as representations of LISP objects.
| /ﬁ\ @ /\ﬂ
Certain characters are used in special ways in the syntax of COMMON LisP. The complete syntax 1s
explained in detail jsr' 777 but a quick summary here may be uscful:

')} An accent acute ("single quote™) followed by an expression form is an abbreviation for {(quote jform).
Thus 'foo means (quote foo) and '(cons 'a 'b) means (quote (cons (quote a)
(quote b))).

Semicolon is the comment character. It and everything up to the end of the line is discarded.

" Double quotes surround character strings. .

-e

\ Backslash is an escape character. As a rule, it causes the next character to be treated as a letter rather
than for its usual syntactic purpose. For example, A\ (B denotes a symbol whose name is "A(B", and
"\"" denotes a character string containing one character, a double-quote.

The number sign begins a more complex gyntax. The next character designates the precise syntax to
follow. For example, #0105 mcans 108 — (105 in octal notation); #\L denotes a character object for the
character "L"; and #(a b c¢) denotes a vector of three elements a, b, and c.

| Vertical bars surround the name of a symbol which has special characters in it.

'\ Accent grave ("backquote") signals that the next cxpression is a template which may contains commas.
The backquote syntax represents a program which will construct a data structure according to the
template.

, Commas arc used within the backquote syntax.

Colon is used to indicate which package a symbol belongs to. For example, chaos:reset denotes the
symbol named reset in the package named chaos.

All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which
code is written, Every symbol has a print name which specifies how it is uﬁ))e capitalized, but the symbol
will be recognized even if entered in the wrong case. You may write programs in whichever case you prefer;
CoMMON LisP will attempt to preserve the capitalization you use. There are ways to force case conversion on
input or output.

You will see various symbols that have the colon (:) character in their names. By convention, all
"keyword" symbols have names starting with a colon. The colon character is not actually part of the print
name, but is a package prefix indicating that the symbol belongs to the keyword packaggThis is all explained
in 777; until you read that, just make believe that the colons are part of the names of the symbols.

Ly
”

SPICE LISP REFERENCE MANUAL 7

Chapter 2
Data Types

CoMMON Lisp provides a variety of types of data objects. It is important to note that in LISP it is data
objects whieh are typed, not variables. Any variable can have any LISP object as its value.
THAT

In COMMON LISP, a data type is a (possibly infinite) sct of LISP objccts. Many LISP objects belong to more
than one such set,-and so it doesn’t always make sense to ask what the type of an object is; instead, onc usually
asks only whether an object belongs to a given type. The predicate typep (page 26) may be used to ask
cither of these questions.

The data types defined in COMMON LISP are arranged into an almost-hicrarchy (a hierarchy with shared
subtrees) defined by the subset relationship. Certain sets of objects are interesting enough to deserve labels
(such as the sct of numbers or the sct of strings). Symbols are used for most such labels (here, and throughout
this document, the word symbol refers to atomic symbols, onc kind of LISP object). The root of the hierarchy,
which is the set of all objects, is labelled by t.

Objects may be roughly divided into the following categorics (which are in fact types): number,
character, symbol, 1ist, vector, array, structure, function, and random. Some of these
categories have many subdivisions. There are also types which are the union of two or more of these
categorics. The categories listed above, while they are data types, are ncither more nor fess "real” than other
data types; they simply constitute a particularly usecful slice across the type hierarchy for expository purposes.

Each of these categories is described briefly below. Then one section of this chapter is devoted to each,
going into more detail, and describing notations for objects of cach type. Descriptions of LISP functions
which operate on data objects are in later chapters.

o Numbers are provided in various forms and representations. COMMON LISP provides a true
integer data type: any integer, positive or negative, has in principle a representation as a COMMON
Lisp data object, subject only to memory limitations. Floating-point humbers of various ranges
and precisions are also provided. Some implementations may choose to provide rational numbers

(ratios of intcgers) and Cartesian complex numbers. 1 THPK 1T SHoul) ¢ acovier] 171 vegy
EPSy To wo AMND QuiTE vm,uﬁ(q.; IF ir's
. O TIpNAL, 1T 1S FAR LESS UServ,
e Characters represent printed glyphs such as letters or text formatting operations. Strings are

vectors of characters. COMMON LISP provides a rich character set, including ways to represent
characters of various type styles.

SPICE LISP REFERENCE MANUAL 8

e Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects. LiSP
provides machinery for locating a symbol object, given its name (in the form of a string). Symbols
have property lists, which in effect allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any LISP object.

o Lists are sequences represented in the form of linked cells called conses. There is a special object
which is the empty list. All other lists are built recursively by adding a new clement to the front of
an existing list. This is done by creating a new cons, which is an object having two components
called the car and the cdr. The car may hold anything, and the cdr is made to point to the
previously existing list. (Conses may actually be used completely generally as two-clement record
structures, but their most important use is to represent lists.)

o Vectors are scquences represented as a directly indexable row of components. Some vectors can
have any LISP object as a component; others are specialized for efficiency or for other reasons, and
can hold only certain types of LiSP objects. Two important special cases of vectors are sfrings,
which are vectors of characters, and bit-vectors, which are vectors which can contain only the
integers 0 and 1.

e Arrays are multi-dimensional collections of objects. While vectors have only one axis, and are
indexed by a single intcger, arrays may have any non-negative number of dimensions, and are
indexed by a sequence of integers.

o Structures arc user-dcfined record structures, objects which have named components. The
defstruct (page 181) facility is used to define new structure types. Some COMMON LiSP
implementations may choose to implement certain system-supplied data types as structures; these
might include bignumns, readtables, and streams.

e Functions arc objects which can be invoked as procedures; these may take arguments, and return
values. (ANl Lisp procedures can be construed to return a value, and therefore treated as \ves
functions. Those which have nothing better to return generally return t or ().) N o—\' aeco Ve i

e Random objects are those which do not fit into any other category. This is a catch-all data type
which primarily covers implementation-dependent objects for internal use.

2.1. Numbers

There are several kinds of numbers defined in COMMON LISP. Not all implementations support all of
them; complex and rational numbers may be absent.

Citye
Table 2-1 shows the hicrarchy of number types.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most programming languages,
ConIMON LISE in principle imposes no limit on the magnitude of an integer; storage is automatically allocated
as necessary to represent large integers.

SPICE LISP REFERENCE MANUAL 9

— Criout Dof THIS e “KEAL"?
8

number
/scalar
rational
integer
fixnum
bignum
ratio
float
short-float
Tong-float
single-float
double-float
complex

Table 2-1: Hicrarchy of Numeric Types

In every COMMON Lisp implementation there is a range of integers which are represented more efficiently
than others; each such integer is called a fixnum, and an integer which is not a fixnum is called a bignum. The
distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of
representation is important; in particular, it is guaranteed that the length of a vector or any dimension of an
array can be represented as a fixnum. Exactly which integers arc fixnums is implementation-dependent;
typically they will be those integers in the range —2" to 2"—1, inclusive, for some n not less than 15.

Implﬁncﬁalmn note: In the PERQ implementation of CoMMON Lisp, fixnums are thogﬁ lﬂcgers in the range
=22 In the S-1 implementation, fixnums are”«h%c mlegers in the range [-2 ~1]. In the VAX
nnplememauon fixnums are those integers in the range [~ 2

Integers are ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by
asign and optionally followed by a decimal point.

For example:

0 :Zero.
-0 ;This a/ways means the same as 0.
+6 ;The first perfect number.
28 ;The sccond perfect number.
1024. ;Two to the tenth power.
-1 : e"l
16611210043330985984000000. ;25 factorial (25). Probably a bignum.

Compatibility note: MACLisp and Lisp Machine Lisp normally assume that integers are written in ocral (radix-8) notation
unless a decimal point is present. INTERLISP assumes integers are written in decimal notation, and uses a trailing Q to
indicate octal radix; however, a decimal point, even in trailing position, always indicates a floating-point number. This is of
course consistent with FORTRAN: ADA does not permit trailing decimal points, but instead requires them to be embedded. In
CommON Lisp, integers written as described above are always construed to be in decimal notation, whether or not the
decimal point is present: allowing the decimal point to be present permits compatibility with Macl.isp.,

There are special ways to notate integers in radices other than ten. The notation
#nnrddddd

means the integer in radix-an notation denoted by the digits ddddd. More precisely, one may write "#", a

SPICE LISP REFERENCE MANUAL 10

non-empty sequence of decimal digits representing an unsigned decimal integer #, "r" (or "R"), an optional
sign, and a sequence of radix-n digits, to indicate an integer written in radix . Only legal digits for the
specified radix may be used; for example, an octal number may contain only the digits 0 through 7. Letters of
the alphabet of either case may be used in order for digits above 9. Binary, octal, and hexadecimal radices are
uscful enough to warrant the special abbreviations "#b” for "#2r", "#o0" for "#8r", and "#x" for "#16r".

For example:

#2r11010101 ; Another way of writing 213 decimal.
#b11010101 ; Ditto.
#b+11010101 ; Ditto.
#0325 ;Ditto, in octal radix.
#xD5 ; Ditto, in hexadecimal radix.
#16r+D5 ; Ditto.
#0-300 :Decimal -192, written in base 8,
#3r-12010 ;Same thing in base 3.
#25R-7H ; Samc thing in base 25.

2.1.2. Floating-point Numbers

Generally speaking, a floating-point number is a rational number of the form (—1)*m*2¢~?, where sis a
sign bit (0 or 1), p is the precision (in bits) of the floating-point number, m is a positive integer between -1
and 271 (inclusive), and e is an cxponent; in addition, there is a floating-point zero. The value of p and the
range of e depends on the implementation and on the type of floating-point number within that
implementation,

Floating-point numbers are provided in a variety of precisions and sizes, depending on the
implementation. High-quality floating-point software tends to depend critically on the precisc nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs which
are moderately portable, however, certain definitions are made here:

o A short floating-point number is the representation of smallest precision provided by an
implementation,

e A long floating-point number is the representation of the largest fixed precision provided by an
implementation.)

e Intermediate between short and long sizes are two others, arbitrarily called single and double.

e A big floating-point number uses a variable-precision representation, which can represent
floating-point numbers of arbitrarily large precision and range.

The precise definition of these categorics is implementation-dependent. However, the rough intent is that
short floating-point numbers be precise at least to about three to five decimal places; single floating-point
numbers, at least to about seven decimal places; and double floating-point numbers, at least to about twelve
dccimal places.

In any given implementation the categorics may overlap or coincide. For example, short might mean the

7),\‘2 Came af Those vLeh @

Me Teee STL««.Q\W»O e
Mo came Things?

f

SPICE LISP REFL:RENCE MANUAL 11

same as single, and long might mean the same as double,

Implementation note: Where it is feasible, it is recommended that an implementation provide at least two types of floating-
point number, preferably to be roughly equivaleni in precision and range to the ICEE floating-point standard single-
precision (32-bit) and double-precision (64-bit) types.

In the PERQ Spice Lisp implementation of COMMON LISP, two types are to be provided:

o For the small size (28 bits), p=20 and eis in [— 128, 127]. Short format maps to this.

o For the large size (96 bits), p=63 and eis in {21, 2’1 ~1). Single, double, and long formats map to this.
On the S-1, three types are provided:

® For halfword size (18 bits), p=13 and eis in [— 15, 16]. Short format maps to this.

o For singleword size (36 bits), p=27 and eis in [— 255, 256). Single format maps to this.

214 +1, 214]. Double and long formats map to this.

» For doubteword size (72 bits), p=57 and eisin [-
The VAX architecture provides four floating-point formats:

o I*-floating: 32 bits, p=24, ein [- 127, 127).

» D-{loating: 64 bits, p=>56, ein [— 127, 127).

o G-floating: 64 bits, p=53, ein [-1023, 1023].

o H-floating: 128 bits, p=113, ein [16383, 16383]. :

Probably D-floating format should not be used. If so, then short and single might refer to F-floating format, double to G-
Noating format, and Jong to I1-floating format (if that is supported; if not, then G-floating format).

Floating point numbers are written in either decimal fraction or "computerized scicntific” notation: an
optional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal
cxponent specification. The decimal point is required, and there must be digits cither before or after it;
moreover, digits are required after the decimal point if there is no exponent specifier. The exponent specifier
consists of an exponent marker, an optional sign, and a non-empty scquence of digits. For preciseness, here is
an extended-BNF decription of floating-point notation. The notation "<x>"" means zero or more occurrences

- n ” "n_ 1 - " 9"
of "x", the notation "<x>*" means one or more occurrences of "x", and the notation "<x>'" means zero or
one occurrences of "x". '

<floating-point number :: = <signd’ <digit>” - <digit>* <exponent>’ | <sign>’ <digit>* . <digit>* <exponent>
Ssignd =+ -

Kdigiv:=0[1]2]3]4|5]6]7]|8]9

{exponent) ;: = <{exponent marker> <sign>? digivt

<exponent marker> ::=e|s|f|d|{1|b|E|F|D|S|L|B

If no exponent specifier is present, or if the exponent marker e (or E) is used, then the precise format to be
uscd is not specified. When such a floating-point number representation is read and converted to an internal
floating-point data object, the format spccified by the variable read-default-float-format (page
READ-DEFAULT-FLOAT-EORMAT—YAR) is used; the initial valuc of this variable is single.

The letters s, f, d, and 1 {or their respective upper-case equivalents) specify explicitly the use of short,
single, double, and long format, respectively.

7?7 Query: There has been some objection to the use of the words single and double, as they may be misleading 1o the user
or too confining for the implementor. Any suggestions?

For example:

SPICE LISP REFERENCE MANUAL 12

0.0 ; Floating-point zero in default format,

-.0 ; Also a floating-point zero.

0. ; The integer rero, not a floating-point number!
0.0s0 ; A floating-point zero in short format,
3.1415926535897932384d0 ; A double-format approximation to 7.
3.1415926635897932384B0 : A big-format approximation to ».

6.02E+23 ;s Avogadro’s number, in default format,
3.1010299957f-1 ;log— 2, in single format.

-0.000000001s9 ; "' in short format, the hard way.

The notation described above should suffice for nearly all programs. However, to make it easier to notate
exact floating-point constants for machine-dependent algorithms, a floating-point number may be preceded
by the same kind of radix specifier used for integers (one of #nnR, #0, #B, or #X). In this case both the
fraction and the exponent are taken to be notated in the specified radix. There is an ambiguity for radices
larger than ten, because the exponent marker might be taken to be a digit. This can be avoided by enclosing
the exponent marker between a <" and ">",

For example:
#01.61337611067 : The square root of =, in octal notation.
#x0.D17217F8 ;In 2, in hexadecimal notation.
#x0.D17217<F>8 :232In 2, single format, in hexadecimal, °
2.1.3. Ratios

Prrve
The rationals include the integers, and also ratios of two integers; ratios may or may not be supported by a

ComMoN Lisp implementation, The canenical representation of a rational number is as an intcger if its value
is integral, and otherwise as the ratio of two integers, the numerator and denominator, whose greatest common
divisor is one¢, and of which the denominator is positive (and in fact greater than 1, or else the value would be
integral). It is possible to notate non-canonical ratios, bu€most arithmetic functions produce rational results
in canonical form. Non-canonical notations may or may not 5& reduced to canonical form when read by the
LISP reader. . \ w7 R e,

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign
followed by two non-empty scquences of digits separated by a "/". The second sequence may not consist
entirely of zeros.

For example:
2/3 : This is in canonical form.
4/6 : A noncanonical form for the same number,
-17/23
-30517578125/32768 + This is (-5/2)"5.
10/56 ; The canonical form for this is 2,

Therc are ways to notate rational numbers in radices other than ten; one uses the same radix specifiers (one
of #nnR, #0, #B, or #X) as for integers.

For example:

#0-101/756 : Octal notation for -65/61.
#3r120/21 :'Ternary notation for 15/7.

SPICE LISP REFERENCE MANUAL 13

2.1.4. Complex Numbers

Complex numbers may or may not be supported by a COMMON LISP implementation. They are
represented in Cartesian form, with a real part and an imaginary part each of which is a scalar (integer,
floating-point number, or ratio).

Complex numbers may be generally notated by writing the characters "#C" followed by a list of the real
and imaginary parts. (Indeed, "#C(a b)" is equivalent to "#, {complex a b)"; sce the description of the
function comp1ex (page COMPLEX-FUN).)

————

For example:
#C(3.0s1 2.0s-1)
#C(5 -3) ; A Gaussian integer.

#C(5/3 1.0)

Some implementations furthermore provide specialized representations of complex numbers for efficiency.
In such representations the real part and imaginary part arc of the same specialized numecric type. The "#C"
construct will produce the most specialized representation which will correctly represent the two notated
parts. The type of a specialized complex number is indicated by a list of the word complex and the type of
the components; for cxample, a specialized representation for complex numbers with short floating-point
parts would be of type (complex short-float). The type complex encompasses all complex
representations; the particular representation which allows parts of any numeric type is referred to as type
(complex t).

2.2. Characters

Every character object has thrce attributes: code, bits, and font. The code attribute is intended to
distinguish among the printed glyphs and formatting functions for characters. The bits attribute allows extra
flags to be associated with a character. The font attribute permits a specification of the style of the glyphs
(such as italics). Each of these attributes may be understood to be a non-negative integer.

A character object can be notated by writing "#\" followed by the character itself. For example, "#\g"
means the character object for a lower-case "g". This works well enough for "printing characters”. Non-
printing characters have names, and can be notated by writing "#\" and then the name; for example,
"#\rubout” (or "#\RUBOUT" or "#\Rubout", for cxample) means the rubout character. The syntax for
character names after "#\" is the same as that for symbols.

The font attribute may be notated in unsigned decimal notation between the "#" and the "\". For
cxample, #3\A mcans the letter "A" in font 3. Note that not all COMMON LISP implementations provide for
non-zero font attributes; see char-font-11imit (page 97).

‘The bits attribute may be notated by preceding the name of the character by the names or initials of the
bits, separated by hyphens. "T'he character itself may be written instead of the name, preceded if necessary by
"\", Forcxample:

SPICE LISP REFERENCLE MANUAL 14

#\Control-Meta-Return
#\Hyper-Space
#MControl-A
#\Meta-\g
#\C-M-Return
Note that not all COMMON LISP implementations provide for non-zero bits attributes; see char-font-

11imit (page 97).

Any character whose bits and font attributes are zcro may be contained in strings. All such characters
together constitute a subtype of the characters called st ring-char. i

777 Query: There is a strong assumption implicit in the definition of the string-char type about the way character !
objects are implemented. s everyone concerned willing to live with that? '

2.3. Symbols W

Symbols arc LISP data objects which serve several purposes and|several interesting properties. Every
symbol has a name, called its print name, or pname. Given a symbol, one can obtain its name in the form of a
string, More interesting, given the name of a symbol as a string onc can obtain the symbol itself, (More
preciscly, symbols are organized into packages, and all the symbols in a package are uniquely identified by

name.) 1 LISP NACHINE NMAMVAL

Tip¥

J t;l:;t:i:‘g” ;:::“(Z- €7 witicH s 0€Au~; wiexip 13§ ves
L L. 3 OF D¢ Sendooied PLsrs,

Symbols have a component called the property list, or plist. By convention this is always a list whose even-

numbered components (calling the initial one component zero) are symbols, here functioning as property
names, and whose odd-numbered components are associated property values. Functions are provided for
manipulating this property list; in cffect, these allow a symbol to be treated as an extensible record structure,

Symbols are also used to represent certain kinds of variables in LISP programs, and there are functions for
dealing with the values associated with symbols in this role.

A symbol can be notated simply by writing its name. If its name is not empty, and if the name consists only
of alphabetic, numeric, or certain “pscudo-alphabetic™ special characters (but not delimiter characters such as
parentheses or space), and if the namc of the symbol cannot be mistaken for a number, then the symbol can
be notated by the sequence of characters in its name.

For example:

SPICE LISP REFERENCE MANUAL

FROBBOZ
frobboz
fRObBoz
unwind-protect
+$

1+

+1
pascal_style
bt2-4*a*¢c

file.rel.43
/usr/games/zork

15

; The symbol whose name is "FROBBOZ".

; Another way to notate the same symbol,

; Yet another way to notate it.

; A symbol with a "-" in its name,

; The symbol named "+§".

: The symbol named " 1+",

; This is the integer I, not a symbol,

; This symbol has an underscore in its name.
; This is a single symbol!

; It has several special characters in its name.
; This symbols has periods in its name.

: This symbol has slashes in its name.

Besides letters and numbers, the following characters are normally considered to be "alphabetic™ for the
purposes of notating symbols:

+-* /1 @3UTE_=(>T .,

Some of these characters have conventional purposes for naming things; for example, symbols which name
functions having extremely implementation-dependent semantics generally have names beginning with "%".
The last character, ". ", is considered alphabetic provided that it docs not stand alone. By itself, it has a role in
the notation of conses. (It also serves as the decimal point.)

A symbol may have upper-case letters, lower-case letters, or both in its print name; the print name
determines what case is uscd when printing the symbol. However, the LISP reader normally ignores case
when recognizing symbols. The net cffect is that most of the time case makes no difference when notating
symbols. However, case does make a difference internally and when printing a symbol.

If a symbol cannot be notated simply by the characters of its name, because the name contains special
characters or because case differences are important for some reason, then there are two “escape™ conventions
for notating them. Writing a "\" character before any character causes the character to be treated itself as an
ordinary character for use in a symbol name. " The use of \ also inhibits case conversion on the following
character. If any character in a sequence is preceded by \, then that sequence can never be interpreted as a
number.

For example:

\(; The symbol whose name is " (".

\+1 ; The symbol whose name is "+1",

+\1 : Also the symbol whose name is "+1".

\frobboz : The first letter is definitely lower-case.
: This might be recognized as "frobboz"” or "f rOBb0Z",
; butneveras"Frobboz" or "FROBBOZ".

3.141592656\s0 : The symbol whose nameis "3.14159265s0".

APL\\360 ; The symbol whose name is "APL\360".
\(bT2\)\ -\ 4*a*c ;The nameis"(bt2) - 4*a*c"”.
; It has parenthescs and two spaces in it.
It may be tedious to insert a "\ " beforc every delimiter character in the name of a symbol if there are many
of them. An atternative convention is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol’s name, as if "\" had been written before cach one,

SPICE LISP REFERENCE MANUAL 16

excepting only | itsclf and \, which must nevertheless be preceded by \.
For example:

"1 ; The same as writing \".
|(b1t2) - 4*a*c| ; The nameis “(b1t2) - 4*a*c".

L " " I‘
| f robboz| ; The name is "frobboz", not "FROBBOZ", /y i (2 ¢ 'y
| APL\360] ; The name is "APL360", because W 0) i_J
; the "\" quotes the "3". 5N\ & o v & ¥ ;
APL\\360 ; The name is "APL\360". -~ Q}Q’
I I . roar " Qr Q\r’ \B- e (R‘\ qf’w 5(’\
]ap1\\360| ; The name is "ap1\360". J\ 5 >N 3 I
INENT sSame as \ | \ | : the name is "| | . \aNSI & (O
O
777 Query: How do peaple feel about the following plan? -~ \/ OS J\ ? i_}g%'\r‘)’ 0 \{
Some programmers, particularly INTERLISP people, like to use case in interesting ways, and insist on case being preserved. Q o? (\ﬂo
For example, they like to use names such as GrossMeOut. (This is hearsay; the INTERLISP manual certainly shows no \UP %* N
examples of this) (Al(i ‘Ts’ﬁ Sy efen Ly ae pRrcate b A yom gl ,2~ X Ny
. ri; ~-w_v;£[€w let Duwym comed t.as 27 w o . "y
Anyway, it has been proposed that the internal form of a symﬁol's print name Bc not upper-case, but whatever case the 5
symbol was first interned in (and therefore in whatever form it was first typed). So if one says ¢ & \Pg\; q}:_‘
(Defun GrossMeOut (Hackp) (Cond ...)) ¢ v‘\ PN
and later types (grossmeout 1}, this will correctly access the defined function, and (print 'grossmeout) will print m(gf’} N Qy
GrossMeOut, not GROSSMEOUT. o‘\gi w N
)
There is a set of implications here: intern must do string-equal hashing rather than string=. Can use of vertical SSL A
bars force the existence of distinct symbols differing only in case, and if so which one gets chosen when a symbol is typed o(v \5-(05'
whose capitalization differs from any existing one? [think ail this can be worked out; what do people think of it? v5// X\o
N
7, S :
T &4

2.4. Lists and Conses

A cons is a little record structure containing two components, called the car and the cdr. Conses are used
primarily to represent lists,

A list is recursively defined to be either the empty list, which is a special data object notated as ()", or a
cons whose cdr component is a list. A list is therefore a chain of conses linked by their cdr components and
terminated by (). The car components of the conses are called the elements of the list. For each element of
the list there is acons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, scpal.'ated by blank space (space, tab, or return
characters) and surrounded by parentheses.
For example:

(a b c)
(2.0s0 (a 1) #*)

: A list of three symbols.
; A list of three things: a short floating-point number,
; another list, and a character object.

This is why the empty list is written as (); it is a list with no clements.

A dotted list is one whose last cons does not have () for its cdr, but some other data object (which is also
not a cons, or the first-mentioned cons would not be the last cons of the list). Such a list is called "dotted™
because of the special notation used for it: the clements of the list are written between parenthescs as before,
but after the last element and before the right parenthesis are written a dot (surrounded by blank space) and

SPICE LISP REFERENCE MANUAL 17

then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between
parentheses and scparated by a space-surrounded dot.

For example:
(a . 4) ; A cons whose caris a symbol
; and whose cdris an integer.
(abc . d) : A list with three elements whose last cons

s has the symbol d in its cdr.

Compatibility note: In MacLisp, the dot in dotted-list notation needed not be surrounded by white space or other delimiters.
The dot is required to be delimited in Lisp Machine Lisp.

It is legitimate to write something like (@ b . (c d)); this means the same as (a b ¢ d). The
standard LiSP output routines will never print a list in the first form, however; they will avoid dot notation
wherever possible.

Often the term Jist is used to refer either to true lists or to dotted lists. The term "true list” will be used to
refer to a list terminated by (), when the distinction is important. Most functions advertised to operate on (l
lists will work on dotted lists and ignore the non-() cdrat the end.

Sometimes the term tree is used to refer to some cons and all the other conses transitively accessible to it
through car and cdrlinks until non-conses are reached; these non-conses are called the /eaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply useful points of view
about structures of conses. There arc yet other terms, such as association list. None of these are true LiSP data
types. Conses are a data type, and () is the sole object of type nul1. The LISP data type 11ist is taken to
mean the union of the cons and nu11 data types, and therefore encompasses both true lists and dotted lists,

Poé%c gr PuT 1N A NOTE Saue THAT (SurmBorp (0) F1Av Be

(N SorE | MPLLMENTATIONS HA~ KL PuT THIS N STAALL
2.5. Vectors . 740 AP ExPLAIN THE ISTORT. DY Henwise Yootel (onwFike

MMANY FovLE -
A vector is an object which contains a sequence of components. In gencral, these components may be any

Lisp data objects. Given a vector and an index, one can extract or replace the component specified by the
index. The index is a non-negative integer (in fact, a fixnum); vector indices are always zero-origin, which is
to say that the valid indices for a vector of length n are the integers from 0 to #-1.

Vectors and lists are both special kinds of sequences. They differ in that any component of a vector can be
accessed in constant time, while the average component access time for a list is linear in the length of the list;
on the other hand, adding a new clement to the front of a list takes constant time, while the same operation on
a vector takes time linear in the length of the vector.

A general vector (somctimes called an S-expression vector or a boxed vector) is notated just like a list, except
thata "#" is written before the left parenthesis. A0 You (ars vse oS, oF covitsy,

For example:

SPICE LISP REFERENCE MANUAL 18

#(a b ¢) ; A vector of length 3.
#(2 3 57 11 13 17 19 23 29 31 37 41 43 A7)

; A vector containing the primes below 50.
#() ; An empty vector.

Implementations may provide certain specialized representations of vectors for efficiency in the case where
all the components are of the same specialized (typically numeric) type. All implementations provide
specialized vectors for the cases when the components are characters or or when the components are always 0
or 1; these specializations are respectively called strings and bit-vectors.

The type of a specialized vector is indicated by a list of the symbol vector and the type of the
components; for example, a specialized representation for vectors with short floating-point parts would be of
type (vector short-float). Similarly, the type string, while it has its own name for convenience,
might also be referred to as {vector string-char). The type vector encompasses all vector
representations; the particular representation which allows components to be any LisP object is referred to as
type (vector t).

Two kinds of specialized vector which are provided by every COMMON LISP implementation are (vector
string-char) (also called string) and (vector (mod 2)) (also called bit-vector). Special
notations are provided for these types.

A string can be written as the sequence of characters contained in the string, preceded and followed by a
"' (double-quote) character. - Any or "\" character in the scquence must additionally have a "\"

pn

character before it.

For example:
"Foo" ; A string with three characters in it.
" s An empty string,
"\"APL\\3607\" he cried." ; A string with twenty characters.
“Ix| = |-x]" . 3 Truth?

Notice that any vertical bar " | " in a string need not be preceded by a "\". Similarly, any double-quote in
the name of a symbol written using vertical-bar notation need not be preceded by a "\". The double-quote
and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the
sequence of characters, while vertical bars indicate a symbol whose name is the contained sequence of
characters.

A bit vector is written much like a string, using double-quotes; however, a "#" is written before it, and the
elements of the bit vector must be 0 or 1.

For example:
#"10110" : A bit vector with five bits. BitQis 1.
A ;s A null bit vector.

#"110101000101000101" ; Bit n of this bit vector is 1 iff # 42 is prime,

SPICE LISP REFERENCE MANUAL 19

2.6. Arrays

An array is an object with components arranged according to a rectilinear coordinate system. Like a vector,
an array can be accessed quickly (in constant time). Unlike a vector, which has exactly onc axis or dimension,
an array may be multidimensional. In addition, arrays have other associated information, such as an optional
Sill pointer. Also unlike vectors, arrays may be altered in size after creation.

The number of dimensions of an array is called its rank (this terminology is borrowed from APL). This is a
non-negative integer; for convenience, it is in fact required to be a fixnum (an integer of limited magnitude).
Likewise, each dimension has a length which is a non-ncgative fixnum. The total number of clements in the
array is the product of all the dimensions.

It is permissible for a dimension to be zero. In this case, the array has no clements, and any t to
access an element in jh error. However, other properties of the array (such as the dimensions t ves)
may be used. If the rank is zero, then there are no dimensions, and the product of the dimensions n by

definition 1. A zero-rank array thercfore has a single element.

An array element is specified by a scquence of indices. The length of the sequence must equal the rank of
the array. Each index must be a non-negative integer strictly less than the corresponding array dimension.
Array indexing is thercfore zero-origin, not one-origin as in (the default case of) FORTRAN.

As an example, suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
anQ/ then s¢cond index may be 0, 1, 2, 3, or 4. One may refer to array elements using the function aref (page
177~

(aref fo0 2 1)
refers to element (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as
many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

An array with a rank of one is indexed in much the same way as a vector is, using a single index. A one-
dimensional array is not the same as a vector, however.) - /| (N JLL Liep Mahine,

'The notation for arrays is rather complicated, It gencrally begins with "#nA", where n is the rank of the
array, and is followed by a description of the contents of the array. The notation is described in full

2.7. Structures

Different structures may print out in different ways; the definition of a siructure type may specify a print
procedurc to use for objects of that type (see the :printer (page DEFSTRUCT-PRINTER-KWD) option

to defstruct (page 181)). The default notation for structures is-c___f,_—'—‘f—'m”‘

N

'

SPICE LISP REFERENCLE MANUAL 20

#S(structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2

L)
where "#S" indicates structure syntax, structure-name is the name (a symbol) of the structure type, each slot-
name is the name (also a symbol) of a component, and cach corresponding slot-value is the representation of
the LIsP object in that slot. %

o v
Ww A %J e 0 “:vawse.
2.8. Functions Sl“"} (o5 Mv\\/ C; e e
Foal g PO ans e
G Vj Y N}(ﬁr‘;“ W #Dr
2.9. Randoms ¥ o M’J et A

Objects of type random tend to have implementation-dependent semantics, and so may print in
implementation-dependent ways. As a rule, such objects cannot reliably be reconstructed from a printed
representation, and so they are usually printed in a format informative to the user but not acceptable to the
read function:

#<uscful information>
A hypothetical cxample might be:

#<{stack-pointer si:rename-within-new-definition-maybe 311037552>
The L.1sP reader will signal an error on encountering "#<".

\
[o
A \ G
A s “\"v:: l:jﬂitve’ ,iA L FE
~(e L

SPICE LISP REFERENCE MANUAL 21

Chapter 3

Program Structure

3.0.1. Stuff I’'m Not Sure Where to Put It Yet

defvar name &optional initial-value documentation [Special form]

defvar is the recommended way to declare the use of a global variable in a program. Placed at
top level in a file,

(defvar variable)
declares variable to be a dynamic variable for the sake of compilation, and records its location
for the sake of the editor so that you can ask to see where the variable is defined. If a second
"argument” is supplied:

(defvar variable initial-value)
then variable is initialized to the result of evaluating the form initial-value unless it already has a

value. initial-value is not evaluated unlcss it is used; this is uscful if it docs something expensive
like creaiing a large data structure.

defvar should be used only at top level, never in function definitions, and only for global
variables (uscd by more than one function).

defvar also provides a good place to put a comment describing the meaning of the variable
(whereas an ordinary declare offers the temptation to declare scveral variables at once and not
have room to describe them all). This can be a simple LiSP comment:

(defvar tv-height 768) ;Height of TV screen in pixels.

or, better yet,”a third “argument” to defvar, in which case various programs can access the
documentation:

(defvar tv-height 768 "Height of TV screen in pixels")

The documentation should be a string.
mvsr?

If defvar is used in a patch file (see page PATCH-FACILITY) or is a form cvaluated with an
editor “compile” or "cvaluate” command, and there is an initial-value, then the variable is always
set to it regardless of whether it is alrcady bound.

L4
. , , VI AR
277 Query: Actually, the rules for this nced Lo be worked out better? Maybe two Kinds. one which always Q\Nz

intializes and one which docsn't?

T2

SPICE LISP REFERENCE MANUAL 22

defconst name initial-value &optional documentation [Special form)

N

& F

N (

\
\
1

|
R

o«
'\)(0 J (N . e?(u(/

defconst is similar to defvar, but declares a global variable whose value is "constant”. An
initial value is always given to the vanable e [1f the variable is already bound, an error occurs unless
the existin; existing g value is equal (page3i)to the specified initial-value.

Implementation note: Actually, a specific interaction should occur in whioch the user is asked whether it is
permissible to alter the constant. Perhaps there should be some mechanism to discover who uses the constant.

The rationale for this is that defvar declares a global variable, whose value is initialized to
something but will then be changed by the functions that use it to maintain some state. On the
other hand, defcons t declares a constant, whose value will "never” be changed.

-er

v Ve
/ \\ﬂf Wﬁwﬂ wf v
1V ,rf‘?,y \o v\P RS | fLJL/

SPICE LISP REFERENCE MANUAL 23

Chapter 4

Predicates mcH puwcrios YoU REAN,

. ") flﬂ6"“r‘ N,
/ vse " THAT " -:a :040 APDITIONAL INFORLATI®
Use"waicu‘

¢
. . TAAT N . .
A predicate is a function whieh tests for some condition involving its arguments and returns t if the
condition is true, or () if it is not truc. One may think of a predicate as producing a Boolean value, where t

stands for frue and () stands for false. Conditional control structures such as cond (page 43), if (page 44),
when (page 45), and unless (page 45) test such Boolcan values.

By convention, the names of predicates usually end in the letter "p* (which stands for “predicate”).

The control structurcs m test Boolean values actually only test for whether or not the value is (), which
is considered to be false. Any other value is considered to be true. A function which returns () if it "fails"
and some useful value when it "succeeds” is called a pseudo-predicate, because it can be used as a test but also
for the useful value providéd in case of success. An example of a pseudo-predicate is membe r (page 133).

Db Mece wed Lo be c allel) “s@w'\pw&JIca‘(.‘eS" ?
4.1. Data Type Predicates

Perhaps the most important predicates in LISP are those which test for data types; that is, given a data
object one can determine whether or not it belongs to a given type.

In CoMMON LISP, types are named by LISP objects, specifically symbols and lists, The type symbols
defined by the system include:

null cons list symbol
vector string bit-vector array
function structure random character
number scalar float string-char
integer fixnum bignum bit
short-float single-float double-float long-float
complex ratio readtable package
stream

In addition, when a structure type is defined using defstruct (page 181), the name of the structure type
becomes a valid type symbol.

If the name of a type is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
information. As a gencral ruie, any subsidiary item may be replaced by ?, or simply omitted if it is the last

SPICE LISP REFERENCE MANUAL 24

item of the list; in any of these cases the item is said to be unspecified.
=

List names of type'generally refer to specializations of data types named by symbols. These specializations
may be reflected by more efficient representations in the underlying implementation. As an example,
consider the type (vector short-float). Implementation A may choose to provide a specialized
representation for vectors of short floating-point numbers, and implementation B may choose not to. If you
should want to create a vector for the express purpose of holding only short-float objects, you may optionally
specify to make-vector (page 162) the element type short-float, meaning, "Produce the most
specialized vector representation capable of holding short-floats which the implementation can provide.”
Implementation A will then produce a specialized shor-float vector, and implementation B will produce an
ordinary vector (onec of type (vector t)).

If one were then to ask whether the vector were actually of type (vector short-float), both
implecmentations could properly say "yes"; implementation B might or might not verify that the vector
actually contained short-floats. On the other hand, implementation A, if asked whether a vector of type
(vector t) wereof type (vector short-float), it could properly say "no" without cven checking
the contents of the vector. All this is a bit tricky, but is designed to allow some implementations to provide
efficicnt specialized representations without having to burden all implementations with irrelevant specialized
data types.

The valid list-format names for data types are: n

o (vector #ype size): a specialized vector whose clements are all members of the type fype and
which is of length size. To be more precise, this type encompasses those vectors which can result
by specifying ¢ype to the function make-vector (page 162). size must be a non-negative integer,

and type a valid type label. If type is unspecified then t is assumed; if size is unspecified, then .,J\’"J‘) L

vectors of any size are included. I,J' \’

For example: \"\ ¥
(vector double-float) ; Vectors of double-format floating-point numbers. \ﬂ,“‘{ 52“’ o , ‘
(vector ? 5) : Vectors of length 5. IR J fﬁf\‘j x;
(vector (mod 32) ?) ; Vectors of integers between 0 and 31, Q(, 5 3 ‘7" ¢

/

The types (vector string-char) and (vector bit) are so uscful that they have the \’Jgﬁ\‘d (/ /_g

special names string and bit-vector; every COMMON LISP implementation must provide 04_9.9‘ . A .

these as distinct data types. i (.Mb

Rationale: Ni1. had been using the name b its for a bit vector. This tended to lead to awkward prose: one e

had to speak of "abits". The singular noun bit-vector iseasier to discuss.

e (array type dimensions): a specialized array whose clements are all members of the type fype
and whosc dimensions match dimensions. To be more precise, this type encompasses those arrays
which can result by specifying fype to the function make-array (page 175). fnpe must be a valid
type label. dinensions may be a non-negative integer, which is the number of dimensiens, or it
may be a list of non-negative integers representing the length of cach dimension (any given
dimensions may be unspecificd).

For example:;

SPICE LISP REFERENCE MANUAL

toehA :Awé '(0

25

(array integer 3) ; Three-dimensional arrays of integers.
(array integer (? ? ?)) ;Three-dimensional arrays of integers.
(array ? (4 5 6)) ; 4-by-5-by-6 arrays.

(array character (3 ?)) ;Two-dimensional arrays of characters

; which have exactly three rows.

(array short-float ()) ;Zero-rank arrays of short floating-point numbers.

e (integer Jlow high): any integer between low and high. The limits low and high must each be

o4 an integer, a list of an integer, or (); an integer ic an inclusive limit, a list of an integer is an
A i oxclusive limit, and () means that a limit does not exist and so effectively denotes minus or plus

i mﬁmty, respectively. The type f1ixnum is simply a name for (integer smallest largest) for
e ;" grufio m unplcmcmauon depcndcnt values of smallest and largest. The type (integer 0 1) isso useful

is the same thing) (integer 0 (n)).

o (signed-byte s):cquivalentto (integer —2% ("/(2"‘7-’—1).

e (unsigned-byte s):equivalentto (mod 2°),thatis, (integer 0 2-1).

o (float Jow high): any floating-point number between Jow and high. The limits Jow and high
must cach be a floating-point number, a list of a floating-point number, or (}; a floating-point
number is an inclusive limit, a list of a floating-point number is an exclusive limit, and () means
that a limit does not exist and so effectively denotes minus or plus infinity, respectively. As
cxamples, the result of the cosine function may be described as being of type (ftoat -1.0
1.0), and the argument to the logarithin function must be of type (f1oat (0.0) ()).

In a similar manner onc may use {(short-float low high), (single-float low high),
(double-float low high), or (Tong-fioat low high); the limits must be floating-point
numbers of the appropriate type.

o (complex riype itype): a complex number whose real part is of type rtype and whose
imaginary part is of type itype. To be more precise, this type c¢ncompasses all those complex
numbers which can result by giving arguments of the specified types to the function complex

(page COMPLEX-FUN).

In a break with the usual convention on omitted items, if itype is

omitted then it is taken to be the same as riype. As examples, gaussian integers might be described
as (complex integer), and the result of the complex logarithm finction might be described
asbeing of type (complex float (float #.(- pi) #.pi)).

o (function (argl-type argl-type ...) valuel-type value2-type ...):. this specifies a
function which accepts arguments at Jeast of the types specified by the argj-type forms, and
returns values which are members of the types specified by the valuej-type forms. The
&optional and &rest keywords may appear in either list of types. As an example, the function
cons is of type (function (t t) cons), because it can accept any two arguments and
always returns acons. Itis also of type (function (float string) list), because it can
certainly accept a floating-point number and a string (among other things), and its result is always
of type Tist (in fact a cons and never null, but that does not matter for this type

determination).

e (oncof oubject! object? .

. }oaname for a type containing precisely those objects aained. An

i A {;1\‘/1,,4

R & S @MJ»\#S

e (mod n): anon-ncgative integer less than n. This is equivalent to (integer 0 njf) or (what

SPICE LISP REFERENCE MANUAL 26

object is of this type if and only if it is eq1 (page 30) to one of the specified objects.

o (not type): all those objects which are nof of the specified type.

o (or 1ypel type2 ...): the union of the specified types. For example, the type 1ist by
definition is the same as (or null cons). Also, the value rcturned by the function
position {page 114) is always of type (or null (integer 0 ())) (either () or a non-
negative integer).

e (and ypel type2 ...):the intersection of the specified types.

typep object &optional type [Function)
(typep object type) is a predicate which returns t if object is of type type, or () otherwise. Note \\Q
that an object can be "of" more than one type, since one type can include another. The fype may \B,Q‘ ¢
be any of the type names mentioned above. \,.i(‘Q,x -5

S

. . . . "
(typep object) returns an implementation-dependent result: some fype of which the object is a (bJ‘)@,m —ﬂ}
member. Implementations arc encouraged to return the most specific type which can be
conveniently computed and is likely to be useful to the user. Because the result is implementation-

2 B}
S::;\d

dependent, it is usually better to use typep of one argument primarily for debugging purposes,
and to use typep of two arguments or the typecase (page TYPECASE-FUN) special form in
programs.

4.1.1. Specific Data Type Predicates

The following predicates are for testing for individual data types. These predicates return t if the argument
is of the type indicated by the name of the function, () if it is of some other type.

null object
: null returns t if its argument is (), and otherwise returns (). This is the same operation
performed by the function not, (page 32); however, not is normally used to invert a Boolcan
value, while nu11 is used to test for an empty list. The programmer can therefore express intent by
the choice of function name.

[Function]

(nuill x) <=> (typep x 'null) <=> (eq x '())

symbolp object [Function]

symbo1p returns t if its argument is a symbol. and otherwise returns ().

(symbolp x} <=> (typep x 'symbol)

Compatibility note: In most Lisp dialects, including MacLise, INTERLiSP, and even Lisp 1.5, () is in fact
represented by the symbol a1, and therefore {symbolp *()) => t. This association of a symibol with the
cmpty list has caused problems. Programmers are advised to write code in such a way as not to depend on ()
and n1i1 being either the same or nol the same, if possible.

PLeAse NOTE EXPLCITI THAT N SONE 1N/ LenaTATIONS

OF Cortrmon Ligp, (sumtsLe '()) nAvY Se T

SPICE LISP REFERENCE MANUAL 27

atom object _ [Function]
The predicate atom returns t if its argument is not a cons, and otherwise returns (). It is the
inverse of consp. Note that (atom '()) => t.

(atom x) <=> (typep x 'atom) <=> (not (typep x 'cons))

\) consp object [Function)
The predicate consp returns t if its argument is a cons, and otherwise returns (). It is the inverse
of atom. Notc that (consp '()) => ().
{(consp x) <=> (typep x.'cons) <=> (not (typep x 'atom))

Compalibility note: Some Lisp implementations call this function pairp or 1istp. The name pairp was
rejected for ComMON Lisp because it emphasizes too strongly the dotted-pair notion rather than the usual
usage of conses in lists. On the other hand, tistp too strongly implies that the cons is in fact part of a list,
which afier all it might not be; moreover, () is a list, though not a cons. The name consp seems to be the,

appropriale compromise, ;.{.‘Q <. M. ’la" / ved -Lj," vseS 7/ t .
listp object [Function)
Tistp returns t if its argument is a cons or the empty list (), and otherwise rcturns (). It does

not check for whether the list is a "true list" (one terminated by ()) or a "dotted list” (one
terminated by a non-null atom). ¥ aarmaa o
(Tistp x) <=> (typep x 'list) <=> (typep x '(1cons null))

Compatibility note: Lisp Machine Lisp defines 11stp to mean the same as pairp, but this is under review.
The definition given here is that adopted by NiL. L AN chan M€ ch v wAir!t

numberp object’ {Function]
numbe ro returns t if its argument is any kind of number, and otherwise returns ().

{(numberp x) <=> (typep x 'number)

integerp object [Function)
integerp returns t if its argument is an integer, and otherwise returns ().
(integerp x) <=> (typep x 'integer)
Compalibility note: In MacLisp this is called fixp. Users have been confused as to whether this meant /
"integerp” or "f ixnump", and so W»been adoptcd here. £ cap,
C the nonae Fafc;rwf_ has
bigp object " [Function]
bigp returns t if object is a bignum (a large integer), and otherwise returns ().

Note: the distinction between fixnums and bignums is an implementational rather than semantic
matter. The set of integers which are fixnums is implementation-dependent. Programs should
avoid depending on the distinction.

(bigp x) <=> (typep x 'bignum)

SPICE LISP REFERENCE MANUAL 28

fixnump object {Function]
f ixnump returns t if object is a fixnum (a small integer), and otherwise returns ().

Note: the distinction between fixnums and bignums is an implementational rather than semantic
matter. The set of integers which are fixnums is implementation-dependent. Programs should
avoid depending on the distinction.

(fixnump x) <=> (typep x 'fixnum)

rationalp object [Function]
rationalp returns t if its argument is a rational number (a ratio or an integer), and otherwise
returns ().
(rationalp x) <=> (typep x 'rational)
ratiop object {Function)

ratiop returns t if its argument is a ratio, and otherwise returns ().
{(ratiop x) <=> (typep x 'ratio)

floatp object [Function]
floatp returns t if its argument is a floating-point number, and otherwise returns ().
(floatp x) <=> (typep x 'float)

short-floatp object [Function}
short-floatp returns t if object is a short-format floating-point number, and otherwise returns
0.
(short-floatp x) <=> (typep x 'short-float)

single-floatp object [Function]
single-floatp returns t if object is a single-format floating-point number, and otherwise
returns ().

(single-floatp x) <=> (typep x ‘'single-float)

double-floatp object [Function]
double-floatp returns t if object is a double-format floating-point number, and otherwise
returns ().

(double-floatp x) <=> (typep x 'double-float)

long-floatp object [Function)
long-floatp returns t if object is a long-format floating-point number, and otherwise returns
().
{(long-floatp x) <=> (typep x 'long-float)

SPICE LISP REFERENCE MANUAL 29

characterp object [Function)
characterp returns t if its argument is a character, and otherwise returns (). e 7
characterp x) <=> (typep x 'character M s«
(P x) (typep) I;\S“l,’he e ‘ﬁxnumf
stringp object [Function)

stringp returns t if its argument is a string, and otherwise returns ().
(stringp x) <=> (typep x 'string)

bit-vectorp object [Function]
bit-vectorp returns t if its argument is a bit-vector, and otherwise returns ().
{bit-vectorp x) <=> (typep x 'bit-vector)

bitp object {Function]
bitp returns t if its argument is a bit (either of the integers 0 or 1), and otherwise returns ().

(bitp x) <=> (typep x 'bit) 9“’1
(bitp x) <=> (or (equal x 0) (equal x 1)) o :
K_ >

—— For” .
vectorp @ [Function]
vectorp returns t if its argument is a vector, and otherwise returns ().

AvS
(vectorp x) <=> (typep x 'vector) g CToAS A ARAS T

1.4 Lf‘J AtL Vi

arrayp object {Function)
arrayp returns t if its argument is an array, and otherwise returns ().
{arrayp x) <=> (typep x 'array)

Compatibility note: Lisp Machine Lisp defines strings to be arrays. In CoMMON Lisp, arrays are a particular
data type, distinct from both strings and vectors.

T
structurep @bj. act) - [Function]
structu rep returns t if its argument is a structure, and otherwise returns ().
(structurep x) <=> (typep x 'structure)

functionp object [Function}
functionp rcturns t if its argument is suitable for applying to arguments, using for example the
funcall or apply function. Otherwise functionp returns (). See C Linval versiwa
o(;h le\ aryg he rc.\
subrp object [Function}

subrp returns t if its argument is any compiled code object, and otherwise returns ().

(subrp x) <=> (typep x 'subr)
/ {7 -
q ﬁ/
Se. !/\/ ;-

, 06 ‘}i\ 5 ZL ~ ‘z / 7
— / ’ /
Tt sy pob o byt Uide)) ok 4
/ / & . B e

SPICE LISP REFERENCE MANUAL 30

closurep object _ [Function)
closurep returns t if its argument is a closure, and otherwise returns {).

4.2. Equality Predicates

CoMMON Lisp provides a spectrum of predicates for testing for cquality of two objects: eq (the most
specific), eql, equal, and equalp (the most'general). eq and equal have the meanings traditional in
Lisp. eql was added becausc it is frequently needed, and equalp was added primarily to complement the
arithmetic comparison predicates 1essp (page LESSP-FUN) and greaterp (page GREATERP-FUN). If
two objects satisfy any one of these equality predicates, then they also satisfy all those which are more gencral.

eq x y [Function]
(eq x y) => tifandonlyif x and y arc the same object.

It should be noted that things that print the same are not necessarily eq to each other. Symbols
with the same print name usually are eq to each other, because of the usc of the intern (page
INTERN-FUN) function. However, numbers with the same value need not be eq, and two similar
lists are usually not eq.

For example:
(eq 'a 'b) => ()
(eqg 'a 'a) => t
(eg 3 3) might be t or (), depending on the implementation
(eq 3 3.0) => ()
(eq (cons 'a 'b) (cons 'a 'c)) => ()
(eq (cons 'a 'b) (cons 'a 'b)) => ()
(setq x '(a . b)) (eq x x) => t
(eq #\A #\A) might be t or (), depending on the implementation
(eq "Foo" "Foo") => ()
(eq "FOO" "foo") => ()
Implementation note: eq simply compares the two pointers given it, so any kind of object which is represented
in an "immediate” fashion wifl indecd have like-valued instances satisfy eq. On the PERQ, for example,

fixnums and characters happen to “work”. However, no program should depend on this, as other
implementations of CoMMON Lisp might not usc an immediate representation for these data types.

eql x y . [Function]
The eq1 predicate returns t if its arguments are eq, or if they are numbers of the same type with
the same value (that is, they are = (page 82)), or if they are character objects which represent the
same character (that is, they are char= (page 100)).

For example:

SPICE LISP REFERENCE MANUAL k) |

(eql 'a 'b) => ()
(eql 'a 'a) => t
(eql 3 3) => ¢t

(eql 3 3.0) =>-()

(eql (cons 'a 'b) (cons 'a 'c)) => ()
(eql (cons 'a 'b) (cons 'a 'b)) => ()
(setq x '(a . b)) (eql x x) => t
(eql #\A #\A) => t
(eql "Foo" "Foo") => ()
(eql "FOO" "foo") => ()
equal x y [Function)

The equal predicate returns t if its arguments are similar (isomorphic) objects. A rough rule of
thumb is that two objects are equal if and only if their printed representations are the same,

Numbers and characters are compared as for eql. Symbols are compared as for eq. This can
violate the rule of thumb about printed representations, but only in the case of two distinct symbols
with the same print name, and this does not ordinarily occur.

Objects which have components are equal if they are of the same type and corresponding
components are equal. This test is implemented in a recursive manner, and will fail to terminate
for circular structures. For conses, equal is defined recursively as the two car’s being equal and
the two cdr’s being equal. Two vectors are equal if and only if they are of the same length and
corresponding components are equal.

Two strings arc equal if they have the same length, and the characters composing them are
equal.

Compatibility note: In Lisp Machine Lisp, equatl ignores the difference between upper and lower case in |
strings. This violates the rule of thumb about printed representations, however, which is very useful, especially \
to novices. It is also inconsistent with the treatment of single characters, which are represented as fixnums,

Two arrays are equal if and only if they have the same number of dimensions, the dimensions
match, the element types match, and the corresponding components arc equal.

For example:
(equal 'a 'b) => ()
(equal 'a 'a) => t
(equal 3 3) => ¢t

(equal 3 3.0) => ()

(equal (cons 'a 'b) (cons 'a 'c)) =
{equal (cons 'a 'b) (cons 'a 'b)) =
{(setg x '(a . b))} (equal x x) => t
(equal #\A #\A) => t

(equal “"Foo" "Foo") => t

(equal "FOO" "foo") => ()

To recursively compare only conses, and compare all atoms using eq, usc tree-equal (page
124).

>
>

SPICE LISP REFERENCE MANUAL 32

equalp x y &optional fiz [Function]

Two objects are equalp if they are equal, or if they are characters and differ only in alphabetic
case (that is, they are char-equal (page 100)), or if they are numbers and have the same
numerical value, even if they are of different types. By this latter characteristic equalp
complements lessp (page LESSP-FUN) and greaterp (page GREATERP-FUN), which
perform inequality comparisons among numbers of possibly differing types. When comparing
floating-point numbers, or comparing a floating-point number to any other kind of number, the
optional argument fiizz is used. Two numbers are considered to be equal if the absolute value of
their difference is no greater than fiuzz times the absolute value of the one with the larger absolute
value; that is, x and y arc considercd equal if abs{(x—y) < fuzz*max(abs(x), abs(y)). If no third
argument is supplied, then firzz defaults to 0. 0, and in this case x and y must be exactly equal for
equalp toreturn t. (Sce the function = (page 82).)

For example:

(equalp ‘'a 'b) => ()
(equalp 'a 'a) => t
(equalp 3 3) => t

{equalp 3 3.0) => t
{(equalip (cons 'a 'b) (cons 'a 'c))
{(equaip (cons 'a 'b) (cons ‘a 'b))
(setqg x '(a . b)) (equalp x x) => t
(equalp #\A #\A) => t
(equalp "Foo" "Foo") =
(equalp "FOO" "foo") =

>t
>t

4.3. Logical Operators

COMMON LIsP provides three operators on Boolean values: and, or, and not. Of these, and and or are
also control structures, because their arguments are cvaluated conditionally. not necessarily examines its
single argument, and so is a simple function.

not x

[Function]
not returns t if x is (), and otherwise returns (). It therefore inverts its argument, interpreted as
a Boolean value.

nul1 (page 26) is the same as not; both functions arc included for the sake of clarity. As a matter
of style, it is customary to use nu11 to check whether something is the empty list, and to use not
to invert the sense of a logical value,

and &rest forms - [Special form)

(and forml form2 ...) evaluates the forms onc at a time, from left to right. If any form
cvaluates to (), and immediately returns () w1tho//uj. cvaluating the remaining forms If all the
Jorms but the last cvaluate non-(), and returns \whctc)vcr the last form returns. ‘Therefore in
general and can be used both for logical operations, Where () stands for false and t stands for frue,

SPICE LISP REFERENCE MANUAL 33

and as a conditional expression.

For example:
(if (and (>= n 0)
(1essp n (length a-vector))
(eq (vref a-vector n) 'foo))
(princ "Foo!l"))
The above expression prints "Foo!" if clement n of a-vector is the symbol foo, provided also
that n is indeed a valid index for a~-vector. Becausc and guarantees left-to-right testing of its
parts, vref is not performed if n is out of range. (It would also work in this example to write
simply :

(and (>= n 0)
(lessp n (length a-vector))
(eq (vref a-vector n) 'foo)
(princ "Fool")) 4
but this is stylistically much less tast€ful.) Because of the guaranteced left-to-right ordering, and is
like the and then operator in ADA, rather than the and operator.

Sec also if (page 44) and when (page 45), which arc often more appropriate than and for
conditional purposes.

From the general definition, one can deduce that (and x) <=> x. Also, (and) => t, which is an
identity for this operation.

or &rest forms [Special form]
(or forml form2 ...) cvaluates the forms one at a time, from left to right. If any form
evaluates to somcthing other than (), or immediately returns it without evaluating the remaining
Sorms. If all the forms but the last evaluate to (), or returns whatever evaluation of the last of the
Sormsreturns. Therefore in general or can be used both for logical operations, where () stands for
Jalse and t stands for true, and as a conditional cxpression. Because of the guaranteed left-to-right
ordering, or is like the or clse operator in ADA, rather than the or operator.

See also if (page 44) and unless (page 45), which arc often more appropriate than or for
conditional purposes. '

From the general definition, one can deduce that (or x) <=> x. Also, {or) => (), which is the
identity for this operation.

SPICE LISP REFERENCE MANUAL

T P8

34

SPICE LISP REFERENCE MANUAL 35

Chapter 5

Program Structure

LIsP provides a varicty of special structures for organizing programs. Some have to do with flow of control
(control structures), while others control access to variables (environment structures). Most of these features
are implemented either as special forms or as macros (which typically expand into complex program
fragments involving special forms).

Function application is the primary method for construction of LISP programs. Operations are written as
the application of a function to its arguments. Usually, LISP programs are written as a large collection of smalf
functions, each of which implements a simple operation. These functions operatc by calling one another, and
so larger operations arc defined in terms of smaller ones, LISP functions may call upon themselves
recursively, either directly or indirectly.

Lisp, while more applicative in style than statement-oriented, nevertheless provides many operations which
produce side-effects, and consequently requires constructs for controlling the sequencing of side-effects. The
construct progn (page 40), which is roughly equivalent to an ALGOL begin-end block with all its semicolons,
executes a number of forms sequentially, discarding the values of all but the last. Many LISP control
constructs include sequencing implicitly, in which case they are said to provide an "implicit progn”. Other
sequencing constructs include prog1 (page 41) and prog2 (page 41).

For looping, COMMON LISP provides the general itcration facility do (page 47), as well as a variety of
special-purpose iteration facilities for iterating or mapping over various data structures.

COMMON LisP provides the simple onc-way conditionals when and unless, the simple two-way
conditional if, and the more general multi-way conditionals such as cond and selectq. The choice of
which form to use in any particular situation is a matter of personal taste and style.

"~ # # # Non-local exits, binding of temps, multiple values. Eventually make all this in order corresponding
to main text.

SPICE LISP REFERENCE MANUAL 36

5.1. Constants and Variables

5.1.1. Reference

quote object [Special form]

function fn

(quote x) simply returns x. The argument is not evaluated, and may be any LISP object. This
construct allows any LISP object to be written as a constant value in a program.

For example:

(setq a 43)

(1ist a (cons a 3)) => (43 (43 . 3))

(1ist (quote a) (quote (cons a 3)) => (a (cons a 3))
Since quote forms are so frequently uscful but somewhat cumbersome to type, a standard
abbreviation is defined for them: any form preceded by a single quote (') character is assumed to
have "(quote)" wrapped around it.

For example;

(setq x '(the magic gquote hack))
is normally interpreted when read to mean
(setq x (quote (the magic quote hack))) -
PARAS AATH
HELé News TO L¢P
112#5 LSy GXRPLAIILS TG NPT,
[Special form]

The value of funct ion is always tha functional interpretation of the form fi; fit is interpreted as if
it had appeared in the functional position of a function invocation. In particular, if fi is a symbol,

the functional value of the variable whose name is that symbol is returned.

>

Compatibility na
If fir is a lambda expression, then a functional object (a lexical closure) is returned.

,5 Since function forms are so frequently useful (for passing functions as arguments to other
"~ function) but somewhat cumbersome to type, a standard abbreviation is defined for them: any
form preceded by a sharp sign and then a single quote (#') is assumed to have "(function)"
wrapped around it.
For example:
(rem-if #'numberp '(1 a b 3))
is normally interpreted when read to mean
(rem-if (function numberp) '(1 a b 3))
symeval symbol [Function]

symeval returns the current value of the dynamic (special) variable named by symbol. An error
occurs if the symbol has no value; see boundp (page 37) and makunbound (page 38).

symeval cannot access the value of a local (lexically bound) variable.

This function is particularly uscful for implementing interpreters for languages embedded in LISP,
The corresponding assighment primitive is set (page 38).

SPICE LISP REFERENCE MANUAL 37

C
fsymeval symbol ‘ [Funcnon]

fsymeval returns the current global ﬁmcnon definition nan1ed by symbol. An error occurs if the
.~ symbol has no function definition; see,,"boundp (page 37) and!maku nbound (page 38).

- e\

S

v‘”symeva] cannot access the value of a local function name (lexically bound as by flet (page
FLET-FUN)or 1abe1s (page LABELS-FUN)).

This function is particularly useful for implementing interpreters for languages embedded in LiSP.
The corresponding assignment primitive is fset (page 38).

boundp symbol [Function]

fboundp symbol {Function]
boundp returns t if the dynamic (special) variable named by symbol has a value; otherwise, it
returns (). fboundp is the analogous predicate for the global function definition named by
symbol.

See also set (page 38), fset (page 38), makunbound (page 38), and fmakunbound (page 38).

Compatibility note: I believe that in Lisp Machine Lisp boundp can manage to refer to a local variable if its
argument appears as a quoted constant. If so, it is an incredible hack, and violates the rule that a function
cannot tell how its arguments were computed. In CoMMON Lisp, boundp can never refer to a local variable,

and fboundp can never refer to a local function definition. .l D@)L},t _6 Sioee has 1S
. 5UCL\ “""Aﬁ ay A~ wn 1ol
5.1.2. Assignment locd vaviable:
setq &rest specs [Special form]

The special form (setq var! forml var2 form2 ...) is the "simple variable assignment
statement” of Lisp. First form/ is evaluated and the result is assigned to varl, then form2 is
%/ evaluated and the result is assigned to var2, and so forth. The variables are represented as symbols,
of course, and are interpreted as referring to static or dynamic instances according to the usual
___ rules, setq returns the last value assigned, that is, the result of the evaluation of its last argument.
As a boundary case, the form (setq) is legal and returns (). As a rule there must be an even
number of argument forms.

For example:
(setqg x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment was
performed before the second form was evaluated, allowing that form to use the new value of x.

Sce also the description of setf (page SETF-FUN), which is the "general assignment statement”, capable
of assigning to variables, array clements, and other locations.

SPICE LISP REFERENCE MANUAL 38

psetq &rest smuff [Special form)
A psetq form is just like a setq form, except that the assignments happen in parallel; first all of
the forms are cvaluated, and then the symbols are set to the resulting values. The value of the

psetq fgr_m,lﬁl.

For exam;ﬂ'e’:’,R
(setq a 1)
(setq b 2)
(psetq a b
a =>2
b =>1

In this example, the values of a and b are exchanged by using parallel assignment. (Note that the

do (page 47) iteration construct performs a very similar thing when stepping itcration variables.)

b a)

set symbol value [Function]
set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable
named by symbol to take on value as its value. Only the value of the current dynamic binding is
altered; if there are no bindings in effect, the most global valuc is altered. .

For example:
(set (if (eq a b) 'c 'd) 'foo)
will either set ¢ to foo orsct d to oo, depending on the outcome of the test (eq a b).

Both functions return value as the result value.

sef cannot alter the value of a local (lexically bound) variable. The special form setq (page 37) is
usually used for altering the values of variables (lexical or dynamic) in programs, set is
particularly useful for implementing interpreters for languages embedded in LISP. Sec also progv
(page 43), a construct which performs binding rather than assignment of dynamic variables.

fset symbol value [Function)
fset allows alteration of the global function definition named by symbol to be value. fset

returns value. (?Q?

(@\ (fse‘t):annot alter the value of a local {lexically bound) function definition; asthade by flet (page
FLET-FUN) or 1abe1ls (page LABELS-FUN). The special forym setq (page 37) is usually used
for altering the values of variables (lexical or dynamic) in programs. fset is particularly useful for
implementing interpreters for languages embedded in LISP.

makunbound symbol : [Function)

fmakunbound symbol [Function)
makunbound causes the dynamic (special) variable named by symbol to become unbound (have
no value). fmakunbound does the analogous thing for the global function definition named by
symbol.

For example:

|

SPICE LISP REFERENCE MANUAL 39

(setq a 1)

a=>1

(makunbound 'a)

a => causes an error

(defun foo (x) (+ x 1))
(foo 4) => b6

(fmakunbound 'foo)

(foo 4) => causes an error

Both functions return symbol as the result vatue.

Compatibility note: 1 believe that in Lisp Machine Lisp makunbound can manage to refer to a local variable if
its argument appears as a quoted constant. If so, it is an incredible hack, and violates the rule that a function
cannot tell how its arguments were computed. In COMMON Lisp, makunbound can never refer to a local
variable, and fmakunbound can never refer to a local function definition. I »oulot '(t

5.2. Function Invocation TUAT

The most primitive form for function invocation in LISP of course has no name; any lis ﬁhichmbich)as
no other interpretation as a macro call or special form is taken to be a function call. Othertonstructs are
provided for less common but nevertheless frequently uscful situations.

apply function arglist / L [Function]
This applies finction/to the list of arguments arglist. arglist should be a list; function can be a
compiled-code object, or it may be a "lambda cxpression”, that is, a list whose car is the symbol

Tambda, or it may @ symbol, in which case the dynamic functional value of that symbol is used

<

(but it is illegal in this case for that symbol to be the name of a macro or special form). aal Aer "
For example: (_ Aapl'?;'" 9 "{ A“Q“Z* »,
(setq f '+) (apply T '(12)) => 3 0 e Yk

(setq f '-) (apply T '(1 2)) => -1 ning? e 5%
(apply 'cons '((+ 2 3) 4)) => A"‘"“ovﬂt“ tla T‘:’\’;,L
((+23) . 4) not (5. 4) N IR o™

. . . Wi ,z*‘p'u by !

Of course, arglist may be () (in which case the function is given no arguments.) vt £ .;u)“]
Compatibility no!@‘) . \eg;t w‘;ﬁ: wofv‘::? X
Py

funcall fi &rest arguments [Function}
(funcall fa al a2 ... an) applies the function fi to the arguments a/, a2, ..., an. fi may
not be a special form nor a macro; this would not be meaningful.

For example:

(cons 1 2) => (1 ., 2)

(setqg cons (fsymeval '+))

(funcall cons 1 2) => 3
The difference between funcalt and an ordinary function call is that the function is obtained by
ordinary LISP cvaluation rather than by the special interpretation of the function position that
normally occurs.

Compatibility note: This corvesponds roughly to the [IN1ERT ISP primitive apply*.

SPICE LISP REFERENCE MANUAL 40

funcall* f &rest args [Function] I /

funcall* is like a cross between apply and funcall. (funcall* al a2 ... an list)
applies the function fto the arguments a/ through an followed by the clements of /ist. Thus we
have:

(funcall fal ... an) <=> (funcall* fal ... an '())

(apply f list) <=> (funcall* f list)
However, when apply or funcall fits the situation at hand, it is stylistically clearer to use that
than to use funcal1*, whose use implies that somcthing more complicated is going on.

(funcall* #'+ 111 '(111)) =>6

(defun report-error (&rest args)
(funcall* (function format) error-output args))

Compatibility note: 17? L‘ZSJJMS a& l e a{%.‘\\yo M;ur&\‘b
Cotgt mey nat Ve WY

5.3. Simple Sequencing

progn &rest forms [Special form)
The progn construct takes a number of forms and evaluates them sequentially, in order, from left
to right. The values of all the forms but the last are discarded; whatever the last form returns is
returned by the progn form. One says that all the forms but the last are evaluated for effect,
because their execution is useful only for the side effects caused, but the last form is executed for
value.

progn is the primitive control structure construct for "compound statements”; it is analogous to
begin-end blocks in ALGOL-like languages. Many LISF constructs are "implicit progn" forms, in
that as part of their syntax each allows many forms to be written which are evaluated sequentially,
the results of only the last of which are used for anything.

Declarations may appcar at the beginning of a progn body; sec declare (page 72). The scope of l"
\o* the declarations is the body of the progn form. Any construct which is an implicit progn may

k@‘ J‘\' ’&i’ contain declarations in a similar manner; the scope of such declarations includes any variables ‘\
Y\ }ﬁ t ®*" bound by the construct. This is described elsewhere for individual constructs.

&
) ¥ FARR _ -
aob ‘(’9/ s If the last form of the progn returns multiple values, then those multiple values are returned by Ths l:{*
e R i . Somanb’
%p~ X the progn form, If there are no forms for the progn, then the result is (). These rules generally Loguss S e
o /
r} o N /.r hold for implicit progn forms as well. P w}j o e‘t\i‘;j
)—‘;\d " \3\1}‘ e JJ.L\"”‘
ol 2V in LS bﬁw
"S Q‘d \4 progl first &rest others [Special form} .N(MS s
i’;-' prog1l is similar to progn, but it returns the results of its first form. All the argument forms are ¢ (:T\\: “v i
D executed sequentially; whatever the first form produces is saved while all the others are exccuted, L s 5 i
and is then returned. S doing
aNVala ,Iu
prog1 is most commonly used to evaluate an expression with side effects, and return a value which i ,Lg..

INPCED. IN FACT,
THE ConPitgl HAS 70
60 ThRougH VAN TO
MAKE THIS wolkK.
1 SEE How Ay TRYINé To PvT Tiig
INTo PROEN,Jov ARE TRYINE TO
SIPPLIFY 'rH,ms) Qv 1T VoeSNT
taia D)

must be computed before the side effects happen.

SPICE LISP REFERENCE MANUAL 41

For example:
(progl (car x) (rplaca x 'foo))
alters the car of x to be foo and returns the old car of x.

progl always returns a single value, even if the first form tries to return multiple values. A
consequence of this is that (prog1 x) and (progn x) may behave differently if x can produce

multiple values. Twis g cnconsitdot vt Ly Mﬁc(nlme somewhat
A/\jwﬂg) A\{cd(f 7\«15 e mulh,o/{ VQ\V‘Q I—QC&(M

prog2 first second &rest others [Special form)
prog?2 is similar to prog1, but it returns the value of its second form. All the argument forms are
executed sequentially; the value of the second form is saved while all the other forms are executed,
and is then returned.

prog? is provided mostly for historical compatibility.
(prog2 a b ¢ ... z)} <=> (progn a (progl bc ... 2))
Occasionally it is desirable to perform one side effect, then a value-producing operation, then
another side effect; in such a peculiar case prog? is faitly perspicuous.
For example: '

3 (prog2 (open-a-file) (compute-on-file) (close-the-file))
; value is that of compute-on-file

UN FOKTUNATE
EXANYLE, SinlE
1’“’5 S”ovbo Usk

o= pPRovECT, prog?2, like prog1, always returns a single value, cven if the second form trics to return multiple

values. A conscquence of this is that (prog2 x y) and (progn x y) may behave differently if
ycan produce multiple values.

0
" nﬁ"&

3 »] - r‘k
5.4. Environment Manipulation < ¢u o ‘:o ",,5

q. , ‘% w 'f(“:‘o ‘4\5 ‘s

let bindings &rest body J [Macro] | cj\" } \,f,, ;\9 o) d‘,{;k"“”
A let form can be used to exccute a series of forms with specified variables bound to spccnﬂed ‘{,e'f (}xb
values. » (:fm
For example:

(et ((varl valuel)
(var2 value2)

i ;(;nn valuem))
bodyl
body?

* e

bodyn)
first evaluates the expressions valuel, value2, and so on, in that order, saving the resulting values.
Then all of the variables varj are bound to the corresponding values in partallel; cach binding will
be a local bindibguh ess there is a :special (page 72) declaration to the contrary. ‘The
expressions bodyj arc then evaluated in order: the vatues of all but the last are discarded (that is, the

SPICE LISP REFERENCE MANUAL 42

body of a 1et form is an implicit progn). The 1et form returns what evaluating bodyn produces
(if the body is empty, which is fairly useless, 1et returns () as its value). The bindings of the
variables disappear when the 1et form is exited.

Declarations may appear at the beginning of the body of a 1et; they apply to the code in the body
and to the bindings made by 1et, but not to the code which produces values for the bindings.

The 1et form shown above is entirely cquivalent to: ¢ 03\;& f C » \6\
((1ambda (var! var2 ... varm) \3“\{:}(w K"‘
bodyl body? ... bodyn)
valuel value? ... valuem) . >¢,ar"‘ L /'/\

but let allows each variable to be textually closc to the expression which produccs the

i i i ility, “ov MAay ~or HAWE The
corresponding value, thereby improving program readability CAr1e UAR TWICE -

let* bindings &rest body K[Macro] /\,J
Tet* is similar to 1et (page 41), but the bindings of variables ar’l*pcﬂ‘dnncd sequentially rather
than in parallel. This allows the expression for the valuc of a variable to refer to variables
previously bound in the 1et* form.

More precisely, the form:

(1et* ({varl valuel)
(var2 value?)

i ;'a.nn valuemy))
body!
body2

DY

bodyn)
first evaluates the expression valuel, then binds the variable var/ to that value; thcrﬁts)Evaluates
value2 and binds var2; and so on. The expressions bodyj are then evaluated in order; the values of
all but the last are discarded (that is, the body of a Tet* form is an implicit progn). The let*
form returns the results of evaluating bodyn (if the body is empty, which is fairly uscless, 1et*
returns {) as its value). The bindings of the variables disappear when the Tet* form is exited.

S

The 1et* form shown above is entirely equivalent to: N Ol

((lambda (varl)
((1ambda (var2)
iiiambda (varm)
bodyl body? ... bpdyn)
valuem) ...)

value?))
valuel)
but 1et* allows cach variable to be textually close to the exprpssion which produces the
. " . o bl Ir's oK 70 MHave THE
corresponding value, thereby improving program readability. SAme VAR TwiCE.
2?7 Query: There is a problem with the interaction of this definition of 1et*] with declarations; if one does
things 1n the obvious manner, declarations cannot apply to any variables exceptfvarn. This scems unfortunate,

INDEe 0} THIS Ot v 1TION 16 Mo 6000, | wewT ThAs Jsid
THIS WHolle THiING wiiLg WROITING Tie L-nA CHME
Cor?tlel. MM SusgesTioN ¢S THAT Tou NeT Perré
IT TS wWAY.

SPICL LISP REFERENCE MANUAL o
(. ALK
Any suggestions? %\ C A\\ k, a ™M

progv symbols values &rest body . [Special form]

progv is a special form which allows binding one or more dynamic variables whose names may be
determined at run time. The body (an implicit progn) is cvaluated with the dynamic variables
whose names are in the list symbols bound to corresponding values from the list values. (If too few
values are supplied, the remaining symbols are bound to (). If too many values are supplied, the
excess values arc ignored.) The results of the progv form arc those of the last form in the body.
The bindings of the dynamic variables are undone on exit from the progv form. The lists of
symbols and values are computed quantities; this is what makes progv different from, for
example, 1et (page 41), where the variable names are stated explicitly in the program text.

progyv is particularly uscful for writing interpreters for languages embedded in LISP; it provides a
handle on the mechanism for binding dynamic variables.

5.5. Conditionals

o>
cond &Cest clauses [Special form}
The cond special form takes a number (possibly zero) of clauses, which are lists of forms. Each
clause consists of a fest followed by zero or more consequents.

For example:
(cond (fest-1 consequent-1-1 consequent-1-2 ...)
(test-2)
(test-3 consequent-3-1 ...)
LN 3)

The first clause whose lest evaluates to non-() is sclected; all other clauses are ignored, and the
consequents of the selected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right. For each clause, the test is
evaluated. If the result is (), cond advances to the next clause. Otherwise, the cdr of the clause is
treated as a list of forms, or consequents, which are evaluated in order from Ieft to right, as an
implicit progn. After evaluating the consequents, cond returns without inspecting any remaining
clauses. The cond special form returns the results of evaluating the last of the selected
conscquents; if there were no consequents in the selected clause, then the (non-null) value of the
test is returned. If cond runs out of clauses (every test produced (), and therefore no clause was
selected), the value of the cond form is ().

If it is desired to select the tast clause unconditionally if alt others fail, the standard convention is to
usc t for the test. As a matter of style, it is desirable to write a last clause "(t ())" if the value of
the cond form is to be used for something. Similarly, it is in questionable taste to let the last clause
of a cond be a “singleton clause™; an explicit t should be provided. (Note that (cond

(x)) may behave differently from (cond ... (t x)) if x might produce multiple values; the
former always returns a single value, while the latter returns whatever vatues x returns.)

SPICE LISP REFERENCE MANUAL 44

For example: *“L\f‘ :
(setq z (cond (a 'foo) (b 'bar))) ;poor "
(setq z (cond (a 'foo) (b 'bar) (t ()))) ;good Wﬂ““
(cond (a b) (c d) (e)) ; poor r¢“

(cond (a b) (¢ d) (t 8)) ;good
(cond (a b) (c)) ; poor
(cond (a b) (t c)) ;good
(if a b c) ;good

A Lisp cond form may be compared to a continued if-then-clseif as found in many algebraic
programming languages:

(cond (p ...) if p then ...
{g ...) roughly else if g then ...
{r...) corresponds clse if r then ...
000 to 000
(t ...)) else ...
7
if pred then &Qltff opal else [Special form)

The if special form corresponds to the if-then-else construct found in most algebraic programming
languages. First the form pred is evaluated. If the result is not (), then the form then is selected;
otherwise the form else is selected. Whichever form is selected is then evaluated, and if returns
whatever evaluation of the selected form returns.

(it pred then else) <=> (cond (pred then) (t else))
but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of predis () then nothing is done and the
value of the if form is (). If the value of the if form is important in this situation, then the and
(page 32) construct can do the same thing and may be stylistically prefcrable, depending on the
context. If the value is not important, but only the effcct, then the when (page 45) construct may ((
be preferable.

(1
when pred @ie)t forms : [Special form] } l

(when pred forml form2 ...) first cvaluates pred. If the resultis (), then the forms are not
evaluated, and () is returned. Otherwise the forms constitute an implicit progn, and so are
evaluated sequentially from left to right, and the value of the last one is returned.

(when p a b ¢) <=> (and p (progn a b ¢))

(when p a b ¢) <=> (cond (p a b c))

(when p a b ¢) <=> (if p (progn a b c) '())

(when p a b ¢} <=> (unless (not p) a b ¢)
As a matter of style, when is normally used to conditionally produce some side effects, and the
value of the when-form is not used. [f the valuc is relevant, then and (page 32) or if (page
44) may be stylistically more appropriate.

SPICE LISP REFERENCE MANUAL ol" (eu 3 e
et (N Dy pears) |
unless pred &rest forms [Special form} ,’,
]

(unless pred forml form2 ...) first evaluates pred. If the result is not (), then the fo
are not evaluated, and () is returned. Otherwise the forms constitute an implicit progn, and so
are evaluated sequentially from left to right, and the value of the last one is returned.

(unless p a b ¢) <=> (cond ((not p) a b ¢))

(unless p a b ¢) <=> (if p '() (progn a b ¢))

(unless p a b ¢) <=> (when (not p) a b c)
As a matter of style, unless is normally used to conditionally produce some side effects, and the
value of the unless-form is not used. If the value is relevant, then or (page 33) or if (page

44) may be stylistically more appropriate. o does nof ~etvrn The < a- e
U a Lue . DM‘L
Rnevragpé ‘ouj S,
selectq key &rest clauses [Special form}

selectq is a conditional which chooses one of its clauses to execute by comparing a value to

J[/Jre Al ST various constants, which are typically keyword symbols, inteders, or characters. Its form is as
Vi \

g0’ follows: ' ?
s Nno .
C LS Soppest (selectq key Al ()
bt SEC R ke (test-1 consequent-1-1 consequent-1-2 . ..)
flu hed, I AY.S (test-2 consequent-2-1 ...)
¢eiseT + SECE cTQ (test-3 consequent-3-1 ...)
a”ov'/ an V-A\“ﬂ‘(l "')
sredi cate Letween Structurally selectq is much like cond (page 43), and it behaves like cond in sclecting one
Ae /oé;z. + The clause and then cxecuting all consequents of that clause. It differs in the mechanism of clause
A avsts, It defrdt slection.
h £GL.

The first thing selectq docs is to cvaluate the form key to produce an object called the key
object. Then selectq considers cach of the clauses in turn. [f key satisfics the clause’s fest, the
conscquents of this clause are evaluated as an implicit progn, and selectq rcturns what was
returned by the last conscquent (or () if there are no consequents in that clause). If no clause is
satisficd, se Tectq signals an error to indicate an invalid key.

C wo Wr{C& 4\’\‘& Compatibility note: In Lisp Machine 11sp, a selectq which runs out of clauses returns (). This is easy and
\ _l, le-C \¢H' 7‘«\ stylistically desirable to specify explicitly, using a t or otherwise clause. It is a very useful debugging

2\t g . u‘ ond L° feature for a failed selectq to signal a correctable error which, when cotrected, retries the selectq with a

CT"‘(’ +“ ‘ . & con Q_ new key. This is fairly easy to compile and fairly difficult to program explicitly.

fe\ecty U7

—

Cas —~2 A test may be a symbol, a character, or an integer, in which casc the test succeeds if the key object is

+yr*’- o’ ,é / - eq1 (page 30} to the test; or it may be a list containing symbols, characters, integers, and/or (), in ”

L . - . . .

\ave 1: ?Lj Jo which case the test succeeds if the key object is eq1 to any clement of the list. The symbols t and
59"‘&':\{ whie otherwise are special test keywords which always succeed, and should be used only in the last

gy ‘ a mayi¢ clause. To actually test for the key object being t or otherwise, one may put the symbol in a list. ‘
: B’f h 4 ilar o Lt To test for the empty list one must always put () in a list. ?er\'\“(’\ o ‘(:‘;\

: mi

a(j\,w wite & A J—iﬂ ‘Q Compalibility note: Lisp Machine 1.15p uses eq for the comparison. In Lisp Machine Lisp selectq therefore ‘67;[7 cdﬁ

be « le H = \ pame. works for fisnums but not bignums. In the interest of hiding the fixnum-bignum distinction, selectq uses \ ¥ ;ﬂ‘j \f‘)f

£ 6q1 in COMMON Lise.

0 'TL\L ne S)\\’9:; \g"",‘h’f"
‘There is another problem. It is useful to let () as a test mean an empty list,that is, a Jist of no keys, Sucha ©* % o1 %
clause cannot ever be selected, This is mostly useful for macros which want 1o compute lists of keys, where ?u\k M °J5
soiie Dists pright turn out to be empty. This is incompatible with | 1 systems in which () is the smne as nil, p"" F\,,'."”

SPICE LISP REFERENCE MANUAL 46

y con
because they typically treat n i1 as a symbol and not as an empty list in this context. \ L ¢ lo v h":w are 8)

= { S
X : C_This seems 9 «© .
For example e . o,,eg)«g ok a\ T

(print (selectq errorcount - 4 has T
THE (0 '(no errors)) not ‘(‘?tc‘j{c\;‘(A D uJ\"“A“&: ,»Jvot
Het, W 5 P (1 '(1 error)) boe o do w v 7 >
1q98's; W€ b\hdé_, =3 (() '(uncountable errors)) o m’(C s e19 L
SALINGS, powt VE . (fatal '(fatal error - aborting)) in 4 & /fy\
(t (1ist errorcount 'errors)))) A lz 0¢* 'S
O SRS
S M
caseq key &rest clauses [Special form] S 0y
caseq is identical in syntax to selectq, and similar in meaning. It is slightly more akin to the T U¢Y [
case construct found in most algebraic fanguages, in that the objects tested for must all be of the - e
v
same type. That is, excepting the special keywords t and otherwise, all objects appearingina v N 1731
g o€ ! clause test in a caseq must be cither all integers, all characters, or all either symbols or (). The r)”’?
. . . e
3‘2’395\0,,(5 compiler, if not the interpreter, will enforce this restriction. Moreover, the key for caseq mustbe ¢V_ 3\.9;‘(“’“
A of the same type as the objects of the clause tests; selectq has no such requirement. It is not ¢ (_\ (ks
permitted to perform a caseq with a cons for the key; a selectq, on the other hand, will readily
accept a list and sclect the otherwise clause, if any.
Implementation note: This construct is included because in certain kinds of Lisp implementations caseq can
be compiled more efficiently than selectq. MACLISP is one such.
typecaseq &rest clauses [Special form}
typecaseq is a conditional which chooscs one of its clauses to execute examining the type of an
object. Its form is as follows: o et choice
(selectg key ¥
n - “(type-1 consequent-1-1 consequent-1-2 ., .)
", (type-2 consequent-2-1 ...)
PR (type-3 consequent-3-1 ...}
N
\/Q) Mh\ ﬁcy ..0)
q{p" xR Structurally typecaseq is much like cond (page 43) or selectq (page 45), and it behaves like
6 \)\\& them in selecting one clause and then exccuting all consequents of that clause. It differs in the
oF mechanism of clause selection.

The first thing typecaseq does is to evaluate the form key to produce an object called the key
object. Then typecaseq considers each of the clauses in turn. The first clause for which the key
is of that clause’s specificd #ype is sclected, the conscquents of this clause are cvaluated as an
implicit progn, and typecaseq returns what was returned by the last consequent (or {) if there
arc no consequents in that clause). If no clause is satisfied, typecaseq signals an error to indicate
an invalid key. As for selectq, the symbol t or otherwise may be written for fype to indicate
that the clause should always be selected.

It is permissible for more than one clause to specify a given type, particularly if one is a subtype of
another; the carlicst applicable clause is chosen.

FFor example:

SPICE LISP REFERENCE MANUAL 47

o N~
- e
Cah
(typecaseq an-object

(:string ...) - ; This clause handles strings.
((:vector t) ...) .- This clause handles general vectors.
(:vector ...) ; This handles all other vectors.

(t ...)) ; This handles all other objects.

A compiler may choose to issue a warning if a clause cannot be selected because it is completely
shadowed by earlier clauses.

5.6. Iteration

COMMON LISP provides a number of iteration constructs. The do (page 47) and do* (page 50) constructs
providés 7 general iteration facility. For simple itcrations over lists, vectors, or » consecutive integers,
dolist {(page 51) and related constructs are provided. The prog (page 55) construct is the most general,
permitting arbitrary go (page 57) statements within it. All of the iteration constructs permit statically defined
non-local exits in the form of the return (page 57) statement and its variants.

5.6.1. General iteration

do bindspecs endtest &rest progbody [Special form]
The do special form provides a generalized iteration facility, with an arbitrary number of “index
variables”. These variables are bound within the iteration and stepped in parallet in specified ways.
‘They may be used both to gencrate successive values of interest (such as successive integers) or to
accumulate results. When an end condition is met, the itcration terminates with a specified value.

In general, a do loop looks like this:

(do ((varl initl stepl)
(var2 init2 step?)

LIRS

(varn initn stepn))
(end-test . result)
. progbody)

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable
specifier is a list of the name of a variable var, an initial value init (which defaults to () if it is
omitted) and a stepping form step. If step is omitted, the var is not changed by the do construct
between repetitions (though code within the do is free to alter the value of the variable by using
setq (page 37)).

An index-variable specifier can also be just the name of a variable. In this case, the variable has an
initial value of (), and is not changed between repetitions.

Before the first iteration, all the init forms are evaluated, and then each var is bound to the value of
its respective init. ‘This is a binding, not an assignment; when the loop terminates the old values of
those variables will be restored. Note that alf of the inir forms are evaluated before any var is
bound; hence init forms may refer to old values of the variables.

SPICE LISP REFERENCE MANUAL 48

The second element of the do-form is a list of an end-testing predicate form end-rest, and zero or
more forms, called the result forms. This resembles a cond clause. At the beginning of each
iteration, after processing the variables, the end-test is evaluated. If the result is (), execution
proceeds with the body of the do. If the result is not (), the result forms are cvaluated in order as
an implicit progn (page 40), and then do returns. do returns the results of evaluating the last
result form. If there are no result forms, the value of do is the value of the end-test; this is
analogous to the treatment of clauses in a cond (page 43) special form.

N a ~y vsers = Compatibility note: Other Lisp systems which have this do [acility return () if there are no result forms. I
7 be /7 sl know of no code which depends on this, and many users have asked that the value of the end-test be returned.
ot this , Smece

A code il At the beginning of each iteration other than the first, the index variables are updated as follows. e
hap wov kg ~ih gt every step form is evaluated, from left to right. Then the resulting values are assigned (as with for Tlas waf

wo &rvor W T psetq (page 38)) to the respective index variables. Any variable which has no associated step form p robatly >y

m . Az
£ M zqem is not affected. Because all of the step forms are evaluated before any of the variables are altered, j& et bdnais
|t oFS -i ‘;\“ ~ge Whenastep form is evaluated it always has access to the old values of the index variables, cven if -« "—MLL;:;af*
Sort I < ses e grher step forms precede it. After this process, the end-test is evaluated as described above. S DA
bt i«

SEiURy,, aab If the end-test of a do form is (), the test will never succeed. Therefore this provides an idiom for

5,\.\;\\& Vi "do forever”. The body of the do is cxecuted repeatedly, stepping variables as usual, of course.
teethn. The infinite loop can be terminated by the use of return (page 57), go (page 57) to an outer level,
or throw (page 64),

Compatibility note: MacLisp and related dialects also permit the end-test clause 1o be () (as opposed to
{())). meaning to perform cxactly one iteration of the body. This is an obsolete crock, and shonld no longer
bein use. Qur T 1S ufwndovtmfll'f-‘(_&: (t‘wr‘?, 170 LINE TO Kee? Tl ST w0 CADLK,
Fell Cor1PAT 18iLsT™, THoVSH | CovLo B¢ CoM\/iits,

The remainder of the do form constitutes a prog body. The function return (page 57) and its
variants may be used within a do form to terminate it immediately, returning a specified result.
Tags may appcar within the body of a do loop for use by go (page 57) statements. When the end
of a do body is reached, the next iteration cycle (beginning with the evaluation of step forms)
OCCurs.

declare (page 72) forms may appear at the beginning of a do body. They apply to code in the
do body, to the bindings of the do variables, to the step forms (but nof the init forms), to the end-
test, and to the result forms. declare forms may also appear at the beginning of the result forms
list, and apply only to the result forms.

A do loop may be given a name for use in return-from (page 58) statements by placing the (\
name after the keyword "do" and before the variable specifications.

Compatibility note: “Old-style" MACLISP do loops, of the form (do var init step end-test . body), are not
supported. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of
parcntheses. In practice the compiler can catch nearly all instances of old-style do loops because they witl not

have a legal format anyway. 6«@1' ou Jvﬁ broke Mat
. Iwple C oNvRrSION by maledy
For example 'pre\'wq He voloe of e,L,Q_jJesf
(do ((i 0 (+ i 1)) :Sets every clementof an-array toempty 4 o< ae
(n {(array-length an-array))) ne resulte.
((= i n) Weve 4o say ril

(aset ‘empty an-array i))

QYT;\?.C?H*&- now,

RS L
SPICE LISP REFERENCE MANUAL s g 1\ féﬁas 4 49
¢

v 4 "\
The construction g ?\,\aéﬂ ,Q/;\b"
(do ((x e (cdpx)) %
(oldx(x)}xy))
({nu11 X))
body)

exploits parallel assignment to index variables. On the first iteration, the value of 01dx is whatever
value x had before the do was cntered. On succceding iterations, 01dx contains the value that x
had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entircly in the step forms of a do,
and the body is empty.

For example:

(do ({x foo (cdr x))
(y bar (cdr y))

{(z '() (cons (f (car x) (car y)) 2)))
((or (null x) (null y))

{nreverse z))) .
docs the same thing as (mapcar #'f foo bar). Note that the step computation for z exploits
the fact that variables arc stepped in parallel. Also, the body of the loop is empty. Finally, the use
of nreverse (page 110} to put an accumulated do loop result into the correct order is a standard
idiom.
Other examples:

(defun length (1ist)
(do ((x 1ist (cdr x))

(3 0 (+j1)))
((atom x) j)))

(defun reverse (1list)
(do ({x list (cdr x))

(y '() (cons (car x) y)))
((atom x) y)))

Note the use of at om rather than nu11 to test for the end of a list in the above two examples. This
results in more robust code; it will not attempt to cdr the end of a dotted list.

As an example of nested loops, suppose that env holds a list of conses. The car of each cons is a
list of symbols, and the cdr of each cons is a list of equal length containing corresponding values,
Such a data structure is similar to an association list, but is divided into "frammes"; the overall
structure resembles a rib-cage. A lookup function on such a data structure might be:

SPICE LISP REFERENCE MANUAL 50

(defun ribcage-lookup (sym ribcage)
{do backbone-loop
({(r ribcage (cdr r)))

({(null r) ())
(do rib-loop
((s (caar r) (cdr s))
(v (cdar r) (cdr v)))

((null s))
(when (eq (car s) sym)
(return-from backbone-Toop (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the do loops.)

/¢
do* bindspecs endlest &rest body @]P k
do* is exactly like do except that the bindings and steppings OF the variables are performed

sequentially rather than in parallel. At the beginning cach variable is bound to the value of its init
form before the init form for the next variable is evaluated. Similatly, between iterations each
variable is given the new value computed by its step form before the step form of the next variable
is evaluated.

5.6.2. Simple Iteration Constructs

The constructs dol1ist, dovector, dostring, and dotimes perform a body of statements repeatedly.
On each iteration a specified variable is bound to an clement of interest which the body may examine.
dolist examines successive elements of a list, dovector cxamines successive clements of a vector,
dostring examines successive characters of a string, and dotimes cxamines integers from 0 to n-/, for
some specified positive integer n.

The value of any of these constructs may be spcciﬁéd by an optional result form, which if omitted defaults
to the value ().

The return (page 57) or return-from (page 58) statement may be used to return immediately from a
dolist, dovector, dostring, or dotimes form, discarding any following iterations which/might Have
been performed. The loop may be given a name for this purpose by writing it directly before the binding
specification. The body of the loop is in fact a prog (page 55) body; it may contain tags to serve as the targets
of go (page 57) statements, and may have dectare (page 72) forms at the beginning.

ord c{-\oicc?

dolist bindspec &rest progbody [Special form]
dolist provides straightforward itcration over the elements of a list. The cxpression (dolist
(var list result) . progbody) evaluates the form /isz, which should produce a list. It then
performs progbody once for cach element in the list, in order, with the variable var bound to the
clement. ‘Then result is evaluated, and the result is the value of the dolist form. If result is
omitted, the resultis (). o
For example: .L

3

ceglb Gt e B, leai

5 - \
prce ar ,/ao,m’!,Lc K e fﬁ,‘mr[“,
(X am ﬁuL?wJ’) | o 17 7 ‘a‘:\%
7 /"Glf‘f‘ /7?")?17 f¢7 e’xplcc‘ _3
b:\,gmj,é VIS C‘v«t& W(Q /v\(/\\,orf.)

PR § COT AP ONne oas '79.0 r(’fLL-

SPICE LISP REFERENCE MANUAL 51

(dolist (x '(a b ¢ d)) (print x) (princ " ")) => ()
afterprinting"a b ¢ d " ‘
The loop may be named by placing the name before the binding specification. An explicit return } ,
statement may be used to terminate the loop and return a specified value.

Compatibility note: The resulr part of a do1ist is not currently supported in Lisp Machine Lisp. It seems to “
improve the utility of the construct markedly.

dovector bindspec &rest progbody [Special form) ’ ,
dovector provides straightforward iteration over the elements of a vector. The expression
(dovector (var vector result) . progbody) evaluatcs the form vector, which should produce
a vector. It then performs progbody once for each element in the vector, in order, with the variable
var bound to the clement. Then result is cvaluated, and the result is the value of the dovector
form. If result is omitted, the result is ().

The loop may be named by placing the name before the binding specification. An cxplicit return
statement may be used to terminate the loop and return a specificd value.

dostring bindspec &rest progbody {Special form] n
dostring provides straightforward iteration over the characters of a string. The expression
(dostring (var string result) progbody) cvaluates the form string, which should produce a
string. It then performs progbody once for cach character in the string, in order, with the variable
var bound to the character. Then result is evaluated, and the result is the valuc of the dostring
form, If result is omitted, the resultis ().

The loop may be named by placing the name before the binding specification. An explicit retura
statement may be used to termyinate the loop and return a specified value,

dotimes bindspec &rest progbody [Special form]
dotimes provides straightforward iteration over a scquence of integers. The expression
(dotimes (var count result) progbody) cvaluates the form count, which should produce a

{"
f\} positive integer. It then performs progbody once for cach integer from zero (inclusive) to count
}&\ & X" (exclusive), in order, with the variable var bound to the integer. Then result is evaluated, and the (l
\9\} :4 ',\“\‘.\‘M result is the value of the dot imes form. If resuitis omitted, the resultis ().
\y P N - . > .
S\'c‘) A)?\ \ Q"::v‘ig‘!' Altering the value of var in the body of the loop (by using setq (page 37), for example) will not | “==¥ (de.
\u“s'&; ,(\,':é S e"“ affect the number of times the loop is performed or the values of var on succeeding iterations. : L‘ ;
< " or cxample: ned. RIS
AR
o (defun string-posq {char string &optional comp\’ codas i
;&p ¢’ (start 0) %'w‘f,‘#\\%‘
w«“? -l (end (string-length string))) Y 51‘: "'i_r
xﬁ“ —> (dotimes (k (- end start) '()) veeless o L
/D\,,a‘\,,b’y > (when (char= char (char string (+ start k)))

(return k))))

The loop may be named by placing the name before the binding specification. An explicit return

SPICE LISP REFERENCE MANUAL 52

statement may be uscd to terminate the loop and return a specified value.

5.6.3. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces of one or more
sequences. The result of the iteration is a sequence containing the respective results of the function
applications. There are several options for the way in which the pieces of the list are chosen and for what is
done with the results returned by the applications of the function.

In COMMON LISP mapping is done by two kinds of constructs: mapping functions and for-loops.
Mapping functions take functional arguments and apply them as described above. for-loops are special
forms which are often syntactically more convenicnt; they have bodies, which can refer to a bound variable,
and the value of the body provides a result,

mapcar function &rest lists [Function]
maplist function &rest lists [Function]
mapc finction &rest lists [Function)
mapl function &rest lists [Function}
mapcan finction &rest lists [Function}
mapcon function &rest lists [Function)
\\\‘ e For each these mapping functions, the first argument is a function and the rest must be lists. The
d ;‘;.5’1{;‘\ function must takc as many arguments as there are lists.
.
e~ * *L mapcar operates on successive elements of the lists. First the function is applied to the car of each
bo-‘ a list, then to the cadr of each list, and so on. (Ideally all the lists are the same length; if not, the

iteration terminates when the shortest list runs out, and excess elements in other lists are ignored.)
The value returned by mapcar is a list of the results of the successive calls to the function.
For cxample:

(mapcar #'abs '(3 -4 2 -5 -6)) => (3 42 5 6)

(mapcar #'cons '(abc) '(123))=>((a.1)(b.2){c.3))
Often for1ists (page 54) is more convenient to use than mapcar.

maplist is like mapcar except that the function is applied to the list and successive cdr’s of that
list rather than to successive elements of the list.

For example:

(maplist #'(lambda (x) (cons 'foo x))
'(a b ¢ d))
=> ((foo a b c d) (foo b ¢ d) (foo ¢ d) (foo d))
(maplist #'(lambda (x) (not (member (car x) (cdr x))))
'abacdbc))
S ()t ()rtt)
: An entry is t iff the corresponding clement of the input
g list was the last instance of that clement in the input list.

map and mapc are like mapVist and mapcar respectively, except that they do not accumulate

SPICE LISP REFERENCE MANUAL 5593

“7)
/

There

the results of calling the function.
Compatibility note: In all Lisp systems since Lisp 1.5, map1 has been called map. In the chapler on sequences

mapper, in closer accordance to the computer science literature, especially the growing body of papers on
functional programming.

These functions are used when the function is being called merely for its side-effects, rather than its
returned values. The value returned by map1 or mapec is t. TWis Jeems ke e _

o1 Vi R Ar
Compatibility note: In MacLisp and Lisp Machine Lisp, these functions returd')tt‘;e ‘ﬁg g:gﬂment. “This {s“.h b ['-‘:7)

almost never useful, and makes them inconvenient to use at top level.

Often do1ist (page 50) is more convenient to use than mapc.

mapcan and mapcon are like mapcar and map1ist respectively, except that they combine the
results of the function using nconc (page 128) instead of 1ist. That is,
(mapcon f x! ... xn)
<{=> (apply #'nconc (maplist fx/ ... xn))
and similarly for the relationship between mapcan and mapcar., Conceptually, these functions
allow the mapped function to return a variable number of items to be put into the output list. This
is particularly useful for effectively returning zero or onc item:

(mapcan #'(lambda (x) (and (numberp x) (list x)))
'(fal1bc34dH5))
=> (1 3 4 5)
In this case the function serves as a filter; this is a standard LiSP idiom using mapcan. (The
function rem-if-not (page 113) might have been useful in this particular context, however.)
Remember that nconc is a destructive operation, and therefore so are mapcan and mapcon; the
lists returned by the finction are altered in order to concatcnate them,

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be used wherever they naturally apply because this increases the clarity
of the code.

The functional argument to a mapping function must be acceptable to app1y; it cannot be a macro
or the name of a special form, Of course, there is nothing wrong with using functions which have
&optional and &rest parameters,

are also functions (mapatoms (page MAPATOMS-FUN) and mapatoms-all (page

\

it is explained why this was a bad choice. Here the name map is used for the far more useful generic sequence Ok

MAPATOMS-ALL-FUN)) for mapping over all symbols in certain packages. 1 R€Aun THINK THE Kgvo K~
OLIENTEO " L0oP" IS PReFEANRLE
TO HAVINE Aw THESE
AANPIM Fenimeges STECI AL

" forlist bindspec &rest body [Special form] cAsgs. gur w you Aepuy
forvector bindspec &rest body [Special form] AN THer an, TS oK,
forstring bindspec &rest body [Special form)

forlist provides mapping over the clements of a single list, accumulating the results of an
expression. The expression (forlist (var list) . body) cvaluates the form fist, which should
producc a list. It then performs body (an implicit progn) once for cach clement in the list, in
order, with the variable var bound to the elemient. The values of the last expression in the body on

SPICE LISP REFERENCE MANUAL 54
each iteratior@arc made into a list, and this list of results is the value of the for1ist expression.
For example:

(forlist (x '(1 2 3)) (print x) (* x (+ x 3)})) => (4 10 18)
after printing the numbers 1, 2, and 3.
The forlist construct is closely related to the do11ist {page 50) construct. Unlike the dolist
construct, however, for1ist does not permit an explicit result form, and may not be exited using
the return construct (the body of a for1ist isa progn body, not a prog body).

forvector is similar, but accepts a vector and returns a vector. The result vector is always a
general vector (that is, of type (vector t).) Thet seems (ke an wnnecessary ~erfne e

forstring is similar, but accepts a string and returns a string. Ta e V,\) ‘ftij: .,J-V‘
) r « Shin
Declarations may appear at the beginning of the body; sce declare (page 72). C_;:‘ M,p‘i\}j’w L b e c{v,
§ e e
. . Clartainy & F€%70e)
forlists bindspecs &rest body [Special form] Tuing 4o ¥ ~t
forvectors bindspecs &rest body [Special form)
forstrings bindspecs &rest body [Special form]
forlists provides mapping over the elements of several lists, accumulating the results of an +'
, . . o ;,.
expression. The expression L 4 l5]L:. 'f(’(,\
(forlists ((varl listl) Ly avisn g o 2
(var2 list2) A v and ,]Q,\Trk '
ved) e\ Lof s and =
{varn listn)) e
. body)

evaluates the forms lisgj, which should each produce a list. It then performs body (an implicit
progn) once for each element in the lists, in order, with cach variable var bound to an clement of
the corresponding list. The valucs of the last cxpression in the body on each iteratiogs Are made
into a list, and this list of results is the value of the f forl ist cxplessmn If the input lists are of
different lengths, the itcration terminates as soon as the shortest one runs out.

For example:

(forlists ((x '(a b c)) {(y '(1 2 3))) (Vist 'foo x y))
=> {(foo a 1) (foo b 2) (foo ¢ 3))

forvectors is similar, but accepts vectors and returns a vector. The result vector is always a
general vector (that is, of type (vector t).)

forstrings is similar, but accepts strings and returns a string.

Declarations may appear at the beginning of the body; see declare {page 72).

5.6.4. The Program Feature

Lisp implementations since L1SP 1.5 have had what was originally called "the program feature™, as if it were
impossible to write programs without it! The prog construct allows one to write in an ALGOL-like or
FORTRAN-liKe statemient-oriented style, using go statements which can refer to tags in the body of the prog.

SPICE LISP REFERENCE MANUAL S5

Contemporary LiSP programming style tends to use prog rather infrequently. The various iteration
constructs, such as do (page 47), have bodies with the characteristics of a prog.

prog

[Special form)
prog is a special form which provides bound temporary variables, sequential evaluation of forms,
and a "goto/return” facility, It is this latter characteristic which distinguishes prog from other
Lisp constructs; 1ambda (page LAMBDA-FUN) and et (page 41) also provide local variable
bindings, and p rogn (page 40) also evaluates forms sequentially.

A typical prog looks like:

(prog {(varl var? ((&special var3) init3) vard (varS iit5))
statementl
tagl
statement2
statement3
statement4
lag?
statement5

)
The list after the keyword prog is a set of specifications for binding varl, var2, etc., which are
temporary variables, bound locally to the prog. This list is processed exactly as the listin a Tet
(page 41) statement: first all the init forms are cvaluated from left to right (where () is used for
any omitted init form), and then the variables are all bound in parallel to the respective results.

(prog* (page 57) is the same as prog except that this initialization is sequential rather than
parallel.)

The part of a prog after the variable list is called the body. An item in the body may be a symbol
or a number, in which case it is called a fag, or any other COMMON LISP form, in which case it is
called a statement.

After prog binds the temporary variables, it processes each form in its body sequentially. fags are
ignored; statements are evaluated, and their returned values discarded. If the end of the body is
reached, the prog returns (). However, two special forms may be used in prog bodics to alter
the flow of control, If (return x) is evaluated, prog stops processing its body, evaluates x, and
returns the result. If (go tag) is evaluated, prog jumps to the part of the body Jabelled with the
fag (that is, with an atom eq1 (page 30) to fag). tagis not cvaluated.

Compatibility note: The “computed go" feature of MacLIsP is not supported. The syntax of a computed go is
idiosyncratic, and the feature is not supported by Lisp Machine Lisp, NIL, or INTERLISP.

go and return forms must be Jexically within the scope of the prog; it is not possible for one
function to return to a prog which is in progress in its caller. Thus, a program which contains a
go which is not contained within the body of a prog (or other constructs such as do, which have
prog bodics) are in error. A dynamically scoped non-local exit mechanisin is provided by catch
(page 62) and throw (page 64) and other related operations.

Sometimes code which is lexically within more than one prog form needs to return from one of

SPICE LISP REFERENCE MANUAL 56

prog*

the outer progs. However, the return function normally returns from the innermost prog. A
prog may be given a name by which it may be referenced by a function called return-from
(page 58), which is similar to return but allows a particular prog to be specified. A name is a
symbol which is written after the keyword prog and before the list of variable bindings.

For example:
(prog outer (foo bar greps)

(prog inner (foo baz snert)

(return-from outer (cons baz greps))

oo2)
oel)

See the description of return-from (page 58) for more information on the use of named prog
forms.

Here is a fine example of what can be done with prog:

(defun king-of-confusion (w)
(prog (x y 2z) ; Initialize x, y, z to ()
{setq y (car w) z {(cdr w))
Toop
(cond ((null y) (return x))

{((null z) (go err)))
rejoin

(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr 2))

(go loop)
aerr

(error "Mismatch - gleep!")
(setq z y)
(go rejoin))
which is accomplished somewhat more perspicuously by:
(defun prince-of-clarity (w)

(do ((y (car w) (cdr y))
(z (cdr w) (cdr 2z))
(x '() (cons (cons (car y) (car z)) x)))

((pull y) x)
(when (null z)

(error "Mismatch - gleep!")
(setq z y))))

Declarations may appear at the beginning of a prog body; see dec1are (page 72).

. [Special form]
The prog* special form is almost the same as prog. The only difference is that the binding and
initialization of the temporary variables is done sequentially, so that the init form for each one can
use the values of previous ones. Therefore prog* is to prog as 1et* (page 42) is to et (page
41).

For example:

SPICE LISP REFERENCE MANUAL 57

X
7 (prog* ({y z) (x (car y)))
s —s | (return x))

Q‘ returns the car of the value of z.

go lag [Special form]
The (go tag) special form is used to do a "go to" withig 4a prog body. The tag must be a
symbol or a number; ‘ag is not evaluated. go transfers controtto the point in the body labelied by
ata 'léquaT to the one given. If there is no such tag in the body, the bodies of lexicaily containing
prog bodies (if any) are examined as well. It is an error if there is no matching tag.

")
The go form does not ever return a value. A go form may not appear as an argument to an<— ¢

ordinary function, but only at the top level of a prog body or within certain special forms such as
conditionals which are within a prog body.

For example:

(prog ((n (string-length a-string)) (j 0))
loop (when (= j n) (return a-string))
(when (char= #\Space (char j a-string))
(return (substring a-string 0 j)))
(increment j)
(go loop))
returns the first “word" in a-string, where words are scparated by spaces. This could of course
have been expressed more succinctly as:
(dotimes (j (string-length a-string) a-string)
(when (char= #\Space (char j a-string))
(return (substring a-string 0 j))))

As a mater of style, it is recommended that the user think twice before using a go. Most purposes
of go can be accomplished with one of the iteration primitives or nested conditional forms. If the
usc of go seems to be unavoidable, perhaps the control structure implemented by go should be
packaged up as a macro definition. (If the use of go is avoidable, and return also is not needed,
then prog probably is not nceded either; Tet can be used to bind variables and then execute some
statcments.)

return result [Special form}
return is uscd to return from a prog, do, or similar iteration construct. Whatever the evaluation
of result produces is returned by the construct being exited by return.

(defun member (item 1ist)
(do ((x 1ist (cdr x)))
((nul1 x) '())
(when (equal item (car x))
(return x))))
return is, like go, a special form which does not return a value. Instead, it causcs a containing
iteration construct to return a value. If the evaluation of result produces multiple values, those
multiple values are returned by the construct cxited.

SPICE LISP REFERENCE MANUAL 58

If the symbol t is used as the name of a prog, then it will be made "invisible” to return forms;
any return inside that prog will return to the next outermost level whose name is not t.
(return-from t ...) will return from a prog named t. This feature is not intended to be
used by user-written code; it is for macros to expand into.

return-from progname result [Special form]
This is just like return, except that before the result form is written a symbol (not evaluated),
which is the name of the construct from which to return. See the descriptions of the special forms
do (page 47) and prog (page 55) for examples.

5.7. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenient
for a function to compute several quantities and return them. COMMON LISP provides a mechanism for
handling multiple values directly. This mechanism is cleaner and more efficient than the usual tricks
involving returning a list of results or stashing results in global variables.

5.7.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms are required both to produce multiple values and to
receive them. If the caller of a function does not request multiple values, but the called function produces
multiple vatucs, then the first value is given to the caller and all others are discarded (and if the called
function produces zero values then the caller gets () as a value).

The primary primitive for producing multiple values is values (page 59), which takes any number of
arguments and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three values. Other special forms also produce muitiple
values, but they can be described in terms of values. Some built-in COMMON LISP functions (such as
f1oor (page 89)) return multiple values; those which do arc so documented.

The special forms for receiving multiple values arc multiple-value-setq (page 59), muttiple-
value-let (page 59), multiple-value-1ist (page 60), and multiple-value-vector (page 60).
These specify a form to evaluate and an indication of where to put the values returned by that form.

values &rest args [Function)
Returns all of its arguments, in order, as values.

For example:

(defun polar (x y)
(values (sqrt (+ (* x x) (* y y))) (atan y x)))
(muttipte-value-let (r theta) (polar 3.0 4.0)
(1ist r theta))
=> (5.0 0.9272952)

SPICE LISP REFERENCE MANUAL 59
The expression (values) returns zero values.

values-list list [Function]
values-vector veclor [Function] |
Returns as multiple values all the elements of /ist or vector, as the casc may be.

For example:

(values-list (1ist a b ¢)) <

) <=> (values a b c)
(values-vector {vector a b c) =

(
<=> (values a b ¢)

>
)
multiple-value-let lambda-list form &rest body [Special form]

T eV 4 ﬂt[(, multiple-value-let evaluates forn, possibly obtaining multiple values, and binds the
variables specified in lambda-list to these values while the forms in body (an implicit progn) are

|

wilhova Les evaluated. Whatever is returned by the last form of bodyis returned by multiple-value-let.
LoS;V.“j‘J”)) (multiple-value-let bindings form . body)
does exactly the same thing as
(apply #'(lambda bindings . body) (multiple-value-list form))
butusingmultiple-val ue-Tet is much more efficient.
multiple-value-setq lambda-list form [Special form] ”

/p/\; 5 name 1S This special form causes the variables in lambda-list to get as values the multiple values returned
£ an 1 mpOVEN ant ‘ from the evaluation of form; the assignment to the variables is as with setq (page 37).
nv =

The lambda-list is allowed to have the full syntax of the binding specifications for a 1ambda
expression, including &optional and &rest keywords. However, this construct perforns
assigiment rather than binding.

The result of amultiple-value-setq form is a single value, that assigned to the first variable,
or () if no variables are mentioned in the lambda-list (an odd thing to do, but legal).
777 Query: Fooey. Why pot just say it returns {)?

multiple-value-list form [Special form]
multiple-value-vector form [Special form) {(

muitiple-value-tist evaluates form, and rcturns a list of the multiple values it returned.

multiple-value-vector is similar, but returns a vector containing the multiple values.

For example:

(muitiple-value-list (floor -3 4)) => (-1 1)
This is similar to the example of multiple-value (page MULTIPLE-VALUE-FUN) above.
j:’kk'(,w% _ng:\tar 4‘7 ﬂﬂj,ﬁ’\a”/
@y M}\,\y_.,-e /\-CarL?,

SPICE LISP REFERENCE MANUAL 60

5.7.2. Rules for Tail-Recursive Situations

It is often the case that the value of a special form is defined to be the value of one of its sub-forms. For
example, the value of a cond is the value of the last form in the sclected clause. In most such cases, if the
sub-form produces multiple values, the original form will also produce all of those values. This passing-back
of multiple values of course has no cffect unless eventually one of the special forms for receiving multiple
values is reached.

?7? Query: The Lisp Machine Lisp manual states: “The exact rule governing passing-back of multipie values is as follows:
If X is a form, and Y is a sub-form of X, then if the value of Y is uncondilionally returned as the value of X, with no
intervening computation, then all the multiple values returncd by Y are returned by X. In all other cases, multiple values or
only single values may be returned at the discretion of the implementation; users should not depend on this. The reason we
don’t guarantee non-transmission of multiple values is because such a guarantee would not be very useful and the efficiency

>
o‘¥/
\'\r’

v~
cost of enforcing it would be high. Even setq’ing a variable to the result of a form, then returning the value of that variable (\af;(‘-w
might be made to pass multiple values by an optimizing compiler which realized that the setqing of the variable was e X
unnecessary.” P /’\"M Xo

. . e~
I'm not sure the implementation should be atlowed this caprice. In particular, a compiler smart enough to optimize out a’V)° \f’i(ov/} o
setq can just as well Jeave behind code to enforce the single-value-returning semantics. [believe it is more important to < #° o7 n
have a dependable definition here. ' “Je’ l\/c.f
Opinions? For now the following documentation makes some clear requirements. These are not incompatible with Lisp ()c-r&p

Machine Lisp, but merely reguirements on implementations to make certain choices which Lisp Machine Lisp leaves open. I tl (ﬂ,e\o;}“u‘q’
hY

To be explicit, multiple values can result from a special form under precisely these circumstances:

e eval (page EVAL-FUN) rcturns multiple values if the form given it to evaluate produces
muitiple values.

e apply (page 39), funcall (page 39), funcall* (page 40), subrcall (page SUBRCALL-
FUN), and subrcal1* (page SUBRCALL*-FUN) pass back multiple values from the function
applied or called.

o When a Tambda (page LAMBDA-FUN)-expression is invoked, the function passes back multiple
values from the last form of the 1ambda body (which is an implicit progn).

e Indced, progn (page 40) itself passes back multiple values from its last form, as does any

construct defincd to be an "implicit progn”; these include progv (page 43), 1et (page 41), d“'”g

let* (page 42), when (page 44), unless (page 45), selectq (page 45), caseq (page 46), A wu\

catch (page 62), *catch (page 62), and catchal?l (page 63). (e § c&.
AN

277 Query: Should prog1 (page 40) and prog2 (page 41) retusn nwltiple values or not? It can be tricky to § VJM e
compile. Lisp Machine Lisp causes them to return single vatues only. In SPICE Lisp it happens 1o be easier to AN
return multiple values. On the S-1 the issue is unclear.

e unwind-protect (page 63) returns multiple values if the form it protects does.

o catch (page 62) and *catch returns multiple values if the result form in a throw (page 64) or \]
*throw (page 64) exiting from such a catch produces multiple values.
Woq Arsem A Aushes 2ot
o cond (page 43) passes back multiple values from the last form of the implicit progn of the
selected clause. IF, however, the clause selected is a singleton clause, then only a single value (the
non-({) predicate value) is returned. This is true cven if the singleton clause is the last clause of
the cond. Ttis not permitted to trcat a final clause "(x)™ as being the same as "(t x)" for this

SPICE LISP REFERENCE MANUAL 61

reason; the latter passes back multiple values from the form x.

Compatibility note: Lisp Machine Lisp permits the implementation to return either one value or multiple
values for a singleton cond clause.

e if (page 44) passes back multipie values from whichever form is sclected (the then form or the
else form),

o and (page 32) and or (page 33) pass back multiple values from the last form, but not from forms
other than the last.

o do (page 47), prog (page 55), prog* (page 56), and other constructs from which return (page
57) can return, cach pass back the multiple values of the form appearing in the return (page
57) or return-from (page 58) that returns from it.

Compatibility note: Lisp Machine Lisp permits the implementation to rcturn one value or multiple values in !' sc\‘z’
this case. To force several values to be returned from a prog (page 55), one must use return-11ist, ‘ o\o W S\“
multiple-vatue-return, or return or return-from with several arguments. With the rule laid ,C "
down here, one can get these cffects as follows: v n ',‘u‘\l p
!
. ¢ V% _.8v
Lisp Machine Lisp CoMMON_Lise s > pﬁ‘f;n,r’
{return-list x) {return (values-1ist x)) co"‘ e oF
{muttiple-value-return x) (return x) | ""“ s
(return x y z) {return (values x y z)) \ lf“’\,(P"‘bo.
\ 3
Aclually, Lisp Machine Lisp may soon go this way also anyway? ' r“"ﬂ

o do (page 47), as mentioned above, behaves like prog with respect to return. In addition, do
passes back multiple values from the last form of the exit clause, exactly as if the exit clause were a
cond clause.

Among special forms which never pass back multiple values are setq (page 37), psetq (page 38), and

setf (page SETF-FUN). A good way to force only one value to be returned from a form x is to write
(values x). '

The most important rule about multiple values, however, is that

No matter how many values a form produces,
if the form is an argument formn in a function call,
then exactly ONE value (the first one) is used.

For example, if you write (cons (foo x)), then cons will receive exactly one argument, even if foo
returns two values. Each argument form produces exactly one argument. If such a form returns zero values,
() is used for the argument. Similarly, conditional constructs which test the value of a forin will use exactly
onc value (the first) from that form and discard the rest, or use () if zero values are returned.

5.8. Non-local Exits

CoMMON LISP provides a facility for exiting from a complex process in a non-local manner. There are two
classes of special forms for this purpose, calied careh forms and throw forms, or simply catches and throws. A

SPICE LISP REFERENCE MANUAL 62

catch form cvaluates some subforms in such a way that, if a throw form is exccuted during such evaluation,
the evaluation is aborted at that point and the catch form immediately returns a value specified by the throw.
Unlike prog (page 55) and return (page 57), which allow for so exiting a prog form from any point
lexically within the body of the prog, the catch/throw mechanism works even if the throw form is not
textually within the body of the catch form. The throw need only occur within the extent (time span) of the
evaluation of the body of the catch. This is analogous to the distinction between dynamically bound (special)
variables and lexically bound (local) variables.
Aokl nvsrl

A catch may’have a fag (a symbol) associated with it to name it, in which case it will catch only throws with

a matching tag, and be invisible to all other throws,
e , . Nol 1} OISASAEE WITH
The catch/throw facility is the basis on which the error handling machinery is built (see 7). “vys7s Puicosornr. 3ris
To» ONFAlse Fot g 1o

GRPouND Ulen HENC Spkid.
5.8.1. Catch Forms g 5084
catch tag &rest forms [Special form] ’
*catch fag &rest forms [Special form] ,

W 4 The catch special form is the simplest catcher. The fag must be a symbol or (). The forms are

Jsk r\,o\\; evaluated as an implicit progn, and the results of the last form are returned, except that if during

W) ¢ , S‘J&w‘ the cvaluation of the forms a throw should be exccuted, such that the fag of the throw matches (is

\'3 e ﬂ; eq to) the fag of the catch, then the cvaluation of the forms is aborted and the results specificd by
kf‘} o ‘:3 " the throw are immediately returned from the catch expression.

'L‘ IS
\0 ¥ oatP \ . . .
:o e.-\g,s“" > { The tag is used to match up throws with catches (using eq). (catch foo form) will catch a
¥° (‘\‘f '_}' (throw foo form) butnota (throw bar jform). Itis an errorif throw is done when there
W ‘.;\l is no suitable catch (or one of its variants) ready to catch it.
N v &
) The values t and () for /ag are special dnd mean that all throws are to be caught; the value t is
g/ used by unwind-protect, for example. The only difference between t and () is in the error
é) | checking; t implics that after a "cleanup handler” is executed control will be thrown again to the
. -L’\‘{ " | same tag, and therefore it is an error if a specific catch for this tag does not exist higher up in the
\Fr«“’ }‘é stack. Some implementations may wish to check for this error before beginning the throwing \& o
< e?" \f;v ., Lprocess. With a tag of () the error check need not be performed. S\\
: 5
Ldarv.s . . : S
K3 }‘- . *catch differs from catch in that it evaluates tag as a form, whose value should be a symbol; for . X\p"’}f ¢
= > . . e . o 4 . o ‘
=7 L:f“ & catch the tag is written explicitly and is not evaluated. This is the only difference between catch | {,\‘ x}”‘\
¢
V\.J;.\ and *catch. o ¥
Compatibility note: This syntax for catch is not compatible with MacLisp. Lisp Machine Lisp defines catch ' n
a\ to be compatible with that of MacLiase, but discourages its use. The definition here is compatible with ().
e
\{:\g\f(p)(Lisp Machine Lisp defincs *catch to return four values. ‘This scems complicated and not terribly useful. The
1 ég}”’ few specialized uses of this feature can be achieved with catchall. Here we simply define catch to be
& X x“\((L\'TV‘ consisient with the standard convention on the interaction of multiple values with impheit progn forms, and
¥y “.3' \ with a throw "ail-recursing” out of the matching catch, by analogy with return and prog.
at” S °
d"‘\’ﬂ,& e
NS anef
\ofd

SPICE LISP REFERENCE MANUAL 63

catchall catch-function &rest forms _ [Special form]

unwindall catch-function &rest forms [Special form]
catchall behaves roughly like *catch, except that instead of a lag, a catch-function is provided.
If no throw occurs during the evaluation of the forms, then this behaves just as for *catch: the
catchall form returns what is returned from evaluation of the last of the forms. catchall will
catch any throw not caught by some inner catcher, however; if such a throw occurs, then the
function is called, and whatever it returns is returned by catchall. The catch-function will get
one or more arguments; the first argument is always the throw tag, and the other arguments are the

f thrown results (there may be more than one if the resulf form for the throw produces multiple
X values). ’
ol
- (0‘: b N The catchall is not in force during execution of the catch-function. If a throw occurs within the
- '_ /%.,& 2 catch-function, it will throw to some catch exterior to the catchall. This is useful because the
.ggé ~’:<v"(r,? \\&“3 catch-function can examine the tag, and if it is not of interest can relay the throw by using
mo‘M e o —*throw* (page *THROW*EUN):
3\ 9 L»X” (catchall #'(lambda (tag &rest results)
_S}‘(" ¥ (caseq tag ; Check tag.
NN (win (values-Tist resutts)) ;Ifwin, return results.
‘_D‘) / {(1ose (cleanup) : If lose, clean up
(ferror "Lose lose!")) : andsignal an crror.
(otherwise \\/ ; Otherwisc relay throw.
(*throw tag (values-list results)))))

(determine-win-or-lose))

unwindall isjustlike catchall cxcept that the cafch-function is always called, even if no throw
occurs; in that case the first argument (the "tag") to the catch-function is (), to indicate that no
throw occurred, and the other arguments are the results from the last of the forms. Often unwind-
protect is more suitable for a given task than unwindal1, however,

unwind-protect protected-form &rest cleanup-forms [Special form)
Sometimes it is necessary to evaluate a form and make sure that certain side-cffects take place after
the form is evaluated; a typical example is:

(progn (start-motor)
(drill-hole)
(stop-motor))
The non-local exit facility of Lisp creates a situation in which the above code won’t work, however:
ifdril1-hole should do a throw to a catch which is outside of the progn form (perhaps because
the drill bit broke), then (stop-motor) will never be evaluated (and the motor will presumably
be left running). This is particularly likely if dri11-hole causes a LISP error and the user tells
the error-handler to give up and abort the computation. (A possibly more practical example might
be:
{prog2 (open-a-file)
(process-file)
(close-the-file))

where it is desired always to close the file when the computation is terminated for whatever reason.)

SPICE LISP REFERENCE MANUAL 64

In order to allow the above program to work, it can be rewritten using unwind-protect as
follows:)
(unwind-protect . \er
(progn (turn-on-water-start-motor) W
{(drill-hole)})

(stop-motor))
Ifdril1-hole docs a throw which attempts to quit out of the unwind-protect, then (stop-
motor) will be executed.

As a general rule, unwind-protect guarantees to exccute all the cleanup-forms before exiting,
whether it terminates normally or is aborted by a throw of some kind. unwind-protect returns
whatever results from evaluation of the protected-form, and discards all the results from the

\ ¥~
Ob§ b"?\he‘:
& e
ok

cleanup-forms.
277 Query: The Lisp Machine Lisp manual regards it as a bug that Lisp Machine Lisp doesn’t handle multiple
values from unwind-protect. [agree. Soif wecando it forunwind-protect, why not for prog1?

5.8.2. Throw Forms

” throw fag result [Special form] g\"
*throw tag result [Special form] r
The throw special form is the simplest thrower. The fag must be a symbol, and may not be t.
The most recent outstanding catch whose tag matches sag or is () or t is exited. In the process
dynamic variable bindings are undone back to the point of the catch, and any intervening
unwind-protect cleanup code is exccuted. The result form is executed before the unwinding
process commences, and whatever results it produces are returned from the catch (or given to the
catch-function, if appropriate).

Compatibility note: Here there is a requirement that throw deliver multiple values from the result form; this is 3
not compatible with present MacLisp and Lisp Machine Lisp usage. The model intended here is that throw . WS
"ail-recurses” out of the catch, by analogy with return and prog. \ }('P'\

~» rA \ 2 .
*throw differs from throw in that it evaluates tag as a form, whose value should be a symbol; for bJ‘e\ '\N\S A
throw the tag is written explicitly and is not evaluated. This is the only differcnce between throw oY w*
and *throw. fondh »::vaiucef a porsible Lrdde, e@*c?em] N

1 makes o nel 4 (A = - :
T e ik kot os before agreesdy b it dhaa o N

*unwind-stack tag result active-frame-count action [Special form] Some sense,
*unwind-stack is a generalization of *throw provided for program-manipulating programs
such as the error handler. Some of its actions are implementation-dependent.

All of the argument forms are cvaluated; note, however, that multiple values are used from result.
tag and result are the same as the corresponding arguments to *throw,

If active-frame-count is not (}, it must be a non-negative integer, the number of frames to be
unwound; the definition of a "frame” is implementation-dependent. If this counts down to zero
before a suitable catch is found, the *unwind-stack operation terminates and that frame returns
the values trom resilr 1o whoever called it. (This is similar to Maclisp’s freturn function.)

SPICE LISP REFERENCE MANUAL 65

If action is non-(), whenever the *unwind-stack would be ready to terminate (either due to
active-frame-count or due to fag being matched by a catch), instead action is called as a function,
giving it the values from result as its arguments. It is called with the stack unwound to the specified
point; if action returns, its results become the results of the selected frame.

Note that if both active-frame-count and action are (), *unwind~-stack is identical to *throw.
777 Query: Perhaps this belongs not here but in a chapter on semi-compatible low-level stuff?

Tt s KLO‘“ /wj(Lekw\j o L& Lare. [amguaje.
%SF-@C-IQHO (A./[/\M gon fee &—\.L\‘t+ Q(J*Q
9ol need Yo malke 1€ vcetl.

SPICE LISP REFERENCE MANUAL

66

SPICE LISP REFERENCE MANUAL

Chapter 6
FUNC

67

SPICE LISP REFERENCE MANUAL

68

SPICE LISP REFERENCE MANUAL

Chapter 7
MACRO

69

SPICE LISP REFERENCE MANUAL

70

SPICE LISP REFERENCE MANUAL

Chapter 8

Declarations

n

Declarations allow you to specify extra information about your program to the LISP system. All

declarations are completcly optional and do not affect the meaning of a correct program, with one exception:

special declarations do affect the interpretation of variable bindings and references, and so must be
specified where appropriate. All other declarations are of an advisory nature, and may be used by the Lisp

system to aid you by performing extra error checking or producing more cfficient compiled code.
Declarations are also a good way to add documentation to a program.,

8.1. Declaration Syntax

to a limited piece of program.

Rationale: The reason for distinguishing declare and gtobal-declare is robustness. In MacLisp and Lisp Machine
Lisp, one can accidentally put a declare form in the wrong place, and you never find out becausc declare is a special
form which doesn’t do much of anything, and so the dcclaration is evaluated and discarded. Here it is proposed that
declare be a special form that signals an error “ntisplaced declaration”, but which is snarfed by the surrounding special
form when appropriate. All such special forms are implict progn or implicit prog situations, and so it ise’t difficult to
have a centralized handler in the interpreter.

On the other hand, given this specification, Tocal-declare is not needed; one need only use declare within a progn.
This strengthens the analogy between progn and the begin-end constructs ol algebraic languages.

global-declare &rest declaration-list [Special form]
The declarations in declaration-list are put into cffect globally, and henceforth are in force. This
form should not occur anywhere but at "top level”. The compiler will issue a warning if a global
declaration is found clsewhere. It is a good idea in a file of code to state all global declarations

before other parts of the program.

Declarations may be specified by either of two special forms: declare and giobai-declare. The
global-declare form makes globally applicable declarations, whereas declare has its effects confined

For example:
{(global-declare
(:special *offset*) : Declare a special variable,
(:inline calibrate)) ; Always open-code the calibrate function,

Note that it is usuatly unnecessary to make explicit :special declarations if one uscs defvar

(page 21) or defconst (page 22) to deciare global special variables,

SPICE LISP REFERENCE MANUAL 72

¥: A\
| N

declare &rest declaration-list [Function)

This form may occur only at the beginning of the bodies of(implicit mexpiicit) progn or prog
forms; that is, a declare form may occur only as a statement of such a form, and all statements
preceding it (if any) must also be dec1are forms. If a declaration is found anywhere else an error
will be signalled.

The declarations in declaration-list apply to all of the code in the body of the progn or prog form.
Moreover, if the construct binds variables, then any declarations in declaration-list which affect
variable bindings will apply to those bindings; however, they will not apply to any executable code
in the binding part of the construct.

For example:
(defun (k x)
(declare (:type :integer k))
(let ((j (foo k x))
(x (* k K)))
(declare (:inline foo)
(:special x))
(foo x j)))
In this rather nonsensical example, k is declared to be of type :integer. The :inline
declaration applies to the inner call to foo, but not to the one to whose value j is bound, because
that is code in the binding part of the Tet. The :special declaration of x causes the 1et form

to make a special binding for x, and causes the reference to x in the body of the Tet to be a special

reference. However, the reference to x in the first call to foo is a local reference, not a special one. ',)(
(k v
3
H : ot ,,f" az“b
8.2. Declaration Keywords A0y
y éwi‘}@’ LN
277 Query: It seems to be that declaration types should be keywords. The old MACLISP crock of just evaluating declaration \'v}\ y. (&\)‘*
forms is not necessary now that eval-when exists, and it may not be desirable because it makes it harder to deal with \‘9 \e p e
arbitrary implementation-dependent declarations. On the other hand, all those colons are pretty ugly. What do people XJ J‘j
think?)

Here is a list of valid declaration forms for use in global-declare and declare. A construct is said to
be "affected” by a declaration if it occurs within the scope of a declaration.

:special (:special varl var2 ...) decclarcs that all of the variables named are to be

:type

ftype

considered special. All variable bindings affected are made to be dynamic bindings, and
affected variable references refer to the current dynamic binding rather than the current

local binding. Yo.,\ need an uns/)ec(\a(Jleo(wq{?.,,

(:type type varl var2 ...) declares that the specified variables will take on values

only of the spccified type. The :% ;vafl/mé‘[é be elifalle whren
==

e {7% Name does mat CM‘F(:‘C&,
(:ftype type functionl function2 ..".’) declares that the specified functions will be of

the functional type type. '
010 Jou EVER EXPLAN ''FuCTiorAL T

For example: N LV AL e

SPICE LISP RE'ERENCE MANUAL 73

(declare (:ftype (:function (:integer :1ist) t) nth)
(:ftype (:function (:number) :float) sin cos))

tinline (:inline functionl function2 ...) declares that it is desirable for thc compiler to
open-code calls to the specified functions; that is, the code for a specified function should
be integrated into the calling routine, appearing "in line", rather than a procedure call
appearing there. This may achieve extra speed at the expense of debuggability (calls to
functions compiled in-line cannot be traced, for example). Remember that a compiler is
free to ignore this declaration.

:notinline (notinline functionl function? ...) declares that it is undesirable to compile the
specified functions in-line. Remember that a compiler is free to ignore this declaration.

Implementation note: For this, and other declarations, each compiler should have a mode in which it
will provide warnings of declarations it intends to ignore. This should probably be the default

mode?
Lf/_c o ,:\“’*g \OW,&/&;
\ UJ"“' »ﬂc\'/
.}(M o
pde R T
w(‘\\ ’w-ss(M
e e o
/5 :.\a\

R o oo\ Y
C p’w o a"’g\/]
Y 0,"£ { (;[é
SV e
v

SPICE LISP REFERENCE MANUAL

74

SPICE LISP REFERENCE MANUAL 75

Chapter 9
Symbols

A LISP symbol is a data object which has three user-visible components:

o The property list is a list which effectively provides each symbol with many modifiable named
components.

o The print name must be a string, which is the sequence of characters used to identify the symbol.
Symbols are of great usc becausc a symbol can be located given its name (typed, say, on a
keyboard). It is ordinarily not permitted to atter a symbol’s print name.

o The package cell must refer to a package object. A package is a data structure used to locate a
symbol given its name. A symbol is uniquely identified by its name only when considered relative
to a package. A symbol may be in many packages, but it can be owned by at most one package.
The package cell points to the owner, if any.

A symbol may actually have other components as well for use by the implementation. One of the more
important uscs of symbols is as names for program variablcs; it is frequently desirable for the implementor to
use certain components of a symbol to implement the semantics of variables. However, there are several
possible implementation strategics, and so such possible components are not described here,

The three components named above and the functions related to them are described more individually and
in more detail in the following sections,

9.1. The Property List

Since its inception, LiSP has associated with each symbol a kind of tabular data structure called a property
list (plist for short). A property list contains zero or more entries; cach entry associates from a keyword
symbol (called the indicator) to a Lisp object (called the value or, sometimes, the property). There are no
duplications among the indicators; a property-list may only have one property at a time with a given name. In
this way, given a symbol and an indicator (another symbol), an associated value can be retrieved.

A property list is very similar in purpose to an association list. The difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list entrics are destructive
operations which alter the property-list rather than making a new one. Association lists; on the other hand,

SPICE LISP REFERENCE MANUAL 76

arc normally augmented non-destructively (without side effects), by adding new entries to the front (see
acons (page 142) and pairlis (page 142)).

A property list is implemented as a memory cell (the property list cell) in a symbol containing a list with an
even number (possibly zero) of elements. Each pair of elements constitutes an entry; the first item is the
indicator and the second is the value. Because property-list functions are given the symbol and not the list
itself, modifications to the property list can be recorded by storing back into the property-list cell of the
symbol,

When a symbol is created, its property list is initially empty. Propertics are created by putprop (page
77) and related functions.

COMMON LISP does not use a symbol’s property list as extensively as earlier LISP implementations did.
Less-uscd data, such as compiler, debugging, and documentation information, is kept on property lists in
COMMON LIsP.

Compatibility note: In older Lisp implementations, the print name, value, and function definition of a symbol were kept on
its property list. The value cell was introduced into Maclise and INTERLISP to speed up access to variables; simitarly for the
print-name cell and function ccll (MACLISP does not use a function cell). Recent LisP implementations such as SPICE Lisp,
Lisp Machine Lisp, and N11. have introduced all of these cells plus the package ccll. None of the MACLISP system property
names (expr, fexpr, macro, array, subr, 1subr, fsubr, and in former times value and pname) exist in COMMON
Lisp.

Compatibility note: In CommoN Lisp, the notion of "disembodics property list” introduced in MACLisp is eliminated. It
tended to be used for rather kludgy things. and in Lisp Machine Lisp is often associated with the use of locatives (to make it
“off by one" for searching aliernating keyword lists). In CommoN Lise special setf-like property list functions are
introduced: getf (page GETF-FUN), putpropf (page PUTPROPI-FUN), and rempropf (page REMPROPF-FUN).

get symbol indicator &optional default [Function}
get Sgarches the property lisms]ibol for an indicator eq to indicator. If onc is found, then the
LY corresponding value is returned; otherwisce default is returned. If defaudt is not specified, then () is
%F used for default. Note that there is no way to distinguish an absent property from one whose value
is default.

Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for example:
(get 'foo 'baz) => 3
(get 'foo 'hunoz) => "Huh?"
(get 'foo 'zoo) => () ?’Z

;a isn’t even part of the (discmbodied) property list —

- 3

getl symbol indicator-list [Function}
getl is like get, except that the second argument is a list of indicators. get1 scarches the
property list of symbol for any of the indicators in indicator-list, until it finds a property whose
indicator is onc of the elements of indicator-list.

get returns that tail of the property list which begins with the first such property found. So the
car of the returned list is an indicator, and the cadr is the property value. If none of the indicators
on indicator-list arc on the property list, get 1 returns ().

|

i

SPICE LISP REFERENCE MANUAL 77

For example:

If the property list of foo were
(bar (1 2 3) baz (3 2 1) color blue height six-two)
then
(get1 'foo '(baz height))
=> (baz (3 2 1) color blue height six-two)
When more than one of the indicators in indicator-list is present in symbol, which one get1 returns
depends on the order of the properties. get1 is the only function that depends on that order. The
order in which properties appear on a property list is imp]cmentation-dcpendent(Programs should

avoid examining the cddr of a result returned by get1 'X Norn - Seaitor — - motivate.

putprop symbol value indicator N [Function]

This causes symbol to have a propepty whose indicator is indicator and whose value is value. If the
property listcalready alread'y‘ahad‘ a property with an indicator eq to indicator, then the value
previously associated-with that indicator is removed from the property list and replaced by value.
The property list is destructively altered by using side effects. After a putprop is done, (get
symbol indicator) will return value. putprop returns the new value,

For example:

(putprop 'Nixon 'not 'crook) => not
(get 'Nixon ‘'crook) => not

defprop symbol value indicator [Special form]
defprop is a form of putprop with unevaluated arguments, which is sometimes more
convenient for typing.
For example:

(defprop foo bar next-to) <=> (putprop 'foo 'bar 'next-to)
Often it is convenient to represent a data base by using property lists, and to initialize it by
evaluating a file of def prop forms.

For example:

(defprop and
(defprop tad
(defprop dca
{(defprop isz
(defprop jms
{defprop jmp
{(defprop ijot

pdp-8-opcode)
pdp-8-opcode)
pdp-8-opcode)
pdp-8-opcode)
pdp-8-opcode)
pdp-8-opcode)
pdp-8-opcode)

DA DW= O

Normally it doesn’t make sense to usc a disembodied property list rather than a symbol as the

symbol argument. ¢ 5()'1 dquj L (ﬁM.(— ek Ly arc

A’(S' L’LFN(J r-e,‘(\/rn,r l"f'f (\/11\‘ aryuwjg W«; (w'*yny) ro."fvvw 7—(—!
S Lanl

SPICE LISP REFERENCE MANUAL 78
Gu(“
remprop symbol indicator . [Function] S‘f’” M\‘
This removes from symbol the property with an indicator eq to indicator, by splicing it out of the
property list. It returns that portion of the property list of which value of the former indicator-
property was the U cai:gf what remprop returns is what get would have returned with the
same arguments. ? valf

For example:

If the property list of foo was

(color blue height 6.3 near-to bar)
then

(remprop 'foo 'height) => (6.3 near-to bar)
and foo’s property list would have been altered to be

(color blue near-to bar)

If symbol has no indicator-property, then remp rop has no side-cffect and returns ().

plist symbol {Function]
This returns the list which contains the property pairs of symbol. For a disembodied property list,
this simply performs a cdr operation; for a symbol, the contents of the property list cell are
cextracted and returned.

Note that using get on the rcsult of p1ist does not work. Onc must give the symbol itself to
get.

9.2. The Print Name

Every symbol has an associated string called the print-name, or pname for short. This string is used as the
external representation of the symbol: if the characters in the string are typed in to read (with suitable
escape conventions for certain characters), it is interpreted as a reference to that symbol (if it is interned); and
if the symbol is printed, print types out the print-name. For more information, sce the section on the reader
(see page READER) and printer (sce page PRINTER).

get-pname sym ~ [Function)
This returns the print-name of the symbol sym.
For example:
(get-pname 'XYZ) => "XYZI"
It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a
modification may confuse the function read (page 211) and the package system tremendously.

samepnamep syml sym2 [Function]
This predicate returns t if the two symbols sym/! and sym2 have equal print-names; that is, if their
printed representation is the same. Upper and lower case letters are considered to be different.

Compatibility note: In Lisp Machine [isp, samepnamep normally considers upper and lower case to be the
same. However, in Maclise, which originated this function, the cases are distinguished: Lisp Machine Lisp

SPICE LISP REFERENCE MANUAL 79

intreduced the incompatibility, CoMMON Lisp is compatible with MaCLIse here.

If either or both of the arguments is a string instead of a symbol, then that string is used in place of
the print-name. samepnamep is useful for determining if two symbols would be the same except
that they are not in the same package.

For example:
(samepnamep 'xyz {(maknam '(x y z)) => t
(samepnamep 'xyz (maknam '(w x y)) => ()

9.3. Creating Symbols

Symbols can be used in two rather different ways. An inferned symbol is one which is indexed by its print-
name in a catalog called a package. Every time anyone asks for a symbol with that print-name, he gets the
same (eq) symbol. Every time input is read with the function read (page 211), and that print-name appears,
it is read as the same symbol. This property of symbols makes them appropriate to use as names for things
and as hooks on which to hang permanent data objects (using the property list, for éxample; it is no accident
that symbols are both the only LISP objects which arc cataloged and the only LISP objects which have
property lists).

Interned symbols are normally created automatically; the first time someone (such as the function read)
asks the package system for a symbol with a given print-name, that symbol is automatically created. The
function to use to ask for an interned symbol is intern (page INTERN-FUN), or onc of the functions
related to intern.

Although interned symbols arc the most commontly used, they will not be discussed further here. For more
information, turn to the chapter on packages.

An uninterned symbol is a symbol used simply as a data object, with no special cataloging (it belongs to no
particular package). An uninterned symbol prints in the same way as an interned symbol with the same print-
name, but cannot be read back in. The following are some functions for creating uninterned symbols.

make-symbol pname [Function}
(make-symbol pname) creates a new uninterned symbol, whose print-name is the string pname.
‘The value and function bindings will be unbound and the propeirty list will be empty.

Compatibility note: Lisp Machine Lisp uses the second argument for an odd flag related to areas. It is unclear
what NiL does about this,

copysymbol sym &optional copy-props [Function]
This returns a new uninterned symbol with the same print-name as sym. If copy-props is non-(),
then the initial value and function-definition of the new symbol will be the same as those of sym,
and the property list of the new symbol will be a copy of sym’s. If copy-props is () (the default),
then the new symbol will be unbound and undefined, and its property list will be empty.

SPICE LISP REFERENCE MANUAL 80

gensym &optional x {Function]
gensym invents a print-name, and creates a new symbol with that print-name. It returns the new, x:
uninterned symbol. \\y W
P oy Aluef
The invented print-name consists of a prefix character (the value of si:*gensym-prefix (page R Prorr o~ oS X4

SI:*GENSYM-PREFIX-VAR), initially #\G) followed by the low four digits of the decimal | new
representation of a number (the value of si:*gensym-counter (page SL.*GENSYM-
COUNTER-VAR)). The number is increased by one cvery time gensym is called. -

If the argument x is present and is a fixnum, then x must be non-ncgative, and si:*gensym-
counter is set to x. If x is a string or a symbol, then si:*gensym-prefix is set to[first
character of the string or of the symbol’s print-name. After handling the argument, gensym
creates a symbol as it would with no argument.

For example:

(gensym) => G0007
(gensym 'F00) => F0008
(gensym 32) => F0032
(gensym) => F0033
(gensym "GARBAGE") => G0034
Note that the number is in decimal and always has four digits, and the prefix is always one

character.

gensym is usually uscd to create a symbol which should not normally be scen by the user, and
whose print-name is unimportant, cxcept to allow casy distinction by eye between two such
symbols. The optional argument is rarely supplicd. The name comes from “gencrate symbol”, and
the symbols produced by it are often called "gensyms”,

If it is crucial that no two generated symbols have the same print name (rather than merely being
distinct data structures), or if it is desirable for the generated symbols to be interned, then the
function gentemp (page GENTEMP-FUN) may be more appropriate to use.

get-package sym {Function] ”
Given a symbol sym, get-package returns the contents of the package cell of that symbol.

7
sholld Ge calld) jjml,.(,pac\‘ ape

"4,{1 «\/L\“{' nAe Ca((:{‘, A
((u(‘/{ /»~C4L§ be Cc\'v«)z:) ﬂ\.? /1444)72«94)

SPICE LISP REFERENCE MANUAL 81

Chapter 10

Numbers

COMMON LIsP provides several different representations for numbers. These representations may be
divided into two categories: integers and floating-point numbers. Most numeric functions will accept any
kind of number; they are generic. Those functions which accept only certain special numbers are so described
below.

In general, numbers in COMMON LISP are not true objects; eq cannot be counted upon to operate on them
reliabty. In particular, it is possible that the expression

(let ((x z) (y 2z)) (eq x ¥))
may return () rather than t, if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the implementor enough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MACLISP requires this freedom, for example, in order
to produce compiled numerical code equal in speed to FORTRAN. If not for this freedom, then at least for the sake of
compatibility, CoOMMON Lisp makes this same restriction.

If two objects are to be compared for "identity”, but either might be a number, then the predicate eq1 (page
30) is probably appropriate; if both objects arc known to be numbers, then = (page 82) may be preferable.

As a rule, computations with floating-point numbers are only approximate. The precision of a floating-
point number is not necessarily correlated at all with the accuracy of that number. The precision refers to the
number of bits retained in the representation. When an operation combines a short floating-point number
with a long one, the result will be a long floating-point number. This rule is made to ensure that as much
accuracy as possible is preserved; however, it is by no means a guarantce. COMMON LISP numerical routines
do assume, however, that the accuracy of an argument does not excecd its precision. Therefore when two
short floating-point numbers are combined, the result will be a short floating-point number. This assumption
can be altered by first explicitly converting a short floating-point number to long representation. (COMMON
LISP never converts automatically from long size to short in an effort to save space.)

Integer computations cannot overflow in the usual sense (though of course there may not be enough
storage to represenf one)l as integers may in principle be of any magnitude. Floating-point computations may
get exponent overflow or underflow, in which case an crror is signalled.

SPICE LISP REFERENCE MANUAL 82

10.1. Predicates on Numbers

zerop number [Function)
True (returning t) if number is zero (either the integer zero or a floating-point zero); otherwise ()
is returned. If the argument number is not a number, ze rop signals an error.

plusp number [Function)
True (returning t) if number is strictly greater than zero; otherwise () is returned. If the argument
number is not a number, p1usp signals an error. W 7 ~+
L\«//W‘j
minusp number {Function} g (ex
Cony

True (returning t) if number is strictly less than zero; otherwise () is returned. If the argument
numberis not a number(pl uspFignals an error.

oddp integer {Function]
Returns t if the argument infeger is odd (not divisible by two), and otherwise returns (). Itis an
error if the argument is not an integer.

evenp integer [Function]
Returns t if the argument integer is cven (divisible by two), and otherwise returns (). 1t is an error
if the argument is not an integer. P 'l
8.

See also the data-type predicates integerp (page 27), fixnump (page 28), bigp (page 27), bi tp (page
29), ratiop (page 28), rationalp (page 28) f1oatp (page 28), short-floatp (page 28), single-
floatp (page 28), double-floatp (page 28), tong-floatp (page 28), scalarp (page SCALARP-
FUN), comp1exp (page COMPLEXP-FUN), and numbe rp {page 27).

10.2. Comparisons on Numbers

All of the functions in this section require that their arguments be numbers, and signal an error if given a

non-number. They work on all types of numbers, automatically performing any required Cgercions. -
r1

WANS = TO WOAK oM AesT MANI—VY .

Kws::2t1 -rn‘:’;ruﬂuw By r1ohg ,fu!er—-u. . You CouLd [{AVE

= i 2 1 -7
numberl number? &optional fizz A Se/MATE T uner M[I‘ Lgfﬁ\twnlo fgrt-= “
Returns t if numberl and number?2 are numerically cqual. This is uscd"[)y equalp (page 32) when

both its arguments arc numbers. The optional argument fuzz allows nearly-equal floating-point
nuimbers to be considered cqual: two numbers x and y are considered to be equal if the absolute
value of their difference is no greater than firzz times the absolute value of the one with the larger
absolute value, that is, if abs(x-y) < fitzz*max(abs(x), abs(y)). If no third argument is supplied, then
fuzz defaults to 0. 0, and in this case x and y must be exactly equal for = o return t,

Comgalibility note: In Comyion Fise, = performs "mixed-mode” comparisons. In Maclise. the arguments

SPICE LISP REFERENCE MANUAL 83

must be either both fixnums or both floating-point numbers, and moreover there is no fizz argument.

< number &rest more-numbers [Function]
\ﬂf?‘ > number &rest more-numbers [Function]
;,wﬂ <= number &rest nore-numbers [Function]
>= number &rest more-nunbers [Function)
These functions each take one or more arguments. If the sequence of arguments satisfies a certain
condition:
< monotonically inereasing
> monotonically decreasing
<= monotonically nondecreasing
>= monotonically nonincreasing
then the result is t, and otherwise ().
For example:
(< 35) =>t
(<3 -5) => ()
(< 33) = ()
(<= 33) =>t
(03467)=>t
(<03 446)=>()
(<= 03 446) =>t
(> 43) =>1t
(>4 3210)=>t
(>43120)=)
With two arguments, these functions perform the usual arithmetic comparison tests. With three
arguments, they are useful for range checks.
For example:
(<= 0 x 9) ; true iff x is between 0 and 9
(< 0.0 x 1.0) ; true iff x is between 0.0 and 1.0, exclusive
(< -1 j (string-length s)) s true iff j is a valid index for string s
Compatibility note: In ComMoN Lisp, the comparison operations perform “mixed-mode” comparisons. In
MACLLIsP, the arguments must be either both fixnums or both floating-point numbers.
\).C‘ ‘ max number &rest more-numbers [Function]
(o max returns the argument which is greatest (closest to positive infinity).
For example:

(max 1 3 2 -7) => 3
(max -2 307) =>7
(max 3) => 3
(max 3.0 7 1) => 7 or 7.0
If the arguments arc a mixture olincgcrs and floating-point numbers, and the largest is aﬂntegcﬂ

then the implementation is free to produce cither thatdnteggr or its floating-point equivalent.

¢ (}“\W-\

3
a

SPICL: LISP REFERENCE MANUAL 84

Cmin number &rest more-numbers [Function]

min returns the argument which is least (closest to negative infinity).

For example:

(max 1 3 2 -7)
(max -2 3 07)
(min 3) => 3
(min 3.0 7 1) => 1 or 1.0
If the arguments are a mixture of'\imggevs and floating-point numbers, and the smallest is an
~integér/ then the implementation is free to produce either that @tege;* or its floating-point

equivalent,
rdSV N"“\

n "

> -7
> -2

10.3. Arithmetic Operations

All of the functions in this section require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required coercions.

+ &rest numbers [Function]
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity
for this operation.

Compatibility note; While + is compatible with its use in Lisp Machine Lisp, it is incompatible with MacLisp,
which uses + for fixnum-only addition.

- number &rest more-numbers [Function)
The function -, when given one argument, returns the negative of that argument.

The function -, when given more than onc argument, subtracts from the first argument all the
others, and returns the result.

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is incompatible with MacCLisp,
which uses - for fixnum-oniy subtraction. Also, - differs from d ifference as used in most Lisp systems in

the case of one argument.
abs number [Function]
Returns the absolute value of the argument. what wa on
(abs x) <=> (if (minusp x)} (- x) x) Cof“ﬁ(»@(?
* &rest numbers [Function]

Returns the product of the arguments. If there are no arguments, the result is 1, which is an
identity for this operation.

Compatibility note: While * is compatible with its use in Lisp Machine Lisp, it is incomipatible with. MACLISP,
which uscs * for fixnum-only multiplication.

SPICE LISP REI'ERENCE MANUAL 85

/ number &rest more-numbers [Function)
The function /, when given more than one argument, divides the first argument by all the others,

and returns the result.
With one argument, / reciprocates the argument.

/ strives always to produce something near the mathematically correct result. / will produce a
rational or floating-point number if the mathematical quoticnt of two integers is not an exact

SLISULS« newev /mivce & -p(onwﬁ

—

integer.]
For cxample: Loy gubat &b W-Lei:;f_—‘
L Man L % (Ce
(/7 12 4) => 3 _ 2 b 3/d T\'l-;} "(‘(“J h;\‘ke o .
(/ 13 4) =>.8.26" pe. /9 /‘+«C?f¢5. e o=
- =) 4 \ - A Gangun atnme
(/ 8) ? *D. 125 ;-eg— are a{' {elf+ af eedy lp?;"lvd—'l)

To divide one integer by another producing an integer result, use one of the functions floor, yean

ceil, trunc,or round (page 89).

Compatibility note: What / docs is totally unlike what the usual // or quotient operator does. In most Lisp
systems, quotient behaves like / except when dividing integers, in which case it behaves like trunc (page
89) of two arguments; this behavior is mathematically intractable, and in practice quotient is used only
when one is sure that both argument are integers, or when onc is sure that at least one argument is a floating-
point number. / is tractable for its purpose, and "works” for any numbers. For "integer division", trunc
(page 89) and ils relatives arc available in CoMMON Lise.

3’ o't/ 1+ _number [Function}
<@ (ad d1) number [Function)
y v (1+ x) isthe same as (+ x 1). add1 docs the same thing.
v)H\
/A ,
< number ' [Function]
., N :‘\subl"_)number [Function]
v \} " (1- x)isthesameas (- x 1). subl does the same thing. Note that the short name may be
\‘3? \; confusing: (1~ x) does nof mean 1— x; rather, it means x— 1.
q

1 gcd &rest integers [Function)
Returns the greatest common divisor of all the arguments, which must be integers. The result is
always a non-negative integer. If no arguments are given, gcd returns 0, which is an identity for

this operation.

10.4. Irrational and Transcendental Functions
M 4(:~«7 J rc‘)(/»'/! @

ted, Ne fmchms accot el £ arpomat
{KW‘}’ as »ve / ("H"‘ _ t::?{ o l+ : B> _z-f The ﬁ/ju/wm‘f' iy F(sa’ﬁ)«»}
exp number Floshor-r ' [Function] e ey ifl be of

Returns e raised to the powerf numbywhcrc e is the base of the natural logarithmp."(Fa~e precinw,

(g/ t"‘VH‘f—-“f)
_ cace, t—vLa-(-?_)
&

SPICE LISP REFERENCE MANUAL 86

expt base-number power-number [Function]
Returns base-number raised to the power power-number. 1f both arguments are integers and power-
number is non-negative, the result will be an integer; otherwise a floating-point number@éy)gﬁult. " 7
Implementation note: If the exponent is an integer a repeated-squaring algorithm may be used, while if the —w! '

exponent is a floating-point number the resuit may be calculated as: \}o
U
Yoes &7 - e

or in any other reasonable manner, rve Y
y . A RFA ~ako? e

(exp (* power-number (109 base-number)))

n scalar [Function} . st tive
Returns the natural logarithm of scalar. The drgument must be strictly positive. N

log base scalar [Function]
Returns the logarithm of scalar in the base base. Both arguments must be strictly positive scalars.

For example:
(log 2 8.0) => 3.0
(tog 10 0.01) => -2.0

777 Query: Most Lisp implementations, as well as other programming languages (such as FORTRAN), call the
natural-logarithm function 1og. Mathematicians usually call this Tn, however. It would be useful to have a
two-argument logarithm function. One could let Yog serve for both the one-argument and two-argument
versions, but then &optional arguments could not be used in the obvious way if one puts the arguments in
the order normally used in mathematical notation, because it would be the first argument which is optional.
Opinions?

sqrt scalar [Function]
Returns the positive square root of scalar, which must be non-ncgative.

isqrt integer [Function]
Integer square-root: the argument mnust be a non-negative integer, and the result is the greatest
integer less than or equal to the exact positive squarc root of the argument.

sin radians , [Function)

sind degrees [Function]
Returns the sine of the argument. sin assumes its argument to be in radians; s ind assumes it to
be in degrees.

cos radians {Function}
cosd degrees [Function]
Returns the cosine of the argument. cos assumcs its argument to be in radians; cosd assumes it
to be in degrees.) %C Gg;
i s,

SPICE LISP REFERENCE MANUAL

atan y &optional x
atand y &optional x

[Function]
[Function]

87

An arctangent is calculated and the result is returned in radians (atan) or degrees (atan d).

With two arguments y and x, the result is the arctangent of the quantity y/x. The signs of yand x
are used to derive quadrant information; moreover, x may be zero provided y is not zero. The
value of atan is always between —a (cxc]usivei and = (inclusive). The following table details

various special cases. X e e Lelow)
Condition Cartesian locus Range of result

y=0 x>0 Positive x-axis 0

y>0 x>0 Quadrant [0 <result < n/2

y>0 x=0 Positive y-axis w/2

y>0 x<0 Quadrant I1 a/2 <result < w

y=0 x<0 Negative x-axis w

y<0 x<0 Quadrant I1I —a <result < —7/2
y<0 x=0 Negative y-axis —al2

y<0 x>0 Quadrant IV —a/2 <result <0

y=0 x=0 Origin error

Actually, the < signs in the above table ought to be < signs, because of rounding cffects; if y is
greater than zero but nevertheless very small, then the floating-point approximation to #/2 might
be a more accurate result than any other floating-point number. (For that matter, when y = 0 the
exact vatue #/2 cannot be produced anyway, but instead only an approximation.)

With only one argument y, the result is the arctangent of y, and lics between —=/2 and #/2 (both

exclusive). T.e. X defaclts % 41, 2

Compatibility note: MACLIsp has a function called atan which range from 0 to 2w. Every other language in
the world (ANSI FORTRAN, IBM PL/I, InterLISP) has an arctangent function with range —= to . Lisp
Machine Lisp provides two functions, atan {compatible with MacLisp) and atan? [compatible with everyone

else). . ’Q,,\’L

ComMoN Lisp makes atan the standard one with range -« to . Observe that this makes the one-argument
and two-argument versions of atan compatible in the sense (hat the branch cuts do not fall in different places,
which is probably why most languages usc this definition. (An aside: the INTERLISP one-argument function
arctan has a range from 0 to #, while every other language in the world provides the range —#/2 10 #/2!
Nevertheless, since INTERLISP uses the standard iwo-argument version, its branch cuts are inconsistent

anyway.)
pi [Variable)
short-pi [Variable]
single-pi [Variable]
double-pi [Variable)
long-pi [Variable] \

These five global variables have as their initial values floating-point approximations to #. short-
pi contains the best possible short-format approximation, and similarly for the other three
formats: single, double, and long. p1i contains the same value as 1ong-pi.

T shatopi # (shet-Plet pi) 7

T WDVL& Al vk h’\d'{— ;'C -ﬁ\Q ’bV'\Q"':\J s &Mﬂ_
Pkop{rly_) Nese would be =, i wlhicel case

ﬂ\L ofer fovvr va(‘.qLLi Viames are vab"auwﬁ

SPICE LISP REFERENCE MANUAL 88

10.5. Type Conversions on Numbers

While most arithmetic functions will operate on any kind of number, coercing types if necessary, the
following functions are provided to allow specific conversions of data types to be forced, when desired.

float scalar {Function)
Converts any kind of scalar to a floating-point number. Ifa given format of floating-point number
is sufficiently precise to represent the result, then the result may be of that format or of any larger
format, depending on the implementation. If no fixed format is sufficiently precise, then long
format is used. To force a particular size of floating-point number to be produced, use one of the
more specific float functions below., {loat 4 beeld feke an arf/h’““' [recand asutnt.

-"‘(: 4; Ne '6\47" are I35 o ated %o 'ﬂ‘.q
ond preiiion a5 fle focond. Amony ol

| short-float scalar [Function] ~ Twinss Nz 75 vsed for
Converts any kind of scalar to a short floating-point number. Lopchors Azl are
Soppesed No et cesoth
;m fame /‘”’ecrjm o
” single-float scalar [Function] Acis ars doet (bt Lo
Converts any kind of scalar to a single floating-point number. Ao ot ~adi

compk atons = exledlek

,or—ec?:? A

I[double-float scalar [Function}
Converts any kind of scalar to a double floating-point number, Jv
(/G J ¢ f
v?)
A g p((/\q
]\ long-float scalar [Function] 2\ kf/ o v
Converts any kind of scalar to a long floating-point number. g & PK
v
rational scalar) [Function]
rationalize scalar [Function]

Each of these functions converts any kind of scalar to be a rational number. If the argument is

already rational, that argument is returned. The two functions differ in their treatment of floating-

point numbers, rational assumes that the floating-point number is completely accurate, and |

returns a rational number mathematically equal to the precise value of the floating-point number. |

rationalize assumes that the floating-point number is accurate only to the precision of the

floating-point representation, and may return any rational number for which the floating-point

number is the best available approximation; in doing this it attempts to keep both numerator and ¢
.

denominator small. Sl it alize tuke aa foral second NTL

; S ‘
\ There is no fix function in COMMON LISP, because there are several interesting ways to convert non- é< k‘.’;;.
integral values to integers, These are provided by the functions below, which perform not only type- 5"19
conversion but also some non-trivial calculations. W (i(, uu"
L
M/OV
e e
L A on N e
v {‘,\\5 el TLM 1 ;ﬁ‘w
\ ¢ HLLI AR\ & 7
{K? o o , R «
e

SPICE LISP REFERENCE MANUAL

89

floor scalar &optional divisor [Function)
ceil scalar &optional divisor [Function]
trunc scalar &optional divisor {Function)
round scalar &optional divisor [Function]

In the simple, one-argument case, cach of these functions converts its argument scalar to be an
integer. If the argument is alrcady an integer, it is returned directly. If the argument is a ratio or
floating-point number, the functions use different algorithms for the conversion.

floor converts its argument by truncating towards negative infinity; that is, the result is the
largest integer which is not larger than the argument.

ce i1 converts its argument by truncating towards positive infinity; that is, the result is the smallest
integer which is not smaller than the argument.

trunc converts its argument by truncating towards zero; that is, the result is|the integer of the
J

same sign as the argument and which has the greatest integral magnitude not greater than that of

the argument. o 22 wlon e el e b

round converts its argument by rounding to the ncarest integer; if number is exactly halfway
between two integers (that is, of the form integer+0.5) then it is rounded to the one which is even
(divisible by two).

Here is a table showing what the four functions produce when given various arguments.

Argument floor ceiling trunc round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 -2 -2 -2
-2.5 -3 -2 -2 -2
~2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate type of rounding or
truncation applied to the result of dividing the number by the divisor. For example, (f1oor 5
2) = (floor (/ 5 2)), but is potentially more cfficient. The divisor may be any kind of
scalar. The onc-argument case is exactly like the two-argument case where the second argument is
1,

Each of the functions actually returns fwo values; the sccond result is the remainder, and may be
obtained using multiple-value-let (page 59) and rclated constructs. If any of these
functions is given two arguments x and y and produces results g and r, then g*y+r=x. The
remainder ris an integer if both arguments are integers, is rational if both arguments are rational,
and is floating-point if cither argument is floating-point. (In the onc-argument case the remainder
is a number of the same type as the argument.) The first result is always an integer.

Conipatibility aote: The names of the functions f1oor, cei1, trunc. and round are more accurate than
names like £ ix which have heretofore been used i various Lise systems. The names used here are compatible

SPICI: LISP REFERENCE MANUAL

x et ‘X\?' 90

NS

with standard mathematical terminolggy (and with PL/, as it happens). In FORTRAN ifix means trunc.
ALGOL 68 provides round, and uses gnt ier to mean f1oor. In MacLise, ¥ ix and ifix both mecan floor
(one is generic, the other flonum-in{fixnum-out). In INTERLISP, fix means trunc. In Lisp Machine Lisp,
£ ix means f1oor and(f ixr meaps round. STANDARD Lisp provides a f ix function, but does not accurately
specify what it does exactly. The existing usage of the name fix is so confused that it scems best to avoid it

altogether.

The names and definitions given here have recently been adopted by Lisp Machine Lisp, and MacLise and
NIL seem likely to follow suit. B of~
m 4(_\,« e U +;'\
L. v i, bke 22 %L
| mod number &optional divisor [Function] T\,-QJ"’W*:;, V)”R\ftf ya *.54

v L

remainder number &optional divisor [Function] APVt N L

g !
7 floor as its only result. Similarly, remainder performs the operation trunc (page 89) oniits - gna Hed <
\;\5' arguments, and returns the second result of trunc as its only result. P AT
. L fents
¥ \} N mod and remainder are thercfore the usual modulus and remainder functions when applied to ,T&U
/. ‘7\) N N on
A . two integer arguments. In general, however, the arguments may be integers or floating-point WAda -‘f"_
S 7 numbers. ' ¥y -
o w\\w s ey
With onc argument, these functions perform the "mod 1" or "fractional part” operation, differing itk 27
in the dircction of rounding: the result of mod of one argument is always non-negative, while the
result of remainder of onc argument always has the same sign as the argument.
(mod 13 4) => 1 (remainder 13 4) => 1
(mod -13 4) => 3 (remainder -13 4) => -1
(mod 13 -4) => -3 (remainder 13 -4) => 1
(mod -13 -4) => -1 (remainder -13 -4) => -1
(mod 13.4) => 0.4 (remainder 13.4) => 0.4
{(mod -13.4) => 0.6 (remainder -13.4) => -0.4
[Iffloor number &optional divisor [Function]
i (fceil munber &optional divisor {Function}
{ [ftrunc number &optional divisor [Function)
Hfround number &optional divisor [Function)

These functions are just like f1oor, ceil, trunc, and round, except that the result (the first
result of two) is always a floating-point number rather than an integer. It is roughly as if ffloor
gave its arguments to f1oor, and then applied f1oat to the first result before passing them both
back. In practice, however, ff 1oor may be implemented much more cfficiently. Similar remarks
apply to the other three functions. If the first argument is a floating-point number, and the sccond

(agrument is not a floating-point number of shorter format, then the first result will be a floating-
’poinf number of the same type as the first argument.

For example:

(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5d0) => 3.0d0 and 0.5d0

1\

SPICE LISP REFERENCE MANUAL 91

10.6. Logical Operations on Numbers

The logical operations in this section treat integers as if they were represented in two’s-complement
notation.

Implementation note: Internally, of course, an implementation of CoMMON LISP may or may not use a two’s-complement
representation. All that is necessary is that the logical operations perform calculations so as to give this appearance to the
user.

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a
conceptual vector be indexed by the non-negative integers. Then bit j is assigned a "weight" 2. Assume that
only a finite number of bits arc ones, or that only a finite number of bits arc zeros. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with
only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative
integer.

This method of using integers to represent bit vectors can in turn be used to represent sets. Suppose that
some (possibly countably infinite) universe of discourse for scts is mapped into the non-negative integers.
Then a set can be represcnted as a bit vector; an element is in the set if the bit whose index corresponds to
that element is a one-bit. In this way all finite scts can be represented (by positive integers), as well as all sets
whose complements are finite (by ncgative integers). The functions 1ogior, 1ogan d, and 1ogxor defined
below then compute the union, intersection, and symmetric difference operations on sets represented in this
way.

logior &rest infegers [Function)
Returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

logxor &rest integers [Function}
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

logand &rest integers [Function)
Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1,
which is an identity for this operation.

logeqv &rest integers [Function}
Returns the bit-wise logical equivalence (also known as exclusive nor) of its arguments. If no
argument is given, then the result is -1, which is an identity for this operation.

SPICE LISP REFERENCE MANUAL 92

lognand integer! integer? » [Function]
lognor integer! integer?2 [Function]
logandcl integerl integer? [Function]
logandc?2 integerl integer2 [Function]
logorcl integerl integer2 [Function)
logorc2 integerl integer? [Function]

These are the other six non-trivial bit-wis¢ logical operations on two arguments. Because they are
not commutative or associative, they take exactly two arguments rather than any non-negative

number of arguments.
(1ognand nl n2) <=> (lognot (logand nl n2))
(1ognor nl n2) <=> (lognot (logor nl n2))
(logandcl nl n2) <=> (logand (lognot nl) n2)
(1ogandc2 nl n2) <=> (logand nl (lognot n2))
(logorcl nl n2) <=> (logor (lognot nl) n2)
(logorc2 nl n2) <=> (logor nl (lognot n2))

The ten bit-wise logical operations on two integers are summarized in this table:

Argument 1 0 1 1

Argument 2 1 0 1 Operation name
logand 0 0 0 1 and
logior 0 1 1 1 inclusive or
logxor 0 1 1 0 exclusive or
logeqv 1 0 0 1 cquivalence (exclusive nor)
lognand 1 1 1 0 not-and
Tognor 1 0] 0 not-or
logandcil 0 1 0 0 and complcment of argl with arg2
logandc2 0 0 1 0 and argl with complement of arg2
Togorcil 1 1 0 1 or complement of argl with arg2
Togorc2 1 0 1 1 or argl with complement of arg2

lognot integer : [Function]

Returns the bit-wise logical not of its argument. Every bit of the result is the complement of the
corresponding bit in the argument.

(logbitp j (lognot x)) <=> (not (logbitp j x))

((logtest integerl integer2 [Function]
- logtest is a predicate which returns t if any of the bits designated by the 1's in integer! are 1's in
integer2.

(togtest x y) <=> (not (zerop (logand x y)))

SPICE LISP REFERENCE MANUAL 93

/ / logbitp index integer [Function]
loghitp returns t if the bit in integer whose index is index (that is, its weight is 2idexy s a one-bit;
otherwise it returns ().
For example:
(logbitp 2 6) => t
(1ogbitp 0 6) => ()
(logbitp k& n) <=> (1db-test (byte & 1) n)
ash integer count [Function]

Shifts integer arithmetically left by count bit positions if count is positive, or right ~count bit
positions if count is negative. The sign of the resuit is always the same as the sign of infeger.

Arithmetically, this operation performs the computation floor(integer*2°°%™),

Logically, this moves all of the bits in infeger to the Icft, adding zero-bits at the bottom, or moves
them to the right, discarding bits. (In this context the question of what gets shifted in on the left is
irrelevant; integers, viewed as strings of bits, are "half-infinite”, that'is, conceptually extend
infinitely far to the left.)

For example:

(1ogbitp j (ash n k))
<=> (and (>= j k) (logbitp (- j k) n))

) er\w Lda‘nj’ L
logcount integer S e s [Function)

"The number of bits in mteger is determined and returnedl. If infeger is positive, then 1 bits in its
binary representation are counted. If integer is negative, then the 0 bits in its two's-complement

binary representation are counted. The result is always a non-negative integer.

For example:
(1ogcount 13) => 3 ; Binary representationis ,..0001101
(Togcount -13) => 2 ; Binary representationis ...1110011
(1ogcount 30) => 4 : Binary representationis ...0011110
(1ogcount -30) => 4 ; Binary representationis ...1100010
Asarule,

(logcount x) <=> (Togcount (- (+ x 1)))

haulong integer [Function]
This returns the number of significant bits in the absolule value of in!eger. The precise
computation performed is eiling(logd(abs(integer)+1)). f

; g A P“, '
For example: = egnv g fp /W(\,o, L,d(‘ P) ol
wj 'w ” V" 7
(haulong 0) => 0 ‘“ J(W“ 57 Y7 e
(haulong 3) => 2 u-" .{e's" - vl
(haulong 4) => 3 \/’" A 8 ¥
(haulong -7) => 3 Nl A{(!;). 1 " - U.(
k 'Q-(;f* t(gf“ (\’) &5
. N
Jvéi X 4 &“w
v ol ¢
My,
It

SPICE LISP REFERENCE MANUAL 94

haipart integer count [Function)
Returns the high count bits of the binary representation of the absolute value of integer, or the low
- count bits if count is negative. A possible definition of haipart:

(defun haipart (integer count)
~d
b (let ((x (abs integer)))
\')3? (if (minusp count)
d (1db (byte (- count) 0) x)
{);L (1db (bgte count (max (- (haulong x) n) 0))
X

\ M) Q%wa\”mh%aé‘

which Lol*’é{’f /“UQT‘Z; NJQF [
10.7. Byte Manipulation Functions b S,Q,e/ position &

Several functions are provided for dealing with an arbitrary-width ficld of contiguous bits appearing
anywhere in an integer. Such a contiguous sct of bits is called a byte. Here the term byte does not imply some
fixed number of bits (such as eight), but a ficld of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to designate a specific byte position
within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know
that the function byte will construct one, and that the byte-manipulation functions will accept them. The
function byte accepts two integers representing the position and size of the byte, and returns a byte specifier.
Such a specifier designates a byte whose width is size, and whose right-hand bit has weight 2P°%77 in the
terminology of integers used as logical bit vectors.

i

|

H byte position size [Function}

H byte takes two integers representing the position and size of a byte, and returns a byte specifier

suitable for use as an argument to byte-manipulation functions,

byte-position bylespec [Function]
byte-size bytespec [Function]

Given a byte specifier, byte-pos ition returns the position specificd as an integer; byte-size
similarly returns the size.

For example:

(byte-position (byte j)) =>j
(byte-size (byte j k)) <=>

1db bytespec integer [Function]

bytespec specifics a byte of integer to be extracted. The result is returned as a positive integer.
For example:
P \e$ e ¢
(logbitp j (1db (byte p s) n) \so \aovt ¢

<=> (and (< j s) (logbitp (+ j p) n)) {\

J ~
A * ” n " " 0 -
‘The name of the function " 1db" means "load byte". 0\% Na ,-}\ A

SPICE LISP REFERENCE MANUAL 95

1db-test bytespec integer {Function)

1db~-test is a predicate which returns t if 'any of the bits designated by the byte specifier bytespec
are 1's in integer; that is, it returns t if the designated field is non-zero.

(1db-test bytespec n) <=> (not (zerop (1db bytespec n)))

mask-field bytespec integer [Function]

This is similar to 1db; however, the result contains the specified byte of integer in the position
specified by bytespec, rather than in position 0 as with 1db. The result therefore agrees with integer
in the byte specified, but has zero bits cverywhere clse.
For example:

(1db bs (mask-field bs n)) <=> (1db bs n)

{(logbitp j (mask~-field (byte p s} n))

<=> (and (>= j p) (£ j s) (Nogbitp j n))
(mask-field bs n) <=> (logand n (1db bs -1))

dpb newbyte bytespec integer [Function)
Returns a number which is the same as infeger except in the bits specificd by bytespec. Let s be the
size specified by bytespec; then the low s bits of newbyte appear in the result in the byte specified by
bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result
Of 14D SopeFloovs and o lifile o

For example:

(Togbitp j (dpb m (byte p s) n))
<=> (if (and (>=jp) (< j(+ p3s)))
(logbitp (-~ j p) m)
(logbitp j n))

deposit-field newbyte bytespec integer [Function]
This function is to mask-field as dpb is to 1db. The result is an integer which contains the bits
of newbyte within the byte specifried by bytespec, and clscwhere contains the bits of integer.

For example:

(logbitp j (dpb m (byte p s) n)i | wretg e)‘a"’vo!e
<=> (it (and (>= j p) (Cj (+ p 5)))
(logbitp j m)
(Togbitp j n))

10.8. Random Numbers

random &optional iufeger [Function)

(random) recturns a random integer, which may be positive or negative. The range of the result is
implementation-dependent but rcasonably large.

Implementation note: In practice the result should range over all the ixnums.

SPICE LISP REFERENCE MANUAL

96

(random n) accepts a positive integer # and returns a non-negative integer less than n. Each of
the possible results occurs with (approximate) frequency 1/a; that is, the implementation attempts
to provide an (approximately) equal-chance draw from the # intcgers between 0 (inclusive) and n

(exclusive). W
AT
“) o
v %?‘“\g AV '
@a e E\\'\f]
w’” o
(,4\
5 x&i};{ Y Seﬁb
\ W I’“ ‘
Yoo 'a\ pt P\
@ s ¢*’“
f‘ bﬂcﬁ \"s “F
9.“ a N

s <=7
i 1) 7

(el L

)

—

SPICE LISP REFERENCE MANUAL 97

Chapter 11

Characters

COMMON LISP provides a character data type; objects of this type represent printed symbols such as letters.

Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish
among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be
associated with a character. The font attribute permits a specification of the style of the glyphs (such as

ilaliCS). E1THEL HeAg of IN 2"2 ~ENTI6R THAT MO PARTICUL AA- CHAR St1 15 Neeoeo
JANU YHAT Sorte 1P P u-menTATIVNG TA VS FeanNvnS
TO RetAgent CHARALTEAS-
char-code-1imit [Variable]

The initial global value of char-code-1imit is a non-negative integer which is the upper
exclusive bound on values produced by the function char-code (page 101), which rcturns the
code component of a given character; that is, the values returned by char-code are non-negative
and strictly less than the value of char-code-11imit.

Implementation note: For the PERQ, the value will be 256; for the S-1, 512.

char~-font-limit [Variable]
The initial global value of char-font-1imit is a non-negative integer which is the upper
exclusive bound on values produced by the function char-font (page 101), which returns the
font component of a given character; that is, the values returned by char-font arc non-negative
and strictly less than the value of char-font-1imit.

Implementation note: No CoMMON LisP implementation is required to support non-zero font attributes; if it
does not, then char-font-11imit should be 1. For the PERQ, the value will be 256, for the S-1, 512.

char-bits-limit [Variable}
The initial global value of char-bits-1imit is a non-negative integer which is the upper
exclusive bound on values produced by the function char-bits (page 101), which returns the
bits component of a given character; that is, the valucs returned by char-bits are non-negative
and strictly less than the value of char-bits-1imit. Note that the value of char-bits-
Timit will be a power of two. .

Implementation note: No CoMMON Lise implementation is required to support non-zero bits aitributes; if it
does nol, then char-bits-11imit shoutd be 1. For the PERQ, the value will be 2568 for the S-1. 512.

I+ /€au:7 tpvef no'l(' make }gnmt:fb have
L(/ts 4 ’F‘){f\'f in (/‘L same € ‘”"M“e/‘;

Ltj(gow‘) chavac f& AB’(J(‘;‘; CL“‘f«r!-Q"I

SPICE LISP REFERENCE MANUAL 98

11.1. Predicates on Characters

The predicate characterp (page 29) may be used to determinc whether any LISP object is a character
Object. Cuen Wlw‘i‘a*}n! %ﬁf Jm? La«c fl\z,-\?

standard-charp char [Function)
The argument char must be a character object. standard-charp returns t if the argument is a)
"standard character”, that is, one of thc ninety-five ASCII printing characters or one of <tabd, I M

vAdErfTan

<form, <return>, or <rubout>. If the argument is a non-standard character, then standard-) = . 4

charp returns (). Lo pickey n

. ey PIVAY cl’
Note in particular that any character with a non-zero bits or font attribute is non-standard. 4, v, ~gam f: SAY T
AiL inPLemrenTATIONS

ASCr oA Her_ AT J;—la

Tiete CHARS IN The

graphicp char [Function] Pl et Sl
The argument char must be a character object. graphicp returns t if the argument is a "graphic”
(printing) character, and () if it is a "non-graphic” (formatting or control) character. Graphic
characters have a standard textual representation as a single glyph, such as "A™ or "*" or "=", By
convention, the space character is considered to be graphic. Of the standard characters (as defined

by standard-charp), all but <tab>, <form>, <rcturn>, and <rubout> are graphic.

may depend on this for purposes of columnar formatting. Non-graphic characters and characters
of other fonts may be of varying widths. -~

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs) o

Any character with a non-zero bits attribute is non-graphic,

string-charp char [Function]
The argument char must be a character object. string-charp returns t if char can be stored
into a string (sce the functions char (page 151) and rplachar (page 152)), and otherwise returns
(). Any character which satisfies standard-charp and graphicp also satisfies string-
charp; others may also.

alphap char [Function}
The argument char must be a character object. alphap returns t if the argument is an alphabetic
character, and otherwise returns {).

Of the standard characters (as defined by standard-charp), the letters "A" through "Z" and
"a" through "z" arc alphabetic.

uppercasep char [Function]
lowercasep char [unction]
bhothcasep char HFunction)

The argument char must be a character object. vppercasep returtis tif the argiment is an.

l‘:‘

SPICE LISP REFERENCE MANUAL 99

upper-case (majuscule) character, and otherwise returns (). lowercasep returns t if the
argument is an lower-case (minuscule) character, and otherwise returns ().

bothcasep returns t if the argument is upper-case and there is a corresponding lower-case
character (which can be obtained using char-downcase (page 102)), or if the argument is lower-
case and there is a corresponding upper-case character (which can be obtained using char-
upcase (page 102)).

If a character is either upper-case or lower-case, it is necessarily alphabetic. However, it is
permissible in theory for an alphabetic character to be neither uppercase nor lowercase.

Of the standard characters (as defined by standard-charp), the letters "A” through "Z" are
upper-case and "a" through "z" are lower-case.

digitp char &optional (radix 10.) [Function]
The argument char must be a character object, and radix must be a non-necgative integer. digitp
is a pscudo-predicate: if char is not a digit of the radix specified by radix, then it returns ();
otherwise it returns a non-negative integer which is the "weight” of char in that radix.

Digits arc necessarily graphic characters,

Of the standard characters (as defined by standard-charp), the characters "0” through "9”,
"A" through "Z", and "a" through "z" are digits. The weights of "0 through "9" are the integers 0
through 9, and of "A™ through "Z" (and also "a" through "z") are 10 through 35. digitp returns
the weight for one of thesc digits if and only if its weight is strictly less than radix. Thus, for
example, the digits for radix 16 arc "0123456789ABCDEF".

IT wourd Bk (defun convert-string-to-integer (str &optional (radix 10))
pile 16 AL (;HO "Given a digit string and optional radix, return an integer."
Gof wAu.wwNA 2 (do ((j O (+ j 1))

A ﬂflt‘s

risTEY. :’f;': nACANE (n 0 (+ (*n ra_d1:x) . .
gt P (or (digitp (char str j) radix)
(ferror "Bad radix-~D digit: ~C"

radix

(char str i))))))
((= j (string-length str)) n)))

alphanumericp char [Function)
The argument char must be a character object. alphanumericp returns t if char is cither
alphabetic or numeric. By definition, — s Husr « “net all” aromd ALT,

(alphanumericp x) <=> (or (alphap x) Xdigitp x)) (em " and ")
Alphanumeric characters/are thercfore are necessarily graphic (as defined by graphicp (page
98)). 3

Of the standard characters {(as defined by standard-charp), the characters "0" through "9",
"A" through "Z", and "a" through "z" are alphanumeric.

) IO . o1
’, noh ”t(’)(%o \\\u . “\()\A‘()

SPICE LISP REFERENCE MANUAL 100

char= charl char2 [Function]
The arguments char/ and char2 must be character objects. chars= returns t if char! and char2 are
equivalent character objects, having equivalent attributes, and otherwise returns ().

AN -
The function\, CHAR=) is the finest discriminator of characters available to the programmer. If
(char= ¢1 c2Ys true, then any function professing to operate on a character must behave the
same whether given ¢1 or ¢2.

For non-"funny" characters {those not satisfying funny-charp (page FUNNY-CHARP-FUN)),

(CHAR= C1 C2) <=> T555
$ (AND (= (CHAR-CODE C1) (CHAR-CODE C2)) 2o
(= (CHAR-BITS C1) (CHAR-BITS C2))
= (CHAR-FONT C1) (CHAR-FONT C2)))

There is no requirement that (eq c¢1 c¢2) be truc merely because (char= ¢l c¢2) is true.
While eq may distinguish two character objects that char= does not, it is distinguishing them not
as characters, but in some scnse on the basis of a lower-level implementation characteristic. (Of
course, if (eq ¢1 c¢2) is truc then one may expect {char= c1 c2) to be truc.) However, eq1
(page 30) and equal (page 31) compare character objects in the same way that char= does.

char~equal char! char? [Function]
The arguments charl and char? must be character objects.

The predicate char-equal is like char=, except that it ignores differences of font and bits
attributes and case. By definition,
(char-equal c1 ¢2) <=>
(char= (char-upcase (character cl))
{(char-upcase (character ¢2)))

For example:

(char-equal #\A #\a) => t

{char= #\A #\a) => ()

(char-equal #\A (CONTROL #\A)) t
-

Cost
char< charl char? [Function)
char> charl char? : {Function)
The arguments charl'abd char? must be character objects. The predicate char< is true if char!
precedes char? in the (implementation-dependent) total ordering on characters. The predicate
char)> is true if charl follows char? in the (implementation-dependent) total ordering on
characters. Neither is true if the arguments satisfy char= (page 100).

The total ordering on characters is guarantecd to have the following properties:

o The alphanumeric characters obey the following partial ordering:

SPICE LISP REFERENCE MANUAL 101

ACBLCC{DCECFLGCHSICIKKSLKMCNCOSPLQLRLSLTULKVWCXLKYLZ
a<b<c<d<e<f<g<h<i<j<k<1<m<nco<p<q<r<s<tluviwix<y<z
0<€1<2<3<4<H<6<7<8<9

either 9<A or Z<0

either 9<a or 240

This implies that alphabetic ordering holds, and that the digits as a group are not
interleaved with letters, but that the possible interleaving of upper-case letters and
lower-case letters is unspecified.

o If two characters have the same bits and font attributes, then their ordering by char< is
consistent with the numerical ordering by the predicate < (page 83) on their code

attributes.
char-lessp charl char? [Function]
char-greaterp charl char2 [Function]

The arguments charl and char2 must be character objects. The predicate char-lessp is like
char<, except that it ignores differences of font and bits attributes and casc; similarly char-
greaterp islikec char>. By definition,

(char-lessp ¢l ¢2) <=>

{char< (char-upcase (character c1))
(char-upcase (character ¢2)))

11.2. Character Construction and Seclection

char-code char [Function)
The argument char must be a character object. char-code returns the code attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-code-1imit (page97).

char-bits char [Function)
The argument char must be a character object. char-bits rcturns the birs attribute of the
character object; this will be a non-negative integer less than the (normal) valuc of the variable
char-bits~1imit (page97).

char-font char [Function]
The argument char must be a character object. char-font returns the font attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-font-1imit (page 97).

SPICE LISP REFERENCE MANUAL 102

code-char code &optional (bits 0) (font 0) [Function]
All three arguments must be non-negative integers. If it is possible in the implementation to
construct a character object whose code attribute is code, whose bits attribute is bits, and whose font
attribute is font, then such an object is returned; otherwise () is returned.

£ oW

For any integers ¢, b, and £ if (code-char ¢ b f) isnot () then /\ \‘pﬁfw %{
(char-code (code-char ¢ b f)) => ¢ FDI J& o /\‘x,&‘
(char-bits (code-char ¢ b f)) => b NNV LENC
(char-font (code-char ¢ b f)) => f TP X,

If the font and bits attributes of a character object x are zero, then it is the case that ‘\" ¥ ,

(char= (code-char (char-code c)) ¢) => t ! k‘(\tw,ﬁ(o
AV

.
character char &optional (bits 0) (font 0) [Function] fﬁwﬁ", unagt
character is similar to code-char (page 102) except that the first argument is already a 5\ %;}C
character object. {,J\-J et :\ud‘ mabe (ode- car ACCC{’JY either ? a ‘,J"

The argument char must be a character object, and bits and font non-negative integers. If it is
possible in the implementation to construct a character object whose code attribute is that of char,
whose bits attribute is bits, and whose font attribute is font, then such an object is returned:
otherwise () is returned.

If bits and font are zero, then character will not return (). This implies that for every character
object one can “turn off” its bits and font attributes. T Ao A A wa’ft\lﬂz ”

v« ,',,«kr/fy-dx'fﬂaw «f O
N _«COe/ ‘4\0\/) ()\/M*\A‘
11.3. Character Conversions J(‘/L/:‘;“ N B o monchnchr B an @

Caw& A/ cesssiais “/—d-/.m

i~ o oo does ot necef.!“"n'y

P
Wt

char-~upcase char ' <" [Function] Mo a2 chharedtfe.
char-downcase char [Function]

The argument char must be a character object. char-upcase attempts to convert its argument to
an upper-case equivalent; char-downcase attempts to convert to lower case,

char-upcase returns a character object with the same font and bits attributes as char, but with
possibly a different code attribute. If the code is different from char’s, then the predicate
Towercasep (page 98) is true of char, and uppercasep (page 98) is true of the result character.
Moreover, if (char= (char-upcase x) x) is nof truc, then it is true that

(char= (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and bits attributes as
char, but with possibly a different code attribute. If the code is different from char's, then the
predicate uppercasep (page 98) is true of char, and 1owercasep (page 98) is truc of the result
character. Morcover, if (char= (char-downcase x) x) is nof true, then it is true that

(char= (char-upcase (char-downcase x)) x)

SPICE LISP REFERENCE MANUAL 103

digit-char weight &optional (radix 10.) (bits 0) (font 0) [Function)

All arguments must be integers. digit-char returns a character object whose bits attribute is
bits, whose font attribute is font, and whose code is such that the result character has the weight
weight when considered as a digit of the radix radix (sec the predicate d i gitp (page 99)), if that is

__—= Dossible; if that cannot be done, digit-char returns (). digit-char does not return () if
bits and font are zero, radix is between 2 and 36 inclusive, and weight is non-negative and less than
radix. 1f more than one character object can encode such a weight in the given radix, one shall be
chosen consistently by any given implementation; moreover, among the standard characters upper-
case letters are preferred to lower-case letters).

For example:
(digit-char 7) => #\7
(digit-char 12) => () 1
(digit-char 12 16) => #\C inot #\c o MNP
(digit-char 6 2) => () ,m’:."’
(digit-char 1 2) => #\t PO

W
char-int char [Fur_xclziplﬂ(
The argument char must be a character object, or the object #\EOF.FIf char is a character object,
char-int returns a non-negative integer; if char is #\EOF, the result is -1.

If the font and bits attributes of char are zero, then char-int returns the same integer char-
code would. Also,

(char= ci c2) <=> (= (char-int c1) (char-int ¢2))
for characters ¢1 andc2.) | .

This function is provided primarily for the purpose of hashing characters. Also, the functicn tyi
(page 213) is defined in terms of char-int.

\7
int-char integer [Function] r{'fo
The argument must be a non-negative integer. int-char returns a character object(c_stich that
(char-int (c) is cqual to integer, if possible; otherwise int-char returns (). Note that
; - o KT
integermay notbe =1. . auan Trac Tie rarfs LT, c@ﬂ*”"&

s oNE ONTS] 1F S0, S So e<f e
@
<pEhe 7 PP

char-name char o Funetion)
The argument char must be a character object or‘an end-of-file object. If the character has a name,
then that name (a symbol) is returned; for an end-of-file object the name eof is returned;
otherwise () is returned. Al characters which have zero font and bits attributes and which are
non-graphic (do not satisfy the predicate graphicp (page 98)) have names. Graphic characters
may or may not have names,

[gome

g‘, obg-T
At

The standard characters <tab>, <form>, <return>, <ruboutd, and {space> have the
respective names tab, form, return, rubout, and space.

Characters which have names can be notated as “#\" followed by the name: #\Space.
p

SPICE LISP REFERENCE MANUAL 104

name-char sym _ [Function]
The argument sym must be a symbol. If the symbol is the name of a character object, that object is
returned; if the symbol is eof, an end-of-file object is returned; and otherwise () is returned.

11.4. Character Control-Bit Functions

COMMON LISP provides expljc;i t pames for four bits of the bits attribute: Control, Meta, Hyper, and Super.
The following definitions are provided for manipulating these. Each COMMON Lisp implementation provides
these functions for compatibility, even if it does not support any or all of the bits named below.

char-control-bit [Variable]
char-meta-bit [Variable)
char-super-bit [Variable)
char-hyper-bit [Variable]

The initial values of these variables are the "weights” for the four named control bits. The weight
of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8.

If a given implementation of COMMON LisP does not support a particular bit, then the
corresponding variable is zero instead.

controlp char [Function]
metap char [Function)
superp char ' [Function)
hyperp char [Function)

The argument char must be a character object. If the control bit is set within the bits attribute of
char, then controlp returns t, and otherwise returns (). Similarly metap tests the meta bit,
superp the super bit, and hype rp the hyper bit.

" control char [Function)
meta char ; [Function}
super char ; [Function)
hyper char . [Function)

The argument char must be a character object or (). If the argument is (). the result is ()
Otherwise, consider the function control; the other/operate similarly. If controlp is true of

&
&\\/ '

°

V‘{“ﬂ*

L,"‘,_sé\

‘(’ <r <9
_‘qb B“LZ 20

char, then char is returned. Otherwise, if it is possible to construct a character object with the same v«‘" s o AL

code and font attributes, and with the same bits attribute but with the control bit "turned on", then Q"‘ #'.1\0

such a character object is returned, and otherwise () is returned.

,i/
bt \/\u\(
gl S

’\V\“p VL 9 0 ga &
B%‘c S\,«;& iy “\T/b\”‘of .
‘va;?[N\ %L\v“‘ o
W\,Jf“(g

1

SPICE LISP REFERENCE MANUAL 105

uncontrol char [Function}
unmeta char [Function]
unsuper char) [Function]
unhyper char [Function]

The argument char must be a character object or (). If the argument is (), the result is ().
Otherwise, consider the function uncontrol; the other operate similarly. If cont rolp is false of

A char, then char is returned. Otherwise, a character object is returned with the same code and font
attributes, and with the same bits attribute but with the control bit "turned off” (this is always
possible).

SPICE LISP REFERENCE MANUAL 106

SPICE LISP REFERENCE MANUAL 107

Chapter 12

; &"‘ ’{\r
Sequences vl
P oAt
.) po v APt
by g
e, 5

The type sequence encompasscs objects of type 1 istAecto r, and array. While these all are
different data structures with different structpral propertics Jading to different algorithmic uses, they do have
a common property: each contains @_rlt_@ an ordered(scp of elements. In the case of lists and vectors, the
ordering of the elements is "natural”, following the total ordering on the integer indexes of the elements. In
the case of arrays, the ordering of the elements follows the lexicographic ordering of the index sequences for
the clements, and so the elements are considered to be arranged in "row-major" order. If an array is given to
a gencric sequence function, then any indices involved are not array indices (unless the array is one-
dimensional), but rather indices in the row-major ordering. Gewve Av Ex Artie oF fow -rAsOR | ¢, (0) (o
(o2) (« o_‘
There are some operations which arc useful on lists, vectors, and arrays because they deal with ordcrcdéc(s;-—)77
of clements. One may ask the number of elements, reverse the erdering, concatenate two ordered @(O form
a larger one, and so on. A sct of operations are provided on sequences; these are generic operations, which
may be applied to lists, vectors, or arrays. There are type-specific versions of these operations as well, which
may be used for declarative or error-checking purposes.

These are the operations defined on sequences:

elt reverse map remove
setelt nreverse some position
subseq concat every scan-over
copyseq reduce notany count
length left-reduce notevery mismatch
fin right-reduce merge maxprefix
replace sort nmerge maxsuffix
’ search

The operations in the last column involve search or comparison. Each of these comes in scveral varieties and
two directions. The varicty indicates how elements are to be compared; the direction can be cither forward or
reverse. For example, the remove opcration has these ten variations:

I
Forward direction & ‘\ﬁlcvcrsc dircction
remove remove-from-end Compare ciements using equal
remq remq-from-end Compare clements using eq
rem rem-from-end Compare elements with user predicate
rem-if rem-from-end-if Test elements with user predicate
rem-if-not rem-from-end-if-not Test clements with inverse user predicate
4A%Y . L
1 g,(;\‘\’ 7owAa Megayz Sonl ;-,E‘c .
h,‘ ’.' 2 0 R ‘oo ~ 9 S /]c ‘\
5"’97“/\"/\? e~ obloreviaivn T not T cor &t
names, W Aftyl*r\{’ 2novih e)(\'\a\) "“7W
h\.VJ »‘j‘ conft ~ \ A umM‘{.‘ v XS
A v, o\(‘iﬂha 4 (fw» }v/,/d 1O M’d
can &€ veed . T

SPICE LISP REFERENCE MANUAL 108

As a rule, for each of these names x there is a generic function named x which operates on sequences,
There are also type-specific functions as follows:

Name Type of sequence operated upon

list-x Lists

bit-x Bit vectors

string-x Strings

vXx General vectors (those of type (vector t))
vx@ Vectors of a type indicated by the first argument

Use of such a type-specific function implies that any sequence arguments must be of the specified type, any
arguments stored into or compared with elements of a sequence must be of an appropriate type, and that the
result will be a sequence or element of the appropriate type.

Rationale: All of these options mulliplied out makes for a very large number of functions: This was dcemed more
perspicuous than passing flags to a smaller number of functions, and more consistent than providing an incomplete sct.
1ist-rem-from-end-1if-not secms to be a conceptually atomic operation, for example, despite the fact that its name is
made from four separate components.

Comwpatibility note: In a few of its string functions, Lisp Machine Lisp uses the term - reversae- in function names to
indicate that the string is traversed in the backwards direction Unfortunately, there is a possible confusion with the
reversing of the string, which is not quite the same thing. NiL has proposcd that the letier b be used, presumably standing
for "backwards”. Mere the suffix - f rom-end is proposed; I believe the meaning of this to be more immediately evident. O

[(et sequence index [Function)
l This returns the element of sequence specificd by index, which must be a non-negative integer less
than the length of the sequence. The first element of any sequence has index 0.

Sec Tist-elt (page 138), nth (page 125), aref, vref (page 162), bit, char (page 151), and

vref@ (page 170). 0. ARG ORDER ComplLeTeLt
. X (NG pavi Bl wiTH ASET.

: S A o THIG would & CoNFv Mg,
[\l setelt sequence index newvalue U9 ocd [Function)

The object newvalue is stored into the component of the sequence specified by index, which must be
a non-negative integer less than the length of the sequence. The first element of any sequence has
index 0. If sequence is a specialized vector, then the newvalue must be an object which that vector
can contain.

Sce Tist-setelt (page 138), setnth (page SETNTH-FUN), aset (page 177), vset (page
162), rplachit, rplachar (page 152), and vset® (page 170).

“ subseq sequence start &optional end [Function)
This returns a subsequence of sequence, starting at the clement specified by the integer index start
and going up to, but not including, the clement specified by the integer index end. The length of
the subsequence is therefore end minus start. IF end is not specified, it defaults to the length of the
sequence, meaning that all clements after start arc included. 1t is an error if end is less than start, or
if either is less than zero or greater than the length of the string.

subseq (as with all its type-specific vatiants) a/ways allocates a new sequence for a results it never

I

I

SPICE LISP REFERENCE MANUAL 109

shares storage with an old sequence. The result subsequence is always of the same type as the
argument sequence.

See sub1ist (page 138), subvector (page SUBVECTOR-FUN), subvec, substring, sub; 'fL
bits (page 166), and subvec@ (page 171). s

Compatibility note: Although this function and most of the others in this chapter take their names from those L v pW‘
proposed for NiL, they use the start and end convention for delimiting substrings as in Lisp Machine Lisp, or
rather than the start and couns convention. While the latter scems to be somewhat more convenient for certain Tt lee

- ; i
contemporary hardware such as the vax and S-1. and therefore for their compilers, the former seems to be far L
more convenient for the user (according to an informal poll). This would seem to be an overriding)
consideration.

|l copyseq sequence [Function]

A copy is made of the argument sequence; the resultis equal to the argument but not eq to it.
(copyseq x) <=> (subseq x 0)
but the name copyseq is more perspicuous when applicable.

See copylist (page 126), copyvector (page COPYVECTOR-FUN), copyvec,
copystring, copybits (page 166), and copyvec@ (page 171). -

length sequence [Function]

The number of elements in sequerce is returned as a non-negative integer. Note that Tength and
1ist-Tength bechave differently when given a vector; 1ength rctéds the length of the vector,
while 1ist-Tength dlwaysireturns zero.

See 1ist-Tength (page 124), arr;y~1ength (page 177), viength (page 163), bit-length
(page 166), string-Tength (page 155), and v1ength@ (page 171).

fi11 sequence item &optional start end- [Function)

The sequence is destructively modified by replacing some or all of its elements with the ifem. The
item may be any LISP object, but must be a suitable element for the sequence. The item is stored
into all the components of the sequence, beginning at the one specified by the index start, and up to
but not including the one specified by the index end. The start index defaults to zero, and the end
index to the length of the sequence. 111 returns the modified sequence.
For example:

(setg x (vector 'a 'b 'c 'd 'e)) => #(a b c d e)

(fi11 x 'z 1 3) => #(a z z d e)

andnow x => #(a z z d e)

(fi11 x 'p) => #(pp p p P)
andnow x => #(p p p p p)

Sec 1ist-fi11 (page 138), vfil11 (page 163), bit-fi11 (page 166), string-fi11 (page
155), and vfi11@ (page 171). '

SPICE LISP REFERENCE MANUAL 110

Il replace target-sequence source-sequence &optional (target-start source-start target-end source-epd|[F
1 . |

The target-sequence is destructively modificd by copying successive elements into it from solree-
sequence. The elements of source-sequence must be of a type that may be stored into the target-
sequence. The leftmost element modified is specified by the index farger-start, which defaults to
zero; the leftmost element copied is specificd by the index source-start, which also defaults to zero.
The index target-end limits the region of farget-sequence which is modified; it defaults to the length
of the target-sequence. source-end limits the region of source-sequence which is copicd; it defaults
to the length of the source-sequence. The indices must all be integers and satisfy the relationships

- A
(<= 0 target-start target-end (length (farget-sequence)) In g i"‘i& -
(<= 0 source-start source-end (leéngth source-sequence)) o 71\4 /Mg
The number of elements copied may be expressed as: ” b,ovlau" ¢ PPT J.rsﬂ;f
- s
(min (- target-end target-start) (~ source-end source-start)) ¢ air, Q_ \ an ‘;‘J
2%l
The value returned by replace is the modified target-sequence. ‘Y‘\"t 1"“ ca *’{':‘ 7 it.
\p2 o~

If target-sequence and source-sequence are the same object and the region being modified overlaps
with the region being copied from, then the results are undefined.

Sce 1ist-replace (page 138), vreplace (page 163), bit-replace (page 166), string-
replace (page 155), and vreplace® (page 171).

reverse sequence {Function)
SEHUEILC

The result is a new sequence of the same kind as sequence, containing the same elements but in

reverse order. The argument is not modified. Sezp 127 — wewn 15 AeAse OF R QoTTEY L7 THe

SATE AL LiT-AeversE oF ir?
See 1ist-reverse (page 127), vreverse (page 163), bit-reverse (page 166), string-
reverse (page 155), and vreverse@ (page 171).

nreverse sequence [Function]

Thmis a sequence containing the same eclements as sequence but in reverse order. The
argument is destroyed and re-used to produce the result. The result may or may not be eq to the
argument, so it is usually wise to say something like (setq x (nreverse x)), because simply
(nreverse x) is not guaranteed to leave a reversed value in x.

See list-nreverse (page 127), vnreverse (page 163). bit-nreverse (page 166),
string-nreverse (page 155), and vnreverse@ (page 171).

03&’ e avord ueless blreviahon it only malkes na~es Lacder Yo rememtber.

[
l\concat

Trest sequences Phis

[Function]
The result is a new scquence which contains all the elements of all the sequences in order. All of

the sequences are copied from; the result does not share any structure with any of the argument alte

sequences (in this concat differs from append).

The type of the result may depend to some extent on the implementation. As a rule it should be
the teast general sequence type among those the implementation provides which can contain the
clements of all the argument sequences. The implementation miust be such that concat is

e not vied so CCM‘H@ Mot 74 needs Jo be <L orte,,

neg

SPICE LISP REFERENCE MANUAL 111

associative, in the sensc that the clements of the result sequence are not affected by reassociation
(but the type of the result sequence may be affected). If no arguments are provided, concat

rewrns (). —— T .« Yoboiovs doek ff\,\is) T O (?A.l»(/ ’hw-\ (Y ar o4 o

See 1ist-concat (page 138), vconcat (page 163), bit-concat (page 166), string-
concat (page 155), and vconcat@ (page 171).

reduce fiunction sequence &optional start-value [Function]
left~reduce function sequence &optional start-value [Function)
right-reduce function sequence &optional siart-value [Function)

These functions are similar to the reduction operator of APL. The function must be a function of
two arguments which can operate on clements of the sequence. In general, the result is produced
by using finction to accumulate the elements of the sequence. If the argument start-value is
provided, it is used to initialize the accumulation; in this case the sequence may be empty (in which

casc the result is start-value). If start-value is not provided, the sequence may not be empty. (poe $

Ne ik deaad Tsvped as T\i{;{;
For brevity, let the finction be called £, and let the elements of the sequence be called x/, x2, . . ., -

Trm

u‘-t’-ll
xn. Then the result of 1eft-reduce with two arguments is: LA 1{9\“’
... (f{fxI x2) x3) ... xn) o c“"_:u
- . . Bads
That is, the function f’is applied to the elements Icft-associatively. If a start-value is provided, then -y .. &

the result is:

(f ... (f (f (f start-value x1) x2} x3} ... xn)

The result of right~-reduce is similar, but the elements are right-associated:

(fxt (fx2 ... (fxn=1 xn) ...))
(fxI (fx2 ... (f xn=1 (f xn start-value) ...))

The result of reduce.is similar to these, but the finction is assumed to be associative (and
additionally assumed to be commutative if a start-value is provided), and so th¢ elements may be
associated in any manner the implementation desires. *\/\ RaY _lw-k'au,j random,

For example:

(reduce #'+ '(1 2 3 4 6)) => 15
(reduce #'* x) => product of elements of x, which must be non-ecmpty
(reduce #'* x 1) => product of elements of x, which may be non-empty

Note that frequently the start-value ought to be the identity for the finction.

(right-reduce #'cons "abcd") => (#\a #\b #\c¢ . #\d)
(right-reduce #'cons "abcd" '()) => (#\a #\b #\c #\d)
(left-reduce #'cons "abcd") => (((#\a . #\b) . #\c) . #\d)
(1left-reduce #'cons "abcd" '())

=> (({(() . #\a) . #\b) . #c) . #A4d)
(reduce #'cons "abcd") => unpredictable (cons is not associative)

Sec 1ist-reduce (page 139), vreduce (page 163), bit-reduce (page 166), string-
reduce (page 156), and vreduce® (page 171).

s
%

SPICE LISP REFERENCE MANUAL 112

o0

Lo Pt
] : - Pess ase
ll map function &rest sequences [Function) ¢ 8% S

[2

&

The function must take as many arguments as there are sequences provided.” The result of map is a
sequence such that element j is the result of applying function to clement j of each of the argument
sequences. The result sequence is as long as the shortest of the input seguences. As a boundary
case, if no sequences are given, the finction must take no arguments, and it is called indefinitely
many times; the call to map will normally never terminate.

If the function has side-effects, it can count on being called first on all the elements numbered 0,
then on all those numbered 1, and so on.

W P
J\x ¢ ,} The type of the result sequence is implementation-dependent; a type-specific function can be used
fﬁ <sJ\?r 4 to specify the argument and result scquence types. Sece Tist-map (page 139), vmap (page 163),
Q\?/ Qv vyf bit-map (page 166), st ring-map (page 156), and vmap@ (page 171).
p4 X, Compatibility note: In MACLisp, Lisp Machine Lisp, INTERLISP, and indeed even Lisp 1.5, the function map has
'} J_,-|-" {a, always meant a non-value-returning version. In my opinion they blew it. I suggest that for ComMON Lisp this
\ (‘\J SN should be corrected, as the names map and reduce have become quite common in the literature, map always
§ meaning what in the past Lisp people have calicd mapcar. It would simplify things in the future to make the
standard (according 1o the rest of the world) name map do the standard thing. Therefore the old map function oK
is here renamed map 1 (page 52). '
some predicate &rest sequences [Function]
every predicate &rest sequences [Function]
|| notany predicate &rest sequences [Function]
|l notevery predicate &rest sequences [Function]

These are all predicates, The predicate must take as many arguments as there are sequences
provided. The predicate is first applied to the clements with index 0 in each of the sequences, and
possibly then to the elements with index 1, and so on, until a termination criterion is met or the end
of the shortest of the sequences is reached.

some returns as soon as any invocation of predicate returns a non-() value; some returns that
valuc. If the end of a sequence is reached, some returns (). Thus as a predicate it is true if some
invocation of predicate is true.

every returns () as soon as any invocation of predicate returns (). If the end of a sequence is
recached, every returns t. Thus as a predicate it is true if every invocation of predicate is true.

notany returns () as soon as any invocation of predicate returns a non-{) value. If the end of a
sequence is reached, notany returns t. Thus as a predicate it is true if #o invocation of predicate is
true.

notevery returns t as soon as any invocation of predicate returns (). If the end of a sequence is
reached, notevery rcturns (). Thus as a predicate it is true if not every invocation of predicate is
truc.

Ceompatibility note: The order of the arguments here is not compatible with INtERLISP and Lisp Machine Lisp.
This is to stress the similarity of these functions to map. ‘The functions are therefore extended here to funclions
of more than onc argument, and multiple sequences

If no sequences are given, then the predicate must be able take no arputments. In this case, the

SPICE LiSP REFERENCE MANUAL 113

predicate is called repeatedly; some and notany return only if predicate ever returns a non-{)
value, and every and notevery return only if predicate ever returns ().

See 1ist-some (page 139), vsome (page 163), bit-some (page 166), string-some (page
156), and vsome@ (page 171), and related functions.

remove ifem sequence &optional count [Function]

remq item sequence &optional count [Function]

rem predicale item sequence &optional count [Function)

rem-if predicate sequence &optional count - [Function)

rem~if-not predicate sequence &optional count [Function)

remove-from-end item sequence &optional count [Function]
(remq-from-end iltem sequence &optional count [Function)
'| rem-from-end predicate item sequence &optional count [Function}
|| rem-from-end~-if predicate sequence &optional count [Function]
|

rem-from-end-if-not predicate sequence &optional count [Function]
The result is a sequence of the same kind as the argument sequence, which has the same elements
except that those satisfying a certain test have been removed. This is a nondestructive operation;
the result is a copy of the input sequence, save that some elements are not copied.

For remove, an clement is removed if item is equal to it.
For remq, an clement is removed if item is eq to it.

For rem, an clement is removed is predicate is true when applied to ifem and an element (in that
order).

For rem-1if, an clement is removed if predicate is true of it.
For rem-1if-not, an element is removed if predicate is not true of it.

The argument count, if supplicd, limits the number of clements removed; if more clements than

count satisfy the test, only the _lgﬁmost count such are removed,
T L fm—l.ms‘*;. FMST"?

The ~f rom-end variants differ from the others only when count is provided; in that casc only the
rightmost courzK'elccmnts\satisfying the test are removed.

For example:
(remove 4 '(1 2 413 45))=>(12135)
(remove 4 '(1 2413 45)1) = (121345)
(remove-from-end 4 '(1 2 413 45) 1) =>(124135)
(rem #'> 3 '(12 413 456)) =>(4345)
(rem-if #'oddp '(1 2 4 1 3 4 56)) => (2 4 4)
(rem-from-end-if #'evenp '(1 2413 45)1) =>(12413H5)

The result of remove and related functions may share with the argument sequence; a list result
may share a tail with an input list, and the result may be eq to the input sequence if no clements
need to be removed.

SPICE LISP REFERENCE MANUAL 114

Sce l1ist-remove (page 139), vremove (page 163), bit-remove (page 167), string-
remove (page 156), and vremove@ (page 171), and related functions.

| position item sequence &optional start end [Function]
posq ilem sequence &optional start end [Function]
pos predicate item sequence &optional star! end [Function]
pos-if predicate sequence &optional start end [Function]
pos-if-not predicate sequence &optional start end [Function)
position-from-end item sequence &optional start end [Function]
posq-from-end item sequence &optional star! end [Function)
pos-from-end predicate item sequence &optional start end [Function]
pos-from-end-if predicate sequence &optional start end {Function]

pos-from-end-if-not predicate sequence &optional start end [Function)

If the sequence contains an element satisfying a certain test, then the index within the sequence of
the lefimost such element is returned as a non-negative integer; otherwise () is returned.

For position, an clement passes the test if item is equal to it.
For posq, an element passes the test if itemis eq to it.

For pos, an clement passes the test is predxcale is true when applicd to item and an clement (in that
order).

For pos-1if, an clement passes the test if predicate is true of it.
For pos-if-not, an clement passes the test if predicate is not true of it.

The -f rom-end variants differ in that the index of the rightmost element passing the test, if any, is
returned.

The implementation may choose to scan the sequence in any order; there is no guarantee on the
number of times the test is made. For cxample, position-from-end might scan alist from left-
to-right instcad of from right-to-left. Thercfore it is a good idea for a user-supplicd predicate to be
frce of side-effects.

The arguments szart and end limit the scarch to the specificd subsequence; as usual, start defaults
to zero and end to the length of the sequence,

Sce 1ist-position (page 139), vposition (page 164), bit-position (page 167),
string-position (page 156), and vposition@ (page 172), and related functions.

| scan-over iftem sequence &optional start end [Function]
1 scanq item sequence &optional start end [Function]
__scan predicate item sequence &optional start end {Function)
scan-if predicate sequence &optional start end [Function)
scan-if-not predicate sequence &optional start end [Function)

'Cu\
¥ @ JMF‘ (\uﬂ"’"jb\

r;{l"' W \PQ_ WT‘
LQ “\(,(. e \v-/ ‘\(
quw\(’ gg{v“ / }{ < \4\(6)SL 0UI'JN

)Y‘: S\’v ().l
& Qs s
(/ul\ ? \ P(?/ 0./‘ ® 7

SPICE LISP REFERENCE MANUAL 115

scan-over-from-end item sequence &optional start end [Function]

scanq-from-end item sequence &optional start end [Function]

scan-from-end predicate item sequence &optional start end [Function]

scan-from-end-if predicate sequence &optional start end [Function]

scan-from-end-if-not predicate sequence &optional start end [Function]
If the sequence contains an element failing a certain test, then the index within the sequence of the
leftmost such element is returned as a non-negative integer; otherwise () is returned. In other
words, elements satisfying the test are scanned over.

For scan-over, an clement passes the test if item is equal to it; therefore scan-over scans for
an element to which item is not equal.

For scang, an element passes the test if item is eq to it; therefore scangq scans for an element to
which item is not eq.

For scan, an element passes the test is predicate is true when applied to ifem and an element (in
that order); therefore scan scans for an clement for which the predicate is false when so applied.

For scan-if, an element passes the test if predicate is true of it; therefore scan-1f is the same as
pos-if-not (page 114).

For scan-if-not, an element passcs the test if predicate is not true of it; therefore scan-if-
not is the same as pos-1if (page 114).

The -f rom-end variants differ in that the index of the rightmost clement failing the test, if any, is
returned.

The implementation may choose to scan the sequence in any order; there is no guarantee on the
number of times the test is made. For example, scan-over-from-end might scan a list from
left-to-right instcad of from right-to-left. Therefore it is a good idea for a user-supplied predicate to
be free of side-effects. :

The arguments start and end limit the search to the specified subsequence; as usual, start defaults
to zero and end to the length of the sequence.

Sce list-scan-over (page 140), vscan-over (pagc 164), bit-scan-over (page 168),
string-scan-over (page 157), and vscan-over@ (page 172), and related functions.

777 Query: I am not excited at all over these names. In Nt these were called skip, skpq, skp, and so on; ~ ‘fé
Fahlman and others have objected to those names. One idea is 10 can them and just use pos:

{scanq x s) <=> (pos #'(lambda (a b) {(not {(eq a b))) x s)

Any other suggestions? Ry,
count item sequence &optional start end [Function]
cntq item sequence &optional start end [Function]
cnt predicate item sequence &optional start end [Function]
cnt-if predicate sequence &optional start end [Function]

cnt-if-not predicate sequence &optional star! end [Function)

cen’ \

e —————— .

SPICE LISP REFERENCE MANUAL 116

The result is always a non-negative integer, the number of clements in the sequence satisfying a
certain test.

For count, an element passes the test if item is equal to it.
For cntq, an clement passcs the test if item is eq to it.

For cnt, an element passes the test is predicare is true when applied to iferm and an element (in that
order). '

For cnt-if, an element passes the test if predicate is true of it.
For cnt~-1if-not, an element passces the test if predicate is not true of it.

There is no guarantec on the number of times a user-supplied predicate will be called. For
(ﬂ,r example, a tricky implementation for bit-vectors might call the predicate once each on the values 0
andjy assume that those results are valid for all calls on 0 and 1, and then just count the actual bits
and rcturn an appropriate result. Thercfore it is a good idea for a user-supplied predicate to be free
of side-effects.

The arguments starf and end limit the search to the specified subsequence; as usual, starf defaults
to zero and end to the length of the sequence.

See Tist-count (page 140), vcount (page 164), bit-count (page 168), string-count
(page 157), and vcount@ (page 172), and related functions.

mismatch sequencel sequence? &optional start! start2 end! end2 [Function]
mismatq sequencel sequence? &optional startl start2 endl end? {Function]
mismat predicate sequencel sequence? &optional startl star2 endl end2 [Function]

mismatch-from-end seguencel sequence? &optional startl swart2 endl end2 [Function]
mismatq-from-end sequencel sequence? &optional siart! start2 endl end? [Function]
mismat-from-end predicate sequencel sequence? &optional siartl start2 endl end? [Function]

The arguments sequencel and sequence? are compared element-wise, If they are of equal length
and match in every element, the result is (). Otherwise, the result is a non-negative integer, the
index of the leftmost position at which they fail to match; or, if one is shorter than and a matching
prefix of the other, the length of the shorter sequence is returned.

For mismatch, elements are compared using equal.
For mismatq, clements are compared using eq.

For mismat, clements are compared by passing an element of sequencel and an elcment of
sequence? (in that order) to a uscr-specified predicate.

The arguments start! and end! delimit a subsequence of sequencel to be matched, and stare2 and
end? delimit a subsequence of sequence2. As usual, startl and start2 default to zero, end! to the
length of sequencel. and end? to the length of sequence2. 'I'he comparison proceeds by first

SPICE LISP REFERENCE MANUAL 117

aligning the left-hand ends of the two subsequences; the index returned is an index into sequencel.
mismatch is therefore not commutative if start/ and start2 are not equal.

The -from-end variants differ in that the index of the rightmost position in which the sequences
differ is returned. The (sub)sequences are aligned at their right-hand ends; the last elements are
compared, the penultimate elements, and so on. The index returned is again an index into
sequencel. If the first sequence is a proper suffix of the second, zero is returned; if the second is a
proper suffix of the first, the length of the first lcssjhe&'m}z_!t of the second is returned.

Sl
The implementation may choose to match the sequences in any order; there is no guarantee on the
number of times the test is made. For example, mismatch-from-end might match a list from
left-to-right instcad of from right-to-left. Therefore it is a good idea for a user-supplied predicate to
be free of side-effects.

Sec Tist-mismatch (page 140), vmismatch (page 164), bit-mismatch (page 168),
string-mismatch (page 157), and vmismatch@ (page 172), and related functions.

.

maxprefix sequencel sequence? &optional startl start2 endl end2 {Function}
maxprefq sequencel sequence? &optional startl start? endl end? [Function)
maxpref predicate sequencel sequence? &optional startl start? endl end? [Function]
maxsuffix sequencel sequence? &optional start! start2 endl end? [Function)
maxsuffq sequencel sequence? &optional startl start2 endl end? [Function)
maxsuff predicate sequencel sequence? &optional startl start2 endl end2 {Function]

The arguments sequencel and sequence? are compared element-wise. The result is a non-negative
integer, the index of the lefimost position at which they fail to match; or, if one is shorter than and
a matching prefix of the other, the length of the shorter sequence is returned. If they are of equal
length and match in every element, the result is the length of each,

Formaxprefix, clements are compared using equal.
Formaxprefq, elements are compared using eq.

For maxpref, elements are compared by passing an element of sequencel and an clement of
sequence? (in that order) to a user-specified predicate.

The arguments start! and end! delimit a subsequence of sequencel to be matched, and start2 and
end2 delimit a subsequence of sequence2. As usual, startl and start2 default to zero, end! to the
length of sequencel, and end2? to the length of sequence?. The comparison proceeds by first
aligning the left-hand ends of the two subsequences; the index returned is an index into sequencel.
maxp ref ix is thercfore not commutative if stare/ and start2 are not cqual.

The suffix and suff variants differ in that 1 plus the index of the rightmost position in which
the sequences differ is returned. The (sub)sequences are aligned at their right-hand ends; the last
clements are compared, the penultimate clements, and so on. The index returned is again an index
into sequencel. 1f the first sequence is a proper suffix of the second, zero is returned; if the sccond
is a proper suffix of the {irst, the length of the first less that of the second is returncd,

SPICE LISP REFERENCE MANUAL 118

The implementation may choose to match the sequences in any order; there is no guarantee on the
number of times the test is made. For example, maxsuff ix might match lists from lefi-to-right
instead of from right-to-left. Therefore it is a good idea for a user-supplied predicate to be free of
side-effects.

See 1ist-maxprefix (page 140), vmaxprefix (page 165), bit-maxprefix (page 168),
string-maxpref ix (page 158), and vmaxpref ix@ (page 173), and related functions,

search sequencel sequence? &optional startl start2 endl end? [Function]
srchq sequencel sequence? &optional startl start2 endl end? [Function]

srch predicate sequencel sequence? &optional startl start2 endl end? [Function]
search-from-end sequencel sequence? &optional start! start? endl end? [Function]
srchq-from-end sequencel sequence? &optional startl start2 endl end? [Function]
srch-from-end predicate sequencel sequence? &optional startl start2 end! end2 [Function)

A search is conducted for a subsequence of sequence? which element-wise matches sequencel, If
there is no such subsequence, the result is () ; if there is, the result is the index into sequence? of
the leftmost element of the leftmost such matching subscquence.

For search, elements arc compared using equal.
For srchgq, elements are compared using eq.

For srch, elements are compared by passing an clement of sequence! and an clement of sequence2
(in that order) to a user-specified predicate.

The arguments start! and end! delimit a subsequence of sequencel to be matched, and start2 and
end?2 delimit a subsequence of sequence to be searched. As usual, start! and stare2 default to zero,
end! to the length of sequencel, and end2 to the length of sequence?2.

The -f rom=-end variants differ in that the index of the leftmost element of the rightmost matching
subsequence is returned.

The implementation may choose to! cnt }hc sequence in any order; there is no guarantce on the
number of times the test is made, For example search-from-end mlgh(\cnt 2 list from left-to-
right instcad of from right-to-left. Therefore it is a good idea for a uscr-supplied predicate to be
free of side-effects.

See list-search (page 141), vsearch (page 165), bit-search (page 169), string-
search (page 158), and vsearch@ (page 173), and related functions.

P50
for 7 E L Ll
sort seguence predicate [Function) 4 ﬂ“f \cey v
sortcar seguence predicate {Function) © e eV ol

n sortslot sequence key-function predicate [Function) an
The sequence is destructively sorted according to an ordering determined by the predicate. The
predicate should take two arguments, and retum non-() ifand only i the first argument is strictly

SPICE LISP REFERENCE MANUAL 119

less than the second (in some appropriate sensc). If the first argument is greater than or equal to
the second (in the appropriate sense), then the predicate should return ().

The sort function determines the relationship between two elements by giving the elements to the
predicate. sortcar assumes that all elements of the sequence are lists, and gives the car of each
element to the predicate, we say that the car of cach element is the sort key, and the cdr is other data
associated with the key. sorts1ot allows an arbitrary key-function to determine the key, given an
element. The key-function should not have any side cffects. A useful example of a key function
would be a component selector function for a defstruct (page 181) structure, for sorting a
sequence of structures,
{sortstot a f p)
<=> (sort a #'(1ambda (x y) (p (fx) (f¥))))

While the above two expression'\’are cquivalent, sortsiot may be more efficient in some
implementations for certain types of arguments. For example, an implementation may choose to
apply key-function to each item just once, putting the resulting keys into a separate table, and then
sort the parallel tables, as opposed to applying key-finction to an item every time just before
applying the predicate.

If the predicate always returns, then the sorting operation will always terminate, producing a
sequence containing the same elements as the original secquence (that is, the result is a permutation
of sequence). ‘This is guaranteed cven if the predicate docs not really consistently represent a total
order, If the predicate does reflect some total ordering criterion, then the elements of the result
sequence will conform to that ordering, The sorting operation is not guaranteed stable, however;
elements considered cqual by the predicate may or may not stay in their original order.

The sorting operation is destructive in all cascs. In the casc of an array or vector argument, this is
accomplished by permuting the clements; sorting an array means rearranging the elements so that

they are sorted with respect to row-major order. In the case of a list, the list is destructively
reordercd in the same manner as for nreverse (page 110). Thus if the argument should not be 3
destroyed, the user must sort a copy of the argument. \s0 st oo P e, r\"i\ v 1{\:0;5 ’

. . guscnctcel ¢g 4o AV ;
Should the comparison predicate cause an error, such as a wrong type argument error, the state of g

the list or array being sorted is undefined. However; if the error is corrected the sort will, of course,
proceed correctly.

Note that since sorting requires many comparisons, and thus many calls to the predicate, sorting
will be much faster if the predicate is a compiled function rather than interpreted.
For example:
{defun mostcar (x)
(if (symbolp x) x (mostcar {(car x))))

{sort 'fooarray
#'(tambda (x y)
(string-lessp (mostcar x) (mostcar y)))))

If fooarray contained these items before the sort:

SPICE LISP REFERENCE MANUAL 120

(Tokens (The lion sleeps tonight))

(Carpenters (Close to you))

({Ro11ing Stones) {(Brown sugar))

((Beach Boys) (I get around)) l/\"‘)
(Beatles (I want to hold your hand))

then after the sort fooarray would contain: S\N{d\& o‘ 90

((Beach Boys) (I get around)) Mt\,\ﬂf ,Gr‘
(Beatles (I want to hold your hand))
(Carpenters (Close to you)) (¥
((Rol1ling Stones) (Brown sugar))

{(Tokens (The lion sleeps tonight))

Sce 1ist-sort (page 141), vsort (page 165), bit-sort (page 169), string-sort (page
158), and vsort@ (page 173), and related functions,

merge sequencel sequence? predicate {Function]

mergecar sequencel sequencel predicate [Function]
mergeslot sequencel sequence? key-function predicate [Function]

The scquences sequencel and sequence? are nondestructively merged according to an ordering
determined by the predicate. The predicate should take two arguments, and return non-() if and
only if the first argument is strictly less than the sccond (in some appropriate sense). If the first
argument is greater than or equal to the second (in the appropriate sense), then the predicate should
return ().

The me rge function determines the relationship between two elements by giving the clements to
the predicate. mergecar assumnes that all clements of the sequence arc lists, and gives the car of
cach element to the predicate; we say that the car of cach element is the merge key, and the cdr is
other data associated with the key. merges1ot allows an arbitrary key-finction to determine the
key, given an clement, The key-function should not have any side effccts. A uscful example of a
key function would be a component selector function for a defstruct (page 181) structure, for
merging a sequence of structures.

If the predicate always returns, then the merging operation will always terminate, producing a
sequence containing the same elements as the two input sequences (that is, the result is a
permutation of the concatenation of sequencel and sequence?). ‘This is guarantced even if the
predicate does not really consistently represent a total order. If the predicate does reflect some total
ordering criterion, and each of the input sequences was already sorted according to this ordering,
then the clements of the result sequence will conform to that ordering. The merging operation is
not guarantced stable, however; if two or more elements are considered equal by the predicate, then
the elements from sequencel may or may not precede those from sequence? in the resuit,

The merging operation is non-destructive; however, the result may share structure with the inputs.
For example:
(merge '(1 3 46 7) '(258) #'<) => (12345867 8)

See Tist-merge (page 141), vmerge (page 165). bit-merge {page 169), string-merge
(page 158), and vmerge@ (page 173), and related functions,

SPICE LISP REFERENCE MANUAL 121

nmerge sequencel sequence? predicate [Function)
nmergecar sequencel sequence? predicate [Function]
nmergestot sequencel sequence? key-function predicate [Function]

These functions are exactly like merge, mergecar, and mergeslot (page 120), except that these

may perform the merging operation destructively. The input scquences may be destroyed, and/or
the result may share structure with the input sequences.

See list-nmerge (page 141), vnmerge (page 165), bit-nmerge (page 169), string-
nme rge (page 158), and vnme rge® (page 173), and related functions.

= — WH T
| poN’ THPK | UNBERGIANO WhAT 1T 1S TO reneE 8

woulrd B¢ THe ReESueT 1F owE s BovH 1N PUT
SeaueNces weXE UNSO/LTEﬂ?

SPICE LISP REFERENCE MANUAL 122

M’W
e

SPICE LISP REFERENCE MANUAL 123

M
w\c

5

Lt * %

‘J\M* bjﬂ - \,/\"‘UL

Chapter 13
)(‘J\

Manipulating List Structure

A cons, or dotted pair, is a compound data object having two components, called the car and ¢dr. Each
component may be any LISP object. A [ist is a chain of conses linked by cdr fields; the chain is terminated by
some atom (a non-cons object). An ordinary list is terminated by (), the empty list. A list whosc ¢dr-chain is
terminated by some non-() atom is called a dotted list; }

13.1. Conses

car x

cdr x

c...r

[Function]
Returns the car of x, which must be a cons or () ; that is, x must satisfy the predicate 1istp (page
27). By dcfinition, the carof () is (). If the cons is regarded as the first cons of a list, then car
returns the first clement of the list.

For example:
(car '(a b c)) => a

{Function]
Returns the cdr of x, which must be a cons or (); that is, x must satisfy the predicate 1istp (page
27). By definition, the cdrof () is (). If the cons is regarded as the first cons of a list, then cdr
returns the rest of the list, which is a list with all elements but the first of the original list.

For example:
(cdr '(a b ¢)) => (b ¢)

x [Function]
All of the compositions of up to four car’s and ¢dr’s are defined as functions in their own right. The
names of these functions begin with "¢ and end with "r", and in between is a sequence of “a™’s
and "d"’s corresponding to the compaosition performed by the function.
For example:
(cddadr x) isthesameas (cdr (cdr (car (cdr x))))

If the argutnent is regarded as a list, then cadr returns the second element of the list, caddr the
third, and cadddr the fourth. If the first element of a listis a list, then caar is the first element of

SPICE LISP REFERENCE MANUAL 124

the sublist, cdar is the rest of that sublist, and cadar is the second element of the sublist; and so
on.

As a matter of style, it is often preferable to define a function or macro to access part of a
complicated data structure, rather than to use a long car/cdr string:

(defmacro imag-part {complexnum) '(cadr ,complexnum))
:then use imag-part everywhere instead of cadr

cons x y [Function}
cons is the primitive function to create a new cons, whose car is x and whose cdris y.

For example:

(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons 'c '()))) => (a b c)
(cons 'a '(b ¢ d)) => (a b c d)

cons may be thought of as creating a cons, or as adding a new element to the front of a list.

tree-equal x y [Function)
This is a predicate which returns t if x and y are isomorphic trees with identical leavgs; that is, if x
and y are eq, or if they are both conses and thei;r'ca:s are tree-equal and their/cdrs are tree-
equal. Thus tree-equal recursively comparestonses (but not any other objects which have
components). See equal (page 31), which does recursively compare other structured objects.

|

13.2. Lists

“ Tist-length list &optional limit [Function]
1ist-Tength returns, as an integer, the length of list. The length of a list is the number of top-
level conses in it. If the argument /imit is supplied, it should be an integer; if the length of the /list is
greater than limit (possibly because the list is circular!), then some integer no smaller than Jimit and
no larger than the length of the list is returned.
Rationale: Allowing this vague definition of the meaning of limit allows certain tricky fast implementations.

For example:

(length '()) => 0

(1endth '(a b c d)) => 4

(1ength '(a (b c) d)) => 3

(1ength ‘(abcdef g) 4) => 4o0r5o0r6or?7

Tength could be implemented by:

(defun list-length (x &optional (limit () limitp))
(do ({n 0 (+ n 1))
(y x (cdr y)))
((atom y) n)
(when (and 1imitp (>= n limit))
(return n))))

SPICE LISP REFERENCE MANUAL 125

See Tength (page 109), which will return the length of any sequence. One differcnce between
length and 1ist-Tength is that 1ength of a vector returns the length of the vector, while

Tist-length of a vector retursis 0. L’WL& be an Lonsc ,(d@ | as€ vaoUU

oTTEA LIS Businesg .Q ,(: ,(’we ary 'S

o
‘[ES ! ‘r:'érs fe VSURAIND AL o F

: 0 X ot lis
nth n list St eansn cnecm [Function] no ff
{nth n list) returns the #'th element of liss, where the zeroth element is the car of the list. n
must be a non-negative integer. If the length of the list is not greater than #, then the result is ().
(This is consistent with the idea that the car and cdrof () are each ().)

For example:

(nth 0 '(foo bar gack)) => foo
(nth 1 '(foo bar gack)) => bar
(nth 3 '(foo bar gack)) => ()
This function is slightly different from 1ist-elt (page 138); note also that the order of

arguments is reversed.

Compatibility note: This is not the same as the INTERLISP function called nth, which is similar to but not
exactly the same as the CoMMON Lisp function athcdr. This definition of nth is compatible with Lisp
Machine Lisp and NiL. Also, some people have used macros and functions called nth of their own in their old
MacLisp programs, which may not work the same way; be carefut.

= PuT W SETNTH HeAg

ey

nthedr n list [Function}
(nthcdr alist) performs the cdr opcration # times on /ist, and returns the result.

For example:
(nthcdr 0 '(a b ¢c)) => {(a b ¢)
(nthcdr 2 '(a b c)) => (c)
{nthcdr 4 '(a b c)) => ()

In other words, it returns the »’th ¢dr of the list.

Compatibility note: This is similar to the INTERLISP function nth, cxcept that the INTERLISP function is one-
based instead of zero-based.

{car (nthcdr n x)) <=> (nth n x)

last list : [Function)
last returns the last cons (not the last element!) of list. If listis (), it returns ().

For example: -
{setqg x '(a b ¢ d))
{last x) => (d)
{rplacd (last x) '(e f))
x => '(abcdef)
{last '(abc . d)) => (¢ . d)

Tist &rest args [Function]
Tist constructs and returns a list of its arguments.

For example:

SPICE LiSP REFERENCLE MANUAL 126

g {(1ist 3 4 'a (car '(b . c)) (+ 6 -2)) => (3 4ab 4)

Fe
list* rest others ‘ [Function]

Tist* islike 1ist except that the last cons of the constructed list is "dotted”. The last argument
to 1ist* is used as the ¢dr of the last cons constructed; this need not be an atom. If it is not an
atom, then the effect is to add several new elements to the front of a list.

For example:
(1ist* 'a 'b 'c 'd) => (a b c¢ . d)
This is like
(cons 'a (cons 'b {(cons 'c 'd)))
Also:

(1ist* 'a 'b 'c '(d e f)) => (abcde f)
(Tist* x) <=> x

|

," make-1ist size &optional value [Function)
i This creates and returns a list containing size elements, each of which is value (which defaults to
()). sizeshould be a non-negative integer. ﬁ/] ftl £Q ﬂ,‘ 0o« quq L/ -
For example: ' L,,n(”f\a (3P ™M ae b e
(make-1ist 8) => (() () () () ()) (f{—nkﬂf {(_@‘7.”0\/20 &S §rmn

(make-T1ist 3 '() 'rah) => (rah rah rah) ves !

Compatibility note: The Lisp Machine Lisp function make-11ist takes arguments area and size. Areas are not .
relevant to CoMMON Lisp. The argument order used here is conipatible with NiL.. L ™ (f A) cel ﬂ':{ ({ 1L ok
v

te
append &rest lists : [Function) .)
The arguments to append are lists. The result is a list which is the concatenation of the arguments.
The arguments are not dcstrqyed.
For example:
(append '(abc) '(def) '() '(g)) =>(abcdef g)
Note that append copies the top-level list structure of each of its arguments except the last. The

function Tist~-concat (page 138) performs a similar operation, but copies all its arguments. See
also nconc (page 128), which is like append but destroys all arguments but the last.

(append x '()) is an idiom once frequently used to copy the list x, but the copylist
function is more appropriate to this task.

copylist list [Function]
Returns a list which is equal to /ist, but not eq. Only the top level of list-structure is copied; that
is, copylist copics in the cdr direction but not in the car direction. If the list is ""dotted”, that is,
(cdr (last list)) is a non-() atom, this will be true of the rcturned list also. Sce also
copyseq (page 109).

SPICE LISP REFERENCE MANUAL 127

copyalist list [Function]
copyalist is for copying association lists. The top level of list structure of /ist is copied, just as
copylist does. In addition, each element of /ist which is a cons is replaced in the copy by a new
cons with the same car and cdr.

copytree object [Function]
copytree is for copying trees of conses. The argument object may be any LISP object. If it is not
a cons, it is returned; otherwise the result is a new cons of the results of calling copytree on the
car and cdr of the argument. In other words, all conses in the trec are copied recursively, stopping
only when non-conses are encountered. Circularitics and the sharing of substructure are not

prescrved' St J"’\' TL’&J(¢ Ve d(aﬂ I—(ef) (
0(6/1{‘ /’Veﬁzfuﬁl 7(‘,,0:9 ¢ avi€ e log

H list-reverse [ist [Function]

“ list-reverse creates a new list whose elements are the elements of /iss taken in reverse order.
list-reverse does not modify its argument, unlike Tist-nreverse (page 127) which is
faster but does modify its argument. If the Jist is dotted, the non-() atom at the end is discarded;

/reyerse always produccs a list ending in (). — @v7, A< moev SAID, Pomt coNsIOEA AANDON
B 08Teery vo 8¢ @F-leNe™H DoTTEO LISTK.

Forexample: (Lts'(ﬂwelw 14) SHoven £ AN EAAROR, AND
o uLD
(tist-reverse '(a b (c d) e8)) => (e (¢ d) b a) $o SHoud (Levense 'A),

Sec reverse (page 110), which can reverse any kind of sequence.,

l (revappend x y [Function]
(revappend x y) is exactly the same as (append (reverse x) y) except that it is more
efficient. Both x and y should be lists. The argument x is copied not destroyed. Compare this

with nreconc {page 128), which destroys its first argument. [L % @ lick Funeton
O or & Lfeq, weN¢e £ C % (W

list-nreverse list [Function]
k n)‘eve rse reverses its argument, which should be alist, The argument is destroyed by rplacd’s
all through the list (sc(: reverse, which creates a new list rather than destroying its argument). If
the list is dotted, the non-() atom at the end is dlscardedc nheverse always produces a list ending

in ().
For example:

(setq x '(a b ¢))
[(nreverse x) => (c b a)
At this point the precise value of x is implementation-dependent.

Sce nreverse (page 110), which can destructively reverse any kind of sequence.

SPICE LISP REFERENCE MANUAL 128

nconc &rest lists _ [Function]
nconc takes lists as arguments. It returns a list which is the arguments concatenated together. The

arguments are changed, rather than copied. (Compare this with append (page 126), which copies i

arguments rather than destroying them.) T A Lep m ach e L,L;
For example: erataas poss
P orf NCANE i Pa (rets
(setq x '(a b ¢)) ces O e~
(setq y '(d e f)) . uzf/@'/\«]r [ceep ﬂﬁaﬂﬁfﬂ Canc)
(nconc x y) => (abcde f) Jlhov s ﬂA.:A l:/\&_ T
x=>(abcdef) acont s e St \ Lo ef.

Note, in the example,that the value of x is now different, since its last cons has been rplacd’d to
the value of y. If one were then to evaluate (nconc x y) again, it would yield a piece of
“circular” list structure, whose printed representationwouldbe(a b ¢ d e f de f d e f
.« «), repeating forever.

nreconc x y [Function]
(nreconc x y) is exactly the same as {(nconc (nreverse x) y) except that it is more
cfficient. Both x and y should be lists, The argument x is destroycd. Compare this with
revappend (page 127).

push ifem place [Macro)
place should be a reference to a cell containing a list; item may be any LISP object. Usually place is
the name of a variable. irem is consed onto the front of the list, and the augmented list is stored
back into place. If the list held in place is viewed as a push-down stack, then push pushes an
clement onto the top of the stack.

The form

(push (hairy-function x y z) variable)
replaces the commonly-used construct

(setq variable (cons (hairy-function x y z) variable))
and is intended to be more explicit and esthetic.

In general,

(push item place) ==> (setf place (cons item place))
{Sce setf (page SETF-FUN).)
pop place i [Macro)
place should be a reference to a cell containing a list. Usually place is the name of a variable. The
result of pop is the car of the contents of place, and as a side-effect the cdr of the contents is
stored back into place. If the tist held in place is viewed as a push-down stack, then pop pops an
element from the top of the stack and returns it.

For example: (/Icf machine /"f auw‘/f o

bl second W;u/v-b\f: WRISI

4. shee o car. TH a3

bans, be2en &gcz(w,\g (o Flubed,
o ow/p«%\mlﬂ\) fbo-k

SPICE LISP REFERENCE MANUAL 129

(setq stack '(a b ¢))
(pop stack) => a
stack => (b c) ; The stack was popped.

In general,

(pop place) ==> (progl (car place) (setf place (cdr place)))
(See setf (page SETF-FUN).)

butlast list [Function}

This creates and returns a list with the same elements as /isz, excepting the last element. The
argument is not destroyed. If the argument is (}, then () is returned.

For example:

(butlast '(a b c d)) => (a b c)
(butlast '((a b) (¢ d)) => ((a b))
(butlast '(a)) => ()

{(butlast nil) => ()

The name is from the phrase “all elements but the last".

nbutlast /s [Function)

This is the destructive version of butlast; it changes the cdr of the second-to-last cons of the list
to (). If there is no second-to-last cons (that is, if the list has fewer than two elements) it returns
(), and the argument is not modified. (Therefore one normally writes (setq a (nbutlast
a)) rather than simply {nbutlast a).)

For cxample:

(setq foo '(a b c d))
(nbutlast foo) => (a b c)
foo => (a b ¢)

(nbutlast '(a)) => ())
(abutlast '()) => () 5,\,\‘&\}&{(- \

777 Query: Do we realiy want f irstn, 1astn, and 1diff, given the existence of sub1ist (page 138)? b\" wo g {
RMG THREW yaute ¥ feCAviy HE SAW THer 1IN The ’Nﬂ'l.u;f TIANVA L. . 'ﬂo . c a
Bu0 Wk THoVENT THEY MIbhT B éood.) Cuipve) OV SAw A SIS Y

firstn n list Ve 0F LOWFF (v wAc 81 Rr) . [Function] N\\\r‘“’a ¥ N“
firstn returns a list of length »n, whose elements are the first # clements of 1ist. If list is fewer 2v¢ |
than » clements long, the remaining elements of the returned list will be (). The argument listis W
not destroyed.
For cxample:
(firstn 2 '(a b c d)) => (
(firstn 0 "'(a b ¢ d)) => ()
(firstn 6 '"(a b c d)) => (abcd () ())

SPICE LISP REFERENCE MANUAL 130

lastn n list [Function}
lastn returns a list of length n, whose elements are the last n elements of 1ist. If listis fewer
than n elements long, the leading elements of the returned list will be (). The argument /ist is not
destroyed, nor is it copied.

For example:
(lastn 2 '(a b c d)) => (¢ d)
(lastn 0 '(a b c d)) => ()
(lastn 6 '(a b c d)) => (() () a bcd)
1diff list sublist [Function]

list should be a list, and sublist should be a sublist of lisz, i.e. onc of the conses that make up list,
1diff (meaning List Difference) will return a new list, whose elements are those elements of list
that appear before sublist. If sublist is not a tail of /ist, then a copy of list is returned. The argument
list is not destroyed.

For example:

(setq x '(a b c de))

(setq y (cdddr x)) => (d e)

(1diff x y) => (a b ¢)

but

(1diff '(a b c d) '(c d})) => (a b ¢ d)
since the sublist was not eq to any part of the list.

” Tist-to-vector list [Function)
list-to-vector constructs a vector of the same length as /isf and with the same corresponding
elements, and returns the new vector. The inverse of this operation is vector-to-1ist (page
VECTOR-TO-LIST-FUN).

” list-to-string list [Function]
Tist-to-string constructs a string of the same length as /isr and with the same corresponding
elements (which must all be characters satisfying string-charp (page 98)), and returns the new
string. The inverse of this operation is string-to-1ist (page 155).

13.3. Alteration of List Structure

The functions rplaca and rplacd arc used to make altcrations in already-existing list structure; that is,
to change the cars and cdrs of existing conscs.

The structure is not copied but is physically altered; hence caution should be exercised when using these
functions, as strange side-cffects can occur if portions of list structure become shared unbeknownst to the
programmer. ‘The nconc (page 128), nreverse (page 110), nreconc (page 128), and nbutlast (page
129) functions already described, and the delete (page 134) family described later, have the same property.
Iowever, they are normally not used for this side-cffect; rather, the list-structure modification is purely for

| GAEATLY PISA6ACE wTH THIS P:mosova
BT W& [HAVE ENOWH To AULE ALouvr A7
THe AOEVT, ..

SPICE LISP REFERENCE MANUAL 131
efficiency and compatible non-modifying functions are provided.

rplaca x y [Function]
(rplaca xy) changes the car of x to y and returns (the modified) x. xshould be a cons, but y
may be any Lisp object. 2

For example:
(setq g '(a b c)) ch
(rplaca (cdr g) 'd) => (d c) U
Now g => (a d ¢)

rplacd x y [Function) .

(rplacd xy) changes the cdr of x to y and returns (the modified) x. x should be a cons, but y

may be any Lisp object.

For example:

(setq x '(a b ¢))
(rplacd x 'd) => (a . d)
Now x => (a . d)

Compatibility note: In CoMMON Lisp, as in MACLisP and Lisp Machine Lise, rplacd can not be used to set
the property list of a symbol. The setptist (page SETPLIST-IFUN) function is provided for this purpose.

13.4. Substitution of Expressions

A number of functions are provided for performing substitutions within a tree. All take a tree and a

description of old sub-expressions to be replaced by new ones. The functions form a semi-regular collection,
according to thesc propetrties:)
f\\\bw e ‘LO f*{(’f’(j ,KH& cate,
—-— Sv ef Maki j t "
— Ak T
e Whether substitution is specificd by two arguments or by an association list. - (,—(ww‘ 5 de

cihe Yo €7 o ezl
N, £0A, vaJ"”iJ nsobste

e Whether comparison of items is by eq or equal.

¢ Whether the tree is copied or modified.

These properties may be summarized as follows:

Accepts two arguments. old and new Accepts an association list

Uscs equal Uses eq Useseq
Copies subst substq sublis
Modifies nsubst nsubstq nsublis
subst new old tree [Function]

(subst new old tree) substitutes rew for all occurrences of old in tree, and returns the modified
copy of tree. 'The original free is unchanged, as subst recursively copies all of free replacing
clements equal 1o old as it goes.

. (5 « Se ce
For example: 15(:@”4\?11/ ;lo"(;_/\;hk]\fbf\gw#
Leonn o be any f’cfﬁe’{ ned
‘EJV\L‘\\Q’\ {v_ I»/lsf’]'wl}’\v\ N Loy aclS
on (N5 bosk.

|
l

|

SPICE LISP REFERENCLE MANUAL 132

(subst 'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

This function is not "destructive™; that is, it does not change the car or cdr of any alrcady-existing

list structure. Make -} lew wldhe A+ plodntes ~

des as well as cafs
(subst () () x) is an idiom once frequently used to copy all the conses in a tree, but the (Ae L3p

copytree {page 127) function is more appropriate to the task. macknie o2
pytree (page 127) pprop ol does.

whe b v el
nsubst new old tree [Function] proba uﬂ a by,
nsubst is a destructive version of subst. The list structure of tree is altered by replacing each
occurrence of old with new. equal is used to decide whether a part of tree is the same as o/d.

substq new old tree (Function)
substq is just like subst, except that eq, rather than equal, is used to decide whether a part of
tree is the same as old. ree shovtd alre be a vt & JUEST

t ves aly o bat L ~eeds Yo
?ﬁ(&i (Jjaféf'r). Sone C(3p machiiog o pramy

nsubstq new old tree [Function] | co 115 4ar e e
nsubstq is a destructive version of substq. nsubstq is just like nsubst, except that eq,

rather than equat, is used to decide whether a part of tree is the same as old.

sublis alist tree [Function]

sub1is makes substitutions for symbols in a tree (a structure of conses). The first argument to
sublis is an association list. The car of each a-list entry should be a symbol. The second
argument is the tree in which substitutions arc to be made. sub11is looks at all symbols in the
tree; if a symbol appears as a key in the association list occurrences of it are replaced by the object
it is associated with, The argument is not modified; new conscs are created where necessary and
only where necessary, so the newly created structure shares as much of its substructure as possible
with the old. For example, if no substitutions are made, the result is eq to the old tree.

For example:

(sublis '({x . 100) (z . zprime))
‘(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

nsublis alist tree [Function}
nsublis is like sub1is but changes the original list structure instead of copying.

13.5. Using Lists as Sets

ConmnoN Lisp includes functions which allow a list of items to be treated as a set. Some of the functions
usclully allow the set to be ordered; others specifically support unordered sets. There are funcrions to add,

. , i

-

Il

SPICE LISP REFERENCE MANUAL 133

remove, and search for items in a list, based on various criteria. There are also set union, intersection, and
difference functions.

Many of the functions described here form a regular pattern according to two criteria:

e Whether elements are compared for equality by equal, eq, or some other specified predicate of
one or two arguments.

e Whether the operation is destructive or not.

As a general rule, a function which uses equal is named by an English word; the corresponding function
which uses an arbitrary two-argument predicate is named by some short prefix of that word; the function
which uses eq is named by that prefix plus "q"; the function which uses a one-argument predicate is named
by the prefix plus "-if"; and the function which takes a one-argument predicate but inverts its sense is
named by the prefix plus "-if-not".

As another general rule, the destructive version of a function is named by prefixing "n" to the name of the
version which is not destructive. An exception (for historical reasons) to this rule is the pair delete (page

134) and remove (page 113)/1ist-remove (page 139).

member item list [Function]
memq item list [Function]
mem predicate item list ' [Function]
mem-if predicate list [Function]
mem-1if-not predicate list [Function]

(member item list) returns () if item is not one of the clements of /ist. Otherwise, it returns the
tail of fist beginning with the first occurrence of item. The comparison is made by equal. listis
scarched on the top level only. Because member returns () if it doesn’t find anything, and
something non-() if it finds something, it is often used as a predicate.

For example: .\ 6ml, ¢/
(mgmgq 'snerd '(a b ¢ d)) => ()
(memg 'a '(g (ay) cadeaf)) =>(adeaf)

Note that the value returned by member is eq to the portion of the list beginning with a. Thus
rplaca on the result of member may be used, if you first check to make sure member did not
return ().

memq is likc membe r, except eq is used to compare the item to the list element, instcad of equal.

mem is like member, except predicate is uscd to compare the item to the list element, instead of
equal.

mem- if is likc membe r, except that predicate, a function of one argument, is used to test elements
of list.

mem-if-not is like mem-if, except that the sense of predicate is inverted: that is, a test succeeds

SPICE LISP REFERENCE MANUAL 134

ifpredicate returns ().

See also position (page 114) and 1ist-position (page 139). 4 Some + Lrien ‘0"
(o =8 = Eon

tailp sublist list [Function]
Returns t if sublist is a sublist of list (i.e. one of the conscs that makes up /is¢). Otherwise returns
(). Another way to look at this is that tailp returns t if (nthcdr n list) is sublist, for some
value of n. See 1diff (page 130).

delete item list &optional n) [Function]
delq item list &optional n [Function]
del predicate item list &optional n [Function}
del-if predicate list &optional n [Function}
del-if-not predicate list &optional n [Function)

(delete item list) rcturns the /ist with all top-level occurrences of item removed. equal is
used to compare ifem to clements of the list. The operation may be destructive; the argument /st
may be actuatly modified (rp1acd’ed) when instances of ifem are spliced out. delete should be
used for value, not for effect. That is, use

(setq a (delete x a))
rather than

(delete x a)

The latter is not equivalent when the first element of the value of a is x.

If the opl;ioﬁal argument # is provided, it should be a non-negative integer; it specifies an upper
limit on the number of delctions. (delete ifem list n) is like (delq item list) except only
the first n instances of ifem are deleted. # is allowed to be zero, in which case no clements are
deleted. If nis greater than the number of occurrences of item in the list, all occurrences of item in
the list will be deleted.

For example:

(delete 'a '(b ac (ab)dae)) =>(bc(ab)de)
(delete 'a '(b ac (ab)dae)1ly=>(bc(ab)dae)

delqis like delete, except eq is used to compare the item to the list clement, instead of equal.

del is like delete, except predicate is used to compare the item to the list element, instead of
equal.

del-1if islike delete, except that predicate, a function of onc argument, is used to test elements
of list.

del1-if-not is like de1-if, except that the sense of predicate is inverted; that is, a test succeeds
ifpredicate returns ().

For non-destructive deletion, use remove (page 113) or 1ist-remove (page 139).

SPICE LISP REFI:RENCE MANUAL 135

adjoin item list [Function}
adjq item list [Function]
adj predicate item list . [Function]
adjoin is used to add an element to a set, provided that it is not already a member. equal is
used to compare item to elements of list. L2re rhould be «
(adjoin item list) ‘{0(/; H <rsion g€ Tho
means the sameas o — sonefaes call
(if (member item list) list (cons item list)) usite o AodaL (leir

- 2]
adjqis like adjoin, except eq is used to compare the item to the list element, instead of equal. e

adj is like adjoin, except predicate is used to compare the item to the list element, instcad of

equal. xr+ -
T W ¢
for Ly . Ly V-U"A?‘A(S,A' A \the asvoce.
union &rest lists ' _, o W/‘ v |Function]
5 \f\w-/"‘”j M Los N,
unionq &rest lists \ maﬂ ‘(\.\\5’\’ [Function]
“unite predicate &rest lists A; e [Function}'

union takes any number of lists and returns a new list containing cverything that is an element of
any of the /ists. If there is a duplication (as determined by equatl) between two lists, only one of
the duplicate instances will be in the result. If any of the arguments has duplicate entries, the

redundant entries may or may not appear in the result. L/D A alfe nee) a wa

For example: tv hle one st and
(union '(abc) '(fad))=>(abcf d) liwnin e 2 A [Fefe
(union) => () in tfor §fne m\w\dpd

[funion is given no arguments, then () is returned, for () is the identity of the operation. D%Lﬂ+”0tﬂ

exc4rhan)

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

I uni te&‘is like union, except eq is used to compare elements of the liszs, instead of equal.

unite is like union, except predicate is used to compare elements of the /ists, instcad of equal.

nunion &rest lists [Function]
(nuniong &rest lists [Function]
nunite predicate &rest lists [Function]

nunion is the destructive version of union. nunion takes any number of lists and returns a new
list containing everything that is an element of any of the fists. If there is a duplication (as
determined by equal) between two lists, only one of the duplicate instances will be in the result.
If any of the arguments has duplicate entries, the redundant entrics may or may not appear in the
result. Any of the argument lists may be cannibalized to construct the result.

If nunion is given no arguments, then () is returned, for () is the identity of the operation.

SPICE LISP REFERENCE MANUAL 136

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

nuniteq islike nunion, except eq is used to compare elements of the /ists, instead of equal.

nunite is like nunion, except predicate is used to compare clements of the lists, instead of

equal.
intersection firstlist &rest otherlists [Function]
intersectq firsilist &rest otherlists [Function]
intersect predicate firstlist &rest otherlists [Function]

intersection takes any number of lists and returns a new list containing everything that is an
element of firstlist and also of the otherlists. If firstlist has duplicate entries, the redundant entries
may or may not appear in the result.
For example:

(intersection '{(a b c) '(f a d)) => (a) .
Unfortunately, the identity for the intersection operation is the entire universe. Because there
is no defined representation for that, intersection requires at least one argument.

There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

intersectqis like intersection, cxcept eq is used to compare elements of the ists, instead
of equal.

intersect is like intersection, except predicate is used to compare elements of the lists,

instead of equal.
' ' nintersection firstlist &rest otherlists [Function]
| nintersectq firstlist &rest otherlists [Function]
(8

nintersect predicate firstlist &rest otherlists [Function} B
| & nintersection is the destructive version of intersection. Only firstlist may be destroyed, T
however. nintersection takes any number of lists and returns a new list containing everything
that is an element of firstlist and also of the otherlists. 1f firstlist has duplicate entries, the
redundant entries may or may not appear in the result.

Unfortunately, the identity for the nintersection operation is the entire universe. Because
there is no defined representation for that, nintersection requires at least one argument.

There is no guarantee that the order of clements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a varicty of
strategies.

_/"\qLcS ﬂ«u;\’y! Soalle € CWL‘Q e ;c€‘74~l

L\/L\:[.Z Uniom M-\LCJ L2) .
‘nijl/(. 67 le Lay , /M.aw(u«‘hlq '\Q:r 7)"‘7 ?\EA
tare o Ve Cm{fﬂﬁ"‘i wifl, v
”’/U“f"whl—ted " no+ 7‘0 COAJ,P A A ,\ﬂle? I Gsfunt
s Tswt ATzeosced. vtls {haé pedtrsefon

SPICE LISP REFERENCE MANUAL 137

nintersectq is like nintersection, except eq is used to compare clements of the lists,
instead of equal.

nintersect is like nintersection, except predicate is used to compare elements of the lists,
instead of equal.

setdifference listl list2 [Function]
setdiffq listd list2 [Function]
setdiff predicate listl list2 {Function]

setdifference returns a list of elements of /ist/ which do not appear in /ist2. This operation is
not destructive. equal is used to compare elements of the lists.

setdiffqislike setdifference, except eq is used to compare elements of the lists, instead of
equal.

setdiff is like setdifference, except predicate is used to compare elements of the lists,
instead of equal.

| nsetdifference list! list2 [Function]
nsetdiffq listl list2 [Function]
| nse tdiff predicate listl list2 [Function]

nsetdifference is the destructive version of setdifference. nsetdifference returns a
list of elements of list] which do not appcar in /ist2. This operation may destroy list/. equal is
used to compare clements of the lists.

nsetdiffqislike nsetdifference, except eq is uscd to compare elements of the lists, instead
of equal.

nsetdiff is like nsetdifference, except predicate is used to compare elements of the lists,
instead of equal.

set-exclusive-or list! list2 [Function]
setxorq list! lise2 ‘ {Function}
setxor predicate listl list2 [Function)

set-exclusiive-or returns a list of elements which appear in exactly one of list/ and lis2. This
operation is not destructive. equal is used to compare elements of the lists.

setxorqislike set-exclusive-or, except eq is used to compare elements of the lists, instead
of equal.

setxor is like set-exclusive-or, except predicate is used to compare elements of the lists,
instcad of equal.

———

—

3

SPICE LISP REFERENCE MANUAL 138

nset-exclusive-or [ist/ lis2 [Function)
nsetxorq listl list2 [Function]
nsetxor predicate listl list2 . [Function]

nset-exclusive-or is the destructive version of set-exclusive-or, nset-exclusive-
or returns a list of elements which appear in cxactly one of list/ and list2. Both lists may be
destroyed in producing the result. equat is used to compare elements of the lists.

nsetxorq is like nset-exclusive-or, except eq is used to compare elements of the lists,
instead of equal.

nsetxor is like nset-exclusive-or, except predicate is used to compare clements of the lists,
instead of equal.

13.6. List-Specific Sequence Operations

The functions in this section are cquivalent in operation to the corresponding generic sequence functions,
but require scquence arguments to be lists. Such lists may be terminated by atoms other than (), but as a
rule such atoms are ignored other than as list terminators. Note that non-list sequences are atoms and will
terminate lists,

list-elt list index {Function]
The clement of the /ist specified by the integer index is returned. The index must be non-negative
and less than the length of the list. See e1t (page 108).

This differs from nth (page 125) in that nth allows the index to be larger than the length of the
list. Note also that nth takes its arguments in the reverse order.

list-setelt list index newvalue [Function]
The LISP object newvalue is stored into the component of the list specified by the integer index.
The index must be non-negative and less than the length of the list. Sec sete1t (page 108).

sublist list start &optional end [Function]

1ist-fi1l list item &optional start end [Function]

list-replace target-list source-list &optional (farget-start source-start target-end source-end

[Function]

list-concat &rest lists [Function]
These functions are cxactly like the corresponding generic sequence functions whose names do not
begin with the prefix "1ist~", except that sequence arguments must be lists. Sce subseq (page
108), £1i11 (pagc 109), replace (page 110), and concat (page 110).

Note especially that 1ist-concat, like concat and unlike append (page 126), copics all of its
arguments, rather than letting the result share the last argument as its tail.

SPICE LISP REI'ERENCE MANUAL 139

| list~reduce function list &optional start-value [Function]
| list-left-reduce function list &optional start-value [Function]
| list-right-reduce function list &optional start-value {Function]
' Yist-map function &rest lists [Function)
| list-some predicate &rest lists [Function)
l . list-every predicate &rest lisis [Function]
| list-notan y predicate &rest lists [Function]
I list-notevery predicate &rest lists {Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "1ist-", except that sequence arguments must be lists. See reduce (page
111), Teft-reduce (page 111), right-reduce (page 111), map (page 112), some (page 112),

every (page 112), notany (page 112), notevery (page 112). Te (rgd—maf ;&bkc‘
"\o May car?
'\ Tist~remove item list &optional count [Function]
| list-remq item list &optional count [Function]
list-rem predicate item list &optional count [Function]
list-rem-if predicate list &optional count [Function)
list-rem-if-not predicate list &optional count {Function]
list~remove-from-end item list &optional count [Function]
|| Vist-remg-from-end ifem list &optional count [Function]
“ list-rem-from-end predicate item list &optional count [Function}
‘ list-rem-from-end-if predicate list &optional count [Function]

list-rem-from-end-if-not predicate list &optional count [Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "1ist-", except that sequence arguments must be lists. Sce remove (page

113).
list-position item list &optional start end [Function)
1ist-posq item list &optional start end [Function]
list-pos predicate item list &optional start end [Function]
list-pos-if predicate list &optional start end [Function)
list-pos-if-not predicate list &optional start end {Function]
list-position~-from-end item list &optional start end [Function]
list-posq-from-end ifem list &optional start end [Function}

list-pos-from-end predicate item list &optional start end [Function)
list-pos-from-end-if predicate list &optional start end [Function)
list~pos-from-end-if-not predicate list &optional start end [Function}
These functions are cxactly like the corresponding gencric sequence functions whose names do not
begin with the prefix "1ist-", except that sequence arguments must be lists.” Sec position
(page 114),

SPICE LISP REFERENCE MANUAL 140

(1ist-scan-over item list &optional start end [Function)
1ist-scanq item list &optional start end [Function)
1ist-scan predicate item list &optional start end [Function)
list-scan-if predicate list &optional start end [Function]

| 1ist-scan-if-not predicate list &optional start end [Function]
list-scan-over-from-end item list &optional start end [Function)
1ist-scang-from-end item list &optional start end [Function]

l‘ 1ist-scan-from-end predicate item list &optional start end [Function]
| 1ist-scan-from-end-if predicate list &optional start end [Function)
1ist-scan-from-end-if-not predicate list &optional siart end [Function)
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "1ist~", except that scquence arguments must be lists. See scan-over

{page 114).
1ist-count item list &optional siart end [Function}
list-cntq item list &optional sfart end {Function]
Tist-cnt predicate item list &optional start end [Function)
list-cnt-if predicate list &optional. start end [Function]
1ist-cnt-if-not predicate list &optional siart end [Function]

These functions are exactly like the corresponding generic scquence finctions whose names do not
begin with the prefix "1ist-", except that sequence arguments must be lists. Sce count (page

115).
list-mismatch list! list2 &optional startl start2 endl end? [Function]
list-mismatq list! list2 &optional startl start2 endl end? [Function]
list-mismat predicate listl list2 &optional siartl start2 endl end2 (Function]
list-mismatch-from-end list/ list2 &optional startl start2 endl end? [Function)
list-mismatq-from-end list/ list2 &optional startl star2 endl end2 [Function)
1ist-mismat-from-end predicate listl list2 &optional swaril start2 end! end2 [Function]

These functions are exactly like the corresponding gcneri}: sequence functions whose names do not
begin with the prefix "1ist-~", except that sequence arguments must be lists. See mismatch
(page 116).)

list-maxprefix listl list2 &optional swartl start2 end! end? [Function]

1ist-maxprefq list! list2 &optional start! start2 endl end? [Function]

list-maxpref predicate listl list2 &optional startl start2 endl end? [Function]

list-maxsuffix list/ list2 &optional startl stari2 endl end? [Function]

list-maxsuffq list] lise2 &optional startl start2 endl end? [Function)

1ist-maxsuff predicate listl list2 &optional siartl start? endl end? [Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "1ist-", except that sequence arguments must be lists, Sce maxprefix

SPICE LISP REFERENCE MANUAL 141

(page 117).
list-search list list2 &optional startl start2 endl end? [Function}
list-srchq listl list2 &optional startl start? endl end? {Function)
list-srch predicate listl list2 &optional staril start2 endl end? [Function)
list-search-from-end list! list2 &optional swrtl start2 endl end? [Function]
list~-srchq-from-end list/ list2 &optional startl start2 endl end2 [Function]

list-srch~from-end predicate listl list2 &optional startl start2 endl end2 [Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "11ist-", except that sequence arguments must be lists. See search (page

118).
list-sort list predicate [Function]
list-sortcar list predicate [Function]
list~sortslot list key-function predicate [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "1ist-", except that sequence arguments must be lists. Sec sort (page

118).
list-merge list! list2 predicate [Function]
list-mergecar listl list2 predicate [Function}
list~mergeslot list] list2 key-function predicate {Function]
list-nmerge listl list2 predicate [Function)
list-nmergecar listl list2 predicale [Function]
list-nmergeslot list! list2 key-function predicate [Function]

These functions are exactly like the corresponding generic scquence functions whose names do not
begin with the prefix "1ist-", cxcept that sequence arguments must be lists. Sec merge (page
120} and nmerge (page 121).

13.7. Association Lists

An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs
{conses); each pair is an association. The car of a pair is called the key, and the cdr is called the darum.

An advantage of the a-list representation is that an a-list can be incrementaily augmented simply by adding
new entries to the front. Morcover, because the scarching functions such as assoc scarch the a-list in order,
new entries can "shadow” old entries. If an a-list is viewed as a mapping from keys to data, then the mapping
can be not only augmented but also aitered in a non-destructive manner by adding new entrics to the front of
the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum, For

l\

SPICE LISP REFERENCE MANUAL 142

this purpose "reverse" forms of the a-list functions are provided.

It is permissible to let () be an element of an a-list in place of a pair.

acons key datum a-list [Function]
acons constructs a new association list by adding the pair (key . datum) to the old a-list.
(acons x y a) <=> {(cons (cons x y) a)

pairlis keys data &optional g-list. (l [Function)
pairlis takes two lists and makes an association list which associates elements of the first list to
corresponding elements of the second list. It is an error if the two lists keys and data are not of the
same length. If the optional argument a-list is provided, then the new pairs arc added to the front
of it.

For example:

(pairlis '(beef clams kitty) '(roast fried yu-shiang))

=> ((beef . roast) (clams . fried) (kitty . yu-shiang))
(pairlis '(one two) '(1 2) '((three . 3) (four . 19)))

=> ({(one . 1) (two . 2) (three . 3) (four . 19})

‘The remaining association-list functions form a regular collection according to three independent criteria:

¢ The type of operation is indicated by a prefix to the function name:

no prefix Secarch, returning an association pair.

mem Scarch, returning a tail of the a-list.

pos Scarch, returning a numerical index into the a-list.
del Destructive deletion.

The prefixes indicate that the opcrations are related to the functions member (page 133),
position (page 114), and delete (page 134).

o If the function treats the a-list normally (the car of each association pair is treated as the key), then
no infix is written. If the function treats the a-list as a reverse mapping (the cdr of each association
pair is treated as the key), then the letter " r" is written.

o The suffix names the a-list operation and indicates the testing criterion:

. . mard
assoc Compare against an item using equal. A 4 e 40 o
assq Compare against an item using eq. Lmeers
ass Compare against an item using a user-specified predicate.
ass-if Use a single-argument user-specified predicate.
ass-if-not Invert a single-argument user-specified predicate.

Thus, for example, the function posrassq would perform a search, returning the numerical position,
treating the a-list in reverse form, and using eq to test the keys.

l

SPICE LISP REFERENCE MANUAL 143

assoc item a-list , [Function]
assq item a-list {Function]
ass predicate item a-list [Function]
ass-if predicate a-list [Function]
ass-if-not predicate a-list [Function]

(assoc item alist) looks up item in the association list a-/ist. The value is the first pair in the a-
list whose car is equal to x, or-() if there is none such.

For example:

(assoc 'r '({a . b) (c . d) (r . x) (s .y) (r. 2)))
=> (r . x)
(assoc 'goo '((foo . bar) (zoo . goo))) => ()
(assoc '2 '{(1ab¢c¢)(2bcd) {(-7xy z))) =>(2bcd)
It is possible to rplacd the result of assoc provided that it is not (), if your intention is to
"update” the "table” that was assoc’s sccond argument. (However, it is often better to update an

a-list by adding new pairs to the front, rather than altering old pairs.)
For example:

(setq values '({x . 100) (y . 200) (z . 50)))

(assoc 'y values) => (y . 200)

(rplacd (assoc 'y values) 201)

(assoc 'y values) => (y . 201) now
A typical trick is to say {cdr (assoc x y)). Because the cdrof () is guaranteed to be (), this
yiclds () if no pair is found or if a pair is found whosc ¢dris (). This is useful if () serves its usual
role as a "default value”,

assqis like assoc, except eq is used to compare the ifem to each key, instcad of equal.
ass is like assoc, except predicate is used to compare the item to each key, instead of equal.

ass~1if is like assoc, except that predicate, a function of one argument, is used to test keys of a-
list,

ass-if-not is like ass-if, except that the sensc of predicate is inverted; that is, a test succeeds
ifpredicate returns ().

rassoc item a-list | {Function]
rassq item a-list [Function)
rass predicate item a-list [Function)
rass-if predicate a-list ' [Function]
rass~if-not predicate a-list [Function)

rassoc is the reverse form of assoc; it compares ifem to the cdr of each successive pair in a-/ist,
rather than to the car. Similarly, rassq is the reverse form of assq, and so on.

For example:
(rassoc 'a '((a . b) (b . c) (¢ . a) {(z . a))) => (¢ . a)

SPICE LISP REFERENCE MANUAL 144

memassoc ifem a-list [Function}
} memassq item a-list [Function)
memass predicate item a-list . [Function]
memass-if predicate a-list [Function]
) memass~if-not predicate a-list [Function]

memassoc is a synthesis of assoc (page 143) and membe r (page 133).

(memassoc item alist) looks up item in the association list a-Iist. The value is the portion of the
a-list whose first pair is the first pair in a-/ist whose car is equal to x, or () if there is none such.
Thus memas soc performs its search like assoc, but returns a value like member.

For example:

(memassoc 'r '{({(a . b) (¢ . d) (r . x) (s . y) (r . 2)))
= ((r . x) (s .y)(r.2))

(memassoc 'goo '((foo . bar) (zoo . goo))) => ()
(memassoc '2 ‘((1 abgc) (2bcd) (-7 xy z)))
=> ((2bcd) (-7 xy 2z))

memassq is like memassoc, except eq is used to compare the ifem to cach key, instcad of equal.

memass is like memassoc, except predicate is used to compare the ifem to cach key, instead of
equal.

memass-if is like memassoc, except that predicate, a function of one argument, is used to test
keys of a-list.

memass—-if-not is like memass-if, except that the sense of predicate is inverted; that is, a test
succceds if predicate returns ().

memrassoc item a-list _ [Function}
memrassq item a-list [Function)
memrass predicate item a-list [Function)
memrass~if predicate a-list [Function]
memrass-if-not predicate a-list [Function]

memrassoc is the reverse form of memassoc; it compares item to the cdr of each successive pair
in a-list, rather than to the car. Similarly, memrassq is the reverse form of memas sq, and so on.
For example:

(memrassoc 'a '({a . b) (b . c) (c . a) {(z . a) (p . q)))
=> ({c . a) (z.a) (p.q))

posassoc item a-list [Function)
posassq item a-list [Function}
posass predicate item a-list [Function}
posass-if predicate a-list [Function}
posass-if-not predicate a-list [Function)

posassoc is asynthesis of assoc (page 143) and position (page 114).

SPICE LISP REFERENCE MANUAL 145

(posassoc item alist) looks up item in the association list a-list. The value is the zero-origin
numerical position of the first pair in the a-list whose car is equal to x, or () if there is none
such.

For example:

(posassoc 'r '({(a . b) (¢ . d) (r . x) (s .y) (r . 2)))
=> 2

{posassoc 'goo '((foo . bar) (zoo0 . goo))) => ()

(posassoc '2 '((1 abc) (2bcd) (-7 xy2z))) =>1

posassq is like posassoc, except eq is used to compare the item to each key, instead of equal.

posass is like posassoc, except predicate is used to compare the item to each key, instead of
equal.

posass=-if is like posassoc, except that predicate, a function of one argument, is used to test
keys of a-list.

posass-if-not is likc posass-if, except that the sensc of predicate is inverted; that is, a test
succeeds if predicate returns ().

posrassoc ilem a-list [Function}
posrassq item a-list [Function)
posrass predicate item a-list [Function)
posrass-if predicate a-list {Function]
posrass-if-not predicate a-list [Function]

posrassoc is the reverse form of posassoc; it compares item to the cdr of each successive pair
in a-list, rather than to the car. Similarly, posrassq is the reverse form of posassg, and so on.

For example:
(posrassoc 'a '((a . b) (b . c) (c . a) (z . a))) => 2

delassoc item a-list &optional n [Function]
delassq ifem a-list &optional n [Function]
delass predicate item a-list &optional n [Function]
delass~-if predicate a-list &optional n [Function]
delass~if-not predicate a-list &optional n [Function]

delassoc is a synthesis of assoc {page 143) and de 1ete (page 134).

(delassoc item alist) looks up item in the association list a-list. Any and all pairs to whose key
item is equal are destructively spliced out of a-/ist. The value is the modified a-list.

For cxample:

SPICE LISP REFERENCE MANUAL 146

(delassoc 'r "((a . b) (¢ . d) (r . x) (s . y) (r . 2)))
= ((a . b) (c . d)(s.Y))

(delassoc 'goo '((foo . bar) (zoo . goo))})
=> ((foo . bar) (zoo . goo)) (Theargument was not modified.)

(detassoc '2 '((1 abc) (2bcd) (-7 xy 2)))
=> ({1 abec¢) (-7 xy z))

If the optional argument » is provided, it should be a non-negative integer; it specifics an upper
bound on the number of pairs to be removed. (In this de1assoc bechaves exactly like delete.)

delassqis like delassoc, except eq is used to compare the item to each key, instcad of equal.

delass is like delassoc, except predicate is used to compare the item to each key, instead of
equal.

delass-if is like delassoc, except that predicate, a function of one argument, is used to test
keys of a-list.

delass-if-not is like delass-if, except that the sense of predicate is inverted; that is, a test
succeeds ifpredicate returns ().

|detrassoc item a-list &optional n [Function]
idelrassq item a-list &optional n [Function)
delrass predicate item a-list &optional n [Function]
delrass-if predicate a-list &optional n [Function]
delrass-if-not predicate a-list &optional n [Function]

delrassoc is the reverse form of delassoc; it compares ifem to the cdr of each successive pair
in a-list, rather than to the car. Similarly, de1rassq is the reverse form of de1assq, and so on.

For example:

(delrassoc 'a '({(a . b) (b . c) {(c . a) (z . a)))
=> ({a . b) (b . ¢))

Compatibility note: The functions sassoc and sassq have been omitted. They were useless hangovers [rom Lise 1.5 days.

13.8. Hash Tables

A hash table is a LI1SP object that works something like a property list and something like an association list.
Each hash table has a sct of entries, ecach of which associates a particular key with a particular value. The basic
functions that deal with hash tables can create entrics, delete entries, and find the value that is associated with
a given key. Finding the value is very fast cven if there are many entrics, because hashing is used; this is an
important advantage of hash tables over property lists.

A given hash table can only associate one value with a given key; if you try 10 add a sccond value it will
replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By

SPICE LISP REFERENCE MANUAL 147

contrast, association lists can be augmented non-destructively.

Hash tables come in two kinds, the difference being whether the keys are compared with eq or with
equal. Inother words, there are hash tables which hash on Lisp objects (using eq) and there are hash tables
which hash on abstract S-expressions (using equa?l).

Hash tables of the first kind are created with the function make-hash-table, which takes various
options. New entries are added to hash tables with the puthash function. To look up a key and find the
associated value, use gethash; to remove an entry, use remhash. Here is a simple example.

(setq a (make-hash-table))
(puthash ‘'color 'brown a)
(puthash 'name 'fred a)
(gethash 'color a) => brown
(gethash ‘name a) => fred
(gethash ‘'pointy a) => ()

In this example, the symbols color and name are being used as keys, and the symbols brown and fred
are being used as the associated values. The hash table has two items in it, one of which associates from
color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any LiSP object. Likewise values can be any LISP object.
Hash tables are properly interfaced to the relocating garbage collector so that garbage collection will have no |
perceptible effect on the functionality of hash tables.

When a hash table is first created, it has a size, which is the maximum number of entries it can hold.
Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With
the maximum possible bad luck, the capacity could be very much less, but this rarcly happens. If so many
entries are added that the capacity is exceeded, the hash table will automatically grow, and the cntries will be
rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup
still works). This is transparent to the caller; it all happens automaticaily.

Compatibility note: This hash table facility is compatible with Lisp Machine Lisp. It is similar to the hasharray facility of
INTERLISP, and some of the function names are the same. However, it is nof compatible with INTERLISP. The exact details
and the order of arguments are designed to be consistent with the rest of MACLISP rather than with INTERLiSP. For instance,
the order of arguments to maphash is different, there is no “syslem hash table”, and there is not the INTERLISP restriction
that keys and values may not be (). Note, however, that the order of arguments to gethash, puthash, and remhash is
not consistent with get, putprop, and remprop, either. This is an unfortunate result of the haphazard historical
development of Lisp.

13.8.1. Hashing on EQ

This section documents the functions for eq hash tables, which use objects as keys and associate other
objects with them.

SPICE LISP REFERENCE MANUAL 148

make-hash-table &rest options [Function)
This creates a new hash table. The number of arguments should be even. Each pair of arguments
specifies an option; the first is a keyword symbol, and the second a value for that option. Valid

option keywords are:
0 size Set the initial size of the hash table, in entries, as a fixnum. The default is 64.
\w . The actual size is rounded up from the size you specify to the next "good” size.
o o You won't necessarily be able to store this many entries into the table before it
' I overflows and becomes bigger; but except in the case of extreme bad luck you
will be able to store almost this many.
rehash-size Specifies how much to increase the size of the hash table when it becomes full.
This can be an integer greater than zero, which is the number of entries to add,
or it can be a floating-point number greater than one, which is the ratio of the
new size to the old size. The default is 1, 3, which causes the table to be made
30% bigger each timc it has to grow.
rehash-threshold
Specifies how full the hash table can get before it must grow. This can be an
integer greater than zero and less than the rehash-size (in which case it will be
scaled whenever the table is grown), or it can be a floating-point number
between zero and one. The default is 0.8, which means the table is enlarged
when it becomes over 80% full. Ths pars s ao
r\7 7 ‘A/, .FLV 4 o2
For example: peaning Al
' . . h a—JL alg !
(make-hash-table 'rehash-size 1.5
'size (* number-of-widgets 43))
gethash key hash-table &optional deﬁzuil_ / [Function)
Find the entry in hash-table whose key is key, and return the associated value. If there is no such
entry, return default, which is () if not specified.
gethash actually returns two values; the second is t if an entry was found, and () if no entry was
found.
puthash key value hash-table [Function}

Create an entry in hash-table associating key to value; if there is already an entry for key, then
replace the value of that entry with value. Returns value.

swapliasl, key valve hurl ~lle £ opbonal fefeslt

remhash key hash-table [Function]
Remove any entry for key in hash-1able. Returns t if there was an entry or () if there was not.

maphash function hash-table [Function]
For cach entry in hash-table, call fimetion on two arguments: the key of the entry and the value of
the entry. If entries are added to or deleted from the hash table while a maphash is in progress,
the results are unpredictable. maphash returns t.

SPICE LISP REFERENCE MANUAL 149

clrhash hash-table [Function]
Remove all the entries from hash-table. Returns the hash table itself. x\" 71« .
z n
o/ “" 2 4
. S
13.8.2. Hashing on EQUAL P"“!c ﬁgf- \’\ A0 o baf'& 75
& } ™

This section documents the functions for equal hash tables, which use S-expresszons as keys and assoc:ate ’h? A \’

objects with them. They are entirely analogous to the functions for eq hash tables. . l"ﬂv X
make-equal-hash-table &rest options [Function]

This creates a new hash table of the equal kind. The number of arguments should be even. Each
pair of arguments specifics an option; the first is a keyword symbol, and the sccond a value for that
option. The valid option keywords are the same as formake-hash-tab1e (page 148).

gethash-equal key hash-table &optional default [Function]
Find the entry in hash-table whose key is equal to kep, and return the associated value, If there is
no such entry, return default, which is () if not specified.

gethash-equal actually rcturns two values; the sccond is t if an entry was found, and () if no
entry was found.

puthash-equal key value hash-table [Function]
Create an entry in hash-table associating key to value; if there is already an entry with a key equal
to for key, then replace the value of that entry with value., Returns value,

remhash-equal key hash-table [Function)
Remove any entry with a key equal to key in hash-table. Returns t if there was an entry or () if
there was not.

maphash-equal function hash-table [Function]

For cach entry in hash-table, call function on two arguments: the key of the entry and the value of
the entry. If entries are added to or deleted from the hash table while a maphash-equal is in
progress, the results are unpredictable. maphash-equal returns t.

c¢lrhash-equal hash-table [Function]
Remove all the entries from hash-table. Returns the hash table itself.

13.8.3. Primitive Hash Function

SPICE LISP REFERENCE MANUAL 150

sxhash S-expression [Function)
sxhash computes a hash code of an S-expression, and returns it as an integer, which may be
positive or negative. A property .of sxhash is that (equal x y) implies (= (sxhash x)
{sxhash y)).

Implementation note: The integer returned by sxhash should be a fixnum, that is, an integer with an
immediate representation.

I/\ LT(/) /“((L\\,‘\:Q/ h\a\i e
Qu“mlruﬂ% edora o«

~ o 27 .
o — r\eg‘A‘V\" whes

|

SPICE LISP REFERENCE MANUAL 151

Chapter 14

Strings

Nou APPARENTY O NLM SUFFoXT FIXED STAwES AND NOT VARY NG STR/NES
(v Tie PL/2) sENse, THAT 15 They cANT HAVE Fite PoinTé RS THIS
CHLATL DETAACTS FROM Fpn vriciTy!
A string is a special kind of vector whose elements are characters. In general, string operations do not work
on ordinary vectors.

Compatibility note: Lisp Machine Lisp implements strings as a kind of array, and allows general array operations on strings,
even at the user-visible fevel. One consequence of this s that Lisp Machine Lisp strings can have array leaders, CoMMON
LisP treats strings as vectors, not arrays. In Lisp Machine LisP one uscs the funclion aref (page 177) to access string
clements; in COMMON Lisp one must use the function char (page 151).

Compatibility note: Lisp Machine Lisp allows a fixnum to be coerced into a one-character string whose element is a
character whose Ascit value is the fixnum. The net effect is that a single charactler can be automatically coerced to be a one-
character string. It would be inconsistent with adherence to the character standard, and possibly also affect efficiency
adversely in some implementations, 1o remain compatible with this. 6K

As a rule, any string operation will accept a symbol instead of a string as an argument if the operation never
modifies that argument; the print-name of the symbot is used. In this respect the string-specific sequence
operations are not simply specializations of the generic versions; the generic sequence operations never accept
symbols as sequences. This slight inclegance is permitted in COMMON LISP in the name of pragmatic utility.
Also, there is a stight non-parallisin in the names of string functions. Where the suffixes equalp and eql
would be more appropriate, for historical compatibility the suffixes equal and = are used instead to indicate
case-insensitive and case-sensitive character comparison, respectively.

Any LISP object may be tested for being a string by the predicate st ringp (page 29).

14.1. String Access and Modification

char string index [Function)
The given index must be a non-negative integer less than the length of string. The character at
position index of the string is returned as a character object. (This character will necessarily satisfy
the predicate string-charp (page 98).) As with all sequences in COMMON LISP, indexing is
zero-origin.
For example:

(char "Floob-Boober-Bab-Boober-Bubs" 0) => #\F
{char "Floob-Boober-Bab-Boober-Bubs" 1) => #\1

See et (page 108).

SPICE LISP REFERENCE MANUAL 152

” rplachar string index newchar [Function]
The argument string must be a string. The given index must be a non- negative integer less than the
length of the string. The character at position index is altered to be newchar, which must be a
character object which satisfies the predicate string-charp (page 98). rplachar returns
newchar as its value. See setelt (page 108).

14.2. String Comparison

” string= stringl string2? &optional (startl 0) (start2 0) endl end2 [Function)
string= compares two strings, returning t if they are the same (corresponding characters are
identical) and () if they are not. The function equal (page 31) calls string= if applied to two | I
strings.

»

" The optional arguments start and star¢2 are the places in the strings to start the comparison. The
',") optional arguments end/ and end2/places in the strings to stop comparing; comparison stops just
F before the position specified by a limit. The start arguments default to zero (beginning of string),
v and the end arguments default to the lengths of the strings (end of string), so that by default the
entirety of cach string is cxamined. These arguments are provided so that substrings can be

compared efficiently.

The value of string= is necessarily () if the (sub)strings being compared are of unequal length;
that is, if

(not (= (- endl start1l) (- end2 start2))) B(u\\
is t then string= returns ().

For example:

(string= "foo" "foo") => t
(string= "foo" "Foo") => ()
(string= "foo" "bar") => ()
(string= "together” "frogs" 13 2 4) => t

string-equal stringl string2 &optional (start! 0) (swart2 0) endl end? [Function]
string-equal is just like string= except that differences in case are ignored; two characters
are considered to be the same if char-equal (page 100) is true of them.
For example:
(string-equal “foo" "Foo") => t

&

string< stringl string? [Function} p
string> stringl string? [Function] $ 0\4 \\l "J‘]
string<= stringl string2 [Function) \L \(_}L
string>= stringl string2 [Function)

string<> swingl string? [Function)

‘The two string arguments are compared lexicographically, and the result is () unless seringl is (less

SPICE LISP REFERENCE MANUAL 153

than, greater than, less than or equal to, greater than or equal to, not equal to) string2, respectively.
If the condition is satisfied, however, then the result is the index within the strings of the first
character position at which the strings fail to match; put another way, the result is the length of the
longest common prefix of the strings.

A string a is less than a string 4 if in the first position in which they differ the character of a is less
than the corresponding character of b according to the function char< (page 100), or if string ais a
proper prefix of string b (of shorter length and matching in all the characters of a).

¢
% 8V"
string-lessp stringl string2 [Function] L\ L
string-greaterp stringl string2? [Function) g wa\" /p f?
string-not-lessp stringl string2 [Function] \ & $
\ string-not-greaterp stringl string2 [Function) \
string-not-equal stringl string2 [Function)

These arc cxactly like string<, string>, string<=, string>=, and string<>, respectively,
except that distinctions between upper-case and lower-case letters are ignored. It is if char-
lessp (page 101) were used instead of char< (page 100) for comparing characters.

«S’{YJ\?-— con~pare

N R
14.3. String Construction and Manipulation 4 arp
SL\NLQ —A‘h L&“j m“h" _,a\ff‘“j
l make-string count &optional fill-character [Fi uncuon]

This returns a string of length count, each of whose characters has been initialized to the fill-
character. If fill-character is not specified, then the string will be initialized in an implementation-
dependent way.

Implementation uote: it may be convenient to initiatize the string to null characters, or to spaces, or to garbage
("whatever was there").

H string-repeat string count {Function]
The result of string-repeat is a string containing count copies of string appended together.,
The length of the result is thercfore the product of count and the length of string. The argument
coun! must be a non-negative integer.
For example:

(string-repeat "Baz! " 4) => "Baz! Baz! Baz! Baz! "
(string-repeat "*" 5) =) newesan

Note that make-string (page 153) can also produce a string which is a replication of a single

character.
string-trim character-bag string {Function}
string-left-trim character-bag string [Function}
string-right-trim character-bag string {Function]

string-teimreturns a subsiring (in the sense of the function substring (paze 155)) of string,

[

SPICE LISP REFERENCI MANUAL 154

with all characters in character-bag stripped off of the beginning and end. The function string-
1eft-trim is similar, but strips characters off only the beginning; string-right-trim strips
off only the end. The argument character-bag may be a list of characters or a string.

For example:

(string-trim '(#\Space #\Tab #\Return) " garbanzo beans
") => "garbanzo beans"

(string-trim " ()*" " (*three (silly) words® ")
=> "three (silly) words"

(string-left-trim " ()*" " (*three (silly) words*) ")
=> "three (silly) words*) "

(string-right-trim " ()*" " (*three (silly) words*) ")
=> " (*three (silly) words"

string-upcase string [Function)
string-downcase string [Function]
string-capitalize string [Function)

string-upcase returns a copy of string, with all lower-case alphabetic characters replaced by
the corresponding upper-case characters. More precisely, each character of the result string is

produced by applying the function char-upcase (page 102) to the corresponding character of
string.

string-downcase is similar, except that upper-case characters are converted to lower-case
characters (using char-downcase (page 102)).

For example:

(string-upcase "Dr. Livingston, I presume?")
=> "DR. LIVINGSTON, I PRESUME?"

(string-downcase "Dr. Livingston, I presume?")
=> "dr. livingston, i presume?”

string-capitalize produces a copy of string such that every word (subsequence of case-

modifiable characters delimited by non-case-modifiable characters) has its first character in upper-
case and any other letters in lower-case.
For example:
(string-capitalize " hello ") => " Hello "
(string-capitalize
“occlUDeD cASEmenTs FOreSTA11 iNADVertent DEFenestraTION")

=> "Occluded Casements Forestall Inadvertent Defenestration”
(string-capitalize 'kludgy-hash-search) => "Kludgy-Hash-Search"”

ot
y ot 7, e Ao o

14.4. Type Conversions on Strings (}“/
H« bl

SPICE LISP REFERENCE MANUAL 155

string x ‘ {Function]
string coerces x into a string. Most of the string functions apply this to such of their arguments
as are supposed to be strings. If x is a string, it is rcturned. If x is a symbol, its print-name is
returned. If x cannot be coerced to be a string, an error occurs.

To get the string representation of a number or any other LISP object, use prinstring (page
PRINSTRING-FUN) or format (page 217).

string-to-list string [Function]

string-to-vector string : [Function]
A list or vector is created with the same length as the argument string, and the clements of this new
list or vector are the characters of string.

For example:

(string-to-list "stretch") => (#\s #\t #\r #\e #\t #\c #\h)

(string-to-vector "stretch”) => #(#\s #\t #\r #\e #\t #c #\h)
The inverse conversions may be accomplished using the functions 1ist~to-string (page
130) and vector-to-string (page VECTOR-TO-STRING-FUN).

14.5. Sequence Functions on Strings

The functions in this scction are equivaient in operation to the corresponding generic sequence functions,
but require sequence arguments to be strings, and sequence elements to be string-characters. As a useful
extension, any argument which is supposed to be a string but is never modified may be a symbol instead, in
which case the print-name of the symbol is used.

As long as the string functions are not preciscly equivalent to the generic versions, the following additional
but useful incompatibility is introduced. Where a generic operation uses equatl, the string operations use
char-equatl, even though equal uses char=, Also, because eq is not guaranteed to work on characters,

the "q" versions of the scquence functions are not provided, being replaced by "=" versions which use
char=,
substring string start &optional end {Function]
“ copystring string [Function)
string-length string [Function]
\ | string-fi11 string string-character &optional start end [Function)
(1S tring-replace (farget-vector source-vector &optional (arget-start source-start larget-end source-
end [Function]
string-reverse string [Function]
string-nreve rsg"gring {Function)
H string-concat’&rest strings [Function)

['hese functions are exactly like the corresponding generic sequence functions whose names do not

SPICE LISP REFERENCE MANUAL 156

begin with the prefix "string-", except that sequence arguments must be strings or possibly
symbols. See subseq (page 108), copyseq (page 109), 1ength (page 109), fi11 (page 109),
replace (page 110), reverse (page 110), nreverse {page 110), and concat {page 110).

Compatibility note: In Lisp Machine Lisp, string-reverse and string-nreverse are advertised to be
able to reverse a 1-dimensional array of any type; indced, in Lisp Machine Lisp they are general array
reversers, and strings are merely a special kind of array. In ComMMON Lisp, these functions may reverse only

strings. T Common Lisp wrsda & Lpp Madhie Lzp, _
MA uLes 74’44/'»\ ,(_ey/—(pce. ‘G/N,{'\\&f\f Jfo AC (s,
[t string-reduce fiunction string &optional start-value [Function]
string-left-reduce function string &optional start-value [Function]

string-right-reduce finction string &optional start-value [Function}
string-map function &rest strings [Function)
string-some predicale &rest sirings [Function]
string-every predicate &rest strings [Funclion]
string-notany predicate &rest strings [Function)
string-notevery predicate &rest sirings [Function]

These functions are exactly like the corresponding generic sequence functions \;vhose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly
symbols. Sce reduce (page 111), 1eft-reduce (page 111), right-reduce (page 111), map
(page 112), some (page 112), every (page 112), notany (page 112), notevery (page 112).

777 Query: Should the reduce functions be omitted as useless, or retained for symmetry? Kg7A\N, 7 GUESS. gov 1.
THAT THKe Furcrioss Slhsut
EXIST ExfPLiciTLT.

string~-remove string-character string &optional count [Function]
string-rem= string-character string &optional count [Function]
string-rem predicate string-character string &optional count [Function]
string-rem-if predicate siring &optional count [Function]
string-rem-if-not predicate string &optional count [Function]
string-remove-from-end string-character string &optional count [Function]
string-remq-from-end string-character string &optional count [Function)
string-rem-from-end predicate string-character string &optional count [Function)
string-rem-from-end-if predicate string &optional count [Function]
string-rem-from-end-if-not predicate string &optional count [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly
symbols. Sce remove (page 113).

. Y= < L\u w
string-position sting-character string &optional start end [l'unction) = 5 Ying - sea7e
string-pos= string-character string &optional start end [Function)
string-pos predicate string-character siring &optional start end [Function]
string-pos-if predicate string &optional start end {Function)
string-pos-if-not predicate string &optional start end [Function]
string-position-Trom-end string character string &optional start end [Funcrion]

l
IH

f|
|
([

|
l
|

k

|

SPICE LISP REFERENCE MANUAL 157

string-posq-from-end string-character string &optional start end [Function]
string-pos-from-end predicate string-character string &optional start end [Function]
string~-pos-from-end-if predicate string &optional start end [Function]
string-pos-from-end-if-not predicate string &optional start end [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly
symbols, Sec position (page 114).

Comgatibility note: In Lisp Machine Lisp, string-positionis called string-search-char. The Lisp
Machine Lisp function string-search-set may be expressed in COMMON Lisp as

{string-pos-if #'(lambda (x)} (position x character-set)} string)
for example.

string-scan-over string-character string &optional start end {Function)

string-scan= string-character string &optional start end [Function]
string-scan predicate string-character string &optional start end [Function)
string-scan-if predicate string &optional start end [Function]
string-scan-if-not predicate siring &optional start end [Function}
string-scan-over-from-end string-character string &optional start end [Function)
string-scanq-from-end siring-character string &optional start end [Function]
string-scan-from-end predicate string-character string &optional start end [Function]

string-scan-from-end-if predicate string &optional start end [Function}
string-scan-from-end-if-not predicate string &optional start end [Function)
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly
symbols. See scan-over (page 114).

string-count string-character string &optional start end [Function)
string-cnt= string-character string &optional start end [Function)
string-cnt predicate string-character siring &optional start end [Function]
string-cnt-1if predicate string &optional start end [Function]
string-cnt-if-not predicate siring &optional start end [Function)

These functions are exactly like the corresponding gencric sequence functions whose names do not
begin with the prefix "string-", except that scquence arguments must be strings or possibly
symbols. See count (page 115).

string-mismatch stringl string2 &optional startl start2 endl end? [Function]
string-mismat= stringl string2 &optional staril “start2 endl end? [Function]
string-mismat predicatc stringl string? &optional startl start2 endl end? [Function]
string-mismatch-from-end stringl string2? &optional startl start2 endl end2- [Function)

string-mismatq-from-end swringl string? &optional swartl start2 endl end? [Function)
string-mismat~from-end predicate stringl string? &optional siartl swart2 endl cnd? [Function]

a gld\-’M
= S"{\/??"‘er o

|

|

SPICE LISP REFERENCE MANUAL

These functions are exactly like the corresponding generic sequence functions whose names do not

158

begin with the prefix "string-", except that sequence arguments must be strings or possibly

symbols. See mismatch (page 116).

string-maxprefix stringl string2 &optional startl stari2 endl end? [Function]
' string-maxpref= stringl string? &optional starl start2 endl end2 [Function]
string-maxpref predicate stringl string? &optional startl start2 endl end? [Function]
string-maxsuffix stringl string? &optional startl start2 endl end2 [Function]
string-maxsuff= stringl string? &optional staril start2 endl end? [Function)

string-maxsuff predicate stringl string? &optional staril stari2 endl end2 [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly

symbols. Sece maxprefix (page 117).

string-search stringl siring2 &optional startl stari2 endl end2 [Function]
string-srch= stringl string2 &optional startl start2 endl end2 [Function]
string-srch predicate stringl string2? &optional startl stari2 endl end? [Function]

string-search-from-end stringl string2 &optional startl star2 endl end2 [Function)
string-srchq-from-end stringl string? &optional startl stari2 endl end? [Function)

string-srch-from-end predicate siringl string2 &optional startl stari2 endl end? [Function]

These functions are exactly like the corresponding gencric sequence functions whose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly

symbols. See search (page 118).

string-sort string predicate [Function]
string-sortcar string predicate [Function]
string-sortslot string key-function predicate [Function)

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "string-", except that sequence arguments must be strings or possibly

symbols. Sec sort, (page 118).

string-merge stringl string? predicate [Function]
string-mergecar siringl string2 predicate [Function)
string-mergeslot stringl string2 key-function predicate [Function]
string-nmerge stringl string2 predicate [Function)
string-nmergecar siringl string2 predicate {Function)
string-nmergeslot stringl swring2 key-function predicate [Function)

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix “string-", except that sequence arguments must be strings or possibly

SPICE LISP REFERENCE MANUAL ' 159

symbols. See merge (page 120) and nmerge (page 121).

S
e .- ¢ S
o = [ph
é(\\/ V;7 - Séﬂ‘a \ ﬁ\s'
*‘\(C. 0 T Y R ¢
</~ﬁ 0§ * LSM..JL’Sen
¢V

SPICE LISP REFFRENCE MANUAL 160

SPICE LISP REFERENCE MANUAL 161

Chapter 15

Vectors

A vector is a simple one-dimensional sequence of objects. Each vector has a fixed length » peculiar to that
vector; the elements of the vector are numbcered from zero to #-1.

Vectors differ from lists in that it takes constant time to make a list longer (using the function cons (page
124)) and linear time to access an arbitrary element (using the function nth (page 125), for cxample), while
for a vector this is reversed: it takes lincar time to extend a vector, but accessing an element takes constant
time. Hence the use of lists or vectors for a particular application should be dictated primarily by cfficiency
considerations.

Vectors are divided into various subtypes, depending on what class of LISP objects they arc capable of
containing. A vector capable of containing objects of type fype is said to be of type (vector fype). A
» request (to the function make-vector) (o construct a vector of type (vector fype/) may or may not

" f's'décc@wwcveri it may produce such a vector, or it may produce a vector whose actual type is (vector
3 o . " . . .
(5“ type2Y, where type! is a subtype of fype2. Each implementation will respond to such a request by using the
W most specific type &ype2 for which it provides vectors of that concrete type.

All implementations of COMMON LISP must provide three concrete vector types: general vectors, whose
type is (vector t), and which can contain any LISP object; bit-vectors, whose type is (vector (mod
2)), and which can contain bits (the integers 0 and 1); and strings, whose type is (vector string-
char), and which can contain a certain subset of the character data type. Implementations may choose to
provide other specialized concrete vector types as well; a comumon choice is vectors of type

{(vector (mod n)) forn= 22’ for integral j

Vectors are a kind of sequence; most of the operations on vectors are merely specialized versions of those
which operate on sequences. For most generic sequence functions, five specialized vector versions are
provided: for any vectors, for general vectors (those specialized vectors which can hold any LISP object), bit-
vectors, strings, and vectors of a specified type. If x is the name of a gencric sequence function, then as a rule
the type-specific functions are named as follows: v

Name Type of vector operated upon w \
o

vector-x Vectors of any kind

bit-x Bit vectors \ v:\%(:xﬁ =

SPICE LISP REFERENCE MANUAL 162

string-x Strings
VX General vectors (those of type (vector t))
vx@ Vectors of a type indicated by the first argument

Use of such a type-specific function implies that any sequence arguments must be of the specified vector type,
any arguments stored into or compared with elements of a vector must be of an appropriate type, and that the
result will be a vector or element of the appropriate type.

Strings have such important and distinctive uses that there are many functions on strings which are not
generalized to arbitrary sequences. String functions are thercfore described in another chapter.

15.1. Creating Vectors N 9

make-vector length &optional fype initial-value [Function]
A new vector is created and returned. It will contain length elements; length must be a non-
negative integer. It will be of type (vector ctype), where ctype is the most specific type for
which the implementation provides a concrete representation of vectors of that type, such that type
is a subtype of ctype. The fype defaults to t. Each clement of the vector will be initial-value, which
must be of type type; but if the initial-value is not provided, then the initial contents of the vector
are implementation-dependent (but each element must nevertheless be of type type).

make-bit-vector length &optional initial-value [Function]
This is precisely equiva;

15.2. Functions on General Vectors (Vectors of Lisp Objects)

The functions in this section are equivalent in operation to the corresponding generic sequence functions,
but require sequence arguments to be vectors of type (vector t).

vref vector index [Function)
The clement of the vector specified by the integer index is returned. ~The index must be non-
negative and less than the length of the vector. Sce et (page 108).

vset vector index newvalue [Function}
The LISP object newvalue is stored into the component of the vector specified by the integer index.
The index must be non-negative and less than the length of the vector, The newvalue must be
suitable for storing into the vector if the vector is of a specialized type. Sce setelt (page 108).

T dam vahapy ot Uiz
MTs name dar 4 Q”L_\“m
Lo £€ arywvwh ar nst &
Same N—‘Q,Qf as CtS'e’JC-

SPICE LISP REFERENCE MANUAL 163

subvec veclor start &optional end [Function]
copyvec veclor [Function]
viength vector [Function]
vfill vector item &optional start end [Function]

vreplace farget-vector source-vector &optional target-start source-start target-end source-end
[Function}

vreverse veclor [Function)
vnreverse veclor [Function)
vconcat &rest veclors [Function]

These functions are exactly like the corresponding gencric scquence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
See subseq {page 108), copyseq (page 109), Tength (page 109), fi11 (page 109), replace
(page 110), reverse (page 110), nreverse (page 110), and concat (page 110).

vreduce function vector &optional start-value [Function]
left-vreduce function vector &optional start-value [Function)
right-vreduce fiunction vector &optional start-value [Function]
vmap function &rest veclors [Function)
vsome predicate &rest veclors [Function]
vevery predicale &rest vectors [Function]
vnotany predicate &rest vectors [Function]
vnotevery predicate &rest veclors {Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
Sce reduce (page 111), Teft-reduce (page 111), right-reduce (page 111), map (page 112),
some (page 112), every (page 112), notany (page 112), notevery (page 112).

vremove ifem vecior &optional count [Function)
vremq item vector &optional count [Function)
vrem predicate item vecior &optional count [Function)
vrom-if predicate vector &optional count [Function)
vrem-if-not predicate vector &optional count [Function]
vremove-from-end item vecior &optional count [Function]
vremq-from-end item vector &optional count [Function]
vrem-from-end predicate item vector &optional count [Function]
vrem-from-end-if predicate vector &optional count [Function)
vrem-from-end-if-not predicate vector &optional count [Function]

These functions are cxactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
Sce remove (page 113).

SPICE LISP REFERENCE MANUAL 164

vposition item vector &optional start end _ [Function)
vposgq ilem vecior &optional start end [Function)
vpos predicate item vector &optional siart end [Function)
vpos~if predicate vector &optional start end [Function]
vpos-if-not predicate vector &optional start end [Function]
vposition-from-end item vector &optional start end [Function]
vposq-from-end item vector &optional .start end [Function]
vpos-from-end predicate item vector &optional start end {Function}
vpos-from-end-if predicate vector &optional start end [Function]

vpos-from-end-if-not predicate vector &optional start end |[Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
Sce position (page 114).

vscan-over item vector &optional start end [Function)
vscanq item vector &optional start end {Function]
vscan predicate item vector &optional start end {Function}
vscan-if predicate vector &optional start end [Function}
vscan-if-not predicate vector &optional start end { Function)
vscan-over-from-end ifem vector &optional start end [Function)
vscanqg-from-end item vector &optional start end [Function)
vscan-from-end predicate item vector &optional start end [Function]
vscan-from-end-if predicate vector &optional start end [Function]

vscan-from-end-if-not predicate vector &optional start end [Function)
These functions are exactly like the corresponding gencric sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type {vector t).
See scan-over (page 114).

vcount item vector &optional start end [Function]
ventq item vector &optional start end [Function]
vent predicate item vectvr &optional start end . [Function]
vent-if predicate vector &optional start end {Function]
vent-if-not predicate vector &optional start end [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
Sec count (page 115).

vmismatch vector! vector? &optional start! start? endl end2 [Function)
vmismatq vector! vector? &optional staril stari2 endl end? [Function}
vmismat predicate vectorl vectvr? &optional startl start2 endl end? [Function]
vmismatch-from-end vector! vector? &optional star! start2 endl end2 [Function]
vinismatq-from-end vector! vector? &optional startl start2 endl end? [Function)

SPICE LISP REFERENCE MANUAL 165

vmismat-from-end predicate vector! vector? &optional start! start? endl end? [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not

begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
See mismatch (page 116).

vmaxprefix vectorl vector? &optional start! start2 endl end? [Function]

vmaxprefq vecforl vector? &optional startl start2 endl end? [Function]

vmaxpref predicate vectorl vector? &optional startl start2 endl end? [Function}

vmaxsuffix vectorl vector? &optional swartl stari2 endl end2 [Function)

vmaxsuffq vector! vector? &optional startl start? endl end2? [Function]

vmaxsuff predicate vector! vector? &optional startl start2 endl end? [Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix “v", except that scquence arguments must be vectors of type (vector t).
Sce maxpref ix (page 117).

vsearch vectorl vector? &optional start! start2 end! end2 [Function]
vsrchq vector] vector? &optional startl start2 endl end? {Function)
vsrch predicate vectorl vector? &optional startl start2 endl end? {Function]
vsearch-from-end vectorl vector? &optional startl star(2 endl end2 [Function)
vsrchg-from-end vectorl vector? &optional startl stari2 endl end? [Function}

vsrch-from-end predicate vectorl vector? &optional start! start? endl end? [Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type (vector t).
Sce search (page 118).

vsort veclor predicate [Function}
vsortcar vector predicate ' [Function}
vsortslot vector key-function predicate [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v", except that sequence arguments must be vectors of type {vector t).

See sort (page 118).
vmerge vectorl vector? predicate [Function]
vmergecar veclorl vector? predicate [Function)
vmergeslot vectorl vector? key-function predicate [Function]
vomerge vectorl vector? predicate [Function}
vomergecar vectorl vector? predicate [Function}
vamergeslot vectorl vector? key-function predicate [Function}

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "v”, except that sequence arguments must be vectors of type (vector t).

SPICE LISP REFERENCE MANUAL 166

See merge (page 120) and nmerge (page 121).

15.3. Functions on Bit-Vectors

Most of the functions in this section are equivalent in operation to the corresponding generic sequence
functions, but require sequence arguments to be bit-vectors. Because eq is not guaranteed to work on
integers, the eq-versions of the generic sequence functions are not provided.

bit bit-vector index {Function]
The clement of the bit-vector specificd by the integer index is returned. The index must be non-
negative and less than the length of the vector. The result will aiways be 0 or 1. See e1t (page
108).

rplacbit bit-vector index newbit [Function]
The newbit is stored into the component of the bit-vector specified by the integer index. The index
must be non-negative and less than the length of the vector. The newvalue must be 0 or 1. See

setelt (page 108).
sub-bits bit-vector start &optional end [Function)
copybits bit-vector [Function]
bit-length bit-vector [Function]
bit-fi11 bir-vector bit &optional start end [Function)

bit-replace farget-vector source-vector &optional (fargel-start source-start target-end source-end
[Function}

bit-reverse bit-vector [Function]
bit-nreverse bit-vector : [Function)
bit-concat &rest bit-vectors [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-" or end with "bits", except that sequence arguments must be bit-
vectors. Sec subseq (page 108), copyseq (page 109), 1ength (page 109), fi11 (page 109),
replace (page 110), reverse {page 110), nreverse (page 110}, and concat (page 110).

bit-reduce function bit-vector &optional start-value [Function)
bit-left-reduce function bit-vector &optional start-value [Function]
bit-right-reduce function bit-vector &optional start-value [Function]
bit-map function &rest bit-vectors ' [Function]
bit-some predicate &rest bit-vectors [Function]
bit-every predicate &rest bit-vectors [Function)
bit-notany predicate &rest bit-vectors [Function)
bit-notevery predicate &rest bit-vectors [Function)

These functions are exactly like the corresponding generic sequernice functions whose names do not

SPICE LISP REFERENCE MANUAL 167

begin with the prefix "b1it-", cxcept that sequence arguments must be bit-vectors.

Implementation note: Implementations are free to use the following trick if deemed advisable: determine the
effect of the fiunction or predicate once for each relevant combination of bits, and then use these cached results
to perform the operation. For example, one might implement some by applying the predicate to 0 and to 1
once each, and then dispatching to one of four pieces of code:

Resulton 0 Result on 1 Action

() () Return ().
Q) t ' Scarch for a 1 bit.
t) Search for a 0 bit.
\\\ya’ t t Return {(not (zerop (length bit-vector))).
ij‘ ‘;}' \,}' each of which can be implemented in an optimized manner. Actually, one should be more careful than this, to

avoid calling predicate at all if the bit-vector is empty, and avoid calling it on 1 if the vector is all zeros, and vice

/L, ‘rs \:’r {\'V‘\ versa.

fy
3Y o Sce reduce (page 111), 1eft-reduce (page 111), right-reduce (page 111), map (page 112),

o h some (page 112), every (page 112), notany (page 112), notevery (page 112).
[\0/
& A
. bit-remove bit bit-vector &optional count [Function]
bit-rem predicate bit bit-vector &optional count [Function]
bit-rem-if predicate bit-vector &optional count [Function]
bit-rem-if-not predicate bit-vector &optional count [Function)
bit-remove-from-end bit bit-vector &optional count [Function]

bit-rem-from-end predicate bit bit-vector &optional count [Function]
bit-rem-from-end-if predicate bit-vector &optional count [Function)
bit-rem-from-end-if-not predicate bit-vector &optional count [Function}
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. Sce remove

(page 113).
bit-position bit bit-vector &optional start end [Function]
bit-pos predicate bit bit-vector &optional siart end [Function)
bit-pos-if predicate bit-vector &optional siar end - [Function]
bit-pos-if-not predicate bit-vector &optional start end [Function)

bit-position-from-end bit bit-vector &optional siar end [Function]
bit-pos-from-end predicate bit bit-vector &optional swart end [Function]
bit-pos-from-end-if predicate bit-vector &optional swart end [Function]
bit-pos-from-end-if-not predicate bit-vector &optional start end [Function)
‘These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. See
position (page 114).

SPICE LISP REFERENCE MANUAL 168

bit-scan-over bit bit-vector &optional start end [Function]
bit-scan predicate bit bit-vecior &optional start end [Function)
bit-scan-if predicate bit-vector &optional start end [Function]
bit-scan-if-not predicate bit-vector &optional start end {Function]
bit-scan-over-from-end bir bit-vector &optional start end [Function)
bit-scan-from-end predicate bit bit-vector &optional start end [Function]
bit-scan-from-end-if predicate bit-vector &optional start end [Function]
bit-scan-from-end-if-not predicate bit-vector &optional start end [Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. See scan-

over (page 114).
bit-count bit bit-vector &optional start end [Function)
bit-cnt predicate bit bit-vector &optional start end [Function]
bit-cnt-if predicate bit-vector &optional start end [Function]
bit-cnt-if-not predicate bit-vector &optional start end [Function]

These functions are exactly like the corresponding gencric sequence functions whose names do not
begin with the prefix "bit-", except that scquence arguments must be bit-vectors. See count
(page 115).

bit-mismatch bit-vector] bit-vector? &optionatl starti start2 endl end? [Function}
bit-mismat predicate bit-vectorl bit-vector? &optional start! start2 endl end2 [Function)
bit-mismatch-from-end bit-vector! bit-vector? &optional siartl start2? endl end? [Function]

bit-mismat-from-end predicate bit-vectorl bit-vector2 &optional startl start2 endl end2
[Function) '
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. See
mismatch (page 116).

bit-maxprefix bit-vector]l bit-vector? &optional start! start2 endl end? [Function]
bit-maxpref predicate bit-vector! bit-vector? &optional swartl start2 endl end? [Function}
bit-maxsuffix bit-vector] bit-vector? &optional startl start2 endl end? [Function)

bit-maxsuff predicate bit-vectorl bit-vector2 &optional startl start2 endl end2|Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. See
maxprefix (page 117).

SPICE LISP REFERENCE MANUAL 169

bit-search bit-vectorl bit-vector? &optional staril star2 endl end? [Function]
bit-srch predicate bit-vectorl bit-vector? &optional swartl start2 endl end2 [Function]
bit-search-from-end bit-vector! bit-vector? &optional startl start2 endl end? [Function)

bit-srch-from-end predicate bit-vectorl bit-vector? &optional startl start2 endl end?
[Function]
These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that scquence arguments must be bit-vectors. Sce search

(page 118).
bit-sort bit-vector predicate [Function)
bit-sortcar bit-vector predicate [Function]
bit-sortsiot bit-vector key-function predicate [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. See sort
(page 118).

277 Query: These functions are incredibly useless, but have an efficient (linear-time) implementation!

bit-merge bit-vectorl bit-vector? predicate {Function]
bit-mergecar bit-vector! bit-vector? predicate [Function]
bit-mergeslot bit-vector] bit-vector2 key-function predicate [Function]
bit-nmerge bit-vectorl bit-vector? predicate {Function]
bit-nmergecar bit-vector] bit-vector? predicate [Function]
bit~nmergeslot bit-vector! bit-vector? key-function predicate [Function]

These functions are cxactly like the corresponding generic sequence functions whose names do not
begin with the prefix "bit-", except that sequence arguments must be bit-vectors. Sce merge
(page 120) and nmerge (page 121). °

bit-and &rest bit-vectors . [Function]
bit-ior &rest bit-vectors [Function)
bit-xor &rest bit-vectors [Function]
bit-eqv &rest bit-veciors [Function]
bit-nand bit-vector! bit-vector? [Function]
bit-nor bit-vector! bit-vector? [Function]
bit-andcl bit-vectorl bit-vector? [Function]
bit-andc2 bit-vectorl bit-vector? [Function)
bit-orcl bit-vector! bit-vector? ' [Function}
bit-orc2 bit-vectorl bit-vector2 [Function}

These functions perform bit-wise logical operations on bit-vectors, All of the arétamcnts to any of
these functions muast be bit-vectors, all of the same length. The result is a bit-vector matching the
argument(s) in length, such that bit j of the result is produced by operating on bit s of cach of the
arguments. Indeed, if the arguments are in fact bit-vectors of the same Iength, then

SPICE LISP REFERENCE MANUAL

(bit-xxx

. arguments) <=> (bit-map #'logxxx . arguments)

170

That is, each bit- function described here is simply a mapping over bit-vectors of a Tog function
which applies to integers (and therefore to the bit values 0 and 1).

The following table indicates what the result bit is for each operation when two arguments are
given. (Those operations which accept an indefinitc number of arguments are commutative and

associative, and require at least one argument.)

Argument 10 10 1 1
? & L Argument20 /10 1 Operation name
§< AN bit-and 0 0 0 1 and

, \ bit-ior 0 1 1 1 inclusiveor
bit-xor 0 1 1 0 exclusiveor
bit-eqv 1 0 0 1 -cquivalence (exclusive nor)
bit-nand 1 1 1 0 notand
bit-nor 1 06 0 0 notor
bit-andcl 0 1 0 0 andcomplementofargl with arg2
bit-andc2 0 0 1 0 andargl with complement of arg2
bit-orcil 1 1 0 1 orcomplement of argl with arg2
bit-orc2 1 0 1 1 orargl withcomplement of arg2

bit-not bit-vector

[Function]

The argument must be a bit-vector. A copy of the argument with all the bits inverted is returned.
That is, bit j of the result is 1 iff bit j of the argument is zero.

(bit-not bitvec) <=> (bit-map #'lognot bitvec)

15.4. Functions on Vectors of Explicitly Specified Type

The functions in this section are equivalent in operation to the corresponding generic scquence functions,
but require sequence arguments to be vectors of type (vector (ype), where fype is specified as the first
argument to the function. (If this #ype argument is a quoted constant, then the compiler for some
implementations may be able to exploit this type information to produce more efficient code.)

vref@ type vector index

[Function]

The element of the vector specified by the integer index is returned. The index must be non-
negative and less than the length of the vector. Sec e1t {page 108).

vset@ type vector index newvalue
The LISP object newvalue is stored into the component of the vector specified by the integer index.
The index must be non-negative and less than the length of the vector. The newvalue must be
suitable for storing into the vector (it must be of type fype). Scc setelt (page 108).

[Function]

SPICE LISP REFERENCE MANUAL 171

subvec@ type vector start &optional end [Function}

copyvec@ type vector [Function]

vlength@ type vector , [Function]

vfi11@ type vector item &optional start end [Function]

vreplace@ type target-vector source-vector &optional (arget-start source-start larget-end source-end
[Function]

vreverse@ fype vector [Function}

vnreverseQ (ype veclor {Function)

vconcat@® fype &rest vectors [Function)

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with "v" and end with "@", except that scquence arguments must be vectors of type
(vector type). See subseq (page 108), copyseq (page 109), 1ength (page 109), fi11 (page
109), replace (page 110), reverse (page 110}, nreverse (page 110), and concat (page 110).

vreduce@ (ype function vector &optional start-value [Function)
left-vreduce@ iype function vector &optional siart-value [Function] '
right-vreduce@ fype function vector &optional start-value {Function}
vmap® type function &rest veclors [Function]
vsome@ type predicate &rest vectors [Function)
vevery@ fype predicate &rest vectors [Function]
vnotany@ type predicate &rest vectors {Function]
vnoteveryQ (pe predicate &rest vectors {Function]

These functions are exactly like the corresponding gencric sequence functions whose names do not
begin with "v" and end with "@", cxcept that sequence arguments must be vectors of type
(vector ype). Sce reduce (page 111), 1eft-reduce (page 111), right-reduce {page

111), map (page 112), some (page 112), every (page 112), notany (page 112), notevery (page

112).
vremove@ fype item vector &optional count [Function]
vremqQ iype item vector &optional count [Function)
vrem@ type predicate item vector &optional count [Function}
vrem-if@ {ype predicate vector &optional count [Function]
vrem-if-not@ type predicate vector &optional count - [Function}
vremove-from-end@ (ype item vector &optional count {Function}
vremg-from-end@ fype item vector &optional count [Function)

vrem-from-end@ type predicate item vector &optional count [Function)

vrem-from-end-if@ fype predicate vector &optional couit [Function)

vrem-from-end-if-not@ iype predicate vector &optional count [Function]
‘These functions arc exactly like the corresponding generic sequence functions whose names do not
begin with "v™ and cnd with "@", except that sequence arguments must be vectors of type
(vector fnpe). Sec remove (page113).

SPICE LISP REFERENCE MANUAL 172

vposition@ fype item vector &optional start end [Function]
vposq@ iype item vector &optional start end {Function]
vpos@ fype predicate item vector &optional start end [Function]
vpos-if@ (ype predicate vector &optional start end [Function]
vpos-if-not@ fype predicate vector &optional start end [Function]
vposition-from-end@ fype item vector &optional start end [Function)
vposq-from-end@ type item vector &optional start end [Function]
vpos-from-end@ (ype predicate item vector &optional star! end [Function)
vpos-from-end-if@ type predicate vector &optional start end [Function)
vpos-from-end-if-not@ type predicate vector &optional start end {Function)

These functions are exactly like the corrcsponding generic sequence functions whose names do not
begin with "v" and end with "@", except that sequence arguments must be vectors of type
(vector fpe). Secposition (page 114).

vscan-over@ fype item vector &optional start end [Function]
vscanq@® fype item vector &optional start end [Function)
vscan@ (ype predicate item vector &optional start end [Function]
vscan-if@ fype predicate vector &optional siart end [Function]
vscan-if-not@ type predicate vector &optional start end {Function]
vscan-over-from-end@ fype item vector &optional start end [Function]
vscang-from-end@ fype item vector &optional start end [Function]
vscan-from-end@ fype predicate item vector &optional start end [Function)
vscan-from-end-if@ type predicate vector &optional start end [Function)
vscan-from-end-if-not@ fype predicate vector &optional start end [Function]

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with "v" and end with "@", except that sequence arguments must be vectors of type
{(vector {ype). Sec scan-over (pagc114).

vcount@ (ype item vector &optional start end [Function)
ventq@ type item vector &optional start end [Function]
vent@ type predicate item vector &optional start end [Function]
vent-if@ iype predicate vector &optional start end [Function]
vent-if-not@ ype predicate vector &optional start end [Function)

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with "v” and cnd with "@", except that scquence arguments must be vectors of type
(vector iype). Sce count (page 115).

vmismatch@ ype vectorl vector? &optional startl start2 endl end? [Function]
virismatq@ fype vectorl vector? &optional start! start? end! end2 [Function)
vmismat@ (ype predicate vectorl vector? &optional staril start2 endl end? [Function]

vimismatch-from-end@ gpe vectorl vector? &optional startl start? endl end? [Function]
vimismatg-from-end@ gpe vectorl vector? &optional stwrtl start? endl end? [Iunction]

SPICE LISP REFERENCE MANUAL 173

vmismat-from-end@ type predicate vectorl vector? &optional startl stari2 endl end2 [Function)

These functions are exactly like the corresponding generic sequence functions whose names do not
begin with "v" and end with "@", except that sequence arguments must be vectors of type
(vector ype). Seemismatch (page 116).

vinaxprefix@ type vectorl vector? &optional startl start2? endl end? [Function]
vmaxprefq@ type vectorl vector? &optional siaril start? end! end? [Function]
vmaxpref@ type predicate vectorl vector? &optional siartl stari2 endl end2? [Function]
vmaxsuffix@ type vectorl vector? &optional startl start2 endl end2 [Function]
vmaxsuffq@ type vectorl vector? &optional staril start2 endl end? [Function)

vmaxsuff@ type predicate vectorl vector? &optional startl start2 endl end? [Function]
These functions are exactly like the corresponding gencric scquence functions whose names do not
begin with "v" and end with "@", except that scquence arguments must be vectors of type
(vector ipe). Seemaxprefix (page117).

vsearch@ ype vectorl vector? &optional startl start2 endl end? [Function]
vsrchq@ (ype vectorl vector?2 &optional startl start2 endl end2 [Function]
vsrch@ fype predicate vectorl vector? &optional startl start? endl end2? [Function]

vsearch-from-end@ fype vectorl vector? &optional startl start2 endl end2 [Function)
vsrchq-from-end@ type vectorl vector? &optional start! siart2 endl end? [Function]
vsrch-from-end@ type predicate vectorl vector? &optional startl start2 endl end? [Function]

These functions are exactly like the corresponding generic scquence functions whose names do not
begin with "v" and end with "@", except that sequence arguments must be vectors of type
(vector type). Sce search (page 113).

vsort@ type vector predicate [Function)
vsortcar@ fype vector predicate [Function]
vsortslot®@ type vector key-function predicate , [Function]

These functions are exactly like the corresponding generic scquence functions whose names do not
begin with "v" and end with "@", except that sequence arguments must be vectors of type
(vector fype). Sce sort (page 118).

vmerge® type vectorl vector? predicate [Function]
vmergecar@ fype vectorl vecior? predicate {Function]
vmerges1ot@ ype vectorl vector] key-function predicate [Function)
vamerge® {ype veclorl vector? predicate [Function]
vnmergecar@ iype vectorl vector? predicale {Function]
vimerges1ot@ iype vectorl vector? key-function predicate {Function]

These functions are exactly like the corresponding generic sequence functions whose names do not

SPICE LISP REFERENCE MANUAL 174

begin with "v" and end with "@", except that sequence arguments must be vectors of type
(vector type). See merge (page 120) and nmerge (page 121).

0\\\ 0,((“\?\ \OU

37 X
AN

SPICE LISP REFERENCE MANUAL 175

16.1. Array Creation

make-array dimensions &rest options

Chapter 16

Arrays

[Function]

This is the primitive function for making arrays. dimensions should be a list of non-negative
integers (in fact, fixnums) which are thc dimensions of the array; the length of the list will be the
dimensionality of the array. For convenience when making a one-dimensionat array, the single
dimension may be provided as a fixnum rather than a list of one fixnum.

There must be an even number of options arguments; they are alternating keywords and values,
each keyword having one associated value. Valid keywords are:

:type
e
vl g

" [T ¢
O of
N X‘ﬁeﬂ;”

Ainitial

The value should be the name of the type of the elements of the array; an array
is constructed of the most specialized type which can nevertheless accommodate
clemments of the given type. The type t specifies a general array, one whose
cleiménts may be any LISP object; this is the default type.

The value is used to initialize each element of the array. The value must be of
the type specified by the : type option. [fthe : initial option is omitted, the
initial values of the array clements are undefined (unless the :displaced-to
option is used). The :initial option may not be used with the
:displaced-to option.

:leader-length

:leader~list

The value should be a non-negative fixnum. The array will have a icader with
that many clements. The elements of the leader will be initialized to () unless
the :1eader-1ist option is also given.

The value should be a list. Call the number of elements in the list 7. The first n
clements of the leader will be initialized from successive clements of this list. 1f
the : 1eader-length option is not specificd, then the length of the leader will
be n. If the :Teader-1ength option is given, and its value is greater than a,
then all leader ciements after the first # will be initialized to (). I the specified
:Teader-Tength is less than #, an error is signalled. The leader clements are
filled in forward order; that is, the car of the list will be stored in leader element
0, the cadrin element 1, and so on.

SPICE LISP REFERENCE MANUAL 176

:displaced-to
If the value is not (), then the array will be a displaced array. The value must be
an array or vector; make-array will create an indirect or shared array which
shares its contents with the specified array. In this casc the :displaced-
index-offset option may be useful. The :displaced-to option may not
be used with the :initial option.

:displaced-index~-offset
If this is present, the value of the :displaced-to option should be an array,
and the value of this option should be a non-negative fixnum; it is made to be
the index-offset of the created shared array.

Compatibility note; The Lisp Machine Lisp : area and : named-structure-symbo1 keywords are omitted
here,and : initial is new.

For example:

;3 Create a one-dimensional array of five elements,
{(make-array 5)

;1 Create a two-dimensional array, 3 by 4, with four-bit clements. ¢ L A
(make-array '(3 4) ':type '(mod 16)) e i’o /’l

(/g ang of
s+ Create an array of single-floats with a three-clement leader. / 3\9} + 11‘, }
(make-array 5 ':leader-tength 3 ':type ':single-float)

;3 The same thing, providing initial values for the leader clements.

(setq a (make-array 100 ':type ':single-float
':leader-1list '(0 () foo)))

(array-leader a 0) => 0

(array-leader a 1) => ()

(array-teader a 2) => foo

+ 3+ Making a shared array.

(setq a (make-array '(4 3)))

(setq b (make-array 8 ':displaced-to a
‘:displaced-index-offset 2))

; s Now it is the case that:

(aref b 0) <=> (aref a 0 2)
(aref b 1) <=> (aref a 1 0)
(aref b 2) <=> (aref a 1 1)
(aref b 3) <=> (aref a 1 2)
(aref b 4) <=> (aref a 2 0)
“(aref b 5) <=> (aref a 2 1)
(aref b 6) <=> (aref a 2 2)
(aref b 7) <=> (aref a 3 0)

The last example depends on the fact that arrays are, in effect, stored in row-major order for

purposes of sharing. Put another way, the sequences of indices for the elements of an arraz are STyt
Wi wur Fix Titg LMy
ordered Icxicographicalty. TV L necitrs. FokTRAN Wit
F,
Compatibility note: Both Lisp Machine 1.15p and FORTRAN store arrays in column-major order. WAW T0 Fwo fea 1tSEL

277 Query: I'rom the Lisp Machine Lisr manual: “"make-array returns the newly-created array, and also
returns. as a second value, the number of words ailocated in the process of creating the array, 1e. the
%structure-total-size of the array.”

0 "0'

+ Bk
C el WT‘) Y‘Q“"
“”!A Ao \[\ ve ¥

et
g0

SPICE LISP REFERENCE MANUAL 177
16.2. Array Access

aref array &rest subscripts ' [Function)
This accesses and returns the element of array specified by the subscripts. The number of
subscripts must equal the rank of the array, and each subscript must be a non-negative integer less
than the corresponding array dimension.

aset new-value array &rest subscripts [Function)
This stores new-value into the clement of array specified by the subscripts. The number of
subscripts must equal the rank of the array, and each subscript must be a non-negative integer less
than the corresponding array dimension. The result of aset is the value new-value.

The argument new-value must be of a type suitable for storing into array if the array is of a
specialized type.

16.3. Array Information

array-type array {Function]
This returns the type of elements of the array. For a gencral array, this is t; for an array of eight-
bit intcgers, (mod 256) might be returned. What is returned is the actual type of the array
elements, which may be the same as that specified to make-array, or may be more general if the
implementatation doesn’t support arrays of that specific type.

array-length array [Function]
array may be any array. This returns the total number of ¢lements allocated in array. For a one-
dimensional array, this is equal to the length of the single axis. (If a fill pointer is in use for the
array, however, the function array-active-length (page 177) may be more useful.)
[wo Fiu P Aerong Led6TH

array-active-length array [lfunction]
array-active-length returns the fill pointer for the array.’ This is normally the same as the
length of the array unless reset-fill-pointer (page RESET-FILL-POINTER-FUN) has

been used. - oot REePus TAVE- /C/ ([

array-rank array : {Function)
Returns the number of dimensions (axes) of array. This will be a non-negative integer.

Compatibility note: In Lisp Machine Lisp this is called array-#-dims. This name causes problems in
Maclisp because of the # characicr. The problem is better avoided.

SPICE LISP REFERENCE MANUAL 178

| . . :

| II array-dimension axis-number array [Function]
The length of dimension number axis-number of the array is returned. array may be any kind of
array, and axis-number should be a non-negative integer less than the rank of array.

Compatibility note: This is similar to the Lisp Machine Lisp funclion array-dimension-n, but is zero-
origin for consistency instead of one-origin. Also, in Lisp Machine Lisp (array-dimension-n_0) returns
the length of the array leader; in ComMoON Lisp array-leader-length (page ABJ(AY LEADER-
LENGTH-FUN) must be used for that purpose. \

array-dimensions array [Function}
array-dimensions returns a list whose elements are the dimensions of array.

array-in-bounds-p array &rest subscripts [Function]
This function checks whether the subscripts are all legal subscripts for array, and returns t if they

are; otherwise it returns {). The subscripts may be any LISP objects. g O fﬁ\j o0 g ,W\I a.m

.4. y-\'/\ m ('C‘—X (6554 ~mS$.
16.4. Array Leaders : \L€9 b mplenud Jhons
] a "ua[(»j)

Any array may have associated with it an extra vector of type (vector t) called its /eader. The following
functions are uscd to manipulate this leader.

array-has-leader-p array [Function)
array may be any array. This predicate returns t if array has a leader; otherwise it returns ().

array-leader-length array [Function]

array may be any array. This returns the length of array’s leader (as a non-negative integer) if it has
a leader, or {) if it does not.

array-leader array index [Function]
This returns element number index of the leader of array. array should be an array with a leader,
and index should be a non-negative integer less than the length of the leader. (This function is like
avref (page 162) on the leader vector.)

store-array-leader new-value array index [Function)
The object new-value is stored into element number index of the leader of array. array should be
an array with a lcader, and index should be a non-negative integer less than the length of the leader.

store-array-leader returns new-value. (This function is like a vset (page 162) on the leader
vector.)

SPICE LISP REFERENCE MANUAL 179

16.5. Fill Pointers

To make it easy to incrementally fill in the contents of an array, a set of functions for manipulating a fill
pointer are defined. The fill pointer is 2 non-negative integer no larger than the total number of elements in
the array (as returned by array-1ength (page 177)); it is the number of "active™ or "filled-in" elements in
the array. When an array is created, its fill pointer is initialized to the number of elements in the array; the fill
pointer should be reser before use. The. fill pointer constitutes the “active length” of the array. Some
functions will ignore elements beyond the fill-pointer index; those that do are so documented.

— 178 poT AT Fohk FiLLiNG 1T'S Alfo Fok VARMING STRINGS ANE (-0 ARRATS,
Multidimensional arrays may have fill pointers; elements are filled in row-major order (last index varies “
fastest).

??7? Query: The following comes from Lisp Machine Lisp, and is somewhat of a crock. Should this be retained for
compatability? (If so, fill pointers should be initialized to (), not the array-length.)

"By convention, the fill pointer is kept in element number ¢ of the array’s leader. We say that an array /s a fill pointer if
the array has a leader of non-zero length and element number 0 of the leader is an integer. Normally there is no fill

pointer."”
1t would be nice if filt pointers and named structures did not interact so randomly with the leader. (Then again, what’s a
leader for’!«)L
~ExpCTLT
Il array-reset-fill-pointer array &optional index {Function)

\ The fill pointer of array is reset to index, which defaults to zero. The index must be a non-negative
integer not greater than the old value of the fill pointer.

array-push array new-element [Function]
array must be an array which has a fill pointer, and new-element may be any object. array-push
attempts to store new-element in the clement of the array designated by the fill pointer, and
increase the fill pointer by one. If the fill pointer docs not designate an element of the array
(specifically, when it gets too big), it is unaffected and array-push rcturns (). Otherwise, the
two actions (storing and incrementing) happen uninterruptibly, and array-push returns the
Sformer valuc of the fill pointer (onc less than the onc it leaves in the array); thus the value of
array-push is the index of the new element pushed. : ‘Q»:\L cart

Compalibility note: In Lisp Machine Lisp the array is réquired to be onc-dimensional; at least, sO states the
documentation. Is this true? Also, should the requirement of uninterruptibility be retained? -~

7/1 N N ’ﬁ,-t /ﬂU(‘H..—A.
€% an 2varin T docunsadindin. é‘i";ﬁ sl ocel

array-push-extend array x &optional extension {Function)
array-push-extend is just like array~push except that if the fill pointer gets too large, the
array is extended (using adjust-array-size (page/ADJ UST-ARRAY-SIZE-FUN)) so that it
can contain more elements; it never "fails" the way array-push does, and so never returns ().
The optional argument extension, which must be a positive integer, is the minimum number of
clements to be added to the array if it must be extended.

SPICE LISP REFERENCE MANUAL 180

array-pop array {Function]

array must be an array which has a fill pointer. The fill pointer is decreased by one, and the array
element designated by the new value of the fill pointer is returned. If the new value does not
designate any element of the array (specifically, if it has reached zero), an error occurs. The two
operations (decrementing and array referencing) happen uninterruptibly.

Compatibility note: In Lisp Machine Lisp the array is required to be one-dimensional; at least, so states the
documentation. Is this true? Also, should the requirement of uninterruptibility be retained?

L. (_UM_I\’H? ﬂ’ s

16.6. Changing the Size of an Array

|

adjust-array-size array newsize &optional new-element [Function}

/KNS (\,\“i
s 5

&
fo

The array is adjusted so that it contains (at lcast) new-size clements. The argument new-size must
be a non-negative integer.

If array is a one-dimensional array, its size is simply changed to be new-size, by altering its single
dimension. [f array has more than one dimension, then its first dimension is adjusted to the
smallest possible value which allows the array to have no fewer than new-size clements. If any
dimension other than the first is zero, however, then the array is not changed, and an error occurs if
new-size is not 0. If the array has zcro dimensions, then the array is not changed, and an error
occurs if new-sizeis not 0 or 1,

If array is made smaller, the extra elements are lost. If array is made bigger, the new clements are

initialized to new-element; if this argument is not provided, then the initial contents of new

elements are undcfined.

oo gt -
If the arrayfused to share with other arrays, then after the adjust-array-size operation it may ﬂ s »{,\7
or may not continue to be shared with other arrays. cotn ?

ﬁo@f I‘:’ lﬂ«,

adjust-array-size returns array as its value, s Phia

/

Compatibility note: In Lisp Machinc Lisp, the argument new-element is not provided; it would seem useful g fl JZ} /)[ac(
however. Also, in Lisp Machine Lisp it is possible for the relumed array not to be eq to the argument array.

Should this be reflected in the above definition? -T-{ .4 Ae e ltntpit-toa A Le Larced

Also the Lisp Machine Lisp manual is unclear on the p(cmsc-’\ mel‘éod of cxwﬁ’sm mu‘iu‘a}fénsmnal arrays.7 s CL@"’”‘"‘"
The above definition ties this down. M. c -

S ww‘E«L

array-grow array &rest dimensions [Function) P wr--'H,,_
array-grow returns an array of the same type as array, wnth the specificd dimensions. The e 7 e

number of dimensions given must equal the rank of array_ (Actually, if an extra argument is —”,‘L:

provided at the end, it is construed to be an optional argument new-element. Unfortunately, one o, L

cannot write e e

)) . ey € N

(array &rest dimensions &optional new-clement) T oant. M

as a parameter fist.) Mg exp {,‘

— all

o k\o\l/ S(\ !hosc dcmcms of array that are still in bounds appear in the new array. The clemeiits of the new
w

o
> N

Il

SPICE LISP REFERENCE MANUAL 181

array that are not in the bounds of array are initialized to new-element; if this argument is not
provided, then the initial contents of any new elements are undefined.

array-grow may, depending on the implementation and the arguments, simply alter the given
array or create and return a new one. If a new array is created, it will get a leader which is a copy of
the old array’s leader, and morcover its contents will nos be shared with any other arrays.

. e $
Therefore, array-grow should not be applied to a shared array, in general. 7 WL\ a‘f s

e ——————) a, ‘Vj
[f the array uscd to share with other arrays, then after the array-grow operation it may or may

not continue to be shared with other arrays.

array-grow differs from adjust-array-size in that it keeps the elements of a
multidimensional array in the same logical positions while allowing extension of any or all =
dimensions, not just the first.

SPICE LISP REFERENCE MANUAL 182

SPICE LISP REFERENCE MANUAL 183

Chapter 17

Structures

COMMON LISP provides a facility for creating named record structures with named components. In effect,
the user can declare a new data type; every data structure of that type has components with specified names.
Constructor, access, and assignmcnt'constructs are automatically defined when the data type is declared.

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is
very simple and allows the user to take advantage of the type-checking, modularity, and convenience of user-
defined record data types. The sccond part discusses a number of specialized features of the facility which
have advanced applications. These features are completely optional, and you ncedn’t even know they exist in
order to take advantage of the basics.

Ralionale: It is important not to scare the novice away from defstruct with a multiplicity of features. The basic idea is
very simple, and we should encourage its use by providing a very simple description. The hairy stuff, including all options,
is shoved to the end of the chapter. ¢y ¢

17.1. Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the user to create and use
aggregate datatypes with named elements. These are like "structures” in PL/I, or "records” in PASCAL.

As an example, assume you are writing a LiSP program that dcals with space ships in a two-dimensional
plane. In your program, you need to represent a space ship by a LISP object of some kind. The interesting
things about a space ship, as far as your program is concerned, are its position (represented as x and y
coordinates), velocity (represented as components along the x and y axes), and mass.

A ship might therefore be represented as a record structure with five components: x-position, y-position, x-
velocity, y-velocity, and mass. This structure could in turn be implemented as a LISP object in a number of
ways. It could be a list of five elements; the x-position could be the car, the y-position the cadr, and so on.
Equally well it could be a vector of five clements: the x-position could be element 0, the y-position element 1,
and so on. The problem with cither of these representations is that the components occupy places in the
object which are quite arbitrary and hard to remember. Somecone looking at (cadddr shipl) or
{(vref shipl 3) ina picce of code might find it difficult to determine that this is accessing the y-velocity
component of ship1. Morcover, if the representation of a ship should have to be changed, it would be very

SPICE LiSP REFERENCE MANUAL 184

7\
difficult tgp jmd all the places in the code to be changed to match (not all occurrences of cadddr are

intended to extract the y-velocity from a ship).

Ideally components of record structures should have names. One would like to write something like
(ship-y-velocity shipl) instead of (cadddr ship1). One would also like a more mnemonic way
to create a ship than this:

(1ist 0 0 0 0 0)

Indeed, one would like ship to be a new data type, just like other LISP data types, that one could test with
typep (page 26), for example. The defstruct facility provides all of this.

defstruct itself is a macro which defines a structure, For the space ship example one we might define
the structure by saying:
{(defstruct ship

ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

This declares that every ship is an object with five named components. The evaluation of this form does
several things:

o It defines ship-x-position to be a function of one argument, a ship, which returns its x-
position: ship-y-position and the other components are given similar function definitions.
These functions are called the access functions, as they are used to access elements of the structure.

o The symbol ship becomes the name of a data type, of which instances of ships are clements.
This name becomes acceptable to typep (page ?.6), for example; (typep x 'ship) is true iff
x is a ship. Moreover, all ships are instances of the type st ructure, because ship is a subtype

of structure. Defre what 1= wrsuaant +y 2eso do <.

e A function named ship-p of one argument is defined; it is a predicate which returns t if its
argument is a ship, and () otherwise.

e A macro called make-ship is defined which, when invoked, will create a data structure with five
components, suitable for use with the access functions. Thus executing
(setq ship2 (make-ship))
sets ship2 to a newly-created ship object. One can specify the initial values of any desired
component in the call to make-ship in this way:
(setq ship2 (make-ship ship-mass *default-ship-mass*
ship-x-position 0
ship-y-position 0))
This constructs a new ship and initializes threc of its components. This macro is called the
constructor macro, because it constructs a new structure.

e Two ways arc provided to alter components of a ship. Onc way is to use the macro setf (page
SETF-I'UN) in conjunction with an access fimction (because defstruct performs an

SPICE LISP REFERENCE MANUAL 185

appropriate defsetf (page DEFSETF-FUN)):
(setf (ship-x-position ship2) 100)

assv
This alters the x-position of ship2 to be 100. This works because defstruct generates an | X de 2‘3

appropriate defsetf (page DEFSETF-FUN) form for each access function. ¢ Ave \Y
ac_ 35y
The other way is to use the special alterant macro, which allows alteration of scveral components ’f"‘“\;ﬁ(5
at once in parallel: . TP i o
L) Ve !

(alter-ship enterprise ; Counter-clockwise inter-quadrant warp! S’QX £3 v

ship-x-position (- (ship-y-position enterprise)) \
ship-y-position (ship-x~-position enterprise))

Besides allowing parallel updating of several components, use of the alterant macro may be more
efficient in certain cases. '

This simple example illustrates the power of defstruct to provide abstract record structures in a
convenient manner. defstruct has many other features as well for specialized purposes. o =~y

17.2. How to Use Defstruct

defstruct name-and-options &rest slot-descriptions [Macro]

Defines a record-structure data type. A general call to defstruct looks like this:

(defstruct (name option-1 option-2 ...)
slot-description-1
slot-description-2

ves)
name must be a symbol; it becomes the name of a new data type consisting of all instances of the
structure. The function typep (page 26) will accept and usce this name as appropriate.

Usually no options are needed at all. If no options are specified, then one may write simply name
instead of { name) after the word defstruct. The syntax of options and the options provided
are discussed in section 772 P IYA ALTENPTING [(e1wold(

= AND VALVES R¢ Mottt o&viou_;’
l i—é Arsmowa w0 oritt THIMES ¢

(slot-name default-init slot-option-1 slot-option-2 . ..)

Each slot-description-j is of the form

Each slot-name must be a symbol; an access function is defined for each slot. If no options and no
default-init are specified, then one may write simply slot-nanie instead of (slot-name) as the slot
description. The default-init is a form which is cvaluated each time a structure is to be constructed;
the value is used as the initial value of the slot. f no default-init is specified, then the initial
contents of the slot are undefined and implementation-dependent. The available slot-options are
described in section";.':"!?.

Compatibility note: Sint-options are not currently provided in 1lisp Machine Lise. but this is an upward-
compalible extension.

Besides defining an access function for cach slot, defstruct arranges for setf to work properly
on such access functions, defines a predicate named same-p, and defines constructor and alierant

SPICE LISP REFERENCE MANUAL 186

macros named make - name and al ter-name, respectively.

\VE Because evaluation of a defstruct fornr causes many functions and macros to be defined, one must take
S

S 7
e
X

care that two defstruct forms do not define the same name (just as one must take care not to use defun to
define two distinct functions of the same name). For this reason, as well as for clarity in the code, it is
conventional to prefix the names of all of the slots with some text which identifies the structure. In the
example above, all the slot names start with "ship=-". The :conc~name (pagc 18tion can be used to
' provide such prefixes automatically.

sfﬂca
)

)

5y

17.3. Using the Automatically Defined Macros

After you have defined a new structure with defstruct, you can create instances of this structure by
using the constructor macro, and alter the values of its slots by using the alterant macro. By default,
defstruct defines these macros automatically, forming their names by adding prefixes to the name of the
structure; for a structure named foo, the respective macro names would be make-foo and alter-foo.
You can specify the names yourself by giving the name you want to use as the argument to the
:constructor (page 186) and :atterant (page 186) options, or specify that you don’t want a macro
created at all by using () as the argument.

17.3.1. Coustructor Macros

A call to a constructor macro, in general, has the form

{ name-of-constructor-macro
slot-name-1 form-1
slot-name-2 form-2

)

Each siot-name should be the name of a slot of the structure. All the forms are evaluated.

If slot-name-j is the name of a slot, then that element of the created structure will be initialized to the value
of form-j. If no slot-name-j/ form-j pair is present for a given slot, then the slot will be initialized by evaluating
the defauli-init form specified for that slot in the call to defstruct. (In other words, the initialization
specified in the defstruct defers to any specified in a call to the constructor macro.) If the default
initialization form is used, it is cvaluated at construction time, but in the lexical environment of the
defstruct form in which it appcarcd. If the defstruct itsclf also did not specify any initialization, the
element’s initial valuc is undefined. You should always specify the initialization, cither in the defstruct or
in the constructor macro, if you carc about the initial valuc of the slot.

Compatibility note: The Lisp Machine Lisp documentation is slightly unclear about when the initialization specified in the
defstruct form gets evaluated: at defstruct evaluation time, or al constructor time? The code reveals that it is at
constructor time, which causes probiems with referential transparency with respect to lexical variables (which currently
don’t exist officially in Lisp Machine Fisp anyway). The above remark concerniug the lexical environment in effect requires
that the initialization form is trealed as a thunk; it is evaluated al constructor time, but in the environment where it was
written {the defsteuct cnvironment). Most of the time this makes no difference any way, as the initialization form is
typically a quoted constant or refers only to special variables. ‘The requirement is imposed here for uniformity, and to
ensure that what look like special variable references in the inttialization form are in fact always treated as such.

SPICE LISP REFERENCE MANUAL 187

The order of evaluation of the initialization forms is not necessarily the same as the order in which they
appear in the constructor call or in the defstruct form; code should not depend on the order of evaluation.
The initialization forms are re-evaluated on every constructor-macro call, so that if, for example, the form
(gensym) were used as an initialization form, cither in the constructor-macro call or as the default form in
the defstruct declaration, then every call to the constructor macro would call gensym once to generate a
new symbol.

17.3.2. Alterant Macros

A call to the alterant macro, in general, has the form

(name-of-alterant-macro instance-form
slot-name-1 form-1
slot-name-2 form-2

)
instance-form is evaluated, and should return an instance of the structure. Each form-j is evaluated, and the
corresponding slot named by slot-name-j is changed to have the result as its new value. The assignments are
parallel; that is, the slots are altcred affer all the forms have been evaluated, so you can exchange the values of
two slots, as follows: '

{alter-ship enterprise
ship-x-position (ship-y-position enterprise)
ship-y-position (ship-x-position enterprise))

As with the constructor macro, the order of evaluation of the forms is undefined.

Single slots can also be altered by using setf (page SETF-FUN). Using the altcrant macro may produce
more efficient code than using consecutive setf forms.

174. defstruct Slot-Options

Each slot-description in a defstruct form may specify onc or more slot-options. A slot-option may be a
keyword, or a list of a keyword and arguments for that keyword.

For example:

(defstruct ship
(ship-x-position 0.0 (:type :short-float))
(ship-y-position 0.0 (:type :short-float))
(ship-x-velocity 0.0 (:type :short-float) :invisible)
(ship-y-velocity 0.0 (:type :short-float) :invisible)
(ship-mass *default-ship-mass* :invisible :read-only))

. JSpcciﬁes that the first four slots will always contain short-format floating-point numbers, that the last three

slots are "invisible" (will not ordinarily be shown when a ship is printed), and that the last slot may not be
altered once a ship is constructed.

The availabie slot-options are:

itype The option (:type fype) specilies that the contents of the sfot will always be of the

SPICE LISP REFERENCE MANUAL 188

sinvisible

:read-only

specified data type. This is entirely analogous to the declaration of a variable or function;
indeed, it effectively declares the result type of the access function. An implementation
may or may not choose to check the type of the new object when initializing or assigning to
aslot.

The option :invisible specifies that the contents of this slot should not be printed
when an instance of the structure is printed.

The option : read-only specifies that this slot may not be altered; it will always contain
the value specified at construction time. The alterant macro will not accept the name of
this slot, and setf (page SETF-FUN} will not accept the access function for this slot.

17.5. Options to defstruct

The preceding description of defstruct is all that the average user will need (or want) to know in order
to use structures. The remainder of this chapter discusses more complex features of the defstruct facility.

This scction explains each of the options that can be given to defstruct. As with slot-options, a
defstruct option may be cither a keyword or a list of a keyword and arguments for that keyword.

sconc-name

stype

‘This provides for automatic prefixing of names of access functions, It is conventional to
begin the names of all the access functions of a structure with a specific prefix, usually the
name of the structure followed by a hyphen. If you do not usc the :conc-name option,
then the names of the access functions are the same as the slot names, and it is up to you to
namec the slots reasonably.

"4
b g

Specifying the : conc-name option causes each access functions to have a name consisting
of a standard prefix followed by the name of the accessed slot. IFthe : conc-name option
has an argument, it should be a string specifying the prefix, or a symbol whose print-name
is the prefix. With no argument, the prefix is the name of the structure and a hyphen.

Note that in the constructor and alterant macros, you still use the slot names rather than
the access function names. On the other hand one uses the access-function name when
using setf. Here is an example:

(defstruct (door :conc-name) knob-color width material)
{setq my-door (make-door knob-color 'red width 5.0))
{door-knob-color my-door) ==> red

(alter-door my-door _knob-color 'green material ‘'wood)
(door-material my-door) => wood - . \l aeki

(setf (door-width my-door) 43.7) gtk SPW”" W
(door-width my-door) => 43.7 rosrs wirt .\H

The :type option specifies what kind of LiSP object will be used to 1mp!emcnt the
structure. It takes one argument, which must be onc of the types enumerated below. 1f the
:type option is not provided, the type defaults Iok vecto\ , and the :named opunn is

\’de

ruef‘

assumed unless :unnamed is explicitly specified. e awn Lz,vo\ Ron -cc-‘f" 2

hefav vit type,
Rationate: Making a structwee be unnamed mostly just saves space. It is probably hutcr Lo firdtect

fve Ly

vec:
T

SPICE LISP REFERENCE MANUAL

e“
w

f;y,
\}Ne‘)’

J

\ \5’9&4

\0
N
X’\\?/\/

OI

/}*
A

¥

po—
|

Y
|

VIR 189

-

F

the novice by providing by default a named vector, since that provides maximal features, nice
printing, reasonable use of space (better than lists or arrays in most implementations), etc.

| svector

1“/(vector type)

i\: array

j

| (array type)

Use a general vector, storing components as vector ¢lements. This is
normally : named.

A specialized vector may be used, in which case every component must
be of a type which can be stored in such a vector. A structure of this
type must be :unnamed.

Compatibility note: This is a suggested feature not yet in Lisp Machine Lisp.

Use a one-dimensional array, storing components in the body of the
array. By default this is : named.

A specialized array may be used, in which case every component must
be of a type which can be stored in such an array. The array m‘qst be i
one-dimensional, and a structure of this typc must be :unnamed. | Tw e

X A4
Compalibility note: This is a suggested feature not yet in Lisp Machine Lisp. s b 7
WE HAVE LoT OF Spec,puteo Agamts THAT Ade wareo ! C\Jl«:ﬁ (U

:array-leader

:list

rinteger

w@_mﬂ”w%

Qe@‘ j°

snamed

:fixnum

Use an array, storing components in the leader of the array. By default
this is :named. (See the option :make-array (page 188), described
below,)

Use a list. A structure of this type cannot be distinguished by typep,
even if the : named option is used. By default this is : unnamed.

This unusual type implements the structure as a single integer. The '\,
structure may only have one slot. This is only uscful with the byte field ><0 o
feature (see page DEFSTRUCT-BYTE-FIELD); it lets you store several

small numbers within fields of an integer, giving the fields names. This

cannot be :named.

Compatibility note: The : integer option is a suggested feature not yet in
Lisp Machine Lisp. It is similar to the f ixnum option.

The : fixnum option is similar to the : integer option, but further
declares that in fact a fixnum may be used.

27?7 Query: Is this really necessary? Or can this be determined at
defstruct expansion time from the byte field information? Fi g L AvTel.

Compatibility note: All the “named-" types such as : named-array from Lisp Machine Lisp have
been omitted here, as they tend to multiply. An implementation may provide them but they are not
required here. The : named and :unnamed options may be used separately to get the same effect.

The : named option specifics that the structure is “named"; this option takes no argument.
A named structure has an associated predicate for determining whether a given LISP object
is a structure of that name. Sone named structures in addition can be distinguished by the
predicate typep (page 26). If ncither :named nor :unnamed is specified, then the
default depends on the : type option.

SPICE LISP REFERENCE MANUAL 190

H:unnamed

:constructor

ralterant

;{,' :predicate

f
|
{1

sinclude

The :unnamed option specifies that the structure is not named; this option takes no
argument.

This option takes one argument, a symbol, which specifies the name of the constructor
macro. If the argument is not provided or if the option itself is not provided, the name of
the constructor is produced by concatenating the string "make-" and the name of the
structure, If the argument is provided and is (), no constructor macro is defined.

This option actually has a more general syntax which is explained inf 777,

This option takes one argument, which specifies the name of the alterant macro. If the
argument is not provided or if the option itself is not provided, the name of the alterant
macro is made by concatenating the string "alter-" to the name of the structure. If the
argument is provided and is (}, no alterant macro is defined. Use of the alterant macro is
explained o M7,)

This option takes one argument, which specifies the name of the type predicate. If the
argument is not provided or if the option itself is not provided, the name of the predicate is
made by concatenating the name of the structure to the string "-p". If the argument is
provided and is (), no predicate is defined. A predicate can be defined only if the
structure is : named (page 189).

This option is used for building a new structure definition as an extension of an old
structure definition. As an example, suppose you have a structure called person that
tooks like this:

(defstruct (person :conc-name)
name
age
sex)
Now suppose you want to make a new structure to represent an astronaut, Since astronauts
are people too, you would like them to also have the attributes of name, age, and sex, and
you would like LiSP functions that operate on pe rson structures to operate just as well on

astronaut structures.” You can do this by defining astronaut with the :include
option, as follows:

(defstruct (astronaut (:include person))
helmet-size
(favorite-beverage 'tang))

The :include option causes the structure being defined to have the same slots as the
included structure, in such a way that the access functions and alterant macro for the
included structure will also work on the structure being defined. In this example, an
astronaut will therefore have five slots; the threc defined in person, and the two
defined in astronaut itself. The access functions defined by the person structure can
be applied to instances of the astronaut structure, and they will work correctly. The
following examples illustrate how you can usc astronaut structures:

SPICE LISP REFERENCE MANUAL 191

:make-array

& et

(setq x (make-astronaut name 'buzz
' age 45.
sex t
helmet-size 17.5))

(person-name x) => buzz
(favorite-beverage x) => tang

Note that the :conc-name (page 188) option was nof inherited from the included
structure; it only applics to the names of the access functions of person and not to those
of astronaut.

The argument to the :include option is required, and must be the name of some

previously defined structure. The included structure must be of the same : type as this ol

structure. The structure name of the including structure definition becomes the name of a
data type, of course; moreover, it becoimes a subtype of the included structure. In the
above example, astronaut is a subtype of person; hence

(typep (make-astronaut) 'person)

is true, indicating that all operations on persons will work on astronauts.

The following is an advanced feature of the :include option. Sometimes, when one
structure includes another, the default values or slot-options for the slots that came from
the included structure are not what you want. The new structure can specily default values
or slot-options for the included slots different from those the inctuded structure specifies,
by giving the : include option as:

(:include name slot-description-1 slot-description-2 ...)

Each slot-description-j must have a slot-name which is the same as that of some slot in the

included structure. [F slot-description-j has no default-init, then in the new structure the
stot will have no initial value. Otherwise its initial value form will be replaced by the
default-init in slot-description-j. A normally writable slot may be made read-only, and a
normally visible slot may be made invisible in the defined structure. [l‘f a slot is invisible or
read-only in the included structure, then it must also be so in the including structur_e".] Ifa
type is specified for a slot, it must be/a the same as or a subtype of the type specified in the
included structure. If it is a strict subtype, the implementation may or may not choose to

crror-check assignments. t 2 L (;\ o A3y e 9
W 'y Q v L

For example, if we had wanted to define astronaut so that the default age for an
astronaut is 45, then we could have said:

(defstruct (astronaut (:include person (age 45)))
helmet-size
(favorite-beverage 'tang))

If an array is used to represent the structusc being defined (the : type (page 188) option is
rarray or :array-leader), this option allows you to control those aspects of the array
used to implement the structure that are not otherwise constrained by defstruct. For
example, if you are creating a structure of type :array-leader, you alinost certainly
want to specify the dimensions of the array to be created, and you may want to specify the
type of the arvay.

O J‘.f
e

SPICE LISP REFERENCE MANUAL 192

The argument to the :make-array option should be a list of alternating keyword
symbols to the function make-array (page 175) and forms whose values are the
arguments to those keywords.

defstruct may need to specify some arguments to make-array for its own purposes.
If these conflict with the specifications given to the :make-~-array keyword, an error is
signalled.

Compatibility note: This is more robust than the current Lisp Machine Lisp specification that

defstruct quietly overrides what you specify. Acidentally (€t over Lram belne
Mt opPon was keyaard- oriented,

Constructor macros for structurcs implemented as arrays all allow the keyword :make-
array to be supplied. Attributes supplied therein override any :make-array option
attributes supplied in the original defstruct form. If some attribute appears in neither
the invocation of the constructor nor in the :make-array option to defstruct, then
the constructor will chose appropriate defaults.

If a structure is of type :array-leader, you probably want to specify the dimensions of
the array. The dimensions of an array arc given to :make-array as a position argument
rather than a keyword argument, so there is no way to specify them in the above syntax.
To solve this problem, you may use the special keyword : dimensions or : 1ength (they
mean the same thing), with a value that is anything acceptable as make-array’s first
argument,

:size-variable

The :size-variable option allows a user to specify a global (special) variable whose
value will be the “"size" of the structure; defconst (page 22) is used to declare this
variable. The exact meaning of this size varies, but in gencral this number is the one you
would need to know if you were going to allocate onc of these structures yourself. The
variable will have this value both at compile time and at run time. If this option is present
without an argument, then the name of the structure is concatenated with "~size" to
produce the name,

\|
{

7?7 Query: The name of this option in Lisp Machine Lisp, size-symbo1, indicates a confusion
between “symbol” and “variable” {which tends to pervade Lisp Machine Lisp). A symbol can
represent or implement a variable, but also a function, a macro, etc. & ¥

:size-macro This is similar to the :size-symbol option. A macro of no arguments is defined that
expands into the size of the structure. The name of this macro is the argument to the
option; this argument defaults as with :size-symbol. It is permissible to use the
:size-symbol and :size-macro options in the same defstruct form,

Sou P 26K ExPPn TR THS deavikes tAters (KAL) gur gL meares ARTIOV
s qrgvAL (CooY).

|sprint-function ‘
1) The argument to this option should be a function of four arguments which is to be used to
print structures of this type. When a structure of this type is to be printed, th2 function is
called on the structure to be printed, a stream to print to, an integer indicating the current
depth (to be compared against prinlevel (page PRINLEVEL-VAR)), and a flag which
is t for prinl-style printout and () for princ-styic printout. This option can be used
only with : named structures.

Conmpatibifity note: This is suggested merely to provide a simple way to set up the pristirg function
in & central place and in an implementation-ndependent manner. {n Lisp Machme 11se this would

T /hak DSSRIBE shood be put f Ao cae Sysdem.
I{’ Vs eff-qcf\ﬁ{é ‘/MV(// k"’ﬂ‘ rﬁe&})&d{] /4'(‘\»'\ lhasr o
DescR1E ad an TvsPecT fov Maclie wliell he (ne 700,

A ds M'!ve-meﬁj converiet, n\L]ibC /)fe% rlf"y(@*oo.

wiew | USE
FIALLSP!)

SPICE LISP REFERENCE MANUAL 193

presumably set up an invoke handler for the type. There needs to be a good way to interface to the
grinder, too

-L'(: /L»@ ACF'W/% 1/"“7 /"M’gﬂ‘j A J’ZGI(MO‘F Y3 70«»«) 7L= /-c % AQV

-'/__f

rinitial-offset sufy , bee shotl Le an e o whil, ‘U{°m‘4’°:{l,7n.f;“;ipf,\,‘l
This allows you to tell defstruct to skip over a@erﬁﬂﬁ m’ﬁ‘n"ber‘”f STV{' beforé it starts conc

allocating the slots described in the body. This option requires an argument (which must
be a non-negative integer) which is the number of slots you want defstruct to skip. To
make use of this option requires that you have some familiarity with how defstruct is
implementing your structure; otherwise, you will be unable to make use of the slots that
defstruct hasleft unused.

:callable-accessors

This option controls whether access functions are really functions, and therefore "callable”,
or whether thay are really macros. With an argument of t, or with no argument, or if the
option is not provided, then the accessors arc really functions. If the option is not
provided, they are additionally declared intine, so that the compiler can integrate them
into calling code for faster exccution; explicitly providing the option suppresses this, so
that they may be traced, for example. If the argument is () then the accessors will really
be macros, defined by defmacro (page DEI'MACRO-F UN) just like the constructor and
alterant macros.

6!’9-.
(e-s5,
oo hoan

wonded
a {&97

ﬁ(<
el

adber

G s
=)

Compatibility note: So what about the above, which is not really compatible with Lisp Machine Lisp? ’) L‘ °

| SEE. OiffFerems 1§ runote. ANO OK

:eval-when Normally the macros defined by defstruct are defined at eval time, compile time, and
load time. This option allows the user to control this behavior. The argument to the
:eval-when option is just like the list that is the first subform of an eval-when (page
EVAL-WHEN-FUN]) special form. For example,

(:eval-when (:eval :compile))

will cause the macros to be defined only when the code is running interpreted or inside the
compiler.

17.6. By-position Constructor Macros

If the :constructor (page 190) option is given as (:constructor name arglist), then instead of
making a keyword driven constructor, defstruct defines a "function style" constructor, taking arguments
whose meaning is determined by the argument’s position rather than by a keyword. The arglist is used to
describe what the arguments to the constructor will be. In the simplest case somcthing like (: constructor
make-foo (a b c¢)) defincsmake-foo to be a three-argument constructor macro whose arguments are
used to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux arc recognized in the argument list. They work
in the way you might expect, but there are a few fine points worthy of explanation.

For cxample:

(:constructor create-foo
(a2 &optional b (¢ 'sea) &rest d &aux e (f 'eff)))

‘This defines create-foo o be a constructor of one or more arguinents. The first argument is used to

SPICE LISP REFERENCE MANUAL 194

initialize the a slot. The second argument is used to initialize the b slot. If there isn’t any second argument,
then the default value given in the body of the defstruct (if given) is used instead. The third argument is
used to initialize the ¢ slot. If there isn’t any third argument, then the symbol sea is used instcad. Any
arguments following the third argument are collected into a list and used to initialize the d slot. If there are
three or fewer arguments, then () is placed in the d slot. The e slot is not initialized, its initial value is
undefined. Finally, the f slot is initialized to contain the symbol ef f.

The actions taken in the b and e cases were carefully chosen to allow the user to specify all possible
behaviors. Note that the &aux "variables” can be used to completely override the default initializations given
in the body. ’

With this definition, one can write
(create-foo 1 2)

instead of
{make-foo a 1 b 2)

and of course create-foo provides defaulting different from that of make~-foo.

It is permissible to usc the : constructor option more than once, so that you can define scveral different
constructors, cach with a different syntax.

Because this kind of constructor is a function, the arguments in a call to one will be evaluated in order.
This is unlike a constructor macro, which may evaluate initialization forms in any order.

Compatibility note: In Lisp Machine Lise the evaluation can be in any order. This is a bad idea. It’s not so hard to make it
behave as a real function. Also, if you don’t guarantee order, it's hard to let &optional and &aux initialization forms refer
to earlier variables properly; this is essential if we are not to confuse the uscr by using Jambda-list syntax,

If you write the keyword :make-array in place of a variable name, then the corresponding argument will
specify the :make-array option at construction time, just as for a constructor macro.

Compatibility note: Lisp Machine Lise doesn’t allow this, but it's consistent and convenient.

17.7. The si:defstruct-description Structure

*** This section not fully worked over yet, ***

This section discusses the internal structures used by defstruct that might be useful to programs that
want to interface to defstruct nicely. The information in this section is also necessary for anyone who is
thinking of defining his own structure types.

Whenever defstruct defines a new structure, it creates an instance of the si:defstruct-
description structure. This structure can be found as the si:defstruct-description property of
the name of the structure; it contains such useful information as the name of the structure, the number of slots
in the structure, and so on. The si:defstruct-description structure is defined as follows, in the

SPICE LISP REFERENCE MANUAL 195

system-internals package (also called the si package): (This is a simplified version of the real
definition. There are other slots in the structure which we aren’t telling you about.)

(defstruct (defstruct-description
(:default-pointer description)
{(:conc-name defstruct-description-))
name
size
property-alist
slot-alist)

The name slot contains the symbol supplied by the user to be the name of his structure, such as
spaceship or phone-book-entry. The size slot contains the total number of locations in an instance
of this kind of structure. This is not the same number as that obtained from the :size-symbol or :size-
macro options to defstruct. A named structure, for example, usually uses up an extra location to store
the name of the structure, so the : size-macro option will get a number one larger than that stored in the
defstruct description. The property-alist slot contains an alist with pairs of the form { property-
name . property) containing properties placed there by the :property option to defstruct or by
property names used as options to defstruct (sce the :property option, page DEFSTRUCT-
PROPERTY-OPTION). The stot-alist slot contains an alist of pairs of the form (slot-name . slot-
description). A slot-description is an instance of the defstruct-slot-description structure. The
defstruct-slot-description structure is defined something like this, also in the s package: (This is
a simplified version of the real definition. There are other slots in the structure which we aren’t telling you
about.)

(defstruct (defstruct-slot-description
(:default-pointer slot-description)
(:conc-name defstruct-slot-description-))
number

Ppss |
init-code
ref-macro-name)

7?? Query: Ought to flush the :default-pointer option? Also, it would be nicer to rename ppss to byte-
specifier; ppss has representation-dependent connotations. Finally, may need a data-type slot.

The number slot contains the number of the location of this slot in an instance of the structure. Locations
are numbered starting with 0, and continuing up to one less than the size of the structure. The actual location
of the slot is determined by the reference-consing function associated with the type of the structure.

The ppss slot contains the byte specifier code for this slot if this slot is a byte field of its location, If this
slot is the entire location, then the ppss slot contains ().

The init-code slot contains the initialization code supplied for this slot by the user in his defstruct
form. If there is no initialization code for this slot then the init-code slot contains the symbol

si:%%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro that expands into a reference to

SPICE LISP REFERENCE MANUAL 196

this slot (that is, the name of the accessor macro).

SPICE LISP REFERENCE MANUAL 197

Chapter 18
EVAL

SPICE LISP REFERENCE MANUAL 198

SPICE LISP REFERENCE MANUAL 199

Chapter 19
Input/Output

19.1. Printed Representation of Lisp Objects

LISP objects arc not normally thought of as being text strings; they have very different properties from text
strings as a consequence of their internal representation. However, to make it possible to get at and talk about
LisP objects, LiSP provides a representation of objects in the form of printed text; this is called the printed
representation, which is used for input/output purposes and in the examples throughout this manual.
Functions such as print (pagc 216) take a LISP object and send the characters of its printed representation to
astrcam. The collection of routines which does this is known as the (LLISP) printer. The read function takes
characters from a strcam, interprets them as a printed representation of a LISP object, builds a corresponding
object, and returns it; the collection of routines that docs this is called the (LISP) reader.

Ideally, one could print a LISP object and then rcad the printed representation back in, and so obtain the
same identical object. In practice this is difficult, and for some purposes not even desirable. Instead, reading
a printed representation produces an object which is (with obscure technical exceptions) equal (page 31) to
the originally printed object.

Most LISP objects have more than one possible printed representation. For example, the integer twenty-
scven can be written in any of these ways:

27 27. #033 #x1B #b11011 #.(* 3 323)
A list of two symbols A and B can be printed in many, many ways:

(A B) (a b) (a b) (\A |B])
(I\A} -
B
)

The last example, which is spread over three lines, may be ugly, but it is legitimate. In general, wherever
whitespace is permissible in a printed representation, any number of spaces, tab characters, and newlines may

appear. |\ (goam 7

When print produces a printed representation, it must choose arbitrarily from among many possible
printed representations. It attempts to choose one which is readable. There are a number of global variables
which can be used to control the actions of print, and a number of different printing functions.

SPICE LISP REFERENCE MANUAL 200

This section describes in detail what is the standard printed representation for any Lisp object, and also
describes how read operates.

19.1.1. What the read Function Accepts

The purpose of the| reade6 LISP‘ is to accept characters, interpret them as the printed representation of a
LISP object, and construct and return such an object. The reader cannot accept everything that the printer
produces; for example, the printed representations of compiled code objects and closures cannot be read in,
However, the reader has many featurcs which are not used by the output of the printer at all, such as
comments, alternative representations, and convenient abbreviations for frequently-used unwieldy constructs.
The reader is also parameterized in such a way that it can be used as a lexical analyzer for a more general user-
written parser.

When the reader is invoked, it reads a character from the input stream and dispatches according to the
attributes of that character. Every character which can appear in the input stream can have one of the
following attributes:

o Whiltespace.
o Constituent.
o Macro-character.
o Escape-character.

o Ignored.
Supposing that the one character has been read; call it x. The reader then performs the following actions:

o If x is a whitespace or ignored character, then discard it and start over, reading another character. Rexvar's 2Eho -
17 HE

or% Doks THis LAV 2
o . . . : . . Ok wWrAT |
fuf ¢ ¢ Ifxisamacro character, then exccute the function associated with that character. The function
ot A7 may return a LISP object. If so, that object is returned by the reader; if not,'the reader starts anew,
e 4_«0"1 reading a character from the input stream and dispatching. The function may of course read
vy’ characters from the input stream; if it docs, it will sce thosc characters following the macro
z,ﬁ: ¥ character.

o If x is an escape character, then rcad the next character and call it x instead, but pretend it is a
constituent, and drop into the next case.

o If x is a constituent, then it begins an extended token, representing a symbol or a number. The
reader reads more characters, accumulating them until a whitespace character or macro characteris
found. However, ignored characters are simply discarded, and whenever an escape character is
found during the accumulation, the character after that is treated as a pure constituent and also
accumulated, no matter what its usual syntax is. Call the eventually found whitespace character or
macro character 3. All characters beginning with x up to but not including p form a single
extended token, which is then interpreted as a number if posstble, and otherwise as a symbol. The
nwnber or symbol is then returned by the reader.

/]/Z‘Ts (,Qoer ~at ol ’&Z ccxvﬂ + Js

L\ ar€ [Gesro ¢

“’ L»—ea\‘ fym(v s . (beng O‘-ejen?; ‘:fv\
C:\;\V(\qve/\'\? tmf'—ai’- lymeLr f‘F },\ (M'\§ M-‘e

16‘4\\/\@\ 2SSO, ,x A4 Cory

‘/ﬁ

SPICE LISP REFERENCE MANUAL

201

Compatibility note: Note that characters of type single are not provided for. They can be viewed as simply a kind of macro

character. That s,

(setsyntax '$ 'single ())
<=)> (setsyntax '$ ’'macro #'(lambda (ignore ignore) '$))

which is easy enough to do oneself. After all, one might prefer to see a character rather than a symbol.

<tab> whitespace
<space> whitespace
| constituent
" macro character
macro character
$ constituent
% constituent
& constituent
' macro character
macro character
macro character
conslituent
constituent
. macro character
constituent
conslituent
constituent
conslituent
constituent
constituent
constituent
constituent
constituent
constituent
conslituent
constituent
conslituent
constitue;z_t)
macro character
constituent
constituent
constituent
constifuent

d B e~

O O N WO N O N

DV U A e

{form> whitespace

-)L.J/I—IN_-<><£<=—l(n::O‘UOZZI-7:QHzmmrﬂcnw>@

constituent
constiluent
constituent
constituent
constituent
constituent
constituent
constituent
conslituent
constituent
constituent
constituent
constituent
constituent
constituent
consiituent
constituent
conslituent
constituent
constituent
constituent
constitueni
constifuent
constituent
constituent
constituent
constituent
constituent
escape character
constituent
constituent

__ constituent

{returnd> whitespace

o
v WY — v acro character

3
.
o
6:1‘ Lie
R T

h
1 O"‘“‘ -

constituent
constituent
constituent
constituent
constituent
constituent
constituent
conslituent
constituent
constituent
constituent
constituent
constituent
constituent
conslituent
constituent
constituent
constituent
constituent
consltituent
constituent
constituent
constituent
constituent
constituent
constituent
constituent
macro character
constituent
constituent —-C-nf AS (23 ?9
{rubout> ignored NMEVK
(o,vy#n

lwe—r N X £ < C ¢+ ® 50TV 05 3 =Xt =@ 0 QOO

Table 19-1: Standard Character Syntax Attributes

The characters of the standard character set initially have the attributes shown in Table 19:1.

[f the reader encounters a macro character, then the function associated with that macro character is called,
and may produce an object to be retrned. This function may read following characters in the stream in

SPICE LISP REFERENCE MANUAL 202

whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax.
Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for
strings).

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols

and numbers, and the collection of macro characters. Any character can be reprogrammed as a macro
character; this is a means by which the reader can be extended.

The general abilities of macro characters are discussed below in 7?2, First, however, some standard macro

characters are described here:

(

The left parenthesis character initiates reading of a pair or list. Read is called recursively to read
successive objects, until a right parenthesis is found to be next in the input stream. A list of the objects
read is returned. Thus

{a b c)
is read as a list of thrce objects (the symbols a, b, abd ¢). The right parenthesis need not follow the

printed representation of the last object immediately; whitespace and ignored characters may precede it.
This can be useful for putting one object on each line and making it casy to add new objects:

(defun traffic-light (color)
(caseq color
(green)
{red (stop))
(amber (accelarate)) ; Insert more colors after this line.

))

It may be that no objects precede the right parenthesis, as in "()" or "()"; this reads as a list of zero
objects (the empty list).

If a token is read between objects which is just a dot . ", not preceded by an escape character, then
cxactly one more object must follow, and then the right parenthesis:

(abc . d)

This means that the ¢dr of the last pair in the list is not (), but rather the object whose representation
followed the dot. The above example might have been the result of evaluating

(cons 'a (cons 'b (cons 'c 'd))) => (a b c . d)
Similarly, we have

(cons 'znets 'wolg-zorbitan) => (znets . wolg-zorbitan)
It is permissible for the object following the dot to be a list:

(abcd. (e f . (g))) isthcsameas (a b c d e f g)

but this is a non-standard form that print will never produce.

The right-parenthesis character is part of various constructs (such as the syntax for lists) using the left-
parenthesis character, and is invalid except when used in such a construct.

The single-quote (accent acute) character provides an abbreviation to make it casier to put constants in

SPICE LISP REFERENCE MANUAL 203

programs. ' foo reads the same as { guote f00): alist of the symbol quote and foo.

Semicolon is used to write comments. The semicolon and everything up through the next newline are
ignored. Thus a comment can be put at the end of any line without affecting the reader (except that
semicolon, being a macro character and therefore a delimiter, will terminate a token, and so cannot be
put in the middle of a number or symbol).

For example:

:3:3 COMMENT-EXAMPLE and related nonsense.
;33 This function is useless except to demonstrate comments.
+3: Notice that there are several kinds of comments.

(defun comment-example (x y) ;X is anything; Y is an a-list.
(cond ({1istp x) x) ;If X is a 1ist, use that,
;s X is now not a 1ist. There are two other cases.
((symbolp x) :
;3 Look up a symbol in the a-list,

(cdr (assq x y))) :Remember, (cdr '()) is ().

:+ Do this when all else fails: .

(t (cons x ;Add x to a default 1list.
'((1isp t) ;LISP is okay.

(fortran ()) ;FORTRAN is not.

{(p1/i -500) ;Note that you can put comments in
{(ada .001) ; "data" as well as in “"programs",
1y COBOL??

(teco -1.0e9))))))

This example illustrates a few conventions for comments in common use. Comments may begin with
one to four semicolons.

o Single-semicolon comments are all aligned to the same column at the right; usually each
comments about only the line it is on. Occasionally two or three contain a single sentence
together; this is indicated by indenting all but the first by a space.

e Double-semicolon comments are aligned to the level of indentation of the code. A space
follows the two semicolons. Usually each describes the state of the program at that pojint, or
describes the section that follows,

e Triple-scmicolon comments are aligned to the left margin. Usually they are not used within
S-expressions, but precede them in large blocks.

o Quadruple-semicolon comments are interpreted as subheadings by some software such as the
ATSIGN listing program,

The double-quotc character begins the printed representation of a string. Characters are read from the
input stream and accumulated until another double-quote is cncountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching double-quote is scen, all the accumulated characters up to but not including the matching
double-quote arc made into a string and returned.

q

‘The vertical-bar chasacter begins one printed representation of a symbol. Characters are read from the

input stream and accnnulated until another vertical-bar s encountered, except that if an escape

SPICE LISP REFERENCE MANUAL 204

character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching vertical-bar is seen, all the accumulated characters up to but not including the matching
vertical-bar are made into a symbol and returned. In this syntax, no characters are ever converted to
upper case; the name of the symbol is precisely those characters between the vertical bars (allowing for
any escape characters).

' The backquote {accent grave) character makes it easier to write programs to construct complex data
structures by using a template. As an example, writing

‘(cond {(numberp ,x) ,@y) (t (print ,x) ,Qy))
is roughly equivalent to writing
(1ist 'cond
{(cons (1ist 'numberp x) y)
{(1list* 't (list 'print x) y))
See 777 for details.

, The comma character is part of the backquote syntax and is invalid if used other than inside the body of
a backquote construction, Se¢ 777,

The sharp-sign character is a dispatching macro character. It reads an optional digit string and then one
more character, and uses that character to select a function to run as a macro-character function. See the

next section for predefined sharp-sign macro characters.

nAvE THS Vs A “‘; ‘:’:?fff; n (—zww)-
. " '
Si”(-e by Lo

T tﬂpn‘jﬁﬂ '

19.1.2. Sharp-Sign Abbreviations

The standard syntax includes forms introduced by a sharp sig }. These take the general form of a
sharp sign, a seccond character which identifies the syntax, ang/follojng arguments in some form. If the
sccond character is a letter, then case is not important; #0 and #o arc considered to be equivalent, for

example. (To be precise, # does distinguish case, but for all standard syntaxes which use letters the same D‘E[(JZN
macro-character function is initiatly associated with the upper-case and lower-case versions of each letter.) 61(0;«- -
baﬂ J+_\7.

Certain sharp-sign forms allow an unsigned decimal number to appear between the sharp sign and the
second character; some other forms even require it.

The currently-defined sharp-sign constructs are described below and summarized in Table 19-2; more are

. . ’

likely to be added in the future. o Le AT Lunst ove ExantlE
AT Rotn POIMTS,

#\ #\x reads in as a character object whith represents the character x. Also, #\name reads in as the

character object whose name is name®This is the reccommended way to include character constants in
your code. Note that the backslash “\" allows this construct to be parsed casily by EMACS-like
editors.

Upper-case and lower-case letters are distinguished after #\; "#\A" and "#\a" denote different
character objects. Any character works after #\, even those that are normally special to read, such
as parcntheses. Non-printing characters may be uvsed after #\, although for them names are
generally preferred.

SPICE LISP REFERENCE MANUAL

205

#<tab> signals error

#<{space> signals error #@
#! undefined por H#A
#" bit-vector Docwnere? yg
refercnce to label €er? —=#C
#$ undefined #D
#% undefined #E
#& undefined #F
#' function abbreviation #G
#(vector #H
#) signals error #1
#* undefined #J
#+ read-time conditional #K
#, load-time cvaluation #l
#- read-time conditional #M
#. read-time evaluation #N
#/ undcfined #0
#0 (infix argument) #P
#1 (infix argument) #Q
#2 (infix argument) #R
#3 (infix argument) #S
#4 (infix argument) #T
#5 (infix argument) #U
#6 (infix argument) #V
#7 (infix argument) #
#8 (infix argument) #X
#9 (infix argument) #Y
#: labels LiSP object #1
#; undefined #[
NoT #< signals crror #\
P Weﬁ #= character integer #]
Seow #> undcfined #t
#? undefined

#<form> signals error

#_andefined Qo,\—t

Table 19-2: Standard Sharp-Sign Macro Character Syntax

undefined
array
undefined
complex number
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined

octal number
undefined
undefined
radix-n number
structure
undefined
undefined
undefined
undefined
hexadecimal number
undefined
undefined
undefined
named character
undefined
undefined

#<return> signals error

#l
#a
#b
#c
#d
#e
#f
#9
#h
#i
#j
#k
#1
#m
#n
#o
#p
#q
#r
#s
#t
#u
fiv
H#w
#X
#y
#z
#{
#]
#}
#r

undefined
array
undefined
complex number
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undcfined
undefined
octal number
undefined
undefined
radix-n number
structure
undefined
undefined
undefined
undefined
hexadecimal number
undefined
undefined
undefined
undcfined
undefined
undefined

#<rubout> undefined

#\name reads in as a character object whose name is name. The following names are standard across
all implementations:

form
return
rubout
space
tab

The forinfeed or page-separator character.
The carriage return or newline character.

The rubout or delcte character.

The space or blank character.

The tabulate character.

Explax how #\Cb‘ﬁw
an #\ Narnt a Rl
Jrtn Jished; L assvt
R\ [:77 W'/L,Lr OL_q_ ey
‘Ca G\MW\? C/("M"
a CMr%J\'UQn+ (¢ fo/)w
jADrG‘Q (/(,Lw“(;(—%f{\)
- iy e Lj"‘w""l
char ack’rs ak all

SPICL LISP REFERENCIEE MANUAL 206

The name should have the syntax of a symbol.

When the LISP printer types out the name of a special character, it uses the same table as the #\
reader; therefore any character name you see typed out is acceptable as input (in that
implementation). Standard names are always preferred over non-standard names for printing.

The following convention is used in implementations which support non-zero bits attributes for
character objects. If a name after #\ is longer than one character and has a hyphen in it, then it may
be split into the two parts preceding and following the first hyphen; the first part may then be
interpreted as the name or initial of a bit, and the second part as the name of the character (which
may in turn contain a hyphen and be subject to splitting).

For example:
#\Control-Space #\Control-Meta-Tab
#\C~-M-Return #\H-S-M-C-Rubout

If the character name consists of a single character, then that character is used. Another "\" may be
necessary to quote the character.

2 ? ——> #\Control- #\Control-Meta-\"

-

-

#\Control-\a #\Meta->

If an unsigned decimal integer appears between the "#" and "\", it is interpreted as a font number,
to become the char-font (page 101) of the character object.
Compatibility note: Formerly, Lisp Machine Lisp and MACLIsP used #\ 10 mean only the #\ name version of this

syntax, using #/ for the #\x version. Lisp Machine Lisp has recently changed to allow #/ to handle both
syataxes. The incompatibility is a result of the gencral exchange of the 7 and \ characters.

Also, MacLisp and Lisp Machine Lisp define #\ and #/ to be a syntax for numbers, integers which represent
characters. Here they are a syntax for character objects. Code conforming to the “Character Standard for Lisp”
will not depend on this distinction; but non-conforming code (such as that which does arithmetic on bare
character values) may not be compatible.

#' foo is an abbreviation for (function fo0). foo may be the printed representation of any LISP
object. This abbreviation can be remembered by analogy with the ' macro-character, since the
function and quote special forms are similar(in form.

A scries of representations of objects enclosed by "#(™ and)" is read as a general vector of those
objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the "#” and "(", it specifies explicitly the length of
the vector, In that case, it is an error if too many objects are specified before the closing ")}", and if
too few are specified the last one is used to fill all remaining elements of the vector.

For example:

#(a bcccc)
#6(a bcccc)
#6(a b ¢)

#6(a b ¢ ¢)

all mean the same thing: a vector of length 6 with clements a, b, and four instances of ¢.

If the character "@" immedintely follows the Iefi parenthesis ("#(8"), then after the "@" and before

SPICE LISP REFERENCE MANUAL 207

#"

#A

the representation of the first vector element should appear the representation fype of a data type. All
the elements of the vector must be of this type, and the vector created will be of type (vector

type). (D)ot P qwﬁl crock! T4
For example: ’]’l'\e,-e o eller ay (¢

#(@short-float 0.0s0 1.0s4) ; Vector of two short-floats.
#(@(mod 4) 1 320113 2) ; Vector of eight (mod 4) integers.
#100(@(mod 3) 0) ; 100-long vector of ternary digits, ali 0.

A series of binary digits (0 and 1) enclosed by "#"" and """ is read as a bit vector of those objects.

This is analogous to the notation for strings.
4he ‘f vest

If an unsigned decimal integer appears between the "#" and """, it specifics explicitly the length of

the bit vector. In that case, it is an error if too many bits are specified before the closing **", and if
too few are specified the last one is used to fill all remaining elements of the bit vector.

For example:

#"101000"

#6"101000"

#6"1010"

#6"10100"

#(@(mod 2) 10 1.0 0 0)

all mean the same thing,

This syntax denotes an array. A general array may be notated as "#na" followed by the notation for
a Lisp object, The infix argument # indicates the rank (numbcer of dimensions) of the array. The
notated LISP object following "#na" indicates the contents of the array in the following recursive
manner. If the rank # is zero, then the object is the single clement of the array. Otherwise, the object
must be a sequence (a list or vector). The length of that sequence is the first dimension of the array,
and each clement of the sequence must be an object describing the contents of an array of rank n-1
whose dimensions are the remaining dimensions of the rank-» array.

For example:
#0A foo ; A rank-0 array whose element is a symbol.
#2A((8 1 6) (3 567) (49 2)) ; A 3-by-3 array containing a magic square.
#1A#(2 3 5 7 11 13 17 19) ; A one-dimensional array with cight primes.

#2A("ROT" "HEH"™ "ORE"™) : A 3-by-3 matrix of characters.

i (The columns spell words also:

; RHO, OER, and THE.)
#1A("ROT" "HEH" "ORE") : A 1-dimensional, length-3 array of strings.
#3AC(C) ()) (O ()) (O ())) ; A 3-by-2-by-0 array; it has no elements.
#2A((0) O) (O O) (O O ; A 3-by-2 array, all of whose ¢lements are ().

As another example, this notation is nof legal:
#2a((1 2 3) (ab) (wxy 2z))

because the sublists are not all the same length, so it is unclear what the second dimension should be.

For convenience, if all of the sequences for rank-1 arrays in this notation are of the same specialized
type, then the array will have that same underlying specialization if possible.

For example:

SPICE LISP REFERENCE MANUAL 208

#2A("ROT” "HEH" "ORE") ~ sThisisoftype (array string-char)
s if the implementation supports that type.
#1A#"00110101000101000101" s Thisis of type (array (mod 2))

; if the implementation supports that type.

Alternatively, one may specify the specialization explicitly. If the character immediately following
the "A" is "@", then between the "@" and the representation of the array contents should appear the
representation of the element type.

For example:
#2AQ@(mod 4) ((3 2) (0 1) (2 1)) ;A 3-by-2arrayoftype (array (mod 4)).

There is a problem with the #»A notation: there is no way to write a 0-by-3 array, for cxample. One
might try writing #2A(), but this fails to specify that the second dimension should be 3. Another,
less serious, problem with this notation is that it is annoying to notate a large array all of whose
elements are the same.

There is a second notation for arrays that solves these problems. If no integer specifying the rank is

written between the "#” and the "A", then there should follow the notation for a sequence of integers

(,.J and then the notation for a sequence of objects. The length of the first sequence is the rank, and its

h J}L’P clements are the dimensions; the second sequence specifics the vaiues of the array clements in row-

\\QV %33 major order, with the understanding that if too few arc given then the last clement of the sequence is

\Q o replicated, and if the sequence is empty the array contents are not initiatized (it is as if no : initial
< option were specificd to make-array (page 175)).

'
v

$o ~ For example:

H?Q \}}/ Q"\ #A()(foo0) : Another notation for a zero-rank array containing foo.
o " #A(100 100 100)(0.0) ; A cube, 100 on an edge, filled with 0., 0.
i{f ou’d" #A(3 3)"ROTHEHORE" ; The same matrix of characters as above.

) \ #A(100)(2 3 5 0) ; A 100-long array, filled with 2, 3, 5, and 97 zeros.

o“/ = #A@(mod 7)(100)(2 3 5 0) ;Thesame thing, but of specialized type.
> #A(0 3)() ; A 0-by-3 array.
\ﬁ&\ #A(0 4 0 5)() ; A 0-by-4-by-0-by-5 array.

#. #. foo is read as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The evaluation is done during the read
process, when the #. construct is encountered. This, therefore, performs a "read-time" evaluation of
Joo. By contrast, #, (sce below) performs a "load-time" evaluation.

This allows you, for example, to include in your code complex list-structure constants which cannot
be written with quote. Note that the reader does not put quote around the result of the evaluation.
You must do this yourself if you want it, typically by using the ' macro-character. An example of a

.. . R R . . w1 AR
case where you do not want quote around it is when this object is an clement of a constant list. r}mﬁ{% s
&

"

#, #, foo is rcad as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The evaluation is done during the read
process, unless unjéss the compiler is doing the reading, in which case it is arranged that foo will be
evaluated when the file of compiled code is loaded. This, thercfore, performs a “load-time"
evaluation of foo. By contrast, #. (sce above) performs a "read-time” cvaluation. In a sense, #, is
like specifying (eval load) to eval-when (page EVAL-WHEN-F'UN), while #. is more like
specifying (eval compile). It makes no difference when loading interpreted code, but when
code is to be compiled. #. specifies compile-time evaluation and #, specifies load-time evaluation,

SPICE LISP REFERENCE MANUAL X \0‘/ JQ Lo b 209

#0

#X

/ ‘3(:\ R
o gﬂg@b.#

1\ \\ #s

“ #:

\(##

#, allows you, for example, to include in your code complex list-structure constants which cannot be
written with quote.’/Note that the reader does not put quote around the result of the evaluation.
You must do this yourself if you want it, typically by using the ' macro-character. An example of a
case where you do not want quote around it is when this object is an element of a constant list.

#onumber reads number in octal (radix 8).

#xnumber reads number in hexadecimal (radix 16). The digits above 9 are the letters A through F
(the lower-case letters a through f are also acceptable).

#radixrnumber reads number in radix radix. radix must consist of only digits, and it is read in
decimal,

For example, #3r102 is another way of writing 11, and #11R32 is another way of writing 36. For
radices larger than 10, letters of the alphabet are used in order for the digits after 9.

The syntax #s(name slotl valuel slot2 value2 ...} denotes a structure. This is legal only if
name is the name of a structure already defined by defstruct (page 185), and if the structure has a
standard constructor macro, which it normally will. Ifit is assumed that the name of the constructor
macro is make - name (which it normally is), then this syntax is equivalent to

(make-name slotl ‘valuel slot2 'value? ...)

That is, the constructor macro is called, with the specified stots having the specified values (note that
one does not write quote-marks in the #s syntax). Whatever object the constructor macro returns is
returned by the #s syntax. Tk Somds lThe Tad werles regardless B fe na~e

LL ms{f*’ c(v Macro . I—(: so, 5oy §° mae QW‘T“"}E- I‘F net
The syntax #n: object reads as whatever LISP object has object as its printed representation. However, ‘: i .
that object is labelied by n, a required unsigned decimal integer, for possible reference by the syntax 7
#n# (below).

277 Query: Resolve wheén the labels get reset.

Compatibility note: MacLisp is currently using #: for some boolstrapping purpose related to package syntax.
'The purpose described here docs not conflict; they can be distinguished by the presense or absence of an infix
number ». Presumably the package usage will eventually be phased out. dea s 2 S0 X,

o mackie <l be Usthg ook #imemE Sl w5
The syntax #n#, where n is a required unsigned decimal integer, serves as a reference to some object “ ;- 7,
labeiled by #n:; that is, #n# represents a pointer to the same identical (eq) object labelled by #n:. ke
This permits notation of structures with shared or circular substructure. For example, a structure ~ “é
created in the variable y by this code: ,Q;\ :

(setq x (list 'p 'q))

(setq y (list (1list 'a 'b) x 'foo x))

(rplacd (last x) (cdr x)) n
could be represented in this way: capuls & o o

((a b) . #1=(#2=(p q) foo #2# . H1H))

Without this notation, but with prinlength (page PRINLENGTH-VAR) sct to 10, the structure
would print in this way:

((a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) ...)

Compatibitily note: In Lisp Machine [ise, the ## syntax is used for i obsolele version of characler syntax which

Was been «QLALMQ (ﬂ\j I

SPICE LISP REFERENCE MANUAL 210

#+

#<

is superseded in Lisp Machine LisP by #/ and here by #\.

The #+ syntax provides a read-time conditionalization facility. The general syntax is "#+feature
form". If feature is "true”, then this syntax represents a LISP object whose printed representation is
Jorm. If feature is “false”, then this syntax is effectively whitespace; it is as if it did not appear.

The feature should be the printed representation of a symbol or list. If feature is a symbol, then it is
true iff it is a member of the list which is the value of the global variable features (page
FEATURES-VAR). e onRaving Tz campaipn Yo ue vp Al

cnglish” wavids Lar fe vee, Call 14 JN%J\) (_(J—C.

Compatibility note: MAcLisp uses the status special form for this purpos‘:j anid Lisp Machine Lisp duplicates
status essentially only for the sake of {status features). The use of a variable allows one to bind the
features list, for example when compiling, Ng‘(’ ..,\l-j Lar TL\.d" /oS b

Otherwise, feature should be a boolean expression composed of and, or, and not operators on
{recursive) feature expressions.

For example, suppose that in implementation A the features spice and perq are true, and in
implementation B the feature 1ispm is true. Then the expressions on the left below are read the
same as those on the right in implementation A:

(cons #+spice "Spice" #+1lispm "Lispm" x) {cons "Spice" x)

(setq a '(1 2 #+perq 43 #+(not perqg) 27)) (setq a '(1 2 43))

(let ((a 3) #+(or spice lispm) (b 3)) (let ((a 3) (b 3))
(foo a)) (foo a))

In implementation B, however, they are read in this way:

(cons #+spice "Spice" #+lispm "Lispm" x) {(cons "Lispm" x)

(setq a '(1 2 #+perq 43 #+(not perq) 27)) (setq a '(1 2 27))

(1et ((a 3) #+(or spice Tispm) (b 3)) (let ((a 3) (b 3))
(foo a)) {(foo a))

The #+ construction must be used judiciously if unreadable code is not to result. The user should
make a careful choice between read-time conditionalization and run-time conditionalization. See the
macros named if-for-spice (page IF-FOR-SPICE-FUN), if-in-spice (page IF-IN-SPICE-
FUN), and so on. e

¢ f
2

#-feature formisequivalentto #+(not feature) form.

This is not legal rcader syntax. It is used in the printed representation of objects which cannot be
read back in. Attempting to read a #< will cause an error. (More preciscly, it is legal syntax, but the
macro-character function for it signals an error.)

#<space>, #<tab>, #<return>, #<{form>

#)

A # followed by a standard whitespace character is not legal rcader syntax. This is so that
abbreviated forms produced via prinlevel (page PRINLEVEL-VAR}) cutoff will not read in
again; this serves as a safeguard against losing information. (More precisely, it is legal syntax, but the
macro-character function for it signals an ¢rror.)

This is not legal reader syntax. This is so that abbreviated forms produced via prinlevel (page
PRINI EVEL-VAR) cutoff will not read in again; this serves as a safcguard against losing
information. (More precisely, it is legal syntax, but the macro-character function for it signals an

SPICE LISP REFERENCE MANUAL 211

error.)

19.1.3. The Readtable

Previous sections have described the standard syntax accepted by the read function. This section
discusses the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects
or to aid the writing of other parsers.

There is a data structure called the readtable which is used to control the reader, It contains information
about the syntax of each character. Initially it is set up to give the standard L.iSP mcanings to all the
characters, but the user can change the meanings of characters to alter and customize the syntax of characters.
[t is also possible to have several readtables describing different syntaxes and to switch from one to another by
binding the symbol readtable.

readtable [Variable)
The value of readtabe is the current readtable. The initial value of this is a readtable sct up for
standard LISP syntax. You can bind this variable to temporarily change the readtable being used.

To program the reader for a different syntax, a sct of functions are provided for manipulating rcadtables.
Normally, you should begin with a copy of the standard COMMON LISP readtable and then customize the
individual characters within that copy.

copy-readtable &optional from-readtable to-readtable [Function]
A copy is madc of fiom-readtable, which defaults to the current readtable (the valuc of the global
variable readtable). If from-readtableis (), then a copy of a standard COMMON LISP readtable
is made; for example,
(setq readtable (copy-readtable ()))

will restore the input syntax to standard COMMON LISP syntax, cven if the original readtable has
been clobbered (assuming it is not so badly clobbered that you cannot type in the above
expression!).

If fo-readtable is unsupplicd or (), a fresh copy is made. Otherwise fo-readtable must be a
readtable, whith is clobbered with the copy.

set-syntax-from-char fo-char from-char &optional (lo-readiable from-readtable [Function]
Makes the syntax of fo-char in fo-readtable be the same as the syntax of from-char in from-
readtable. The to-readtable defaults to the current readtable (the vaiue of the global variable
readtable (page 207)), and from-readtable defaults to {), meaning to use the syntaxes from the
standard LISP readtable.

If the definition of an ordinary character is copied, any special attributes it might have within a
symbol or nutaber are copied with it. The attributes in the standard readtable aye shown in Table

SPICE LISP REFERENCE MANUAL 212

+ B~ o Q0 3R B FR

e OO NOCEHWN = O N

<tab> whitespace { alphabetic
<form> whitespace } alphabetic
<return> whitespace ' macro character
<space> whitespace @ alphabetic
alphabetic A,a alphabetic, digit>10
macro character B,b alphabetic, digit>10, bigfloat exponent
macro character C,c alphabetic, digit>10
alphabetic D,d alphabetic, digit>10, double-float exponent
alphabetic E,e alphabetic, digit>10, float exponent
alphabetic F,f alphabetic, digit>10, single-float exponent
macro character G,g alphabetic, digit>10
macro character H, h alphabetic, digit>10
macro character I,1i alphabetic, digit>10
alphabetic J,j alphabetic, digi>10
alphabetic, plus sign K, k alphabetic, digit>10
macro character L,1 alphabetic, digit>10, long-float exponent
alphabetic, minus sign M,m alphabetic, digit>10
alphabetic N, n alphabetic, digit>10
alphabetic, ratio marker 0,0 alphabetic, digit>10
digit P,p alphabetic, digit>10
digit Q.q alphabetic, digit>10
digit R, r alphabetic, digit>10
digit S,s alphabetic, digit>10, short-float exponent
digit T,t alphabetic, digit>10
digit U,u alphabetic, digi>10
digit V,v alphabetic, digi>10
digit W,w alphabetic, digit>10
digit X, x alphabetic, digit>10
digit Y,y alphabetic, digit>10
package marker Z,z alphabetic, digit>10
macro character [alphabetic
alphabetic \ escape character
alphabetic] alphabetic
alphabetic + alphabetic
macro character ~ alphabetic

<
>
I
<

rubout> ignored

Table 19-3: Standard Readtable Character Attributes

19-3. For example, if the definition of *S" is copied to "*", then "*" will be useable not only as an
alphabetic character but as an exponcnt indicator in short-format floating-point number syntax.

Compatihility note: No provision 15 made here for specifying the syatax attributes directly, as by keywords. It

is more intuitive for the user simply to copy some standard character, and 1 believe that all the usel il syntaxes 0 It €
are already provided in the standard readiable shown in Table 19-3. 1 Agtey (}u‘\" Mol - @K ‘PA’&C(VM sf AL
' N SIVE s he
{ — A e

SPICE LISP REFERENCE MANUAL 213

standard definition for "|" looks for another character which is the same as the character which
invoked it. 1t doesn’t "work" to copy the definition of " (" to "{", for example; it does work, but
Jets one write lists in the form "{a b c)", not"{a b c}", becausc the definition always Jooks
for a closing ")". See the function read-delimited-1ist (page 212), which is useful in this
connection.

set-macro-character char fiunction &optional readtable [Function]
get-macro-character char &optional readiable {Function]

set-macro-character causes char to be a macro character which when scen by read causes
function to be called. get-macro-character returns the function associated with char, or () if
char does not have macro-character syntax, In each case, readtable defaults to the current
readtable.

function is called with two arguments, stream and char. The stream is the input stream, and char is
the macro-character itself, In the simplest case, firnction may return a LisP object. This object is
taken to be that whose printed representation was the macro character and any following characters
read by the function. As an example, a plausible definition of the standard single-quote character

is: Lere &afi)‘ v
's n 54

(defun single-quote-reader (stream ignore) N e ;z\,’a\, r \ Uo\'

(1ist 'quote (read stream))) Lo *57 he 51»5‘}\\/\,&
(set-macro-character #\' #'single-quote-reader) S“"':A be re"k sy

e [&
The function reads an object following the single-quote and returns a list of the symbol quote and
that object. The char argument is ignored.

The function may choose instead to return zero values (for example, by using (val ues) as the
return expression). In this case the macro character and whatever it may have read contribute
nothing to the object being read. As an example, here is a plausible definition for the standard
semicolon (comment) character:

(defun semicolon-reader (stream ignore)
(do {) ((char= (inch stream) #\Return)))
(values))
(set-macro-character #\; #' semicolon-reader)
As another example, here is a simplified definition of the #+ syntax, which omits handling of and,

or and not:

(defun sharp-plus-reader (stream ignore)
(let ((feature (read stream))
(object (read stream)))
(if (memq feature features) object (values))))
(set-dispatch-macro-character #\# #\+ #'sharp-plus-reader)

If the feature is present, then object is returned, and otherwisc nothing.

The finction should not have any side-cffects other than on the stream and list-sv-far. Front ends
(such as editors and rubout handiers) to the rcader may cause Sunction to be called repeatedly
during the reading of a single expression in which the macro character only appears once, because
of backtracking and restarting of the read operation.

|

|
\

SPICE LISP REFERENCE MANUAL 214

make-dispatch-macro-character char &optional readtable [Function]

This causes the character char to be a dispatching macro character in readtable (which defaults to
the current readtable). Initially every character in the dispatch table has a character-macro function
which signals an error. Use set-dispatch-macro-character to define entries in the
dispatch table.

set-dispatch-macro~character disp-char sub-char function &optional readtable [Function]
get-dispatch-macro-character disp-char sub-char &optional readtable [Function]

set-dispatch-macro-character causes function to be called when the disp-char followed
by sub-char is read. The readtable defaults to the current readtable. The arguments and return
values for finction are the same as for normal macro characters, documented above under set-
macro-character (page 213), except that function gets sub-char as its sccond argument, and
also receives a third argument which is the non-negative integer whose decimal representation
appeared between disp-char and sub-char, or () if there was none. The sub-char may not be one of
the ten decimal digits: they are always reserved for specifying an infix integer argument.

get-dispatch-macro-character returns the macro-character function for sub-char under
disp-char.

As an example, suppose one would tike #8$ /oo to be read as if it were (dollars foo). One might
say:
(defun sharp-dollar-reader (stream ignore ignore)

(1ist 'dollars (read stream)))
(set-dispatch-macro-character #\# #\$ #'sharp-dollar-reader)

L

- - @
Compatibility note: Tnis macro-character mechanism is different from those in MAacLisp, INTERLIsP, and Lisp Machine Lisp. \t o’b‘
Recently Lisp systems have implemented very gencral readers, even readers so programmable that they can parse arbitrary rD‘ < “
compiled BNF grammars. Unfortunately, these readers can be complicated to usc, and have suffered from performance ¢ <7 - S

problems. ‘This design is an attempt to make the reader as simple as possible to understand, use, and implement. Splicing
macros have been eliminated: a recent informal poll indicates that no onc uses them to produce other than zero or one
value, The ability to access parts of the object preceding the macro character have been climinated. The single-character-
object feature has been eliminated, because it is seldom used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into single-character-object macros, and then use
read purely as a lexical analyzer on top of which to build a parser. It is unnecessary, however, to cater to more complex
lexical analysis or parsing than that needed for COMMON LisP.

19.1.4. What the print Function Produces

(NS \:j\

19.2. Input Functions

19.2.1. Input from ASCli Streams

o

Many input functions take optional arguments called input-stream and eof-option. 'The input-stream

argument s the stream from which to obtain input; if unsupplicd or () it defaults to the value of the special
variable standard-input (page 231). Oue may also specify t as a stream, meaning the value of the speeial

f*

SPICE LISP REFERENCE MANUAL \g_, 215

variable terminal-io (page 232). \é\a)\/-j \S
Rationale: Allowing the use of t provides some semblance of MACLISP compatibility.
Lb«‘ N

The eof-option argument controls what happens if input is from a file (or any other input source that has a
definite end) and the end of the file is reached. If no egfoption argument is supplied, an error will be
signalled at end of file. If there is an eof-option, it is the value to be returned. Note that an egfoption of ()
means to return () if the end of the file is reached; it is not equivalent to supplying no eof-option. The eof
option argument is always evalvated; the resulting value is used, however, only when end of file is
encountered.

Functions such as read (page 211) which read an "object” rather than a single character will always signal
an error, regardless of egfoption, if the file ends in the middle of an object. For example, if a file does not
contain enough right parentheses to balance the left parentheses in it, read will complain, If a filc ends in a
symbol or a number immecdiately followed by end-of-file, read will read the symbol or number successfully
and when called again will see the end-of-file and obey egf-option. Similarly, the function read1 ine (page
213) will successfully read the last line of a file even if that line is terminated by end-of-file rather than the
newline character. If a file contains ignorable text at the end, such as blank lines and comments, read will
not consider it to end in the middle of an object and will obey eof-option. foo0 !

Compatibility note:

‘These end-of-file conventions are compatible with Lisp Machine Lisp, but not completely compatible with Maclisp.
Maclisp’s deviations from this are generaliy considered to be bugs rather than features.

I
‘ﬁ“ .
‘The MacLisp “feature” of letting input-stream and eof-option appear in either order is not supported. 6 00 5. ot

Note that all of these functions will echo their input if used on an interactive stream. The functions that
input more than one character at a time allow the input to be edited. The function inchpeek (page
214) cchoes all of the characters that are skipped over (if any) if inch would have echoed them; the character
not removed from the stream is not echoed either.

read &optional input-stream eof-option [Function]
read reads in the printed representation of a LISP object from input-stream, builds a
corresponding LISP objcct, and returns the object. The details are explained above.

read-preserve-delimiters , [Variable]
Certain printed represcentations given to read, notably those of symbols and numbers, require a
delimiting character after them. (Lists do not, because the close parenthesis marks the end of the
list) Normally read will throw away the delimiting character if it is a white-space character, but
will preserve it (using untyi (page 213)) if the character is syntactically meaningful, since it may
be the start of the next cxpression.

The variable read-preserve-delimiters controls this throwing away of white-space
characters. Its nonnal value is), but if its value is not () then no delimiting characters will be
thrown away by read, even if they arc whitespace. This may be uscful for certain macro
characters or special input syntaxcs.

|

SPICE LISP REFERENCE MANUAL 216

As an example, consider this macro-character definition:

(defun slash-reader (stream ignore)
(1et ((read-preserve-delimiters t))
(do ((path (1ist (read stream))
(cons (progn (inch stream) (read stream))

path)))
({not (char= (inchpeek stream) #\/))
(cons 'pathname {nreverse path))))))
(set-macro-character #\/ @s1ash—reader)
Consider now calling read on this expression:
(zyedh /usr/games/zork /usr/games/boggie)

The "/" macro reads objects separated by more "/" characters; thus /usr/games/zork is
intended to rcad as (pathname usr games zork). The entire cxﬁﬁplc expression should
therefore be read as

(zyedh (pathname usr games zork) {(pathname usr games boggle))

However, if read were not instructed by the binding of thc variable read-preserve-
delimiters to preserve whitespace, then on reading the symbol zork, the following space
would be discarded, and then the next call to inchpeek would sce the following /", and the loop
would continue, producing this interpretation:

(zyedh (pathname usr games zork usr games boggle))

On the other hand, there are times when whitespace should be discarded. If one has a command
interpreter which takes single-character commands, but occasionally reads a LISP object, then if the
whitespace after a symbol were not discarded it might be interpreted as a command some time later

after the symbol had been read. - b <L P ,ﬁ,\ X Mﬂ/wd’l,: -\L s

\(fw“?— edt wifl ‘_‘\ﬂ-{

e A an oyt

| read-delimited-1ist char &optional input:stream eof-option [Function]

This reads objects from stream until the next character after an object’s representation (ignoring
whitespace and ignored characters) is char. (The char should not have whitespace or ignored
syntax in the current rcadtable.) A list of the objects read is returned.

This function is particularly useful for defining new macro-characters. Suppose one were to want
"#{a b ¢ ... z}"toread asa list of all pairs of the elements g, b, ¢, . . ., z, for cxample:

#{(p q z a} readas ((p q) (p z) (p a) (q z) (q a) (z a))
This can be done by specifying a macro-character definition for "#{" which does two things: read
in all the items up to the "}", and construct the pairs. read-delimited-11ist performs the
first task.
(defun sharp-leftbrace-reader (stream ignore ignore)
(mapcon #'(lambda (x)
(mapcar #'(lambda (y) (list x y)) (cdr x)))

(read-delimited-1ist #\} stream)))
(set-dispatch-macro-character #\# #\{ #'sharp- leftbrace-reader)

SPICE LISP REFERENCE MANUAL 217

readline &optional input-stream eof-option [Function]
read1ine reads in a line of text, terminated by a carriage return. It returns the line as a character
string, without the return character. This function is usually uscd to get a line of input from the
| user. A second returned value is a flag which is () if a carriage return terminated the line, or t if
! l' end-of-file terminated the (non-empty) line. vy mie devy [Secpoeo.

H inch &optional input-stream eof-option [Function]
tyi &optional input-stream eof-option [Function]

inch inputs onc character from input-stream and returns it as a character object. The character is
echoed if input-stream is interactive,

tyi is similar to inch, but returns the character as an integer; it is as if inch were used, and
char-int (page 103) applicd to the result.

It is almost always preferable to use inch rather than ty 1, if only for reasons of portability.

 uninch character &optional input-stream [Function]
/, untyi integer &optional input-stream [Function)
uninch puts the character onto the front of input-stream. When a character is next read from
input-stream, it will be the specificd character, followed by the previous contents of input-stream.
uninch returns {).

unty1 is similar to un inch, but takes an integer rather than a character object. it is as ifuninch
were used after applying int-char (page 103) to the first argument.

It is almost always preferable to use uninch rather than unty i, if only for reasons of portability.

??7? Query: This from the Lisp Machine Lisp Manual: "Note that you are only allowed to untyi one
character before doing a tyi, and you aren’t allowed to untyi a different characler than [sic] the last
character you read from the siream. Some strcams implement unty i by saving the character, while others
implement it by backing up the pointer to a buffer.” Opinions? Current trend is to opt for generality rather

thanhacks. 7 .00 T jka QHM Ceedo a@\ﬂn’ya],q,\,(,q‘k-{,\,_ Unfj]
¢ act o sechantsm do ph St s a sfeam Through
e tle e oo

” inchpeek &optional peek-type input-stream eof-option [Function]
tyipeek &optional peek-type input-stream eof-option {Function}
What inchpeek docs depends on the peek-fype, which defaults to (). With a peek-type of (),
inchpeek returns the next character to be read from input-stream, without actually removing it
from the input strcam. The next time input is done from input-stream the character will still be

there. Itis as if one had called inch and then uninch in succession,

If peek-type is t, then inchpeek skips over whitespace and ignored characters, and then performs
the peeking operation on the next character. This is useful for finding the (possible) beginning of
the next printed representation of a Lisp object. As above, the last character (the onc that starts an
object) is not removed from the input stream.

If peek-1ype is a character object, then inchpeek skips over input characters unti! a character
which is char= (page 100) to that object is found; that character is left in the input stecam,

|

|

SPICI: LISP REFERENCE MANUAL 218

Characters passed over by inchpeek are echoed if input-streant is interactive.

tyipeek is similar to inchpeek, but returns an integer rather than a character object; it is as if
inchpeek were used, and char-int (page 103) applied to the result. (If, however, an eofoption
is provided and returned, char-int is not applied!) tyipeek also requires an integer instead of
a character as the peek-type.

It is almost always preferable to use inchpeek rather than tyipeek, if only for reasons of
portability. WHAT 00ks THis Po W R.T, gcroiNG

listen &optional input-stream [Function}

The function 11isten returns t if there is a character immediately available from input-stream, and
() if not. This is particularly uscful when the strcam obtains characters from an interactive device
such as a keyboard; a call to inch (page 217) would simply wait until a character was available, but
11isten can sense whether or not input is available and allow the program to decide whether or
not to attempt input. On a non-interactive strcam, the general rule is that 1isten returns t except
when at end-of-file. '

inch-no-hang &optional input-stream eof-option {Function]
tyi-no-hang &optional input-stream eof-option [Function)

These functions are exactly like inch (page 217) and tyi (page 217), except that if it would be
necessary to wait in order to get a character (as from a keyboard), () is immediately returned
without waiting. This allows one efficiently to check for input being available and get the input if it

‘This is different from the 1isten (page 214) opcration in two ways. First, these functions
potentially actually read a character, while 1isten never inputs a character. Second, 1isten
does not distinguish between end-of-file and no input being available, while these functions do
make that distinction, returning eofoption at end-of-file, but always returning () if no input is

available. @Y“"j e ed(:—- O(a'k\\n at Svpp lied?

Il
'&clear—input &optional input-stream [Function]

1

This clears any buffered input associated with input-stream. It is primarily useful for clearing type-
ahcad from keyboards when some kind of asynchronous crror has occurred. If this operation
doesn't make sense for the stream involved, when cl1ear-input does nothing, clear-input

returns ().
Nt K B STpaT, ENO

g
[‘gﬂo CvitT TN Est?

e

T
Tebrg € m FAYY

~2 L\‘\aa\c‘t‘e ochon \\’ =
M(Q 7/ Vq[lr-e. S M(+ (/.,,\&g)(,Q—V-,,Qﬁ\vwi"?f) / \J\o }vs

v
read-from-string string &optional eofoption (index 0) [Function] AT . DTS o 0“0 "
"The characters of string are given successively to the LISP reader, and the LiSP object built by the il
reader is returned. Macro characters and so on will all take effect.
The eofoption is what to return if the end of the string is reached, as with other reading functions. KQ el 4
277 Query: In Lisp Machine Lisp, what happens if end-of*string occurs in the middte of an object? A ne / :
The argument index is the index in the string of the first character to be read; by defanlt the entire Q\.,r’
o J(/\ ul& A\ﬂo L,e, - (,Q (o 3 r"f
evns nvm"oer o /vlL I no nuimber ThAT. \(3

SPICE LISP REFERENCE MANUAL 219

string is used.

read-from-string returns two values; the first is the object read and the second is the index of
the first character in the string not read. If the entire string was read, this will be either the length
of the string or one greater than the length of the string. The variable read-preserve-
delimiters (page 215) affects this second value, u §Q = to Les {- TE.

For example:

(read-from-string "(a b c)") => (a b ¢) and 7

19.2.2. Input from Binary Streams
(m8g)
19.2.3. Input Editing

19.3. Output Functions

19.3.1. Output to Asci1 Streams

These functions all take an optional argument called output-stream, which is where to send the output. If
unsupplied or (), output-stream defaults to the vatue of the variable standard-output (page 231). Ifitis
t, the value of the variable terminat-1io (page 232) is used.

prinl object &optional output-stream [Function)
print object &optional ouiput-stream [Function}
princ object &optional oufput-stream [Function]

prin1 outputs the printed representation of object to output-stream, using escape characters. As a
rule, the output from prin1 is suitable for input to the function read (page 215); see 772, prinl \\
returns t.

print is just like prin1 except that the printed representation of object is preceded by a carriage
return and followed by aspace. print returns t. | ';

princ is just like prini except that the output has no escape characters. A symbol is printed as
simply the characters of its print-name; a string is printed without surrounding double-quotes; and
there may be differences for other data types as well. The general rule is that output from princ is
intended to look good to people, while output from prinl is intended to be acceptable to the
function read (page 215). princ returns t. l ‘l

The output from these functions is affected by the values of the variables base (page BASE-VAR),
prinlevel (page PRINLEVEL-VAR), and prinlength (page PRINLENGTH-VAR).

o oint !
piul e s [Q "’J\W %orf‘lf € {iﬂ‘ﬂ
%7 fﬂﬁ\/ ("Jwﬁ[3 7%/ (m&;;&u/“kb‘
 fm 74& ¢ Z

SPICE LISP REFERENCE MANUAL 220

| . :
| , ouch character &optional output-stream ' [Function)
tyo integer &optional output-stream [Function]
ouch outputs the character to oulput-stream.

tyo is similar, but takes an integer instead of a character; it is as if int-char were applicd to the
first argument and then ouch were called.

It is almost always preferable to use ouch rather than tyo, if only for reasons of portability.

' ’ Both functions return t.

terpri &optional output-stream [Function)
” fresh-1ine &optional output-stream [Function]
terpri outputs a newline to oufput-siream; this may be simply a carriage-return character, a
return-linefeed sequence, or whatever elsc is appropriate for the stream. terpri returns t.

fresh-1ine is similar to terpri, but outputs a newline only if the stream is not alrcady at the
start of a line. (If for some rcason this cannot be determined, then a newline is output anyway.)
This guarantees that the stream will be on a “fresh line” while consuming as little vertical distance
as possible. fresh-11ine returns t if it output a newline, and otherwise returns ().

{ Istring-out siring &optional output-stream start end [Function) & 2l

l Tine-out string &optional output-stream start end [Function]
The characters in the argument string, which must be a string (not a symbol), arc output to the
output-stream. The optional arguments start and end specify a substring of string to be output; start
is the index of the first character to output, and end is an index one greater than the last character to
be output. These default to the beginning and end of the string.

string-out simply puts out the specificd characters; 1ine-out additionally outputs a newline
afterwards. Each function returns t.

| force-output &optional ouiput-stream [Function)

l clear-output &optional oulput-stream ' [Function)
Some streams may be implemented in an asynchronous or buffered manncr. The function
force-output dttempts to ensure that all output sent to oufput-stream has rcached its
destination, and only then returns t.

The function clear-output, on the other hand, attempts to abort any outstanding output
operation in progress, to allow as little output as possible to continue to the destination. This is
useful, for example, to abort a lengthy output to the terminal when an asynchronous error occurs.
clear-output returns t.

The function format (page 217) is very uscful for producing nicely formatted text. It can do anything any
of the above functions can do, and it makes it casy to produce good looking messages and such. format can

SPICE LISP REFERENCE MANUAL 221

generate a string or output to a stream,

The function pprint (page PPRINT-FUN) is useful for printing LISP objects "prettily” in an indented
format. Also, grindef (page GRINDEF-FUN) is useful for formatting LISP programs.

19.3.2. Output to Binary Streams
C LS }\ Jc"{'k\
Y 2
19.4. Formatted Output - o 7

format destination control-string &rest arguments [Function]
format is used to produce formatted output. format outputs the characters of control-string,
except that a tilde ("~") introduces a directive. The character after the tilde, possibly preceded by
prefix parameters and modifiers, specifics what kind of formatting is desired. Most directives use
one or more elements of args to create their output; the typical directive puts the next element of
args into the output, formatted in some special way. '

The output is sent to destination. 1f destination is (), a string is created which contains the output;
this string is returned as the value of the call to format. In all other cases format returns t, { [
performing output to destination as a side effect. If destination is a stream, the output is sent to it,
If destination is t, the output is sent to the stream which is the value of the variable standard-

output (page 231). W

A format directive consists of a tilde ("~"), optional prefix parameters separated by commas, optional
colon (":") and atsign ("@") modifiers, and a single characier indicating what kind of directive this is. The
alphabetic case of the directive character is ignored. The prefix parameters are generally decimal numbers.
Examples of control strings:

".S" : This is an S directive with no parameters or modifiers.
*~3,4:Qs" : This is an S directive with two parameters, 3 and 4,

+ and both the colon and atsign flags.
"~, 48" : Here the first prefix parameter is omitted and takes

+ on its default value, while the second parameter is 4.

The format function includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its features to usec format effectively. The beginner should skip over
anything in the following documentation that is not immediately useful or clear. The more sophisticated
features are there for the convenience of programs with complicated formatting requirements.

Sometimes a prefix parameter is used to specify a character, for instance the padding character in a right- or
left-justifying operation. In this case a single quote (" * ") followed by the desired charactzr may be used as
a prefix parameter, so that you don’t have to know the decimal numeric values of characters in the character
set. For example, you can use "~5, ' 0d to print a decimal number in five columns with leading zcros, or
"5, '*d" to get leading asterisks.

SPICE LISP REFERENCE MANUAL 222

In place of a prefix parameter to a directive, you can put the letter "V", which takes an argument from
arguments as a parameter to the directive. Normally this should be an integer (but in general it doesn’t really
have to be). This feature allows variable column-widths and the like. Also, you can use the character "#" in
place of a parameter; it represents the number of arguments remaining to be processed.

Here are some relatively simple cxamples to give you the general flavor of how format is used.

(format
{(format

(format () "foo") => "foo"
(setq x 5
(format (
(format (
(
(

)

) "The answer is ~D." x) => "The answer is 5."

} "The answer is ~3D." x) => "The answer is 5."

} "The answer is ~3,'0D." x) => "The answer is 005."
) "The answer is ~:D." (expt 47 x))

=> "The answer is 229,345,007."

(setq y "elephant™)
(format () "Look at the ~A!" y) => "Look at the elephant!"
(format () "Type ~:C to ~A." (control #\D) "delete all your files")

=> "Type Control-D to deiete all your files."

(setq n 3)
(format () "~D item~:P found." n) => "3 items found.”
(format () "~R dog~:[s are~; is~] here.”" n (= n 1))

=> "three dogs are here."

(format () "~R dog~:*~[~1; is~:;s are~] here." n)

=> "three dogs are here."

(format () "Here ~[~1;is~:;are~] ~:*~R pupp~:@P." n)

=> "Here are three puppies.”

The directives will now be described. The term arg in general refers to the next item of the set of
arguments to be processed. The word or phrase at the beginning of each description is a mnemonic word for

the directive.

~A

~$

Ascii. An arg, any LISP object, is printed without escape characters (as by princ (page
219)). In particular, if arg is a string, its characters will be output verbatim.

Compatibility note: In CoMMON Lisp, the empty iist always prints as (), so the colon modifier is
useless here. In Lisp Machine Lisp it specifies whether to print it as () or as NIL.

~mincolA inserts spaces on the right, if necessary, to make the width at least mincol
columns. The @ modifier causes the spaces to be inserted on the left rather than the right.

~mincol , colinc , minpad, padcharA is the full form of ~A, which allows ¢laborate control of
the padding. The string is padded on the right with at least minpad copies of padchar,
padding characters are then inserted colinc characters at a time until the total width is at
least mincol. The defaults are 0 for mincol and minpad, 1 for colinc, and the space
character for padchar. ' ‘

S-expression. 'This is just like ~A, but arg is printed with escape characters (as by prini
(pagc 219) rather than princ). The output is therefore suitable for input to read (page
215).

SPICE LISP REFERENCE MANUAL 223

~D

~R

~P

EE

”1

L

2
Decimal. An arg,(a which should be an integer, is printed in decimal radix. ~D will never
put a decimal point after the number—__ Lot Jont e eadiodo resd b ar fewst!

~mincolD uses a column width of mincol; spaces are inscrted on the left if the number
requires fewer than mincol columns for its digits and sign. If the number doesn’t fit in
mincol columns, additional columns are used as nceded.

~mincol , padcharD uses padchar as the pad character instead of space.
If arg is not an integer, it is printed in ~A format and decimal base.

The @ modifier causcs the number’s sign to be printed always; the default is only to print it
if the number is negative. The : modifier causes commas to be printed between groups of
three digits; the third prefix parameter may be used to change the character used as the
comma. Thus the most general form of ~D is ~mincol , padchar , commacharD.

Octal. This is just like ~D but prints in octal radix instcad of decimal. The full form is
therefore ~mincol , padchar , commacharQ.

Radix. ~nR prints arg in radix n. The modificr flags and any remaining paramecters are
used as for the ~D dircctive. Indeed, ~D is the same as ~10R. The full form here is
therefore ~radix , mincol , padchar , commacharR.

If no arguments arc given to ~R, then an entircly different interpretation is given. The
argument should be an integer; supposc it is 4.

o ~R prints arg as a cardinal English number: "fou re.
o ~: R prints arg as an ordinal English number: "fourth".
o ~@R prints arg as a Roman numeral: "IV",

o ~: @R prints arg as an old Roman numeral: "ITIT"

Plural. 1f arg is not 1, alower-case "'s" is printed; if arg is 1, nothing is printed.
777 Query: Should this work for floating-point numbers also?’:l U* ’ "‘WW i (1 b ose gauﬂ*k—)w‘ £ avA
2. 5P ' "
. \};\,-ijont s4¢ v {0 J“J?\\” uy
~1P does the same thing, after doing a ~:* to back up onc argument; that is,itprintsa ' 4 4 3

lower-case "'s" if the /ast argument was not 1. This is useful after printing a number using ~ ¢«r<

~D.

~@P prints "y"

backs up first.
(format () "~D tr~:@P/~D win~:P" 7 1) => "7 tries/1 win"
(format () "~D tr~:@P/~D win~:P" 1 0) => "1 try/0 wins"
(format () "~D tr~:@P/~D win~:P" 1 3) => "1 try/3 wins"

if the argument is 1, or "ies" if it is not. ~:@P docs the same thing, but

Floating-point.

SPICE LISP REFERENCE MANUAL 224

~%

777 Query: Is this really what we want? N d-%

arg is printed in floating point. ~nF rounds arg to a precision of # digits. The minimum
value of 7 is 2, since a decimal point is always printed. If the magnitude of arg is too large
or too small, it is printed in exponential notation. If argisnota number, it is printed in ~A
format. Note that the prefix parameter n is not mincol; it is the number of digits of
precision desired. Examples:

(format () "~2F" 5) => "5.0"
(format () "~4F" 5) => "5.0"
(format () "~4F" 1.6) => "1,5"
(format () "~4F" 3.14159265) => "3.142"
(format () "~3F" 1le10) => "1.0e10"
Exponential. This ome s ,.&m'l“"—fmj (‘M&M.

777 Query: Is this the right thing Study PL/T, FORTRAN.

arg is printed in exponential notation. This is identical to ~F, inctuding the use of a prefix
parameter to specify the number of digits, except that the number is always printed with a
trailing exponent, even if it is within a reasonable range.

Character. The next arg should be a character; it is printed according to the modifier flags.

~C prints the character in an implementation-dependent abbreviated format. This format
should be culturally compatible with the host environment.

Implenentation note: In Lisp Machine Lisp, the following format is used. If the character has any

)(f* J control bits set, and the output stream can represent the necessary Greek characters, then the control

bits are output as alpha (a) for Control, beta (8) for Meta, lambda (») for Hyper, and pi (r) for
Ho. Super. If the character itself is alpha, beta, lambda, pi, or equivalence-sign (#), then it is preceded by
an cquivalence-sign 1o quote il. Aficr all this, the base character itself is output.
Implementations which do not have Greek characters may well choose to represent control
characters by initials and hyphens thus: ActvA Ly, STRONGLT Hefg T
c-A C-M-$ H-S-C-# FrLusy THe STveip 64cEK LeTs
This has the advantage of staying within the standard character set. Ano Do €x AcTi~1 wiiAT
Yov SV66EST 11ERE!
~:C spells out the names of the control bits, and represents non-printing characters by
their names: “Control-Meta-F", "Control-Return”, "Space”. This is a "pretty”
format for printing characters.

~:@C prints what ~: C would, and then if the character requires unusual shift keys on the
keyboard to type it, this fact is mentioned: "Contro1-8 (Top-F }". This is the format
used for tetling the user about a key he is expected to type, for instance in prompt
messages. “The precise output may depend not only on the implementation, but on the
particular 170 devices in use.

~@C prints the character in a way that the LIS reader can understand, using "#\" syntax.

Rationale: In some impleinentations the ~S directive would accomplish this also, but the ~C
directive is compatible with Lisp dialects which do not have a character data type.

Outputs a newline (sce terpri (page 220)). ~n’% outputs n newlines. No arg is used.
Simply putting a newline in the control string would work, but ~% is often uscd because it

SPICE LISP REFERENCE MANUAL 225

~<{newline>

makes the control string look nicer in the middle of a LISP program.

Unless the stream knows that it is already at th§: beginning of a line, this outputs a newline
(see fresh-11ine (page 220)). ~n& does a :fresh-1ine operation and then outputs
n— I newlines. '

Outputs a page separator character, if possible. ~n} does this n times. With a : modifier,
if the output stream supports the clear-screen (page CLEAR-SCREEN-
FUN) operation this directive clears the screen; otherwise it outputs page separator
character(s) as if no : modifier were present. | is vertical bar, not capital L.

Tilde. Outputs a tilde. ~n~ outputs » tildes.

Tilde immediately followed by a newline ignores the newline and any following non-
newline whitespace. With a :, the newline is ignored but the whitespace is left in place.
With an @, the newline is left in place but the whitespace is ignored. This directive is
typically used when a format control string is too long to fit nicely into one line of the
program:
(defun pet-rock-warning (rock friend amount)
(unless (equalp rock friend)

(format t "~&Warning! Your pet rock ~A just ~
bit your friend ~A,~% and ~
~:[he~;she~] is suing you for $~DI"

rock friend (femalep friend) amount)))
(pet-rock-warning "Fred" “"Susan" 500) prints:
Warning: Your pet rock Fred just bit your friend Susan,
and she is suing you for $500!

FORTRAN x format. Outputs a space. ~nX outputs n spaces.

Tabulate. Spaces over to a given column. ~colnum, colincT will output sufficient spaces to
move the cursor to column colmum. If the cursor is already past column colnum, it will
output spaces to move it to column colnum-+ k*colinc, for the smallest non-negative integer
k possible. colnum and colinc default to 1.

~:Tis like ~T, but colnum and colinc are in units of pixels, not characters; this makes sense
only for streams which can set the cursor position in pixel units.

If for some reason the current column position cannot be determined or set, any ~T
operation will simply output two spaces. When format is creating a string, ~T will work,
assuming that the first character in the string is at the left margin (column 0).

The next arg is ignored. ~n* ignores the next » arguments.

~1* “ignores backwards"; that is, it backs up in the list of arguments so that the argument
last processed will be processed again, ~n: * backs up n arguments.

When within a ~{ construct (scc below), the ignoring (in cither direction) is rclative to the

SPICE LISP REFERENCE MANUAL 226

list of arguments being processed by the iteration.
'This is a "relative goto™; for an "absolute goto”, sec ~G.

Goto. Goes to the nth arg, where 0 means the first one. Directives after a ~G will take
arguments in sequence beginning with the one gone to.

When within a ~{ construct, the “goto" is relative to the list of arguments being processed
by the iteration.

This is an "absolute goto"; for a "relative goto”, see ~*.

The format directives after this point are much more complicated than the foregoing; they constitute
"control structures” which can perform counditional selection, iteration, justification, and non-local exits.
Used with restraint, they can perform powerful tasks. Used with wild abandon, they can produce unrcadable
and unmaintainable spaghetti with goulash on top.

~[strO~; stri~

w3 Strn~

Conditional expression. This is a set of control strings, called clauses, one of which is
chosen and used. The clauses are scparated by ~; and the construct is terminated by ~].
For example,

"~[Siamese~;Manx~;Persian~;Tortoise-Shell~] Cat"

The argth clause is selected, where the first clause is number 0. If a prefix parameter is
given (as ~n[), then the parameter is used instead of an argument (this is uscful only if the
parameter is specified by "#"). If arg is out of range then no clause is selected. After the
selected alternative has been processed, the control string continues after the ~].

[5110~ ; Strl~; .~ st~ 5 default~] has a default case. If the last "~;" used to separate
clauses is instead "~: ; ", then the last clause is an "clse” clause, which is performed if no
other clause is selected. For example:

"~[Siamese~;Manx~;Persian~;Tortoise-Shell~: ;Alley~] Cat"

~[~1ag00, tagbl , . . . ; strO~taglQ, tagll, ... ;strl. . .~] allows the clauses to have
explicit tags. The parameters to each ~; arc numeric fags for the clause which follows it.
That clause is processed which has a tag matching the argument. If
~al ,a2,bl,b2, . ..:; (note the colon) is used, then the following clause is tagged not by
single values but by ranges of values a/ through a2 (inclusive), b/ through b2, etc. ~:;
with no parameters may be used at the end to denote a default clause. For example:
"e[~'+,'-,"'*, " /;0perator ~'A,'Z,"a, 'z:;letter ~
~'0,'9:;digit ~:;other ~]"

~:{ false~; true~7 selects the false control string if arg is (), and selects the frue control
string otherwise. ;

X
~@[true~T] tests the argument. Ifit is not (), then the argument is not uscd up, but is the
next one to he processed, and the one clause e is processed. 1f the arg /), then the
argument is used up, and the clause is not processed, The clause therefore should normally

SPICE LISP REFIERENCE MANUAL 227

use exactly one (non-()) argument. For example:

(setq prinlevel () prinlength 5)
(format () "~B[PRINLEVEL=~D~]~@[PRINLENGTH=~D~]"
prinlevel prinlength)
=> " PRINLENGTH=5"

The combination of ~[and # is useful, for example, for dealing with English conventions
for printing lists:
(setq foo "Items:~#[none~; ~S~; ~S§ and ~
~S~t ~@{~#[~1; and~] ~S~1,~}~].")
(format () foo)
=> "Items: none."
(format () foo 'foo)
=> "Items: F00."
(format () foo 'foo 'bar)
=> "Items: FOO and BAR."
(format () foo 'foo 'bar 'baz)
=> "Items: FOO, BAR, and BAZ."
(format () foo 'foo 'bar 'baz 'quux)
=> "Items: FOO, BAR, BAZ, and QUUX."

Separates clauses in ~[and ~< constructions. It is undefined elsewhere.
Terminates a ~[. It is undefined clsewhere.

Iteration. This is an iteration construct. The argument should be a list, which is used as a
set of arguments as if for a recursive call to format. The string str is used repeatedly as
the control string. Each iteration can absorb as many clements of the list as it likes as
arguments; if szruses up two arguments by itself, then two clements of the list will get used
up each time around the loop. If before any iteration step the list is empty, then the
iteration is terminated. Also, if a prefix parameter # is given, then therc will be at most 2
repetitions of processing of str. Finally, the ~t dircctive can be used to terminate the
iteration prematurely.

Here are some simple examples:

(format () "The winners are:~{ ~8~}." '(fred harry jill))
=> "The winners are: FRED HARRY JILL."

(format () "Pairs:~{ <~5,~8>~}." '(a 1 b 2 ¢ 3))
=> "Pairs: <A,1> <B,2> <C,3>."

~:{sir~} is similar, but the argument should be a list of sublists. At cach repetition step
one sublist-is used as the set of arguments for processing str; on the next repetition a new
sublist is used, whether or not all of the last sublist had been processed. Example:

(format () "Pairs:~:{ <~§,~S>~}."

"((a 1) (b 2) (c 3)))
=> "Pairs: <A,1> <B,2> <C,3>."

~@{ st~} is similar to ~{str~}, but instcad of using one argument which is a list, all the
remaining arguments are used as the list of arguments for the iteration. Eample:

SPICE LISP REFERENCE MANUAL 228

~}

(format () "Pairs:~@{ <~§,~S>~}."
‘al'b2 'c3)
=> "Pairs: <A,1> <B,2> <C,3>."

~:@{str~} combines the features of ~:{str~} and ~@{str~}. All the remaining
arguments are used, and cach one must be a list. On each iteration the next argument is
used as a list of arguments to str. Example:

(format () "Pairs:~:@{ <~S,~S>~}."

"(a 1) '(b2) "(c3))
=» "Pairs: <A,1> <B,2> <C,3>."

Terminating the repetition construct with ~:} instead of ~} forces str to be processed at
least once even if the initial list of arguments is null (however, it will not override an
explicit prefix parameter of zero).

If str is empty, then an argument is used as sir. It must be a string, and precedes any
arguments processed by the iteration. As an example, the following are cquivalent:

(funcall* #'format stream string args)
(format stream "~1{~:}" string args)

This will use string as a formatting string. The ~1{ says it will be processed at most
once, and the ~: } says it will be processed at least once. Therefore it is processed exactly
once, using args as the arguments.

As another (rather sophisticated) example, the format function itsclf uses format-
error (a routine internal to the format package) to signal error messages, which in turn
uses ferror, which uses format recursively. Now format-error takes a string and
arguments, just like format, but also prints the controt string to format (which at this
point is available in the variable ct1-stri ng) and a little arrow showing where in the
processing of the control string the-error occurred. The variable ct1-1index points one
character after the place of the error.

(defun format-error (string &rest args)
(ferror () "~1{~:}~%~VT4~%~3X/"~A/"~%"
string args (+ ctl-index 3) cti-string))

This first processes the given string and arguments using ~1{~:}, then gocs to a new line,
tabs a variable amount for printing the down-arrow, and prints the control string between
double-quotes. The effect is something like this:

(format t "The item is a ~[Foo~;Bar~;Loser~]." 'quux)
>>ERROR: The argument to the FORMAT "~[" command
must be a number.
1

"The item is a ~[Foo~;Bar~;Loser~]."

Terminates a ~{. 1tis undefined elsewhere.

~mincol , colinc , minpad, padchar{str~>

Justification. "This justifics the text produced by processing sr within a ficld at least mincol
columns wide. sir may be divided up into segments with ~;, in which case the spacing is

SPICE LISP REFERENCE MANUAL 229

evenly divided between the text segments.

With no modifiers, the leftmost text segment is left justified in the field, and the rightmost
text segment right justified; if there is only one, as a special case, it is right justified. The :
modifier causes spacing to be introduced before the first text segment; the @ modifier
causes spacing to be added after the last. ‘The minpad parameter (default 0) is the
minimum number of padding characters to be output between cach segment. The padding
character is specified by padchar, which defaults to the space character. 1f the total width
needed to satisfy these constraints is greater than mincol, then the width used is
mincol+ k*colinc for the smallest possible non-negative integer value k; colinc defaults to
1, and mincol defaults to 0.

Examples:
(format () "~10<foo~;bar~>") => "foo bar"
(format () "~10:<foo~;bar~>") = " foo bar"
(format () "~10:8<foo~;bar~>") => " foo bar "
(format () "~10<foobar~>") = " foobar"
(format () "~10:<{foobar~>") = " foobar"
(format () "~10@<foobar~>") => "foobar "
(format () "~10:@<foobar~>") => " foobar "
(format () "$~10,,,'*<~3F~>" 2.59023) => ngeesess) . 69"

Note that str may include format directives. All the clauses in sir arc processed in order;
it is the resulting picces of text that are justified. The last example illustrates how the ~<
directive can be combined with the ~F directive to provide more advanced control over the
formatting of numbers.

777 Query: Unfortunatly, the ~F command as defined above isn’t really flexible enough?

The ~* directive may be used to terminate processing of the clauses prematurely, in which
casc only the completely processed clauses are justified.

If the first clause of a ~< is terminated with ~: ; instead of ~;, then it is used in a special
way. All of the clauses are processed (subject to ~1, of course), but the first one is not used
in performing the spacing and padding. When the padded result has been determined,
then if it will fit on the current line of output, it is output, and the text for the first clause is
discarded. If, however, the padded text will not fit on the current line, then the text
segment for the first clause is output before the padded text. The first clause ought to
contain a newline (such as a ~% directive). The first clause is always processed, and so any
arguments it refers to will be used; the decision is whether to use the resulting segment of
text, not whether to process the first clause. If the ~: ; has a prefix parameter n, then the
padded text must fit on the current line with n character positions to spare to avoid
outpuiting the first clause’s text. For example, the control string

"y ~{~l~%y s~ ~Sed~t,) MR

can be used to print a list of items separated by commas, without breaking items over line
boundarics, and beginning cach line with “;; ". 'The prefix parameter 1 in ~1:;
accounts for the width of the comma which will follow the justified item if it is not the last
element in the list, or the period if it is. If ~: 3 has a second prefix parameter, then it is
used as the width of the line, thus overriding the natural fine width of the output stream.

SPICE LISP REFERENCE MANUAL ' 230

To make the preceding example use a line width of 50, one would write
%y ~f~<~%is ~1,501; ~S~d~t,) %"

If the second argument is not specified, then format uses the line width of the output
stream. If this cannot be determined (for example, when producing a string resuit), then
format uses 72 as the line length.

~> Terminates a ~<. It is undefined elsewhere.

~t Up and out. This is an escape construct. If there arc no more arguments remaining to be
processed, then the immediately enclosing ~{ or ~< construct is terminated. If there is no
such enclosing construct, then the entire formatting operation is terminated. In the ~<
case, the formatting is performed, but no more segments are processed before doing the
justification. The ~* should appear only at the beginning of a ~¢ clause, because it aborts
the entire clause it appears in (as well as all following clauses). ~* may appear anywhere in
a ~{ construct.

(setq donestr "Done.~t ~D warning~:P.~* ~D error~:P.")
(format () donestr) => "Done.”

(format () donestr 3) => "Done. 3 warnings."

(format () donestr 1 5) => "Done. 1 warning. 5 errors."

If a prefix parameter is given, then termination occurs if the parameter is zero. (Hence ~*
is equivalent to ~#1.) If two parameters are given, termination occurs if they are equal. If
three are given, termination occurs if the second is between the other two in ascending
order. OF course, this is useless if all the prefix parameters are constants; at least one of
them should be a # or a V parameter.

If ~+ is used within a ~: { construct, then it mercly terminates the current iteration step
(because in the standard case it tests for remaining arguments of the current step only); the
next iteration step commences immediately. To terminate the entire itcration process, use
~: 1,

Here are some examples of the use of ~* within a ~< construct.
(format () "~15<~S~;~t~S~j~taSaD" ! foo)

=> " Foo"
(format () "~15<~S~;~t~S~;~t~S~>" 'fo0 'bar)
=> "FOO BAR"

(format () "~15{~S~;~t~Sm~;~teS~D" 'foo 'bar 'baz)
=> "FOO BAR BAZ"

Compatibility note: The ~Q directive and user-defined directives have been omilted here, as well as control ists (as opposed
10 strings), which are rumored to be changing in meaning. T [?‘[' s ‘NAN { ok L\ e bean -ﬁ {v{ Lua/

Ia../t a LTH‘ LA !ﬁ—y‘lj A?bw'/'
Ao vn 1Es cor wiflef (wkz; Lor

Py -- Can be ﬂlfeﬂ"{o be‘,ram}
v_vl«?olﬂ exec»‘(’ o \ﬁrm:\‘\' l“f\':«q ~d arg.f/‘lw
‘The following functions provide a convenient and consistent interface for asking questions of the user. oot /)

Quiostions are printed and the answers are read using the stream query-io, which normally is synonymous S*fvfﬂj -

‘]o;}"\) f
Lor mat.
(A'\'\ xﬁern
Py M" s,
!
LA~ ,;Q{yw'f' K,
=t :vé e st

et (oo k.:',

19.5. Querying the User

SPICE LISP REFERENCE MANUAL 231

with terminal-io butcan be rebound to another stream for special applications.

We describe first two simple functions for asking yes-or-no questions, and then the general function
fquery on which all querying is built.

y-or-n-p &optional message stream [Function)
This is for asking the user a question whose answer is either "yes" or "no”. It types out message (if
supplied and not ()), reads a one-character answer, cchoes it as "Yes. " or "No.", and returns t if
the answer was "yes" or {) if the answer was "no”. The characters which mean "yes" are Y, y, T,
t, and space. The characters which mean "no” are N, n, and rubout. Ifany other character (? in
particular) is typed, the function will demand a "Y or N" answer.

Implementation note; Some implementations may choose to allow other characters to be valid answers, such as
"hand-up” and "hand-down" in Lisp Machine Lisp.

If the message argument is supplicd, it will be printed on a fresh line (see fresh-1ine (page
220)). Otherwisc it is assumed that a message has already been printed. If you want a question
mark and/or a space at the cnd of the message, you must put it there yoursclf; y-or-n-p will not
add it. stream defaults to the value of the global variable query - i o (page 232).

As an example, consider this call:

(y-or-n-p "Cannot establish connection. Retry? ")
Cannot establish connection. Retry?
- + Input cursor is now here.
The sccond line above was printed by y-or-n-p. The third line docs not show, but is shown here
to indicate where the cursor is when input is expected. If the user type Y, then the interaction looks
like this:

(y-or-n-p "Cannot establish connection. Retry? ")
Cannot establish connection. Retry? Yes.

Now the cursor is just after "Yes.".

y-or-n-p should only be used for questions which the user knows are coming. If the user is
unlikely to anticipate the ﬁuestion, or if the consequences of the answer might be grave and
irrcparable, then y-or-n-p should not be used, because the user might type ahead a T, Y, N,
space, or rubout, and thercby accidentally answer the question. For such questions as “Shall I
delete all of your files?”, it is better to use yes-or-no-p (below).

yes-or-no-p &optional message stream [Function]
This, like y-or-n-p, is for asking the user a question whose answer is either "Yes" or "No". It
types out message (if supplicd and not ()), beeps, and reads in a line from the keyboard. If the line
is the string "Yes", it returns t. 1f the line is "No", it rcturns (). (Case is ignored, as are leading
and trailing spaces and tabs.) If the input line is anything clse, yes-or-no-p béeps and demands
a "yes" or "no” answer. If a 7 is typed at any point, a message will be printed demanding a "yes”
or "no" answer.

SPICE LISP REFERENCE MANUAL 232

If the message argument is supplied, it will be printed on a fresh line (see fresh-Tine (page
220)). Otherwise the caller is assumed to have printed the message already. If you wanta question
mark and/or a space at the end of the message, you must put it there yourself; yes-or-no-p will
not add it. stream defaults to the value of the global variable query-io (page 232).

To allow the user to answer a yes-or-no question with a single character, use y-or-n-p. yes-
or-no-p should be used for unanticipated or momentous questions; this is why it beeps and why
it requires several keystrokes to answer it.

The preceding two functions allow the asking of simple yes-or-no questions. More complicated questions
can be asked using Tquery, described below. fquery is quite general and complicated. It is best to write
some interface function for cach particular kind of question, using fquery in the definition. In this way the
complicated arguments to fquery need be written in only a few places.

fquery options format-string &rest format-args [Function}
This asks a question, printed by executing
(format query-io format-string format-args. . .)
and teturns the answer. fquery takes care of checking for valid answers, reprinting the question
when the user clears the screen, giving help, and so forth.

options is a list of alternating keywords and values, used to select among a variety of features. Most
callers will have a constant list to pass as options (rather than consing up a different list cach time).

:type - The expected form of the answer. The types currently defined are: ¢
sinch A single character, as read by inch (page 217). This“"the
default.
ttyi This is similar to inch; the answer is a single character, but

the result is an integer, as if read by ty i (page 217).

:readline A string, typed as a line terminated by a carriage return, as
read by read11ine (page 217).

:choices Defines the allowed answers. The allowed forms of choices are complicated and
explained below. The default is the same set of choices as for y-or-n-p (page
231), if : type is :inch or : ty1, or the same as for yes-or-no-p, if : type

is :readline. Note that the :type and :choices options should be N ie)J

~ consistent with cach other. s

Compatibility note: In Lisp Machine Lisp, : choices always defaults to y-or-n-p 0‘(" o~
! choices, even if : type is : read1ine. This is clearly bogus.

:Tist-choices
If t, the allowed choices are listed (in parentheses) after the question. The

default is t; supplying () causes the choices not to be listed unless the user tries
to give an answer which is not one of the allowed choices.

:help-function

SPICE LISP REFERENCE MANUAL 233

‘\OWQ/? A, Specifies a function to be called if the user types "?". The default help-function

o”" .J)‘p simply lists the available choices. Specifying () disables special treatment of "?

A ’@"S " Specifying a function of three arguments (the stream, the value of the

)e?r - :choices option, and the type-function) allows smarter help processing. The

] v type-function is a function selected by the : type option; it does inch, tyi, or

" read1 ine, but with additional processing. Often it can be ignored by the help-
¥ function.

:fresh-1ine Ift, query-io is advanced to a fresh line before asking the question. If (),
the question is printed wherever the cursor was left by previous typeout. The
defaultis t. '

:beep If t, fquery beeps to attract the user’s attention to the question. The default is
(). which means not to beep unless the user tries to give an answer which is not
one of the allowed choices.

:clear-input
If t, fquery throws away type-ahead before reading the user’s response to the
question, Use this for unexpected questions. The default is (), which means
not to throw away typcahcad unless the user tries to give an answer which is not
one of the allowed choices. In that case, type-ahead is discarded since the user
probably wasn’t expecting the question.

The argument to the : choices option is a list each of whose elements is a choice. The cdr of a
choice is a list of the user inputs which correspond to that choice. These should be characters if the
:type is : inch, integers corresponding to characters for :tyi, or strings for : readline. The
car of a choice is either an atom which fquery should return if the user answers with that choice
(in which case nothing is cchoed), or a list whose first element is such an atom and whose second
element is the string to be echoed when the user selects the choice.

Compalibility note: In Lisp Machine Lisp the choice-value is specified to be a symbol. To allow () to be Ol< C
n o . wé
returned, or even integers, atoms (non-lists) are specified here. PNkﬂuj . ,_7 o~ any

Tn most cases a : type of : read1ine would use the first format, since the user’s input has already
been cchoed, and :inch or :tyi would use the second format, since the input has not been
echoed and furthermore is a single character, which would not be mnemonic to see on the display.

As an example, here is a definition of the function y-or-n-p in terms of fquery:

(defun y-or-n-p (&optional message (stream query-io))
(1et ((query-io stream))
(fquery '(:fresh-line ()
:1list-choices ()
:choices
(((t "Yes.") #\y #\t #\Space)
((() "No.") #\n #Rubout)))
(if message "~&~a" "~*")
message)))

As another example, here is a definition of yes-or-no-p:

SPICE LISP REFERENCE MANUAL 234

(defun y-or~-n-p (&optional message (stream query-io))
(1et ({(query-io stream))
{fquery '(:fresh-1ine ()
:Tist-choices ()
theep t
:type :readline
:choices {(t "Yes") (() "No"})))
(if message "~&a" "~*")
message)))
As a third example, this function allows more complex choices. One may type P, Q, R, or D, in
which respective cases the symbol proceed, quit, retry, or debug is returned. Space or
rubout may be typed instcad of P or Q, respectively. — (arn T TRA 9

(defun request-i/o-error-action &optional message (stream query
(let ((query-io stream))
(fquery '(:fresh-1ine ()
:list-choices t

:choices ~L\mm e
(((proceed "Proceed") #\p #\Space)
((quit "Quit") #\g #\Rubout)
({retry "Retry") #\r)
((debug "Debug") #\d)))
(if message "~&~a" "~*")
message)))

19.6. Streams

19.6.1. Standard Streams

There are several global variables whose values are streams used by many functions in the LISP system.
These variables and their uses are listed here. By convention, variables which are expected to hold a stream
capable of input have names ending with "-input", and similarly "-output" for output strcams. Those
expected to hold a bidirectional strecam have names ending with "~io0".

standard-input [Variable]
In the normal LISP top-level loop, input is read from standard-input (that is, whatever stream
is the value of the giobal variable standard-input). Many input functions, including read
(page 215) and inch (page 217), take a stream argument which defaults to standard-input.

standard-output [Variable]
In the normal LISP top-icvel loop, output is sent to standard-output (that is, whatever stream
is the value of the global variable standard-output). Many output functions, including print
(page 219) and ouch (page 220), take a strcam argument which defaults to standard-output.

R
11
||
W\

SPICE LISP REFERENCE MANUAL 235

error-output ' [Variable]
The value of error-output is a stream to which error messages should be sent. Normally this is
the same as standard-output, but standard-output might be bound to a file and error-
output left going to the terminal or a separate file of error messages.

query-io [Variable]
The value of query-io is a stream which should be used when asking questions of the user. The
question should be output to this stream, and the answer read from it. When the normal inputto a
program may be coming from a file, questions such as "Do you really want to delete all of the files
in your directory??” should be sent directly to the user, and the answer should come from the user,
not from the data file. query-io is used by such functions as yes-or-no-p (page 231).

terminal-io [Variable]
The value of te rminal-io is ordinarily the stream which connects to the user’s console.

trace-output [Variable]
The value of trace-output is the strcam on which the trace function prints its output.

standard-input, standard-output, error-output, trace-output, and query-io are
initially bound to synonym strecams which pass all operations on to the strecam which is the value of
terminal-io. (Sec make-synonym-stream (page 232).) Thus any operations performed on those
streams will go to the terminal,

No user program should ever change the value of terminal-io. A program which wants (for example)
to divert output to a file should do so by binding the value of standard-output; that way error messages
sent to error-output can still get to the user by going through terminal-io, which is usually what is
desired.

19.6.2. Creating New Streams

Perhaps the most important constructs for creating new strcams are those which open files; see with-
open-file (page 237) and open (page 239).

make-synonym-stream symbol [Function]
make-synonym-stream creates and returns a "synonym stream”. Any operations on the new
stream will be performed on the strcam which is then the value of the dynamic variable named by
the symbol. If the value of the variable should change or be bound, then the synonym stream will
operate on the new stream.

777 Query: §n Lisp Machinc Lisp this is called make-syn-stream. The documentor found it necessary to
cxplain that "syn” meant "synonym"; it.cverfainly isn't obvious. The abbreviation “syn” could be mistaken for
any number of other things. such as “synchronous™ or “syntactic” or “synthetic” ... Here this confusion is

climinated ok . G(“;"‘ Aqmqﬁ *“1‘94,\}‘[[? b bl Lo Mulhes

SPICE LISP REFERENCE MANUAL 236

make-broadcast-stream &rest streams [Function)
Returns a stream which only works in the output direction. Any output sent to this stream will be
sent to all of the streams given. The set of operations which may be performed on the new stream
is the intersection of those for the given streams. The results returned by a stream operation are the
values returned by the last strcam in streams; the results of performing the operation on all
preceding streams arc discarded.

make-concatenated-stream &rest streams [Function]
Returns a stream which only works in the input direction. Input is taken from the first of the
streams until it reaches end-of-file; then that stream is discarded, and input is taken from the next
of the streams, and so on. If no arguments are given, the result is a strcam with no content; any
input attempt will result in end-of-file.

make~io-stream input-siream oulpul-siream [Function)
Returns a bidirectional stream which gets its input from input-stream and sends its output to
oulput-siream.

make-echo-stream input-stream oulput-siream [Function]
Returns a bidirectional strcam which gets its input from input-stream and sends its output to
output-stream. In addition, all input taken from input-stream is echoed to ouiput-stream.

make-string-input-stream string { W‘"‘Y‘“\ ‘-{'N?L [Function]
Returns an input stream which will supply the characters of siring in order and then signal end-of-
file.

make-string-output-stream &optional line-length {Function]
Returns an output stream which will accumulate all output given it for the benefit of the function
get-output~-stream-string.

get-output-stream-string siring-output-siream [Function]
Given a stream produced by make-string-output-stream, this returns a string containing
all the characters output to the stream so far. The stream is then reset; thus each call to get-
output-stream-string gets only the characters since the last such call (or the creation of the
stream, if no such previous call has been made).

19.6.3. Operations on Streams

S

SPICE LISP REFERENCE MANUAL 237

streamp object [Function]
streamp returns t if its argument is a stream, and otherwise returns ().
(streamp x) <=> (typep x 'stream)

input-stream-p {Function)
This predicate returns t if its argument (a stream) can handle input operations, and otherwise
returns ().

output-stream-p [Function]
This predicate returns t if its argument (a strcam) can handle output operations, and otherwise
returns ().

close stream &optional abort-flag [Function}

The stream is closed. No further input/output operations may be performed on it. However,
certain inquiry operations may still be performed, and it is permissible to close an already-closed
stream.

If abort-flag is not () (it defaults to ()}). it indicates an abnormal termination of the use of the
stream. An attempt is made to clean up any side effects of having created the stream in the first
place. For example, if the stream performs output to a file, the file is deleted and any previously
existing file is not superseded.

charpos, 1inenum, and so on?

19.7. File System Interface o somewhnt orbide

JOM“‘:* L o~ [An;u-yC corR,

. This
19.7.1. File Names The

There are two representations of the name of a file as LISP objects: namestrings and namelists. A
namestring is a string (or symbol, whose print-name is used) which is the name of the file in an
implementation-dependent and file-system-dependent syntax. This representation is intended for use by
people. A namelist is a list in a special format which is less readable, but more portable and suitable for
manipulation by programs.

The model of the file system embodicd by namelists is a three-level hierarchy of host, directory, and file.
This model is crude, but adapts itself reasonably well to most contemporary operating systems. Generally
speaking, a host is thought of as some single computer, a directory as a single lowest-level group of related
files within that host, and a file as the smallest named unit of data within the file system. Each of the three
levels may be specificd by a compound name consisting of a non-empty list of components, cach of which
may be a string, symbol, or integer: a string is uscd as a component name; a symbol is used as a special
keyword; and an integer is used for its decimal representation, with optional minus sign and no lcading zeros.

SPICE LISP REFERENCE MANUAL 238

Symbols which have special meaning are:

7
. This indicates an unspecified component. or (DI

:newest As a version number, this indicates the most recent version (for input), or one greater than
the most recent version {for output creation).

:0ldest As a version number, this indicates the least recent version.

The general and canonical form of a namelist is:
((host-name . directory-name) . file-name)

The host-name may be unambiguously elided, in which case all its components aie taken to be *
(unspecified); similarly, the list (host-name . directory-name) may be unambiguously elided, in which case

all components of both ost-name and directory-name are taken to be ®. g xPLAw THAT 1 Tos ywambicooss
i v LixA¥ THSE g Ale Avwrs LISTS vAeLeAS
Conlom My Pe MENEA LISTS, IT Toek 77
As an example, suppose that host CMUC is a TOPS-20 system. Then a file name on that system might be: t77¢¢ whiy

X v inaS T A6AnzZe TH
PS:<SLISP.MANUAL>LISTS.MSS.43 MH y ﬁi ba S]
and the corresponding namelist might be: ¢ 1 /?:_(A Rt he 1\\'\5(fé . cﬂug\“‘
(((CMUC) PS SLISP MANUAL) LISTS MSS 43) g L2 n
Simitarly, this partially specified file name: s v a\“"“’f VS

(2
CSLISP.MANUALYLISTS.* S o e
\
miglht be rendered as a namclist in this way:
({((*) * SLISP MANUAL) LISTS * *)

Most functions which accept nameclists also accept namestrings, and will, in cffect, first parse the
namestring to produce a namelist. If the namestring is malformed and thercfore cannot be parsed, an error
will be signaled.

namelist filespec [Function]
The filespec argument may be a namclist, a namestring, or a strcam which is or was open to a file.
The name represented by filespec is returned as a namelist in canonical form.

If filespec is a stream, the name returned represents the name used to open the file, which may not
be the actual name of the file (see t ruename (page 236)).

namestring filespec | [Function}
file-namestring filespec [Function]
directory-namestring filespec [Function]
host-namestring filespec [Function]
enough-namestring filespec defaults {Function)

The filespec argument may be a namelist, a namestring, or a stream which is or was open to a file.
The name represented by filespee is returned as a namelist in canonical form,

e

SPICE LISP REFERENCE MANUAL 239

If filespec is a stream, the name returned represents the name used to open the file, which may not
be the actual name of the file (see t ruename (page 236)).

namestring returns the full form of the filespec as a string. f1ile-namestring returns a string
representing just the file-name portion of the filespec; the result of directory-namestring
represents just the directory-name portion; and host-namestring returns a string for just the
host-name portion. Note that the full namestring cannot necessarily be constructed simply by
concatenating the three shorter strings in some order.

enough-namestring takes another argument, defaults, which also should be a namelist,
namestring, or file-stream. It returns an abbreviated namestring which is just sufficient to identify
the file named by filespec when considered relative to the defaults. That is,

(mergef (enough-namestring filespec defaults) deﬁzulls)
<{=> (namehst Silespec)

parse-namestring string &optional break-characters start end [Function]
This is the primitive namestring parser. It takes a string argument, and parses a file name within it

r in the range delimited by start and end (which arc integer indices into string, defaulting to the
X h\ /| beginning and cnd of the string). Parsing is terminated upon reaching the end of the specified
p“ bo“f “J ‘3 substring or upon reaching a character in break-characters, which may be a string or a list of

A { | . . i]

\P\PJ) * ?0&6 | 1 characters; this defaults to an empty set of characters
W /\ ,,,:5 Two values arc returned by parse~namestring. If the parsing is successful, then the first value
\’,\\L’ ’f'\ & is a namelist for the parsed file name, and otherwise the first value is {). The second value is an
qé N integer, the index into string one beyond the tast character processed. This will be equal to end if

processing was terminated by hitting the end of the substring; it will be the index of a break
character if such was the reason for termination; it will be the index of an illegal character if that
was what caused processing to (unsuccessfully) tcrminate.

Parsing an empty string always succeeds, producing a namelist with all components unspecified.

truename file-stream [Function)
truename returns a namelist for the actual name of the file which is or was associated with the
stream file-stream. This may differ from the name used to open the file because of such file-system
features as links, searching for oldest or newest versions, ¢tc.

mergef filespeci filespec? . [Function]
Each argument must be a namelist, namestring, or stream which is or was open to a file. A namelist
is constructed and returned whose components are taken from filespec!, except that components
unspecified ("*") in filespec! are taken from filespec2. Components not specified by cither
argument remain unspecified in the result.

SPICE LISP REFERENCE MANUAL 240

file-name-type filespec [Function]
file-name-version filespec [Function]

The argument must be a namelist, namestring, or stream which is or was open to a file. file-
name-type returns the type part of the filespec; fi1e-name-version returns the version part

of the filespec.
merge-file-name-type {pe filespec [Function}
merge-file-name-version version filespec [Function)

A namelist is returned equivalent to filespec except that the first argument specifies the type or
version part; a first argument of * forces the appropriate part to be unspecified. The first argument
must be a symbol, string, or integer; the filespec argument must be a namelist, namestring, or
streamn which is or was open to a file.

19.7.2. Opening and Closing Files

When a file is opened, a stream object is constructed which is the file system’s ambassador to the LISP
environment; operations on the stream are reflected by operations on the file in the file system. The act of
closing the file (actually, the stream) ends the association; the transaction with the file system is terminated,
and input/output may no longer be performed on the stream. The stream function c10se (page 237) may be
used to close a file; the functions described below may be used to open them.

with-open-file bindspec &rest body [Special form]
(with-open-file (stream filename options) . body) evaluates the forms of body (an
implicit progn) with the variable stream bound to a stream which reads or writes the filc named by
the value of filename. The options should evaluate to a keyword or list of keywords.

When control leaves the body, either normally or abnormally (such as by use of throw (page 64)),
the file is closed. If a new output file is being written, and control leaves abnormally, the file is
aborted and it is, so far as possible, as if it had never been opened. Because with-open-file
always closes the file, even when an error exit is taken, it is preferred over open for most
applications.

filename is the name of the file to be opened; it can be a namelist or namestring. If an error occurs
(such as "File Not Found"), the user is asked to supply an alternate pathname, unless this is
overridden by options. At that point the user can quit or enter the error handler if the error was not
due to a misspelled pathname after all.

options is cither a single keyword or a (possibly empty) list of options, where an option is either a
keyword or a list of a keyword and arguments to that keyword. (If a keyword with an argument is
to be used, then oprions must be a list of options and not a single option.)

Compatibility note: Lisp Machine Lisp uses a format where the argument 1o a keyword simply follows the
keyword in the list. This is not compatible with other keyword formats, for example that of defstruct. It
only makes a difference here in the case of :byte-size. It scems worthwhile to minimize the number of

keyword formats in COMMON 1isp, (e e arc ,v\mv /cc,j WVQ-' -f;l!{.al/ -ﬂh‘,‘h\nr
Vntorkin el Ly La et e kP Wway m e Ly Mechine,
i":"“fd\ “ cace of oPg,, The »€«™ Lo iy 5 s hat fgsd CLIS
Smet [t Joeclt fake «n 4 ,4;,,- '{'\"Y’(7 /40' 7‘1}4]p&y wards as V;vw’é_) ey
V}V"’(‘"f J:) I jov'(l‘{ cake p./‘-\q'f' C!,Pw

dves, Lt Aol ~ule iy of “ lnpa .

sA1 A
— ir of
TR Fiee

(80n name i RUAD I BYESRE L)

SPICE LISP REFERENCE MANUAL 241

Valid keywords are:

¢in or :input or :read

Open file for input. This is the default.

:out or :output or :write or :print

rappend

Open file for output; a new file is to be created.

Open an existing file for output, arranging that output to the resulting stream
should be appended to the previous contents of the file.
Compaltibility note: Not all file systems can support this operation. An implementation

may choose to simulate it by copying the oid file into a new one and then continuing to
write the new one.

Compatibility note: The Lisp Machine Lisp implementation appears not to support this,
but MacLisp does in the open function.

:read-alter Open a file in read-alter mode; the result is a stream which can perform both

input and output on a random-access file.
Compatibility note: Not all file systems can support this operation.

:character or :ascii

The unit of transaction is a character; the file is a text file. This is the defauit.

:binary or :fixnum

:byte-size

secho

:probe

tnoerror

The unit of transaction is a small unsigned integer. The :byte-size option
may be used to specify the number of binary bits in the transaction unit. This
precise way in which this interacts with the file system is implementation-
dependent.

This keyword takes an argument, an integer specifying the number of bits per
transaction unit; this is used in conjunction with the :binary option. If the
:binary keyword is specificd but the :byte-size keyword is not, then an
implementation-dependent "natural” byte size is used.

This keyword requires an argument, an output stream, and is valid only when
opening a strcam for input. The result stream will echo everything read from it

onto the output stream, T T necessany * it echosy &~ 5 le.
S0 /'mmy dilfeod places? TS an sty 2777 0
This keyword specifies that the file is not being opened to do 1/0, but only to

Ay
find out information about it. A stream is returncd, but it cannot handle 1/0
transactions; it is as if the streamn were immcdiately closed after opening it.
:probe implics : noerror (sce below).
277 Query: In Lisp Machine Lisp, : probe also implics : f ixnum. Why?? - A_{‘\ 3 M"E
h&d} k/lrm* (L ,,‘.;:Co ressane refvras, 6"+ f‘f‘) acc4d® lot A7

I+ . : o ©
If the file cannot be opened, then instcad of returning a stream, a string chrn-
containing the error message is returned. If :noerror is not specified, then an
error is signalled using the error message, and the user is asked to supply a
different filename.

SPICE LISP REFERENCE MANUAL 242

open filename &optional options {Function)
Returns a stream which is connected to the file specified by filename. The options argument is as
for with-open-file (page 240). If an error occurs, such as "File Not Found”, the user is asked
to supply an alternate pathname, unless the : noerror (page 241) option is used, in which case the
error message is returned as a string.

When the caller is finished with the strcam, it should close the file by using the c1ose (page
237) function. The with-open-file (page 240) special form does this automatically, and so is
preferred for most purposes. open should be used only when the control structure of the program
necessitates opening and closing of a file in some way more complex than provided by with-
open-file. It is suggested that any program which uscs open directly should use the special
form unwind-protect {(page 63) to close the file if an abnormal exit occurs.

Implementation note: While with-open-file tries to automatically close the stream on exit from the construct, for
robustness it is helpful if the garbage collector can detect discarded streams and automatically close them.

,]-l\n'}' -’\n—y/\CS - (O+ fe aﬁu,o)a)“M-r aL..)?L

19.7.3. Renaming, Deleting, and Other Operations = v Mot < 7.

renamef file new-name &optional errorp [Function]
file can be a filename or a stream which is open to a file. The specificd file is renamed to new-name
(a filename). If errorp is not () (the default is t), then if a file-system error occurs it will be
signalled as a LISP error. If error-pis () and an error occurs, the error message will be returned as
a string. If no error occurs, renamef returns t.

deletef file &optional error-p [Function]
file can be a filename or a stream which is open to a file. The specified file is deleted. If error-pis
not () (the default is t), then if a file-system error occurs it will be signalled as a LisP error. If

error-pis () and an error occurs, the error message will be returned as a string. If no error occurs,
deletef returns t.

~

probef filename ' [Function) A
Returns () if there is no file named filename, and otherwise returns a filename) which is the true
name of the file (which may be different from filename because of file links, version numbers, or
other artifacts of thp file system).

| /faslp file &optional implementation [Function)

i‘“ /:‘\ file can be a filename or a stream which is open to a file. This predicate returns t if the file is a
fasload (compiled) file in implementation format, and otherwise returns (). The argument
implementation defaults to the implementation in which the call is executed.

’ﬁ/\h\g & a LQQ(V maA*Qle‘T’-

SPICE LISP REFERENCE MANUAL 243

f" file-creation-date file [Function]
)1 file can be a filename or a stream which is open to a file. This returns the creation date of the file as

an integer in universal time format, or () if this cannot be determined.

[-" file-author file ' [Function]
, file can be a filename or a stream which is open to a file. This returns the name of the author of the

file as a string, or () if this cannot be determined.

What gbot Ao ofier Ly afliles £ a Kle you bt wast Yo askdor?

{] filepos file-stream &optional position [Function]
f1ilepos returns or sets the current position within a random-access file.

(filepos file-stream) returns a non-negative integer indicating the current position within the
file-stream, or () if this cannot be determined. Normally, the position is zero when the stream is
first created. For a :character (page 241) stream, the position is in units of characters; for a
:binary (page 241) file, the position is in bytes.

(filepos file-stream position) sets the position within file-stream to be position. The position
may be an integer, or () for the beginning of the stream, or t for the cnd of the stream. If the
integer is too large, an crror occurs (the 1engthf (page 240) function returns the length beyond
which filepos may not access). With two arguments, filepos returns t if it actually
performed the operation, or () if it could not.

— Y PO EILE-LENETH T v Do v vt HUTW(F

l / lengthf file-stream [Function)
file-stream must be a stream which is open to a file. The length of the file is returned as a non-
negative integer, or () if the length cannot be determined. For a :character (page 241) stream,
the position is in units of characters; for a :binary (page 241X filg, the position is in bytes.

St
19.7.4. Loading Files

To load a file is to read through the file, evaluating cach form in it. Programs are typically stored in files;
the expressions in the file are mostly special forms such as defun (page DEFUN-FUN), defmacro (page
DEFMACRO-FUN), and defvar (page 21) which define the functions and variables of the program,

Loading a compiled ("fasload™) file is similar, except that the file does not contain text, but rather pre-
digested expressions created by the compiler which can be loaded more quickly.

load filename &optional package nonexistent-ok do-not-sel-default [Function]
This function loads the file named by filename into the Lisp environment. If the file is a fasload
file, it calls fas1o0ad: otherwisc it calls readf ile. The argument package can be uscd to specify
the package into which to load the file; it can be cither a package or the name of a package as a
string or a symbol. If package is not specified, Toad prints a message saying what package the file
is being loaded into. If nonexistent-ok is specified and not (), Toad just returns () if the file

\Ja o(/\ao;!f N ru;ln‘}L

SPICE LISP REFERENCE MANUAL 244

cannot be opened. Ifthe file is successfully loaded, 1oad always returns t. { oS
" (‘Y‘F Frerpag 15 snX»E, Ooesa'r Mg AY sane FiLe (Wff‘)

Toad maintains a default filename, used to default missing components of the filename argument;
thus (Toad) will load the samg file/previously loaded. Normally 1o0ad updates the filename

defaults from filename, but if dont-set-default is specified and not () this is suppressed.

A o AR If filename, after defaulting, is still missing components in such a way that it does not specify either

S?G'C. ~of a fasload or LISP source file, then 1oad first trics to open a fasload file, and failing that tries to load
PN G’fw 2. a LIsP source file, in cach case trying to load the most recent version.
p (23
readfile &optional filename package no-msg-p [Function)

readfile is the version of 1oad (page 243) for text files. [t reads and evaluates each expression
in the file, discarding the results. As with 1oad, package can specify what package to read the file
into. Unless no-msg-p is specified and not (), a message is printed indicating what file is being
read into what package. The defaulting of filename is the same as with toad.

fastoad filename &optional package no-msg-p [Function)
fasload is the version of 1oad for fastoad (compiled) files. It defines functions and performs
other actions as dirccted by the specifications inserted in the file by the compiler; the result is
roughly the same as performing readfile on the original source file, but faster, and with
functions being in compiled form. As with 1oad, package can specify what package to read the file
into. Unless no-misg-p is specified and not (), a message is printed indicating what [ile is being
loaded into what package. The defaulting of filename is the same as with 1oad.

2?7 Query: There are several problems with the above specifications, which are essentially as in Lisp Machine Lisp.

o The arguments for the three functions are not compatible; there is not even a subset relationship.
‘(l'-c ~ \.c.,,wﬂ Ay LA
o The file name defauiting has been criticized as being "very MIT."; not all culturcs prefer to maintain default file

names in this way. Make 1€ & ~ode.

® There ought to be an option to print the results of each evaluation (and in the case of fas1oad, the name of each
function as it is loaded). Another flavor of this option is to print a one-character blip every so often to signal
progress. This is useful for debugging, for cxample 1o determine where in a load file an error is occurring,

make Hle Lt Flaver & Layuord,
Ne stecand F(au-v J’Wﬁ?mma'f'a(g u/,e[,aﬂ!

These problems should be fixed.

19.7.5. Accessing Directories

(missizg) Jebolls dbott mesrazes «nd g~ Ll
wihin ‘14? qfcllq WWFZ{J&\ wﬁq L—‘/r“"‘/‘f’-
Y00 f‘wf/‘j Le o gpzc?}{ ra~iable it

P J.Q,’GWM m-’. ’.(: lccymnll S

?\g{ SR L ason 76\« *(*«FjO'F \L:‘

mele Files Le S2.qu_nce S

SPICE LISP REFERENCE MANUAL 245

(ot of fe shE & i

/'V\q(,‘/\.:y-a —(4‘)@ WL\TZL -
Chapter 20 A S A

Agmq)eﬁ MyQ - ard »—ei@!?}m
Errors T ok sy lemve of
)n(_'n;f rnalt L“Q w;/L an ><
NCQr nO~ We Ao U“&p“"J'(""
Tssves el nvww,
COMMON Lisp handles errors through a system of conditions. One may cstablish handlers which gain
. control which conditions occur, and signal a condition when an error actually occurs. When the system or a
/. user function detects an error it signals an appropriatcly named condition and some handler established for
that condition will deal with it.
The condition mechanism is completely general and could be used for purposes other than “error”
handling. There are some functions supplied in COMMON LisP which make use of the condition mechanism
"~ to handle errors in a convenient way.

20.1. Signalling Conditions

Condition handlers are associated with conditions (sce next section). Every condition is essentially a name,

which is a symbol or (). When an unusual situation occurs, such as an error, a condition is signalled. The

* system (cssentially) searches up the stack of nested function invocations looking for a handler establised to
handle that condition. The handler is a function which gets called to deal with the condition.

signal condition-name &rest args ° [Function]

This searches through all currently established condition handlers, perhaps twice, starting with the
most recent. If it finds one which was established to handle () or condition-name, then it calls that
handler with a first argument of condition-nante and with args as the rest of the arguments. If the
first value returned by the handler is (), signal will continue scarching for another handler;

¥ otherwise it will return the first two values returned by the handler. If condition-riame is not T, and
if no handler.was willing to handle the condition, then a second pass of the established condition
handlers is made, searching for any handler cstablished to handle T. If one is found that is used in
the same manner as in the first pass scarch. If there is still no willing handler found then signal
returns ().

‘Thus a handler set up to handic condition () will handle a/f conditions which are not handled by a more
\/ recently established handler. This is intended to make it casy to setup a debugger which intercepts all errors
and handles them itself. Note that such a handler doesn’t have to actually handle all conditions; it will be

SPICE LISP REFERENCE MANUAL 246

offered the chance to do so but can return {) to refuse any condition which it doesn’t wish to handle.

Conditions established to handle condition t will handle any condition for which a more specific willing
handler can’t be found. This makes it easy to set up, at any time, a handler which which will be given a chance
to handle all conditions that no one ¢lse wants.

20.2. Establishing Handlers

Condition handlers are established through the condition~-bind or condition-setq special forms.
These have behaviors somewhat analagous to 1et and se tq. They make use of the ordinary variable binding
/ mechanism, so that if a condition-bind is thrown through the handlers get disestablished. It also means
that in multiple stack group implementations of COMMON LIsP the handlers arc established only in the
current stack group.

condition-bind bindings &rest body [Special form]
This is used to establish handlers for conditions then perform the body in that established handler
environment.
For example:

' For example:

(condition-bind ((condl handl)
(cond2 hand2)

iéo.ndm handm))
SJorml .
Jorm2

Jormn)
Each condj is cither the name of a condition or a list of names of conditions. Each handj is a form
which is evaluated to produce a handler function. No guarantee is made on the order of evaluation
of these forms, but the conditions are established in sequential order, so that cond! will be looked
at first. The expressions formj arc then evaluated in order; the values of all but the last are
discarded (that is, the body of the cond it ion-bind form is an implicit prog n). The value of the

condition-bind form is the value of formn (if the body is empty, () is the value). The
established conditions become disestablished when the condition~bind form is exited.

As an example consider:

For example:

(condition-bind ((:wrong-type-argument 'some-wta-handler)
((silliness-1 silliness-2) silliness-handler))
(format msgfiles '"Yodlie-eh-eh-hol") '

(+ 23 (1))
This sets up the function some-wta-handler to handle the :wrong-type-argument
condition. The value of the symbot silliness-handler is sct up to handle both the

SPICE LISP REFERENCE MANUAL 247

silliness-1 and silliness-2 conditions. With these handlers set up, it outputs a message
and then causes a :worng-type-argument error by trying to add 23 to (), which is not a
number, The condition handler some-wta-hand1er will be given a chance to handle the error,

“condition—setq &rest specs [Special form)
The condition-setq form is used to establish condition handlers as a side effect of some
operation -- for instance loading a file which contains condition handlers and a condition-setq
form to establish them.

It takes the form:
For example:

(condition-setq cond! handl
cond? hand?

c"o.n.dn handn)

Each condj is cither the name of a condition or a list of names of conditions. Each handj is a form
which is cvaluated to produce a handler function. No guarantee is made on the order of evaluation
of these forms, but the conditions arc established in sequential order, so that cond! will be looked
at first. '

The conditions established by condition-setq remain established until cxccution is unwound
(either normally or by being thrown) past the most recent condition-bind. Multiple uses of
condition-setq causc the most recently established handler to be tried first when a condition is
signalled. For example, consider:

For example:
(condition-setq :wrong-type-argument 'default-wta-handler)
(+ 23 ()
{(condition-setq :worng-type-argument 'hairy-wta-handler)
(+ 105 ())

When the first :wrong-type-argument error is signalled (because of the attempt to add 23 to
{)) the function default-wta-handler will be given first chance at handling the error. When
the second error is signalled (because of the attempt to add 105 to ()) the function hairy-wta-
handler will be given first chance. If it declines (by returning () as its first result) then
default-wta-handier will be given achance.

20.3. Error Handlers

When signal (page 245) invokes a condition handler it passes it the condition-name along with whatever

/ other arguments were handed to signal. Condition handlers set up to handle errors can safely assume

certain things about those arguments for all errors signalled by the system or signalled by user code via the
functions ferror (page 247) and cerror (page 247).

/ An error handler can expect to be invoked as

SPICE LiSP REFERENCE MANUAL 248

For example:

(funcall* error-handler
condition-name
control-string
proceedable-flag
restartable-flag
Sfunction
params)
where params may vary in length. Handlers for particular condition names may expect certain parameters
to always be included in the params list. The parameters supplied by the system for certain standard
conditions are given in 7?%section-ref "standard condition names"???. The program siganalling the condition is

free to pass any extra parameters. All error handlers should therefore be written with &rest arguments.
The condition-name is the name of the condition signalled.

control-string should be a string which when given to format (page 221) as a control string, along with
params as additional arguments, produces some reasonable explanation of the error. It is up to the handling
function whether it makes use of that control string.

The third and fourth arguments are flags. If the proceedable-flag is non-() then the crror is said to be
proceedable. If the restartable-flag is non-() then the error is said to be restartable. The values of these flags
may be used by the signallers and handlers to pass more information than a single bit, It is up to the user how
these are used. For instance, a set of signallers and handlers may pass information concerning the values
expected from the handler when an error is proceeded.

Sfunction is the name of the function which initiated the signalling of the error, or () if the signaller can’t
determine it.

An error handler can do some processing and then make one of four respones to the error (assuming the
error was signalled with ferror (page 247) or cerror (page 247)). It can return () to decline handling the
erTor, it can proceed, it can restart or it can throw,

Throwing simply consists of using the function throw (page 64) to some tag outside the scope of the error.

Proceeding and Restarting are achieved by returning from the ertor handler with multiple values. The first
value should be one of the following:

:return This means to proceed the error. If the error was signalled by cerror and the error was
proceedable then the second value returned with : return is returned as the value of
cerror. If the error was not proceedable (always the case for crrors signalled by ferror,
then the system forces a break (page 249).

:error-restart
This means to restart the crror. If the error was signalled by cerror and the crror was
restartable then the second value returned with terror-restart is thrown to the catch

\>
QA

SPICE LISP REFERENCE MANUAL 249

tag error-restart. Ifthe error was not restartable (always the case for errors signalled
by ferror, then the system forces a break (page 249). An error may also be simply
restarted from the handler by throwing directly from there to a catch tag of error-
restart, but that is not as bullet proof if the error wasn’t in fact restartable.

No other values are legal as the first values returned by error handlers. For errors signalled by ferror or
cerror illegal values will force a break.

20.4. Signalling Errors

LISP programs can signal errors by using one of the functions ferror (for fatal error) or cerror (for
continuable error).

\ ferror

S\’ b

cerror

condition-name control-string &rest params [Function)

ferror signals the error condition condtition-name. The associated error message is obtainable by
calling format (page 221) on control-string and params. The error is neither proceedable nor
restartable. Function ferror never returns. It can be thrown through however. A usual COMMON
LIspP environment will have some sort of error handler established for condition name t. Thus the
user can get at least minima! error handling with ferror using a null condition-name knowing that
the error will at least be signalled to the user console.

proceedable-flag restartable-flag condition-name control-string &rest params [Function]

cerror is similar to ferror (sec above) except for proceedable-flag and restartable-flag. These
are passed through to the cventual error handler, If cerror is called with a non-() proceedable-
flag the caller should be prepared to accept the returned value of cerror and use it to retry the
operation that failed. If cerror is passed a non-() restartable-flag then there should be a catch
foraf error-restart somewhere above the caller.

error-restart &rest body = [Macro}

bé’ .

error-restart can be used to denote a seciotn of a program that can be restarted if certain
errors occure during its execution. The form of an error~restart is:

For example:

(error-restart
Jorml
Jorm2

Sformn)

The cxpressions formj are evaluated in order; the valucs of all but the last are discarded (that is, the
body of the error-restart form is an implicit progn). The valuc of the error-restart
form is the value of formn (if the body is empty, () is the value). If a restartbale crror occurs during
the evaluation of one of the formiy's, and the handler responds by forcing a a restart, then the forms,
beginning with form! will be re-evaluated in order. The only way a restartable error can occur is if

SPICE LISP REFFERENCE MANUAL 250

cerror is called with a restartable-flag which is non-(').

error-restart is implemented as a macro which expands into:

For example:
(prog () v

toop (*catch 'error-restart ,r‘)\
(return (progn forml ; ,,0"“)
: form2 ‘79.
8066 kogS
formn))) -
(go 100p)) : »/

(s

check-arg var-name predicate description /
type-name [Macro]
The check-arg macro is used to check arguments to make sure they are valid, signal a :wrong-~
type-argument condition if they are not, and use the value returned by the handler to replace
the invalid value.

var-name is the name of the variable whose value is being checked to be of the correct type. If the
error is proceeded this variable will be setg’ed to a replacement value. predicate is a test for
whether the variable is of the correct type. It can either be a symbol whosc function definition takes
one argument and returns non-{) if the type is correct, or it can be a non-atomic form which is
cvaluated to check the type - usually such a form would contain a reference to the variable var-
name. description is a string which expresses predicate in English. It is used in error messages. {ype-
name gets passed to the :wrong-type-argument handler as the first required parameter of that
class of error handlers (sce section 77? <<<section ref "standard condition nanes'>>>).

Thus check-arg has what consistituges a valid argument specified to it in three ways. predicate is
executable, description is human understandable and type-name is program understandable.

check-arg uses predicate to determine whether the value of the variable is of the correct type. [f
it is not a ;wrong-type-argument condition is signalled with four parameters - fype-name, the
bad value, the symbol var-name and description. If the error is procceded, the variable is set to the
value returned and check-arg repeats the process. Only the first of these two parameters are
defined for :wrong-type-argument handlers, and so theyt should not depend on the meanin
of more than these two.

Consider for cxample:

For example:

(check-arg foo
(and (fixnump foo) (< foo 0.))
"a negative fixnum"
negative-fixnum)
If foo is not of the right type an error will be signalied and a :wrong-type-argument which
makes usc of the control-string and parameters passed to it will print the message (at least):

SPICE LISP REFERENCE MANUAL 251

Argument foo was 33, which is not a negative fixnum.

20.5. Break-points

Often error handlers want to pass control to the user’s terminal. The user can then examine variable
bindings and respond to the error, or perhaps just start some new computation. Control is passed by using the
special form break.

break fag &optional conditional-form [Special form]
This enters a breakpoint loop, which is similar to a LISP top level loop. (break fag) will always
enter the loop; (break tag conditional-form) will evaluate conditional-form and only enter the
break loop if it returns non-(). If the break loop is entered, break prints out
For cxample: '
;bkpt lag '
and then enters a loop reading, evaluating, and printing forms. After reading a form break checks
for the following special cases. If the symbol <altmode>p is typed, break return (). If the the
(! symbol <altmode>r is typed, break throws to a catch tag error-restart. If the symbol
ﬂ)’('] <altmode>q is typed, break throws back to the LISP top level. If (return form) is typed,
b break cvaluates form and returns the result. In other respects a break loop appears very Qirhia]r to
a top level loop.

20.6. Standard Condition Names

Some condition names are used by the COMMON LISP system itself. They arc listed below along with the
arguments they expect and the conventions followed in use of these conditions. All error condition handlers
expect at least four arugments: condition-name, control-string, proceedbale-flag, and restartable-flag. In
addition some condition names expect particular values for the fifth and subsequent arguments. These are
included in the list below. It is always permissible to supply even more arguments than those required.

*** this list is not yet complete ***

:wrong-type-argument : :
Requires type-name and value, where the first is a symbol indicating what type of value is
required, and the second is the bad value supplied to the fnction signalling the crror. If the
error is proceeded, the value returned by the handler (that is, the second value returned;
the first would be : return) should be a new value for the argument to be used instead of
the one which was of the wrong type.

:inconsistent-arguments
Requires [fist-of-inconsistent-argument-values. This condition is sigralled when the
arguments to a function are inconsistent with cach other, but the fault does not lic with any
particular one of them, If the error is proceeded, the value returned by the handler should

SPICE LISP REFERENCE MANUAL

be returned by the function whose arguments were inconsistent.

q ’
o

252

SPICE LISP REFERENCE MANUAL 253

Chapter 21
The Compiler

PO

The compiler is a progre{rn wirictt makes code run faster, by translating programs into an implementation-
dependent form (subrs) whieh can be executed more efficiently by the computer. Most of the time you can
write programs without worrying about the compiler; compiling a file of code should produce an equivalent
but more cfficient program. When doing more esoteric things, one may need to think carefully about what
happens at "compile time" and what happens at "load time”. Then the diffcrence between the syntaxes "#."
and "#," becomes important, and the eval-when (page LEVAL-WHEN-FUN) construct becomes
particularly useful. T

Most declarations (sare not used by the COMMON LISP interpreter; they may be used to give advice
to the compiler. The compiler may attempt to check your advice and warn you if it is inconsistent.

Unlike most other Lisp dialects, COMMON LISP recognizes special declarations in interpreted code as
well as compiled code. This potential source of incompatibility between interpreted and compiled code is
thereby eliminated in COMMON LISP. T agsvnae 71,4. real Macval et wait untl

chapter 20 o Lint at lecedl Seoring,

The internal workings of a compiler will of course be highly implementation-dependent. The following
functions provide a standard interface to the compiler, however.

compilte name &optional definition [Function]
If definition is supplied, it should be a lambda-expression, the interpreted function to be compiled.
If it is not supplied, then name should be a symbol with an interpreted-code definition; that
definition is compiled.

The definition is compiled and a subr object produced. If nane is a symbol, then the subr object is
., installed as the global function definition of the symbol and the symbol is rcturned. If name is
J ,[(),then the subr object itself is returned.

For cxample:
(defun foo ...) => foo ; A function definition.
(compilte 'foo) => foo ; Compile it,

: Now foo runs faster.
(compile () '(lambda (a b ¢) (- (* b b) (* 4 a c))))
=> a compiled function of three arguments which computes b -4

SPICE LISP REFERENCE MANUAL 254

|] comfile input-filespec &optional output-filespec [Function}

: Each argument should be a valid file name specifier for with-open-file (page 240). The file

should be a LISP source file; its contents are compiled and written as a fas1oad (page 244) file to
output-filespec. The output-filespec defaults in a manner appropriate to the implementation’s file

system conventions. (‘,5'7 :

?\‘JS\A .\"f N

¢ name-or-definition ' [Function) \
The argument should be a symbol with an interpreted-code function definition or a lambda- (-' ,;f‘ S
expression. The definition is compiled and the resulting code printed in a symbolic format. This is ‘}Q’ :
primarily useful for debugging the compiler, but also often of use to the novice who wishes to (_ V
understand the workings of compiled code. \e-
Implementation note: Implementors are encouraged to make the output readable, preferably with helpful i &\ 4$
comments. ?&\5
disassemble name-orsubr [Function) O;:\\h j
The argument should be a symbol with a compiled-code function definition or a subr object. The \»’r
compiled code is "reverse-assembled” and printed out in a symbolic format. This is primarily 6

useful for debugging the compiler, but also often of use to the novice who wishes to understand the
workings of compiled code.

Implementation note: Implementors are encouraged to make the output readable, preferably with helpful
comments.

more to come

SPICE LISP REFERENCE MANUAL 255

Chapter 22
STORAG

SPICE LISP REFERENCE MANUAL 256

SPICE LISP REFERENCE MANUAL 257

Chapter 23
LOWLEY

SPICE LISP REFERENCE MANUAL ' 258

SPICE LISP REFERENCE MANUAL

Index

Index of Concepts

" macro character 203
macro characters 204
* macro character 202
(macro character 202
) macro character 202
, macro character 204
; macro character 203

Implementation note 9, 11, 22, 30, 46, 73, 86, 91,
95, 97, 150, 153, 167, 224, 231, 242, 254

Incompatihility 9, 17, 26, 27, 29, 31, 36, 37, 39,
40, 45, 48, 51, 53, 55, 61, 62, 64, 76, 78, 79,
82, 83, 84, 85, 87, 89, 108, 109, 112, 125,
126, 131, 146, 147, 151, 156, 157, 176, 177,
178, 179, 180, 185, 186, 189, 192, 193, 194,
200, 206, 209, 210, 212, 214, 215, 222, 230,
232, 233, 240, 241

Query 11, 14, 16, 21, 42, 59, 60, 64, 65, 72, 86,
115, 129, 156, 169, 176, 179, 189, 192, 195,
209, 217, 218, 223, 224, 229, 235, 241, 244

Rationale 24, 71, 81, 108, 124, 183, 188, 215, 224

Alist 141

Access functions 184
Alterant macros 187
Amay 19

predicate 29
Association list 49, 141

as a substitution table 132
compared to hash table 146
Atom

predicate 27

Bignum 9

Bit

predicate 29

Bit vector

infinite 91

inleger represention 91
Rit-vector

predicate 29

Byte M

Byte specifiers 94

Car 16,123
Catch 6l

Cdr 16,123
Character

predicate 29
Character syntax 204
Cleanup handler 63
Closure 30
Comments 203
Conditional

and 32

or 33

during read 210
Cons 16,123
predicate 27

Constructor macro 184

Constructor macros 186

Control structure 35

Data type
predicates 26

Declarations 71

Defstruct 183

Denominator 12
Displaced array 176
Dotted fist 123

Empty list
predicate 26
Environment structure

Fill pointer 179
Fixnum 9
Tloating-point number
predicate 28
Flow of control 35

Formatted output 221

Generat vector 17

llash table 146,150 °
Host 237

Implicit progn 35, 41, 42,43, 44, 45,48, 59

Index offset 176
Indicator 75

Indirect array 176

Integer 8
predicate 27
fteraton 47

Keywords

for defstruct slot-descriptions
for condition 23]

for declars 72

35

10

187

259

SPICE LISP REFERENCE MANUAL

for defstruct 188

for error 248

for fquery 232

for make-array 175

for nametlist 238

for Parm{Text) 189,232
for with-open-file 241

List 16,123
predicate 27
Seealso dotted list
List syntax 202
Logical operators
ontand () 32

Macro character 201
Mapping 52
Merging
file names 239
sorted sequences 120
Multiple values 58
returned by read-from-string 219

Namelist 237
Namestring 237
Naming conventions 133
predicates 23
Non-local exit 61
Number 81
floating-point 10
predicate 27
Numerator 12

Packagecell 75

Parsing 201

Plist 75

Position

ofabyte 94

Predicate 23

Printname 75,78, 151
Print-name

coercion tostring 155
Printed representation 199
Printer 199

Property 75

Property list 75

compared to association list 75
compared to hash table 146
Pscudo-predicate 23,99

Querying theuser 230
Quote character 202

Rank 19

Reader 199, 200
Readiable 211
Record structure 183

Set
list representation 132

Sets

" bit-vector representation
infinite 91

integer representation 91
Shared array 176
Sharp-sigh macro characters
Size

ofabyte 94

Sorting - 118

String 151

predicate 29

String syntax 203
Structure 183
Substitution 131
Symbol 7,75
coercion to astring 151
coercion to string 155
predicate 26
Symbol syntax 203

Throw 61
Tree 17

Unwind protection 63
Unwinding astack 64

Vector

infinite 91

integer represention 91
Yes-or-no functions 230

*macro character 204

| macro character 203

9"

204

260

SPICE LISP REFERENCE MANUAL ' 261

SPICE LISP REFERENCE MANUAL

262

Index of Variables

A

B
base 219

C
char-bits-1imit 97, 101
char-code-1imit 97, 101
char-control-bit 104
char-font-1imit 13, 14,91, 101
char-hyper-bit 104
char-meta-bit 104
char-super-bit 104

b
double-pi 87

E
error-output 235

F
features 210

G

H ' (\k\p

0

P
pi 87
prinlength 209, 219
prinlevel 192,210,219

Q
query-io 231,232,235

R
read-defauit-float-format 1
read-preserve-delimiters 215, 219

readtabte 211,211

S
sample-variable)
short-pt 87
si:*gensym-counter 80
si:*gensym-prefix 80
single-pi 87
standard-input 214,234
standard-output 219,221,234

T
terminal-io 214,219,235
trace-output 235

U

\J

SPICE LISP REFERENCE MANUAL 263

SPICE LISP REFERENCE MANUAL

264

Index of Keywords

A

:alterant

for defstruct 186,190
;append

for with-open-file 241
array

for type optionto defstruct 189
:array-leader

for type optionto defstruct 189
:ascii

for with-open-file 241

B
‘beep
for fquery 233
binary
for with-open-file 241, 243
:byte-size
for with~open-file 241

C

:callable-accessors

for defstruct 193
icharacter

for with-open-fite 241,243
:choices

for fquery 232
iclear-input

for fquery 233
:conc-name

for defstruct /86, 188, 197
:constructor .

for defstruct 186,190, 193

D
:displaced-index-offset
for make-array 176

:displaced-to
for make-array 175

E
:echo

for with-open-file 241
error-restart

for error 248
:gval-when

for defstruct 193

F
fixnum
fer type optionto defstruct 189
for with-open-file 241
:fresh-Tine
for fquery 233
ftype

for declare 72

G

H

:help~function

for fquery 232

I

vin

for with-open-file 241

:inch

for type optionto fgquery 232

:include

for defstruct 190

:inconsistent-arguments

for condition 251

:initial

for make-array 175

initial-offset

for defstruct 193

:inline

for declare 73

tinput

for with-open-file 241

tinteger

for type optionto defstruct 189

:invisible

for defstruct slot-descriptions 188
J
K

L

:leader-tength

for make-array 175

:leader-list

for make-array 175

Tist

for type optionto defstruct 189

:list-choices

for fquery 232

M

:make-array

for defstruct 189,191

N

:named

for defstruct 189, /90

newest

for namelist 238

hoerror

for with-open-file 241,242

motinline

SPICE LISP REFERENCE MANUAL 265

for declare 73 for type optionto defstruct 189
[¢) w
:0ldest write
for namelist 238 for with-open-file 241
out wrong-type-argument
for with-open-file 241 for condition 251
output
for with-open-file 241 X
P Y
:predicate
for defstruct 190 Z
print

for with-open-file 241
:print-function

for defstruct 192
iprinter

for defstruct 19
:probe

for with-open-file 241

Q

R

:read

for with-open-file 241
:read-alter

for with-open-file 241
:read-only .

fordefstruct slot-descriptions 188
:readline

for type optionto fquery 232
return

for error 248

S
:size-macro A
for defstruct 192
:size-variable
for defstruct 192
ispecial
for declare 41,72

T

ityi

for type optionto fquery 232
:type

for defstruct slot-descriptions 187

for declare 72

for defstruct 188, 79/

for fquery 232

for make-array 175

U
‘unnamed
for defstruct 189

A%
vector

SPICE LISP REFERENCE MANUAL 266 -

SPICE LISP REFERENCE MANUAL

267

Index of Functions, Macros, and Special Forms

* 84
*catch 60, 62
*throw 60, 64

throw 63
*unwind-stack o4
+ 84

1+
1-
<

]

vV v AN

A
abs
acons
add1
adj

adjoin

adjq

adjust-array-size

84
/ 85
85
85

8

101

83
30, 32, 81,82
83
83

84
76,142
85
135
135
135
179,180

alpbanumericp 929

alphap

and

append

apply
aref

array-
array-
array-

98
32, 44,61
126, 128, 138
39,60
19, 151,177
active-length
dimension 178
dimensions 178

177,111

bigp 27,82

bit 166
bit-and
bit-andct
bit-andc2
bit-cnt
bit-cnt-if

bit-cnt-if-

bit-concat
bit-count
bit-egv
bit-every
bit-fill
bit-ior

169
169
169

168
168

not 168
111,166
116,168

169

166
109, 166
169

bit-left-reducs 166

bit-length
bit-map

bit-maxpref
bit-maxprefix
bit-maxsuff

109, 166
112, 166
168
118,168
168

bit-maxsuffix 168

bit-merge

120,169

bit-mergecar 169
bit-mergesiot 169

bit-mismat

bit-mismat-
bit-mismatch

168
from-egnd 168
117,168

bit-mismatch-from-end 168

bit-nand
bit-nmerge

169
121,169

array-grow 180
array-has-leadsr-p 178
array-in-bounds-p 178
array-leader 178
array-leader-tength 178,178
array-length 109,177, 179
array-pop 180

array-push 179
array-push-extend 179
array-rank 177
array-reset-fill-pointar 179
array-type 177

bit-nmergecar 169
bit-nmergesiot 169
bit-nor 169

bit-not 170

bit-notany 166
bit-notevery 166
bit-nreverse 110, 166
bit-orcl 169

bit-orc2 169

bit-pos 167
bit-pos-from-end 167
btt-pos-from-end-if 167
bit-pos-from-end-if-not 167
bit-pos-if 167
bit-pos-if-not 167

arrayp 29

aset 108,177
ash 93

ass 143

ass-if 143
ass-if-not 143
assoc 143, 144, 145
assq 143

atan 87

atand 87

atom 27

bit-position 114, 167
bit-position-from-end 167

bit-reduce
bit-rem

111,166
167

bit-rem-from-end 167
bit-rem-from-end-if 167
bit-rem-from-end-if-not 167

bit-rem-if

bit-rem-if-

167
not 167

SPICE LISP REFERENCE MANUAL

bit-remove 113,167
bit-remove-from-end
bit-replace 110, 166
bit-reverse 110,166
bit-right-reduce 166
bit-scan 168

167

bit-scan-from-end 168

bit-scan-from-end-1if

168

bit-scan-from-end-if-not

bit-scan-if 168
bit-scan-if-not 168
bit-scan-over 115, 168
bit-scan-over-from-end
bit-search 118,169
bit-search-~from-end
bit-some 113, 166
bit-sort 120, 169
bit-sortcar 169
bit-sortslot 169
bit-srch 169

169

bit-srch-from-end 169

bit-vectorp 29
bit-xor 169

bitp 29, 82
bothcasep 98
boundp 36, 37,31
break 248, 249, 251
butlast 129

byte 94
byte-position 9 -
bytv-size 94

C
c...r 13
caaaar 123
caaadr 123
caaar 123

caadar 123
caaddr 123
caadr 123
caar 123
cadaar 123
cadadr 123
cadar 123
caddar 123
cadddr 123
caddr 123
cadr 123
car 123

caseq 46, 60
catch 55,60, 62
catchall 60, 63
cdaaar 123

cdaadr 123
cdaar i3
cdadar 123
cdaddr 123
cdadr 123
cdar 123
cddaar 123

168

168

cddadr 123
cddar 123
cdddar 123
cddddr 123
cdddr 123
cddr 123
cdr 123
ceil 89

cerror 247, 248, 149
char 98, 108, 151, 151
char-bits 97,101
char-code 97,101
char-downcasa 99,102, 154
char-~equal 32,100, 152
char-foat 97, 101, 206
char-greaterp 101
char-int 103, 217, 218
char-lessp 101, 153
char-name 103
char-upcase 99,102, 154
char< 100, 153
char= 30, 100, 100, 217
char> 100
character 102
characterp 29, 98
check-arg 250
cl 254
clear-input 218
clear-output 220
clear-screen 225
close 237, 240, 242
closurep 30
clrhash 149
clrhash-equal 149
cnt 115
cat-if 115
cnt-if-not 115
cntq 115
code-char 102, 102
comfile 254
compile 253
complex 13,25
complexp .74
concat 110, 138, 156, 163, 166, 171
cond 23,43, 45, 46,48, 60
condition

keywords 251
condition-bind 46
condition-setqg 247
cons 124, 161
consp 27
control 104
controlp 104
copy-readtable 211
copyalist 127
copybits 109, 166
copylist 109, 126
copyseg 9, 126, 156, 163, 166, 171
copystring 155
copysymbol 7

268

SPICE LISP REI'ERENCE MANUAL 269

copytrese 127,132 error-restart u9
copyvec 163 ‘ eval 60 :
copyvec® 109,111 gval-when 193, 208, 253
copyvector 109 evenp 82
cos 86 every 112, 139, 156, 163, 167, 171
cosd 86 exp 85
count 115, 140, 157, 164, 168, 172 expt 86
D F

declare 40, 48, 50, 54, 56,72 2 fasload 244, 254

keywords 72 faslp M2
defconst 22,71, 192 fboundp 37
defmacro 193,243 . fcetl 90
defprop 77 ferror 247, 248,249
daefsetf 184, 185 ffloor 90
defstruct 8, 19, 23, 119, 120, 188, 209 file-author 243

keywords 188 file-creation-date 43
defun 243 file-name-type 240
defvar 21,71, 243 filte-name-version 240
del 134 file-namestring 238
deol-if 134 filepos 243
del-if-not 134 fill 109, 138, 156, 163, 166, 171
delass 145 firstn 129
delass-if 145 fixnump 28, 82
delass-if-not 145 flet 37,38
delassoc 145 ’ float 88
delassq 145 floatp 28, 82
delate 130, 133,134, 142, 145 floor 58, 89, 90
deletef 242 fmakunbound 37,38
delq 134 force-output 220
delrass 146 forlist 53
delrass-if 146 forlists 52,54
delrass-if-not 146 format 155, 220, 221, 248, 249
delrassoc 146 forstring 53
delrassq 146 forstrings 54
deposit-field 95 forvector 53
digit-char 103 forvectors 54
digitp 99, 103 fquery 232
directory-namestring 238 keywords 232
disassemble 54 fresh-1ine 220, 225, 231
do 35, 38,47,47, 55,58, 61 freturn
do* 47,50 implemented by *unwind-stack 64
dolist 47,50, 53, 54 fround 9
dostring 51 fset 37,38
dotimes 51 fsymeval 37
double-float 88 ftrunc 90
double-floatp' 28, 82 funcall 39,60
dovector 51 funcall®* 40, 60
dpb 95 function 36

_ functionp 29
E funny-charp 100

elt 108, 138, 151, 162, 166, 170
enough-namestring 238 G
eq 30 ged 85

compared to equal 30 gensym 80
eql 25,30, 45, 55, 81, 100 gentemp 80
equal 22,31, 100, 124, 152, 199 get 76
equatlp 32,82 get-dispatch-macro-character 24
error get-macro-character 213

keywords 248 get-output-stream-string 236

SPICE LISP REFERENCE MANUAL

get-package 80
get-pname 78

getf 76

gethash 148
gethash-equal 149
getl 76
global-declare 7t
go 47,48, 50,57
graphicp 98, 99, 103
greaterp 30, 32
grindef 221

H
haipart 94
hautong 93
host-namestring 238
hyper 104
hyperp 104

I

if 23,33, 44, 44,45, 61
if-for-spice 210
tf-in-spice 210
inch 27, 218, 232,234
inch-no-hang 218
inchpeek 215,217
input-stream-p 237
int-char 163, 217
integerp 27,82
intern 30,79
intersect 136
intersection 136
intersectq 136
isqrt 86

J
K
L

labels 37,38
lambda 35,60

last 125
lastn 130
1db 94

1db-test 95

1diff 130, 134

left-reduce 111, 139, 156, 163, 167, 171
left-vreduce 163
left-vreduce® 171

Tength 109, 124, 156, 163, 166, 171
lengthf 243, 243

lessp 30,32

let 41,42, 43, 55, 36, 60

lot* 42, 56, 60

1ine-out 220

list 125

1ist® 126

Tist-cnt 140

list-cnt-if 140

list-cnt-if-not

140

list-cntq 140

Tist-concat

111, 126, 138

Tist-count 116,140

list-elt 108,

125,138

Tist-every 139
Tist-fill 109,138

Tist-left-reduc
Tist-length
Tist-map 112,
list-maxpref
Tist-maxprefix
Tist-maxprefq
list-maxsuff
Tist-maxsuffix
Tist-maxsuffq

e 139
109,124
139
140
118, 140
140
140
140
140

Tist-merge 120,141

1ist-mergecar
list-mergesiot
list-mismat

141
141
140

list-mismat-from-~end 140

Tist-mismatch
list-mismatch-f
Tist-mismatq
Tist-mismatq-fr
list-nmerge
Tist-nmergecar
Tist-nmergeslot
Tist-notany
list-notevery
tist-nreverse
1ist-pos 139
1ist-pos~-from-e
1ist-pos-from-e
list-pos-from-e
1ist-pos-if
list-pos-if-not
list-position
list-position-f

117, 140 5

rom-end 140
140
om-end 140
121,141
141
141

139

139

110, 127,127

nd 139
nd-if 139
nd-if-not 139
139
139
114, 134, 139
rom-end 139

Tist-posq 139

1ist-posq-from-
list-reduce

1ist-rem 139
list-rem-from-e
list-rem-from-e
list-rem-from-e

end 139
111,139

nd 139
nd-if 139
nd-if-not 139

Tist-rem-if 139

Tist-rem-if-not
1ist-remove

139
113,133,134,139

list-remove-from-end 139
Tist-remq 139

Vlist-remq-from-
list-replace
list-reverse
list-right-redu

end 139
110,138
110,127

ce 139

Tist~scan 140

Yist-scan-from
list-scan-from-
list-scan-from-
Vist-scan-if

end 140

end-if 140

end-if-not 140
| E{]

270

SPICE LISP REFERENCE MANUAL

Tist-scan-if-not 140
list-scan-over 115,140
list-scan-over-from-end 140
list-scang 140
list-scang-from-end 140
list-search 118,141
Tist-search-from-end 141
Tist-setelt 108,138
list-some 113,139
list-sort 120, 141
list-sortcar 141
list-sortslot 141
list-srch 141
1ist-srch-from-aend 141
1ist-srchq 141
Tist-srchq-from-end 141
list-to-string 130, 155
list-to-vector 130
1isten 218, 218

listp 27,123

1n 86

load 243, 244
tog 86
Togand n

logandcl 92
logandc2 92

logbitp 23
Togcount 93
Togeqv 91
legtor 91
Tegnand 92
lognor 922
lognot 92
Togorcl 92
logorc2 9
logtest 92
logxor 91

long-Ffloat 88
long-floatp 28,82
lowercasep 98, 102

M
make-array
keywords 175
make-bit-vector 162
make-broadcast-stream 236
make~concatenated-stream 236
make-dispatch-macro-character 214
make-echo-stream - 23§
make-equal-hash-table 149
make-hash-table 148, 149
make-io-stream 236
make-11ist 126
make-string 153, 153
make-string-input-stream 236
make-string-output-stream 236
make-symbol 79
make-synonym-stream 235, 235
make-vector 24,162
makunbound 36, 37,38

24,175, 192, 208

271

map 112, 139, 156, 163, 167, 17/
mapatoms 53

mapatoms-atll 53

mapc 52

mapcan 52

mapcar 52

mapcon 52

maphash 148

maphash-equal 149

map1 52,112

maplist 52

mask-field 95

max 83

maxpref 117

maxprefix 117, 140, 158, 165, 168, 173
maxprefq 117

maxsuff 117

maxsuffix 117

maxsuffq 117

mem 133

mem-1f 133

mem-if-not 133

memass 144

memass-if 14 -
memass-if-not 144
memassoc 144

memassq 144

member 23,133, 142, 144

memgq 133

memrass 144

memrass-if 14
memrass-if-not 144
memrassoc 144

memrassq 144

merge 120, 741, 158, 165, 169, 174
merge-file-name-type 240
merge-file-name-version 240
mergecar 120

mergef 239

mergeslot 120, 121

meta 104

metap 104

min 84

minusp 82

mismat 116
mismat-from-end 116
mismatch 116, 140, 158, 165, 168, 173
mismatch-from-end 116
mismatq 116
mismatq-from-end 116

mod 90

mulitiple-value 59
multiple-vatue-let 58,89,89
muitipla-value-list 58,59
multiple-value-setqg 58,59

multiple-value-vector 38,59
N
name-char 104

namelist - 238

SPICE LISP REFERENCE MANUAL

keywords 238
namestring 238
nbutlast 129, 130
nconc 53, 126,128, 130
nintersect 136
nintersection 136
nintersectq 136
nmerge 121, 141, 158, 165, 169, 174
nmergacar 121
nmergeslot 121
not 26,32
notany 112, 139, 156, 163, 167, 171

notevery 112, 139, 156, 163, 167, 171

nreconc 127,128, 130

nreverse 49, 110, 119, 127, 130, 156, 163,
166, 171

nset-exclusive-or 138
nsetdiff 137
nsetdifference 137
nsetdiffyq 137

nsetxor 138

nsetxorq 138

nsublis 132

nsubst 132

nsubstqg 132

nth 108,125, 138, 161

nthedr 125
null 26, 32
numberp 27, 82
nunion 135
nuniong 135
nunite 135

0
oddp 82
open 235,242
or 33,45, 61

ouch 220, 234
output-stream-p 237

P
pairlis 76, 142
parse-namestring 239
plist 8
plusp 82
pop 128
pos 114
pos-from-end 114
pos-from-end-1if 114
pos-from-end-if-not 14
pos~if 114, 115
pos-if-not 114, 115
posass 144
posass-if 144
posass-if-not 144

posassoc 14

posassg 144

position 26, 114, 134, 139, 142, 144, 157,
164, 167, 172

position-from-end i

posq 114
posq-from-end 114
posrass 145
posrass-if 145
posrass-if-not 145
posrassoc 145
posrassq 145
pprint 221

print 219, 222

princ 219,222
prinstring 155
print 199,219, 234
probef 242

prog 47, 50,55, 58, 61,62
prog* 55, 56,61
progl 3540,60
prog2 35,41, 60
progn 35,40, 48, 55, 60
progv 38, 43, 60
psetq 38,48,61

push 128

puthash 148
puthash-equal 149
putprop 76,77
putpropf 76

Q
quote 36

R
random 95
rass 143
rass-1if 143

rass-if-not 143

rassoc 143

rassq 143

rational 88

rationalize 88

rationalp 28, 82

ratiop 28,82

read 5,78, 79,215,215, 219, 222, 234
read-daelimited-1ist 213,216
read-from-string 218
readfile 244

readline 215,247, 232

reduce 111, 139, 156, 163, 167, 171
rem 113

rem-from-end 13
rem-from-end-if 113
rem-from-end-if-not 113

rem-if 113
rem-if-not 53,113
remainder 90

remhash 148

remhash-equal 149

remove 113, /33, 134, 139, 156, 163, 167, 171
remove-from-and 113

remprop 8

rempropf 76

remq 113

272

SPICE LISP REFERENCE MANUAL

remq-from-end 113

renamef 242

raplace 110, 138. 156, 163, 166, 171
reset-fill-pointer 177
return 47, 48, 50,57, 61,62
raturn-from 48, 50, 56,58, 61
revappend 127,128

reverse 110, 127, 156, 163, 166, 171
right-reduce 11K, 139, 156, 163, 167, 171
right-vreduce 163
right-vreduce@ mn

round 85,89
rplaca 131
rplacbit 166
rplacd 13

rplachar 98, 108, 152

S
samepnamep 78
sample-function 4
sample-macro 5
sample-special-form 5
scatarp 82
scan 114
scan-from-end 115
scan-from-end-if 115
scan-from-end-if-not 115
scan-if 114
scan-if-not 114
scan-over 114, 140, 157, 164, 168, 172
scan-over-from-end 114
scangq 14
scanq-from-end 115
search 118, /41, 158, 165, 169, 173
search-from-end 118
selectqg 45, 46, 60
sot J6,37,38
set~dispatch-macro-character 214
set-exclusive-or 137
set-macro-character 213, 214
set-syntax-from-char 211
setdiff 137
setdifference 137
setdiffq 137
setelt 108, 138, 152, 162, 166, 170
sotf 37,61, 128, 129, 184, 187, 188
setnth 108
setplist 131
setq 37, 38,47, 51, 59, 61
setxor 137
setxorq 137
short-float 88
short-floatp 28, 82
signal U8, 247
sin 86
sind 86
single-float 88
single-floatp 28, 82
some 112, 139, 156, 163, 167, 171
sort U8, 141, 158, 105, 169, 173

213

sortcar 118
sortslot 118

sqrt 86

srch 118
srch-from-end 118
srchq 118

srchgq-from-end 118
standard-charp 98
store-array-leader 178
streamp 237

string 155
string-capitalize 154
string-charp 98, 130, 154, 152
string-cnt 157
string-cnt-if 157
string-cnt-if-not 157
string-cnt= 157
string-concat 111,155
string-count 116, 157
string-downcase 154
string-equal 152
string-every 156 .
string-fi11 109, 155
string-greaterp 153
string-left-reduce 156
string-lTeft-trim 153
string-length 109, 155
string-lessp 153
string-map 112,156
string-maxpref 158
string-maxpref= 158
string-maxprefix 118,158
string-maxsuff 158
string-maxsuff= 158
string-maxsuffix 158
string-merge 120,158
string-mergecar 158
string-mergesiot 158
string-mismat 157
string-mismat-from-end 157
string-mismat= 157
string-mismatch 117,157
string-mismatch-from-end 157
string-mismatq-from-end 157
string-nmerge 121,158
string-nmergecar 158
string-nmergeslot 158
string-not-equal 153
string-not-greaterp 153
string-not-lessp 153
string-notany 156
string-notevery 156
string-nreverse 110,155
string-out 220

string-pos 156
string-pos-from-end 157
string-pos-from-end-if 157
string-pos-from-end-if-not 157
string-pos-if 156
string-pos-if-not 156

SPICE LISP REFERENCE MANUAL

string-pos= 156
string-position 114,156
string-position-from-end 156
string-posq-from-end 156
string-reduce 111,156
string-rem 156
string-rem-from-end 156
string-rem-from-end-if 156
string-rem-from-end-if-not 156
string-rem-1f 156
string-rem-if-not 156
string-rem= 156
string-remove 114,156
string-remove-from-end 156
string-remg-from-end 156
string-repeat 153
string-replace 110,155
string-reverse 110,155
string-right-reduce 186
string-right-teim 153
string-scan 157
string-scan-from-end 157
string-scan-from-end-if 157
string-scan-from-end-if-not 157
string-scan-1if 157 ‘
string-scan-if-not 157
string-scan-over 115,157
string-scan-over-from-end 157
string-scan= 157
string-scanq-from-end 187
string-search 118,158
string-search-from-end 158
string-some 113,156
string-sort 120, 158
string-sortcar 158
string-sortslot 158
string-srch 158
string-srch-from-end 158
string-srch= 158
string-srchq-from-end 158
string-to-1ist 130,155
string-to-vector 158
string-trim 153
string-upcase 154

string< 152

string<s 152

string<> 152

string= 152
string> 152
string>= 152

stringp 29, 151

structurep 29

sub-bits 109, 166

sub1 85

sublis 132

sublist 109, 129,138

subrcall 60

subrcall* 60

subrp 29

subseq 108, 138, 156, 163, 166, 171

274

subst 131

substqg 132
substring 153, 155
subvec 163
subvec@ 109,171
subvector 109

super 104

superp 104

sxhash 150

symbol1p 26

symeval 36
T

tailp 134

terpri 220,224

throw 48, 55, 60, 64, 240, 248
tree-equal 31,14
truename 238, 239,239
trunc 85, 89,90

tyi 103,217, 218, 232
tyi-no-hang 218
tyipeek 217

tyo 220

typecase 26
typecaseq 46

typep 7,26, 184, 185, 189

U
uncontrol 105
unhyper 105

uninch 217
union 135
unionq 135
unite 135

unless 23, 33,45, 60
unmeta 105

unsuper 105

untyi 215,217
unwind-protect 60,63, 242
unwindall 63

uppercasep 98, 102

A
values 58,58
values-Jist 59
values-vector 59
vent 164
vent-if 164
vent-if-not 164
vent-if-not@ 172
veat-ife@ 172

vent@ 172
ventq 164
veatq@ 172

vconcat 111,163
vconcat@ HL 1N
veount 116,164
vcount@ 116,172
vector-to-1ist 130
vector-to-string 155

SPICE LISP REFERENCE MANUAL

vectorp 29

vevery 163

vevery@ m

vfill 109, 163

vfilie 109,111

vlength 109,163
viength@ 109,11

vmap 112,163

vmap@ 112,171

vmaxpref 165
vmaxpref@ 173
vmaxpref ix 118,165
vmaxpref ix@ 118,173
vmaxprefg 165
vimaxprefqg@ 173
vmaxsuff 165
vmaxsuff@ 173
vmaxsuffix 165
vmaxsuff ix@ 173
vmaxsuffq 165
vmaxsuffq@ 173

vmerge 120, 165

vmerge® 120,173
vmergecar 165
vmergecar@ 173
vmergaslot 165
vagrgeslot@ 173
vmismat 164
vmismat-from-end 164
vitismat-from-end@ 172
vinismat@ 172
vmismatch 117,164
vmismateh-from-end 164
vmismatch-from-end@ 172
vmismatch@ 117,172
vmismatq 164
vmismatq-from-end 164
vmismatq-from-ende 172
vmismatq@ 172

vnmerge 121,165
vnmerge@ 121,173
vnmergecar 165
vnmergecar@ 1m
vnmergeslot 165
vnmergeslot@ 173
vaotany 163

vnotany@ 171
vnotevery 163
vnotevery@® 1) |

vnreverse 110,163
vareverse® 110,171
vpos 164

vpos-from-end 164
vpos-from-end-if 164
vpos-from-end-if-not 164
vpos-from-end-if-not@ 172
vpos-from-end-if@ 172
vpos-from-end@ 1n
vpos-if 164

vpos-if-not 164

275

vpos-if-not@ 172
vpos-if@ 172

vpos@ 172

vposition 114,164
vposition-from-end 164
vposition-from-end@ 172
vposition® 114,172
vposq 164
vposq-from-end 164
vposq-from-end@ 172
vposq@ 172

vreduce 111,163
vreduce@ 1 1mM

vref 108,162, 178

vref@ 108,170

vrem 163

vrem-from-end 163
vrem-from-end-1{f 163
vrem-from-end-if-not 163
vrem-from-end-if-not@ mn

vrem-ftrom-end-if@ 171
vrem-from-end@ m
vrem-if 163
vrem-if-not 163
vrem-if-not@ m
vrem-if@ in

vrem@ 17

vremove 113, 163
vremove-from-end 163
vremove-from-end@ 17
vramove@ 114,11

vramg 163

vremq-from-end 163
vremq-from-end@ in
vremq@® 171

vreplace 110,163
vreplace@ 110,171
vreverse 110,163
vreverse@ 110,1M
vscan 164
vscan-from-end 164

vscan-from-end-if 164
vscan-from-end-if-not 164
vscan-from-end-if-not® 172
vscan-from-end-if@ 172
vscan-from-end@ 172

vscan-if 164
vscan-if-not 164
vscan-if-not@ 172
vscan~if@ 172
vscan-over 115, 164
vscan-over-from-end 164
vscan-over-from-end@ 172
vscan-overe 115,172
vscan@ 172

vscangq 164
vscang-from-end 164
vscang-from-end@ 172
vscanq® i

vsearch 118, 165

SPICE LISP REFERENCE MANUAL

vsearch-from~-end 165
vsearch-from-end@ 173
vsearch@ 18,113

vset 108,162, 178
vsotl 108,170

vsome 113,163

vsome@ 113,171

vsort 120, 165

vsort@ 120,173
vsortcar 165
vsortcar@ 173
vsortsiot 165
vsortslot@ 173

vsrch 165
vsrch-from-end 165
vsrch-from-end® 173
vsrch@ 173

vsrchq 165
vsrchq-from-end 165
vsrchq-from-end@ 173
vsrchq@ 173

w
when 23, 33,44, 44, 60
with-open-file 235, 240, 242, 254
keywords 241

X

Y
y-or-n-p 231, 232
yes-or-no-p 231, 235

YA
zerop 82

276

