=7\

UNIX" SystemV
ATsT C++ Translator

Release Notes

2 RELEASE NOTES

Unix System V AT&T Translator Release Notes:
Abridged Version

This is an abridged version of the UNIX System V AT&T C++
Translator Release Notes. AT&T's original release notes contain material
and many references that are not relevant to your use of ADVANTAGE C++,
Lifeboat's implementation of the translator for the MS/PC DOS environment.
Therefore, to avoid potential confusion in the use of ADVANTAGE C++, we
have deleted those sections for this reprinting of AT&T's Release Notes.

Copyright 1985, AT&T. All rights reserved.

The distribution and sale of this product are intended for the use of the original
purchaser only. Reproduction or translation of any part of this document with-
out the permission of AT&T is unlawful. Requests for permission or further
information should be addressed to Permissions Department, AT&T.

Printed in the US.A.

Contents

Introduction
The AT&T C++ Translator 5

The C++ Programming Language 5
Compatibility wiith C 6
Type Checking Features 6
Data Abstraction Features 7
Other Features 8

Technical Tips

New Keywerds 9

Functions 9
Argument Types 9
Varying Argument Types 9
Function Declarations 10
Overloaded Function Names 10

Structures 10
Structure Tags in Declarations 10
Conflicts with Structure Name Tags 10

Language Overview

Comments 12

Function Argument Types 12
Default Arguments 12
Variable Number of Arguments 12
Classes 14
Member Functions 14
Data Hiding 14

Constructors and Destructors 16
Friend Functions 17
Derived Classes 17

Base and Derived Classes 17
Virtual Functions 18 3

4 RELEASE NOTES

Overloaded Operators 18
Conversion Operators 18
Overloaded Functions 18

The New and Delete Operators 21
Inline Functions 21

Summary 22

Complex Arithmetic in C++

Abstract 23
Introduction 24
Complex Variables and Data Initialization 24
Input and Output 26
Cartesian and Polar Coordinates 27
Arithmetic Operators 27
Mixed Mode Arithmetic 28
Mathematical Functions 28
Efficiency 30
Acknowledgments 31

Appendix A: Type complex 31

Appendix B: Errors and Error Handling 34

INTRODUCTION

The AT&T C++ Translator

The AT&T C++ Translator, Release 1.0, translates C++ source code to C
source code. It supports the C++ programming language as described in Bjamne
Stroustrup's The C++ Programming Language. When you use the type checking
and data abstraction features of C++, the translator detects errors that would
otherwise go unnoticed until run-time.

After translating a C++ program, you can compile it with most C
compilation systems that support long variable names and structure assignment
returns. You need only a single command, CC, to invoke the translator and the
C compilation tools required to produce executable C++ programs. In addition,
you can use the options with the CC command to alter the standard compilation
process, for example, to invoke an optimizer.

The translator includes C++ library functions for complex arithmetic, stream
/0, tasking, and other operations. It also has #include files for use with C++
programs.

This highly-portable translator runs on many machines, including the AT&T
3B Computers, running UNIX System V, Release 2.0 or later. Running on
UNIX System V, the translator makes many of the system's programming tools
and libraries available to you.

Release 1.0 of the translator supercedes Release E, an earlier version made
available to universities in December 1984. This new release supports changes,
enchancements, and new features added to the C++ language since Release E was
introduced.

The C++ Programming Language

C++ is a general purpose programming language designed at AT&T Bell
Laboratories. An extension of the C programming language, C++ retains C's
efficiency and flexibility. In addition, C++ offers facilities for designing better
interfaces among and within program modules. These facilities support stronger
type checking than C and extensive data abstraction.

This section briefly describes compatibility with C and type checking and data
abstraction features in C++. If you are interested in learning more about these
features, you can refer to The C++ Programming Language.

6 RELEASE NOTES
Compatibility with C

Retaining compatibility with C served as a major design criterion for C++.
The basic syntax and semantics of the two languages are the same. If you are
familiar with C, you can program in C++ immediately. Then, as your need for
stronger type checking and data abstraction grows, you can begin to apply the
C++ facilities that support these programming activities.

C++ preserves C's efficient interface to computer hardware. That is, C++ has
the same types, operators, and other facilities defined in C that usually correspond
directly to components of computing equipment. You can use these facilities to
write code that gets in close to the hardware, to manipulate bits and use register
variables, for instance, to make optimal use of the hardware at run-time.

C++ also preserves the C facilities for designing interfaces among program
modules: functions, global data, and header files. (In this document, module
refers to a file containing a variable or function declaration, a function definition,
or a number of these or similar items logically grouped together. Several modules
may make up one program.) These facilities are essential when you develop an
application of any size, but particularly a large or complex one. The differences
between C++ and C become evident when you use these facilities, because C++
has enhanced them and added related facilities.

Finally, C++ modules are link-compatible with C modules. You may,
therefore, use all C libraries with your C++ programs.

Type Checking Features

You declare functions in C++ just as you do in C, except that you may
enhance them to support type checking of arguments and overloading. Type
checking 1is an activity a translator or a compiler carries out to ensure that the
operations defined in your program are applied to data of the correct type. In C++,
type checking is manifested in automatic and explicit type conversions and certain
notational conveniences. The emphasis on type also helps the translator detect
more errors at compile-time, when they are easy to correct.

Overloading tefers to giving functions the same name when they perform the
same operations on objects of different types. You may have, for instance, over-
loaded functions named print for printing integers, character strings, and so on.

Functions in C++ support type checking through their arguments, which,
unlike those in C, can be typed. Here's an example of a C++ function with
argument types:

AT&T C++ TRANSLATOR 7

void set_date(int, int, int);

This function takes three integer arguments to set the date. Here's the same
function declaration that has been overloaded to accept integer and character string
arguments:

overload set_date;
void set_date(int, int, int);
void set_date(char*);

These typed arguments help the translator better manage interfaces among
modules; and the arguments help you design either restrictive or permissive
interfaces. On the one hand, for instance, the translator checks the argument types
and, if necessary, does type conversions to ensure that functions manipulate only
the data for which they are designed. This makes the interface between a calling
and a called function safer. On the other hand, the translator can use argument
types to resolve overloads. By checking the types of arguments passed in a call to
print, for example, the translator chooses the correct overloaded function. This
use of type information makes the interface between a calling and a called function
more flexible.

Data Abstraction Features

In addition to providing stronger type checking, C++ gives you extensive
facilities for data abstraction. The fundamental idea of data abstraction is to
separate the representation of a data object from the specifications essential for its
correct use. For example, the C++ type float is an abstraction for real numbers.
You add or assign values to objects of this type without concern for how the
numbers are represented by the translator. That's because addition and assignment
are specified by the language as correct uses of float.

C++ supports data abstraction beyond that defined by the language by letting
you define new type called classes. You can use classes as conveniently as built-
in types. They are a lot like structures, except that they can have function
members, as well as data members. The function members usually specify how
the data members can be used. That is, function members specify the correct use
of class objects.

Here's an example of a class definition. It includes seven functions, some of
which serve special purposes. The definition shows some other features of C++
(for example, a friend function), all of which are discussed in the "Language
Overview:"

8 RELEASE NOTES

class Course {
int credits, points;
char *name, *instructor;
float grade();
public:
Course();
~Course();
void set_date(int=0,int=0,int=0);
void set_date(char* = "NA");
int operator=(int);
friend void report();
b

The label public separates the class into two parts. The part preceding the label
is private; the other part is public. Use of the private members is restricted to the
other members (or, more exactly, the friend and member functions). Because
grade is a private member, only the other members and friends have access to it.

Classes, like functions with argument types, help you design more expressive
interfaces. Among other things, they let you hide data, guarantee the initialization
of data, and overload operators, as shown in the example. All these facilities can
improve a program.

Other Features

Other features of C++ distinguish it from C. For example, you can declare
variables almost anywhere in a block, not just at the beginning of the block. As
a result, you can locate variables with the statements that use them. C++ also
gives you new operators for controlling memory management. These features,
and those supporting type checking and data abstraction, can improve productivity
in your software development.

TECHNICAL TIPS

This section contains information about changes you may need to make to the
C programs and header files that you intend to use with the AT&T C++
Translator. Many of these changes are related to the C++ language's support of
type checking. For example, you have to give argument types to all existing
function declarations.

This section also offers some advice about using the CC command.
New Keywords

The following words are reserved keywords in C++:

class inline overload const
public friend hew virtual
delete operator this

You have to change variables or functions with these names. sighed and
volatile are not allowed as identifiers because of their expected use as keywords
in the future.

Functions
Argument Types

The most basic change involving functons is adding argument types to
function declarations. For instance, the library function fseek would be declared
in C:

int fseek();

This function takes a FILE*, a long , and an int. So, the C++ declaration

is:
int fseek(FILE*, long, int);

Varying Argument Types
Some functions, like printf, take varying numbers of arguments. Their
declarations should have an ellipsis (...) where the arguments can vary.

Arguments from this place on are not type checked:

int printf(char*, ...);
int fprintf(FILE*, char*, ...);

10 RELEASE NOTES
Function Declarations

In C, undeclared functions are assumed to return an integer. Therefore, many
functions are not declared at all. If you want the C++ translator do type checking,
you have to declare all functions, regardless of return type.

Overloaded Function Names

The name encoding scheme for generating overloaded function names has
changed. The change should not break any of your code. However, you do have
to recompile all C++ programs that you compiled under Release E when you
move them to the new translator. If you don't recompile these programs and then
try to combine object files produced by the new and a previous version of the
translator, you may have undefined references at load-time.

Structures
Structure Tags in Declarations

In C++, structure tag names are also type names. Once you define a structure,
the structure tag name may be used in a declaration; the keyword struct is not
needed (but is allowed):

struct utmp {
lots of stuff*/
h
utmp * getutid (utmp *); /* function takes a
pointer to a utmp, and returns a
pointer to a utmp*/

Conflicts with Structure Tag Names

Because structure tag names are type names, these names may conflict with
other names. In cases where they do conflict, the name that the translator sees last
hides the name that it sees first, unless the explicit struct is provided. For
instance, a structure can have the same name as a function:

struct stat {
inti;
|H
a = stat("filename”, &statbuf);

AT&T C++ TRANSLATOR 11

This code generates an error in C++, because the call to stat looks like a
constructor call for the structure. To avoid this, make sure that the function is
declared after the structure:

struct stat{
int i;
|5
int stat (char*, struct stat*);

Note that C code will still work with this declaration, because any use of the
structure in C will have the explicit struct provided.

A structure name can also conflict with a variable name:
struct stat{
inti;
|4

int stat;

You should declare the variable name after the structure with the same name.

LANGUAGE OVERVIEW

This section is an overview of the major features of the C++ programming
language. Examples and explanations of each feature are included. When you're
done, turn to The C++ Programming Language for a complete discussion.

Comments

C++ has two notations for comments. Comments may begin with the
characters /* and end with */, as they do in C. Or comments may begin with
the characters //, and end at the end of the line on which the // occurs. You can
comment out (or temporarily remove) a section of code from a program using
both comment notations. By using // exclusively for comments in the source,
you can then use /* and */ to surround the sections of source code to be
commented out. For example, if the following lines appeared in a program, i
would not be initialized and j would not be assigned to:

/*

inti=25; /initializei
j=1; /assignito]
*/

Function Argument Types

C++ functions may specify function argument types. Some properly declared
C++ functions with argument types follows:

void step(int);
float min(float, float);
extern int strcpy (char* to, const char* from);

If stremp were declared as follows:
extern int stremp(to, from);

the translator would produce an error message stating that argument types are
expected. Other than having argument types, each C++ declaration is similar to a
C function declaration. For instance, all C++ declarations include a name and
return type. In addition, the declaration of stremp includes argument names and
a storage class. When you compile functions with argument types, the translator
performs type checking and type conversion. That is, the translator compares the
argument types with the parameter types in the function definition each time the
function is called. The types must match for the functions to compile.

12

AT&T C++ TRANSLATOR 13

For example, some calls to the C++ function min follow:
float min(float, float);

min(7.0, 5.0);
min(7, 5);
min("Seven", 5.0); //error

The translator accepts the first two calls. It performs type conversions for the
integer arguments in the second call, and actually passes the floating point
numbers 7.0 and 5.0. However, the translator does not accept the third call,
because the type of the first argument is a character string. A floating point
number is expected and type conversion is not possible, so the translator produces
an error message.

Default Arguments

To account for missing arguments in a function call, function declarations
may specify default expressions for the arguments. You declare these default
expressions by initializing the arguments; the initial values are called default
arguments. Two default arguments are shown in the following example:

void chemical(int = 0, char* = "Missing");

When a call to this function is missing an argument, the default argument is
substituted in its place. Function definitions may also specify default arguments.

Variable Number of Arguments

In addition to specifying argument types, a C++ function declaration may
specify that a variable number of arguments is accepted. You declare a function
with variable arguments by adding an ellipsis (...) to the end of the declaration of
the function's argument list. The ellipsis instructs the translator to accept any
number of arguments of any type after that point in the list in a function call.
For example,

extern int fprintf(FILE*, char* ...);

declares that fprintf is a function that returns an integer and may have a variable
number of arguments, the first two of which must be of the types FILE and
char*, respectively. Functions with unspecified arguments are most useful for
specifying an interface to library functions for which you cannot anticipate every
call.

14 RELEASE NOTES

Classes

C++ lets you define new types called classes, which resemble C structures.
For example, developing an application for a publisher or bookstore, you could
define a class to represent a book with data members representing title, author, and
SO on:

class Book {
char *title, *author, *publisher;
int copyright;
float price;

|5

You can declare many variables of the class after defining it:

Book novel;
Book play;

The class provides a more meaningful definition of a book than any built-in
type can by itself. The definition can make your application easier for you to
modify and for others to understand.

Member Functions

The class Book is incomplete as it is defined above. It specifies only the
representation of data objects. In comparison, a built-in type like int or float
also specifies how objects or variables of the type can be used.

To make user-defined types as complete and convenient as built-in types, C++
lets you define a set of functions to manipulate objects of a class like Book.
For instance, you may define functions to list all books by a particular author or
to increase a price. These functions are called member functions and are declared
as members of the class:

class Book {
char *title, *author, *publisher;
int copyright;
float price;
public:
void search(char*);
void markup(float);

b

AT&T C++ TRANSLATOR 15

The keyword public separates the class into two parts. The members in the
first part can only be used by those in the second part. In this example, only the
two member functions can manipulate Books.

Not all classes separate data members and function members as shown in the
definition of Book. The following class has public data members and a private
function member:

class Paint {

int percent_tint;

short time;

void tint(int, int, short);
public:

int color, finish;

void mix ();

b

Notice that the function tint can be called only by the function mix.

Data Hiding

Using classes, you can hide the representation of data and restrict access to
data. As aresult, you can use classes in the same way as built-in types.

That is, to declare and use objects of the type float, you need not know how
the objects are represented in storage. All you need to know is the name of the
type and the operations that are allowed. Using floating point objects, you can
add or assign values to them without concern for their representation. The
representation of the objects is hidden.

Similarly, C++ lets you

= use a class like Book, while ignoring the details of how an object of
this class is represented. All you have to do is remember that books
have authors, prices, and so on, and that authors can be searched for and

prices can be marked up.

= design large or complex applications with many pieces that use objects
of a class, whose representation needs only to be defined in one place.

m change the representation of a class without affecting the rest of a
program.,

16 RELEASE NOTES

Restricting access to the representation of data objects through the member
functions offers you other advantages:

m When debugging a program, you can readily trace an error involving the
private members of a class to the member functions or friend functions.

= You can protect the integrity of the objects by limiting how other users
manipulate them.

m Other users can examine the definitions of the member and friend functions
to learn how to use the class.

Constructors and Destructors

C++ lets you guarantee that class objects are properly initialized through the
use of constructors. Constructors are member functions designed explicitly to
initialize objects. A constructor sets up and assigns a value in storage when a
class object is declared. More often than not classes in C++ have constructors.

Many classes also have destructors. A destructor ensures that storage is
released, counters are reset, and other maintenance takes place when class objects
are destroyed (for example, when a variable goes out of scope).

A constructor has the same name as its class: a destructor for class X is named
~X. For example, the following class Date has a constructor and destructor:

class Date {
int day, month, year;
void set_date(int, int, int);

public:
Date(int =0, int =0, int = 0); // constructor
~Date(); // destructor

b

As shown, the constructor Date takes three integer arguments, all of which have
default values. The destructor takes no arguments. You can declare objects of the
class as follows:

Date today = Date(27, 1, 1958);
Date halloween(31, 10);

Each time you define an object of a class with a constructor, a constructor is im-

AT&T C++ TRANSLATOR 17

plicitly called. Because initialization occurs when the object is created, construct-
ors eliminate the need to declare the object first and later initialize it. Constructors
also save you from forgetting to initialize objects or from doing so twice.

Friend Functions

Functions that are not members of a class may have access to class objects,
if the functions are declared as friend functions. A function becomes a friend to
a class when you declare the function with the keyword friend in a class
definition:

class Book {
char *title, *author, *publisher;
int copyright;
float price;
friend void search(char*);
friend void markup(float);

|

A function may be friend to more than one class. The function needs simply
to be declared in the private or the public part of the class definitions. Other than
their ability to access private class members, friend functions are just like other
C++ functions.

Derived Classes

Base and Derived Classes

C-++ lets you derive a class from another class. Using the class Book as a
base class, you can define derived classes, as follows:

class Cook:Book { /* Cook's unique members*/};
class Fict: Book { /* Fict's unique members */};

Derived classes inherit all members of the base class. Deriving classes helps you
in two ways. First, you can define details common to many potential derived
classes in a base class. The base class can be written and compiled just once,
stored in a header file, and then used to derive new classes with additional data or
functions. Class Cook might have an additional char* to specify the type of
cooking described in a book. Second, a derived class supplies a specialized
interface to a base class.

18 RELEASE NOTES
Virtual Functions

C++ also lets you declare functions in a base class that can be redefined in
each class derived from it. These functions are called virtual functions. Book,
in the following example, has a virtual function for printing an index. It is
defined as part of the class and is called by the member function print, which
prints the entire contents of a book:

class Book {
char *title, *author;
/...
public:
void print();
virtual void print_index();

b

void Book::print(){
I/ //print the title page,dedication,etc.
print_index();

}

Cook and Fict can then define their own versions of the function
print_index. Given an object japanese of the class Cook, the translator
will make sure the print_index function applied to the object is the Cook
version. If Cook does not have its own version of the function, the version for
Book is used.

Overloaded Operators

Classes can have functions that assign special user-defined meanings to the
standard C++ operators when they are applied to class objects. (Operators cannot
be redefined for built-in types.) These functions are called overloaded operator
functions. Designing an application using complex numbers, you could overload
the operator+ to handle complex additon; and designing an application for
recipes, you could define the same operator to add one cup.

The name of an operator function is the keyword operator followed by the
operator itself, such as operator+. You can declare and call an operator
function in the same way you call any other function; and an operator function
may be a member function.

AT&T C++ TRANSLATOR 19

Conversion Operators

Sometimes you want to convert a value from one type given the value of
another. In addition to using casts like those in C, you can use conversion
operators in C++. Conversion operators are member functions with the same
name as their destination types. Every conversion operator is declared like an
overloaded operator function with the keyword operator:

class Count {
int n;
public:
Count(intx) { n=x:} //constructor
operator int() { return n; } //conversion operator

|8

In this example, the class Count has a conversion operator that defines a
conversion from Count to int.

The type conversion possible with C++ conversion operators surpasses that
provided by casts. Notice that the conversion from Count to int is from a user-
defined type to a built-in type. Conversion operators also make conversions from
new types to old types possible without modifying the declarations of the old

types.

Overloaded Functions

Consider again this definition of the class Date:

class Date {
int day, month, year;
void set_date(int, int, int);

public:
Date(int = 0, int = 0, int = 0); // constructor
~Date(); // destructor

b

Users of this class would probably like several ways of initializing an object.
You can redefine the class to include several constructors to give users this
flexibility:

20 RELEASE NOTES

class Date {
/...
public:
Date(int, int, int);
Date(char*); //date in string representation
Date(char*,int); /month as a string, day as
an integer
~ Date();

|5
Notice that each of the constructors has the same name.

Giving functions the same name can be appropriate, when the functions
perform the same operations on objects of different types. This use of a name is
called function name overloading. The translator knows which constructor to
select based on the argument types that are passed. For example, the translator
selects the above constructors in the order shown for the following function calls:

Date due(10, 26, 85);
Date test("January 1, 1986");
Date birthday("January”, 27);

Constructors are a special case of overloaded functions. To overload other
functions in C++, you must use the keyword overload, in the function
declaration:

overload print;
void print(int);
void print(float);
void print(char*);

or
overload void print(int), print(float), print(char*);

When print is called, the translator
m checks the arguments passed to determine their type
m searches for a match of the argument list among the print functions

m selects the exact match (or uses built-in or user-defined type conversion to
match).

Overloaded function names give you more than a notational convenience.

AT&T C++ TRANSLATOR 21

Because of the matching rules, you can also ensure that the simplest algorithm
(function) is used where the efficiency or precision of computations differs
significantly for the types involved. With an overloaded function for calculating
square roots, for example, you can ensure efficiency with integers and precision
with complex numbers.

The New and Delete Operators

You can declare a named object in C++ to be static or automatic. A static
object exists throughout program execution; an automatic object is local to a
function (or block of a program) and exists only during the execution of the
function.

You may sometimes want to make use of an object created by a function after
leaving the function. To make this control possible, C++ provides the operator
new to create objects and the operator delete to destroy them. Using these
operators, you can control the lifetime of an object and allocate storage just for the
time the object is needed. Because they are built-in to the language, new and
delete are easier to use than UNIX system tools malloc and free.

Inline Functions

Small functions frequently called can increase a program's run-time. C++ lets
you declare these functions to be inline expanded. This means that the translator
will try to generate the code for the function at the place it is called. When used
with small functions, inline can reduce the run-time.

You can make a function inline by declaring it with the scope inline:

inline int max(int a, int b)
{returna>b?a:b;}

Member functions become inline when they are defined within the definition of
their classes.

Inline functions behave the same way as other functions, so declaring a
function inline does not change the meaning of a program. In fact, the compiler
may choose not to expand a function inline (for instance, if the function is
recursive). Unlike C preprocessor macros, you can use inline functions for
multiple statements and to avoid double argument evaluation.

22 RELEASE NOTES
Summary

This language overview highlights the major features of C++. Classes,
member and friend functions, constructors and destructors, overloaded operators,
derived classes, and virtual functions account for the language's support of data
abstraction. Most of these features also play a role in the strong type checking
provided by C++. Of course, function argument types are one of the most visible
and powerful examples of type checking support in C++; and overloaded functions
show how to make good use of the argument types.

The operators hew and delete and inline functions give a flavor of the
language features that are not directly related to data abstraction or type checking.
There are others. You should turn to The C++ Programming Language now that
you have read this overview.

All of the C++ language features were designed to help you express concepts
clearly in programs and to design programs made up of manageable pieces. When
used well, C++ can improve productivity in software development for both
systems programmers and applications programmers.

COMPLEX ARITHMETIC IN C++

This document is based on an AT&T Bell Laboratories Computer Science
technical report by Leonie V. Rose and Bjarne Stroustrup.

23

24 RELEASE NOTES

Introduction

The C++ language does not have a built-in data type for complex numbers,
but it does provide language facilities for defining new data types. The type
complex was designed as a useful demonstration of the power of these facilities.
There are three plausible ways to support complex numbers in a language. First,
the type complex could be directly supported by the compiler in the same way
as the types int and float are. Alternatively, a preprocessor could be written to
translate all use of complex numbers into expressions involving only built-in data
types. A third approach was used to implement type complex; it was specified
as a user-defined type. This demonstrates that one can achieve the elegance and
most of the efficiency of a built in data type without modifying the compiler. It
is even much easier to implement than the preprocessor approach, which is likely
to provide an inferior user interface.

This facility for complex arithmetic provides the arithmetic operators + / * =,
the assignment operators = += == *= /=, and the comparison operators == !=
for complex numbers. Input and output can be done using the operators >> (get
from) and << (put to). The initialization functions and >> accept a Cartesian
representation of a complex. The functions real () and imag() return the real
and imaginary part of a complex, respectively, and << prints a complex as
(real,imaginary). The internal representation of a complex is, inaccessible
and in principle unknown to a user. Polar coordinates can also be used. The
function polar () creates a complex given its polar representation, and abs()
and arg() return the polar magnitude and angle, respectively, of a complex.
The function horm() returns the square of the magnitude of a complex. The
following complex functions are also provided: sqrt(), exp(), log(), sin(),
cos(), sinh(), cosh(), pow(), conj(). The declaration of complex and
the declarations of the complex functions can be found in Appendix A.

Complex Variables and Data Initialization

A program using complex arithmetic will contain declarations of complex
variables. For example:

complex zz = complex (3,-5);

will declare zz to be complex and initialize it with a pair of values. The first
value of the pair is taken as the real part of the Cartesian representation of a
complex number and the second as the imaginary part. The function complex
() constructs a complex value given suitable arguments.* It is responsible for

*Such a function is called a constructor. A constructor for a type always has the
same name as the type itself.

AT&T C++ TRANSLATOR 25

initializing complex variables, and will convert the arguments for proper type
(double). Such initializations may be written more compactly. For example:

complex 2z(3,-5);
complex ¢_name(-3.9,7);
complex rpr(SQRT_2,root3);

A complex variable can be initialized to a real value by using the constructor
with only one argument. For example:

complex ra = complex (1);
will set up ra as a complex variable initialized to (1,0). Alternatively, the
initialization to a real value can also be written without explicit use of the
constructor:

complex rb = 123;
The integer value will be converted to the equivalent complex value exactly as if
the constructor complex (123) had been used explicitly. However, no
conversion of a complex into a double is defined, so

double dd = complex (1,0);

is illegal and will cause a compile time error.

If there is no initialization in the declaration of a complex variable, then the
variable is initialized to (0,0). For example:

complex orig;
is equivalent to the declaration:
complex orig = complex (0,0);
Naturally a complex variable can also be initialized by a complex expression.
For example:
complex cx (-0.5000000e+02,0.8660254e+02);
complex cy = cx+log(cx);
It is also possible to declare arrays of complex numbers. For example:

complex carray [30];

sets up an array of 30 complex numbers, all initialized to (0,0).

26 RELEASE NOTES
Using the above declarations:
complex carrf] = { cx, ¢y, carray[2], complex(1.1,2.2) };

sets up a complex array carr[] of four complex elements and initializes it with
the members of the list. However, a struct style initialization cannot be used.
For example:

complex cwrong[] = {1.5, 3.3, 4.2, 4};

is illegal, because it makes unwarranted assumptions about the representation of
complex numbers.

Input and Output

Simple input and output can be done using the operators >> (get from) and
<< (put to). They are declared like this using the facility for overloading function
operators:

ostream& operator<<(ostream&, complex);
istream& operator>>(istream&, complex&);

When 2z is a complex variable cin>>2z reads a pair of numbers from the
standard input stream c¢in into zz. The first number of the pair in interpreted as
the real part of the Cartesian representation of a complex number and the second as
the imaginary part. The expression cout<<zz writes 2z to the standard ouput
stream cout. For example:

void copy(istream& from, ostreamé& to)

complex zz;
while (from>>22) to <<zz;

}

reads a stream of complex numbers like (3.400000,5.000000) and writes
them like (3.4,5). The parentheses and comma are mandatory delimiters for
input, while white space is optional. A single real number, for example 10e-7
or (123), will be interpreted as a complex with 0 as the imaginary part by
operator >>.

A user who does not like the standard implementation of << and >> can
provide alternate versions.

AT&T C++ TRANSLATOR 27

Cartesian and Polar Coordinates

The functions real() and imag() return the real and imaginary parts of a
complex number, respectively. This can, for example, be used to create differently
formatted output of a complex:

complex cc = complex (3.4,5);
cout << real(ce) << "+" << imag(cc) << "i";

will print 3.4+5%i.

The function polar() creates a complex given a pair of polar coordinates
(magnitude, angle). The functions arg() and abs() both take a complex
argument and return the angle and magnitude (modulus), respectively. For
example:

complex cc = polar(SQRT_2,Pl/4); // also known as complex(1,1)
double magn = abs(cc); /l magn = sqrt(2)

doube angl = arg(cc); /l angl = Pl/4

cout << "(M=" << magn <<'", a=" << angl <<")";

If input and output functions for the polar representation of complex numbers
are needed they can easily be written by the user.

Arithmetic Operators

The basic arithmetic operators + = (unary and binary) / *, the assignment
operators = += == *= /=, as well as the equality operators == != can be used
for complex numbers. The operators have their conventional precedences. For
example: a=b*c¢+d for complex variables a, b, ¢ and d is equivalent to
a=(b*c)+d. There are no operators for exponentiation and conjugation; instead
the functions pow() and conj() are provided. The operators += == *= /= do
not product a value that can be used in an expression; thus the following examples
will cause compile time errors:

compiex a, b;

...

if ((a+=2)==0) {
[/

}
b=a*=b;

28 RELEASE NOTES
Mixed Mode Arithmetic

Mixed mode expressions are handled correctly. Real values will be converted
to complex where necessary. For example:

complex xx(3.5,4.0);
complex yy = log(yy) + log(3.2);

This expression involves a mixture of real values: log(3.2), and complex
values: log(yy) and the sum. Another example of mixing real and complex,
xx=1 is equivalent to xx=complex(1) which in tumn is equivalent to
xx=complex(1,0). The interpretation of the expression (xx+1)*yy*3.2

is (((xx+complex(1))*yy)*complex(3.2)).

Mathematical Functions

A library of complex mathematical functions is provided. A complex function
typically has a counterpart of the same name in the standard mathematical library.
In this case the function name will be overloaded. That is, when called, the
function to be invoked will be chosen based on the argument type. For example,
log(1) will invoke the real log(), and log(complex(1)) will invoke the
complex log(). In each case the integer 1 is converted to the real value 1.0.

These functions will product a result for every possible argument. If it is not
possible to product a mathematically acceptable result, the function complex
error() will be called and some suitable value returned. In particular, the
functions try to avoid actual overflow, calling complex error() with an
overflow message instead. The user can supply complex error(). Otherwise
a function that simply sets the integer errno is used. See Appendix B.

complex conj(complex);
Conj(zz) returns the complex conjugate of zz.
double norm(complex);
Norm(zz) returns the square of the magnitude of zz. It is faster than abs(zz),

but more likely to cause an overflow error. It is intended for comparisons of
magnitudes.

AT&T C++ TRANSLATOR 29

overioad pow;

double pow(double, double);
complex pow(double, complex);
complex pow(complex, int);
complex pow(complex, double);
complex pow(complex, complex);

Pow(aa,bb) raises aa to the power of bb. For example, to calculate
(1-i)**4:
cout << pow(complex(1,-1), 4);

The output is (-4,0).

overload log;
double log{double);
complex log(complex);

Log (zz) computes the natural logarithm of zz. Log (0) causes an error,
and a huge value is returned.

overioad exp;
double exp(double);
complex exp(complex);

Exp(zz) computes e**zz.e being 2.718281828...

overload sqrt;
double sqrt(double);
complex sqri(complex);

Sqrt(zz) calculates the square root of zz.

The trigonometric functions available are:

overload sin;
double sin(double);
complex sin(complex);

overload cos;
double cos(double);
complex cos(complex);

30 RELEASE NOTES

Hyperbolic functions are also available:

overload sinh;
double sinh(double);
complex sinh(complex);

overload cosh;
double cosh(double);
complex cosh(complex);

Other trigonometric and hyperbolic functions, for example tan() and tanh(),
can be written by the user using overloaded function names.

Efficiency

C++'s facility for overloading function names allows complex to handle
overloaded function calls in an efficient manner. If a function name is declared to
be overloaded, and that name is invoked in a function call, then the declaration list
for that function is scanned in order, and the first occurrence of the appropriate
function with matching arguments will be invoked. For example, consider the
exponential function:

overload exp;
double exp(double);
complex exp(complex);

When called with a double argument the first, and in this case most efficient,

exp() will be invoked. If a complex result is needed, the double result is

then implicitly converted using the appropriate constructor. For example:
complex foo = exp(3.5);

is evaluated as
complex foo = complex(exp(3.5));

and not
complex foo = exp(complex(3.5));

Constructors can also be used explicitly. For example:

AT&T C++ TRANSLATOR 31

complex add(complex a1, complex a2)// silly way of doing at1+a2
{

return complex(real(al+real(a2), imag(ai)+imag)a2));

}

Inline functions are used to avoid functions call overhead for the simplest
operations, for example, conj(), +, +=, and the constructors (See Appendix A).

Acknowledgments

Phil Gillis supplied with the complex functions used for the cxp package.
Most of the functions presented here are modified versions of those. Stu Feldman
provided us with valuable advice and some functions. Doug Mcllroy's
constructive comments led to a major rewrite.

Appendix A: Type complex

This is the definition of type complex. It can be included as
<complex.h>. A friend declaration specifies that a function may access the
internal representation of a complex. The standard header file <stream.h> is
included to allow declaration of the stream I/O operators << and >> for complex
numbers.

#include <stream.h>
#include <errno.h>

overload cos;
overload cosh;
overload exp;
overload log;
overload pow;
overload sin;
overload sinh;
overload sqrt;
overload abs;

#include <math.h>

class complex {
double re, im;

32 RELEASE NOTES

public:
complex{double r=0, double i=0) {re=r; im=i;}

|§

friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend

friend
friend
friend
friend
friend
friend
friend

void
void
void
void

double

double

double

complex
complex
complex
complex
double

complex
complex
complex
complex
complex
complex
double

complex
complex
complex

complex
complex
complex
complex
complex
int

int

abs(complex);
norm(complex);
arg(complex);
conj(complex);
cos(complex);
cosh(complex);
exp(complex);
imag(complex);
log{(complex);
pow(double, complex);
pow(complex, int);
pow(complex, double);
pow(complex, complex);
polar(double, double = 0);
real(complex);
sin{complex);
sinh(complex);
sqrt(complex);

operator*(complex, complex);
operator-(complex);
operator-(complex, complex);
operator+(complex, complex);
operator/(complex, complex);
operator==(complex, complex);
operator!=(complex, complex);

operator+=(complex);
operator-=z(complex);
operator*=(complex);
operator/=(complex);

AT&T C++ TRANSLATOR 33

ostream& operator<<(ostream&, complex);
istream& operator>>(istream&, complex&);

inline complex operator+(complex al,complex a2)

{

return complex(al.re+a2.re, al.im+a2.im);

}

inline complex operator-(complex ai,complex a2)

{
}
inline complex operator-(complex a)
{
}

inline complex conj(complex a)

return complex(at.re-a2.re, al.im-a2.im);

return complex(-a.re, a.im);

return complex(a.re, -a.im);

}
inline int operator==(complex a, complex b)

return (a.re==b.re && a.im==b.im);

}

inline int operator!=(complex a, complex b)

return (a.re!=b.re || a.im!=b.im);

}
inline void complex.operator+=(complex a)
{

re += a.re;

im += a.im;
}
inline void complex.operator-=(complex a)
{

re -= a.re;

im -z a.im;

34 RELEASE NOTES
Appendix B: Errors and Error Handling

These are the declarations used by the error handling:

int errno;
int complex_error(c_exception &);

complex_error is invoked by functions in the complex arithmetic package
when errors are detected. Users may define their own procedures for handling
errors, by including a function named complex_error in their programs.
complex_error must be of the form described above. When an error occurs, a
pointer to the exception structure will be passed to the user-supplied
complex_error function. This structure, which is defined in the
<complex.h> header file is as follows:

struct ¢_exception {

int type;

char *name;

complex argl, arg2, retval;
¥

The element type is an integer describing the type of error that has occurred,
from the following list of constants (defined in the header file):

SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error

The element name points to a string containing the name of the function that
incurred the error. The variables arg1 and arg2 are the arguments with which
the function was invoked. retval is set to the default value that will be returned
by the function unless the user's complex_error sets it to a different value.

If the user's complex_error function returns non-zero, no error message
will be printed, and errno will not be set.

If complex_error is not supplied by the user, a default
complex_error will be supplied that will set the return value according to the
table on the following page. In every case, errno is set to EDOM or
ERANGE and the program continues.

AT&T C++ TRANSLATOR 35

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

Type SING OVERFLOW |UNDERFLOW

errno EDOM ERANGE ERANGE
EXP:
re overflow/underflow - *H.IH 0.0
[im| too large - 0.0 -
LOG:
arg = (0.0) [MHo - -
SINH: '
[re[too large - fH.IH -
[im| too large - 0.0 -
COSH:
[re] too large - *H.tH -
lim|too large - 0.0 -

