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Preface

The AT&T C++ Language System Library Manual describes the C++ class libraries provided with Release
2.0 of the AT&T C++ Language System:

u the complex arithmetic library

m the task library

® the iostream library

The manual is part of a set of four documents that are supplied with your C++ Language System. The
other documents are:

m the Release Notes, which describe the contents of this release, how to install it, and changes to the
language

® the Product Reference Manual, which provides a complete definition of the C++ language sup-
ported by Release 2.0 of the Language System.

m the Selected Readings, which contains papers describing aspects of the C++ language

The chapters in this manual cover the following C++ class libraries:
m Chapter 1 describes the complex arithmetic library, which provides a class complex that allows
you to declare and manipulate complex numbers in C++ programs

m Chapter 2 describes the task library, which allows you to create and control concurrent processes
in C++ programs. The last section of Chapter 2 provides porting information for the task
library, which is machine dependent.

m Chapter 3 describes the stream library, which allows you to do formatted input and output from
C++ programs

m Appendix A contains manual pages for all three class libraries

To make the best use of the Library Manual, you must be familiar with the C programming language
and the C programming environment under the UNIX® operating system. Refer to Appendix B of the
Release Notes for further sources of information about these topics.
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Complex Arithmetic in C++

This chapter is taken directly from a paper by Leonie V. Rose and Bjarne Stroustrup.
NOTE:

Abstract

This memo describes a data type complex providing the basic facilities for using complex arithmetic in
C++. The usual arithmetic operators can be used on complex numbers and a library of standard com-
plex mathematical functions is provided. For example:

#include <complex.h>

main() {
complex xx;
complex yy = complex(l,2.718);
xx = log(yy/3);
cout << 1+xx;
}

initializes yy as a complex number of the form (real+imag*i), evaluates the expressions and prints the
result: (0.706107,1.10715).

The data type complex is implemented as a class using the data abstraction facilities in C++. The
arithmetic operators +, —, *, and/, the assignment operators =, +=, ~=, *=, and /=, and the comparison
operators == and != are provided for complex numbers. So are the trigonometric and mathematical
functions: sin(), cos(), cosh(}, sinh(}, sqrt(), log(), exp(), conj(), arg(), abs(), norm(), and pow().
Expressions such as (xx+1)*log(yy*log(3.2)) that involve a mixture of real and complex numbers are
handled correctly. The simplest complex operations, for example + and +=, are implemented without
function call overhead.

Introduction

The C++ language does not have a built-in data type for complex numbers, but it does provide
language facilities for defining new data types. The type complex was designed as a useful demons-
tration of the power of these facilities.

There are three plausible ways to support complex numbers in a language. First, the type complex
could be directly supported by the compiler in the same way as the types int and float are. Alterna-
tively, a preprocessor could be written to translate all use of complex numbers into expressions involv-
ing only built-in data types. A third approach was used to implement type complex; it was specified
as a user-defined type. This demonstrates that one can achieve the elegance and most of the efficiency
of a built in data type without modifying the compiler. It is even much easier to implement than the
pre-processor approach, which is likely to provide an inferior user interface.

Complex Arithmetic in C++ 1-1
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This facility for complex arithmetic provides the arithmetic operators +,/, *, and —, the assignment
operators =, +=, —=, *=, and /=, and the comparison operators == and != for complex numbers. Input
and output can be done using the operators >> (get from) and << (put to). The initialization functions
and >> accept a Cartesian representation of a complex. The functions real() and imag() return the real
and imaginary part of a complex, respectively, and << prints a complex as (real,imaginary). The
internal representation of a complex, is, however, inaccessible and in principle unknown to a user.
Polar coordinates can also be used. The function polar() creates a complex given its polar representa-
tion, and abs() and arg() return the polar magnitude and angle, respectively, of a complex. The func-
tion norm() returns the square of the magnitude of a complex. The following complex functions are
also provided: sqrt(), exp(), log(), sin(), cos(), sinh(), cosh(), pow(), and conj(). The declaration of
complex and the declarations of the complex functions can be found under “Type complex.” A com-
plete program using complex numbers can be found under “An FFT Function.”

Complex Variables and Data Initialization

A program using complex arithmetic will contain declarations of complex variables. For example:
complex zz = complex(3,-5);
will declare zz to be complex and initialize it with a pair of values. The first value of the pair is taken
as the real part of the Cartesian representation of a complex number and the seconc% as the imaginary
part. The function complex() constructs a complex value given suitable arguments.” It is responsible
for initializing complex variables, and will convert the arguments to the proper type (double). Such
initializations may be written more compactly. For example:
complex zz(3,-5);

complex ¢ _name(-3.9,7);
complex rpr(SQRT 2,root3);

A complex variable can be initialized to a real value by using the constructor with only one argument.
For example:

complex ra = complex(l);

will set up ra as a complex variable initialized to (1,0). Alternatively the initialization to a real value
can also be written without explicit use of the constructor:

complex rb = 123;

The integer value will be converted to the equivalent complex value exactly as if the constructor com-
plex(123) had been used explicitly. However, no conversion of a complex into a double is defined, so

double dd = complex(1,0);

is illegal and will cause a compile time error.

If there is no initialization in the declaration of a complex variable, then the variable is initialized to
(0,0). For example:

1-2 LIbrary Manual
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complex orig;
is equivalent to the declaration:

complex orig = complex(0,0);

Naturally a complex variable can also be initialized by a complex expression. For example:
complex cx(-0.5000000e+02,0.8660254e+02) ;
complex cy = cx+log(cx);

It is also possible to declare arrays of complex numbers. For example:
complex carray[30];

sets up an array of 30 complex numbers, all initialized to (0,0). Using the above declarations:
complex carr[] = { cx, cy, carrayl[2], complex(1.1,2.2) };

sets up a complex array carr| ] of four complex elements and initializes it with the members of the list.
However, a struct style initialization cannot be used. For example:

complex cwrong[] = (1.5, 3.3, 4.2, 4};

is illegal, because it makes unwarranted assumptions about the representation of complex numbers.

Input and Output

Simple input and output can be done using the operators >> (get from) and << (put to). They are
declared like this using the facility for overloading function operators:

ostream& operator<<({ostream&, complex);
istream& operator>>(istreams&, complex&);

When zz is a complex variable cin>>zz reads a pair of numbers from the standard input stream cin
into zz. The first number of the pair is interpreted as the real part of the Cartesian representation of a
complex number and the second as the imaginary part. The expression cout<<zz writes zz to the stan-
dard output stream cout. For example:

void copy (istream& from, ostream& to)
{

complex zz;

while (from>>zz) to<<zz;
}

reads a stream of complex numbers like (3.400000,5.000000) and writes them like (3.4,5). The
parentheses and comma are mandatory delimiters for input, while white space is optional. A single
real number, for example 10e-7 or (123), will be interpreted as a complex with 0 as the imaginary part
by operator >>.

Complex Arithmetic in C++ 1-3
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A user who does not like the standard implementation of << and >> can provide alternate versions.

Cartesian and Polar Coordinates

The functions real() and imag() return the real and imaginary parts of a complex number, respectively.
This can, for example, be used to create differently formatted output of a complex:

complex cc = complex(3.4,5);
cout << real(cc) << "+" << imag(cc) << "*kiv;

will print 3.4+5%i.

The function polar() creates a complex given a pair of polar coordinates (magnitude, angle). The func-
tions arg() and abs() both take a complex argument and return the angle and magnitude (modulus),
respectively. For example:

complex cc = polar (SQRT 2,PI/4); // also known as complex(l,1)
double magn = abs(cc); // magn = sqrt (2)
double angl = arg(cc): // angl = PI/4

cout << "(m=" << magn << ", a=" << angl << ")}";

If input and output functions for the polar representation of complex numbers are needed they can
easily be written by the user.

Arithmetic Operators

The basic arithmetic operators +, — (unary and binary),/, and *, the assignment operators =, +=, —=,
*=, and /=, as well as the equality operators == and !=, can be used for complex numbers. The opera-
tors have their conventional precedences. For example: a=b*c+d for complex variables a, b, ¢, and d
is equivalent to a=(b*c)+d. There are no operators for exponentiation and conjugation; instead the
functions pow() and conj() are provided. The operators +=, —=, *=, and /= do not produce a value
that can be used in an expression; thus the following examples will cause compile time errors:

complex a, b;

/7 ...

if ( (a+=2)==0 ) {
// .

}

b = a *= b;

1-4 Library Manual
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Mixed Mode Arithmetic

Mixed mode expressions are handled correctly. Real values will be converted to complex where neces-
sary. For example:

complex xx(3.5,4.0);
complex yy = log(yy) + log(3.2);

This expression involves a mixture of real values: log(3.2), and complex values: log(yy) and the sum.
Another example of mixing real and complex, xx=1, is equivalent to xx=complex(1) which in turn is
equivalent to xx=complex(1,0). The interpretation of the expression (xx+1)*yy*3.2 is
(((xx+complex(1))*yy)*complex(3.2)).

Mathematical Functions

A library of complex mathematical functions is provided. A complex function typically has a counter-
part of the same name in the standard mathematical library. In this case the function name will be
overloaded. That is, when called, the function to be invoked will be chosen based on the argument
type. For example, log(1) will invoke the real log(), and log(complex(1)) will invoke the complex
log(). In each case the integer 1 is converted to the real value 1.0.

These functions will produce a result for every possible argument. If it is not possible to produce a
mathematically acceptable result, the function complex_error() will be called and some suitable value
returned. In particular, the functions try to avoid actual overflow, calling complex_error() with an
overflow message instead. The user can supply complex_error(). Otherwise a function that simply
sets the integer errno is used. See “Errors and Error Handling” for details.

complex conj(complex);
Conj(zz) returns the complex conjugate of zz.

double norm(complex);

Norm(zz) returns the square of the magnitude of zz. It is faster than abs(zz), but more likely to cause
an overflow error. It is intended for comparisons of magnitudes.

double pow(double, double);
complex pow(double, complex);
complex pow(complex, int);

complex pow(complex, double);
complex pow{complex, complex);

Pow{aa,bb) raises aa to the power of bb. For example, to calculate (1-i)+*4:
cout << pow( complex(l,-1), 4):

The output is (—4,0).

Complex Arithmetic in C++ 1-5
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double log(double) ;
complex log{complex):;
Log(zz) computes the natural logarithm of zz. Log(0), causes an error, and a huge value is returned.
double exp(double);
complex exp(complex);

Exp(zz) computes e**zz, e being 2.718281828...

double sqrt (double);
complex sqrt (complex);
Sqrt(zz) calculates the square root of zz.

The trigonometric functions available are:

double sin(double);
complex sin{(complex):

double cos(double);
complex cos(complex);

Hyperbolic functions are also available:

double sinh(double) ;
complex sinh(complex);

double cosh(double);
complex cosh(complex);

Other trigonometric and hyperbolic functions, for example tan() and tanh(), can be written by the user
using overloaded function names.

Efficiency

C++'s facility for overloading function names allows complex to handle overloaded function calls in an
efficient manner. If a function name is declared to be overloaded, and that name is invoked in a func-
tion call, then the declaration list for that function is scanned in order, and the first occurrence of the
appropriate function with matching arguments will be invoked. For example, consider the exponential
function:

1-6 Library Manual
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double exp{double);
complex exp (conmplex);

When called with a double argument the first, and in this case most efficient, exp() will be invoked. If
a complex result is needed, the double result is then implicitly converted using the appropriate con-
structor. For example:

complex foo = exp(3.5);
is evaluated as
complex foo = complex( exp(3.5) ).

and not

complex foo = exp( complex(3.5) );

Constructors can also be used explicitly. For example:

complex add (complex al, complex a2) // silly way of doing al+a2
{

return complex( real(al)+real(a2), imag(al)+imag(a2) );
}

Inline functions are used to avoid function call overhead for the simplest operations, for example,
conj(), +, +=, and the constructors (See “Type complex”).

Type complex

This is the definition of type complex. It can be included as <complex.h>. A friend declaration
specifies that a function may access the internal representation of a complex. The standard header file
<stream.h> is included to allow declaration of the stream I/O operators << and >> for complex
numbers.

#include <stream.h>
#include <errno.h>
#include <math.h>

class complex {
double re, im;
public:
complex() { re=im=0; }
complex(double r = 0, double i) { re=r; ime=i; }

friend double abs(complex):;
friend double norm{complex);
friend double arg(complex);
friend complex conj(complex);

Complex Arithmetic in C++ 1-7
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friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend

friend
friend
friend
friend
friend
friend
friend

complex
complex
complex
double

complex
complex
complex
complex
complex
complex
double

complex
complex
complex

complex
complex
complex
complex
complex
int

int

cos (complex) ;

cosh (complex) ;

exp (complex) ;

imag (complex) ;

log (complex) ;

pow (double, complex);
pow (complex, int):;

pow (complex, double);
pow (complex, complex);
polar (double, double = 0);
real (complex) ;
sin{(complex) ;

sinh (complex) ;

sqrt (complex) ;

operator+ (complex, complex);

operator- (complex) ;

operator- (complex, complex);

operator* (complex, complex):

operator/ (complex, complex);

operator==(complex, complex);
operator!=(complex, complex);

void operator+=(complex);
void operator—=(complex);
void operator*=(complex);
void operator/=(complex);

};

ostreamé& operator<<(ostream&, complex);
istream& operator>>(istreams, complexs&);

inline complex operator+(complex al, complex a2)

{
return

}

inline complex
{
return

}

inline complex

{

return
}

inline complex
{
return

}

1-8

complex(al.re+a2.re, al.im+a2.im);

operator- (complex al,complex a2)

complex(al.re-a2.re, al.im-a2.im);

operator— (complex a)

complex(—a.re, a.im);

conj (complex a)

complex{(a.re, —a.im);

Library Manual
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inline int operator==(complex a, complex b)
{

return (a.re==b.re && a.ime=b, im);
}

inline int operator!=(complex a, complex b)
{

return (a.rel=b.re || a.im!=b.im);
}

inline void complex.operator+=(complex a)
{

re += 3a.re;

im += a.im;
}
inline void complex.operator—={complex a)
{

re ~= a.re;
im —-= a.im;

An FFT Function

Transcribed from Fortran as presented in “FFT as Nested Multiplication, with a Twist” by Carl de
Boor in SIAM Sci. Stat. Comput., Vol 1 No 1, March 1980.

#include <complex.h>
void fftstp(complex*, int, int, int, complex*):

const NEXTMX = 12;
int prime[NEXTMX] ={ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 };

complex* fft (complex *zl, complex *z2, int n, int inzee)

/-k
Construct the discrete Fourier transform of zl (or z2) in the
Cooley~Tukey way, but with a twist.
z1l [before], z2[before].
inzee=—1 means input in zl; inzee==2 means input in 22
*/

int before = n;
int after = 1;
int next = 0;
int now;

do {
int np = prime[next];

Complex Arithmetic in C++
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if ( (before/np)*np < before ) {
if (++next < NEXIMX) continue;
now = before;
before = 1;
}
else {
now = np;
before /= np;
}
if (inzee == 1)
fftstp(zl, after, now, before, z2);
else
fftstp(z2, after, now, before, z1);
inzee = 3 - inzee;
after *= now;
} while (1 < before)

return {(inzee==1) ? 2zl : 2z2;

void fftstp(complex* zin, int after, int now, int before, complex* zout)
/*

zin (after, before, now)

zout (after, now, before)

there is ample scope for optimization
*/

double angle = PI2/(now*after);
complex omega = complex(cos(angle), -sin(angle));
complex arg = 1;
for (int j=0; j<now; ij++) {
for (int ia=0; ia<after; ia++) {
for (int ib=0; ib<before; ib++) {
// value = zin(ia,ib,now)
complex value = zin[ia + ib*after + (now-1)*before*after];

for (int in=now-2; O<=in; in-—) {
// value = value*arg + zin(ia,ib,in)
value *= arg;
value += zin[ia + ib*after + in*before*after];
}
// zout(ia, j,ib) = value
zout[ia + j*after + ib*now*after] = value;

}
arg *= omega;

1-10 Library Manual
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The main program below calls fft() with a sine curve as argument. The complete unedited output is
presented on the next page. All but two of the numbers ought to have been zero. The very small
numbers shows the roundoff errors. Since C++ floating-point arithmetic is done in double-precision
these errors are smaller than the equivalent errors obtained using the published Fortran version.

#include <complex.h>

extern complex* fft (complex*, complex*, int, int);

main ()
/ *
test fft() with a sine curve
*/
{
const n = 26;
complex* z1 = new complex[n]:
complex* z2 = new complex([n];

cout << "input: \m";

for (int i=0; i<n ;i++) {
z1[i] = sin(i*PI2/n);
cout << zl[i] << "\m";

}

errno = 0;
complex* zout = f£ft(zl, z2, n, 1);
if (errno) cerr << "Cerror " << errno << " occurred\m";

cout << "output: \m";
for (int j=0; j<n ;j++) cout << zout[j] << "\m";

input:

0, 0)
(0.239316, 0)
(0.464723, 0)
(0.663123, 0)
(0.822984, 0)
(0.935016, 0)
(0.992709, 0)
(0.992709, 0)
(0.935016, 0)
(0.822984, 0)
(0.663123, 0)
(0.464723, 0)
(0.239316, 0)
(4.35984e-17, 0)
(-0.239316, 0)
(~0.464723, 0)
(-0.663123, 0)
(-0.822984, 0)

Complex Arithmetic in C++ 1-11
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-0.935016, 0)

-0.992709, 0)

-0.992709, 0)

-0.935016, 0)

~-0.822984, 0)

-0.663123, 0)

-0.464723, 0)

(-0.239316, 0)

output:

(9.56401e~17, 0)
(-3.76665e-16, -13)
(9.39828e~-17, 1.1126le~-17)
(6.42219%~16, —-4.20613e-17)
(7.3727%e-17, 2.33319e-16)
(2.85084e~16, 2.87918e-16)
(4.03134e~-17, 5.178%-17)
(2.60865e~-16, 6.78794e~17)
(-5.71667e~17, —-3.86348e~17)
(2.76315e~16, 2.36902e-17)
(—-6.43755e~17, -3.80255e-17)
(1.95031e-16, 9.77858e-17)
(1.49087e-16, =7.57345e-17)
(3.17224e-16, 1.642%e-17)
(1.49087e-16, 7.57345e-17)
(2.7218e~16, —4.03777e-17)
(-6.43755e-17, 3.80255e-17)
(4.93805e—-16, 3.36874e~-17)
(-5.71667e~-17, 3.86348e-17)
(7.86047e-16, -4.11068e~18)
(4.03134e~-17, -5.178%-17)
(1.60788e-15, —-1.0684le-16)
(7.3727%-17, —-2.33319%e-16)
(5.45186e~-15, 2.4271%e~16)
(9.39828e~-17, -1.11261le-17)
(-1.12013e-14, 13)°

Errors and Error Handling

These are the declarations used by the error handling:

int errno;
int complex_ error(int, double);

The user can supply complex_error(). Otherwise a function that simply sets errno is used. The excep-
tions generated are:
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cosh(zz):
‘.. C.COSHRE
C_COSH_IM

exp(zz):
C_EXP_RE_POS
C_EXP_RE_NEG
C_EXP_IM

log(z2):
C_LOG_0

sinh(zz):
C_SINH_RE
C SINH IM

.

| zz.re | too large. Value with correct angle and huge magnitude returned.
| zz.im | too large. Complex(0,0) returned.

zz.im too small. Value with correct angle and huge magnitude returned.
zz.re too small. Complex(0,0) returned.
| zz.im | too large. Complex(0,0) returned.

2z==(). Value with a large real part and zero imaginary part returned.

| zz.re | too large. Value with correct angle and huge magnitude returned.
| zz.im | too large. Complex(0,0) returned.

Complex Arithmetic In C++ 1-13



Footnotes

1. Such a function is called a constructor. A constructor for a type always has the same name as
the type itself.
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Introduction

- Roadmap for the C++ Task Library Documentation

The three sections of this chapter describe the C++ Language System coroutine or task library.

m The first section, “A Set of C++ Classes for Co-routine Style Programming,”” written by Bjarne
Stroustrup and revised and updated by Jonathan Shopiro, describes how the task library can be
used. Read this section to learn about the basic use of the task library.

m The second section, “Extending the C++ Task System for Real-Time Control,” by Jonathan Sho-
piro, describes new features of the task library to enable tasks to receive UNIX system signals.

m The task system internals for Release 2.0 are described in the third section, A Porting Guide for

the C++ Coroutine Library,” by Stacey Keenan. This part tells you about the internals of the
task library.

m Man pages for the task library may be found in Appendix A of this manual.

a
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A Set of C++ Classes for Co-routine Style Programming

This section is taken directly from a paper by Bjarne Stroustrup and Jonathan E. Shopiro.
NOTE

Abstract

Some programs are most naturally expressed as a set of relatively independent activities communicat-
ing to achieve a common goal. Each activity, here called a task, has its own locus of control, a pro-
gram to execute, and its own private data. Tasks can communicate by explicit sharing of data, by mes-
sages, or by data pipes.

This paper describes C++ classes for a range of styles of multi-programming techniques in a single
language, single address-space environment. Each task is an instance of a user-defined class derived
from class task, and the program of the task is the constructor of its class. A task can be suspended
and resumed without interfering with its internal state. Class qhead and class qtail enable a wide
range of message passing and data buffering schemes to be implemented simply.

The task system can be used for writing event driven simulations. Tasks execute in a simulated time
frame presented by the variable clock, and objects of class timer provide a convenient and efficient
facility for using the clock.

The implementation and use of these concepts rely heavily on the idea of derived classes. Familiarity
with the C++ language would be an advantage for the reader.

Introduction

Some programs are most naturally expressed as a set of relatively independent activities communicat-
ing to achieve a common goal. Such activities, here called tasks, must be able to execute in parallel
with each other and communicate through means convenient to the chosen style of task usage.

Facilities for multi-thread computation can be provided in the semantics of a language, as is done in
Concurrent Pascal and Mesa or a language without such facilities can be augmented using special
run-time support systems and library functions, as has been done for BCPL and C. The use of C
classes to implement tasks represents an intermediate approach pioneered by Simulaé7.

The tools presented here' provide the basic facilities for several styles of multi-thread programming in
a single language, single address-space environment. The underlying facility is a simple and efficient
tasking system with non-preemptive scheduling. That is, a task will only be suspended on its own
request, so no “system policy”’ can be enforced without the cooperation of all tasks. In contrast to
pure co-routine systems, however, the task system provides a framework for processor sharing and
communication between tasks. The task system is intended for applications, like event driven simula-
tions, where tasks are used to express a quasi-parallel structure for a single program. For this class of
applications a concept of simulated time is implemented. A unit of simulated time can represent any
amount of real time, and it is possible to compute without consuming simulated time. A few simple
random number generating classes and a histogram class for data gathering are also provided. The
task system is not intended for handling real parallelism of some underlying real-time system. Conse-
quently, no facilities are provided to map interrupts and other real-time events into the concepts
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provided by the task system.

The current version of the task library has a new degree of extensibility, so that it is

now possible to write a class that represents an interrupt or signal that can be waited
for.

Implementations of the task system have been used for about eight years on the UNIX system and
other operating systems on 3B2, 3B20, VAX, and Motorola 680x0 hardware.

In the following sections the task library will be described in some detail, and examples of its use will
be given. The classes used in the task system are presented. This allows a detailed and specific dis-
cussion of the concepts involved, but it unfortunately also implies that some concepts cannot be
explained in detail where they are first mentioned.

Tasks

The publicly accessible functions and data of class task look like this:?

class task : public sched
{

public:

task (char* name=0, int mode=0, int stacksize=0);
~task();

task* t_next;

char* t_name;

int waitvec (object*¥);

int waitlist (object* ...);

void wait (object*);

void delay(int);

int preenpt () ;

void sleep (object* t =0);

void resultis(int);

void cancel (int) ;

};

The base class, sched, is responsible for scheduling and for the functionality that is common to tasks
and timers (described below). The public part of its declaration is:

class sched : public object {

public:
sched() ;
void setclock(long) ;
long rdtime () ;
int rdstate() ;
int pending() ;
void cancel (int) ;
int result ();

i

Class sched is used strictly as a base class: that is, only instances of derived classes are created.
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A task is a locus of control, a virtual processor. It too can only be used as a base class. A task exe-
cutes the program supplied as the constructor of the derived class.” The most basic feature of a task is
that it can be suspended and later resumed so that several tasks can run in quasi-parallel. Most
member functions of class task are conditional or unconditional requests for suspension.

A task can be in one of three states:

RUNNING The task is executing instructions or it will be scheduled to do so without
further intervention from other tasks.

IDLE The task is not in the RUNNING state, but it can be transferred to the RUN-
NING state by some suitable action. That is, it is waiting.

TERMINATED The task has completed its work. It cannot be resumed, but its result can be
retrieved.

The function sched:rdstate() returns the state.

A simple example of the use of tasks is where one task creates another to run in parallel with itself.
Later the creator can obtain the result produced by the “secondary”” task. For example, a task which
counts the number of spaces in a string could be declared. First a class Spaces must be declared.

class Spaces : public task
{
public:
Spaces (char*) ;
}:

In the case of class Spaces the declaration is trivial. It states that Spaces is derived from class task so
that each object of class Spaces becomes an independently scheduled entity. The program for the task
is provided by its constructor.

Spaces: :Spaces (register char* s)
{
register int i=0;
register char «¢;
while (c = *s++)
if (c ="' ") i++;
resultis(i);

This function counts the spaces in its argument string and returns the result using the class task func-
tion resultis(). A task of class Spaces can now be created and used like this:

Spaces ss("a line with four spaces");
/...
count = ss.result():;

When an object of class Spaces is created, like ss here, its constructor becomes a new task that runs in
parallel with the task? that created it. A task can “return” an integer” value using the function
taskzresultis(int). The task then becomes TERMINATED and the value is available for examination
by the function sched::result(). That is, in this example ss will call resultis(} with the argument 4
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which will be returned from sched:result() to the parent task. If a task calls result() for another task
which has not yet completed the calling task will be suspended. After the other task finishes the call
to result() in the waiting task will return. A task waiting for another to complete is IDLE. If a task
calls result() for itself it will cause a run time error.

A task cannot return a value using the usual function return mechanism; it must use resultis(). This
function puts the task into the TERMINATED state from which it cannot be resumed.

Queues

A gueue is a type of storage that is organized so that objects are retrieved from it in the order in which
they were inserted into it. A queue has a head from which data is retrieved and a fail where data is
inserted. With a little elaboration this basic type of data structure makes an excellent inter-task com-
munication facility.

There is no “class queue” available to a user. Instead, the two classes qhead and qtail provide the ser-
vices needed. There is a function qtail::put() which adds an object to the tail of a queue and a function
qhead:get() which retrieves an object from the head of a queue. This allows explicit separation
between the source and the recipient of data. The public part of the declaration of class qhead looks
like this:

class ghead : public object
{

public:

ghead (int =WMODE, int =10000);
~ghead () ;

object* get();

int putback (object*) ;

int rdcount () ;

int rdmode () ;

int rdmax () ;

void setmode (int) ;

void setmax (int) ;

gtail* tail ().
ghead* cut () ;

void splice(gqtail *);
int pending() ;
void print {int, int =0);

b

A queue can be created like this:
ghead aqh;

To obtain a qtail for an existing queue execute tail() for its head:
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qtailx* gtp = gqh.tail();

The queue could now be used as a one way inter-task communication channel by giving its head and
tail as arguments to two new tasks, Producer and Consumer:

Producer pp(qtp):
Consumer cc(&qh);

The producer task pp can now put() objects to the tail of the queue (denoted by the pointer qtp) and
the consumer task cc can get() those objects from its head (denoted by the pointer &qh). The function
qtail::put() takes a pointer to a class object as argument, and qhead::get() returns such a pointer.
Unless the user has specified otherwise a task executing qhead::get() will be suspended temporarily if
the queue is empty.” After another task executes put() on the associated queue tail the suspended task
will be resumed. Similarly a task executing qtail:put() on a full” queue will be suspended until some
other task removes data from the queue.

The objects transmitted through a queue must be of class object or of some class derived from it.
Class object (described under “The object Class”) is provided by the task system, and it is up to the
programmer to define types of objects suitable for each application.

In the current version of the task library qhead and qtail have the form of user exten-
sions, but in the original version they were built in. Since extensibility was limited, the
supplied classes had to support a wide range of programming styles. Thus they may
seem “feature-rich.” The new organization makes it easy to provide new kinds of
queues and other forms of task interaction.

A Server Example

As an example of the use of tasks and queues we will define a “server” task that receives requests for
service in the form of messages on a queue, handles the requests and returns replies on other queues.
One could define a class Message as follows:

class Message : public object
{

public:
int r_operation;
int r_argl;
int r_arg2;

qtail* r_reply:
b

A message, that is an object of class Message, describes an operation r_operation that is to be per-
formed by the recipient of the message. Arguments for this operation can be passed as r_argl and
r_arg2, and the result of the operation is to be returned as a message on the queue denoted by r_reply.

A server for these messages can be defined as follows:

class Server : public task

{
public:
Server (ghead *);

2-6 Library Manual



A Set of C++ Classes for Co-routine Style Programming

};

Server: :Server (ghead* in)
{

for (;;) {
Message* req = (Message *) in->get();
gtail* reply = req->r_reply;
int res = VALUE;
int val;
switch (req->r_operation) {
case PLUS:
val = req->r argl + req->r_arg2;
break:
case MINUS:
default:
res = ERROR;

}

regq->r_operation = res;
req->r_argl = val;
reply->put (req) ;

(“,.u This style of server has proved useful in many contexts. In particular, it is the backbone of many
“message-based systems.” In this particular example a server, that is an object of class Server, and the
queue on which it depends can be declared:

qtail* rq = new gtail;
Server* ser = new Server (rq->head()):

Other tasks can now send a request to this particular server through rq. For example:
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ghead rply:

gtail* rply_to = rply.tail();

Message* mess = new Message;

mess->r_operation = PLUS;
mess->r_argl = 1;
mess->r_arg2 = 2;
mess->r_reply = rply to;

rg->put (mess) ;
mess = (Message *) rply.get():;
if (mess->r operation == ERROR)

error();
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More about Queues: Mode and Size

A queue head has a mode that controls what happens when get() is executed on an empty queue. In
EMODE this causes a run time error. In ZMODE it will cause get() to return the NULL pointer
instead of a pointer to an object. In WMODE a task executing a get() on an empty queue will wait on
that queue until the queue becomes non-empty. Unless the user specifies the mode explicitly a queue
head will be in WMODE. The function ghead:rdmode() returns the current mode and
qhead::setmode() can be used to change it.

As mentioned above a queue also has a maximum size. This can be changed using qhead::setmax(),
and read using qhead::rdmax().

The mode and maximum size for a queue can also be specified when the queue is created. For exam-
ple:

ghead Q1 (ZMODE, 10):
ghead* QP2 = new ghead(EMODE, 64*BUFSIZE):;
The public part of the declaration of class qtail is similar to that of class ghead. The two classes com-

plement each other, and together they provide a representation of the general idea of a queue:

class gtail : public object
{

/...
public:

gtail (int = WMODE, int = 10000);
~qtail():

int put (object*);

int rdspace () ;

int rdmax () ;

int rdmode () ;

gqtail* cut();
void splice (ghead¥*) ;
ghead*  head():

void setmode (int m);
void setmax (int m);

int pending() ;

void print (int, int =0);

};

A queue tail’s mode controls what happens on queue overflow in the same way as a queue head’s
mode controls what happens on queue underflow. For example, when a task executes put() on a full
queue where the queue tail is in WMODE, then that task will be suspended until the queue is no
longer full. The modes of a queue’s head and tail need not be the same.

Similarly the maximum number of objects which can be on a queue can be examined by rdmax() and
changed by setmax(). Decreasing the maximum below the current number of objects on the queue is
legal. Doing this simply implies that no new objects can be put on the queue until the queue has been
drained below the new limit.
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Qhead::rdcount() returns the current number of objects in a queue, and qtail::rdspace() returns the ™
number of objects which can be inserted into a queue before it becomes full. )

Qhead::putback() puts its argument back at the head of the queue, that is

ghead qh (WMODE, 10) ;
object* o0o0 = gh.get():;
gh.putback (co) ;

oo = qh.get ();

will assign the same object to oo twice. Putback() has proved to be a useful function in many systems
in the past, and it also allows a queue head to operate as a stack. When putback() is used, the task
executing it competes for queue space with tasks using put() on the queue’s tail. A putback() to a full
queue causes a run time error in both EMODE and WMODE. In ZMODE it returns NULL.

More about Tasks

When a task is created it can be given three arguments. The first is a character string pointer which is
used to initialize the class task variable t_ name. This name can be used to provide more readable out-
put and does not affect the behavior of the task. The string denoted by the pointer will not be copied.
The t_name is used by the debugging aids and error reporting functions described below. The other
two class task arguments are tuning parameters and will be described below. If an argument is NULL
a system default will be used. For example, we could have given each Server task a name like this:

class Server : public task \
{ i

Server (char*, ghead *);
};

void Server::Server (char* name, ghead* in)
{(name) // argument for Server’s base class task
{
/...
}

Server my_name_is_ fred("fred", qhp);

Task::sleep(object* =0) suspends the task unconditionally without specifying what is supposed to
cause it to be resumed.

If an argument is given to task:sleep(object* =0) which is a pointer to a pending object,
the task will be remembered by the object, so that after it is no longer pending, the task
will be resumed.

Task:cancel() puts a task into the TERMINATED state and sets the return value just like resultis().
However, cancel() does not invoke the scheduler so that one task can terminate another without losing
control itself.
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The pointer
task* thistask;

denotes the currently active task. If no tasks have been created its value is 0. It is illegal to assign to
thistask. The use of thistask enables the class task functions to be used from external functions
without explicit passing of the current task’s this pointer.

The pointer9
task* task_chain;
is the start of a chain of all tasks. In the following loop t points to every task in turn:

task* t;
for (t=task_chain; t; t=t->t_next) ;

It is not possible to have only one task. Therefore, when the first task is created in a program another
task is implicitly created. Its name is main and its code is the original main() function. It can be
suspended and resumed like any other task. Please remember that a return from main() terminates a
C program. If the “main” task should be terminated when there are other tasks which should be left
running, then resultis() can be used. For example,

thistask—>resultis (0);

can be executed in main(). The program will then run on until no more tasks are or can become RUN-
NING.

It is illegal for a task to return. Always call resultis() instead of return, and never just “drop out of
the bottom’ of a task. Unless a task contains an infinite loop so that it will never terminate place a
call of resultis(} at the end of its body.

The task system does not provide a garbage collector. It is left to the programmer to ensure that
pointers to deallocated store are not used.

Waiting

Functions like sched::result(), ghead::get(), and qtail:put() each provide a way of waiting for one sin-
gle specific event to happen. More general facilities are sometimes needed.

When an object must be waited for, we say it is pending. For example,
m A queue head whose associated queue is empty is pending because if a task calls
get() for it, the task must wait until some other task puts some data in the queue,

m  Similarly, a queue tail whose queue is full is pending because a put() must wait,
and

m A task that has not terminated is pending because its result is not available.
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Each class derived from object may have its own definition of the virtual pending()
function. An object may have several operations that could suspend the calling task,
but it can have only one definition of pending(). Therefore (for example) it is not possi-
ble to combine a queue head and a queue tail into a single object, because the former
is pending when its queue is empty, and the latter when its queue is full. New kinds of
objects, with new kinds of interaction can be added to the task library, with the funda-
mental requirement being a definition of pending() for the new datatype.

; j

;

J

y
\\,,/

Task::wait(object*) provides a way of waiting on an arbitrary object. If the argument points to a
pending object, the calling task will be suspended until the object is no longer pending. If the argu-
ment is not pending the caller will not be suspended at all. For example, if taskp is a pointer to a task
then

wait (taskp);

will suspend the task executing it until the task denoted by taskp finishes.

Each class derived from class object which is ever going to be “waited on” must have rules specifying
under which conditions a task executing a wait() for it will be resumed. The rules for class task,
ghead, and qtail have been stated.

The conditions for wakeup are reflected in state changes in the objects, and are not just transitory
unrecorded signals. For example, if a task executes a wait() for a non-empty qhead it will immedi-
ately continue, that is the condition for returning from a wait() for a qhead is that the queue is non-
empty, not a brief state change from empty to non-empty. Rules of this type simplify programming
considerably by eliminating race conditions.

When the state of an object changes from pending to not pending, object::alert() must
be called for the object. This function changes the state of all tasks “remembered” by
the object from IDLE to RUNNING and puts them on the scheduler’s run_chain.

Thus all such operations should be member functions of the object’s class or a related
class. For example, in qtail:put(), if the queue was empty, a call to alert() is made for
the associated queue head. If it was possible to put an object on a queue without cal-
ling a member function, then there would be no guarantee that alert() would be called.

e

The functions task::waitvec() and task:waitlist() suspend a task waiting for one of a list of objectg, for
example to wait for messages to arrive on one of a number of queue heads. Waitlist(object* !
takes a list of object pointers terminated by a zero as argument; for example:

ghead* ql;
ghead* q2;
/! ...

short who = waitlist (ql, g2, 0);

will suspend the task executing it until either q1 or q2 is non-empty. If either is non-empty when
waitlist() is called the task will continue immediately.

The value returned is the position in the list of the object that caused the return from the wait, that is
if q2 caused the task to resume the value 1 will be assigned to who. Positions are numbered starting
from 0. Waitlist() can take any number of arguments. The degenerate example

2-12 Library Manual



()

A Set of C++ Classes for Co-routine Style Programming

waitlist(0);

causes unconditional suspension of the task executing it without any guarantee of later resumption. It
is equivalent to sleep() and wait(0).

Please note that one should not assume that because waitlist() returns a particular value indicating one
object as the cause of resumption none of the other objects are “ready.” The value returned by

waitlist() only indicates what is known to have happened, and it does not exclude other independent
possibilities.

However if waitlist() indicates a particular object, that object is guaranteed to be
“ready,” because waitlist() does not return until the object is no longer pending.

Because every class in the task system allows non-blocking examination of the conditions which might
lead to suspension using the three wait functions, the value returned by waitlist() can always be
ignored. The information it conveys can always be obtained by direct inquiry. In many cases, how-
ever, the value returned can be trusted and used to write simpler, more efficient programs.

Waitvec(), a variation of waitlist(). takes the address of a vector holding a list of object pointers. For
example:

object* wvec[] = { ql, g2, 0 };
short who = waitvec (vec);

is equivalent to the previous example.

System Time and Timers

The long variable clock measures simulated time. It is initialized to zero. It is illegal to assign to
clock.

Task:delay(int) suspends a task for a specified time. That is,

long t = clock;
delay(n);
actual_delay = clock-t;

will assign the value n to actual_delay. Delay() is useful for representing service delays in simula-
tions. While a task is delayed in this way its state is still RUNNING, but it will not be affected by the
actions of other tasks except if cancel() or preempt() is used on it. Delay(n) makes an IDLE task
RUNNING so that it will start executing at time clock+n.

Task::preempt() makes a RUNNING task IDLE and returns the number of time units left of its delay.
Applying preempt() to an IDLE or TERMINATED task causes a run time error. This function is use-
ful when tasks are used to represent processes in a system with preemptive scheduling and delay
times are used to represent the time used by executing processes. The value returned by preempt()
allows the preempted task to be re-started with a new delay time which is a function of the delay time
at the time of preemption. For example:
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int time left = other_task->preempt();
/7 ...
other_task->delay(time left+10);

A timer provides a facility for implementing time-outs and other time dependent phenomena.

Class timer has this declaration:

class timer : public sched {
public:
timer (int);
~timer();
void reset (int);
void print(int, int =0);
}:

A timer is quite similar to a task with a constructor consisting of the single statement
delay (d);

that is, when a timer is created it simply waits for the number of time units given to it as its argument,
and then wakes up any tasks waiting for it.

A timer’s state can be either RUNNING or TERMINATED. This state can be inspected by using
sched:rdstate().

A common use of timers is to wait for a task and a timer. For example, one can wait for the comple-
tion of a task handling a simulated input operation and also on a timer. The timer ensures that the
waiting task will eventually be resumed even if the input operation is never t:ompleted:1

timer* tt = new timer(1l5);
short res = waitlist (io_ptr,tt,0);
switch (res) ({

case 0:
/* normal completion of i/o */
break;
case 1:
/* time out occurred */
break;
default:

error (IMPOSSIBLE) ;
}

Sched:result and sched:cancel() have the same use and effects on timers as on
tasks. Since there is no timer:resultis(), the value returned by sched:result() is
undefined for a timer unless cancel() was used.
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Timer:reset() re-sets the timer delay to the value of its argument. This makes repeated use of timers
possible. A timer can be reset() even when it is TERMINATED.

A unit of simulated time can be used to represent any unit of real time. Only delay() causes the clock
to advance.

More About Queues: Cutting and Splicing

One of the most convenient and powerful ways of using tasks involves tasks defined to do a transfor-
mation on a data stream. Such a task is called a filter. It reads its input from one queue and writes its
output onto another queue. Tasks at the “other ends” of these queues tend to view these queues plus
the filter as one entity. The data source simply sees an output queue that is being emptied at some
rate, and the task at the receiving end sees an input queue being filled. In other words, a task sees
only its input and output queues and cares little about the “internal organization” of the programs
that operate on the other ends of those queues.

For example, one task could produce a stream of lines of characters, that is objects of class Line, and
another expect an input stream consisting of words, that is objects of class Word. A filter that handles
the conversion could be defined and used like this:

class Line_to word : task
{
public:
Line to_word(ghead*, qtail¥*);
Word* next word(Line¥);
}i

Line_to_word::Line_to_word(ghead* in g, qtail* out_q)

{

Linex* 1;
Word* W
for(;;) {

1 = (Line *) in_g->get();
while(w = next_word(l)) out_g->put ( (cbject *)w);

ghead* line q = new ghead (WMODE, 10);
gtail* word q = new qtail (WMODE, 50);
Producer* prod = new Producer(line_g->tail()):
Consumer* cons = new Consumer (word g->head());

Line _to word* filt = new Line_to_word(line q, word q):

In this way the filter filt is programmed into the path between cons and prod using two queues to
separate filt's input from its output.
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This is a fairly static use of a filter. Often one would like to insert a filter into an existing data path.
For example, a macro-based text formatting program could be organized as a sequence of filters —
each doing its small part of the common task. First some filters re-arrange the input into a form suit-
able for the formatter proper, then the “input independent” formatter does its job producing output of
a standard form, and last some output filters adjust this output to a form suitable for physical output.
The task filt is an example of such a filter. In this scenario it would be useful to have each macro
defined as a filter which the formatter proper inserts just in front of itself when the macro expansion is
needed and which removes itself when it is not needed any more. Assuming that data streams are
represented by queues, this can be achieved by using the class ghead functions cut() and splice().

N

When the task formatter recognizes a call to the macro ““foo” it creates a new task of class Macro to
handle a macro of type FOO and diverts its own input through it. This is done by first ““cutting” the
input queue to create a place to insert the new filter, and then creating the filter giving it the new
ghead and qtail as arguments:

ghead* newhead = input_queue->cut();
qtail* newtail = input queue->tail():;
Macro* £ = new Macro (FOO, newhead, newtail) ;

Qhead::cut() splits the queue to which it is applied into two. Newhead, the pointer returned from
cut(), denotes the qhead for the original queue and has the same mode as the original ghead. The ori-
ginal qhead is now attached to a new empty queue with the same max as the original.

Puts to the original qtail will therefore place objects on the filter's input queue, and gets from the ori-
ginal ghead will retrieve objects from the filter's output queue.

The result of these operations has been to insert a filter with an input and an output queue into a )
queue without changing the appearance of that queue to anyone using it, and without halting the flow e
of objects through that queue. In our example the macro expansion filter foo will get() the input

which would otherwise have gone to the formatter, interpret it as macro arguments, and output the

expanded input as its output.

The filter can be removed again by splicing its input and output queues together with ghead::splice():

newhead->splice (newtail) ;
Splice() deletes the ghead to which it is applied, the gtail given to it as an argument, and the queue
denoted by that qtail. If the splice() operation causes an empty queue to become non-empty or a full

queue to become non-full all tasks waiting for such a state change are resumed.

Deleting the filter completes the cleanup:

delete f;

Typically a filter would remove itself when its task was completed, because the task that inserted it
would not be programmed to be aware of the presence of the filter it inserted. The sequence of opera-
tions which enables a task to remove itself without a trace is:
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‘ cancel (any_value);
M delete this;

This will work because cancel(} does not imply immediate suspension, only a guarantee that the task
cannot be resumed.

Qtail::cut() and qtail::splice() are similar to ghead, but they operate on the other end of the queue.

Encapsulation

Passing information between tasks through queues can lead to rather tedious, repetitive (and therefore
error prone) packing and unpacking of information into messages. Simple encapsulation techniques
can be used to relieve the programmer of this. For example, by adding a constructor to the class Mes-
sage the server example could be re-written thus:

class Message : object
{

public:
int r_operation;
int r_argl;
int r_arg2;
qtail* r_reply:
Message (int op, int al, int a2, qtail* rp)
r_operation{op), r_argl(al),

{,.w r_arg2(a2), r_reply(rp) {}

Message* mess;

rq->put (new Message (PLUS, 1, 2, rply to));
mess = (Message *) rply.get ().,

if (mess->r_operation == ERROR) error():

Furthermore, because the message queues obviously are meant to hold only Message objects a specific
message queue could be defined and used:

N
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class Mghead : ghead
{
public:
Message* get() { return (Message *) ghead::get(); }:
}:

class Mgtail : qtail
{
public:

int put(Message* m) { return gtail::put(m); };
}:

The use of Mqtail:put() ensures that only class Message objects are put on the queue, and no type cast
is needed when class Message objects are taken from the queue using Mqhead.get(). For example:

mess = rply->get ();

Because the body of Mqtail::put() is present in the class Mqtail, declaration calls of Mqtail::put() will
be expanded inline. This ensures that using a Mqtail is no less efficient than using a qtail directly. In
many cases some error handling can also be handled by the derived put() and get() functions.

An alternative solution is to provide the server class with functions which handle the packing:

class Server : task
{
qtail* inp;

public:
Server (char*, ghead*);
int plus(int, int, Mgtail *);
int minus{int, int, Mgtail *);

s

int Server::plus(int argl, int arg2, Mqtail * rqt)
{
Message* mess;
int X;
inp->put (new Message (PLUS, argl, arg2,rqt));
mess = rqt->head()->get ();
X = mess—>r_operation;
delete mess;
return Xx;
}

so now the server task can be requested to perform services like this:
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Mgtail qq;

Server ss("plus_and minus®, 0, 0);
int two = ss.plus(l, 1, &qq):
int ten = ss.minus(12, 2, &qq):

For large programs this style of inter-task communication promises not only increased clarity, but also
increased efficiency. The message queue interaction may, where necessary, be transparently replaced
by a specially tailored inter-task communication facility.

These techniques are now widely applied in C++ programming, but when this paper
was first written, they were new to C.

Histograms and Random Numbers

To ease data gathering class histogram is provided.

struct histogram

// "nbin" bins covering the range [l:r] uniformly
// nbin*binsize == r-1

{

int 1, r;
int binsize;
int nbin;
int* h;

long sum;
long  sgsum;
histogram(int=16, int=0, int=16);
void add(int);
void print{();
b

A histogram consists of nbin bins h[0], ... hInbin-1] covering a range [Lr] of integers. The function
add() adds one to the correct bin for its integer argument. The sum of the integers added is main-
tained in sum, and the sum of their squares is maintained in sqsum. If an argument to add() is out-
side the range [lx] the range is adapted by either decreasing 1 or increasing r. The number of bins
remains constant so the size of the range covered by a bin is doubled each time the size of the range
[L:r] is. The print() function prints out the numbers of entries for each non-empty bin.

In most simulations some form of random number generation is needed. The generators provided
here are intended to help the developer of a simulation to get started and to provide a paradigm for
generators of more suitable distributions.
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class randint
// uniform distribution in the interval [0,MAXINT AS FLOAT]
{
long randx;
public:
randint (long s = 0);
void seed (long s);
int draw() ;
float fdraw():
b;

The following program shows the use of class randint. The ints returned by randint::draw() are uni-

formly distributed in the interval [0:largest_positive_int]. The floats returned by randint:fdraw() are
uniformly distributed in the interval [0:1].

main()
{
randint ir;
register 1i;
for (i=0; i<100; it++)
printf ("i=%d £=%f “, ir.draw(), ir.fdraw());
}

Each object of class randint provides an independent sequence of random numbers. Randint:seed()
can be used to reinitialize a generator. The draw() function calls the underlying C library rand(3).
Using class randint, generators for other distributions are easily programmed. Note that erand::draw()
calls log() from the math library, so a program using it must be loaded with -lm.

class urand : public randint
// uniform distribution in the interval [low,high]
{
public:
int low, high;
urand(int 1, int h) { low=l; high=h; }
int draw() { return int(low + (high-low) *

(O+randint: :draw () /MAXINT AS FLOAT)): }
}i

class erand : public randint
// exponential distribution random number generator
{
public:

int mean;

erand(int m) { mean=m; };

int draw():

b
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Implementation Details

The following sections contain many implementation-dependent details. The implementation
described is the UNIX version. Implementation-dependent information is unfortunately often neces-
sary to allow tuning and ease debugging.

Task Stack Allocation

The two arguments mode and stacksize allow the user to guide the system’s handling of the task.
Their exact interpretation is implementation dependent. Users who are not interested in implementa-
tion details and/or want a more portable program should set them both to zero. The system will then
choose (hopefully reasonable) implementation-dependent default values.

The stacksize argument indicates the maximum amount of stack storage that the task is allowed to
use. Using more is an error. It will be expressed in a unit of store (typically machine words) suitable
for stack allocation on the host system.

The mode provides additional information. The value SHARED indicates that the stack space should
be taken from the stack space of the parent task, that is the task which created the new task. Where
SHARED stacks are used the active part of the stack is copied to a save area when a task is
suspended, and copied back when it is resumed. Since SHARED stack locations are not dedicated to a
single task pointers to local variables should not be passed to other tasks. The time needed to suspend and
resume a task with SHARED stack is approximately proportional to the amount of stack space actu-
ally used at the time of suspension.

If, on the other hand, the mode is DEDICATED then a new and separate stack area is allocated, and
no copying of stack space will occur.

Scheduling

Functions of a system class, known as the scheduler, are invoked as the result of any function of class
task which causes the suspension of a running task, and may be invoked by any function from the
standard classes described here. The scheduler selects the next task to run. When the scheduler finds
no more tasks to run, and there are no interrupt_handlers, it examines the pointer variable exit fct,
and if this is non-zero the scheduler will call the function denoted by it.

Whenever clock is advanced the scheduler examines the pointer variable clock_task. If this denotes a
task, then that task will be resumed before any other task. The clock_task must be IDLE when
resumed by the scheduler. The class task function sleep() is useful to ensure this.

Debugging and Tuning Aids

The task systemn has been designed under the assumption that a typical use of tasks may involve hun-
dreds of tasks and need tuning to achieve an acceptable time-space tradeoff. The task of debugging
such a system can safely be assumed to be non-trivial.

Classes were used in the implementation of the task system largely because they allow the scope of
data and functions to be explicitly restricted to the object to which they belong. This allows better
type checking of a multi-threaded program than could be achieved by a function-based implementa-
tion. The classes which constitute the task system were designed to allow quite strong type checking
of programs using them.
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A number of run time errors are detected by the task system. For example it is illegal to delete a h
queue on which a task is waiting. When such a run time error is detected the task system function )
object::task_error is called with the number of the error and the this pointer of the object which

caused the error as arguments. A list of run time errors appears under “Run-Time Errors.”

Task_error() will in turn examine the pointer error_fct, and if this is non-zero call the function denoted

by it with a copy of its own arguments. Otherwise task_error(} will call the system function exit()

with the error number as argument.

When returning from task_error() after executing an error_fct which returned rather than using exit()
the task system will re-try the operation which caused the error (provided that error_fct could have
affected the condition which caused the error). For example, a put() to a ghead will be re-tried
because the user’s error_fct might have either caused the get(} function to be used on the queue, or
used chmax() to allow more objects to be inserted into that queue.

This error handling mechanism is primarily designed for debugging and it is expected
that user error functions will print some appropriate error message and exit.

Beware of infinite loops.

All task system classes have a function print() which can be used to print the contents of their objects
on stdout. A print() function takes an int argument indicating the amount of information to be
printed. Print(0) gives the minimum amount of information, printt VERBOSE) rather more, and
print(CHAIN) will call print() for objects on lists associated with the object with its own arguments.
The print() argument constants can be combined by the or operator. For example

thistask->print (VERBOSE) ;
run_chain->print (VERBOSE | CHAIN) ;

“\._,/

will verbosely describe every non-TERMINATED timer and every RUNNING task. For tasks infor- e
mation about the run time stack is printed by print(STACK). If the variable _hwm is set to a non-zero

value, print(STACK) will also give an estimate of the maximum amount of stack space ever used by

the task, the stack’s “high water mark.” For tasks that share a stack, the high water mark printed will

be the high water mark of the most greedy task. For example, information describing stack usage for

all tasks can be printed by:

task_chain->print (STACK|CHAIN) ;

The output of the print() functions is implementation-dependent and hopefully self-explanatory.

Overheads and Performance
The store used for representing a class object in addition to the user specified data is:

object | 3 words

timer | 5 words

task 18 words + stacksize

queue | 15 words (including the ghead and the qtail)

The times needed to execute some of the task system functions are (very) approximately:
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C procedure call + return | 1 unit

task suspend + resume 9 units (using result())
put 2 units
get 2 units

wait, waitvec, or waitlist 3 units

The last four actions can all cause a task to be suspended. When this happens add 6 units of time.

For timing results relative to UNIX process switching, see “Extending the C++ Task
System for Real-Time Control.”

The task system uses about 15K bytes of store for program and data, but much of this is redundant
virtual function tables that will be eliminated in a future version of the C++ compiler.

The object Class

The task system as described above is implemented using a lower level of abstraction based on the
direct use of the class object. Class object can also be used as a base for other (user defined) abstrac-
tions, but beware, it is an implementation tool that is not intended to be used directly.

Class object is a base class for all classes in the task system and also the most basic facility for inter-
task communication. The declaration of class object looks like this:

class object
{

friend sched;
friend task;

olink* o_link;
public:
object* ©_next;

virtual int o_type();
object () { o_link=0; o _next=0; }

~object () ;
void remember (task* t) { o_link = new olink(t,o link}; }
void forget (task*) ; // remove all occurrences of task from chain
void alert(); // prepare IDLE tasks for scheduling
virtual int pending(); // TRUE if this object should be waited for

virtual void print(int, int =0);// first arg VERBOSE, CHAIN, or STACK

The task system implements objects of type TASK, QHEAD, QTAIL, and TIMER.

Virtual functions make it unnecessary to ever test the type of an object. The virtual
function o_type() is never called.

A task can be added to the set of tasks “remembered” by an object by executing object::remember()
and a task can be removed from this set by executing object:forget(). Executing object::alert() has the
effect of transferring all IDLE tasks remembered by the object to the run_chain and the RUNNING
state.
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The virtual function object::pending() provides the “glue” that allows new kinds of
objects and new communication protocols to be added to the task system. The object
may have any kind of operation that may cause the invoking task to wait, but it must
implement its own version of pending() to tell whether the operation would cause a

wait.

A task can be “remembered”’ by several objects or several times by the same object without any ill
effects. Forget() will insure that its argument is not “remembered”” any more, and it causes no bad
effects when used for an object that does not “remember” its argument task. No record is kept of how
many alert() operations have been executed on an object. Alert() does not cause an object to forget()
tasks. Executing a remember() does not suspend a task. Applying alert() to an object that does not
remember any tasks is legal, but has no effect. Caveat emptor!

The functions object:remember(), object:forget(), object:pending(), and object::alert() provide a sim-

ple, efficient, but unstructured and therefore error-prone communication mechanism.

The declarations for the task system classes can be found in /usr/include/CC/task.h on systems where

it is implemented.

Run Time Errors

When an error is detected at run time, task_error() is called. This function will examine error_fct and
if this variable denotes a function, that function will be called with the error number and this as argu-
ments, otherwise the error number will be given as an argument to print_error() which will print an

error message on stderr and terminate the program.

E_OLINK
E_ONEXT
E_GETEMPTY
E_PUTOBJ
E_PUTFULL
E_BACKOB]
E_BACKFULL
E_SETCLOCK
E_CLOCKIDLE
E_RESTERM
E_RESRUN
E_NEGTIME
E_RESOBJ
E_HISTO
E_STACK
E_STORE
E_TASKMODE
E_TASKDEL
E_TASKPRE
E_TIMERDEL
E_SCHTIME
E_SCHOB]J
E_QDEL
E_RESULT
E_WAIT
E_FUNCS

2-24

Attempt to delete an object which remembers a task.
Attempt to delete an object which is still on some chain.
Attempt to get from an empty queue in E_ MODE.
Attempt to put an object already on some queue.
Attempt to put to a full queue in E MODE.

Attempt to putback an object already on some queue.
Attempt to putback to a full queue in E_MODE.

Clock was non-zero when setclock() was called.

The clock_task was not IDLE when the clock was advanced.

Attempt to resume a TERMINATED task.
Attempt to resume a RUNNING task.
Negative argument to delay().

Attempt to resume task or timer already on some queue.

Bad arguments for histogram constructor.

Task run time stack overflow.

No more free store — new() failed.

Illegal mode argument for task constructor.

Attempt to delete a non-TERMINATED task.
Attempt to preempt a non-RUNNING task.

Attempt to delete a non-TERMINATED timer.
Scheduler run chain is corrupted: bad time.

Sched object used directly instead of as a base class.
Attempt to delete a non-empty queue.

A task attempted to obtain its own result().

A task attempted to wait() for itself to TERMINATE.
Internal error — cannot determine the call frame layout.
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E_FRAMES Internal error — cannot determine frame size.
E_REGMASK Internal error — unexpected register mask.
E_FUDGE_SIZE Internal error — fudged frame too big.
E_NO_HNDLR  No handler for the generated signal.

E_BADSIG Attempt to use a signal number that is out of range.
E_LOSTHNDLR Signal handler not on chain.

A Program using Tasks
#include <task.h>

/* trivial test example:
make a set of tasks which pass an cbject round between themselves
use printf to indicate progress
WARNING: this program sets up an infinite loop

*/

class pc : task
{

pc{char*, gtail*, ghead *);
};

pc::pc(char* n, gtail* t, ghead * h) : (n,0,0)
{
printf ("new pc(%s,%d, %d)\n",n,t,h);

while (1) {
object* p = h->get():
printf ("task %s\n",n);
t—>put (p) ;

main ()

ghead* hh = new ghead;
gtail* t = hh->tail():;
ghead* h;
short i;

printf ("main\n");

for (i=0; 1i<20; i++) {
char* n = new char[2]; /* make a one letter task name */
nf[0] = ‘a’+i;
nf[l] = 0;

h = new ghead;
new pc(n,t,h);
printf("main()’s loop\n");
t = h->tail();
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2-26

new pc("first pc",t,hh);
printf("main: here we go\n");
t->put (new object);
printf("main: exit\n"):;
thistask->resultis(0);
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Extending the C++ Task System for Real-Time Control

-1 This section is taken from a paper by Jonathan E. Shopiro.

o ' =
Abstract

The task system for coroutine programming was one of the first libraries written in C++ and it has
served admirably in several applications. It is small, efficient, and easy to use. As part of a robot con-
trol project, it was extended to support real-time control. The new task library is more robust, more
easily extendible, and more portable than the original. It is upward compatible, so that programs writ-
ten for the old task library can still be used. This section documents the new features and the internal
structure of the revised system, and is intended for users of the task library and for authors of other
coroutine systems.

Overview

The C++ task library is a coroutine'? support system for C++. A task is an object with an associated
coroutine. The task library includes a scheduler that enables each task to execute just when it has
work to do, and to wait when necessary for whatever is needed.

Programming with tasks is particularly appropriate for simulations, real-time process control, and
other applications which are naturally represented as sets of concurrent activities. A task can represent
a simple part of a complex system, and when the task gains control, it can process its current input
data, perhaps creating other data that will be processed by other tasks. It can then relinquish control,
waiting for more input or an external event.

In a program using the C++ task system, all tasks share the same address space so that pointers can be
passed between tasks, and it is easy to share common data structures. Also, the scheduler is non-
preemptive, so that each task runs until it explicitly gives up the single processor, and only then does
the scheduler choose a new task to run. This eliminates the need for locks on shared data (which
would be required if preemptive scheduling or multiple processors were used) and allows task-
switching to be accomplished with low overhead, but requires the programmer to be careful that no
task monopolizes the processor.

The rest of this section is an overview of control flow in the task system along with a brief note on
task system performance. The section “‘Real-Time Extensions” describes the interrupt handler class
and how it can be used to provide real-time response to external events. Familiarity with C++ is
assumed.

The Structure of the Task System

Control in the task system is based on a concept of operations which may succeed immediately or be
blocked, and objectsl which may be ready or pending (not ready). When a task executes a blocking
operation on an object that is ready, the operation succeeds immediately and the task continues run-
ning, but if the object is pending, the task waits. Control then returns to the scheduler, which chooses
the next task from the run chain, a list that contains all the tasks that are ready to run (not waiting or
terminated). For example, a queue head is ready when the associated queue has data, and get (which
extracts an item from the queue) is a blocking operation for queue heads. Similarly, put is a blocking
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operation for queue tails, which are ready unless the associated queue is full.

Each different kind of object can have its own way of determining whether it is ready or not, which
makes it easy to add new capabilities to the system. On the other hand, each kind of object can have
only one criterion for readiness (although it may have several blocking operations), so it is not possible
for one object to act as both a queue head and a queue tail, for example.

Each object contains a list (the remember chain) of the tasks that are waiting for it. When any operation
changes the state of a pending object so that it becomes ready, those tasks are moved to the run chain;
this is called an alert. Thus the cycle is: a task runs until it blocks; it is saved on the remember chain of
one or more pending objects; some other task or an interrupt alerts the object; the original task is
moved to the run chain; eventually the task runs again.

Task System Performance

The fundamental operations of the task system are task creation and task switching. In order to make
a meaningful evaluation of their performance, equivalent programs using tasks and UNIX Operating
System processes were written. These programs are given under “Example Programs.” Each of the
first pair of programs (tcreate.c and ucreate.c) repeatedly creates new trivial tasks (processes) and
waits for them to terminate. Each of the second pair of programs (tswitch.c and uswitch.c) creates a
single child task (process) and repeatedly exchanges control with it through a pair of semaphores (see
under “Semaphores”) in the task version, and through UNIX signals in the process version. The pro-
grams were run on a SUN 3/280 under 4.2BSD, using the free store allocator (malloc.c) from Ninth
Edition UNIX, which is much faster than the one supplied with 4.2BSD. The results were that tcreate.c
was 37 times faster than ucreate.c, and tswitch.c was 10 times faster than uswitch.c.

It is important to note that the task system and the UNIX Operating System are not equivalent and
that the results of these performance measurements do not imply that the task system is 23.5 times
better than UNIX. Among the significant differences between tasks and processes are the following.

m A set of tasks runs as a single UNIX process. The task system relies on the UNIX Operating Sys-
tem for /O, memory management, etc.

w Tasks share an address space, while processes have separate address spaces. This means that
tasks can share data by simply passing pointers, while processes must go through one of several
much more complex and expensive procedures to share data. By the same token, tasks can
interfere with each other as easily as they can cooperate, while errant processes usually kill only
themselves.

m The task system can support two or three orders of magnitude more concurrent tasks (especially
with the SHARED option; see “Task Switching’’) than the UNIX Operating System can support
processes. It is not uncommon for a simulation to require thousands of tasks.

The memory required for the task system is about 14,000 bytes for code and data, plus about 70 bytes
per task, plus stack storage for each task. By default each task has its own stack buffer with a default
size of 3000 bytes, but tasks can share a stack buffer and then storage is required only for the active
stack of each task (typically 50 to 100 bytes). This option is very useful for applications with
thousands of tasks. Queues occupy 60 bytes (including both head and tail) plus the size of whatever is
stored on the queue. Lists of tasks are maintained in various places, for example the run chain and
remember chains; each occurrence of a task on a list adds 8 bytes to the total memory requirement.
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Real-Time Extensions

The application that motivated this work on the task system was a control system for two robots
operating in the same workspace. The most important requirement of this application that was not
fulfilled by the original task system was the need for tasks to wait for external events. For example,
after a motion command was sent to a robot, the task that sent the command needed to wait for the
interrupt that was generated by the robot hardware when the command was complete or had failed.
A related requirement of some real time systems is to respond to external events in a timely manner,
for example to retrieve data from an unbuffered external device. Also, in the original task system, the
scheduler would exit when the run chain was empty. This is inappropriate in a system that is
intended to respond to external events because some task might become runnable after an interrupt.

Hardware interrupts are handled differently by different machines and operating systems, so the inter-
face to the task system must also vary. For didactic reasons, the version described here is for the
UNIX Operating System using signals as interrupts, but it should be clear how to adapt it to other
environments.

In the task system events that can be waited for are represented by instances of class object or derived
classes. When the function object::alert() is called, the tasks that were waiting for that object are made
runnable. A natural solution to the problem of waiting for external events was to define a new kind of
object to represent external events, and when such an event occurs, to call object:alert() for the
appropriate object. These objects are called interrupt handlers.

class Interrupt handler : public object {
int id; // signal or interrupt number

int got_interrupt; // an interrupt has been received but not alerted

Interrupt_handler *old; // previous handler for this signal
virtual void interrupt() {}// runs at real time

public:
int pending(); // FALSE once after interrupt
Interrupt_handler(int sig num);
~Interrupt_handler();

}: o

After an interrupt handler is created, a task can wait for it, exactly as for any other object. When the
interrupt occurs, the handler’s interrupt() function will be executed immediately, or rather, as soon as
the operating system can route the interrupt to the process. When the interrupt function returns, con-
trol will resume at the point where the current task was interrupted.

At the next entry to the scheduler, when the currently running task blocks, a special task, the interrupt
alerter, will be scheduled. This task alerts the handler (and any other handlers that have received inter-
rupts since it was last scheduled). Thus the waiting task becomes runnable. As long as any interrupt
handler exists, the scheduler will wait for an interrupt, rather than exiting when the run chain is
empty. The pending function for an interrupt handler always returns TRUE except the first time it is
called after an interrupt occurs.

Interrupt_handler::interrupt() is a null function, but since it is virtual, the programmer can specify the
action to be taken at interrupt time by simply defining an interrupt() function in a class derived from
Interrupt_handler. An example is given under “Interrupts.” In this way real-time response can be
obtained without resorting to a preemptive, priority-based scheduler which would be more complex
and less efficient, and would require locking of shared data structures.
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Avoiding Interference

Whenever shared data structures are manipulated by concurrent processes, there is the potential for
interference, where one process is in the middle of modifying a data structure and another process
accesses it and finds it in an invalid state. Segments of code that access shared data structures are
called critical regions.1 If more than one process can be in a critical region at one time, there is a poten-
tial for interference.

Interference is easy to avoid in the task system, because of the non-preemptive nature of the scheduler.
There are only two ways in which interference can arise: a task switch occurring within a critical
region, or an interrupt routine that accesses shared data.

It is almost always possible to write code so that no operation that could cause a task to block is inside
a critical region. The style of programming where coroutines share information by sending messages
to each other in the form of objects on queues typically leads to programs where there are no shared
data structures or critical regions at all. Even if coroutines must share access to a data structure and
alternately modify it, no problems will arise if the routines that do the modification refrain from opera-
tions that could cause the task to block. A properly modular program will generally satisfy this
requirement without any extra effort.

Semaphores

If, for some unusual reason, it is necessary to put an operation that could cause the task to block in a
critical region, then the affected data structure should be protected by a semaphore, which will allow
only one task at a time to access the object. The following example code outlines this technique.

class My data {
Semaphore sema;
// user data

public:
void lock() { sema.wait(); }
void unlock() { sema.signal():; }
My data{() : sema(l) { ... } // see note

}:

Each critical region must begin with a call to My_data::lock() for the object to be accessed, and end
with a call to My_data::unlock(). This wil% ensure that no interference occurs, even if the operations in
the critical region cause the task to block.!

The implementation of semaphores using the task system is easy.
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class Semaphore : public object {

int sigs; // the number of excess signals

public:
Semaphore (int i =0) { sigs = i; }

int pending() { return sigs <= 0; }

void wait () ;

void signal() { if (sigs++ == 0) alert(); }
}i
void

Semaphore: :wait ()
{
for (;;) {
if (-—-sigs >= 0)
return;
sigs++;
thistask->sleep (this);

}

Semaphores are useful tools for building other kinds of synchronization besides mutual exclusion. For
example, whenever one task wants to wait for an operation to be completed by another task, it can
wait on a semaphore.

Interrupts

The other case where interference can occur is a little more complex. The interrupt() routine of an
Interrupt_handler can be executed at any time, and it would be contrary to the reason for its existence
to lock it out. The mechanism that alerts the handler after the interrupt has occurred is carefully
designed to be safe from interference, and sometimes the alert is all that is necessary for an applica-
tion. If it is necessary to gather data from an external device immediately after an interrupt occurs,
but the interrupts do not come in rapid succession (for example, the next interrupt won’t occur until
after the device is reset), the interrupt routine can save the data and the task that is waiting for the
interrupt can process the data before resetting the device. In this case even though the data is shared,
the interrupt routine cannot access the data at the same time as the task.

Sometimes, however, it is necessary to handle interrupts that can come in rapid succession, with a
requirement to gather data at each interrupt, so that several interrupts may occur before the task that
will process the data can be scheduled, and more interrupts may occur even while the task is running.
This problem is best handled by establishing a queue of the interrupt data records. Then the only
shared data between the interrupt handler and the task processing the data can be the queue head and
tail pointers, which can be atomically updated. In the following toy example, the interrupt routine
records the value returned by an arbitrary function, get_data(), each time the signal SIGINT is sent. A
waiting task is then scheduled and prints all accumulated data.
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class Delete_handler : public Interrupt_handler ({

void interrupt (); )
int* localq; // data buffer beginning B
int* localq_end; // data buffer end
int* localq h; // queue head
int* localq t; // queue tail

public:
int getX(int&); // the next item, if any

Delete_handler (unsigned local q size =5);
~Delete_handler() { delete [localq end - localq] localqg; }
}:

The delete handler (so called because SIGINT is normally sent when the user presses the delete key) is
an interrupt handler that maintains a local queue of data. Its interrupt function will put data on the
local queue, using localq _t, the queue tail pointer, and its getX() function is used by a task to retrieve
the data.

Delete handler::Delete handler (unsigned local_q_size)
(SIGINT) // base class constructor arg
{
localg t = localq h = localqg = new int[local q_size];
localqg_end = &localqflocal_q_size];
}

The constructor initializes the local queue. The size of the local queue determines how many inter-
rupts can be awaiting processing.

void ,)
Delete_ handler::interrupt ()
{

register int* p = localq t;

*p = get_data():

if (++p == localq end) p = localq;

if (p != localq_h)

localq t = p; // no overflow

else error (“"Overflow");

}

The interrupt function assumes that localq_t points to an available slot in the queue and puts the real-
time data there. It then checks for overflow and updates localq_t to point to the next available slot if
it's okay or calls an error function otherwise.

L
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Delete_handler: :getX(int& ans)
{
register int*p = localq h;
if (p == localq t)
return O;
ans = *p;
if (++p == localq end) p = localq;
localq h = p;
return 1;
}

The function getX() assigns the next datum to its argument and returns ““1,” or returns “‘0"’ and leaves
its argument alone if no data is available. A call to getX() may be interrupted, but it has been
designed so that no corruption of the queue will result.

class Delete printer : public task {
Delete_handler*handler;
public:
Delete printer();
}:

Delete_printer() is a task that will create a Delete_handler and print whatever data is received.

Delete_printer::Delete printer ()
: handler (new Delete handler)
{
for (;:) {
wait (handler) ;
inti;
while (handler->getX(i))
cout << i << "\n";

}

Note that each time the printer task is scheduled, it prints all the available data from the delete
handler.

Implementation Details

The approach taken was to minimize the impact to the scheduler and to isolate as much as possible
the machine and operating system dependent parts of the implementation. There is a system-
dependent function, sigFunc(), which catches each signal for which an Interrupt_handler exists. When
the signal is sent, sigFunc() calls the appropriate interrupt() function. It then atomically puts the
address of a dedicated alerter task in a static, private cell of the scheduler and rearms the signal and
returns. At the next entry to the scheduler, that cell is checked and if it is non-zero, the alerter task is
scheduled. The alerter task alerts all pending interrupt handlers and returns to the scheduler. Tasks
that were waiting for interrupt handlers are then eligible to run. :

The other system-dependent parts of the implementation are the constructor and destructor for class
Interrupt_handler. Its constructor takes the signal number as argument (it might be an interrupt vec-
tor address in another system). If some other interrupt handler already existed for that signal, it is
saved (and alerted if it was pending), and otherwise the UNIX system function signal() is called to
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associate sigFunc() with the signal. The destructor undoes the action of the constructor, restoring the )
previous signal routine if necessary.

Example Programs

tcreate.c

The following program repeatedly creates a task and waits for it to terminate. It would be possible to
time creation of new tasks without waiting for them to terminate, but because of the limited number of
processes that can exist under the UNIX system, the corresponding UNIX system program would fail.

#include "task.h"

class Child : public task // user task declaration
{
public:
Child(int); // task constructor declaration
};
Child::Child(int i) // user task constructor definition
("Child") // argument to base class constructor
{
resultis(i); // terminate task execution
}
™~
3
main () A

for (register int i = 10000; i-—; ) {
Child* ¢ = new Child(i); // create a task

c->result (), // wait for it to terminate
delete c; // clean up

}

thistask->resultis (0); // exit from main task

}

ucreate.c

The following C program repeatedly forks a UNIX process and waits for it to terminate.

main ()
{
register int i;
for (i=10000; i-—; )
if (fork() == 0)
exit (0); // child process
else
wait ((int*)0); // parent process

h B
N/
g
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tswitch.c

The following program uses two semaphores (described under “Semaphores”) to alternate control
between a parent and child task.

#define K 10000
#include "task.h"

class Child : public task
{

public:
Child{():
b
Semaphore semal; // for signals from main to Child
Semaphore sema2; // for signals from Child to main
Child: :Child ()
("Child")
{
for (register int n=K / 2; n—; ) {
semal.wait () ; // wait for a signal from main
sema2.signal(); // send it back
}
resultis(0);
}
main ()
{
new Child;
semal.signal(); // send the first signal
for (register int n=K / 2; n—; ) {
sema2.wait () ; // wait for a signal from Child
semal.signal(); // send it back

}
thistask->resultis(0);

1

uswitch.c

The following C program uses a UNIX system signal to force alternation between two UNIX system
processes. The program is a little strange in that its main routine consists of an infinite loop of pause()
calls. Unfortunately the utility of wait() and pause() for signal handling is limited because it is always
possible that a signal has been received just as the wait() or pause() is being executed.

#include <signal.h>
#define K10000

int otherpid;

int received;

int child;

void

sig() /* signal-catching routine. called */
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/* when a signal is received */
{
signal (SIGTERM, sig): /* arrange to catch the next signal */
received++;
if (child && received >= K/2) exit{):;
kill (otherpid, SIGTERM); /* send it back */

if (!child && received >= K/2) exit();

main ()
{
signal (SIGTERM, sig): /* arrange to catch the signal */
if ((otherpid = fork()) == 0) ({ /* create the child process */
otherpid = getppid(); /* get parent process id */
child = 1; /* this is the child */
kill (otherpid, SIGTERM); /* send the first signal */
}
for(;;)
pause () ;

real timer.c

In addition to the robot application, the system was implemented on the UNIX Operating System
using signals as interrupts. A class Real_timer, modelled on the original class timer was built.

class Real timer : public object {
friend class Alarm handler;

int state; // RUNNING, IDLE, TERMINATED

long time; // initially delay, then alarm time
void insert (int) ; // put on chain

void remove () ; // remove from chain & make IDLE
void resume () ; // called when time is up

public: .
‘Real_timer (int);
~Real timer():;

int pending () ;
void reset {(int) ;
void print (int, int =0);

}:

Instead of simulated clock ticks, class Real_timer measures time in seconds. It is based on the follow-
ing handler for the alarm signal and a task that maintains the list of unexpired Real_timer instances.

class Alarm handler : public task {
friend Real timer;

Real timer* chain;

Interrupt handler* bell;

void add_timer (Real_timer¥);
void remove_timer (Real_ timer*);

public: '
Alarm handler();
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}:
Alarm handler alarm handler; // the only instance

Alarm_handler::Alarm handler ()
("Alarm_handler"), chain(0)
{
sleep();
for(:;;) {
for (long now = time(0); chain && chain->time <= now;
chain = (Real timer*)chain->o_next)
chain->resume(); // alert the timer
if (chain) {
alarm(chain->time - now);
wait (bell);
} else {
bell->forget (thistask) ;
delete bell;
sleep();

}

The Interrupt_handler pointed to by Alarm_handler:bell only exists while there are pending
Real_timer objects. The Alarm_handler task runs after an alarm signal, and after alerting any timers
that have expired, if there are any unexpired timers, it resets the alarm and waits.
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| This section is taken directly from a paper by Stacey Keenan.
:NOTE

Introduction

The C++ coroutine library, commonly known as the task library after its header file, task.h, provides
multiple threads of control within one UNIX system process. Each thread of control is a coroutine, or
task, and each task runs until it explicitly gives up the processor; there is no pre-emption. Implement-
ing concurrency requires knowledge of hardware-dependent and compiler-dependent runtime features,
especially calling sequence and stack frame layout; hence the library is target-dependent and must be
ported explicitly to each supported compiler/processor platform.16 The target-dependent parts of the
library are isolated in four files. Release 2.0 of the C++ Language System supplies the task library for
the AT&T 3B20, AT&T WE32000 family (e.g., 3B2, 3B15), AT&T 6386 WGS and DEC VAX processors,
and the Sun-2 and Sun-3 Workstations (Sun compilers on Motorola 68000 family processors).

This paper describes the implementation of the task library, with particular emphasis on task creation
and task switching, where target-dependent code is needed. The existing implementations for the 3B,
VAX, and Sun Workstation processors are used as examples 7 The scope of this paper is limited by
the similarity of the runtime models supported by these targets. Targets diverging from these models,
like mainframe or RISC-style processors, are likely to present porting difficulties not addressed in this
paper. It is assumed that the reader has access to the source code for the library. This paper does not
describe how to use the task library; see “A Set of C++ Classes for Co-routine Style Programming”
and “Extending the C++ Task System for Real-Time Control” for user-level information. “Task
Switching Fundamentals”” provides background needed to understand the workings of the task library.
“Implementation of Task Switching’’ describes how the task library creates new tasks and switches
among them, including details about the target-dependent functions swap() and fudge_return(). The
final sections discuss source file organization and miscellaneous hints for porting the library.

Task Switching Fundamentals

The C++ task library provides non-preemptive scheduling for tasks. A task runs until it explicitly
gives up the processor to allow another task to run. Typically, a task will give up the processor when
it tries to perform an action that cannot yet be done, for example, if it tries to put an object ona full
queue, or to get an object from an empty queue. When this happens, the task is put to sleep 8 The
scheduler then chooses to run the next task on the ready-to-run list, sched:runchain.

When a task is put to sleep, or suspended, the task system must save the state of the task so that it
may be resumed later. On the targets described here, this involves saving the task’s stack and
hardware registers, including the non-volatile registers and the frame pointer (and the argument
pointer on some targets). A task switch is the process of saving the state of one task, and restoring the
state of another.
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Stack Frames

Some familiarity with the C runtime environment and the target implementation of stacks is needed to
understand the details of task creation and switching. A C function call sets up a new stack frame for
the function. A stack frame contains the arguments to the function, the saved hardware state of the
calling function, and any automatic variables used by the function. Figure 2-1 illustrates the stack
frames built on the 3B2, the VAX, and the Sun-2/3 targets for a function called with three arguments
and saving four registers. These stack frames are described here to provide a base for later discussions
on the internals of the task library.

On a 3B2, the argument pointer (ap) points to the start of the arguments to the function, the frame
pointer (fp) points to the start of the automatics of the function, and the stack pointer (sp) points to the
next available space in the stack. The caller’s registers are saved between the arguments and the
automatics. Previous stack frames can be accessed via the frame pointer: The old frame pointer, argu-
ment pointer, and program counter (pc) are always a fixed distance below the frame pointer. Stacks
grow up, toward higher memory addresses.

On a VAX, stacks grow down, toward lower memory, although the figures in this paper will show the
low memory on top and relative positions on the stack will be described in terms of the pictures (e.g.,
above means higher in the picture, at a lower memory address). The argument pointer points to a
longword containing the number of arguments that have been pushed on the stack. Arguments are
pushed in reverse order, so that the first argument is stored one word below the ap. The frame
pointer points to a condition handler, above which are the automatics of the function. The stack
pointer points to the last assigned word in the stack. The word just under the frame pointer contains a
procedure entry mask, which tells which registers were saved in the frame. Saved user registers and
the old frame pointer, argument pointer, and program counter are stored between the argument and
frame pointers.
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Figure 2-1: Stack Frames on a 3B2, a VAX, and a Sun-2/3 for a Function Taking 3 Arguments and Saving 4
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The stack on the Sun-2/3 Workstation grows down, toward lower memory. This target has no argu-
ment pointer. Arguments, saved registers, and automatics are all referenced as offsets from the frame
pointer. Arguments are pushed on the stack in reverse order, followed by the return pc and the old
frame pointer. The frame pointer points at the old frame pointer. Space for automatics is reserved
above the frame pointer. Saved registers are pushed after the reserved space, and the stack pointer
points to the last saved register. The 68000 processor has both data (dx) and address (ax) registers. In
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this example, two of each type are saved.

On entry, a function first saves all the registers that it might use.” On function exit, the same number
of registers are restored from the register save area of the stack frame. On some targets, like the VAX,
stack frames are self-describing: one can tell how many registers are saved in the frame (and where
they are) from the frame itself (by looking at the entry mask). Thus, the function return sequence on a
VAX consists of a single, simple instruction: ret. The 3B and Sun-2/3 targets do not have self-
describing stack frames. This means that “return” instructions on these targets need to specify how
many registers to restore. When (as happens in the task system) one needs to restore registers without
returning through the normal return sequence, one can only find out how many registers were saved
on the stack by looking at the save instruction at the beginning of the function.

To switch to a new task, the task system needs to know what the new frame pointer (and argument
pointer on the 3B targets) should be and from where to restore all the non-volatile registers.”” The task
library explicitly saves the frame pointer and argument pointer of the function to be returned to,
swap(), in the task object as t_framep and t_ap. The non-volatile registers are stored in swap’s stack
frame.

DEDICATED and SHARED Tasks

Tasks can be of one of two modes: DEDICATED or SHARED. DEDICATED tasks each have their
own stack, of some fixed size, allocated from the free store. SHARED tasks share a single stack, of
some fixed size. When a SHARED task is about to resume execution, if its stack space is occupied by
another task,?! the portlon of the stack that is in use by the other (suspended) task is copied out to a
save area, and the resuming task’s stack is copied from its save area back into the stack. Because the
in-use part of the stack is less than the allocated size of the stack, the user can save space by using
SHARED stacks, at a cost in execution speed. Additionally, some targets and operating systems do
not allow the stack ?omter to point into the UNIX process data segment; on these systems SHARED
tasks must be used.

Implementation of Task Switching

There are two general contexts in which a task switch occurs: when a parent task creates a new child
task and switches to it, and when a task suspends and the scheduler chooses a new task to run. The
stacks of both the suspending and resuming tasks look different in each of these situations. Task crea-
tion differs from a switch to a suspended task in two ways. First, in task creation a runtime environ-
ment for the new task must be set up before the switch can take place. Second, task creation causes
the parent task to be suspended and the new task to run immediately, bypassing any other tasks wait-
ing on the run chain. This is the only case where a task switch takes place without a call to the
scheduler to choose the next task to run. These two contexts are described below.

Task Switches Between Suspending and Resuming Tasks

In task switches from a suspending to a resuming task (i.e., switches other than those to newly created
tasks), the function that causes the running task to block (qhead::get() in Figure 2-2) calls task::sleep(),
which in turn calls the scheduler, sched::schedule(). After selecting the next task to run, the scheduler
calls taskzresume()® for the resuming task. The function task::resume() calls task:restore(), an inline
function whose purpose is to call the appropriate version of swap() (swap() for DEDICATED tasks,
sswap() for SHARED tasks) with the appropriate arguments.
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Figure 2-2 shows examples of the stacks for a suspending and a resuming task, both of type user_task
(user_task::user_task() is the constructor and “main” function of the task). Each box in the stack
represents a stack frame; the frames for task:resume() and task:restore() are separated by a dashed
line because task:restore() is an inline function, and therefore doesn’t really have its own stack frame.

Figure 2-2: A Task Switch from a Suspending to a Resuming Task (DEDICATED)

i | | |
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. ¢ | Ttaskresume0 | | taskiresume() |
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| task:t_ap ... " task:t ap |
Suspending Task Object Resuming Task Object

Switching Between DEDICATED Tasks: swap()

The two swap functions do the real work of performing a task switch. They are written in assembly
language because they manipulate hardware registers. The swap() function saves the state of the
suspending task (labeled running in the code)** and restores the state of the resuming task (labeled
to-run). Saving the state of the suspending task involves first saving all the non-volatile registers in
swap’s stack frame, then saving the current frame pointer, which defines swap’s frame, and the argu-
ment pointer, if necessary, in the suspending task’s task object, in members t_framep and t ap. Then
swap() overwrites the hardware frame pointer and argument pointer with the values saved in the
resuming task’s t_framep and t_ap. Now the to-run task is running; swap() returns, restoring all the
registers that were saved when the to-run task was suspended. Note that swap’s save is done on the
suspending task’s stack, and the restore is done on the resuming task’s stack. This is because save and
restore instructions are executed relative to the frame pointer, which was modified in the middle of
swap(). Figure 2-2 illustrates a task switch on a 3B target. The swap() hardware frame and argument
pointers are shown both before and after the switch.
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Switching Between SHARED Tasks: sswap()

The function sswap() is like swap(g but has additional code for SHARED tasks to copy task stacks out
of and into the shared stack area.” There are three tasks that are relevant during a SHARED task
switch: the suspending task, the resuming task, and the task that last occupied the stack space that the
resuming task now wants to occupy (the target stack). This “prevOnStack” task is often the same as
the suspending task, but that is not necessarily the case.

The sswap() function first saves all the non-volatile registers in its stack frame, then saves the frame
pointer (and argument pointer, if necessary) of the suspending task in that task’s task object, just as
swap() does. It also calculates and saves the height of the stack in the t_size member of the task
object. Next, it allocates space and copies the contents of the target stack to that space, which becomes
“prevOnStack's” save area (pointed to by task member t_savearea). Next, sswap() copies the resum-
ing task’s saved stack back from its t_savearea to the target stack, and deletes the space. Finally,
sswap() restores the resuming task’s t_framep (and t_ap, if necessary) to be the hardware frame and
argument pointers, and the resuming task is running. As in swap(), sswap() returns, restoring all the
registers saved in the resuming task’s sswap frame.

New Task Creation

To use the task library, the user derives a class, which I will refer to as class user_task, from the base
class task. The “main” program for the user task will be the constructor user_task:user_task(). The
first thing user_task::user_task() does is to call the base class constructor, task::task(). The constructor
task:task() initializes the private data for the new task, acquires stack space27 in which the task will
run, initializes the stack with the top two frames of the parent task’s stack (as illustrated in Figure 2-3),
inserts the parent task on the run chain, and switches to the new task, which runs immediately.

Figure 2-3: Creating a New Task’s Stack

task::task() task::task()
user_task::user_task() user_task::user_task()
caller
| |
| i
i I
Parent Task’s Stack Child Task’s Stack

After initializing the new task’s stack, the parent task continues execution in task::task(). Notice that
the parent’s stack contains a frame for user_task::user_task(), the child’s “main”; the parent task needs
to skip over that frame when it returns from taskztask(). To arrange this, taskstask() calls a function,
task:fudge return(), to alter task:task’s stack frame so that it returns to user_task:ruser_task’s caller
(restoring any registers saved in the skipped frame as well). This change to the parent’s s stack is-
shown in Figure 2-4 with dotted lines through the user_task:user_task() frame. The fudge_return
function will be described in detail under “Fudging the Parent Stack.”
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swap() for Children

When a new task is created, its stack does not have an instance of swap() on it; task:task() is the top
frame. It is task:task’s responsibility to arrange for the hardware state of user_task:user_task() to be
restored when the child begins execution there. Therefore, task::task() saves the frame and argument
pointers for the child’s task::task() frame in the child’s t_framep and t_ap of its task object. Then
task::task() saves all the registers as they were when user_task::user_task() called task::task() in a glo-
bal variable, New_task_regs. 2 Getting these registers right, no matter how many registers were saved
in user_task::user_task or task:task(), is a bit tricky. We first copy all the current hardware registers
into New task_regs and then overwrite any of those that are used by task:task() with those saved in
task:task’s frame. This is done with a macro, SAVE_CHILD_REGS, which calls SAVE_REGS() to do
the first step, and save_saved_regs() to do the second step.

Then the parent calls task:restore, which calls swap() with a NEW_CHILD argument. Given this
argument, swap() explicitly restores the registers that were saved in New_task_regs, instead of restor-
ing the registers saved in the frame. See Figure 2-4. When swap() returns, the return is effectively
from task::task(), as that is where the frame pointer points, and then the child task is executing in
user_task::user_task(). On the 3Bs, the assembly language return instruction specifies how many regis-
ters to restore. Because the necessary registers have been restored from New_task_regs, swap()
restores no registers saved in task::task()’s frame on its return. The VAX return instruction determines
the number of registers saved in the frame by looking at the entry mask under the frame pointer,
therefore, when swap() returns, the registers saved in task:task’s frame are restored. Since these regis-
ters are the same as those saved by save_saved_regs(), save_saved _regs() is unnecessary on the VAX.

Figure 2-4: A Task Switch to a New Child (DEDICATED)
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sswap() for Children

New SHARED tasks don’t need to copy in a new stack, nor do they need to reset the hardware frame
and argument pointers. Their stacks are already in place, since a new SHARED task runs in its
parent’s stack. However, the parent task needs to call sswap() to save its state and to copy its active
stack to its save area. Therefore, task:restore() and sswap() are called with a NEW_CHILD argument,
and sswap() has a branch for new children to skip the “copy in” part.

Fudging the Parent Stack

As mentioned above, fudge_return is called by task:task() to modify the parent stack so that the
parent does not return to user_task:user_task(). Rather, the parent skips the user_task:user_task()
frame and returns to user_task:user_task’s caller (main() in Figure 2-4). This routine is highly
machine- and compiler-dependent. It depends on call/return and save/restore conventions of both the
compiler and the machine. The left side of Figure 2-5 shows a hypothetical example of a parent stack
when fudge_return() is first called. Portions of three stack frames are shown:

m at the bottom is the register save area for user_task::user_task(), containing the saved state of
main() (i.e.,, “main’s r8” refers to the value of hardware register r8 in main() before
user_task::user_task() was called). In this example, user_task::user_task() uses, and therefore
saves, two registers, which on a 3B2 would be registers r7 and 8.

m in the middle is the save area for task:task(), containing the saved state of user_task::user_task()
or skip(), as it is labeled in the diagram and in the fud%e return() code. In this example,
task::task() uses and saves four registers, r5 through r8.

m at the top is the save area for fudge_return(), containing the saved state of task:task(). In this
example, fudge return() uses and saves just one register, r8.

The ellipses in the diagram represent function arguments, automatics, and unused words in the stack
frames. The fudge_return(} function must copy up the relevant elements from skip’s stack frame to
task:task’s stack frame, so that when task:task’s return instruction is executed, the parent will find
itself back in main() (in this example), with the hardware registers restored to the values they had
before skip() was called. The stack on the right side of Figure 2-5 represents the same parent stack
after fudge_return has altered the stack. The dotted arrows show where the elements from skip’s save
area have been copied.

In the 3B, VAX, and Sun-2/3 implementations, fudge_return() overwrites the program counter, frame
pointer, and argument pointer (for 3B targets only) saved in task::task’s frame with those saved in
skip’s frame. This causes task:task() to return to main().

Restoring main()’s registers is trickier. It requires knowing the layout of the save area for at least
skip() and task:task(), and sometimes for fudge_return() as well. Ways of determining the frame lay-
out are discussed under “Finding Where Registers Are Saved: Framelayout().” For now, assume
fudge_return() knows how many registers are saved in each frame.
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Figure 2-5: A 3B2 Stack Before and After Fudging
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If skip(} saved any registers, we must take pains to see that they are restored on task:task’s return. If,
as is the case in the example in Figure 2-5, all the registers saved in skip’s frame are also saved in
task:task’s frame, this is simple. We just copy the saved skip() registers over the corresponding
task:task() registers, leaving any additional saved task:task() registers in place. There is room in
task::task’s frame for these registers and, in the case of the 3B and Sun-2/3 targets,30 task::task’s
restore instruction will restore all the registers we care about.

There are various difficulties with restoring the “‘extra” registers when skip() saves registers that
task::task() does not save. On some targets, such as the VAX and Sun-2/3, there is no room in the
frame for the additional registers; on other targets, such as the 3Bs, task::task’s restore instruction
won't restore any extra registers, although the save area is always large enough to hold extras. Figure

2-46 Library Manual



A Porting Guide for the C++ Coroutine Library

e 2-6 shows a parent stack frame where the skip() frame contains four saved registers, the task:task

& frame contains only two saved registers, and the fudge_return() frame contains three saved registers.
In this example, 15 and r6 are “extra.”

Figure 2-6: Fudging When user_task::user_task() Uses More Registers than task:task
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If fudge_return() saved any of the “extra” registers, then we can overwrite those with the correspond-
ing saved skip registers. In Figure 2-6, skip() saved r6 (main’s r6), task:task() did not, but
fudge_return() also saved r6. Therefore, fudge_return() will overwrite the r6 in its save area with the
r6 from skip’s save area. When fudge_return() returns, r6 will be restored to the value it had when
main() last executed, which is what we want. Because task:task() did not save r6, we know that it
will not disturb its value.

Neither task:task() nor fudge return() saved the other extra register, r5, in this example. Therefore, to
ensure that when task:task() returns, r5 has the value it had in main(), and not the value it had in
skip() (its current value), fudge_return() must explicitly set the hardware register r5 to the value saved
in skip’s frame (main’s r5). This is safe to do, because none of the intervening functions use r5. The
function fudge_return() calls an assembly language function to overwrite r5 (or any other extra regis-
ters). After fudge_return() and task:task() return, all the registers will have the values they had when
main() last executed on the parent stack.

There is one final step: arranging for the stack pointer to be in the right place after task:task returns.
This depends on the way the target executes a return. Without some adjustment, the stack pointer will
be set one frame too high (at the top of skip’s frame instead of at the top of main’s frame).

On the VAX, a return instruction restores the frame and argument pointers from those saved in the
stack, pops the saved registers off the stack, and adds the number of arguments that are on the stack
(as given in the argument descriptor, see Figure 2-1) to the stack pointer. We can cause the stack
pointer to be restored correctly by adjusting the argument descriptor in task:task’s frame to include all
the words in the skip frame in addition to the arguments. In other words, fudge_return() alters
task:task’s frame to look as though there is a big argument list.

On the 3Bs, a return instruction restores the frame and argument pointers from those saved on the
stack, but the stack pointer is given the value of the argument pointer of the returning function. This
presents a problem for a fudged parent stack: when we return from task:task(), the frame and argu-
ment pointers are reset to point to main’s frame, as we wanted, but the new stack pointer points
where task:task’s argument pointer was, which is higher than needed and wastes space. T'What we
want is to have the stack pointer point to where skig’s argument pointer was. We arrange for this
with an assembly language function, FUD GE__SP(),3 which is defined for the 3Bs to take an argument,
the skip() argument pointer, and to reset the current argument pointer (task:task’s) to the argument.
FUDGE_SP() is called just before task::task() returns on the parent side. Once FUDGE_SP() is called,
no arguments to task=:task() can be referenced. The task:task() constructor returns the this pointer,
which is its implicit first argument. The this argument is usually in a register, but if it is not,
task::task will need to reference it through the now-changed argument pointer when it sets the return
value. Therefore, FUDGE_SP() also copies the value of task:task’s first argument to be
user_task::user_task’s first argument, to ensure that task:task’s return value will be set properly.

The Sun-2/3 targets have a similar problem to that described above for the 3B targets. The solution,
however, is different. The Sun-2/3 compiler typically generates a function return sequence of three
instructions: movem, unlk, and rts. The movem instruction restores the registers denoted by a mask
and uses an offset from the frame pointer to find the register save area. The unlk instruction resets
the frame pointer to be the one saved in the stack, and also resets the stack pointer to point at the
saved return program counter on the stack. Finally, the rts instruction pops the program counter off
the stack, leaving the stack pointer pointing at the top of the frame of the function that called the
returning function. As with the 3B targets, after a parent task (whose stack has been fudged) returns
from task::task() to main() (in the example), the stack pointer points to the top of the skipped frame.
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We compensate for this with a variation in FUDGE_SP() and fudge_return() on the Sun-2/3 targets.33
Instead of overwriting task:task’s return pc with skip’s return pc, fudge _return() overwrites
task:task’s return pc with the address of an assembly language function, fudge_sp(). When the parent
task returns through task:task(), it calls FUDGE_SP(), which sets a global variable, Skip_pc_p, to
point to skip’s return pc in the stack. Then task:task() returns to fudge_'sp(),34 which sets the stack
pointer to Skip_pc_p, and executes an rts instruction, which pops skip’s saved return pc off the stack,
leaving the stack pointer at the top of main()’s frame.

Finding where registers are saved: FrameLayout()

As mentioned above, fudging thg parent stack requires knowing the layout of the stack frames sur-
rounding the one to be fudged.3 This is not a problem for targets with self-describing stack frames,
such as the VAX. Targets that do not have self-describing stack frames, such as the 3B and Sun-2/3,
include a structure, defined in the source file fudge.c, called FrameLayout. FrameLayout has different
members, depending on the target. It always has a constructor, which initializes the members so that

fudge_return() has the information it needs to modify the parent stack.
FrameLayout for the 3B Processors

On the 3B2 and 3B20 targets the layout of saved registers follows from the number of registers saved
by the function. On both targets, the size of the save area is invariant; if fewer than all the registers
are saved, some slots in the save area will be unused and contain garbage values. The number of
registers saved is found by looking at the save instruction of the function in question. By convention,
the save instruction is the first instruction of the function. The easiest way to find the save instruction
for a given function, f, is by dereferencing a pointer to the function. However, when f is a constructor,
as both task::task() and user_task::user_task() are, one cannot take its address. In this case, one can
find the save instruction for f by using the pointer to the return pc saved in the f's frame, backing up
one instruction to find the instruction to call f, and following the destination argument of the call to
find the save instruction.

On the 3B targets, FrameLayout contains one element: n_saved, which represents the number of regis-
ters saved in the frame. The FrameLayout constructor finds n_saved for the frame denoted by its
frame pointer argument. FrameLayout::FrameLayout() uses the frame pointer to find the return pc,
which points to the instruction after the call to the denoted function. It backs up one instruction to get
a pointer to the call instruction,”® then decodes the call instruction (using a function called
call_dst_ptr()) to get a pointer to the function denoted by the frame pointer argument. Finally, it
decodes the save instruction (pointed to by the function pointer) to find the number of registers saved
in the frame.

FrameLayout for the Sun-2/3 Target

On the Sun-2/3 target, FrameLayout contains two elements: offset, the offset of the top of the register
save area from the frame pointer, and mask, the bit mask denoting which registers were saved. The
FrameLayout constructor for the Sun-2/3 initializes the structure by a method similar to that described
above for the 3B targets, which involves following the return pc to find the call, and decoding the call
to find the destination of the call. Finally, it decodes the instructions in the function prologue (which
can vary), to find the mask and the offset.

The Task Library 2-49



A Porting Guide for the C++ Coroutine Library

Source File Organization

The target-dependent parts of the task library are isolated in four source files:

hw_stack.h

contains target-dependent macro, const, structure, and function declarations for each sup-
ported target (surrounded by #ifdefs).

hw_stack.c contains definitions of target-dependent functions for each supported target (surrounded
by #ifdefs). Many of these are short assembly language functions which set or return
hardware registers.

fudge.c There is a version of fudge.c for each supgorted target, currently: fudge.c.3b,
fudge.c.vax, fudge.c.386, and fudge.c.68k.” These files contain definitions of
task:fudge return() and FrameLayout:FrameLayout() (for the targets that need it).

swap.s There is a version of swap.s for each supported target, currently: swap.s.3b, swap.s.vax,
swap.s.386, and swap.s.68k. These files contain the assembly language functions swap()
and sswap().

Hints for Porting the Task Library to Other Processors

m Draw pictures (like those in Figure 2-1) of the stack frame layout for the target to which you are
porting. Detailed pictures of the register save areas of several frames on the stack, like those in
Figures 2-5 and 2-6, are helpful in writing fudge_return().

® Become familiar with the sequence of operations in function calls and returns. Write and com-
pile some sample C or C++ programs and look at the generated code to see what kinds of call
and return sequences the compiler generates, in what order registers are used, and so forth. A
fast way to write the copy in and copy out loops for sswap() is to write them in C, compile them
with the -§ option, and transcribe the generated code into sswap().

m The implementation of the task library was designed to be both maintainable and, as far as pos-
sible, portable across both machines and compilers. These goals are sometimes mutually
exclusive, and in those cases, we aimed for maintainability and portability across different com-
pilers for the same machine (where possible). Some porters may want to write some of the
assembly language functions in hw_stack.c as macros that depend on positional parameters and
compiler conventions. For example, FP() returns the frame pointer for the calling function. This
could also be written for the 3B targets as a macro that takes as an argument the first automatic
variable of the function and returns the address of that variable, or for the VAX takes the same
argument and returns the address of that variable minus one. This only works if the macro is
given the first automatic as an argument, if the compiler assigns automatics in the order in
which they are declared, and if the optimizer leaves the automatic on the stack, even if it is
never read nor written.
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Footnotes

1. The original version of this paper was written in 1980 by B. Stroustrup and revised in 1982 by
him. Since then both the task library and C++ (then known as “C with Classes”) have changed
substantially, but the interface to the task library has been left intact. This has allowed old pro-
grams to run with new versions of the library, but has prevented any updating of the style of
the interface, which does not conform to current tastes.

This version of the paper has been revised by J. E. Shopiro to reflect the present state of affairs.
I have added a few notes (in sans-serif type) where changes have been significant, and have
made numerous syntactic changes, etc., without further comment.

2. Many of the member functions are inline, but their definitions are not shown here to prevent
clutter. Class task is derived from class sched which is derived from class object. Class object
is a simple base class used by most classes in the task system. It contains some of the pointers
used by the task system’s internal “house-keeping.” Class object is described under “The
object Class.”

3. The class may have other member functions, of course, which may be called by the constructor
or by any other function according to the usual rules of C++.

When the first task is created, main() automatically becomes a task itself.
It is a fairly simple job to add a new kind of task that returns some other datatype.

The handling of run time errors will be described below.

N o o

Thus ghead::pending() returns 1 if the queue is empty and 0 otherwise. Correspondingly,
qtail:pending() returns 1 if the queue is full and 0 otherwise.

C ‘ 8. The default maximum size for a queue is 10000. That is, the queue can hold up to 10000
pointers to objects. It does not, however, pre-allocate space.

9. The original task package had a number of global variables, including thistask, task chain, and
clock. They are now all macros which expand to inline functions that return the values of private
static variables. Thus programs that just read the values will be unaffected, but programs that try
to set them (which was always illegal) will fail to compile.

10. Waitlist() is an example of a function whose form does not satisfy current esthetic standards.

11. In a quasi-parallel system this will only be true provided no infinite loop without task system
calls exists. Such a loop constitutes an error that only a system with true parallelism or time
slicing can recover from.

12. Coroutines can exchange control among themselves more freely than ordinary functions and
procedures. In the usual function calling discipline, when one procedure (more precisely, one
instance of a procedure) executes a procedure call, a new instance of the called procedure is
created, and the calling procedure waits until the called procedure (and any procedures it may
call) returns. A procedure instance is initiated when the procedure is called and is destroyed
when it returns. When one coroutine (coroutine instance) initiates another it need not wait for
the new coroutine to end, but instead it can be resumed while the new coroutine is still active.
A running coroutine can relinquish control to any waiting coroutine without abandoning its
state and later regain control and continue from where it left off.

13. Class object is the base class of most classes in the task system. We use the typewriter font
for programming language constructs.

&
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Semaphores which are used for mutual exclusion are initialized with one excess signal so that
the first lock call will succeed.

But watch out for deadlock.

To the extent that the target hardware dictates subroutine linkage and stack frame layout, the
compiler is less important. Some machines, like the 3Bs and the VAX, support a particular stack
frame; the task library is largely independent of the compiler on these machines. The 68000,
however, does not support a specific stack frame arrangement; the task library on this machine
also depends on the compiler conventions for the stack frame. The word target will be used in
this paper to denote an instance of either a processor or a compiler/processor platform.

The stack frame layout on the AT&T 6386 WGS is similar to that on the Sun-2/3 Workstations.
The task library port is also similar on these targets.

See “A Set of C++ Classes for Co-routine Style Programming’’ or “Extending the C++ Task Sys-
tem for Real-Time Control” for details. The ways in which a task is put to sleep and awakened
are target-independent.

This is true for our example targets. Some targets may use a caller save convention rather than
a callee save convention.

It may not be immediately obvious that all registers must be saved on a task switch. Consider a
task A, which has a function f that uses all the registers. It calls another function, g, which uses
less than all the registers, say two, and therefore only saves two registers in its save area. If a
task switch occurs before g returns, and task B uses all the registers, it will destroy those needed
by task A’s function f.

It can happen that a SHARED task will resume execution without having ever been displaced by
another task sharing the same stack.

For example, DEDICATED tasks do not work with 3B2s running versions of the UNIX system
earlier than SVR3.

The function resume() is virtual, with definitions for tasks and timers. Only tasks are relevant
here.

If the suspending task is TERMINATED, then swap() does not save its state.

Writing the code for stack copying of SHARED tasks in assembly language adds more complex-
ity than we would like to the job of porting the task library. It would be possible to call a C
function to copy out the suspended task’s stack to its save area. However, copying the resum-
ing task’s stack back in presents a problem: If the resuming task’s stack is taller than the stack
on which we are executing, a copy-in will overwrite the current stack frame. The sswap() func-
tion is careful to move all the data it needs from the frame into registers, so that if the frame is
overwritten, sswap() can still complete successfully. But if sswap() called a C function to do the
copy-in, that function might overwrite its own stack frame, making it impossible to return to
sswap() to finish the task switch. So long as the copy-in must be written as part of sswap(), it
seems little more trouble to write the complementary copy-out in assembly language as well.

When the prevOnStack task and the resuming task are the same, restore() calls swap(), rather
than sswap(), to do the task switch, as no stack copying is necessary.

The constructor task::task() only acquires stack space for DEDICATED tasks, that is, tasks that
have their own stack. SHARED tasks will need space in which to save the current (or parent)
task’s active stack; sswap() takes care of that, as described above.
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Only one child is activated at a time — remember, no pre-emption — and the child runs
immediately, so it is safe to put these registers in a global, and more space-efficient than keeping
them as part of the task object.

Note that, in Figure 2-5, the saved r5 and r6 in task::task’s frame are labeled “main’s r5”’ and
“main’s r6” rather than “‘skip’s r5” and “skip’s r6.” This is because in this example, skip() does
not use 15 or r6; main() was the last function to use r5 and r6. Therefore, the values of r5 and r6
saved in task::task’s frame are the values that r5 and r6 had when main() was running.

The restore instruction for the VAX doesn’t specify which registers to restore.

In the case of a task that repeatedly spawned children, the stack pointer would grow unneces-
sarily, eventually causing the stack to overflow. Each time the parent task returned from
task:task, the stack pointer would be an additional frame higher than needed, and a new call to
task:task would start building the next frame where the stack pointer pointed.

FUDGE_SP() is defined as a do-nothing macro for the VAX.
The AT&T 6386 WGS port of the task library also uses this technique.

When task:task() returns, the hardware registers are restored to the values they had in main()
and the frame pointer is set to the value it had in main(), but the program counter is set to
fudge_sp().

Some of these frames are for user functions, so we cannot rely on techniques which require the
C++ code for the function to be written so as to generate code that creates frames with some
particular layout.

Because 3B instructions can be of various sizes, one cannot deterministically “back up” one
instruction. FrameLayout::FrameLayout() subtracts each possible instruction size from the
return pc and decodes the resulting pointer to check for a call opcode and legal operands.
There is a small possibility, reduced by familiarity with the compiler, that these heuristic
methods could yield more than one candidate call instruction.

The .68k suffix used for the Sun-2/3 target is something of a misnomer. These files were written
specifically for Sun compiler/68K platforms; they will not necessarily work on all 68K platforms,
for example, the AT&T compiler for the 68K. However, the #ifdefs in the source files say #ifdef
mc68000.
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lostream Examples

o This chapter is taken directly from a paper by Jerry Schwarz.
-NOTE

Abstract

The iostream library supports formatted I/O in C++. This document, containing many examples, is an
introduction to the library. Overloading and other C++ features are used to provide an interface that
combines flexibility and type checking. Predefined and user defined operations are easily mixed. The
streambuf class supports alternate sources and sinks of characters.

The manual pages for the iostream library can be found in Appendix A.

Introduction

C and C++ share the property that they do not contain any special input or output statements.
Instead, I/O is implemented using ordinary mechanisms and standard libraries. In C this is the stdio
library. In C++ (as of release 2.0 of the AT&T C++ Language System) it is the iostream library.
Because C++ is an extension of C it is possible for a C++ program to use stdio. Using stdio may be
the easiest way for a C programmer to get started with C++, but using stdio is not a good style for
C++ [/0. Its main drawbacks are its type insecurity and the inability to extend it consistently for user
defined classes.

This document consists mainly of examples of the use of parts of the iostream library. It assumes a
reasonable familiarity with C++, including such extensions to C as references, operator overloading,
and the like. An attempt has been made to create examples that not only illustrate features of the ios-
tream library, but represent good programming style. A programmer who is new to C++ may copy
the examples “‘cookbook style,” but cannot be said to have mastered C++ until he or she understands
the examples.

Some of the examples are moderately complicated and demonstrate advanced features of the iostream
library. These are included so that the document will continue to be useful as an aid even after the
programmer has written a few programs using iostreams. The author is annoyed by “tutorials” that
show how to do simple things that he could figure out himself, but are silent about the harder, more
sophisticated kinds of code that he frequently wants to write.

This document is not a complete description of the iostream library. Some classes and members are
not described at all. Some are used without complete descriptions. The reader is referred to the ios-
tream man pages for more details.

The declarations for the iostream library exist in several header files. To use any part of it, a program
should include iostream.h. Other header files may be needed for other operations. These are men-
tioned below, but the #include lines are never put in the examples.
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The iostream library is divided into two levels. The low level (based on the streambuf class) is
responsible for producing and consuming characters. This level is an independent abstraction and
may be used without the upper level. This is appropriate when the program is moving characters
around without much (or any) formatting operations.

The upper level is responsible for formatting. There are three significant classes. istream and ostream
are responsible for input and output formatting, respectively. They are both derived from class ios,
which contains members relating to error conditions and the interface to the low level. A third class,
iostream, is derived (multiple inheritance) from both istream and ostream. It plays only a minor role
in the library. A “‘stream class” is any class derived from istream or ostream.

The topics covered in this document are:
m Output — predefined output conversions, ways to deal with errors, and ways to adapt the
library for output of user classes.
m Input — predefined input conversions, and ways to adapt the library for input of user classes.
m Constructing specialized streams — file I/O, and incore operations.

m Format Control — An ios contains some format state variables. This section describes how they
are manipulated by user code and interpreted by the predefined operations

®m Manipulators — A powerful method for customizing operations.
m streambufs — How to use the low level interface.

® Deriving Streambuf Classes — Methods for creating specialized classes that specialize streambuf
to deal with alternate producers and consumers of characters.

® Extending Streams — Deriving classes from istream and ostream, adding state variables, and ini-
tialization issues.

m Comparison of 1/0 libraries.

m Compatibility — Converting a program that uses the old stream library to use the new library.

Output

Suppose we want to print the variable x. The main mechanism for doing output in the iostream
library is the insertion operator <<. This operator is usually called left shift (because that is its built-in
meaning for integers) but in the context of iostreams it is called insertion.

cout << ¥ ;

cout is a predefined ostream and if x has a numeric type (other than char or unsigned char) the inser-
tion operator will convert x to a sequence of digits and punctuation, and send this sequence to stan-
dard output. There are different operations depending on the type of x, and the mechanism used to
select the operator is ordinary overload resolution. The insertion operator for type t is called the “t
inserter.”

If we have two values we might do:
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cout << x << y ;

which will output x and y, but without any separation between them. To annotate the output we
might do:

cout << "x=" << x

<< ",y=" <<y
<< ",sum=" << (x + y) << "\n" ;

This will not only print the values of x, y, and their sum, but labels as well. It uses the string (char*)
inserter, which copies zero terminated strings to an ostream.

Notice the parentheses around the sum. These are not needed because the precedence of + is higher
than that of <<. But, when using << as insertion, it is easy to forget that C++ is giving it a precedence
appropriate to shift. Getting in the habit of always putting in parentheses is a good way to avoid
nasty surprises such as having cout<<x&y output x rather than x&y.

The output might look like:

x=23,y=159, sum=182

A pointer (void*) inserter is also defined.

int x = 99 ;
cout << &x ;

It prints the pointer in hex.

A char inserter is defined:

char a = ‘a’
cout << a << ‘\n’ ;

This prints a and newline.

User Defined Insertion Operators

What if we want to insert a value of class type?

Inserters can be declared for classes and values of class type and used with exactly the same syntax as
inserters for the primitive types. That is, assuming the proper declarations and definitions, the exam-
ples from the previous section can be used when x or y are variables with class types.

The simplest kinds of examples are provided by a struct that contains a few values.
struct Pair { int x; int y ; }

We want to insert such values into an ostream, so we define:
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ostream& operator<<(ostream& o, Pair p) {
return o KK p.Xx <K " " KL p.y ;
}

This operator inserts two integral values (separated by a space) contained in p into o, and then returns
a reference to o.

The pattern of taking an ostream& as its first argument and returning the same ostream is what makes
it possible for insertions to be strung together conveniently.

As a slightly more elaborate example, consider the following class, which is assumed to implement a
variable size vector:

class Vec {

private:
public:
Vec()
int size() ;
void resize(int) ;

floats operator(] (int) ;
} o

We imagine that Vec has a current size, which may be modified by resize, and that access to indivi-
dual (float) elements of the vector is supplied by the subscript operator. We want to insert Vec values
into an ostream, so we declare:

ostream& operator<< (ostream& o, const Vec& v) ;

The definition of this operator is given below. Using Vec& rather than Vec as the type of the second
argument avoids some unnecessary copying, which in this case might be expensive. Of course, using
Vec* would have a similar advantage in terms of performance, but would obscure the fact that it is the
value of the Vec itself that is being output, and not the pointer.

The definition might be:

ostreamé operator<< {ostream& o, const Vec& v)
{
o << "[" ; // prefix
for (int x =0 ; x < v.size() ;, ++x )
// use comma as separator
if (x!1=0 ) o« ', ;
o << v[x] ;
}
return o << "]" ;// suffix
}

This will output the list as a comma separated list of numbers surrounded by brackets. The code takes
care to get the empty list right and to avoid a trailing comma.
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Propagating Errors

None of the examples so far has checked for errors. Omitting such checks would be bad style, except
that the iostream library is arranged so that errors are propagated.

Streams have an error state. When an error occurs bits are set in the state according to the general
category of the error. By convention, inserters ignore attempts to insert things into an ostream with
error bits set, and such attempts do not change the stream’s state. The error bits are declared in an
enum, which is declared inside the declaration of class ios.

class ios {
enum io_state { goodbit=0, eofbit=l, failbit=2, badbit=4 } ;
|

ios::goodbit is not really a “bit.” It is zero and indicates the absence of any bit.

In the definitions of the Pair and Vec inserters, if an error occurs some wasted computation may be
done as the code does insertions that have no effect. But eventually the error will be properly pro-
pagated to the caller.

It is a good idea to check the output stream in some central place. For example:
if (!cout) error("aborting because of output error") ;

The state of cout is examined with operator!, which will have a non-zero value if the state indicates an
error has occurred. This and other examples in this document assume that error() is a function to be
called when an error is discovered, and that it does not return. But error() is not part of the iostream
library.

An ostream can also appear in a ‘‘boolean’ position and be tested.

if ( cout << x ) return ;
. // error handling

The magic here is that ios contains a definition for operator void* that returns a non-null value when
the error state is non-zero.

An explicit member function also exists:

if ( ... , cout.good() ) return ;
. // error handling

The reader is referred to the man pages for other member functions that examine the error state.

Flushing

In many circumstances the iostream library accumulates characters so that it can send them to the ulti-
mate output consumer in larger (presumably more efficient) chunks. This is a problem mainly in
interactive programs where the user may need to see the output before entering input. It can also be a
problem during debugging when the programmer may need to see how far the program has gotten
before dumping core. The easiest way to make sure that everything inserted into an ostream has been
sent to the ultimate consumer is to insert a special value, flush. For example:
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cout << "Please enter date:" << flush ;

Inserting flush into an ostream forces all characters that have been previously inserted to be sent to the
ultimate consumer of the ostream. flush is an example of a kind of object known as a manipulator, a
value that may be inserted into an ostream to have some effect. It is really a function that takes an
ostreamé& argument and returns its argument after performing some actions on it.

Another useful way to cause flushing is the endl manipulator, which inserts a newline and then
flushes.

cout << "x=" << x << endl ;

Binary Output

Sometimes a program needs to output binary data or a single character.

int c="3a’
cout.put(c)
cout << (char)c ;

The last two lines are equivalent. Each inserts a single character(A) into cout.

If we want to output a larger object in its binary form a loop using put would be possible, but a more
efficient method is to use the write member. For example:

cout .write ( (char*) &x, sizeof (x))

will output the raw binary form of x.

The reader should notice that the above example violates C++ type discipline by converting &x to
char*. Sometimes this is harmless, but if the type of x is a class with virtual member functions, or one
that requires non-trivial constructor actions, the value written by the above cannot be read back in

properly.

Input

Iostream input is similar to output. It uses extraction (>>) operators that can be strung together. For
example:

cin > x >> vy ;

inputs two values from the predefined istream cin, which is by default the standard input. The extrac-
tor used will be appropriate for the types. The lexical details of numbers are discussed below under
“Format Control.”” Whitespace characters (spaces, newlines, tabs, form-feeds) will be ignored before x
and between x and y. For most types (including all the numeric ones), at least one whitespace charac-
ter is required between x and y to mark where x ends.

There is a char extractor. For example:
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char ¢ ;
cin >> ¢ ;

skips whitespace, extracts the next visible character from the istream and stores it in ¢. (“Non-
whitespace” is too ugly a phrase for extensive use. This document uses “visible”” instead. Strictly
speaking this terminology is incorrect. For example, it classifies control characters as visible. But the
term is reasonably euphonious and reasonably clear.)

Sometimes it is desirable to extract the next character unconditionally. For example:

char ¢ ;
cin.get {c) ;

The next character is extracted and stored in ¢, whether or not it is whitespace.

User Defined Extraction Operators

Creating extractors for classes is similar to creating inserters. The Pair extractor could be defined thus:

istream& operator>>(istream& i, Pair& pair)
{
return i >> pair.x >> pair.y ;

}

By convention, an extractor converts characters from its first (istreamé&) argument, stores the result in
its second (reference) argument, and returns its first argument. Making the second argument a refer-
ence is essential because the purpose of an extractor is to store a new value in the second argument.

A subtle point is the propagation of errors by extractors. By convention, an extractor whose first argu-
ment has a non-zero error state will not extract any more characters from the istream and will not
clear bits in the error state, but it is allowed to set previously unset error bits. Further, an extractor
that fails for some reason must set at least one error bit. The code in the Pair extractor does nothing
explicitly to respect these conventions, but because the only way it modifies i is with extractors that
honor the conventions, the conventions will be respected.

Conventions also apply to the meaning of the individual error bits. In particular ios::failbit indicates
that some problem was encountered while getting characters from the ultimate producer, while
ios:badbit means that the characters read from the stream did not conform to the expectation of the
extractor. For example, suppose that the components of a Pair are supposed to be non-zero. The
above definition might become:

istream& operator>>(istream& i, Pair& pair)
{
i >> pair.x >> pair.y ;
if ( !'i ) return i ;
if ( pair.x == 0 || pair.y == 0 ) {
i.clear(ios::badbit|i->rdstate()) :
}
return i ;

}

This uses the (misleadingly named) clear() member function to set the error state to indicate that the
extractor found incorrect data. Oring ios::badbit with i->rdstate() (the current state) preserves any bits
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that may previously have been set.

The Pair extractor has been defined so that it can input values that were outpﬁt by the Pair inserter.
Maintaining this symmetry is an important general principle that is worth some effort.

The next example is the Vec extractor, which will require an opening [ followed by a sequence of
numbers, followed by a ]. Recall that the Vec inserter uses , as a separator and does not insert any
whitespace between numbers. The extractor must accept such input. It will also accept slightly more
general formats. In particular it allows extra whitespace, and it allows any visible character to be used

as a separator. It also deals properly with a variety of special conditions such as errors in the input
format.

istream& operator>>(iostreams i, Vec& v)
{

int n =0 ; // number of elements
char delim ;

v.resize(n) ;

// verify opening prefix
i >> delim ;
if ( delim != ’[" ) ;
i.putback (delim);
i.clear(ios: :badbit|i.rdstate()) ;
return i ;
}

if ( i.flags() & ios::skipws ) i >> ws ;
if ( i.peek() == "]" ) return i ;

// loop

while ( i && delim != "]’ ) {
v.resize(++n) ;
i > v[n~1l] >> delim ;
}

return i ;
}

The steps this code performs are:

3-8

m Turn v into an empty vector. This is done by the first resize operation.
m Verify that the next character in the istream is [.

If the next character is not [ (or if the state of the iostream already has error bits set), mark the
state of i as bad, put delim back in e (where it may later be extracted again), and return. Put-
ting delim back in the stream is not essential but it is consistent with the behavior of the
predefined extractors.

m Optionally skip some whitespace.

Whether to skip is controlled by the ios::skipws flag set in a collection of bits known as i’s for-
mat flags. This bit also controls skipping of whitespace in the predefined extractors. If it is set,
whitespace was skipped before extracting the character stored into delim.
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m If the next character is ], the input represents an empty vector and since v has already been
resized the extractor can just return.

The next character is examined using the peek() member function. This returns the next charac-
ter that would be extracted but leaves it in the stream.

® The code now loops, extracting numbers and delimiters until either the closing ] is found or an
input error occurs. An explicit check of the state of i is required to prevent an infinite loop
should an error occur in extracting vec[n-1] or delim.

char* Extractor

A useful extractor, but one that must be used with caution, takes a char* second argument. For exam-
ple,

char p[100] ; cin >> p ;

skips whitespace on cin, extracts visible characters from cin and copies them into p until another whi-
tespace character is encountered. Finally it stores a terminating null (0) character. The char* extractor
must be used with caution because if there are too many visible characters in the istream, the array
will overflow.

The above example is more carefully written as:

char p(100] ;
cin.width(sizeof(p)) :
cin >> p ;

There are very few circumstances (perhaps there are none at all) in which it is appropriate to use the
char* extractor without setting the ““width” of the istream.

To make specifying a width more convenient, the setw manipulator (declared in iomanip.h) may be
used. The above example is equivalent to:

char p[100] ;

cin >> setw(sizeof(p)) >> p ;

Binary Input

The char extractor skips whitespace. Programs frequently need to read the next character whether or
not it is whitespace. This can be done with the get() member function. For example,

char ¢ ; cin.get(c) :

get() returns the istream and a common idiom is:
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char ¢ ;
while ( cin.get(c) ) {

}

Programs also occasionally need to read binary values (e.g., those written with write()) and this can be
done with the read() member function.

cin.read((char¥*)&x, sizeof (%)) ;

This does the inverse of the earlier write example (namely, it inputs the raw binary form of x).

If a program is doing a lot of character binary input, it may be more efficient to use the lower level
part of the iostream library (streambuf classes) directly rather than through streams.

Creating Streams

The examples so far have used the predefined streams, cin and cout. For some programs, reading
from standard input and writing to standard output suffices. But other programs need to create
streams with alternate sources and sinks for characters. This section discusses the various kinds of
streams that are available in the iostream library.

Files

The classes ofstream and ifstream are derived from ostream and istream and inherit the insertion and
extraction operations respectively. In addition they contain members and constructors that deal with
files. The examples in this section assume that the header file fstream.h has been included.

If the program wants to read or write a particular file it can do so by declaring an ifstream or ofs-
tream respectively. For example,

ifstream source("from") ;

if ( !source ) error("unable to open ’from’ for input");
ofstream target ("to") ;

if ( !target ) error("unable to open ‘to’ for output"):;
char ¢ ;

while ( target && source.get(c) ) target.put(c) ;

copies the file from to the file to. If the ifstream() or ofstream() constructor is unable to open a file in
the requested mode it indicates this in the error state of the stream.

In some circumstances a program may wish to declare a file stream without specifying a file. This
may be done and the filename supplied later. For example:

ifstream file ;

’

file.open(argv[l])
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It is even possible to reuse the same variable by closing it between calls to open(). For example:

ifstream infile ;

for ( char** f = gargv[l] ; *f ; ++f ) {
infile.open(*f) ;
infile.close()

}

In some circumstances the program may already have a file descriptor (such as the integer 0 for stan-
dard input) and want to use a file stream. For example,

ifstream infile ;
if ( stramp(argv[l],"-") ) infile.open({argv[l],input) ;
else infile.attach(0) ;

opens infile to read a file named by argv[1], unless the name is "-". In that case it will connect infile
with the standard input (file descriptor 0). A subtle point is that closing a file stream (either explicitly
or implicitly in the destructor) will close the underlying file descriptor if it was opened with a
filename, but not if it was supplied with attach.

Sometimes the program wants to modify the way in which the file is opened or used. For example, in
some cases it is desirable that writes append to the end of a file rather than rewriting the previous
values. The file stream constructors take a second argument that allows such variations to be
specified. For example,

ofstream outfile("out", ios: :applios: :nocreate) ;

declares outfile and attempts to attach it to a file named out. Because ios::app is specified all writes
will append to the file. Because ios:nocreate is specified the file will not be created. That is, the open
will fail (indicated in outfile’s error status) if the file does not previously exist. The enum open_mode
is declared in ios.

class ios {
enum open_mode { in, out, app, ate, nocreate, noreplace } ;
}i

These modes are each individual bits and may be or’ed together. Their detailed meanings are
described in the man pages.

Sometimes it is desirable to use the same file for both input and output. fstream is an iostream (a
class derived via multiple inheritance from both istream and ostream). The type streampos is used for
positions in an iostream. For example,
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fstream tmp ("tmp",ios::inlios::out) ;

streampos p = tmp.tellp() ;// tellp() returns current position
tmp << x

tmp.seekg(p) // seekg() repositions iostream
tmp >> x ;

saves the position of the file in p, writes x to it, and later returns to the same position to restore the
value of x.

A variant of seekg() takes a streamoff (integral value) and a seek_dir to specify relative positioning.
For example,

tmp.seekg(—-10,i0s::end) ;
positions the file 10 bytes from the end, and
tmp.seekg{l0,ios: :cur) ;
moves the file forward 10 bytes.

Incore Formatting

Despite its name, the iostream library may be used in situations that do not involve input or output.
In particular, it can be used for “incore formatting”” operations in arrays of characters. These opera-
tions are supported by the classes istrstream and ostrstream, which are derived from istream and
ostream respectively. The examples of this section assume that the header file strstream.h has been
included.

For example, to interpret the contents of the string argv[1] as an integer value, the code might look
like:

int i ;
istrstream(argv[1l]) >> i ;

The argument of the istrstream() constructor is a char pointer. In this example, there is no need for a
named strstream. An anonymous constructor is more direct.

The inverse operation, taking a value and converting it to characters that are stored into an array, is
also possible. For example,

char s[32] :
ostrstream(s, sizeof(s)) << x << ends ;

will store the character representation of x in s with a terminating null character supplied by the ends
(endstring) manipulator. The iostream library requires that a size be supplied to the constructor and
nothing is ever stored outside the bounds of the supplied array. In this case, an “output error” will
occur if an attempt is made to insert more than 32 characters.

In case it is inconvenient to preallocate enough space for the string, a program can use an ostrstream()
constructor without any arguments. For example, suppose we want to read the entire contents of a
file into memory.
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ifstream in("infile") ;

// strstream with dynamic allocation
strstream incore ;

char c ;
while ( incore && in.get(c) ) incore.put(c) ;

// str returns pointer to allocated space
char* contents = incore.str() ;

// once str is called space belongs to caller
delete contents ;

The file infile is read and its contents inserted into incore. Space will be allocated using the ordinary
C++ allocation (operator new) mechanism, and automatically increased as more characters are
inserted. incore.str() returns a pointer to the currently allocated space and also “freezes’” the strstream
so that no more characters can be inserted. Until incore is frozen, it is the responsibility of the
strstream() destructor to free any space that might have been allocated. But after the call to str(), the
space becomes the caller’s responsibility.

Predefined Streams

There are four predefined streams, cin, cout, cerr, and clog. The first three are connected to standard
input, standard output, and standard error respectively. clog is also connected to standard error but,
unlike cerr, clog is buffered. That is, characters are accumulated and written to standard error in
chunks. cout is also buffered.

Frequently programs want to use either standard input and output or some external file depending on
their command line arguments. One way is to use the predefined streams and assign to them.
Assignment of streams is not possible in general but the predefined streams have special types which
allow it. The reader is referred to the man pages for a discussion of the semantics of assignment. A
more flexible style is to use a pointer or reference to a stream:

istream* in = &cin ;

if ( infile ) in = new ifstream(infile) ;

*in << % ;
Problems can occur when mixing code that uses iostreams with code that uses stdio. There is no con-
nection between the predefined iostreams and the stdio standard FILEs except that they use the same
file descriptors. It is possible to eliminate this problem by calling

ios::sync_with stdio()
which will connect the predefined iostreams with the corresponding stdio FILEs. Such connection is

not the default because there is a significant performance penalty when the predefined files are made
unbuffered as part of the connection.
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Format Control
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The default treatment of scalar types is that integral values (except char and unsigned char) are
inserted in decimal, pointers (except char* and unsigned char®) in hex, floats and doubles with 6 digits
of precision and all without leading or trailing padding. char and unsigned char values are just
inserted as single characters. char* and unsigned char* values are treated as pointers to strings (null
terminated sequences of characters). The default treatment for extraction of integer types is decimal
numbers with leading whitespace permitted. An optional sign (+ or —) is permitted, but without whi-
tespace between it and the digits. Extraction is terminated by a non-digit character. Extraction for
floating point types is similar except that the lexical possibilities for floating point numbers are an
optional sign followed (without intervening whitespace) by a number according to C++ lexical rules.

For many purposes these defaults are adequate. When they are not, the program can do more format-
ting itself, or it can use the format control features of the iostream library. The examples in this sec-
tion use these features.

Associated with each iostream is a collection of “format state variables” that control the details of
conversions. The most important of these is a long int value that is interpreted as a collection of bits.
These bits are declared as:

enum { skipws=01, // skip whitespace on input
left=02, right=04, internal=010,
// padding location
dec=020, oct=040, hex=0100,
// conversion base
showbase=0200, showpoint=0400, uppercase=01000,
showpos=02000,

// modifiers A
scientific=04000, £fixed=010000

// floating point notation
} o

These may be examined and set individually or collectively. For example, the ios::skipws controls
whether leading whitespace is skipped by extractors.

char ¢ ;

cin.setf(0,ios: :skipws) ; // turn off skipping
cin >> ¢ ;

cin.setf(ios::skipws,ios::skipws) ;// turn it back on

The second argument of setf indicates which bits should be set. The first indicates what values they
should be set to.

Manipulators are declared (in iomanip.h) that will have an equivalent effect. The above is equivalent
to:

cin >> resetiosflags(ios::skipws)
>> ¢
>> setiosflags (ios::skipws) ;

resetiosflags resets (makes zero) the indicated bits and setiosflags sets (makes them 1) the indicated
bits. -

S
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Commonly we want to save the flags (or other state variables) and restore their value later. Consider:

long £ = cin.flags() ;
cin.setf(ios: :skipws,ios::skipws) ;
cin >> ¢ ;

cin.flags(f) ;

The variant of flags without an argument returns the current value. The variant with an argument
stores the argument into the flags state variable. This code does the same extraction as the previous
code, but instead of arbitrarily leaving cin with skipping on it restores skipping to its previous status.

The pattern of member functions is repeated for other state variables. That is, if svar is some state
variable, and s is a stream, then s.svar() returns the current value of the state variable and s.svar(x)
stores the value x into the state variable.

Field Widths

The default behavior of the inserters is to insert only as many characters as is necessary to represent
the value, but frequently programs want to have fixed size fields.

cout.width(S)
cout << x ;

will output extra space characters preceding the digits to bring the total number of inserted characters
to five. If the value of x will not fit in five characters, enough characters will be inserted to express its
value. The numeric inserters never truncate. The width state variable might be regarded as an impli-
cit parameter of extractors because it is reset to 0 (which induces the default behavior) whenever it is
used.

cout .width(5)
cout <K x <K " " Ky ;

will output x in at least five characters, but will use only as many characters as necessary in outputting
the separating space and y.

The value of the width state variable is honored by the inserters of the iostream library, but user
defined inserters are responsible for interpreting it themselves. For example, the Pair inserter defined
previously does nothing special with width and so if it is non-zero when the inserter is called the
width will apply to the first int inserted, and not the second. If the inserter wants to honor width its
definition might look like:

ostream& operator<<(ostreamg& o, Pair p) {
int w = o.width()
o.width(w/2) ;
oKL p.x<K""
o.width(w/2-((w+l)&1))
o <KL p.y.
return o ;

}

This inserts each number in half the requested width.
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It is slightly awkward to mix calls to the width() member function with insertion operations. The
manipulator setw() may be used. An alternative definition of the Pair inserter might be:

iostreamé operator<<(iostreamg& ios, Pair p) {
int w = ios.width() ;
return ios << setw(w/2) << pair.x << " "
<< setw(w/2+((w+l)&l)) << pair.y ;
}

width is always interpreted as a minimum number of characters. There is no direct way to specify a
maximum number of characters. In cases where a program wants to insert exactly a certain number of
characters, it must do the work itself. For example,

if ( strlen(s) > w ) cout.write(s,w)
else cout << setw(w) << s ;

will always insert exactly w characters.

width is generally ignored by extractors, which tend to rely on the contents of the iostream to detect
the end of a field. There is, however, an important exception. The char* extractor interprets a non-
zero width to be the size of the array. For example,

char a[l6] ;
cin >> setw(sizeof(a)) >> a ;
if ( !'isspace(cin.peek() ) error("string too long")

protects the program in case there are sixteen or more visible characters. As a further measure of pro-
tection, the extractor stores a trailing null in the last byte of the array when it stops because there are
too many visible characters. This means that the number of characters extracted (not counting leading
whitespace) will be at most one less than the specified width.

Flags control whether padding (when it occurs) causes the field to be left or right justified. The fill
state variable (whose initial value is a space) supplies the character to be inserted.

cout. fill (*)

cout .setf (ios::left,ios: ::adjustfield) ;

cout << setw(S) << 13 <« ", " ;

cout.fill (#) ; // set state variable
cout.setf (ios::right,ios: :adjustfield) ;

cout << setw(5) << 14 << "\n" ;

results in a line of output that looks like:

13%%*%, ###14

Conversion Base

Integers are normally inserted and extracted in decimal notation, but this is controlled by flag bits. If
none of ios:dec, ios:hex, or ios::oct are set the insertion is done in decimal but extractions are inter-
preted according to the C++ lexical conventions for integral constants. If ios:showbase is set then
insertions will convert to an external form that can be read according to these conventions.
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For example,

int x = 64;
cout << dec << x << " "
<< hex << x <« " %
<< oct << x << endl ;
cout.setf (ios: :showbase, ios: : showbase) ;
cout << dec << x << " "
<< hex << x << " *
<< oct << x << endl ;

will result in the lines:

64 40 100
64 0x40 0100

setf() with only one argument turns the specified bits on, but doesn’t turn any bits off.

Reading the lines shown above could be done by:

cin >> dec > x
>> hex > x
>> oct >> x
>> resetiosflags(ios: :basefield)
>> X D> X >> X ;

The value stored in x will be 64 for each extraction. The resetiosflags() manipulator turns of the
specified bits in the flags.

Miscellaneous Formatting

As a precaution against looping, zero width fields are considered a bad format by the extractors. So if
the next character is whitespace and ios::skipws is not set, the arithmetic extractors will set an error
bit.

The number of significant digits inserted by the floating point (double) inserter is controlled by the
precision state variable. The details of the conversion are further controlled by certain flags. The
reader is referred to the man page for more details.

It is good practice to flush ostreams appropriately. The flush and endl manipulators make it relatively
easy to do so. Yet, there are circumstances in which some automatic flushing is appropriate. This is
supported by the ostream* valued state variable tie. If i.tie is non-null and an istream needs more
characters, the ostream pointed at by tie is flushed. Initially cin is tied in this fashion to cout so that
attempts to get more characters from standard input result in flushing standard output. This seems to
handle most interactive programs reasonably well without imposing a large performance penalty on
non-interactive programs and without creating different behavior when programs are connected to
pipes rather than directly to a terminal. (Programs that won’t work when their input or output is con-
nected to a pipe are one of the author’s pet peeves.) The overheads implied by tying are relatively
small when compared with “big”” extractors (such as the arithmetic ones) but may be large when sin-
gle character operations are being performed. For this reason it is sometimes a good idea to break the
tie by setting the state variable to 0. For example:
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char ¢ ;

// break the tie to improve performance of get.
cin.tie(0) ;

while ( cin.get(c) ) cout.put(c) ;

Manipulators

A manipulator is a value that can be inserted into or extracted from a stream to cause some special
side effect. That is, some side effect besides inserting a representation of its value, or extracting char-
acters and converting them to a value. A parameterized manipulator is a function (or a member of a
class with an operator()) that returns a manipulator. Previous sections contain examples of the use of
manipulators and parameterized manipulators. This section contains examples illustrating how to
define manipulators. The predefined manipulators and macros discussed in this section are declared
in the header file iomanip.h.

A (plain) manipulator is a function that takes an istreamé& or ostreamé& argument, operates on it in
some way, and returns it. A (pointer to a) function of this type may be extracted from or inserted into
a stream, respectively.

Many examples of manipulators (such as flush or endl) have already appeared in this paper. For
example, a manipulator to insert a tab can be defined:

ostream& tab(ostream& o) {
return o << ‘\t’ ;
}

cout << x << tab <<y ;

This seems over elaborate. Why not simply define tab as a character or string? One possible reason
has to do with the namespace. There can be only one (global) variable in a C++ program named tab
but because of overloading there can be many functions with that name.

Another common use of manipulators is to shorten the long names and sequences of operations
required by the iostream library. For example,

ostream& fld(ostreamg o) {
o.setf (ios: :showbase, ios: : showbase) ;
o.setf(ios::oct, ios::basefield) ;
o.width(10) ;
return o ;

}

cout << fld << x ;

It is common for the function that manipulates a stream to need an auxiliary argument. setw() is an
example of such a parameterized manipulator. To use parameterized manipulators the program must
include iomanip.h.
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( For example, we might want to supply the value to be printed to fld in the above.

ostream& fld{ostream& o, int n ) {
long £ = flags(ios::showbase|ios::oct) ;-
0 << setw(l0) << n ;
flags(f) ; // restore original flags
return o ;

}

OMANIP (int) fld(int n) {
return OMANIP (int) (f1d,n) ;
}

cout << £f1d(23) ;

OMANIP is a macro and OMANIP(int) expands to the name of a class declared in iomanip.h. An
OMANIP(int) insertion operator is also declared in iomanip.h and is used in the example. Note that
fld in the above is overloaded; it is both the function that manipulates the stream and a function that
returns an OMANIP(int).

If we need parameterized manipulators for parameter types other than int and long (which are

declared in iomanip.h), they must be declared. For example, suppose we want to read numbers that
may have a suffix.

typedef long& Longref ;

) IOMANIPdeclare (Longref) ;
("' // Declares IMANIP (Longref), OMANIP (Longref), IOMANIP (Longref)
N // IAPP (Longref), OAPP (Longref), IOAPP (Longref)

istream& in k(istream& i, long& n)
{
// Extract an integer.
// If suffix is present multiply by 1024
i>»>n;
if ( i.peek() = 'k’ ) {
i.ignore(l) ;
n *= 1024 ;
}
return i ;

}

IAPP (Intref) in k = in k :
// IAPP (Intref) is the type of an Intref applicator
// in_k on right is function, on left variable

long n ;
cin >> in k(n)
The IOMANTIPdeclare(T) declares manipulators (and applicators) for type T. Because of the way the

macro IOMANIPdeclare expands, the argument must be an identifier. In this case a typedef is
required to create manipulators for long&. An applicator is something that behaves like a function
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returning a manipulator. That is, it is a class with an operator() member.

Sometimes we want a manipulator with more than one parameter. One way to achieve this effect is to

define a manipulator on a class. For example, a manipulator that can be used to repeat a string might
look like:

cout << repeat ("ab",3) << endl ;
to result in a line containing “ababab.” A possible definition of repeat would be

struct Repeatpair (
const char* s ;
int n ;

}

IOMANIPdeclare (Repeatpair)

static ostream& repeat (ostream& o, Repeatpair p) {
// insert p.s into o, p.n times
for (int n=pn; n>0; —n) o< p.s ;
return o ;

}

OMANIP (Repeatpair) repeat (const char* s, int n) {
Repeatpair p ;
p.s=s ; p.n=n ;
return OMANIP (Repeatpair) (repeat,p)
}

Manipulators are a powerful and flexible method of extending the default inserters and extractors.

The Sequence Abstraction

The iostream library is built in two layers: The formatting layer discussed in previous sections, and a
sequence layer based on the class streambuf. The formatting layer is responsible for converting
between sequences of characters and various types of values and for high level manipulations of the
streams. The sequencing layer is responsible for producing and consuming those sequences of charac-
ters. The most common way of using streambufs is with a stream. But streambuf is an independent
class and may be used directly.

Abstractly, a streambuf represents a sequence of characters and two pointers into that sequence, a get
and a put pointer. These pointers should be thought of as pointing at the locations either before or
after characters in the sequence, rather than at specific characters. The sequences and pointers may be
manipulated in a variety of ways, with the two fundamental ones being fetching the character after the
get pointer, and storing a character in the position after the put pointer. Storing either replaces any
previous character at that location or, if the put pointer was at the end of the sequence, extends the
sequence. Other manipulations may move the pointers in various ways.
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For the examples of this section, we assume that there are two streambufs, pointed at by in and out.
Methods for constructing streambufs appear later, but it is easy enough to get at the streambuf associ-
ated with a stream via rdbuf(). So we assume that in and out have been initialized with

streambuf* in = cin.rdbuf() ;
streambuf* out = cout.rdbuf() :

An istream or ostream retains no information about the state of the associated streambuf. For exam-
ple a program may alternate between extracting characters from in and cin.

The simplest operations are getting and putting characters. A simple loop to copy characters from one
streambuf to another would be:

int ¢ ;
while (( ¢ = in->sbumpc()) != EOF ) {
if ( out—->sputc(c) == EOF ) error("output error") :;

}

sbumpc() fetches the character after the get pointer and advances the get pointer over the fetched char-
acter. sputc() stores a character into the sequence and moves the put pointer past it. Both functions
report errors by returning EOF, which is why ¢ must be declared an int rather than a char. EOFs
returned while fetching tend to mean that the streambuf has run out of characters from the ultimate
producer. EOFs returned when storing tend to signal real errors. Because, unlike iostreams, stream-
bufs do not contain any error state, it is possible that a store or fetch might fail one time and succeed
the next time it is tried.

The streambuf class contains several different member functions for manipulating the get pointer. The
following loop represents a common idiom:

int ¢ = in->sgetc()

while ( c!=EOF && !isspace(c) ) {
¢ = in->snextc()
}

It scans the streambuf looking for a whitespace character (i.e., one for which isspace is non-zero). It
stops when it finds that character leaving it available for extraction. This is because sgetc() and
snextc() do not behave the way many programmers expect. sgetc() returns the character after the get
pointer, but does not move the pointer. snextc() moves the get pointer and then returns the character
that follows the new location. As usual both these functions return EOF to signal an error.

The copy loop moved characters one at a time. It is possible to do larger chunks, as in:

lostream Examples 3-21



lostream Examples

static const int Bufsize = 1024 ;
char buf[Bufsize] ;
int p, g ;
do {
g = sgetn(buf, Bufsize) ;
p = sputn(buf, q) ;
if ( p!=g ) error("output error");
} while ( g>0 )

sgetn(b,n) attempts to fetch n characters from the sequence into the array starting at b. Similarly
sputn(b,n) tries to store the n characters starting at b into the sequence. Both move the pointer (get or
put respectively) over the characters they have processed and return the number transferred. For
sgetn() this will be less than the number requested when the end of sequence is reached. When
sputn() returns less than the number requested, it indicates an error of some sort.

Buffering Exposed

As the name suggests streambufs may implement the sequence abstraction by buffering between the
source and sink of characters. This results in an unfortunate pun. The word “buffer” is frequently
used informally to designate a streambuf, but it is also used to describe the chunking of characters.
Thus, the oxymoron “unbuffered buffer” refers to a streambuf in which characters are passed to the
ultimate consumer as soon as they are stored, and obtained from the ultimate producer whenever they
are retrieved.

In light of the buffering provided by streambufs, the reader will not be surprised to discover that
arrays of characters are used in the implementation. The streambuf class contains some member func-
tions that make the presence of such arrays visible to the program. With some effort, they might be
used to “break the abstraction,” but the intended purpose is to deal with the delays implicit in buffer-

ing.

The earlier example using sgetn() and sputn() to copy from in to out waits until Bufsize characters
become available (or the end of the sequence is reached) before passing any to out. If the source of
characters has delays (e.g., it is a person typing at a terminal) and we want the characters to be passed
on as soon as they become available; the program might use operations on single characters instead, or
it might use an adaptive method such as:

static const int Bufsize = 1024 ;

char buf[Bufsize] ;

int p, g

do {
in->sgetc() ; // force a character in buffer
g = in->in_avail() ;
if ( g > Bufsize ) g = Bufsize ;
g = in->sgetn(buf,qg) ;
p = out->sputn(buf,qg) ;
out->sync() ;
if ( p!=g ) error("output error"):;
} while (g > 0)

in_avail returns the number of characters immediately available in the array. Calling sgetc() first

forces there to be at least one such character (unless the get pointer is at the end of the sequence).
Recall that sgetc() returns the next character, but doesn’t move the get pointer. The code calls sync(}
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after it has put characters into out, thus causing these characters be sent to the ultimate consumer.

In some circumstances, such as when streambufs are being used for interprocess messages, the chunks
in which characters are produced and consumed may have significance. The above preserves these
chunks provided they are less than Bufsize and they fit into the arrays of in and out. To ensure that
this latter condition is met, the code should provide large enough arrays explicitly with:

char ibuf[Bufsize+8], obuf[Bufsize+8] ;
in->setbuf (ibuf, sizeof (ibuf)) ;
out->setbuf (cbuf, sizeof (cbuf)) ;

The calls to setbuf() should be done before any fetches or stores are done. The arrays are eight larger
than required by the largest chunk to allow for various overheads. Of course, this code behaves prop-
erly only when in delivers the characters in the appropriate chunks.

Using Streambufs in Streams

The positions of the put pointer after operations that store characters, and position of the get pointer
after operations that fetch characters are well defined by the sequence abstraction. But the location of
the get pointer after stores, and the location of the put pointer after fetches is not. Most specializations
of streambuf (i.e., classes derived from it) follow one of two patterns. Either the class is queuelike,
which means that the put pointer and the get pointer are independent and moving one has no effect
on the other. Or the class is filelike, which means that when one pointer moves the other is adjusted
to point to the same place. So a filelike class behaves as if there were only one pointer. Other possi-
bilities are logically possible, but do not seem to be as useful.

A queuelike streambuf, may be shared between two streams. For example:

strstreambuf b ;

ostream ins(&b) ;

istream extr(&b) ;

while ( ... ) {
ins<«< x; ... ;
extr >> x ; ees 4
}

This example explicitly uses the strstreambuf class (declared in strstream.h) which is also used (impli-
citly) by the istrstream and ostrstream classes. The istream(} and ostream() constructors require a
streambuf argument. They use that streambuf as a producer or consumer of characters. The charac-
ters inserted into ins may later be extracted from extr. If an attempt is ever made to extract more
characters than have been inserted, the extraction will fail. If more characters are later inserted, extr’s
error state can be cleared and the extraction retried.

Because of the dynamic allocation performed by strstreambufs the queue is unbounded, but there is a
serious drawback. Space is not reclaimed until b is destroyed.

lostream Examples 3-23



lostream Examples

Deriving New Streambuf Classes

The streambuf class is intended to serve as a base class. Although it contains members to manipulate
the sequences, it does not contain any mechanism for producing or consuming characters. These must
be provided by a derived class. The iostream library contains several such derived streambuf classes,
but a program may define new ones.

The members of a class that are intended for use by derived classes are protected, and the data struc-
ture as seen by a derived class is said to be the protected interface of the streambuf class. This
abstraction exposes the details of the array management that is implicit in the buffering provided by
streambufs. It consists of two parts. The first part is member functions of streambuf that permit
access to and manipulation of the arrays and pointers used to implement the sequence abstraction.
The second part is virtual members of streambuf that must be supplied by the derived class.

The principle example of this section will be the implementation of fctbuf, whose declaration looks
like:

typedef int (*action) (char* b, int n, open mode m) ;

class fctbuf : public streambuf {
public:

fctbuf (action £,open mode m) ;
private:
} o

When called with m=ios::out, an action() function processes the n characters starting at b. When
called with m=ios::in, it stores n characters starting at b. It returns non-zero to indicate success and
zero to indicate failure.

The declaration of fctbuf looks like:

class fctbuf : public streambuf {
public: // constructor
fctbuf (action a, open _mode m) ;

private: // data members
action fct
open_mode
mode ;
char small{l] ;
protected: // virtuals
int overflow(int) ;
int underflow() ;
streambuf*
setbuf (char*,int,int) ;
int sync() ;
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The constructor just initializes the data elements. The action function a will be called only in modes
compatible with m.

',f)’«\\‘-

fctbuf: :fctbuf (action a, open_mode m)
: fet(a), mode(m) { }

The virtual functions define details that make fctbuf() behave properly. The streambuf protected
interface is organized around three areas (char arrays), the holding area, the get area, and the put area.
Characters are stored into the put area and fetched from the get area.

As characters are stored in the put area, it shrinks until there is no more space available. If an attempt
is made to store a character when the put area has no space, a new area must be established. Before
that can be done the old characters must be consumed. Both these tasks are the responsibility of the
overflow(} function. Similarly, the get area is shrunk by fetches and is eventually empty. If more
characters are needed the underflow() function must create a new get area. Both overflow() and
underflow() will use the holding area to initialize the put or get area (respectively).

setbuf

The virtual function setbuf is called by user code to offer an array for use as a holding area. It can
also be used to turn off buffering.

streambuf* fctbuf::setbuf(char* b, int len)
{
if ( base() ) return 0 ;

r if ( b!=0 && len > sizeof(small) ) {
. // set up holding area
setb (b, b+len) ;
}
else {
// Use a one character array to achieve
// "unbuffered" actions.
setb (small, small+sizeof (small))
}
setp(0,0) ; // put area
setg(0,0,0) ; // get area

return this ;

}

The actions of this function are:

m base() points to the first character of the holding area. If a holding area has already been set up
(base non-zero) a new one cannot be established and setbuf() returns a null pointer as an error
indication.

m If an array is supplied and is sufficiently large, setb() is called to set up the pointers to the hold-
ing area. Its first argument becomes base, the first char of the holding area, and its second
becomes ebuf, the char after the last. Otherwise the fctbuf will become unbuffered. This is
noted by setting up a one character holding area.

VRN
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m Finally the pointers related to the put area are set to 0 by setp() and the pointers related to the
get area are set to 0 by setg().
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overflow

The virtual function overflow() is called to send some characters to the consumer, and establish the put
area. Usually (but not always) when it is called, the put area has no space remaining.

int fctbuf::overflow(int c) {
// check that output is allowed
if ( ! (mode&ios::out) } return EOF ;

// Make sure there is a holding area
if ( allocate()==ECF ) return EOF ;

// Verify that there are no characters in
// get area.

if ( gptr() && gptr() < egptr() ) return EOF ;

// Reset get area
setg(0,0,0) ;

// Make sure there is a put area
if ( !'pptr() ) setp(base(),base()) :

// Determine how many characters have been
// inserted but not consumed.
int w = pptr()-pbase() ;

// 1If c is not EOF it is a character that must
// also be consumed.
if (¢ != EOF ) {

// We always leave space

*pptr() = ¢ ;

+w

}

// consume characters.
int ok = (*fct) (pbase{), w, ios::out) ;

if ( ok ) {
// Set up put area. Be sure that there
// is space at end for one extra character.
setp (base () ,ebuf()-1) ;
return zapeof(c) ;
}
else {
// Indicate error.
setp(0,0) ;
return EOF ;
}
}

Some explanations of this code:
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It first tests for various error conditions, such as trying to do insertion when there are characters
that have been produced but not extracted. This is a problem because the code only uses one
area to hold characters for insertion and extraction. It would also be possible to ignore this con-
dition and just throw away the characters or a more elaborate version of fctbuf might use
separate areas for insertion and extraction.

allocate() is a part of the streambuf protected interface. If no reserve area has previously been
specified it allocates heap space.

pbase is the value of pptr established by the last call to setp(). As characters are stored, pptr is
moved so that it always points to the first unused character. Thus the characters between pbase
and pptr have been stored and not consumed. They are now sent to the consumer.

The value returned by the consumer is checked to verify that it has been able to consume all the
characters that were passed to it. If not, there is no put area and EOF is returned.

When all has gone well the put area is established by setp() whose first argument becomes pptr
(pointing to the first char of the put area) and whose second becomes epptr (pointing to the char
after the last char of the put area). In this case when no errors have occurred the whole holding
area minus the last character is used as a put area. The last character will usually be filled in by
the character supplied to the next call to overflow().

Finally, if all has gone well, ¢ is returned unless it is EOF. If ¢ is EOF something else must be
returned because EOF is returned to signal an error. The macro zapeof() deals with this con-
tingency.

underflow

The underflow function is called when characters are needed for fetching and none are available in the
get area. Its general outline is similar to overflow(), but it deals with the get area rather than the put

area.

3-28

int fctbuf::underflow() {
// Check that input is allowed
if ( ! (mode&ios::in) ) return EOF ;

// Make sure there is a holding area.
if (allocate()==EOF) return EOF ;

// If there are characters waiting for output
// send them ;
if ( pptr() && pptr() > pbase() ) overflow(EOF) ;

// Reset put area
setp(0,0)

// Setup get area ;
if ( blen{() > 1 ) setg(base(),base()+1,ebuf()) ;
else setg(base() ,base() ,ebuf()) ;

// Produce characters
int ok = (*fct) (base(),blen(),ios::in) ;

if ( ok ) {
return zapeof (*base())
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}

else {
setq(0,0,0) ;
return EOF ;
}

}

Some explanations:

EOF is returned immediately if we aren’t supposed to do input or if a holding area cannot be
allocated.

allocate() is called to make sure that there is a holding area.

setg() is used to establish the get area where fct will be asked to store characters. Its first argu-
ment sets up a pointer, eback, that marks the limit to which putback can move gptr. The
second argument becomes gptr, and the last becomes egptr, pointing at the char after the last
char containing values stored by the producer.

blen() returns the size of the holding area. It may be as small as 1.

If the action function indicated success underflow(} returns the first character. It is left in the get
area and may be extracted again. zapeof() is used to make sure that the returned result is not
EOF. If zapeof() were omitted this might occur on a machine in which chars are signed and
EOF is -1.

sync

The virtual function sync(} is called to maintain synchronization between the various areas and the
producer or consumer. It is also called by the streambuf() destructor.

int fctbuf: :sync()
{
if ( gptr() && egptr() > gptr() ) {
// no way to return characters to producer
return EOF ;
}

if ( pptr() && pptr() > pbase() ) {
// Flush waiting output
return overflow(EOF) ;
}

// nothing to do
return 0 ;
}

The virtual functions defined above implement a correct streambuf class. A possible refinement would
be to provide implementations of the virtual xsputn() and xsgetn() functions. These functions are
called when chunks of characters are being inserted and extracted respectively. Their default actions
are to copy the data into the buffer. If they were defined in the fctbuf class they could call the func-
tions directly and avoid the extra copy.
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Extending Streams )

There are two kinds of reasons to extend the basic stream classes. The first is to specialize to a partic-
ular kind of streambuf and the second is to add some new state variables.

Specializing istream or ostream

When the iostream library is specialized for a new source or sink of characters the natural pattern is
this: First derive a class from streambuf, such as fctbuf in the previous section. Then derive classes
from whichever of istream, ostream, or iostream is appropriate. For example, suppose we want to do
this with the fctbuf class defined in the previous section. The streams might get the definitions:

class fctbase : virtual public ios {
public:
fctbase (action a, open_mode m)
: buf(a,m) { init (s&buf) ; }
private:
fctbuf buf ;
} o

class ifctstream : public fctbase, public istream {

public:
ifctbase (action a)
: fctbase(a, ios::in) { }
} o
class ofctstream : public fctbase, public ostream { ,)
public:

ofctbase (action a)
: fctbase(a, ios::out) { }
} o

class iofctstream : public fctbase, public iostream {
public:
iofctstream(action a open mode m)
: fctbase(a, m) { }
} o

Derivations from ios are virtual so that when the class hierarchy joins (as it does in iofctstream) there
will be only one copy of the error state information. Because the derivation from ios is virtual an
argument cannot be supplied to its constructor. The streambuf is supplied via ios:init(), which is a
protected member of ios intended precisely for this purpose.

Extending State Variables

In many circumstances we would like to add state variables to streams. For example, suppose we are
printing trees and would like to have an indentation level associated with an ostream.
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int xdent = jos::xalloc() ;
// generate a unique index

ostream& indent (ostream& o) {
// manipulator that inserts newlines and
// appropriate number of tabs
o << '\n’ ;
int count = o.iword(xdent) ;
while ( count— > 0 ) o0 << "\t’ ;
return o ;

}

ostream& redent (ostream& o, int n) {
// parameterized manipulator that modifies
// indentation level
o.iword(xdent) += n ;
}

OAPP (int) redent = redent ;

o.iword(xdent) is a reference to the xdent'th integer state variable. Each call to ios:xalloc returns a
different index. The index may then be used to access a word associated with the stream. The reason
for calling ios::xalloc to get an index rather than just picking an arbitrary one is that it allows combin-
ing code that uses the indentation level with code that may have extended the formatting state vari-
ables for some other purpose.

A subtle problem occurs in the above example because xdent is initialized by a function call. What if
indent() or redent() were called before xdent was initialized? Can that happen? Yes it can. It can
happen if indent() or redent() is called from inside a constructor that is itself called to initialize some
variable with program extent. Problems with order of initialization when doing I/O in constructors
are common. The solution relies on “tricks” to force initialization order. In this case we would put
into the header file containing the declarations of indent() and redent():

static class Indent_init ({
static int count ;
public:
Indent_init () ;
~Indent_init() ;
} indent_init ;

Each file that includes this header file will have a local variable indent_init that has to be initialized.
Because this variable is declared in the header its initialization will occur early.

The definition of the constructor and destructor looks like:
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static Iostream init* io ;

Indent_init::Indent_init ()

{
// count keeps track of the difference between how
// many constructor and destructor calls there are
if ( count++ > 0 ) return ;

// This code is executed only the first time
io = new Iostream init ;

xdent = ios::xalloc() ;

}

Indent_init::~Indent init ()
{
if ( —count ) > 0 ) return ;

// This code will be executed the last time
delete io ;

}

The iostream library uses this idea itself. The constructor for Iostream_init causes the iostream library
to be initialized the first time it is called. It also keeps track of how many times the constructor is
called and will do finalization operations on various data structures the last time it is called. It is
therefore important that any values of type Iostream_init that are constructed by a program are even-
tually deleted. This is the purpose of having an Indent_init destructor; even though there are no final-
ization operations associated with indentation, it must delete io.

Comparison of lostreams, Streams, and Stdio

The stdio library served C programmers well for many years. However, it has several deficiencies:

m The use of functions, like printf(), that accept variable numbers and types of arguments mean
that type checking is subverted at an important point in many programs.

a There is no mechanism for extending it to user defined classes. The only way to add new for-
mat specifiers to printf() is to reimplement it.

m The mechanism is closely tied to file I/O. sprintf() explicitly extends it to incore operations, but
there is no general method for creating alternate sources and sinks of data.

After stdio, the next stage of development was the stream library. Its most significant innovation was
the introduction of insertion and extraction operations. The first two problems with stdio were
elegantly solved. It was in use by C++ programmers for several years. But the stream library had
problems of its own:

m The mechanism for creating sources and sinks of characters (streambuf class) was not docu-
mented or designed for extension.
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m The full range of UNIX file operations was not supported. In particular there were no reposi-
tioning operations (seeks).

® There was only limited control over formatting. Programs frequently reverted to printf() like
functions to specify alternative formats for numbers. A fixed size area was allocated for convert-
ing values to strings and then outputting the strings. Although it was not a problem in practice,
in theory this buffer was subject to overflows.

The iostream library presented in this document has resolved these problems. It is relatively new, and

whether significant problems will emerge in the future is not yet known. Some apparent deficiencies
are:

m There is no way to determine if a producer has characters available, and no way to select input
from one of multiple sources. This is, of course, also a deficiency of stdio and streams.

m There is no way to process data in the buffers without copying them out. This extra copying

step can be expensive when simple operations (e.g., scanning for a specific character) are being
performed.

m Some formatting operations tend to be wordier than the equivalent stdio operations. This is
compensated for by the ability to define manipulators and inserters.

Converting from Streams to lostreams

The iostream library is mostly upward compatible with the older stream library, but there are a few
places where differences may affect programs. This section discusses those differences.

The major conceptual difference is that in the iostream library, streams and streambufs are regarded
solely as abstract classes. The old stream classes provided certain specialized behaviors, specifically
incore formatting and file I/O. In the iostream library these are supported solely through derived
classes.

The old stream library declared everything in the header file stream.h. The iostream library uses
iostream.h and some other headers. For compatibility a stream.h is supplied that includes iostream.h
and other headers that are required for compatibility and defines a variety of items whose names are
different in the iostream and stream libraries.

streambuf Internals

The internals of the streambuf class in the stream library were all public. Any program that relies on
these internals will break because they are different (and private) in the iostream library.

How to derive new streambuf classes was not documented in the stream library. But it is such a
natural idea to do so that many programs do it. Converting these programs to the iostream library
may require changes in the derived overflow() and underflow() functions. The functionality of these
functions in the iostream library is essentially the same as in the stream library. But because the inter-
nals of streambuf have changed, some code changes will probably be required. In particular the code
will have to use the (protected) streambuf member functions setb(), setg(), and setp() instead of
directly manipulating the pointers.
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Incore Formatting

In the stream library the use of arrays of characters as sources or sinks was supported as the default
behavior of streambuf. Although some attempt to preserve the default behavior is made by the ios-
tream library these uses of a streambuf are considered obsolete. The support of incore operations is
specifically the responsibility of the strstreambuf declared in strstream.h. streambufs created for this
purpose can usually be replaced directly by strstreambufs that have equivalent behavior. The stream
usage:

char* buf[10] ;
streambuf b(buf,10) ;

is equivalent to the iostream:

char* buf[10] ;
strstreambuf b(buf,10) ;

and the old method for initializing a streambuf for extraction:
char* buf[10] ;
streambuf b ;
b.setbuf (buf, 10,buf+5) ;
is equivalent to the iostream method:
char* buf([10] ;
strstreambuf b (buf,10,buf+s) ;

Frequently these uses of streambuf do not appear explicitly in the program but are the consequence of
using certain constructors of istream and ostream. These constructors are supplied in the iostream
library, but are considered obsolete. The equivalent forms using strstream should be used.

The old method of storing a formatted value into an array:

char* buf[10] ;
ostream out (10,b)

is replaced by:

char* buf[10] :
ostrstream out (b,10)

Note that the order of the arguments is reversed. The new order creates more consistency between
various uses of strstreams.

The old method of extracting a formatted value from an array:

char* buf[10] ;
istream in(10,b) ;

is replaced by
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char* buf[10] ;
istrstream in(b,10) ;

The old istream() constructor allowed an optional extra argument to specify skipping of whitespace.
In the iostream library this is part of a greatly expanded collection of state variables and so an extra
argument is not provided for the istrstream() constructor. However, the obsolete form of istream()
constructor continues to accept these optional arguments.

Filebuf

Both libraries contain a filebuf class for using streams to do I/O. It is declared in fstream.h in the ios-
tream library. The stream library had constructors that implied the use of filebufs. In the iostream
library these constructors are replaced by constructors of certain derived classes. The old usage:

int fd ;
istream in(fd) ; // file descriptor
ostream out (fd) ; // file descriptor

is replaced by:

int fd ;
ifstream in(fd) ; // file descriptor
ofstream out (fd) ; // file descriptor

The optional extra arguments of the stream constructors (for specifying whitespace skipping and
“tying’’) are not supported. The equivalent functionality is supported by format state variables.

Interactions with stdio

The libraries differ significantly in the way they interact with stdio. The old stream header stream.h
included stdio.h and some stream data structures could contain a pointer to a stdio FILE. In the ios-
tream library specialized streams and streambufs (declared in stdiostream.h) are provided to make the
connection.

The old usage:

FILE* stdiofile ;

filebuf fb(stdiofile) ;
istream in(stdiofile) ;
ostream out (stdiofile) ;

is replaced by:

FILE* stdiofile ;

stdiobuf fb(stdiofile) ;
stdiostream in(stdiofile) ;
stdiostream out (stdiofile) ;

In the old library the predefined streams cin, cout, and cerr were directly connected to the stdio FILEs
stdin, stdout, and stderr. 1/O was mixed character by character. Further, these streams were unbuf-

fered in the sense that insertion and extraction was done by doing character by character puts and gets
on the corresponding stdio FILEs. In the iostream library the predefined streams are attached directly
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to file descriptors rather than to the stdio streams. This means that for output the characters are mixed )
only as flushes are done and the input buffer of one is not visible to the other. R

In practice the biggest problems seem to come from attempts to mix code that uses stdout with code
that uses cout. The best solution is to cause flushes to be inserted whenever the program switches
from one library to the other. An alternative is to use:

ios::sync_with_stdio() :

This causes the predefined streams to be connected to the corresponding stdio files in an unbuffered
mode. The major drawback of this solution is the large overheads associated with insertion of charac-
ters in this mode. Typically insertion into cout is slowed by a factor of 4 after a call of
sync_with_stdio().

The old stream library contained some “‘stringifying’’ functions that were called with various argu-
ments and returned a string. These are declared in stream.h and available primarily for compatibility.
The only such formatting function that seems to provide a significant functionality that is not easily
available in the iostream library is form(), which allows printf() like formatting. In fact, form() is just
a wrapper for calls to sprintf(). The programmer can easily write manipulators and inserters that do
the same thing.

Assignment

In the old library it was possible to assign one stream to another. This is possible in the iostream
library only if the left hand side is declared to be an assignable class. A general assignment cannot be
allowed because of the interactions of derived classes. What, for example, should be the effect of
assigning an ifstream to an istrstream? Most programs that use this feature can be converted by using
a reference or pointer to a stream. The old usage: )

ostream out ;
out = cout ;
out << x ;

can be replaced by:

ostream* out ;
out = cout ;
out << x ;

or:

ostream with assign out ;
out = &cout ;
*out << X ;

char Insertion Operator

The stream library did not contain an insertion operator for char. So inserting a char was taken as
inserting an integer value, and it was converted to decimal. This omission was due to problems with
overload resolution in earlier versions of the C++ Language System. Any old code such as:
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char ¢ ;
cout << ¢ ;

may be replaced by:

char ¢ ;
cout << (int)c ;
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CPLX.INTRO(3C++) (C++ Complex Math Library) CPLX.INTRO(3C+4+)

=
{ NAME
S complex - introduction to C++ complex mathematics library
SYNOPSIS
#include <complex.h>
class complex;
DESCRIPTION
This section describes functions and operators found in the C++ Complex Mathematics
Library, libcomplex.a. These functions are not automatically loaded by the C++ compiler, CC(1);
however, the link editor searches this library under the -lcomplex option. Declarations for
these functions may be found in the #include file <complex.h>.
The Complex Mathematics library implements the data type of complex numbers as a class,
complex. It overloads the standard input, output, arithmetic, assignment, and comparison
operators, discussed in the manual pages for cplxops(3C++). It also overloads the standard
exponential, logarithm, power, and square root functions, discussed in cplxexp(3C++), and the
trigonometric functions of sine, cosine, hyperbolic sine, and hyperbolic cosine, discussed in
cplxtrig(3C++), for the class complex. Routines for converting between Cartesian and polar
coordinate systems are discussed in cartpol(3C++). Error handling is described in
cplxerr(3C++).
FILES
INCDIR/ complex.h
LIBDIR/libcomplex.a
SEE ALSO
- cartpol(3C++), cplxerr(3C++), cplxops(3C++), cplxexp(3C++), and cplxtrig(3C++).
( Stroustrup, B., "Complex Arithmetic in C++," C++ Translator Release 2.0 Documentation.
— DIAGNOSTICS

Page 1

Functions in the Complex Mathematics Library (3C++) may return the conventional values (0,
0), (0, tHUGE), (:HUGE, 0), or (tHUGE, +tHUGE), when the function is undefined for the
given arguments or when the value is not representable. (HUGE is the largest-magnitude
single-precision floating-point number and is defined in the file <math.h>. The header file
<math.h> is included in the file <complex.h>.) In these cases, the external variable errno [see
intro(2)] is set to the value EDOM or ERANGE.
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NAME

cartesian/polar - functions for the C++ Complex Math Library

SYNOPSIS
#include <complex.h>

class complex {
public:

friend double
friend double
friend complex
friend double
friend double
friend complex
friend double
1

DESCRIPTION

abs(complex);
arg(complex);
conj(complex);
imag(complex);
norm(complex);
polar(double, double = 0);
real(complex);

The following functions are defined for complex, where:
— d, m, and a are of type integer and

— x and y are of type complex.

d = abs(x) Returns the absolute value or magnitude of x.

d =norm(x)  Returns the square of the magnitude of x. It is faster than abs, but more likely
to cause an overflow error. It is intended for comparison of magnitudes.

d = arg(x) Returns the angle of x, measured in radians in the range —= to «.
y = conj(x) Returns the conjugation of x. That is, if x is (real, imag), then conj(x) is (real,
~imag).

y = polar(m, a) Creates a complex given a pair of polar coordinates, magnitude m, and angle
a, measured in radians in the range - to .

d = real(x) Returns the real part of x.

d = imag(x) Returns the imaginary part of x.

SEE ALSO

CPLX.INTRO@BC++), cplxerr(3C++), cplxops(3C++), cplxexp(3C++), and cplxtrig(3C++).

Page 1
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CPLXERR@3C++) (C++ Complex Math Library) CPLXERR(3C++)

NAME

complex_error — error-handling function for the C++ Complex Math Library

SYNOPSIS

#include <complex.h>

class ¢_exception

{
int type;
char *name;
complex argl;
complex arg2;
complex retval;

public:
c_exception( char *n, const complex& al, const complex& a2 = complex_zero );
friend int complex_error( c_exception& );
friend complex exp( complex );
friend complex sinh( complex );
friend complex cosh( complex );
friend complex log( complex );

b

DESCRIPTION

Page 1

In the following description of the complex error handling routine,
— d is of type double and
— x is of type complex.

d = complex_error(x&) Invoked by functions in the C++ Complex Mathematics Library
when errors are detected.

Users may define their own procedures for handling errors, by defining a function named
complex_error in their programs. complex_error must be of the form described above.

The element type is an integer describing the type of error that has occurred, from the follow-
ing list of constants (defined in the header file): :

SING argument singularity
OVERFLOW  overflow range error
UNDERFLOW underflow range error

The element name points to a string containing the name of the function that incurred the
error. The variables argl and arg2 are the arguments with which the function was invoked.
Retval is set to the default value that will be returned by the function unless the user’s
complex_error sets it to a different value.

If the user’s complex_error function returns non-zero, no error message will be printed, and
errno will not be set.

If complex_error is not supplied by the user, the default error-handling procedures, described
with the complex math functions involved, will be invoked upon error. These procedures are
also summarized in the table below. In every case, errno is set to EDOM or ERANGE and the
program continues.

Note that complex math functions call functions included in the math library which has its
own error handling routine, matherr(3M). Users may also override this routine by supplying
their own version.
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DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
type SING OVERFLOW UNDERFLOW
errno EDOM ERANGE ERANGE
EXP:
real too large/small - G@H, tH) ©, 0
imag too large - o0 -
LOG:
arg = (0, 0) M H D - -
SINH:
real too large - GH, tH) -
imag too large - © 0 -
COSH:
real too large - G@H, tH) -
imag too large - © 0 -
ABBREVIATIONS
M Message is printed (EDOM error).
(H, 0 (HUGE, 0) is returned.
#H, +H) (@*HUGE, +HUGE) is returned.
©, 0) (0, 0) is returned.
SEE ALSO
CPLX.INTRO@BC++), matherr(3M), cartpol(3C++), cplxops(3C++), cplxexp(3C++), and
cplxtrig(3C++).
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CPLXEXP(3C++)

NAME

(C++ Complex Math Library) CPLXEXP(3C++)

exp, log, pow, sqrt — exponential, logarithm, power, square root functions for the C++ complex

library

SYNOPSIS

#include <complex.h>

class complex {

public:
friend complex
friend complex
friend complex
friend complex
friend complex
friend complex
friend complex

I

DESCRIPTION
The following math functions are overloaded by the complex library, where:

— X, y, and z are of type complex.

exp(complex);
log(complex);
pow{(double, complex);
pow(complex, int);
pow(complex, double);
pow(complex, complex);
sqrt(complex);

z = exp(x) Returns e* .

z = log(x) Returns the natural logarithm of x.

z = pow(x,y) Returns x” .

z = sqrt(x) Returns the square root of x, contained in the first or fourth quadrants of the

complex plane.

SEE ALSO

CPLX.INTRO(@3C++), cartpol(3C++), cplxerr(3C++), cplxops(3C++), and cplxtrig(3C++).
DIAGNOSTICS

Page 1

exp returns (0, 0) when the real part of x is so small, or the imaginary part is so large, as to
cause overflow. When the real part is large enough to cause overflow, exp returns (HUGE,
HUGE) if the cosine and sine of the imaginary part of x are positive, (HUGE, ~-HUGE) if the
cosine is positive and the sine is not, (-HUGE, HUGE) if the sine is positive and the cosine is
not, and (-HUGE, -HUGE) if neither sine or cosine is positive. In all these cases, errno is set

to ERANGE.

log returns (-HUGE, 0) and sets errno to EDOM when x is (0, 0). A message indicating SING
error is printed on the standard error output.

These error-handling procedures may be changed with the function complex_error

(cplxerr(3C++)).
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( ‘ NAME

complex_operators: operators for the C++ complex math library

SYNOPSIS

#include <complex.h>

class complex {

public:
friend complex operator+(complex, complex);
friend complex operator—{(complex);
friend complex operator-(complex, complex);
friend complex operator*(complex, complex);
friend complex operator/(complex, complex);
friend int operator==(complex, complex);
friend int operator!=(complex, complex);
void operator+=(complex);
void operator—=(complex);
void operator*=(complex);
void operator/=(complex);

b

DESCRIPTION

Page 1

The basic arithmetic operators, comparison operators, and assignment operators are over-
loaded for complex numbers. The operators have their conventional precedences. In the fol-
lowing descriptions for complex operators,

— X, y, and z are of type complex.

Arithmetic operators:

Z=X+Yy Returns a complex which is the arithmetic sum of complex numbers x and y.

zZ=-X Returns a complex which is the arithmetic negation of complex number x.

zZ=X-Yy Returns a complex which is the arithmetic difference of complex numbers x
and y.

z=x*y Returns a complex which is the arithmetic product of complex numbers x
and y.

z=xly Returns a complex which is the arithmetic quotient of complex numbers x
and y.

Comparison operators:

x==y Returns non-zero if complex number x is equal to complex number y; returns
0 otherwise.

x!l=y Returns non-zero if complex number x is not equal to complex number y;

returns 0 otherwise.
Assignment operators:

X+=y Complex number x is assigned the value of the arithmetic sum of itself and
complex number y.

X-=y Complex number x is assigned the value of the arithmetic difference of itself
and complex number y.

June 14, 1989



CPLXOPS(3C++) (C++ Complex Math Library) CPLXOPS(3C++)

x*=y Complex number x is assigned the value of the arithmetic product of itself
and complex number y.
x/=y Complex number x is assigned the value of the arithmetic quotient of itself

and complex number y.
WARNING

The assignment operatoré do not produce a value that can be used in an expression. That is,
the following construction is syntactically invalid,

complex X, Y Z;
X= (y +=12);
whereas,
x={(y+2z);
x=(y==2);
are valid.

SEE ALSO
CPLX.INTRO(3C++), cartpol(3C++), cplxerr(3C++), cplxexp(3C++), and cplxtrig(3C++).

June 14, 1989 Page 2

/‘:
St
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: NAME
Q_ cplxtrig - trigonometric and hyperbolic functions for the C++ complex library

SYNOPSIS
#include <complex.h>

class complex {

public:
friend complex sin(complex);
friend complex cos(complex);
friend complex sinh(complex);
friend complex cosh(complex);
¥
DESCRIPTION

The following trigonometric functions are defined for complex, where:
— x and y are of type complex.

y = sin(x) Returns the sine of x.

y = cos{(x) Returns the cosine of x.

y = sinh(x) Returns the hyperbolic sine of x.

y = cosh(x) Returns the hyperbolic cosine of x.

SEE ALSO
- CPLX.INTRO(3C++), cartpol(3C++), cplxerr(3C++), cplxops(3C++), and cplxexp(3C++).
L DIAGNOSTICS

If the imaginary part of x would cause overflow sinh and cosh return (0, 0) . When the real
part is large enough to cause overflow, sinh and cosh return (HUGE, HUGE) if the cosine and
sine of the imaginary part of x are non-negative, (HUGE, ~-HUGE) if the cosine is non-negative
and the sine is less than 0, (-HUGE, HUGE) if the sine is non-negative and the cosine is less
than 0, and (-HUGE, ~HUGE) if both sine and cosine are less than 0. In all these cases, errno
is set to ERANGE.

These error-handling procedures may be changed with the function complex_error
(cplxerr(3C++)).

()
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TASK.INTRO(3C++) (C++ Task Library) TASK.INTRO(3C++)

Q NAME

task — coroutines, multiple threads of control, C++ task library

SYNOPSIS

#include <task.h>

class object;

class sched : public object;
class timer : public sched;
class task : public sched;

class ghead : public object;
class qtail : public object;

class Interrupt_handler : public object;

class histogram;

class randint;

class urand : public randint;
class erand : public randint;

DESCRIPTION

The C++ task library provides facilities for writing programs with multiple threads of control
within one UNIX system process. Each thread of control is a task or coroutine. Each task
is an instance of a user-defined class derived from class task, and the main program of the
task is the constructor of its class. A task can be suspended and resumed without interfer-
ing with its internal state. Each task runs until it explicitly gives up the processor; there is
no pre-emption. '

Most classes in the task system are derived from the base class object. The base class
sched is responsible for scheduling and for the functionality that is common to tasks and
timers. Class sched is meant to be used strictly as a base class, that is, it is illegal to create
objects of class sched. Class task must also be used only as a base class. The programmer
must derive a class from class task, and provide a constructor to serve as the task’s main
program. The task system can be used for writing event-driven simulations. tasks execute
in a simulated time frame. Objects of class timer provide a facility for implementing time-
outs and other time-dependent phenomena. Classes task, timer, sched, and object and
their public member functions are described on the task(3C++) manual page.

Classes ghead and qtail enable a wide range of message-passing and data-buffering
schemes to be implemented simply. These classes are described on the queue(3C++) manual
page.

Class Interrupt_handler provides an interface for writing classes that can wait for external
events using UNIX system signals. These classes are described on the interrupt(3C++) manual
page.

Class histogram aids data gathering. Classes randint, urand, and erand provide ran-
dom number generation. These four classes are described on the tasksim(3C++) manual page.

SEE ALSO '

Page 1

task(3C++), queue(3C++), interrupt(3C++), tasksim(3C++)

Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in
AT&T C++ Language System Release 2.0 Library Manual.

Shopiro, J. E., "Extending the C++ Task System for Real-Time Control,” in AT&T C++ Language
System Release 2.0 Library Manual.
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C . NAME
- Interrupt_handler - signal handling for the C++ task library

SYNOPSIS
#include <task.h>

class Interrupt_handler : public object {
virtual void interrupt();

public:
Interrupt_handler(int);
“Interrupt_handler();
objtype o_type();
int pending();
b
DESCRIPTION

Class Interrupt_handler allows tasks to wait for external events in the form of UNIX
system signals. Class Interrupt_handler is derived from class object so that tasks can
wait for Interrupt_handler objects. Class object is described on the task(3) manual
page.

The public member functions supplied in the task system class Interrupt_handler are
listed and described below. The following symbols are used:

ih an Interrupt_handler object
i an int
( ) €0 an objtype enumeration

Interrupt_handler ih( i);

Constructs a new Interrupt_handler object, ih, which is to wait for a signal
number i. (See signal(2).) Once an Interrupt_handler object has been established
for a particular signal, when that signal occurs, the private, virtual interrupt() function
is called at real time. When it returns, control will resume at the point where the
current task was interrupted. That is, signals do not cause the current task to be
pre-empted. When the currently running task is suspended, a special, built-in task,
the interrupt alerter will be scheduled. This task alerts the Interrupt_handler
(and any others that have received interrupts since the interrupt alerter last ran), and
thereby makes any tasks waiting for those Interrupt_handlers runnable. As
long as any Interrupt_handler exists, the scheduler will wait for an interrupt,
rather than exiting when the run chain becomes empty.

void interrupt()
The private, virtual function, Interrupt handler:interrupt() is a null function, but
because it is virtual, the programmer can specify the action to be taken at interrupt
time by defining an interrupt) function in a class derived from
Interrupt_handler.

eo = ih.o_type()
Returns the class type of the object (object::INTHANDLER). o_type() is a virtual
function.

i = ih.pending()
Returns TRUE except the first time it is called after a signal occurs.

o DIAGNOSTICS
See task(3).
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BUGS
UNIX System V Releases 3.1 and 3.2 (SVR3.1 and SVR3.2) for the Intel 386 machine will not
call a signal handler when the current task is running on a stack in the free store, that is,
when the current task has a DEDICATED stack. If you need to use the signal handling
mechanisms on that configuration, you cannot use tasks which have DEDICATED stacks. In
this case, compile the task library with SHARED ONLY defined, which will make SHARED
the default mode for tasks. (Note: it is insufficient to declare all tasks as SHARED
without compiling a _SHARED_ONLY version of the task library, because the internal system
task, the interrupt alerter is DEDICATED by default.)

SEE ALSO
TASK.INTROC++), task(3C++), queue(3C++), tasksim(3C++), signal(2)
Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in
AT&T C++ Language System Release 2.0 Library Manual.
Shopiro, J. E., "Extending the C++ Task System for Real-Time Control," in AT&T C++ Language
System Release 2.0 Library Manual.
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( NAME
e queue — gheads and qtails for the C++ task library

SYNOPSIS
#include <task.h>

enum gmodetype { EMODE, WMODE, ZMODE };

class ghead : public object {

public:
ghead(qmodetype =WMODE, int =10000);
“qhead();
qghead* cut();
object* get();
objtype o_type();
int pending();
void print(int, int =0);
int putback(object*);
int rdcount();
int rdmax();
gmodetype  rdmode();
void setmode(qmodetype);
void setmax(int);
void splice(qtail*);
qtail* tail();
1Y
kw, class qtail : public object {
public:
qtail(gmodetype =WMODE, int =10000);
~qtail();
qtail* cut();
ghead* head();
objtype o_type();
int pending();
void print(int, int =0);
int put(object*);
int rdspace();
int rdmax();
qmodetype  rdmode();
void splice(ghead*);
void setmode(gmodetype);
void setmax(int);
¥
DESCRIPTION

Classes ghead and qtail enable a wide range of message-passing and data-buffering
schemes to be implemented simply with the C++ task system. Both classes are derived from
the base class object, which is described on the task(3) manual page. In general, class
ghead provides facilities for taking objects off a queue, and class gtail provides facilities for
a putting objects on a queue. The objects transmitted through a queue must be of class object
( or of some class derived from it.
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A queue is a data structure with an associated list of objects in first-in, first-out order. Each
queue also has associated ghead and qtail objects attached (one of each). No public func-
tions are provided to operate on queues directly. Rather all access to a queue is through either
the attached ghead or the attached gtail. To create a queue, the programmer must declare
a qhead object and then use that object to call qhead::tail() or must declare a gtail object
and then use that object to call qtail::head(). For example:

ghead qh;
qtail* gtp = qh.tail();

Once the queue is established, objects are added to it with qtail:put() and objects are
removed from it with ghead::get().

Objects derived from class object have definitions of when they are ready and pending (not
ready). ghead objects are ready when the queue is not empty and pending when the queue

is empty. qtail objects are ready when the queue is not full, and pending when the queue
is full.

Queues have three attributes: mode, maximum size, and count. The size and count attributes
apply to the queue itself, while the mode attribute applies independently to the ghead and
qtail of a queue. These attributes are described below.

Both classes ghead and qtail have a mode (set by the constructor) that controls what hap-
pens when an object of that class is pending. The default is WMODE (wait mode). With
WMODE, a task that executes ghead::get() on an empty queue will be suspended until that
queue becomes non-empty. Similarly, with WMODE a task that executes qtail:put() on a
full queue will be suspended until that queue has room for the object to be added to the
queue. In EMODE (error mode), calling ghead::get() for an empty queue or calling gtail::put()
for a full queue will cause a run time error. In ZMODE (zero mode), if ghead::get() is exe-
cuted on an empty queue it will return the NULL pointer instead of a pointer to an object. In
ZMODE, if qtail:zput() is executed on a full queue, it will return 0 instead of 1. The modes of
a queue’s head and tail need not be the same. Classes ghead and qtail both provide a
function, setmode(), which will reset the mode.

Queues also have a maximum size, which is set to 10000 by default. That is, the queue can
hold up to 10000 pointers to objects. It does not, however, preallocate space. The size of a
queue can be reset with either ghead::setmax() or qtail::setmax().

The count is the number of objects on a queue.
Both the ghead and qtail constructors optionally take mode and size arguments.

The public member functions supplied in the task system classes ghead and gtail are listed
and described in the next two sections. The following symbols are used:

gh a ghead object
qt a gtail object
t a task object

ghp
a pointer to a ghead

qtp a pointer to a qtail
op a pointer to an object
tp apointer to a task

i,j ints
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€0 an objtype enumeration
eq a gmodetype enumeration

Class ghead
Class ghead has one form of constructor:

ghead gh( eq, j)
Constructs a ghead object, gh. Both arguments are optional and have default values.
eq represents the mode (see above), which can be WMODE, EMODE, or ZMODE.
WMOUDE s the default. j represents the maximum length of the queue attached to gh;
the default is 10000.

The public member functions of class ghead are (in alphabetical order):

ghp = gh.cut()
Splits gh in two. gqhead::cut() returns a pointer to a new ghead, which is attached to
the original queue. objects that are already on the queue and objects that are
qtail:put() on the original queue, must be retrieved via ghp. ghead::cut() modifies gh
to point to a new empty queue. A new qtail must be established for gh (with
gh.tail() ). objects that are qtail:put() to the new qtail, can be retrieved via a
gh.get() .

Thus, ghead::cut() can be used to insert a filter into an existing queue, without chang-
ing the appearance of the queue to anyone using it, and without halting the flow of
objects through the queue. The filter will intercept objects that are qtail:put() on
the original gqtail when it does a ghead:get() on the new qhead. Then the filter
can qtail::put() objects on the new gtail, where execution of ghead::get() on the
original ghead will retrieve them. In other words, the filter task uses the newly
established ghead and qtail, while other tasks continue to put() and get() from
the original qtail and ghead. ghead:splice() can be used to restore the queue to its
original configuration.

op = qh.get()
Returns a pointer to the object at the head of the queue, if the queue is not empty.
If the queue is empty, ghead:get() ‘s behavior depends on the mode of gh. In
WMODE, a task that executes ghead:get() on an empty queue will be suspended
until that queue becomes non-empty, when the operation can complete successfully.
In EMOBDE, it will cause a run time error. In ZMODE, it will return the NULL pointer
instead of a pointer to an object.

eo = gh.o_type()
Returns the class type of the object (object : : QHEAD). o_type() is a virtual function.

i = gh.pending()
Returns TRUE if the queue attached to gh is empty, and FALSE otherwise. pending()
is a virtual function.

gh.print(i)
Prints the contents of gh on stdout. It calls the print() function for the object base
class. i specifies the amount of information to be printed. It can be 0, for the
minimum amount of information, or VERBOSE, for more information. A second
integer argument is for internal use and defaults to 0. print(} is a virtual function.

i = gh.putback( op )
Puts the object denoted by op back on the head of the queue attached to gh, and
returns 1 on success. This allows a ghead to operate as a stack. A task calling
qhead::putback() competes for queue space with tasks using qtail:put(). Calling
ghead::putback() for a full queue causes a run time error in both EMODE and
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WMODE, and returns NULL in ZMODE.

i = gh.rdcount()

Returns the current number of objects in the queue attached to gh.
i = gh.rdmax()

Returns the maximum size of the queue attached to gh.

eq = ghordmode()
Returns the current mode of gh, WMODE, EMODE, or ZMODE.

qh.setmode( eq )
Sets the mode of gh to eq, which can be WMODE, EMODE, or ZMODE.

gh.setmax( i)
Sets the maximum size of the queue attached to qh to i It is legal to decrease the max-
imum below the current number of objects on the queue. Doing so means that no

more objects can be put on the queue until the queue has been drained below the
new limit.

qh.splice( qtp )

Reverses the action of a previous ghead:cut(). qhead:splice(}) merges the queue
attached to gh with the queue attached to qtp. The list of objects on the latter
queue precede those on the former queue in the merged list. ghead:splice() deletes
gh and qtp. gh is meant to be a ghead that was previously cut(), and gtp is meant to
be the pointer returned by that cut(). If in merging the queues qhead:splice() causes
an empty queue to become non-empty or a full queue to become non-full, it will alert
all tasks waiting for that state change, and add them to the scheduler’s run chain.
(See object::alert() on the task(3) manual page.)

qtp = qh.tail()
Creates a gqtail object for the queue attached to gh (if none exists) and returns a
pointer, qtp, to the new gtail object.

Class qtail
Class qtail has one form of constructor:

qtail qt( eq, j )
Constructs a gtail object, gt. Both arguments are optional and have default values.
eq represents the mode (see above), which can be WMODE, EMODE, or ZMODE.
WMODE is the default. j represents the maximum length of the queue attached to qt;
the default is 10000.

The public member functions of class qtail are (in alphabetical order):

qtp = qt.cut()

Splits the queue to which it is applied in two. qtail::cut() returns a pointer to a new
qtail, which is attached to the original queue. objects already on the original
queue can still be retrieved with a qhead::get() to the original ghead. (This is the pri-
mary functional difference between ghead::cut() and qtail::cut().) qtail:cut() modifies
qt to point to a new empty queue. A new ghead must be established for qt.
objects that are qtail::put() to qt must be retrieved via the new ghead. objects
that are qtail:;put() to qtp will be retrieved via the original gqhead.

Thus, gtail::cut() can be used to insert a filter into an existing queue, without changing
the appearance of the queue to anyone using it, and without halting the flow of
objects through the queue. The filter will intercept objects that are qtailzput() on
the original qtail when it does a qhead:get() on the new ghead. Then the filter
can qtailzput() objects on the new qtail, where execution of qhead:get() on the
original qhead will retrieve them. In other words, the filter task uses the newly
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established ghead and qtail, while other tasks continue to put() and get() from

the original gtail and gqhead. qtail:splice() can be used to restore the queue to its
original configuration.

ghp = qt.head()
Creates a ghead object for the queue attached to qt (if none exists) and returns a
pointer to the new ghead object.

eo = qt.o_type(
Returns the class type of the object (object: :QTAIL). o_type( is a virtual function.
i = gt.pending()

Returns TRUE if the queue attached to qt is full, and FALSE otherwise. pending() is a
virtual function.

qt.print( i)
Prints the contents of qt on stdout. It calls the print() function for the object base
class. i specifies the amount of information to be printed. It can be 0, for the
minimum amount of information, or VERBOSE, for more information. A second
integer argument is for internal use and defaults to 0. print() is a virtual function.
i=qtput(op)
Adds the object denoted by op to the tail of the queue attached to qt, and returns 1
on success. If the queue is full, qtail::;put() ‘s behavior depends on the mode of qt. In
WMODE, a task that executes gtail:put() on a full queue will be suspended until
that queue becomes non-full, when the operation can complete successfully. In
EMODE, it will cause a run time error. In ZMODE, it will return NULL.

i = qt.rdspace(
Returns the number of objects that can be inserted into the queue attached to gt
before it becomes full.

i = gt.rdmax()
Returns the maximum size of the queue attached to qt.

eq = qt.rdmode()
~ Returns the current mode of qt, WMODE, EMODE, or ZMODE.

qt.splice( ghp )
Reverses the action of a previous qtail:cut(). qtail::splice() merges the queue attached
to qt with the queue attached to ghp. The list of objects on the former queue pre-
cede those on the latter queue in the merged list. qtail:splice() deletes qt and ghp. qt
is meant to be a qtail that was previously cut(), and qhp is meant to be the pointer
returned by that cut(). If in merging the queues qtail:splice() causes an empty queue
to become non-empty or a full queue to become non-full, it will alert all tasks wait-
ing for that state change, and add them to the scheduler’s run chain. (See object:alert()
on the task(3) manual page.)

qt.setmode( eq )
Sets the mode of qt to eq, which can be WMODE, EMODE, or ZMODE.

qt.setmax( i)
Sets the maximum size of the queue attached to gt to i. It is legal to decrease the max-
imum below the current number of objects on the queue. Doing so means that no
more objects can be put on the queue until the queue has been drained below the
new limit.

DIAGNOSTICS
See task(3).
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SEE ALSO
TASK.INTRO(3C++), task(3C++), interrupt(3C++), tasksim(3C++)
Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in
AT&T C++ Language System Release 2.0 Library Manual.
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NAME

task — coroutines, multiple threads of control, C++ task library

SYNOPSIS

#include <task.h>

(C++ Task Library)

typedef int (*PFIO)(int,object*);

typedef void (*PFV)();

extern int _hwm;

class object {

public:

11

TASK(GBC++)

enum objtype { OBJECT, TIMER, TASK, QHEAD, QTAIL, INTHANDLER };

object*

void
void

o_next;
object();
“object();
alert();
forget(task®);

virtual objtypeo_type();

virtual int
virtual void
void

static int
int

static task*
static PFIO

pending();

print(int, int =0);
remember(task*);
task_error(int, object*);
task_error(int);

this_task();
error_fct;

class sched : public object {
protected:

public:

I

Page 1

enum statetype { IDLE=1, RUNNING=2, TERMINATED=4 };

static task*
void

int

static long
sched*
static sched*
static int
int

int

void
statetype
long

int

void

static void
virtual void
static PFV

sched();

clock_task;
cancel(int);
dont_wait();
get_clock();

get_priority_sched();
get_run_chain();
get_exit_status();
keep_waiting();

pending();

print(int, int =0);

rdstate();
rdtime();
result();

setclock(long);
set_exit_status(int);
setwho(object*);

exit_fct;
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#define DEFAULT MODE DEDICATED

class task : public sched {

public: '

enum modetype { DEDICATED=1, SHARED=2 };
protected:

task(char* name=0, modetype mode=DEFAULT _MODE, int stacksize=SIZE);

public:

task* t_next;

char* t name;

“task();

void cancel(int);

void delay(int);

static task*  get_task chain();

objtype o_type();

int preempt();

void print(int, int =0);

void resultis(int);

void setwho(object*);

void sleep(object* =0);

void wait(object*);

int waitlist(object* ..);

int waitvec(object*);

object* who_alerted_me();

b

class timer : public sched {

public:
timer(int);
“timer();
objtype o_type();
void print(int, int =0);
void reset(int);
void setwho(object*);
i
DESCRIPTION

A task is an object with an associated program and thread of control. To use the task sys-
tem, the programmer must derive a class from class task, and supply a constructor to serve
as the task’s main program. Control in the task system is based on a concept of operations
which may succeed immediately or be blocked, and objects which may be ready or pending
(not ready). When a task executes a blocking operation on an object that is ready, the
operation succeeds immediately and the task continues running, but if the object is pend-
ing, the task waits. Control then returns to the scheduler, which chooses the next task
from the ready list or run chain. Eventually, the pending object may become ready, and it
will notify all the tasks that are waiting for it, causing the waiting tasks to be put back on
the run chain .

A task can be in one of three states:
RUNNING The task is running or it is ready to run.
IDLE The task is waiting for a pending object.
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Page 3

TERMINATED The task has completed its work. It cannot be resumed, but its result can be
retrieved.

The function sched:rdstate() returns the state. These states are enumerations of type sta-
tetype. These enumerations are in the scope of class sched.

Most classes in the task system are derived from class obiject. Each different kind of
object can have its own way of determining whether it is ready, which makes it easy to add
new capabilities to the system. However, each kind of object can have only one criterion for
readiness (although it may have several blocking operations). The criterion for readiness is
defined by the virtual function pending(). For all classes derived from object, pending()
returns TRUE if the object is not ready. This invariant should be maintained for user-
defined derived classes as well.

Each pending object contains a list (the remember chain) of the tasks that are waiting for it.
When a task attempts an operation on a pending object (that is, it calls a blocking func-
tion), that task is put on the remember chain for the object via object::remember(), and the
task is suspended. When the state of an object changes from pending to ready,
object::alert) must be called for the object. (Note, this is done for classes in the task sys-
tem. Programmers who write classes for which tasks can wait, must ensure that
object::alert() is called on a state change.) alert() changes the state of all tasks "remembered"
by the object from IDLE to RUNNING and puts them on the scheduler’s run chain.

The base class, sched, is responsible for scheduling and for the functionality that is common
to tasks and timers. Class sched can only be used as a base class, that is, it is illegal to
create objects of class sched. Class sched also provides facilities for measuring simulated
time. A unit of simulated time can represent any amount of real time, and it is possible to
compute without consuming simulated time. The system clock is initialized to 0 and can be
set with sched:setclock() once only. Thereafter, only a call to task::delay() will cause the clock
to advance. sched:getclock() can be used to read the clock.

Class timer provides a facility for implementing time-outs and other time-dependent
phenomena. A timer is similar to a task with a constructor consisting of the single state-
ment:

delay(d);
That is, when a timer is created it simply waits for the number of time units given to it as its
argument, and then wakes up any tasks waiting for it. A timer’s state can be either RUN-
NING or TERMINATED.

A task cannot return a value with the usual function return mechanism. Instead, a task
sets the value of its result (using task:resultis() or task:cancel()), at which time the task
becomes TERMINATED. Then this result can be retrieved by other tasks via a call to
sched:result().

The task constructor takes three optional arguments: a name, a mode, and a stacksize. The
name is a character string pointer, which is used to initialize the class task variable t_name.
This name can be used to provide more readable output and does not affect the behavior of
the task.

The mode argument can be DEDICATED (the default when none is specified) or SHARED,
(the enumerations of type modetype in class task’s scope). DEDICATED tasks each have
their own stack, allocated from the free store. SHARED tasks share stack space with the
task that creates them. When a SHARED task is running, it occupies the shared stack
space, while copies of the active portions of the other tasks’ stacks occupy save areas.
SHARED tasks trade speed for space: they use less storage than DEDICATED tasks use,
but task switches among SHARED tasks often involve copying stacks to and from the save
area.
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The stacksize argument to the task constructor represents the maximum space that a task’s
stack can occupy. The default is 750 machine words. Overflowing the stack is a fatal error.

When an object of a class derived from class task is created, its constructor becomes a new
task that runs in parallel with the other tasks that have been created. When the first task
is created, main () automatically becomes a task itself.

The public member functions supplied in the task system classes task, object, sched, and
timer are listed and described in the next four sections. The following symbols are used:

t a task object

0 an object object

s a sched object

tm a timer object

op a pointer to an object
tp apointer to a task

sp a pointer to a sched

cp apointer to a char

i,j ints

1 a long int

e0 an objtype enumeration
es a statetype enumeration
em a modetype enumeration

Class Task
Class task has one form of constructor, which is protected:

task t( cp, em, j )
Constructs a task object, t. All three arguments are optional and have default values.
If cp is given, the character string it points to is used as t's name. em represents the
mode (see above), and can be DEDICATED or SHARED. DEDICATED is the default.
The default mode can be changed to SHARED by recompiling the task library with
_SHARED_ONLY defined. See the NOTES section. j represents the maximum size of
t's stack; the default is 750 machine words.

Most public member functions of class task are conditional or unconditional requests for
suspension. They are (in alphabetical order):

t.cancel( i)
Puts t into the TERMINATED state, without suspending the calling task (that is,
without invoking the scheduler), and sets t's result (or "return value") to i.

t.delay( i)
Suspends t for the time specified by i. A delayed task is in the RUNNING state. t

will resume at the current time on the task system clock + i. Only a call to delay()
causes the clock to advance.

tp = tasku:get_task_chain()

tp = t.get_task_chain()
Returns a pointer to the first task on the list of all tasks (linked by t_next
pointers).

eo = t.o_type()
Returns the class type of t (object : : TASK). o_type() is a virtual function.
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i = t.preempt()
Suspends RUNNING task t, making it IDLE. Returns the number of time units left

in t's delay. Calling preempt() for an IDLE or TERMINATED task causes a runtime
error.

t.print( i)
Prints the contents of t on stdout. The first argument, i, specifies the amount of
information to be printed. It can be 0, for the minimum amount of information, VER-
BOSE, for more information, CHAIN, for information about each object on the chain of
all tasks, or STACK, for information about the runtime stack. These argument con-
stants can be combined with the or operator, e.g, print (VERBOSE|CHAIN). A
second integer argument is for internal use and defaults to 0. print() is a virtual func-
tion.

t.resultis( i)
Sets the result (or "return value") of t to be the value of i and puts t in the TER-
MINATED state. The result can be examined by calling t.result() (result() is a member
function of class sched). tasks cannot return a value using the usual function
return mechanism. A call to taskuresultis() should appear at the end of every task
constructor body (unless the constructor will execute infinitely). A task is pending
(see sched:pending() ) until it is TERMINATED.

t.setwho( op )
Records the object denoted by op as the one that alerted t when it was IDLE. *op is
meant to be the object whose state change from pending to ready caused t to be put
back on the run chain. This information can be retrieved with task:who_alerted_me().

t.sleep( op )

t.sleep()
Suspends t unconditionally (puts the t in the IDLE state). The op argument is
optional. If task:sleep() is given a pointer to a pending object as an argument, t
will be "remembered” by the denoted object, so that when that object becomes
ready, t will be "alerted" and put back on the run chain (via object::alert() ). If no argu-
ment is given to task:sleep(), the event that will cause t to be resumed is unspecified.
Contrast sleep() with wait(), which suspends a task conditionally. task:sleep() does
not check whether the object denoted by op is pending.

t.wait( op )
If op points to a pending object, then t will be suspended (put in the IDLE state)
until that object is ready. If op points to an object that is not pending (that is
ready), then t will not be suspended at all. Any class derived from class object that
is ever going be waited for must have rules for when it is pending and ready. Each
object can only have one definition of pending.

i = t.waitlist( op ...)
Suspends t to wait for one of a list of objects to become ready. waitlist() takes a list
of object pointers terminated by a 0 argument. If any of the arguments points to a
"ready” object, then t will not be suspended at all. waitlist() returns when one of
the objects on the list is ready. It returns the position in the list of the object that
caused the return, with positions numbered starting from 0. Note that objects on
the list other than the one denoted by the return value might also be ready.

i = t.waitvec( op* )
Is the same as waitlist(), except that it takes as an argument the address of a vector
holding a list of object pointers.
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op = t.who_alerted_me()
Returns a pointer to the object whose state change from pending to ready caused t to
be put back on the run chain (put in the RUNNING state).
_hwm=1;

Causes the task system to keep track of the "l'ugh water mark" for each task’s stack;
that is, the most stack ever used by each task. This information is printed by
task:print(STACK). This information is intended primarily for debugging purposes,
and will affect performance speed. _hwm must be set before any tasks whose high
water marks are of interest are created. Note that two tasks are created by a static
constructor: the internal Interrupt_alerter task and the "main" task. If you need
accurate information about the high water mark for "main," then _hwm must be set by
a static constructor which is called before that for the Interrupt_alerter task.

Class Object
Class object has one form of constructor:
object o;
Construct an object object, o, which is not on any lists. The constructor takes no
arguments.
Public member functions of class object are (in alphabetical order):

o.alert()
Changes the state of all tasks "remembered” by o from IDLE to RUNNING, puts
them on the scheduler’s run chain, and removes them from o’s remember chain.

o.forget( tp )
Removes all occurrences of the task denoted by tp from o’s remember chain.

eo = 0.0_type()
Returns the class type of the object, 0 (object : : OBJECT). o type() is a virtual func-
tion.

i = o.pending()
Returns the ready status of an object. It returns FALSE if o is ready, and TRUE if it
is pending. Classes derived from class object must define pending() if they are to
be waited for. object:pending() returns TRUE by default. pending() is a virtual func-
tion.

o.print( i)
Prints the contents of 0 on stdout. It is caned by the print() functions for classes

derived from obiject. See task:print() for a description of the arguments. print() is
a virtual function.

o.remember( tp )
Adds the task denoted by tp to o’s remember chain. Remembered tasks will be
alerted when o’s state becomes ready.

i = object::task_error( i, op )

i = o.task_error( i, op)
The central error function called by task system functions when a run time error
occurs. i represents the error number (see the DIAGNOSTICS section for a list of error
numbers and their meanings). op is meant to be a pointer to the object which called
task error() or 0. object:task_error() examines the variable error_fct, and if this
variable denotes a function, that function will be called with i and op as arguments,
respectively. (See error_fct, below.) Otherwise, i will be given as an argument to
print_error(), which will print an error message on stderr and call exit(i), terminat-
ing the program. The non-static, single argument form of task_error() is obsolete, but
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remains for compatibility.

tp = objects:this_task()
tp = o.this_task()
Returns a pointer to the task that is currently running,.

PFIO user-defined-error-function;

error_fct = user-defined-error-function
error_fct is a pointer to a function that returns an int and takes two arguments: an
int representing the error number and an object* representing the object* that
called task error. If error_fct is set, task error() will call the user-defined-error-
function with the error number and the object* as arguments. (The object* will
be 0 if task_error was not called by an object.) If user-defined-error-function does
not return 0, task_error() will call exit(i). If the user-defined-error-function does return
0, task_error() will retry the operation that caused the error.

Class Sched

Page 7

Both class task and class timer are derived from class sched. Class sched provides one
form of constructor, which is protected:

sched s;
Constructs a sched object, s, initialized to be IDLE and to have a 0 delay.

Class sched is responsible for the functionality that is common to tasks and timers. Class
sched provides the following public member functions:

s.cancel( i)
Puts s into the TERMINATED state, without suspending the caller (that is, without
invoking the scheduler), and sets the result of s to be i.

i = s.dont_wait()
Returns the number of times keep_waiting() has been called, minus the number of
times dont_wait() has been called (excluding the current call). If these functions are
used as intended, the return value represents the number of objects that were wait-
ing for external events before the current call. See keep_waiting(). See interrupt(3C++)
for a description of how tasks can wait for external events.

1 = sched::get_clock()
1 = s.get_clock()
Returns the value of the task system clock.

i = sched::get_exit_status()

i = s.get_exit_status()
Returns the exit status of the task program. When a task program terminates normally
(that is, task_error is not called), the program will call exit(i), where i is the value
passed by the last caller of sched:set_exit_status().

sp = s.get_priority_sched()
Returns a pointer to a system task, interrupt_alerter, if a signal that was being
waited for has occurred. If no interrupt has occurred, get_priority_sched() returns 0.

sp = sched::get_run_chain()

sp = s.get_run_chain()
Returns a pointer to the run chain, the linked list of ready sched objects (tasks and
timers).
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i = s.keep_waiting()

Returns the number of times keep_waiting() has been called (not counting the current
call), minus the number of times dont_wait() has been called. keep_waiting() is meant
to be called when an object that will wait for an external event is created. For
example, it is called when an Interrupt_handler object is created by the
Interrupt_handler constructor (see interrupt(3C++)). The inverse function,
dont_wait(), should be called when such an object is deleted. keep_ waiting() causes
the scheduler to keep waiting (not to exit) when there are no runnable tasks (because
an external event may make an IDLE task runnable).

i = s.pending()
Returns FALSE if s (task or timer) is in the TERMINATED state, TRUE otherwise.
pending() is a virtual function.

s.print( i)
Prints the contents of s on stdout. It is called by the print() functions for classes
derived from sched. See task:print() and timer:print() for a description of the argu-
ments. print() is a virtual function.

es = s.rdstate()
Returns the state of s: RUNNING, IDLE, or TERMINATED.

1 = s.rdtime()
Returns the clock time at which s is to run.

i = s.result()
Returns the result of s (as set by task:resultis(), task::cancel(), or sched::cancel() ). If s
is not yet TERMINATED, the calling task will be suspended to wait for s to ter-
minate. If a task calls result() for itself, it will cause a run time error.

sched::setclock( 1)

s.setclock(1)
Initializes the system clock to the time given by 1. Causes a run time error if used
more than once.

sched:set_exit_status( i)

s.set_exit_status(i)
Sets the exit status of the task program. When a task program terminates normally
(that is, task_error is not called), the program will call exit(i), where i is the value
passed by the last caller of set_exit_status().

s.setwho( op )
Is a virtual function defined for tasks and timers; see its definition for those classes.
The argument is meant to be a pointer to the object that caused s to be alerted.

PFV user-defined-exit-function;

exit_fct = user-defined-exit-function
exit_fct is a pointer to a function taking no arguments and returning void. If set, the
task system scheduler will call the user-defined-exit-function before the program exits.

clock_task = tp;
Sets tp to be a task that will be scheduled each time the system clock advances,
before any other tasks. The clock_task must be IDLE when it is resumed by the
scheduler. The clock_task can suspend itself by calling task::sleep() to ensure this.

Class Timer
Class timer provides one form of constructor:

timer tm(i);
Constructs a timer object, tm, and inserts it on the scheduler’s run chain.
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The following public member functions are provided for timers:
eo = tm.o_type()

Returns the class type of the object (object : : TIMER). o_type() is a virtual function.
tm.reset( i)

Resets tm’s delay to i. This makes repeated use of timers possible. A timer can be
reset even when it is TERMINATED.

tm.setwho( op ) :
Is defined to be null for timers. setwho() is a virtual function.

tm.print( i)
Prints the contents of tm on stdout. The argument is ignored. print() is a virtual
function.
FILES
LIBDIR/libtask.a
NOTES

The task library is supplied only for the following machines: WE32000-series machines (e.g.,
the AT&T 3B2), AT&T 3B20, AT&T 638 WGS, Sun-2 and Sun-3, and the VAX. It must be
ported to work on other platforms.

WARNINGS
Beware of optimizing compilers that inline constructors for classes derived from class task!

Although the task library was engineered to be as free as possible from dependencies on com-
pilation systems and dynamic call chains, it does depend on the existence of stack frames for
the task constructor and constructors for classes derived from class task. If these construc-
tors are inlined by an optimizing compiler, unpredictable behavior will result.

For related reasons, although you must derive a class from class task to use the task library,
you can only have one level of derivation from class task. That is, the system will not work
reliably if you derive a class from a class derived from class task.

BUGS .
DEDICATED tasks are implemented by building task stacks in the free store. Because UNIX
System V Release 2 (SVR2) for the WE32000-series machines does not allow stack pointers to
point into the free store, DEDICATED tasks cannot be used on these machines with SVR2.
In such cases, compile the task library with SHARED ONLY defined, which will make
SHARED the default mode for tasks. (Note: it is insufficient to declare all tasks as
SHARED without compiling a SHARED_ONLY version of the task library, because there is an

internal system task (the interrupt alerter task, see interrupt (3C++)) which is DEDI-
CATED by default.)

UNIX System V Releases 3.1 and 3.2 (SVR3.1 and SVR3.2) for the Intel 386 machine will not
call a signal handler when the current task is running on a stack in the free store, that is,
when the current task has a DEDICATED stack. If you need to use the signal handling
mechanisms (described on the tasksim(3C++) manual page) on that configuration, you cannot
use tasks which have DEDICATED stacks. In this case, compile the task library with
_SHARED_ONLY defined, which will make SHARED the default mode for tasks.

DIAGNOSTICS
When a task system function encounters a run time error, it calls object:task_error(), with one
of the following error numbers as an argument. The table below lists the run time errors the
task system detects, the associated error messages, and explanations of the errors.
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Error Name

1 E_OLINK

2 E_ONEXT

3 E_GETEMPTY

4 E_PUTOBJ

5 E_PUTFULL

o2}

E_BACKOB]

7 E_BACKFULL

[v.e]

E_SETCLOCK

9 E_CLOCKIDLE

10 E_RESTERM
11 E_RESRUN
12 E_NEGTIME

13 E_RESOBJ

14 E_HISTO

15 E_ STACK

16 E_STORE

17 E_TASKMODE
18 E_TASKDEL

19 E_TASKPRE

June 14, 1989

(C++ Task Library)

Message

"object::delete(): has chain"

"object::delete(): on chain”

"ghead::get(): empty"

"qtail::;put(): object on other queue”
"qtail::put(): full”

"qghead::putback(): object on other
queue”

"ghead::putback(): full”

"sched::setclock(): clock!=0"

"sched::schedule(): clock_task not idle"

"sched::schedule: terminated"
"sched::schedule: running”
"sched::schedule: clock<0"

"sched::schedule: task or timer on other
queue”

"histogram::histogram(): bad arguments”
"task:restore(): stack overflow"

"new: free store exhausted"

"task::task(): bad mode”

"task::"task(): not terminated”

"task::preempt(): not running”

TASK@BC++)

Explanation

Attempt to delete an
object which remembers
a task.

Attempt to delete an
object which is still on
some chain.

Attempt to get from an
empty queue in
E_MODE.

Attempt to put an object
already on some queue.
Attempt to put to a full
queue in E_ MODE.
Attempt to putback an
object already on some
queue.

Attempt to putback to a
full queue in E_MODE.
Clock was non-zero
when  setclock() was
called.

The clock_task was not
IDLE when the clock was
advanced.

Attempt to resume a
TERMINATED task.
Attempt to resume a
RUNNING task.
Negative argument to
delay().

Attempt to resume task
or timer already on some
queue.

Bad arguments for histo-
gram constructor.

Task run time stack
overflow.

No more free store--
new() failed.

Illegal mode argument
for task constructor.
Attempt to delete a non-
TERMINATED task.
Attempt to preempt a
non-RUNNING task.
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Error Name

20 E_TIMERDEL

(C++ Task Library)

Message

"timer::"timer(): not terminated"

TASK(3BC++)

Explanation

Attempt to delete a non-
TERMINATED timer.

21 E_ SCHTIME "schedule: bad time" Scheduler run chain is
corrupted: bad time.

22 E SCHOBJ "sched object used directly (not as base)"  Sched object used
directly instead of as a
base class.

23 E_QDEL "queue::"queue(): not empty” Attempt to delete a non-
empty queue.

24 E RESULT "task:result(): thistask->result()" A task attempted to
obtain its own result().

25 E_WAIT “task:wait(): wait for self” A task attempted to
wait() for itself to TER-
MINATE.

26 E_FUNCS "FrameLayout:FrameLayout(): function Internal error--cannot

start” determine the call frame
layout.

27 E_FRAMES "FrameLayout:FrameLayout(): = frame Internal error--cannot

size" determine frame size.

28 E_REGMASK "task::fudge return(): unexpected regis- Internal error--

ter mask” unexpected register
mask.

29 E FUDGE _SIZE  “task:fudge_return(): frame too big" Internal error—fudged

30 E_NO_HNDLR

31 E_BADSIG

32 E_LOSTHNDLR

SEE ALSO

"sigFunc - no handler for signal”

"illegal signal number”

"Interrupt_handler::"Interrupt_handler():
signal handler not on chain”

frame too big.

No handler for the gen-
erated signal.

Attempt to use a signal
number that is out of
range.

TASK.INTRO(3C++), interrupt(3C++), queue(3C++), tasksim(3C++)

Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in
AT&T C++ Language System Release 2.0 Library Manual.

Shopiro, J. E., "Extending the C++ Task System for Real-Time Control," in AT&T C++ Language
System Release 2.0 Library Manual.

Keenan, S. A., "A Porting Guide for the C++ Coroutine Library," in AT&T C++ Language Sys-
tem Release 2.0 Library Manual.
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NAME
tasksim — histograms and random numbers for simulations with C++ tasks

SYNOPSIS
#include <task.h>

class histogram {

public:
int L,
int binsize;
int nbin;
int* h;

long sum;
long sqsum;
histogram(int nb =16, int left =0, int right =16);
void add(int bin);
void  print();
b

class randint {
public:
randint(long seed =0);
int draw();
float fdraw();
void seed(long);

b

class urand : public randint {
public:
int low, high;
urand(int lo, int hi);

int draw();

}H

class erand : public randint {

public:
int mean;

erand(int m);

int draw();

5

DESCRIPTION

The C++ task library can be used to program simulations. To support such applications, the
library supplies classes to ease data gathering and random number generation.

The public member functions supplied in the task system classes histogram, randint,
urand, and erand are listed and described in the next two sections. The following symbols
are used:

h a histogram object
ri a randint object
ur a urand object
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er a erand object

i, nb, left, right, lo, hi, m
ints

1 a long int
f a float

Histograms
Class histogram provides simple facilities to generate histograms.

Class histogram has one form of constructor:

histogram h( nb, left, right );
Constructs a histogram object, h. A histogram consists of nbin bins, h[0],
h[nbin-1], covering a range 1 to r of integers. The optional arguments to the his-—
togram constructor correspond to the number of bins (nbins), and the left (1) and
right (r) ends of the range, respectively. By default, nb is 16, left is 0, and right is 16,
in other words, there are 16 bins covering a range from 0 to 16.

h.add(i)
Adds one to the ith bin. The sum of the integers added is maintained in sum, and the
sum of their squares is maintained in sqsum. If i is outside the range 1-r, the range
is extended by either decreasing 1 or increasing r. The number of bins however,
remains constant, so the size of the range covered by a bin is doubled each time the
size of the range is doubled.

h.print()
Prints the numbers of entries for each non-empty bin in h.

Random Number Generation
Classes randint, urand, and erand provide basic facilities for generating random numbers,
and can serve as a paradigm for other, application-specific generators.

Each object of class randint provides an independent sequence of random numbers.
Class randint has one form of constructor:

randint ri(1);
Constructs a randint object, ri. The argument is optional, and defaults to 0. If 1is
given, it is used to seed ri.

i = ri.draw()
Returns an random int in the range from O to largest positive_integer. Integers
returned by randint:draw() are uniformly distributed in that range.

f = ri.fdraw()
Returns floats that are uniformly distributed in the interval 0 to 1.

ri.seed(1)
Reinitializes a generator with the seed 1.

Classes urand and erand are both derived from class randint.

urand ur( lo, hi );
Constructs a urand object, ur. lo and hi define the range from low to high for the
distribution of numbers generated by this object.

i = ur.draw()
Returns a random int in the range low to high. Integers returned from
urand::draw() will be uniformly distributed in the range.

erand er(i)
Constructs an erand object, er, with i as the mean for the distribution of random
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numbers generated.

i = er.draw()
Returns a random int. Integers returned from erand:draw() will be exponentially
distributed around the mean. erand:draw() uses log() from the C math library, so
programs using it must be loaded with -1m.

DIAGNOSTICS
See task(3).

SEE ALSO
TASK.INTROC++), task(3C++), interrupt(3C++), queue(3C++)
Stroustrup, B. and Shopiro, J. E., "A Set of C++ Classes for Co-routine Style Programming," in
AT&T C++ Language System Release 2.0 Library Manual.
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NAME
iostream — buffering, formatting and input/output

SYNOPSIS
#include <iostream.h>
class streambuf ;
class ios ;
class istream : virtual public ios ;
class ostream : virtual public ios ;
class iostream : public istream, public ostream ;
class istream_withassign : public istream ;
class ostream_withassign : public ostream ;
class iostream_withassign : public iostream ;

class Tostream_init ;

extern istream_withassign cin ;
extern ostream_withassign cout
extern ostream_withassign cerr
extern ostream_withassign clog

e ws e

#include <fstream.h>

class filebuf : public streambuf ;
class fstream : public iostream ;
class ifstream : public istream ;
class ofstream : public ostream ;

#include <strstream.h>

class strstreambuf : public streambuf ;
class istrstream : public istream ;
class ostrstream : public ostream ;

#include <stdiostream.h>
class stdiobuf : public streambuf ;
class stdiostream : public ios ;

DESCRIPTION
The C++ iostream package declared in iostream.h and other header files consists primarily
of a collection of classes. Although originally intended only to support input/output, the
package now supports related activities such as incore formatting. This package is a mostly
source-compatible extension of the earlier stream I/O package, described in The C++ Program-
ming Language by Bjarne Stroustrup.

In the iostream man pages, character refers to a value that can be held in either a char or
unsigned char. When functions that return an int are said to return a character, they
return a positive value. Usually such functions can also return EOF (-1) as an error indication.
The piece of memory that can hold a character is referred to as a byte. Thus, either a char*
or an unsigned char* can point to an array of bytes.

The iostream package consists of several core classes, which provide the basic functionality for
1/0O conversion and buffering, and several specialized classes derived from the core classes.
Both groups of classes are listed below.

Core Classes '
The core of the iostream package comprises the following classes:
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streambuf )
This is the base class for buffers. It supports insertion (also known as storing
or putting) and extraction (also known as fetching or getting) of characters.
Most members are inlined for efficiency. The public interface of class stream-
buf is described in sbufpub(3C++) and the protected interface (for derived
classes) is described in sbuf.prot(3C++).

ios This class contains state variables that are common to the various stream
classes, for example, error states and formatting states. See ios(3C++).

istream
This class supports formatted and unformatted conversion from sequences of
characters fetched from streambufs. See istream(3C++).

ostream
This class supports formatted and unformated conversion to sequences of char-
acters stored into streambufs. See ostream(3C++).

iostream
This class combines istream and ostream. It is intended for situations in
which bidirectional operations (inserting into and extracting from a single
sequence of characters) are desired. See i0s(3C++).

istream withassign

ostream withassign

iostream withassign
These classes add assignment operators and a constructor with no operands to
the corresponding class without assignment. The predefined streams (see below)
cin, cout, cerr, and clog, are objects of these classes. See istream(3C++),
ostream(3C++), and ios(3C++).

Iostream_init

This class is present for technical reasons relating to initialization. It has no
public members. The Iostream init constructor initializes the predefined
streams (listed below). Because an object of this class is declared in the
iostream.h header file, the constructor is called once each time the header is
included (although the real initialization is only done once), and therefore the
predefined streams will be initialized before they are used. In some cases, glo-
bal constructors may need to call the lostream_init constructor explicitly to
ensure the standard streams are initialized before they are used.

Predefined streams
The following streams are predefined:

cin  The standard input (file descriptor 0).
cout The standard output (file descriptor 1).

cerr Standard error (file descriptor 2). Output through this stream is unit-buffered,
which means that characters are flushed after each inserter operation. (See
ostream::0sfx() in ostream(3C++) and ios::unitbuf in ios(3C++).)

clog This stream is also directed to file descriptor 2, but unlike cerr its output is
buffered.

cin, cerr and clog are tied to cout so that any use of these will cause cout to be
flushed.

In addition to the core classes enumerated above, the iostream package contains additional
classes derived from them and declared in other headers. Programmers may use these, or may

e
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choose to define their own classes derived from the core iostream classes.

Classes derived from streambuf
Classes derived from streambuf define the details of how characters are produced or con-

sumed. Derivation of a class from streambuf (the protected interface) is discussed in
sbuf.prot(3C++). The available buffer classes are:

filebuf
This buffer class supports I/O through file descriptors. Members support
opening, closing, and seeking. Common uses do not require the program to
manipulate file descriptors. See filebuf(3C++).

stdiobuf
This buffer class supports I/O through stdio FILE structs. It is intended for

use when mixing C and C++ code. New code should prefer to use f£ilebufs.
See stdiobuf(3C++).

strstreambuf

This buffer class stores and fetches characters from arrays of bytes in memory
(i.e., strings). See ssbuf(3C++).

Classes derived from istream, ostream and iostream
Classes derived from istream, ostream, and iostream specialize the core classes for use
with particular kinds of streambufs. These classes are:

ifstream

ofstream

fstream
These classes support formatted I/O to and from files. They use a filebuf
to do the I/O. Common operations (such as opening and closing) can be done
directly on streams without explicit mention of filebufs. See fstream(3C++).

istrstream
ostrstream

These classes support "in core” formatting. They use a strstreambuf. See
strstream(3C++).

stdiostream
This class specializes iostream for stdio FILEs. See stdiostream.h.
CAVEATS
Parts of the streambuf class of the old stream package that should have been private were

public. Most normal usage will compile properly, but any code that depends on details,
including classes that were derived from streambufs will have to be rewritten.

Performance of programs that copy from cin to cout may sometimes be improved by break-
ing the tie between cin and cout and doing explicit flushes of cout.

The header file stream.h exists for compatibility with the earlier stream package. It includes
iostream.h, stdio.h, and some other headers, and it declares some obsolete functions,
enumerations and variables. Some members of streambuf and ios (not discussed in these
man pages) are present only for backward compatibility with the stream package.

SEE ALSO
i0s(3C++), sbuf.pub(3C++), sbuf.prot(3C++), filebuf(3C++), stdiobuf(3C++), ssbuf(3C++),
istream(3C++), ostream(3C++), fstream(3C++), strstream(3C++), manip(3C++)
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NAME

filebuf - buffer for file I/0.

SYNOPSIS

#include <iostream.h>

typedef long streamoff, streampos;

class ios {

public:
enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
/I and lots of other stuff, see ios(3C++) ...

}s

#include <fstream.h>

class filebuf : public streambuf {

public:
static const int openprot ; /* default protection for open */
filebuf() ;
filebuf(int d);
filebuf(int d, char* p, int len) ;
filebuf* attach(int d) ;
filebuf* closeQ;
int fdQ;
int is_open();
filebuf* open(char *name, int omode, int prot=openprot) ;
streampos seekoff(streamoff, seek_dir, int omode) ;
streampos seekpos(streampos, int omode) ;
streambuf* setbuf(char* p, int len) ;
int sync() ;
b
DESCRIPTION

Page 1

filebufs specialize streambufs to use a file as source or sink of characters. Characters are
consumed by doing writes to the file, and are produced by doing reads. When the file is seek-
able, a filebuf allows seeks. At least 4 characters of putback are guaranteed. When the file
permits reading and writing, the filebuf permits both storing and fetching. No special
action is required between gets and puts (unlike stdio). A filebuf that is connected to a file
descriptor is said to be open. Files are opened by default with a protection mode of open-
prot, which is 0644.

The reserve area (or buffer, see sbuf.pub(3C++) and sbuf.prot(3C++)) is allocated automatically if
one is not specified explicitly with a constructor or a call to setbuf(). filebufs can also be
made unbuffered with certain arguments to the constructor or setbuf(), in which case a system
call is made for each character that is read or written. The get and put pointers into the reserve
area are conceptually tied together; they behave as a single pointer. Therefore, the descriptions
below refer to a single get/put pointer.

In the descriptions below, assume:
—fisa filebuf.

— pfbisa filebuf*.

— psb is a streambuf*.

—1i, d, len, and prot are ints.
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- name and ptr are char*s.

— mode is an int representing an open_mode.
—off isa streamoff.

— p and pos are streampos’s.

—dirisa seek_dir.

Constructors:

filebuf()
Constructs an initially closed filebuf.

filebuf(d)
Constructs a filebuf connected to file descriptor d.

filebuf(d, p, len)
Constructs a filebuf connected to file descriptor d and initialized to use the reserve
area starting at p and containing len bytes. If p is null or len is zero or less, the
filebuf will be unbuffered.

Members:

pfb=f.attach(d)
Connects f to an open file descriptor, d. attach(} normally returns &f, but returns 0 if f
is already open.

pfb=f.close()
Flushes any waiting output, closes the file descriptor, and disconnects f. Unless an
error occurs, f's error state will be cleared. close() returns &f unless errors occur, in

which case it returns 0. Even if errors occur, close() leaves the file descriptor and f
closed. o

i=f.fd() Returns i, the file descriptor f is connected to. If f is closed, i is EOF. g

i=f.is_open()
Returns non-zero when f is connected to a file descriptor, and zero otherwise.

pfb=f.open(name, mode, prot)

- Opens file name and connects f to it. If the file does not already exist, an attempt is
made to create it with protection mode prot, unless ios::nocreate is specified in
mode.. By default, prot is filebuf: :openprot, which is 0644. Failure occurs if f is
already open. open() normally returns &f, but if an error occurs it returns 0. The
members of open_mode are bits that may be or‘ed together. (Because the oring
returns an int, open{() takes an int rather than an open_mode argument.) The
meanings of these bits in mode are described in detail in fstream(3C++).

p=~f.seekoff(off, dir, mode)
Moves the get/put pointer as designated by off and dir. It may fail if the file that f is
attached to does not support seeking, or if the attempted motion is otherwise invalid
(such as attempting to seek to a position before the beginning of file). off is inter-
preted as a count relative to the place in the file specified by dir as described in
sbuf.pub(3C++). mode is ignored. seekoff() returns p, the new position, or EOF if a
failure occurs. The position of the file after a failure is undefined.

p=f.seekpos(pos, mode)
Moves the file to a position pos as described in sbufpub(3C++). mode is ignored.
seekpos() normally returns pos, but on failure it returns EOF.

psb=f.setbuf(ptr, len)
Sets up the reserve area as len bytes beginning at ptr. If ptr is null or len is less than
or equal to 0, f will be unbuffered. setbuf() normally returns &f. However, if f is
open and a buffer has been allocated, no changes are made to the reserve area or to
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the buffering status, and setbuf() returns 0.

i=f.sync()
Attempts to force the state of the get/put pointer of f to agree (be synchronized) with
the state of the file f.£d(). This means it may write characters to the file if some have
been buffered for output or attempt to reposition (seek) the file if characters have been
read and buffered for input. Normally, sync() returns 0, but it returns EOF if syn-
chronization is not possible.

Sometimes it is necessary to guarantee that certain characters are written together. To
do this, the program should use setbuf() (or a constructor) to guarantee that the
reserve area is at least as large as the number of characters that must be written
together. It can then call sync(), then store the characters, then call sync() again.

CAVEATS

attach() and the constructors should test if the file descriptor they are given is open, but I can’t
figure out a portable way to do that.

There is no way to force atomic reads.

The UNIX system does not usually report failures of seek (e.g. on a tty), so a filebuf does not
either.

SEE ALSO

Page 3

sbuf.pub(3C++), sbuf.prot(3C++), fstream(3C++)
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NAME

fstream — iostream and streambuf specialized to files

SYNOPSIS

Page 1

#include <fstream.h>

typedef long streamoff, streampos;

class ios {
public:
enum seek_dir { beg, cur, end } ;
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum io_state { goodbit=0, eofbit, failbit, badbit } ;
Il and lots of other stuff, see i0s(3C++) ...
}s

class ifstream : istream {
ifstream() ;
ifstream(char* name, int =ios::in, int prot =filebuf::openprot) ;
ifstream(int fd) ;
ifstream(int fd, char* p, int 1) ;

void attach(int fd) ;

void close() ;

void open(char* name, int =ios::in, int prot=filebuf::openprot) ;
filebuf* rdbuf() ;

void setbuf(char* p, int I) ;

b

class ofstream : ostream {
ofstream() ;
ofstream(char* name, int =ios::out, int prot =filebuf::openprot) ;
ofstream(int fd) ;
ofstream(int fd, char* p, int 1) ;

void attach(int fd) ;

void close() ;

void open(char* name, int =ios::out, int prot=filebuf::openprot) ;
filebuf* rdbuf() ;

void setbuf(char* p, int 1) ;

b

class fstream : iostream {
fstream() ;
fstream(char* name, int mode, int prot =filebuf::openprot) ;
fstream(int fd) ;
fstream(int fd, char* p, int 1) ;

void attach(int fd) ;

void close() ;

void open(char* name, int mode, int prot=filebuf::openprot) ;
filebuf* rdbuf() ;

void setbuf(char* p, int 1) ;
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ifstream, ofstream, and fstream specialize istream, ostream, and iostream,
respectively, to files. That is, the associated streambuf willbe a filebuf.

In the following descriptions, assume

— fisany of ifstream, ofstream, or fstream.
— pfbisa filebuf*.

— psbisa streambuf*.

— name and ptr are char*s.

— i, fd, len, and prot are ints.

— mode is an int representing an open_mode.

Constructors

The constructors for xst ream, where x is either if, of or £, are:

xstream()

Constructs an unopened xstream

xstream(name, mode, prot)

Constructs an xstream and opens file name using mode as the open mode
and prot as the protection mode. By default, prot is filebuf: :openprot,
which is 0644. The error state (io_state) of the constructed xstream will
indicate failure in case the open fails.

xstream(d)

Constructs an xstream connected to file descriptor d, which must be already
open.

xstream(d,ptr,len)

Member functions

Constructs an xstream connected to file descriptor fd, and, in addition, initial-
izes the associated filebuf to use the len bytes at ptr as the reserve area. If
ptr is null or len is 0, the filebuf will be unbuffered.

f.attach(d)

f.close()

Connects f to the file descriptor d. A failure occurs when f is already con-
nected to a file. A failure sets ios::failbit in f's error state.

Closes any associated filebuf and thereby breaks the connection of the f to
a file. f's error state is cleared except on failure. A failure occurs when the call
to fxdbuf()->close() fails.

f.open(name,mode,prot)

June 14, 1989

Opens file name and connects f to it. If the file does not already exist, an
attempt is made to create it with protection mode prot unless
ios: :nocreate is set. By default, prot is filebuf: :openprot, which is
0644. Failure occurs if f is already open, or the call to fxdbuf()->open() fails.
ios::failbit is set in f’s error status on failure. The members of
open_mode are bits that may be or'ed together. (Because the oring returns an
int, open() takes an int rather than an open_mode argument.) The
meanings of these bits in mode are '
ios::app
A seek to the end of file is performed. Subsequent data written to the
file is always added (appended) at the end of file. On some systems
this is implemented in the operating system. In others it is imple-
mented by seeking to the end of the file before each write. ios::app
implies ios::out.
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ios::ate
A seek to the end of the file is performed during the open().
ios::ate does not imply ios::out.

ios::in
The file is opened for input. ios::in is implied by construction and
opens of ifstreams. For fstreams it indicates that input operations
should be allowed if possible. Is is legal to include ios::in in the
modes of an ostream in which case it implies that the original file (if
it exists) should not be truncated.

ios::out
The file is opened for output. ios::out is implied by construction
and opens of ofstreams. For fstream it says that output opera-

tions are to be allowed. ios::out may be specified even if prot
does not permit output.

ios::trunc
If the file already exists, its contents will be truncated (discarded). This
mode is implied when ios::out is specified (including implicit
specification for ofstream) and neither ios::ate nor ios::app is
specified.

ios::nocreate
If the file does not already exist, the open() will fail.

ios: :noreplace
If the file already exists, the open() will fail.

pfb=f.rdbuf(
Returns a pointer to the filebuf associated with f. fstream:rdbuf() has the
same meaning as iostream::rdbuf() but is typed differently.

psb=f.setbuf(p,len)
Has the usual effect of a setbuf() (see filebuf(3C++)), offering space for a reserve
area or requesting unbuffered I/0O. Normally the returned psb is fardbuf(),
but it is 0 on failure. A failure occurs if f is open or the call to faxdbuf()-
. >setbuf fails.
SEE ALSO
filebuf(3C++), istream(3C++), i0s(3C++), ostream(3C++), sbuf.pub(3C++)

Page 3 June 14, 1989



.



C

I0SGBC++)

NAME

ios — input/output formatting

SYNOPSIS
#include <iostream.h>

class ios {

public:
enum
enum
enum

(C++ Stream Library)

io_state { goodbit=0, eofbit, failbit, badbit };

10S(3C++)

open_mode { in, out, ate, app, trunc, nocreate, noreplace };

seek_dir { beg, cur, end };

/* flags for controlling format */

enum

{ skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,

showbase=0200, showpoint=0400, uppercase=01000, showpos=02000,

scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };

static const long basefield;

/* dec|oct|hex */

static const long adjustfield;

/* left|right|internal */

static const long floatfield;

public:

int
static long
void
int

int
char
char
long
long
int
long&
int

int

int
streambuf*
void* &
int

long

long
static void
ostream*
ostream*
long

int

int

static int

Page 1

/* scientific|fixed */
ios(streambuf*);

bad();

bitalloc();
clear(int state =0);
eof();

fail();

fill();

fill(char);

flags();
flags(long);
good();
iword(int);
operator!();
operator void*();
precision();
precision(int);
rdbuf();
pword(int);
rdstate();
setf(long setbits, long field);
setf(long);
sync_with_stdio();
tie();
tie(ostream®*);
unsetf(long);
width();
width(int);
xalloc();
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protected:

private:

¥

ios&

iosé

ios&
ostreamé&
ostreamé
ostreamé
istreamé

DESCRIPTION

(C++ Stream Library) IOS(3C++)

ios();
init(streambuf*);

ios(ios&);
void operator=(ios&);

/* Manipulators */
dec(iosé&) ;
hex(ios&) ;
oct(ios&k) ;
endl{ostreamé& i) ;
ends(ostreamé i) ;
flush{ostreamé&) ;
ws(istreamé&) ;

The stream classes derived from class ios provide a high level interface that supports
transferring formatted and unformatted information into and out of streambufs. This
manual page describes the operations common to both input and output.

Several enumerations are declared in class ios, open_mode, io_state, seek_dir, and
format flags, to avoid polluting the global name space. The io_states are described on this
manual page under "Error States.” The format fields are also described on this page, under
"Formatting." The open_modes are described in detail in fstream(3C++) under open(}). The
seek_dirs are described in sbuf.pub(3C++) under seekoff().

In the following descriptions assume:
— s and s2 are ioss.
— sris an iosé.
—spisa ios*.
—1i, 0i j, and n are ints.
— 1, f, and b are longs.
— c and oc are chars.
— osp and oosp are ostream*s.
—sbisa streambuf*,
— pos is a streampos.
— off isa streamoff.
—dirisa seek_dir.
— mode is an int representing an open_mode.
— fct is a function with type ios& (*) (ios&).
— vpisa void*s.

Constructors and assignment:
ios(sb) The streambuf denoted by sb becomes the streambuf associated with the

ios(sr)
s$2=$

ios(

June 14, 1989

constructed ios. If sb is null, the effect is undefined.

Copying of ioss is not well-defined in general, therefore the constructor and
assignment operators are private so that the compiler will complain about
attempts to copy ios objects. Copying pointers to iostreams is usually
what is desired.
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init(sb)
Because class ios is now inherited as a virtual base class, a constructor with no
arguments must be used. This constructor is declared protected. Therefore
ios:init(streambuf*) is declared protected and must be used for initialization of
derived classes.
Error States

An ijos has an internal error state (which is a collection of the bits declared as io_states).
Members related to the error state are:

i=s.xrdstate()
Returns the current error state.

s.clear(i)
Stores i as the error state. If i is zero, this clears all bits. To set a bit without
clearing previously set bits requires something like
s.clear(ios::badbit|s.rdstate()).

i=s.good()
Returns non-zero if the error state has no bits set, zero otherwise.

i=s.eof()

Returns non-zero if eofbit is set in the error state, zero otherwise. Normally
this bit is set when an end-of-file has been encountered during an extraction.

i=s.fail()
Returns non-zero if either badbit or failbit is set in the error state, zero
otherwise. Normally this indicates that some extraction or conversion has
failed, but the stream is still usable. That is, once the failbit is cleared, I/O
on s can usually continue.

i=s.bad()
Returns non-zero if badbit is set in the error state, zero otherwise. This usu-
ally indicates that some operation on s.rdbuf() has failed, a severe error, from
which recovery is probably impossible. That is, it will probably be impossible
to continue 1/O operations on s.
Operators
Two operators are defined to allow convenient checking of the error state of an ios: opera-
tor!() and operator void*(). The latter converts an ios to a pointer so that it can be compared
to zero. The conversion will return 0 if failbit or badbit is set in the error state, and will

return a pointer value otherwise. This pointer is not meant to be used. This allows one to
write expressions such as:

if (cin) ..

if(cin>>x) ..

The ! operator returns non-zero if failbit or badbit is set in the error state, which allows
expressions like the following to be used:

if (!cout) ...

Formatting
An ios has a format state that is used by input and output operations to control the details of
formatting operations. For other operations the format state has no particular effect and its
components may be set and examined arbitrarily by user code. Most formatting details are
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controlled by using the flags(), setf(), and unsetf() functions to set the following flags, which
are declared in an enumeration in class ios. Three other components of the format state are
controlled separately with the functions fill(), width(), and precision().

June 14, 1989

skipws
If skipws is set, whitespace will be skipped on input. This applies to scalar
extractions. When skipws is not set, whitespace is not skipped before the
extractor begins conversion. As a precaution against looping, zero width fields
are considered a bad format by the extractors, so if the next character is whi-
tespace and the skip variable is not set, the arithmetic extractors will signal an
error.

left

right

internal
These flags control the padding of a value. When left is set, the value is
left-adjusted, that is, the fill character is added after the value. When right
is set, the value is right-adjusted, that is, the fill character is added before the
value. When internal is set, the fill character is added after any leading
sign or base indication, but before the value. Right-adjustment is the default if
none of these flags is set. These fields are collectively identified by the static
member, ios::adjustfield. The fill character is controlled by the fill()
function, and the width of padding is controlled by the width() function.

dec

oct

hex
These flags control the conversion base of a value. The conversion base is 10
(decimal) if dec is set, but if oct or hex is set, conversions are done in octal
or hexidecimal, respectively. If none of these is set, insertions are in decimal,
but extractions are interpreted according to the C++ lexical conventions for
integral constants. These fields are collectively identified by the static member,
ios::basefield. The manipulators hex, dec, and oct, can also be used to
set the conversion base, see "Built-in Manipulators” below.

showbase
If showbase is set, insertions will be converted to an external form that can
be read according to the C++ lexical conventions for integral constants.
showbase is unset by default.

showpos
If showpos is set, then a "+" will be inserted into a decimal conversion of a
postive integral value.

uppercase
If uppercase is set, then an uppercase "X" will be used for hexadecimal
conversion when showbase is set, or an uppercase "E" will be used to print
floating point numbers in scientific notation.

showpoint
If showpoint is set, trailing zeros and decimal points appear in the result of a
. floating point conversion.

scientific

fixed
These flags control the format to which a floating point value is converted for
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insertion into a stream. If scientific is set, the value is converted using
scientific notation, where there is one digit before the decimal point and the
number of digits after it is equal to the precision (see below), which is six by
default. An uppercase "E" will introduce the exponent if uppercase is set, a
lowercase "e" will appear otherwise. If fixed is set, the value is converted to
decimal notation with precision digits after the decimal point, or six by default.
If neither scientific nor fixed is set, then the value will be converted
using either notation, depending on the value: scientific notation will be used
only if the exponent resulting from the conversion is less that 4 or greater
than the precision. If showpoint is not set, trailing zeroes are removed from
the result and a decimal point appears only if it is followed by a digit.
scientific and fixed are collectively identified by the static member,
ios::floatfield.

unitbuf
When set, a flush is performed by ostream::osfx() after each insertion. Unit
buffering provides a compromise between buffered output and unbuffered out-
put. Performance is better under unit buffering than unbuffered output, which
makes a system call for each character output. Unit buffering makes a system
call for each insertion operation, and doesn’t require the user to call
ostream::flush().

stdio When set, stdout and stderr are flushed by ostream:osfx() after each
insertion. ‘

The following functions use and set the format flags and variables.

Page 5

oc=s.fill(c)
Sets the "fill character” format state variable to ¢ and returns the previous
value. c will be used as the padding character, if one is necessary (see width(),
below). The default fill or padding character is a space. The positioning of the
fill character is determined by the right, left, internal flags, see above.
A parameterized manipulator, setfill is also available for setting the fill charac-
ter, see manip(3C++).

c=s.£ill0)
Returns the "fill character” format state variable.

1=s.flags()
Returns the current format flags.

l=s.flags(f)
Resets all the format flags to those specified in f and returns the previous set-
tings.

oi=s.precision(i)
Sets the "precision" format state variable to i and returns the previous value.
This variable controls the number of significant digits inserted by the floating
point inserter. The default is 6. A parameterized manipulator, setprecision is
also available for setting the precision, see manip(3C++).

i=s.precision()
Returns the "precision" format state variable.

l=s.setf(b)
Turns on in s the format flags marked in b and returns the previous settings.

A parameterized manipulator, setiosflags performs the same function, see
manip(3C++).
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1=s.setf(b,f)

Resets in s only the format flags specified by f to the settings marked in b, and
returns the previous settings. That is, the format flags specified by f are
cleared in s, then reset to be those marked in b. For example, to change the
conversion base in s to be hex, one could write: s.setf(ios::hex,ios::basefield)
ios::basefield specifies the conversion base bits as candidates for change,
and ios::hex specifies the new value. s.setf(0,f) will clear all the bits
specified by f, as will a parameterized manipulator, resetiosflags, see
manip(3C++).

I=s.unsetf(b)
Unsets in s the bits set in b and returns the previous settings.

oi=s.width(i)

Sets the "field width" format variable to i and returns the previous value.
When the field width is zero (the default), inserters will insert only as many
characters as necessary to represent the value being inserted. When the field
width is non-zero, the inserters will insert at least that many characters, using
the fill character to pad the value, if the value being inserted requires fewer
than field-width characters, to be represented. However, the numeric inserters
never truncate values, so if the value being inserted will not fit in field-width
characters, more than field-width characters will be output. The field width is
always interpreted as a mininum number of characters; there is no direct way
to specify a maximum number of characters. The field width format variable
is reset to the default (zero) after each insertion or extraction, and in this sense
it behaves as a parameter for insertions and extractions. A parameterized
manipulator, setw is also available for setting the width, see manip(3C++).

i=s.width()
Returns the "field width" format variable.

User-defined Format Flags
Several functions are provided to allow users to derive classes from class ios that require
additional format flags or variables. The two static member functions ios:xalloc and
ioszbitalloc, allow several such classes to be used together without interference.

b=ios:bitalloc()
Returns a long with a single, previously unallocated, bit set. This allows
users who need an additional flag to acquire one, and pass it as an argument
to iosusetf(), for example.

i=ios:xalloc()
Returns a previously unused index into an array of words available for use as
format state variables by derived classes.

l=s.iword(i)
When i is an index allocated by ios:xalloc, iword() returns a reference to the
ith user-defined word.

vp=s.pword(i)
When i is an index allocated by ios::xalloc, pword() returns a reference to the
ith user-defined word. pword() is the same as iword except that it is' typed
differently.

Other members:
sb=s.xdbuf()
Returns a pointer to the streambuf associated with s when s was con-
structed.
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ioszsync_with_stdio()

Solves problems that arise when mixing stdio and iostreams. The first time it
is called it will reset the standard iostreams (cin, cout, cerr, clog) to be
streams using stdiobufs. After that input and output using these streams
may be mixed with input and output using the corresponding FILEs (stdin,
stdout, and stderr) and will be properly synchronized. sync_with_stdio()
makes cout and cerr unit buffered (see ios::unitbuf and ios::stdio
above). Invoking sync_with_stdio() degrades performance a variable amount,
depending on the length of the strings being inserted (shorter strings incur a
larger performance hit).

oosp=s.tie(osp)

Sets the "tie" variable to osp, and returns its previous value. This variable sup-
ports automatic "flushing” of ioss. If the tie variable is non-null and an ios
needs more characters or has characters to be consumed, the ios pointed at
by the tie variable is flushed. By default, cin is tied initially to cout so that
attempts to get more characters from standard input result in flushing stan-
dard output. Additionally, cerr and clog are tied to cout by default. For
other ioss, the tie variable is set to zero by default.

osp=s.tie()

Returns the "tie" variable.

Built-in Manipulators:
Some convenient manipulators (functions that take an ios&, an istreamg, or an ostreams
and return their argument, see manip(3C++)) are:
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sr<<dec
sr>>dec

These set the conversion base format flag to 10.

sr<<hex
sr>>hex

These set the conversion base format flag to 16.

sr<<oct
sr>>oct

These set the conversion base format flag to 8.
sr>>ws Extracts whitespace characters. See istream(3C++).

sr<<endl

Ends a line by inserting a newline character and flushing. See ostream(3C++).

sxr<<ends

Ends a string by inserting a null(0) character. See ostream(3C++).

sr<<flush

Flushes outs. See ostream(3C++).

Several parameterized manipulators that operate on ios objects are described in manip(3C++):
setw, setfill, setprecision, setiosflags, and resetiosflags.

The streambuf associated with an ios may be manipulated by other methods than through
the ios. For example, characters may be stored in a queuelike streambuf through an
ostream while they are being fetched through an istream. Or for efficiency some part of a
program may choose to do streambuf operations directly rather than through the ios. In
most cases the program does not have to worry about this possibility, because an ios never
saves information about the internal state of a streambuf. For example, if the streambuf
is repositioned between extraction operations the extraction (input) will proceed normally.
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CAVEATS
The need for sync_with_stdio is a wart. The old stream package did this as a default, but in
the iostream package unbuffered stdiobufs are too inefficient to be the defauit.

The stream package had a constructor that took a FILE* argument. This is now replaced by
stdiostream It is not declared even as an obsolete form to avoid having iostream.h
depend on stdio.h.

The old stream package allowed copying of streams. This is disallowed by the iostream pack-
age. However, objects of type istream withassign, ostream withassign, and
iostream_withassign can be assigned to. Old code using copying can usually be rewritten
to use pointers or these classes. (The standard streams cin, cout, cerr, and clog are
members of "withassign" classes, so they can be assigned to, as in cin = inputfstream)

SEE ALSO
IOS.INTRO(3C++), streambuf(3C++), istream(3C++), ostream(3C++), manip(3C++).
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NAME
istream — formatted and unformatted input

SYNOPSIS
#include <iostream.h>

typedef long streamoff, streampos;

class ios {
public:
enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
/* flags for controlling format */
enum { skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400, uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };
Il and lots of other stuff, see ios(3C++) ...
}s
class istream : public ios {
public:
istream(streambuf*);
int geount();
istream& get(char* ptr, int len, char delim="\n’);
istream& get(unsigned char* ptr,int len, char delim="\n’);
istream& get(unsigned char&);
istream& get(char&);
istream& get(streambuf& sb, char delim ="\n’);
int get();
istream& getline(char* ptr, int len, char delim="\n’);
istream& getline(unsigned char* ptr, int len, char delim="\n’);
istream& ignore(int len=1,int delim=EOF);
int ipfx(int need=0);
int peek();
istream& putback(char);
istream& read(char* s, int n);
istream& read(unsigned char* s, int n);
istream& seekg(streampos);
istream& seekg(streamoff, seek_dir);
int sync();
streampos tellg();
istream& operator>>(char*);
istream& operator>>(char&);
istream& operator>>(short&);
istream& operator>>(int&);
istream& operator>>(long&);
istream& operator>>(float&);
istream& operator>>(double&);
istream& operator>>(unsigned char*);
istream& operator>>(unsigned char&);
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istreamé& operator>>(unsigned short&); 3
istreamé& operator>>(unsigned int&); el
istreamé& operator>>(unsigned longé);

istreamé& operator>>(streambuf*);

istreamé& operator>>(istreamé& (*)(istreamér));

istreamé& operator>>(ios& (*)ios&));

L

class istream_withassign : public istream {
istream_withassign();
istreamé& operator=(istreamé&);
istreamé& operator=(streambuf*);

b

extern istream_withassign cin;

istreamé& ws(istreamé&)

ios& dec(ios&) ;

iosé& hex(iosé&) ;

ios& oct(ios&) ;
DESCRIPTION

istreams support interpretation of characters fetched from an associated streambuf. These
are commonly referred to as input or extraction operations. The istream member functions
and related functions are described below.

In the following descriptions assume that
— ins is an istream.

— inwa is an istream withassign.
—insp isa istream*.

— cisa char&

— delim is a char.

— ptris a char* or unsigned char*.
—sbisa streambufs.

—1i, n, len, d, and need are ints.

— pos is a streampos.

— off isa streamoff.

—dirisa seek_dir.

— manip is a function with type istream& (*) (istreams).

Constructors and assignment:
istream(sb)
Initializes ios state variables and associates buffer sb with the istream.

istream_withassign()
Does no initialization.

inswa=sb
Associates sb with inswa and initializes the entire state of inswa.
inswa=ins
Associates ins->rdbuf() with inswa and initializes the entire state of inswa.
Input prefix function:
i = ins.ipfx(need) SN
If ins’s error state is non-zero, returns zero immediately. If necessary (and if it ‘ )
is non-null), any ios tied to ins is flushed (see the description ios:tie() in
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ios(3C++)). Flushing is considered necessary if either need==0 or if there are
fewer than need characters immediately available. If ios::skipws is set in
insflags() and need is zero, then leading whitespace characters are extracted
from ins. ipfx() returns zero if an error occurs while skipping whitespace; oth-
erwise it returns non-zero.

Formatted input functions call ipfx(0), while unformatted input functions call ipfx(1);
see below.

Formatted input functions (extractors):
ins>>x Calls ipfx(0) and if that returns non-zero, extracts characters from ins and con-
verts them according to the type of x. It stores the converted value in x.
Errors are indicated by setting the error state of ins. ios::failbit means
that characters in ins were not a representation of the required type.
ios::badbit indicates that attempts to extract characters failed. ins is
always returned.

The details of conversion depend on the values of ins’s format state flags and
variables (see i0s(3C++)) and the type of x. Except that extractions that use
width reset it to 0, the extraction operators do not change the value of
ostream’s format state. Extractors are defined for the following types, with
conversion rules as described below.

char*, unsigned char*
Characters are stored in the array pointed at by x until a whitespace
character is found in ins. The terminating whitespace is left in ins. If
ins.width() is non-zero it is taken to be the size of the array, and no
more than ins.width()-1 characters are extracted. A terminating null
character (0) is always stored (even when nothing else is done because
of ins’s error status). ins.width() is reset to 0.

char&, unsigned charé
A character is extracted and stored in x.

short&, unsigned shortg,

int&, unsigned intg,

longs&, unsigned longs
Characters are extracted and converted to an integral value according
to the conversion specified in ins’s format flags. Converted characters
are stored in x. The first character may be a sign (+ or -). After that,
if ios::oct, ios::dec, or ios::hex is set in ins.flags(), the
conversion is octal, decimal, or hexadecimal respectively. Conversion
is terminated by the first "non-digit," which is left in ins. Octal digits
are the characters ‘0’ to ‘7. Decimal digits are the octal digits plus '8’
and ‘9. Hexadecimal digits are the decimal digits plus the letters ‘a’
through f’ (in either upper or lower case). If none of the conversion
base format flags is set, then the number is interpreted according to
C++ lexical conventions. That is, if the first characters (after the
optional sign) are 0x or 0X a hexadecimal conversion is performed on
following hexadecimal digits. Otherwise, if the first character is a 0,
an octal conversion is performed, and in all other cases a decimal
conversion is performed. ios::failbit is set if there are no digits
(not counting the 0 in Ox or 0X) during hex conversion) available.

floatg&, doubles
Converts the characters according to C++ syntax for a float or double,
and stores the result in x. ios::failbit is set if there are no digits

Page 3 June 14, 1989



ISTREAM@3C++) (C++ Stream Library) ISTREAM(3C++)

available in ins or if it does not begin with a well formed floating
point number.

The type and name(operator>>) of the extraction operations are chosen to give a
convenient syntax for sequences of input operations. The operator overloading of C++
permits extraction functions to be declared for user-defined classes. These operations
can then be used with the same syntax as the member functions described here.

ins>>sb
If ios.ipfx(0) returns non-zero, extracts characters from ios and inserts them
into sb. Extraction stops when EOF is reached. Always returns ins.

Unformatted input functions:
These functions call ipfx(1) and proceed only if it returns non-zero:

insp=&ins.get(ptr,len,delim)
Extracts characters and stores them in the byte array beginning at ptr and
extending for len bytes. Extraction stops when delim is encountered (delim is
left in ins and not stored), when ins has no more characters, or when the array
has only one byte left. get always stores a terminating null, even if it doesn’t
extract any characters from ins because of its error status. ios::failbit is
set only if get encounters an end of file before it stores any characters.

insp=&ins.get(c)
Extracts a single character and stores it in c.

insp=&ins.get(sb,delim)
Extracts characters from ins.rdbuf() and stores them into sb. It stops if it
encounters end of file or if a store into sb fails or if it encounters delim (which
it leaves in ins). ios::failbit is set if it stops because the store into sb fails

i=ins.get().
Extracts a character and returns it. i is EOF if extraction encounters end of
file. ios::failbit is never set.

insp=&ins.getline(ptr,len,delim)
Does the same thing as ins.get(ptr,len,delim) with the exception that it extracts
a terminating delim character from ins. In case delim occurs when exactly len
" characters have been extracted, termination is treated as being due to the array
being filled, and this delim is left in ins.

insp=&ins.ignore(n,d)
Extracts and throws away up to n characters. Extraction stops prematurely if
d is extracted or end of file is reached. If d is EOF it can never cause termina-
tion.

insp=&ins.read(ptr,n)
Extracts n characters and stores them in the array beginning at ptr. If end of
file is reached before n characters have been extracted, read stores whatever it
can extract and sets ios::failbit. The number of characters extracted can
be determined via ins.gcount().

Other members are:
i=ins.gcount()
Returns the number of characters extracted by the last unformatted input func-
tion. Formatted input functions may call unformatted input functions and
thereby reset this number.

i=ins.peek()
Begins by calling ins.ipfx(1). If that call returns zero or if ins is at end of file,
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(
N it returns EOF. Otherwise it returns the next character without extracting it.
insp=&ins.putback(c)
Attempts to back up insrdbuf(). ¢ must be the character before ins.rdbuf()’s
get pointer. (Unless other activity is modifying ins.rdbuf() this is the last char-
acter extracted from ins.) If it is not, the effect is undefined. putback may fail
(and set the error state). Although it is a member of istream, putback never
extracts characters, so it does not call ipfx. It will, however, return without
doing anything if the error state is non-zero.
i=&ins.sync()
Establishes consistency between internal data structures and the external
source of characters. Calls ins.rdbuf()->sync(), which is a virtual function, so
the details depend on the derived class. Returns EOF to indicate errors.
ins>>manip
Equivalent to manip(ins). Syntactically this looks like an extractor operation,
but semantically it does an arbitrary operation rather than converting a
sequence of characters and storing the result in manip. A predefined manipu-
lator, ws, is described below.
Member functions related to positioning:
insp=&ins.seekg(off,dir)
Repositions ins.rdbuf()’s get pointer. See sbufpub(3C++) for a discussion of
positioning.
insp=&ins.seekg(pos)
Repositions ins.rdbuf()’s get pointer. See sbufpub(3C++) for a discussion of
.\/\ positioning.
pos=ins.tellg()
The current position of ios.rdbuf()’s get pointer. See sbuf.pub(3C++) for a dis-
cussion of positioning,
Manipulator:
" ins>>ws
Extracts whitespace characters.
ins>>dec
Sets the conversion base format flag to 10. See ios(3C++).
ins>>hex
Sets the conversion base format flag to 16. See ios(3C++).
ins>>oct
Sets the conversion base format flag to 8. See ios(3C++).
CAVEATS
There is no overflow detection on conversion of integers. There should be, and overflow
should cause the error state to be set.
SEE ALSO
i0s(3C+4+), sbuf.pub(3C++), manip(3C++)
-
\
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NAME

manipulators — iostream out of band manipulations

SYNOPSIS

Page 1

#include <iostream.h>
#include <iomanip.h>

IOMANIPdeclare(T) ;

class SMANIP(T) {
SMANIP(T)( ios& (*)(ios&,T), T);
friend istream& operator>>(istream&, SMANIP(T)&);
friend ostream& operator<<(ostream&, SMANIP(T)&);
b .
class SAPP(T) {
SAPP(T)X ios& (*)(ios&,T));
SMANIP(T) operator()(T);
b
class IMANIP(T) {
IMANIP(T)( istream& (*)(istream&,T), T);
friend istream& operator>>(istream&, IMANIP(T)&);
b
class IAPP(T) {
IAPP(T)( istream& (*)(istream&,T));
IMANIP(T) operator()(T);
b
class OMANIP(T) {
OMANIP(T)( ostream& (*)(ostream&,T), T);
friend ostream& operator<<(ostream&, OMANIP(T)&);
b
class OAPP(T) { .
OAPP(T) ostream& (*)(ostream&,T));
OMANIP(T) operator()(T);
b
class IOMANIP(T) {
IOMANIP(T) iostream& (*)(iostream&,T), T);
friend istream& operator>>(iostream&, IOMANIP(T)&);
friend ostream& operator<<(iostream&, IOMANIP(T)&);
b
class IOAPP(T) {
IOAPP(T)( iostream& (*)(iostream&,T));
IOMANIP(T) operator()(T);
b

IOMANIPdeclare(int);
IOMANIPdeclare(long);

SMANIP(long) resetiosflags(long);
SMANIP(int) setfill(int);
SMANIP(long) setiosflags(long);
SMANIP(int) setprecision(int);
SMANIP(int) setw(int w);
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DESCRIPTION
Manipulators are values that may be "inserted into” or "extracted from" streams to achieve
some effect (other than to insert or extract a value representation), with a convenient syntax.
They enable one to embed a function call in an expression containing series of insertions or
extractions. For example, the predefined manipulator for ostreams, flush, can be used as fol-
lows:
cout << flush

to flush cout. Several iostream classes supply manipulators, see i0s(3C++), istream(3C++), and
ostream(3C++). flush is a simple manipulator; some manipulators take arguments, such as the
predefined ios manipulators, setfill and setw (see below). The header file iomanip.h sup-
plies macro definitions which programmers can use to define new parameterized manipulators.

Ideally, the types relating to manipulators would be parameterized as "templates." The macros
defined in iomanip.h are used to simulate templates. IOMANIPdeclare(T) declares the vari-
ous classes and operators. (All code is declared inline so that no separate definitions are
required.) Each of the other Ts is used to construct the real names and therefore must be a
single identifer. Each of the other macros also requires an identifier and expands to a name.

In the following descriptions, assume:

— tisa T, or type name.

— s isan ios.

—iisan istream

— o0 is an ostream.

— iois an iostream

—fisan ios& (*) (ios&).

—ifisan istream& (*) (istreamg).
— of is an ostream& (*) (ostreams).
— iof is an iostream& (*) (iostreams).
— nisan int.

—lisa long.

s<<SMANIP(TXf,t)

s>>SMANIP(T)£,D)

s<<SAPP(T)(£)(t)

s>>SAPP(THEXH)
Returns f(s,t), where s is the left operand of the insertion or extractor operator (i.e, s, i, o, or
io).

i>SIMANIP(TXif,b)
i>>TIAPP(TXGH)(E)
Returns if(j,t).

0<<OMANIP(T)(of,t)
0<<OQAPP(T)(of)(D)
Returns of(o,t).

i0<<IOMANIP(T)(iof,t)
io>>IOMANIP(T)(iof,t)
i0<<IOAPP(T)(iof)(t)
i0>>IOAPP(T)(of)(t)
Returns iof(io,t).

iomanip.h contains two declarations, IOMANIPdeclare (int) and IOMANIPdeclare (long) apd
some manipulators that take an int or a long argument. These manipulators all have to do with
changing the format state of a stream, see ios(3C++) for further details.
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o<<setw(n)
i>>setw(n)
Sets the field width of the stream (left-hand operand: o or i) to n.

o<<setfill(n)
i>>setfill(n)
Sets the fill character of the stream (o or i, or) to be n.

o<<setprecision(n)
i>>setprecision(n)
Sets the precision of the stream (o or i) to be n.

o<<setiosflags(l)
i>>setiosflags(l)
Turns on in the stream (o or i) the format flags marked in 1. (Calls o.setf(l) or i.setf(l)).

o<<resetiosflags(l)
i>>resetiosflags(l)
Clears in the stream (o or i) the format bits specified by 1. (Calls o.setf(0,1) or i.setf(0,1)).

CAVEATS
Syntax errors will be reported if IOMANIPdeclare(T) occurs more than once in a file with the
same T.

SEE ALSO
i0s(3C++), istream(3C++), ostream(3C++)
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NAME
ostream - formatted and unformatted output

SYNOPSIS
#include <iostream.h>

typedef long streamoff, streampos;

class ios {
public:
enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
enum { skipws=01,
left=02, right=04, internal=010,
dec=020, oct=040, hex=0100,
showbase=0200, showpoint=0400, uppercase=01000, showpos=02000,
scientific=04000, fixed=010000,
unitbuf=020000, stdio=040000 };
Il and lots of other stuff, see ios(3C++) ...
}s
class ostream : public ios {
public:
ostream(streambuf*);
ostream& flush();
int opfx();
ostream& put(char);
ostream& seekp(streampos);
ostream& seekp(streamoff, seek_dir);
streampos tellp(;
ostream& write(const char* ptr, int n);
ostream& write(const unsigned char* ptr, int n);
ostream& operator<<(const char*);
ostream& operator<<(char);
ostream& operator<<(short);
ostream& operator<<(int);
ostream& operator<<(long);
ostream& operator<<(float);
ostream& operator<<(double);
ostream& operator<<(unsigned char);
ostream& operator<<(unsigned short);
ostream& operator<<(unsigned int);
ostream& operator<<(unsigned long);
ostream& operator<<(void*);
ostream& operator<<(streambuf*);
ostream& operator<<(ostream& (*)(ostream&));
ostream& operator<<(ios& (*)(ios&));
b

class ostream_withassign {
ostream_withassign();
istream& operator=(istream&);
istream& operator=(streambuf*);

b
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extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

ostreamé& endl{ostreamé&) ;

ostream& ends(ostreamé&) ;

ostream& flush(ostream&) ;

ios& dec(ios&) ;

ios& hex(ios&) ;

ios& oct(ios&) ;
DESCRIPTION

ostreams support insertion (storing) into a streambuf. These are commonly referred to as
output operations. The ostream member functions and related functions are described
below.

In the following descriptions, assume:

— outs is an ostrean

-— outswa is an ostream_withassign.
— outsp is an ostream*.

- ¢isa char.

— ptrisa char* or unsigned charx*.
—sbisa streambuf*

—iand nare ints.

— pos is a streampos.

—off isa streamoff.

—dirisa seek_dir.

— manip is a function with type ostreams& (*) (ostreams).

Constructors and assignment:
ostream(sb)
Initializes ios state variables and associates buffer sb with the ostream.

ostream_withassign()
Does no initialization. This allows a file static variable of this type (cout for
example) to be used before it is constructed, provided it is assigned to first.

outswa=sb
Associates sb with swa and initializes the entire state of outswa.
inswa=ins
Associates ins->rdbuf() with swa and initializes the entire state of outswa.
Output prefix function:
i=outs.opfx()
If outs’s error state is nonzero, returns immediately. If outs.tie() is non-null, it
is flushed. Returns non-zero except when outs’s error state is nonzero.

Output suffix function:
osfx() Performs ‘‘suffix” actions before returning from inserters. If ios::unitbuf is
set, osfx() flushes the ostream. If ios::stdio is set, osfx() flushes stdout and
stderr.
osfx() is called by all predefined inserters, and should be called by user-defined insert-
ers as well, after any direct manipulation of the streambuf. It is not called by the
binary output functions.

Formatted output functions (inserters):
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outs<<x
First calls outs.opfx() and if that returns 0, does nothing. Otherwise inserts a
sequence of characters representing x into outs.rdbuf(). Errors are indicated by
setting the error state of outs. outs is always returned.

x is converted into a sequence of characters (its representation) according to
rules that depend on x’s type and outs’s format state flags and variables (see
i0s(3C++)): Inserters are defined for the following types, with conversion rules
as described below.

char* The representation is the sequence of characters up to (but not includ-
ing) the terminating null of the string x points at.

any integral type except char and unsigned char

If x is positive the representation contains a sequence of decimal, octal,
or hexadecimal digits with no leading zeros according to whether
ios::dec, ios::oct, or ios::hex, respectively is set in ios’s for-
mat flags. If none of those flags are set, conversion defaults to
decimal. If x is zero, the representation is a single zero character(0). If
x is negative, decimal conversion converts it to a minus sign (-) fol-
lowed by decimal digits. If x is positive and ios::showpos is set,
decimal conversion converts it to a plus sign (+) followed by decimal
digits. The other conversions treat all values as unsigned. If
ios: :showbase is set in ios’s format flags, the hexadecimal represen-
tation contains 0x before the hexidecimal digits, or 0x if
ios::uppercase is set. If ios::showbase is set, the octal
representation contains a leading 0.

void* Pointers are converted to integral values and then converted to hexade-
cimal numbers as if ios::showbase were set.

float, double
The arguments are converted according to the current values of
outs.precision(),  outs.width()) and  outs’s format flags
ios::scientific, ios::fixed, and ios::uppercase. (See
i0s(3C++).) The default value for outs.precision() is 6. If neither
ios::scientific nor ios::fixed is set, either fixed or scientific
notation is chosen for the representation, depending on the value of x.

char, unsigned char
No special conversion is necessary.

After the representation is determined, padding occurs. If outs.width() is
greater than 0 and the representation contains fewer than outs.width() charac-
ters, then enough outs.fill() characters are added to bring the total number of
characters to ios.width(). If ios::left is set in ios’s format flags, the
sequence is left-adjusted, that is, characters are added after the characters
determined above. If ios::right is set, the padding is added before the
characters determined above. If ios::internal is set, the padding is added
after any leading sign or base indication and before the characters that
represent the value. ios.width() is reset to 0, but all other format variables are
unchanged. The resulting sequence (padding plus representation) is inserted
into outs.rdbuf().

outs<<sb _
If outs.opfx() returns non-zero, the sequence of characters that can be fetched
from sb are inserted into outs.rdbuf(). Insertion stops when no more charac-
ters can be fetched from sb. No padding is performed. Always returns outs.
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Unformatted output functions: ‘ )
outsp=&outs.put(c) R
Inserts ¢ into outs.rdbuf(). Sets the error state if the insertion fails.
outsp=&outs.write(s,n)

Inserts the n characters starting at s into outs.rdbuf(). These characters may
include zeros (i.e., s need not be a null terminated string).

Other member functions:
outsp==&outs.flush()
storing characters into a streambuf does not always cause them to be con-
sumed (e.g., written to the external file) immediately. flush() causes any char-
acters that may have been stored but not yet consumed to be consumed by cal-
ling outs.rdbuf()->sync.

outs<<manip
Equivalent to manip(outs). Syntactically this looks like an insertion operation,
but semantically it does an arbitrary operations rather than converting manip
to a sequence of characters as do the insertion operators. Predefined manipu-
lators are described below.

Positioning functions:
: outsp=&ins.seekp(off,dir)
Repositions outs.rdbuf()’s put pointer. See sbuf.pub(3C++) for a discussion of
positioning.
outsp=&outs.seekp(pos)
Repositions outs.rdbuf()’s put pointer. See sbuf.pub(3C++) for a discussion of
positioning,.
pos=outs.tellp() —
The current position of outs.rdbuf()’s put pointer. See sbuf.pub(3C++) for a dis-
cussion of positioning.
Manipulators:
outs<<endl
Ends a line by inserting a newline character and flushing.

outs<<ends
Ends a string by inserting a null(0) character.

outs<<flush
Flushes outs.

outs<<dec
Sets the conversion base format flag to 10. See i0os(3C++).

outs<<hex
Sets the conversion base format flag to 16. See ios(3C++).

outs<<oct
Sets the conversion base format flag to 8. See ios(3C++).

SEE ALSO
ios(3C++), sbuf.pub(3C++), manip(3C++)
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NAME
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streambuf — interface for derived classes

SYNOPSIS
#include <iostream.h>

typedef long streamoff, streampos;

class ios {
public:

}s

enum seek_dir { beg, cur, end };

enum open_mode { in, out, ate, app, trunc, nocreate, noreplace }

Il and lots of other stuff, see ios(3C++) ...

class streambuf {

public:

protected:

public:

b

streambuf() ;
streambuf(char* p, int len);

void dbp() ;
int allocate();
char* base();
int blen();
char* eback();
char* ebuf();
char* egptr();
char* epptr();
void ghump(int n);
char* gptr();
char* pbase();
void pbump(int n);
char* pptr(;
void setg(char* eb, char* g, char* eg);
void setp(char* p, char* ep);
" void setb(char* b, char* eb, int a=0);
int unbuffered();
void unbuffered(int);

virtual int doallocate();

virtual “streambuf() ;
virtual int pbackfail(int c);
virtual int overflow(int c=EOF);
virtual int underflow();

virtual streambuf*
setbuf(char* p, int len);
virtual streampos
seekpos(streampos, int =ios::in|ios:out);
virtual streampos
seekoff(streamoff, seek dir, int =ios::in|ios:out);
virtual int sync();

-
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DESCRIPTION

streambufs implement the buffer abstraction described in sbufpub(3C++). However, the
streambuf class itself contains only basic members for manipulating the characters and nor-
mally a class derived from streambuf will be used. This man page describes the interface
needed by programmers who are coding a derived class. Broadly speaking there are two
kinds of member functions described here. The non-virtual functions are provided for mani-
pulating a streambuf in ways that are appropriate in a derived class. Their descriptions
reveal details of the implementation that would be inappropriate in the public interface. The
virtual functions permit the derived class to specialize the streambuf class in ways appropri-
ate to the specific sources and sinks that it is implementing. The descriptions of the virtual
functions explain the obligations of the virtuals of the derived class. If the virtuals behave as
specified, the streambuf will behave as specified in the public interface. However, if the vir-
tuals do not behave as specified, then the streambuf may not behave properly, and an ios-
tream (or any other code) that relies on proper behavior of the streambuf may not behave
properly either.

In the following descriptions assume:

—sbisa streambuf*.

—1iand n are ints.

— ptr, b, eb, p, ep, eb, g, and eg are char*s.
— cis an int character (positive or EOF)).

— pos is a streampos. (See sbuf.pub(3C++).)

— off isa streamoff.

—dirisa seekdir.

— mode is an int representing an open_mode.

Constructors:
streambuf() '
Constructs an empty buffer corresponding to an empty sequence.

streambuf(b,len)
Constructs an empty buffer and then sets up the reserve area to be the len
bytes starting at b.

The Get, Put, and Reserver area

The protected members of streambuf present an interface to derived classes organized
around three areas (arrays of bytes) managed cooperatively by the base and derived classes.
They are the get area, the put area, and the reserve area (or buffer). The get and the put areas
are normally disjoint, but they may both overlap the reserve area, whose primary purpose is to
be a resource in which space for the put and get areas can be allocated. The get and the put
areas are changed as characters are put into and gotten from the buffer, but the reserve area
normally remains fixed. The areas are defined by a collection of char* values. The buffer
abstraction is described in terms of pointers that point between characters, but the char*
values must point at chars. To establish a correspondence the char* values should be
thought of as pointing just before the byte they really point at.

Functions to examine the pointers
ptr=sb->base()
Returns a pointer to the first byte of the reserve area. Space between sb-
>base() and sb->ebuf() is the reserve area.

ptr=sb->eback()
Returns a pointer to a lower bound on sb->gptr(). Space between sb->eback()
and sb->gptr() is available for putback.

ptr=sb->ebuf()
Returns a pointer to the byte after the last byte of the reserve area.
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ptr=sb->egptr()

Returns a pointer to the byte after the last byte of the get area.
ptr=sb->epptr()

Returns a pointer to the byte after the last byte of the put area.

ptr=sb->gptr()
Returns a pointer to the first byte of the get area. The available characters are
those between sb->gptr() and sb->egptr(). The next character fetched will be
*(sb->gptr()) unless sb->egptr() is less than or equal to sb->gptr().

ptr=sb->pbase()
Returns a pointer to the put area base. Characters between sb->pbase() and
sb->pptr() have been stored into the buffer and not yet consumed.

ptr=sb->pptr()
Returns a pointer to the first byte of the put area. The space between sb-
>pptr() and sb->epptr() is the put area and characters will be stored here.

Functions for setting the pointers

Note that to indicate that a particular area (get, put, or reserve) does not exist, all the associ-
ated pointers should be set to zero.

sb->setb(b, eb, i)
Sets base() and ebuf() to b and eb respectively. i controls whether the area
will be subject to automatic deletion. If i is non-zero, then b will be deleted
when base is changed by another call of setb(), or when the destructor is
called for *sb. If b and eb are both null then we say that there is no reserve
area. If b is non-null, there is a reserve area even if eb is less than b and so
the reserve area has zero length.

sb->setp(p, ep)

Sets pptr() to p, pbase() to p, and epptr() to ep.
sb->setgl(eb, g, eg) 4

Sets eback() to eb, gptr() to g, and egptr(}) to eg.

Other non-virtual members

Page 3

i=sb->allocate()
Tries to set up a reserve area. If a reserve area already exists or if sb-
>unbuffered() is nonzero, allocate() returns 0 without doing anything. If the
attempt to allocate space fails, allocate() returns EOF, otherwise (allocation
succeeds) allocate() returns 1. allocate() is not called by any non-virtual
member function of streambuf.

i=sb->blen()
Returns the size (in chars) of the current reserve area.

dbp() Writes directly on file descriptor 1 information in ASCII about the state of the
buffer. It is intended for debugging and nothing is specified about the form of
the output. It is considered part of the protected interface because the infor-
mation it prints can only be understood in relation to that interface, but it is a
public function so that it can be called anywhere during debugging.

sb->gbump(n)
Increments gptr() by n which may be positive or negative. No checks are
made on whether the new value of gptr() is in bounds.

sb->pbump(n)
Increments pptr() by n which may be positive or negative. No checks are
made on whether the new value of pptr() is in bounds.
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sb->unbuffered(i)

i=sb->unbuffered()
There is a private variable known as sb’s buffering state. sb->unbuffered(i)
sets the value of this variable to i and sb->unbuffered() returns the current
value. This state is independent of the actual allocation of a reserve area. Its

primary purpose is to control whether a reserve area is allocated automatically
by allocate.

Virtual member functions
Virtual functions may be redefined in derived classes to specialize the behavior of stream-
bufs. This section describes the behavior that these virtual functions should have in any
derived classes; the next section describes the behavior that these functions are defined to have
in base class streambuf.

i=sb->doallocate()
Is called when allocate() determines that space is needed. doallocate() is

required to call setb(} to provide a reserve area or to return EOF if it cannot.
It is only called if sb->unbuffered() is zero and sb->base() is zero.

i=overflow(c)

Is called to consume characters. If ¢ is not EOF, overflow() also must either
save ¢ or consume it. Usually it is called when the put area is full and an
attempt is being made to store a new character, but it can be called at other
times. The normal action is to consume the characters between pbase() and
pptr(), call setp() to establish a new put area, and if ¢!=EOF store it (using
sputc()). sb->overflow() should return EOF to indicate an error; otherwise it
should return something else.

i=sb->pbackfail(c) ,
Is called when eback() equals gptr() and an attempt has been made to putback
c. If this situation can be dealt with (e.g., by repositioning an external file),
pbackfail() should return c; otherwise it should return EOF.

pos=sb->seekoff(off, dir, mode)

Repositions the get and/or put pointers (i.e., the abstract get and put pointers,
not pptr() and gptr()). The meanings of off and dir are discussed in
sbuf.pub(3C++). mode specifies whether the put pointer (ios: :out bit set) or
the get pointer (ios::in bit set) is to be modified. Both bits may be set in
which case both pointers should be affected. A class derived from stream-
buf is not required to support repositioning. seekoff() should return EOF if
the class does not support repositioning. If the class does support reposition-
ing, seekoff() should return the new position or EOF on error.

pos=sb->seekpos(pos, mode)
Repositions the streambuf get and/or put pointer to pos. mode specifies
which pointers are affected as for seekoff(). Returns pos (the argument) or
EOF if the class does not support repositioning or an error occurs.

sb=sb->setbuf(ptr, len)
Offers the array at ptr with len bytes to be used as a reserve area. The normal
interpretation is that if ptr or len are zero then this is a request to make-the sb
unbuffered. The derived class may use this area or not as it chooses. If may
accept or ignore the request for unbuffered state as it chooses. setbuf() should
return sb if it honors the request. Otherwise it should return 0.

i=sb->sync()
Is called to give the derived class a chance to look at the state of the areas, and
synchronize them with any external representation. Normally sync() should
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consume any characters that have been stored into the put area, and if possi-
ble give back to the source any characters in the get area that have not been
fetched. When sync() returns there should not be any unconsumed characters,
and the get area should be empty. sync() should return EOF if some kind of
failure occurs.

i=sb->underflow()
Is called to supply characters for fetching, i.e., to create a condition in which
the get area is not empty. If it is called when there are characters in the get
area it should return the first character. If the get area is empty, it should
create a nonempty get area and return the next character (which it should also
leave in the get area). If there are no more characters available, underflow()
should return EOF and leave an empty get area.

The default definitions of the virtual functions:

CAVEATS

i=sb->streambuf::doallocate()
Attempts to allocate a reserve area using operator new.

i=sb->streambuf::overflow(c)
Is compatible with the old stream package, but that behavior is not considered
part of the specification of the iostream package. Therefore,
streambuf::overflow() should be treated as if it had undefined behavior. That
is, derived classes should always define it.

i=sb->streambuf::pbackfail(c)
Returns EOF.

pos=sb->streambuf:seekpos(pos, mode)
Returns sb->seekoff(streamoff(pos),ios:beg,mode). Thus to define seeking in
a derived class, it is frequently only necessary to define seekoff() and use the
inherited streambuf::seekpos().

pos=sb->streambuf:seekoff(off, dir, mode)
Returns EOF.

sb=sb->streambuf::setbuf(ptr, len)
Will honor the request when there is no reserve area.

i=sb->streambuf::sync()
Returns 0 if the get area is empty and there are no unconsumed characters.
Otherwise it returns EOF.

i=sb->streambuf::underflow()
Is compatible with the old stream package, but that behavior is not considered
part of the specification of the iostream package. Therefore,
streambuf::underflow() should be treated as if it had undefined behavior. That
is, it should always be defined in derived classes.

The constructors are public for compatibility with the old stream package. They ought to be
protected.

The interface for unbuffered actions is awkward. It's hard to write underflow() and overflow()
virtuals that behave properly for unbuffered streambuf ()s without special casing. Also
there is no way for the virtuals to react sensibly to multi-character gets or puts.

Although the public interface to streambufs deals in characters and bytes, the interface to
derived classes deals in chars. Since a decision had to be made on the types of the real data
pointers, it seemed easier to reflect that choice in the types of the protected members than to
duplicate all the members with both plain and unsigned char versions. But perhaps all these

Page 5

June 14, 1989



SBUF.PROT(3C++) (C++ Stream Library) SBUF.PROT(3C++)

uses of char* ought to have been with a typedef.

The implementation contains a variant of setbuf() that accepts a third argument. It is present
only for compatibility with the old stream package.

SEE ALSO
sbuf.pub(3C++), streambuf(3C++), iostream(3C++)
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NAME

streambuf — public interface of character buffering class

SYNOPSIS

#include <iostream.h>

typedef long streamoff, streampos;

class ios {

public:
enum seek_dir { beg, cur, end };
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
/I and lots of other stuff ... See ios(3C++)

}s

class streambuf {

public :
int in_avail();
int out_waiting();
int sbumpc();
streambuf* setbuf(char* ptr, int len);
streampos seekpos(streampos, int =ios::in|ios::out);
streampos seekoff(streamofT, seek_dir, int =ios::in|ios::out);
int sgetc();
int sgetn(char* ptr, int n);
int snextc();
int sputbackc(char);
int sputc(int c¢);
int sputn(const char* s, int n);
void stossc();
virtual int sync();

b

DESCRIPTION

Page 1

The streambuf class supports buffers into which characters can be inserted (put) or from
which characters can be fetched (gotten). Abstractly, such a buffer is a sequence of characters
together with one or two pointers (a get and/or a put pointer) that define the location at
which characters are to be inserted or fetched. The pointers should be thought of as pointing
between characters rather than at them. This makes it easier to understand the boundary con-
ditions (a pointer before the first character or after the last). Some of the effects of getting and
putting are defined by this class but most of the details are left to specialized classes derived
from streambuf. (See filebuf(3C++), ssbufi3C++), and stdiobuf(3C++).)

Classes derived from streambuf vary in their treatments of the get and put pointers. The
simplest are unidirectional buffers which permit only gets or only puts. Such classes serve as
pure sources (producers) or sinks (consumers) of characters. Queuelike buffers (e.g., see
strstream(3C++) and ssbuf(3C++)) have a put and a get pointer which move independently of
each other. In such buffers characters that are stored are held (i.e., queued) until they are later
fetched. Filelike buffers (e.g.,, filebuf, see filebuf(3C++)) permit both gets and puts but have
only a single pointer. (An alternative description is that the get and put pointers are tied
together so that when one moves so does the other.)

Most streambuf member functions are organized into two phases. As far as possible, opera-
tions are performed inline by storing into or fetching from arrays (the get area and the put area,
which together form the reserve area, or buffer). From time to time, virtual functions are called
to deal with collections of characters in the get and put areas. That is, the virtual functions are
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called to fetch more characters from the ultimate producer or to flush a collection of charac-
ters to the ultimate consumer. Generally the user of a streambuf does not have to know
anything about these details, but some of the public members pass back information about the
state of the areas. Further detail about these areas is provided in sbufprot(3C++), which
describes the protected interface.

The public member functions of the streambuf class are described below. In the following
descriptions assume:

—1i,n, and len are ints.

— ¢ is an int. It always holds a "character" value or EOF. A "character” value is always
positive even when char is normally sign extended.

— sb and sbl are streambuf*s.

— ptrisa char*.

— off isa streamoff.

— pos is a streampos.

—dirisa seek_dir.

— mode is an int representing an open_mode.

Public member functions:

i=sb->in_avail()
Returns the number of characters that are immediately available in the get area for
fetching. i characters may be fetched with a guarantee that no errors will be reported.

i=sb->out_waiting()
Returns the number of characters in the put area that have not been consumed (by the
ultimate consumer).

c=sb->sbumpc()
Moves the get pointer forward one character and returns the character it moved past.
Returns EOF if the get pointer is currently at the end of the sequence.

pos=sb->seekoff(off, dir, mode)
Repositions the get and/or put pointers. mode specifies whether the put pointer
(ios: :out bit set) or the get pointer (ios::in bit set) is to be modified. Both bits
may be set in which case both pointers should be affected. off is interpreted as a byte
offset. (Notice that it is a signed quantity.) The meanings of possible values of dir are

ios: :beg
The beginning of the stream.
ios::cur

The current position.

ios::end
The end of the stream (end of file.)
Not all classes derived from streambuf support repositioning. seekoff(} will return EOF if
the class does not support repositioning. If the class does support repositioning, seekoff() will
return the new position or EOF on error. ‘

pos=sb->seekpos(pos, mode)
Repositions the streambuf get and/or put pointer to pos. mode specifies which
pointers are affected as for seekoff(). Returns pos (the argument) or EOF if the class
does not support repositioning or an error occurs. In general a streampos should be
treated as a "magic cookie” and no arithmetic should be performed on it. Two particu-
lar values have special meaning:

streampos(0)
The beginning of the file.
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streampos(EOF)
Used as an error indication.

c=sb->sgetc()
Returns the character after the get pointer. Contrary to what most people expect from
the name IT DOES NOT MOVE THE GET POINTER. Returns EOF if there is no char-
acter available.

sbl=sb->setbuf(ptr, len, i)
Offers the len bytes starting at ptr as the reserve area. If ptr is null or len is zero or
less, then an unbuffered state is requested. Whether the offered area is used, or a
request for unbuffered state is honored depends on details of the derived class. set-
buf() normally returns sb, but if it does not accept the offer or honor the request, it
returns 0.

i=sb->sgetn(ptr, n)
Fetches the n characters following the get pointer and copies them to the area starting
at ptr. When there are fewer than n characters left before the end of the sequence
sgetn() fetches whatever characters remain. sgetn() repositions the get pointer follow-
ing the fetched characters and returns the number of characters fetched.

c=sb->snextc()
Moves the get pointer forward one character and returns the character following the
new position. It returns EOF if the pointer is currently at the end of the sequence or is
at the end of the sequence after moving forward.

i=sb->sputbackc(c)
Moves the get pointer back one character. ¢ must be the current content of the
sequence just before the get pointer. The underlying mechanism may simply back up
the get pointer or may rearrange its internal data structures so the c¢ is saved. Thus the
effect of sputbacke() is undefined if ¢ is not the character before the get pointer. sput-
backc() returns EOF when it fails. The conditions under which it can fail depend on
the details of the derived class.

i=sb->sputc(c)
Stores c after the put pointer, and moves the put pointer past the stored character; usu-
ally this extends the sequence. It returns EOF when an error occurs. The conditions
that can cause errors depend on the derived class.

i=sb->sputn(ptr, n)
Stores the n characters starting at ptr after the put pointer and moves the put pointer
past them. sputn() returns i, the number of characters stored successfully. Normally i
is n, but it may be less when errors occur.

sb->stossc()
Moves the get pointer forward one character. If the pointer started at the end of the
sequence this function has no effect.

i=sb->sync()
Establishes consistency between the internal data structures and the external source or
sink. The details of this function depend on the derived class. Usually this "flushes"
any characters that have been stored but not yet consumed, and "gives back" any char-
acters that may have been produced but not yet fetched. sync() returns EOF to indi-
cate errors.

CAVEATS
setbuf does not really belong in the public interface. It is there for compatibility with the
stream package.
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Requiring the program to provide the previously fetched character to sputback is probably a . )
botch.

SEE ALSO
iostream(3C++), sbuf.prot(3C++)

ety
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NAME
strstreambuf — streambuf specialized to arrays

SYNOPSIS
#include <iostream.h>
#include <strstream.h>

class strstreambuf : public streambuf {
public:
strstreambuf() ;
strstreambuf(char*, int, char*);
strstreambuf(int);
strstreambuf(unsigned char*, int, unsigned char¥*);
strstreambuf(void* (*a)(long), void(*f)(void*));

void freeze(int n=1) ;

char* str();

streambuf* setbuf(char®, int)
b8

DESCRIPTION

A strstreambuf isa streambuf that uses an array of bytes (a string) to hold the sequence
of characters. Given the convention that a char* should be interpreted as pointing just
before the char it really points at, the mapping between the abstract get/put pointers (see
sbuf.pub(3C++)) and char* pointers is direct. Moving the pointers corresponds exactly to
incrementing and decrementing the char* values.

To accommodate the need for arbitrary length strings strstreambuf supports a dynamic
mode. When a strstreambuf is in dynamic mode, space for the character sequence is allo-
cated as needed. When the sequence is extended too far, it will be copied to a new array.

In the following descriptions assume:

— ssb is a strstreambuf*.

—nis an int.

— ptr and pstart are char*s or unsigned char*s.
—aisa void* (*) (long).

—fisa void* (*) (void¥).

Constructors::
strstreambuf()
Constructs an empty strstreambuf in dynamic mode. This means that
space will be automatically allocated to accomodate the characters that are put
into the strstreambuf (using operators new and delete). Because this
may require copying the original characters, it is recommended that when
many characters will be inserted, the program should use setbuf() (described
below) to inform the strstreambuf.

strstreambuf(a, f)
Constructs an empty strstreambuf in dynamic mode. a is used as the allo-
cator function in dynamic mode. The argument passed to a will be a long
denoting the number of bytes to be allocated. If a is null, operator new will
be used. f is used to free (or delete) areas returned by a. The argument to f
will be a pointer to the array allocated by a. If f is null, operator delete is
used.

strstreambuf(n)
Constructs an empty strstreambuf in dynamic mode. The initial allocation
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of space will be at least n bytes.

strstreambuf(ptr, n, pstart)

Member functions:

Constructs a strstreambuf to use the bytes starting at ptr. The
strstreambuf will be in static mode; it will not grow dynamically. If n is
positive, then the n bytes starting at ptr are used as the strstreambuf. If n
is zero, ptr is assumed to point to the beginning of a null terminated string
and the bytes of that string (not including the terminating null character) will
constitute the strstreambuf. If n is negative, the strstreambuf is
assumed to continue indefinitely. The get pointer is initialized to ptr. The put
pointer is initialized to pstart. If pstart is null, then stores will be treated as
errors. If pstart is non-null, then the initial sequence for fetching (the get area)
consists of the bytes between ptr and pstart. If pstart is null, then the initial
get area consists of the entire array.

ssb->freeze(n)

Inhibits (when n is nonzero) or permits (when n is zero) automatic deletion of
the current array. Deletion normally occurs when more space is needed or
when ssb is being destroyed. Only space obtained via dynamic allocation is
ever freed. It is an error (and the effect is undefined) to store characters into a
strstreambuf that was in dynamic allocation mode and is now frozen. It is
possible, however, to thaw (unfreeze) such a strstreambuf and resume stor-
ing characters.

ptr=ssb->str()

Returns a pointer to the first char of the current array and freezes ssb. If ssb
was constructed with an explicit array, ptr will point to that array. If ssb is in
dynamic allocation mode, but nothing has yet been stored, ptr may be null.

ssb->setbuf(0,n)

SEE ALSO

ssb remembers n and the next time it does a dynamic mode allocation, it
makes sure that at least n bytes are allocated.

sbuf.pub(3C++), strstream(3C++)
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NAME
stdiobuf — iostream specialized to stdio FILE

SYNOPSIS
#include <iostream.h>
#include <stdiostream.h>
#include <stdio.h>

class stdiobuf : public streambuf {
stdiobuf(FILE* f);
FILE* stdiofile();
b
DESCRIPTION
Operations on a stdiobuf are reflected on the associated FILE. A stdiobuf is constructed
in unbuffered mode, which causes all operations to be reflected immediately in the FILE.
seekg()s and seekp()s are translated into fseek()s. setbuf() has its usual meaning; if it supplies
a reserve area, buffering will be turned back on.

CAVEATS
stdiobuf is intended to be used when mixing C and C++ code. New C++ code should
prefer to use filebufs, which have better performance.

SEE ALSO
filebuf(3C++), istream(3C++), ostream(3C++), sbuf.pub(3C++)
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NAME
strstream — iostream specialized to arrays
SYNOPSIS
#include <strstream.h>
class ios {
public:
enum open_mode { in, out, ate, app, trunc, nocreate, noreplace } ;
Il and lots of other stuff, see ios(3C++) ...
}s
class istrstream : public istream {
public:
istrstream(char®) ;
istrstream(char®, int) ;
strstreambuf* rdbuf() ;
}s
class ostrstream : public ostream {
public:
ostrstream();
ostrstream(char*, int, int=ios::out) ;
int pcount() ;
strstreambuf* rdbuf() ;
char* str(;
b
class strstream : public strstreambase, public iostream {
public:
strstream();
strstream(char*, int, int mode);
strstreambuf* rdbuf() ;
char* str();
4
DESCRIPTION

strstream specializes iostream for "incore” operations, that is, storing and fetching from
arrays of bytes. The streambuf associated with a strstream is a strstreambuf (see
ssbuf(3C++)).

In the following descriptions assume:

—ssisa strstream

—issis an istrstream

— 088 is an ostrstream.

- ¢p isa char*.

— mode is an int representing an open_mode.
—iand len are ints.

—ssb is a strstreambuf*.

Constructors
istrstream(cp)
Characters will be fetched from the (null-terminated) string cp. The terminat-
ing null character will not be part of the sequence. Seeks (istream::seekg()) are
allowed within that space.
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istrstream(cp, len)
Characters will be fetched from the array beginning at cp and extending for
len bytes. Seeks (istream::seekg()) are allowed anywhere within that array.

ostrstream()
Space will be dynamically allocated to hold stored characters.

ostrstream(cp,n,mode)
Characters will be stored into the array starting at cp and continuing for n
bytes. If ios::ate or ios::app is set in mode, cp is assumed to be a null-
terminated string and storing will begin at the null character. Otherwise stor-
ing will begin at cp. Seeks are allowed anywhere in the array.

strstream()
Space will be dynamically allocated to hold stored characters.

strstream(cp,n,mode) .
Characters will be stored into the array starting at cp and continuing for n
bytes. If ios::ate or ios::app is set in mode, cp is assumed to be a null-
terminated string and storing will begin at the null character. Otherwise stor-
ing will begin at cp. Seeks are allowed anywhere in the array.

istrstream members
ssb = issxdbuf()
Returns the strstreambuf associated with iss.

ostrstream members
ssb = oss.rdbuf(}
Returns the strstreambuf associated with oss.

cp=oss.str()
Returns a pointer to the array being used and "freezes" the array. Once str has
been called the effect of storing more characters into oss is undefined. If oss
was constructed with an explicit array, cp is just a pointer to the array. Other-
wise, cp points to a dynamically allocated area. Until str is called, deleting the
dynamically allocated area is the responsibility of oss. After str returns, the
array becomes the responsibility of the user program.

i=oss.pcount()
Returns the number of bytes that have been stored into the buffer. This is
mainly of use when binary data has been stored and oss.str() does not point to
a null terminated string.

strstream members
ssb = ss.rdbuf()
Returns the strstreambuf associated with ss.

cp=ss.str()
Returns a pointer to the array being used and "freezes" the array. Once str has
been called the effect of storing more characters into ss is undefined. If ss was
constructed with an explicit array, cp is just a pointer to the array. Otherwise,
cp points to a dynamically allocated area. Until str is called, deleting the
dynamically allocated area is the responsibility of ss. After str returns, the
array becomes the responsibility of the user program.

SEE ALSO
strstreambuf(3C++), iostream(3C++)
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