
AT&T

C

UNIX® System V
AT&T C++ Language System
Release 2.0

Product Reference Manual
Select Code 307-146

© 1989 AT&T
All Rights Reserved
Printed In USA

NOTICE
The information in this dorument is subject to change without notice. AT&T
assumes no responsibility for any errors that may appear in this document.

UNIX is a registered trademark of AT&T.

J

Preface

Preface

Table of Contents

J

Preface

The AT&T C++ Language System Product Reference Manual provides a complete definition of the C++
language supported by Release 2.0 of the C++ Language System. The manual is part of a set of four
documents that are supplied with your C++ Language System. The other documents are:

■ the Release Notes, which describe the contents of this release, how to install it, and changes to the
language

■ the Selected Readings, which contains papers describing aspects of the C++ language

■ the Library Manual, which describes the three C++ class libraries and tells you how to use them

This manual contains 16 sections covering the various aspects of the C++ language:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Introduction

Lexical Conventions

Basic Concepts

Standard Conversions

Expressions

Statements

Declarations

Declarators

Classes

Derived Classes

Member Access Control

Special Member Functions

Overloading

Templates (experimental)

Exception Handing (experimental)

Compiler Control Lines

Sections 14 and 15 are place markers for experimental features that are not implemented in Release
: 2.0.
I

The Reference Manual proper is followed by appendices that describe grammar, compatibility, and
product-specific behavior in Release 2.0:

■ Appendix A: Grammar Summary

■ Appendix B: Compatibility

Preface

Preface

■ Appendix C: Implementation-Specific Behavior - describes behavior of the Release 2.0
Language System that is implementation specific

■ Appendix D: Not Implemented Messages - lists error messages that result when you attempt to
use a feature not implemented in Release 2.0, and describes the unimplemented feature

To make the best use of the Product Reference Manual, you should be familiar with the C programming
language and the C programming environment under the UNIX® operating system. Refer to Appen­
dix B of the Release Notes for further sources of information about these topics.

ii C++ Reference Manual

C++ Reference Manual

1 Introduction
1.1 Overview
1.2 Syntax Notation

2 Lexical Conventions
2.1 Tokens
2.2 Comments
2.3 Identifiers
2.4 Keywords
2.5 Literals

■ 2.5.1 Integer Constants
■ 2.5.2 Charader Constants
■ 2.5.3 Floating Constants
■ 2.5.4 String literals

3 Basic Concepts
3.1 Declarations and Definitions
3.2 Scopes
3.3 Program and Linkage
3.4 Start and Termination
3.5 Storage Classes
3.6 Types

■ 3.6.1 Fundamental Types
■ 3.6.2 Derived Types
■ 3.6.3 Type Names

3.7 Lvalues

4 Standard Conversions
4.1 Integral Promotions
4.2 Integral Conversions
4.3 Float and Double
4.4 Floating and Integral
4.5 Arithmetic Conversions
4.6 Pointer Conversions
4. 7 Ref ere nee Conversions
4.8 Pointers to Members

Table of Contents

3
3
3
3
3
4
4
4
5
5

7
7
7
8
8
9
9
10
10
11
11

12
12
12
12
12
12
13
13
13

Table of Contents

Ii

5 E~presslons
5.1 Primary Expressions
5.2 Postfix Expressions

■ 5.2.1 Subscripting
■ 5.2.2 Function Call
■ 5.2.3 Explicit Type Conversion
■ 5.2.4 Class Member Access
■ 5.2.5 Increment and Decrement

5.3 Unary Operators
■ 5.3.1 Increment and Decrement
■ 5.3.2 Sizeof
■ 5.3.3 New
■ 5.3.4 Delete

5.4 Explicit Type Conversion
5.5 Pointer-to-Member Operators
5.6 Multiplicative Operators
5. 7 Additive Operators
5.8 Shift Operators
5.9 Relational Operators
5.10 Equality Operators
5.11 Bitwise AND Operator
5.12 Bitwise Exclusive OR Operator
5.13 Bitwise Inclusive OR Operator
5.14 Logical AND Operator
5.15 Logical OR Operator
5.16 Conditional Operator
5.17 Assignment Operators
5.18 Comma Operator
5.19 Constant Expressions

6 Statements
6.1 Labeled Statement
6.2 Expression Statement
6.3 Compound Statement, or Block
6.4 Selection Statements

■ 6.4.1 If Statements
■ 6.4.2 Switch Statement

6.5 Iteration Statements
■ 6.5.1 While Statement
■ 6.5.2 Do statement
■ 6.5.3 For Statement

6.6 Jump Statements
■ 6.8.1 Break Statement
■ 6.6.2 Continue Statement
■ 6.6.3 Return Statement
■ 6.6.4 Goto Statement

6. 7 Declaration Statement

15
15
16
17
17
17
17
18
18
19
19
19
20
21
22
23
23
24
24
24
25
25
25
25
25
26
26
27
27

28
28
28
28
29
29
29
29
30
30
30
31
31
31
31
31
31

C++ Reference Manual

·:)

(-·

6.8 Ambiguity Resolution

7 Declarations
7 .1 Specifiers

■ 7.1.1 Storage Class Specifiers
■ 7.1.2 Function Specifiers
■ 7.1.3 The typedef Specifier
■ 7.1.4 The template Specifier
■ 7.1.5 The friend Specifier
■ 7.1.6 Type Specifiers

7.2 Enumeration Declarations
7.3 Asm Declarations
7 .4 Linkage Specifications

8 Declarators
8.1 Type Names
8.2 Meaning of Declarators

■ 8.2.1 Pointers
■ 8.2.2 References
■ 8.2.3 Pointers to Members
■ 8.2.4 Arrays
■ 8.2.5 Functions
■ 8.2.6 Default Arguments

8.3 Function Definitions
8.4 Initializers

■ 8.4.1 Aggregates
■ 8.4.2 Character Arrays
■ 8.4.3 References

9 Classes
9.1 Class Names
9.2 Class Members
9.3 Member Functions

■ 9.3.1 The thb Pointer
■ 9.3.2 lnline Member Functions

9.4 Static Members
9.5 Unions
9.6 Bit-Fields
9. 7 Nested Class Declarations

1 O Derived Classes
10.1 Multiple Base Classes

■ 10.1.1 Ambiguities

Table of Contents

Table of Contents

32

34
34
34
35
36
37
37
37
38
39
40

42
42
43
43
44
45
45
46
48
49
49
51
52
52

54
54
56
57
58
59
60
61
61
62

63
64
65

Iii

Table of Contents

Iv

10.2 Virtual Functions
10.3 Abstract Classes
10.4 Summary of Scope Rules

11 Member Access Control
11 .1 Access Specifiers
11.2 Access Specifiers for Base
11.3 Access Declarations
11.4 Friends
11.5 Protected Member Access
11.6 Access to Virtual Functions
11. 7 Multiple Access

12 Special Member Functions
12.1 Constructors
12.2 Temporary Objects
12.3 Conversions

■ 12.3.1 Conversion by Constructor
■ 12.3.2 Conversion Functions

12.4 Destructors
12.5 Free Store
12.6 Initialization

■ 12.6.1 Explicit Initialization
■ 12.6.2 Initializing Bases and Members

12. 7 Constructors and Destructors
12.8 Copying Class Objects

13 Overloading
13.1 Declaration Matching
13.2 Argument Matching

■ 13.2.1 Examples
13.3 Address of Overloaded Function
13.4 Overloaded Operators

■ 13.4.1 Unary Operators
■ 13.4.2 Binary Operators
■ 13.4.3 Assignment
■ 13.4.4 Function Call
■ 13.4.5 Subscripting
■ 13.4.6 Class Member Access

66
67
68

70
70
70
71
72
73
74
74

75
75
76
76
77
77
78
79
80
80
81
83
83

86
86
87
89
93
94
94
95
95
95
95
95

C++ Reference Manual

J

J

---------------------------- Table of Contents

14 Templates (experimental)

15 Exception Handling (experimental)

16 Compiler Control Lines
16.1 Token Replacement
16.2 File Inclusion
16.3 Conditional Compilation
16.4 Line Control

Appendix A: Grammar Summary
A.1 Key Words
A.2 Expressions
A.3 Declarations
A.4 Declarators
A.5 Class Declarations
A.6 Statements
A.7 Preprocessor

Appendix B: Compatibility
B.1 Extensions

■ B.1.1 c.+ Features Available in
■ B.1.2 c.+ Features Added Since

B.2 C++ and ANSI C
■ B.2.1 How to Cope

B.3 Anachronisms
■ B.3.1 Old Style Function Definitions
■ B.3.2 Old Style Base Class
■ B.3.3 Assignment to thia
■ B.3.4 Cast of Bound Pointer

Appendix C: Implementation Specific Behavior
Translation Limits
2.3 Identifiers (Names)
2.5.2 Character Constants
2.5.3 Floating Constants
2.5.4 String Literals
3.4 Start and Termination

Table of Contents

96

97

98
98
98
99
99

100
100
100
102
104
105
106
107

109
109
109
110
110
111
111
112
112
112
113

114
114
114
115
115
115
115

V

Table of Contents -----------------------------

vi

3.6.1 Fundamental types
5. Expressions
5.4 Explicit Type Conversion
5.6 Multiplicative Operators
5.8 Shift Operators
5.9 Relational Operators
7.1.1 Storage Class Specifiers
7.1.6 Type Specifiers
7.3 Asm Declarations
7.4 Linkage Specifications
9.3 Member Functions
9.6 Bit Fields
13.2 Argument Matching
14. Templates (experimental)
15. Exception Handling (experimental)
16. Compiler Control Lines
16.1 Token Replacement
B.3 Anachronisms
B.3.1 Old Style Function Definitions
B.3.2 Old Style Base Class Initializer
B.3.3 Assignment to this
B.3.4 Cast of Bound Pointer

Appendix D: "Not Implemented" Messages

115
116
116
116
116
116
116
117
117
117
118
118
118
118
118
118
119
119
119
119
119
120

121

C++ Reference Manual

C

C

CH-Reference Manual

8
r;

This reference manual is by Bjarne Stroustrup.

This is the May 1989 draft of the C++ Reference Manual

1. Introduction
This manual describes the C++ programming language as of May 1989. C++ is a general
purp._;se programming language based on the C programming language*. In addition to the
facilities provided by C, C++ provides classes, templates, exception handling, inline functions,
opera tor overloading, function name overloading, constant types, references, free store
m.anagement operators, and function argument checking and type conversion. These
extensions to C are summarized in §B.1. The differences between C++ and ANSI ct are
summarized in §B.2. The extensions to C++ since the 1985 edition of this manual are
summarized in §B.1.2. The sections related to templates (§14) and exception handling (§15) are
placeholders for planned language extensions.

1.1 Overview
This manual is organized like this:

1. Introduction
2. Lexical Conventions (p. 3)
3. Basic Concepts (p. 7)
4. Standard Conversions (p. 12)
5. Expressions (p. 15)
6. Statements (p. 28)
7. Declarations (p. 34)
8. Declarators (p. 42)
9. Oasses (p. 54)

10. Derived Classes (p. 63)
11. Member Access Control (p. 70)
12. Special Member Functions (p. 75)
13. Overloading (p. 86)
14. Templates (experimental) (p. 96)
15. Exception Handling (experimental) (p. 97)
16. Compiler Control Lines (p. 98)

Appendix A: Grammar Summary (p. 100)
Appendix B: Compatibility (p. 109)

• 'The C Programming Language" by Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall, 1978
and 1988.

t Draft Proposed American National Standard X3J11/88-090 dated Dec 7, 1988.

Copyright <O 1989 by AT&T.

C++ Reference Manual 1

§1 lntroductron

1.2 Syntax Notation
In the syntax notation used in this manual, syntactic categories are indicated by italic type, and
literal words and characters i~ constant width type. Alternatives are listed on separate
lines except in a few cases where a long set of alternatives is presented on one line, marked by
the phrase 11one of." An optional terminal or non-terminal symbol is indicated by the
subscript "opt," so that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 C++ Reference Manual

J

§2 Lexical Conventions

2. Lexical Conventions
A C++ program consists of one or more translation units §3.3. A translation unit is conceptually
translated in several phases. The first of these is preprocessing (§16), which performs file
inclusion and macro substitution. Preprocessing is controlled by directives introduced by lines
where the first non-whitespace character (§2.1) is t. When preprocessing is complete, a
translation unit consists of a sequence of tokens. The word file is used to refer to a translation
unit after preprocessing.

2.1 Tokens
There are six kinds of tokens: identifiers, keywords, constants, strings, operators, and other
separators. Blanks, horizontal and vertical tabs, new-lines, formfeeds, and comments
(collectively, "white space"), as described below, are ignored except as they serve to separate
tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and
constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken
to be the longest string of characters that could possibly constitute a token.

2.2 Comments
The characters / * start a comment, which terminates with the characters * /. These comments
do not nest. The characters// start a comment, which terminates at the end of the line on
which they occur. The comment characters / /, / *, and * / have no special meaning within a
I I comment and are treated just like other characters. Similarly, the comment characters / /
and / * have no special meaning within a / * comment.

2.3 Identifiers
An identifier is an arbitrarily long sequence of letters and digits. The first character must be a
letter; the underscore_ counts as a letter. Upper- and lower-case letters are different. All
characters are significant.

2.4 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

asm continue float new signed union
auto default for operator sizeof unsigned
break delete friend private static virtual
case do goto protected struct void
catch double if public switch volatile
char else inline register template while
class enum. int return this
const extern long short typedef

In addition, identifiers containing a double underscore are reserved for use by C++
implementations and standard libraries and should be avoided by users.

The ASCII representation of C++ programs uses the following characters as operators or for
punctuation:

"

%
}

<

A

>

& *

?

(

]
)

\
I

and the following character combinations are used as operators:

+

Ct+ Ref ere nee Manual 3

§2 Lexlcal Conventions

-> ++ * ->* << >>
! == && 11 *= 1- %= +=
&= ""'== I=

Each is a single token.

In addition, the following tokens are used by the preprocessor:

t H

<= >= ==
<<= >>=

Certain implementation dependent properties, such as the type of a sizeof (§5.3.2) and the
ranges of fundamental types (§3.6.1), are defined in standard header files (§16.2):

<stddef.h> <limits.h> <stdlib.h>

These headers are part of the ANSI C standard.

2.5 Literals
There are several kinds of literal constants:

literal:
integer-constant
character-constant
floating-constant
string

2.5.1 Integer Constants
An integer constant consisting of a sequence of digits is taken to be decimal (base ten) unless it
begins with o (digit zero). A sequence of digits starting with o is taken to be an octal integer
(base eight). The digits 8 and 9 are not octal digits. A sequence of digits preceded by Ox or
OX is taken to be a hexadecimal integer (base sixteen). The hexadecimal digits include a or A
through f or F with decimal values 10 through 15. For example, the number twelve can be
written 12, 014, or oxc.
The type of an integer constant depends on its form, value, and suffix. If it is decimal and has
no suffix, it has the first of these types in which its value can be represented: int, long int,
unsigned long int. If it is octal or hexadecimal and has no suffix, it has the first of these
types in which its value can be represented: int, unsigned int, long int, unsigned long
int. If it is suffixed by u or u, its type is the first of these types in which its value can be
represented: unsigned int, unsigned long int. If it is suffixed by 1 or L, its type is the
first of these types in which its value can be represented: long int, unsigned long int. If
it is suffixed by ul, lu, uL, Lu, Ul, lU, UL, or LU, its type is unsigned long int.

For example, 100000 is of type int on a machine with 32 bit ints, but of type long int on
a machine with 16 bit ints and 32 bit longs. Similarly, OXAO O O is of type int on a machine
with 32 bit ints, but of type unsigned int on a machine with 16 bit ints. These
implementation dependencies can in many cases be avoided by using suffixes: lOOOOOL is
long int on all machines and OXAOOOU is of type unsigned int on all machines with at
least 16 bits used to represent an unsigned int.

2.5.2 Character Constants
A character constant is one or more characters enclosed in single quotes, as in ' x' . Single
character constants have type char. The value of a single character constant is the numerical
value of the character in the machine's character set. Multicharacter constants have type int.
The value of a multicharacter constant is implementation dependent.

4 C++ Reference Manual

J

C

C

§2 Lexical Conventions

Certain non-graphic characters, the single quote ', the double quote ", the question mark ? ,
and the backslash \, may be represented according to the following table of escape sequences:

new-line NL (LF) \ n
horizontal tab HT \ t
vertical tab VT \ v
backspace BS \ b
carriage return CR \ r
form feed FF \f
alert BEL \a
backslash \ \ \
question mark
single quote
double quote
octal number
hex number

?

"
000

hhh

\?
\'
\"
\ooo
\xhhh

If the character following a backslash is not one of those specified, the behavior is undefined.
An es.:ape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digits that are
taken to specify the value of the desired character. The escape \xhhh consists of the backslash
follo·.-.·ed by x followed by a sequence of hexadecimal digits that are taken to specify the value
of the desired character. There is no limit to the number of hexadecimal digits in the
sequence. A sequence of octal or hexadecimal digits is terminated by the first character that is
not an octal digit or a hexadecimal digit, respectively. The value of a character constant is
implern~ntation dependent if it exceeds that of the largest char.

A character constant immediately preceded by the letter.L, for example L' ab', is a wide­
character constant. A wide-character constant is of type wchar_t, an integral type (§3.6.1)
defined in the standard header <stddef. h>. Wide characters are intended for character sets
where a character does not fit into a single byte.

2.5.3 Floating Constants
A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, an
optionally signed integer exponent, and an optional type suffix. The integer and fraction parts
both consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (not both) may be missing; either the decimal point or the letter e (or E) and the exponent
(not both) may be missing. The type of a floating constant is double unless explicitly
specified by a suffix. The suffixes f and F specify float, the suffixes land L specify long
double.

2.5.4 String Literals
A string literal is a sequence of characters (as defined in §2.5.2) surrounded by double quotes,
as in " ... ". A string has type "array of char" and storage class static (§3.5), and is
initialized with the given characters. Whether all string literals are distinct (that is, are stored
in non-overlapping objects) is implementation dependent. The effect of attempting to modify a
sb'ing literal is undefined.

Adjacent string literals are concatenated. Characters in concatenated strings are kept distinct.
For example

"\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

C++ Reference Manual 5

§2 Lexical Conventions

After any necessary concatenation ' \ o' is appended so that programs that scan a string can
find its end. The size of a string is the number of its characters including this terminator.
Within a string, the double quote character " must be preceded by a \.

A string literal immediately preceded by the letter L, for example L"asdf", is a wide­
character string. A wide-character string is of type "array of wchar_t," where wchar_t is an
integral type defined in the standard header <stddef. h>. Concatenation of ordinary and
wide-u.'laracter string literals is undefined.

. 6 C++ Reference Manual

J

§3 Basic Concepts

3. Basic Concepts
A name denotes an object, a function, a set of functions, a type, a class member, a template, a
value., or a label. A name is introduced into a program by a declaration. A name can be used
only \1\-rithin a region of program text called its scope. A name has a type, which determines its
use. A name used in more than one translation unit may (or may not) refer to the same object,
function, type, template, or value in these translation units depending on the linkage (§3.3)
spec:ined in the translation units.

An oc,ject is a region of storage (§3.7). A named object has a storage class (§3.5) that
determines its lifetime. The meaning of the values found in an object is determined by the
type of the expression used to access it.

3.1 Declarations and Definitions
A declaration (§7) introduces one or more names into a program. A declaration is a definition
unless it declares a function without specifying the body (§8.3), it contains the extern
spec:iner (§7.1.1) and no initializer or function body, it is the declaration of a static data
mem..'"'ier in a class declaration (§9.4), or it is a class name declaration (§9.1). For example, these
are definitions:

int a;
extern const c = 1;
int £(int x) { return x+a; }
struct S { int a; int b; };
enum { up, down};

whereas these are just declarations:

extern int a;
extern const c;
int f(int);
struct S;
typedef int Int;

3.2 Scopes
There are four kinds of scope: local, function, file, and class.

Local: A name declared in a block (§6.3) is local to that block and can be used only in it
and in blocks enclosed by it after the point of declaration. Names of formal arguments
for a function are treated as if they were declared in the outermost block of that function:

Function: Labels (§6.1) can be used anywhere in the function in which they are declared.
Only labels have function scope.

File: A name declared outside all blocks (§6.3) and classes (§9) has file scope and can be
used in the file in which it is declared after the point of declaration. Names declared
with.file scope are said to be global.

Class: The name of a class member is local to its class and can be used only in a member
function of that class (§9.3), after the . operator applied to an object of its class (§5.2.4),
after the -> operator applied to a pointer to an object of its class (§5.2.4), or after the : :
scope resolution operator (§5.1) applied to the name of its class or a class derived from
(§ 10) its class. A class, enumeration (§7.2), or a typedef-name declared within a class (§9.7)
is not considered a member and its name belongs to the enclosing scope; the same is true
for a name declared by a friend declaration (§11.4).

C++ Reference Manual 7

§3 Basic Concepts

A name may be hidden by an explicit declaration of that same name in an enclosed block or in
a class. A hidden class member name can still be used when it is qualified by its class name
using the : : operator (§5.1, §9.4, §10). A hidden name of an object, function, or enumerator
with file scope can still be used when it is qualified by the unary : : operator (§5.1). In
addition, a class name (§9.1) may be hidden by the name of an object, function, or enumerator
declared in the same scope. If a class and an object, function, or enumerator are declared in
the same scope (in any order) with the same name the class name is hidden. A class name
hidden by a name of an object, function, or enumerator can still be used when appropriately
(§7.1.6) prefixed with class, struct, or union. The scope rules are summarized in §10.4.

The ,,._,.,int of declaration for a name is immediately lfter its complete declarator (§8) and before
its initializer (if any). For example,

int x;
{ int x = x; }

Here· the second xis initialized with its own (unspecified) value.

3.3 Program and Linkage
A program consists of one or more files (§2) linked together. A file consists of a sequence of
declarations.

A name of file scope that is explicitly declared static is local to its file and can be used as a
name for other objects, functions, etc., in other files. Such names are said to have internal
linkage. A name of file scope that is explicitly declared const or inline and not explicitly
declared extern is local to its file. So is the name of a class that has not been used in the
declaration of an object or function that is not local to its file and has no static members (§9.4)
and no non-inline member functions (§9.3.2). Every declaration of a particular name of file
scope that is not declared to have internal linkage in one of these ways in a multi-file program
refers to the same object (§3.7), function (§8.2.5), or class (§9). Such names are said to be
external or to have external linkage. In particular, since it is not possible to declare a class
name static, every use of a particular file scope class name in a program that has been used
in the declaration of an object or function with external linkage or has a static member or a
non-inline member function refers to the same class.

Typedef names (§7.1.3), enumerators (§7.2), and template names (§14) do not have external
linkage.

Static class members (§9.4) have external linkage.

Local names (§3.2) explicitly declared extern have external linkage.

The types specified in all declarations of a particular external name must be identical except
for the use of typedef names (§7.1.3) and unspecified array bounds (§8.2.4). There must be
exactly one definition for each function, object, and class in a program.

A function may be defined only in file or class scope.

Linkage to non..C++ declarations can be achieved using a linkage-specification (§7.4).

3.4 Sta.rt and Termina.tion
A program must contain a function called ma in () . This function is the designated start of the
program. This function is not predefined by the compiler, it cannot be overloaded, and its
type is implementation dependent. It is recommended that the two examples below be
allowed on any implementation and that any further arguments required be added after a rgv .
. The function ma in () may be defined as:

8 C++ Reference Manual

J

C

§3 Basic Concepts

int main() { /* ... */ }

or

int main(int argc, char* argv[]) { /* ... */ }

In the latter case argc shall be the number of parameters passed to the program from an
environment in which the program is run. If argc is non-zero these parameters shall be
supplied as zero-terminated strings in a rgv [0] through a rgv [a rgc-1 J and a rgv [O] shall
be the name used to invoke the program or'"'. It is guaranteed that argv [argc] ====O.

ma in <) may not be called from within a program.

The value returned by main () is returned to the program's environment as the value of the
program.

Calling the function

void exit(int)

declared in <stdlib. h> terminates the program. The argument value is returned to the
progr~"Tl' s environment as the value of the program.

The initialization of static objects (§3.5) from a file is done before the first use of any function
or object defined in that file. Such initializations (§8.4, §9.4, §12.1, §12.6.1) may be done before
the fir$! statement of main() or deferred to any point in time before the first use of a function
or ob~ct defined in that file. The default initialization of all static objects to zero (§8.4) is
performed before any dynamic (i.e., run-time) initialization. No further order is imposed on
the initialization of objects from different files.

Destructors (§12.4) for initialized static objects are called when returning from main () and
when calling exit C) • Destruction is done in reverse order of initialization. The function
at ex:!. t. () from <stdlib. h> can be used to specify that a function must be called at exit. In
this case, objects initialized before an atexit () call may not be destroyed until after the
function specified in the atexit () call have been called. Where a C++-implementation
coexists with a C implementation, any actions specified by the C implementation to take place
after the atexit () functions have been called take place after all destructors have been called.

Calling the function

void abort ()

declared in <stdlib. h> terminates the program without executing destructors for static
objects.

3.5 Storage Classes
There are two declarable storage classes: automatic and static.

Automatic objects are local to each invocation of a block.

Static objects exist and retain their values throughout the execution of the entire program.

Local objects are initialized (§12.1) each time their block is entered and destroyed (§12.4) upon
exit from it. Static objects are initialized and destroyed as described in §3.4 and §6.7. Some
objects are not associated with names; see §5.3.3 and §12.2. All global objects have storage .
class static. Local objects and class members can be given static storage class by explicit use of
the static storage class specifier (§7.1.1).

3.6 Types
There are two kinds of types: fundamental types and derived types.

CH-Reference Manual 9

§3 Basic Concepts

3.6.1 Fundamental Types
There are several fundamental types. The standard header <limits. h> specifies the largest
and smallest values of each for an implementation.

Objects declared as characters (char) are large enough to store any member of the
implementation's basic character set. If a character from this set is stored in a character
varia't-le, its value is equivalent to the integer code of that character. Characters may be
explidtly declared unsigned or signed. A plain char is either a signed char, or an
unsi;--ned char, but it is implementation dependent which. A signed char and an
unsi;ned char consume the same amount of space.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
intege:-s provide no less storage than shorter ones, but the implementation may make either
short L,tegers, or long integers, or both, equivalent to plain integers. ''Plain" integers have the
naturd size suggested by the machine architecture; the other sizes are provided to meet special
needs-

Unsig:-.ed integers, declared.unsigned, obey the laws of arithmetic modulo 2" where n is the
number of bits in the representation. This implies that unsigned arithmetic does not overflow.

There are three floating types: float, double, and long double. The type double provides
no less precision than float, and the type long double provides no less precision than
dc·..:.,::_,e.

Types char, int of all sizes, and enumerations (§7.2) are collectively called integral types.
Integr::.1 and fl.OQ.ting types are collectively called arithmetic types.

The ·•:=id type specifies an empty set of values. The (nonexistent) value of a void object may
not be used in any way, and neither explicit nor implicit conversions to a non-void type may
be applied. Because a void expression denotes a nonexistent value, such an expression may be
used only as an expression statement (§6.2), as the left operand of a comma expression (§5.18),
or as a second or third operand of ? : (§5.16). No object of type void may be declared. Any
expression may be explicitly converted to type void (§5.4).

3.6.2 Derived Types
There is a conceptually infinite number of derived types constructed from the fundamental
types in the following ways:

k.rra-ys of objects of a given type, §8.2.4;

functions, which take arguments of given types and return objects of a given type, §8.2.5;

pointers to objects or functions of a given type, §8.2.1;

references to objects or functions of a given type, §8.2.2;

constants, which are values of a given type, §7.1.6;

classes containing a sequence of objects of various types (§9), a set of functions for
manipulating these objects (§9.3), and a set of restrictions on the access to these objects
and functions, §11;

structures, which are classes without default access restrictions, §11;

unions, which are structures capable of containing objects of different types at different
times, §9 .5;

pointers to class members, which identify members of a given type within objects of a given
class, §8.2.3.

10 C++ Reference Manual

J

)

C

§3 Basic Concepts

In general, these methods of constructing objects can be applied recursively; restrictions are
mentioned in §8.2.5, §8.2.4, §8.2.1, and §8.2.2.

A pointer to objects of a type Tis referred to as a "pointer to T." For example, a pointer to an
object of type int is referred to as "pointer to int" and a pointer to an object of class xis
called a "pointer to x."

Objects of type void* (pointer to void), const void*, and volatile void* can be used to
point to objects of unknown type. A void* must have sufficient bits to hold any object
pointer.

3.6.3 Type Names
Fundamental and derived types can be given names by the typedef mechanism (§7.1.3), and
families of types and functions can be specified and named by the template mechanism (§14).

3.7 Lvalues
An orject is a region of storage; an lvalue is an expression referring to an object. An obvious
example of an lvalue expression is the name of an object. Some operators yield lvalues. For
example, if Eis an expression of pointer type, then *Eis an lvalue expression referring to the
object to which E points. The name "lvalue" comes from the assignment expression El = E2
in which the left operand El must be an lvalue expression. The discussion of each operator
below indicates whether it expects lvalue operands and whether it yields an lvalue. An lvalue
is modifiable if it is not a function name, an array name, or const.

C++ Reference Manual 11

§4 Standard Conversions

4. Standard Conversions
A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section summarizes the conversions demanded by
most ordinary operators and explains the result to be expected from such conversions; it will
be supplemented as required by the discussion of each operator. §123 and §13.2 describe
user-defined conversions and their interaction with standard conversions. The result of a
conversion is an lvalue only if the result is a reference (§8.2.2).

4.1 Integral Promotions
A char, a short int, enumerator, object of enumeration type (§7.2), or an int bit-field (§9.6)
(in both their signed and unsigned varieties) may be used wherever an integer may be used.
If an :..nt can represent all the values of the original type, the value is converted to int;
otherwise it is converted to unsigned int. This process is called integral promotion.

4.2 Integral Conversions
When an integer is converted to an unsigned type, the value is the least unsigned integer
congruent to the signed integer (modulo 211 where n is the number of bits used to represent
the unsigned type). In a 2's complement representation, this conversion is conceptual and
there is no actual change in the bit pattern.

When an integer is converted to a signed type, the value is unchanged if it can be represented
in the new type; otherwise the value is implementation dependent.

4.3 Float and Double
Single-precision floating point arithmetic may be used for float expressions. When a less
precise floating value is converted to an equally or more precise floating type, the value is
unchanged. When a more precise floating value is converted to a less precise floating type and
the value is within representable range, the result may be either the next higher or the next
lower representable value. If the result is out of range, the behavior is undefined.

4.4 Floating and Integral
Conversion of a floating value to an integral type truncates; that is, the fractional part is
discarded. Such conversions are machine dependent; for example, the direction of truncation
of negative numbers varies from machine to machine. The result is undefined if the value will
not fit in the space provided.

Conversions of integral values to floating type are as mathematically correct as the hardware
allows. Loss of precision occurs if an integral value cannot be represented exactly as a value of
the floating type.

4.5 Arithmetic Conversions
A great many operators cause conversions and yield result types in a similar way. This
pattern will be called the "usual arithmetic conversions."

H either operand is of type long double, the other is converted to long double.

Otherwise, if either operand is double, the other is converted to double.

Otherwise, if either operand is float, the other is converted to float.

Otherwise, the integral promotions (§4.1) are performed on both operands.

12 Ct+ Reference Manual

§4 Standard Conversions

Then, if either operand is unsigned long the other is converted to unsigned long.

Otherwise, if one operand is a long int and the other unsigned int, then if a· long
int can represent all the values of an unsigned int, the unsigned int is converted to
a long int; otherwise both operands are converted to unsigned long int.

Otherwise, if either operand is long, the other is converted to long.

Otherwise, if either operand is unsigned, the other is converted to unsigned.

Otherwise, both operands are int.

4.6 Pointer Conversions
The following conversions may be performed wherever pointers (§8.2.1) are assigned,
initialized, compared, etc.:

A constant expression (§5.19) that evaluates to O is converted to a pointer, commonly
called the null pointer. It is guaranteed that this value will produce a pointer
distinguishable from a pointer to any object.

A pointer to any object type may be converted to a void*.

A pointer to function may be converted to a void* provided a void* has sufficient bits
!.) hold it.

A pointer to a class may be converted to a pointer to a public base class of that class
(§10) provided this conversion can be done unambiguously (§10.1.1). The result of the
conversion is a pointer to the base class sub-object of the derived class object. The null
pointer (O) is converted into itself.

An expression with type "array of T" may be converted to a pointer to the initial
element of the array.

An expression with type "function returning T" is converted to "pointer to function
returning T" except when used as the operand of the address-of operator & or the
function call operator ().

4.7 Reference Conversions
The following conversion may be performed wherever references (§8.2.2) are initialized
(including argument passing (§5.2.2) and function value return (§6.6.3)):

A reference to a class may be converted to a reference to a public base class of that class
(§8.4.3) provided this conversion can be done unambiguously (§10.1.1). The result of the
conversion is a reference to the base class sub-object of the derived class object.

4.8 Pointers to Members
The following conversion may be performed wherever pointers to members (§8.2.3) are
initialized, assigned, compared, etc.:

A constant expression (§5.19) that evaluates to O is converted to a pointer to member. It
is guaranteed that this value will produce a pointer to member distinguishable from any
pointer to member.

A pointer to a member of a class may be converted to a pointer to member of a class
derived from that class provided the derivation was public and provided this conversion
can be done unambiguously (§10.1.1). .

• The rule for conversion of pointers to members (from pointer to member of base to pointer to
member of derived) appears inverted compared to the rule for pointers to objects (from pointer

C++ Reference Manual 13

§4 Standard Conversions

to derived to pointer to base) (§4.6, §10). This inversion is necessary to ensure type safety.

Note that a pointer to member is not a pointer to object or a pointer to function and the rules
for conversions of such pointers do not apply to pointers to members. In particular, a pointer
to member cannot be converted to a void*.

14 Ct+ Reference Manual

)

§5 Expressions

5. Expressions
An expression is a sequence of operators and operands ·that specifies a computation. An
expression may result in a value and it may cause side effects.

This section defines the syntax, order of evaluation, and meaning of expressions.

Operators can be overloaded, that is, given meaning when applied to expressions of class type
(§9). Uses of overloaded operators are transformed into function calls as described in § 13.4.
Overloaded operators obey the rules for syntax specified in this section, but the requirements
of operand type, lvalue, and evaluation order are replaced by the rules for function call.
Relations between operators, such as ++a meaning a+•l, are not guaranteed for overloaded
operators (§13.4). Operator overloading cannot modify the rules for operators applied to types
for w h.ich they are defined in this section.

The order of evaluation of subexpressions is determined by the precedence and grouping of
the operators. The usual mathematical rules for associativity and comrnutati\;ty of operators
may be applied only ~here the operators really are associative and commutative. Except
where noted, the order of evaluation of operands of individual operators is undefined. In
particular, if a value is modified twice in an expression, the result of the expression is
undefined except where an ordering is guaranteed by the operators involved. For example:

i • v[i++];
i=7,i++,i++;

// the value of 'i' is undefined
// 'i' becomes 9

The handling of overflow and divide check in expression evaluation is implementation
dependent. Most existing implementations of C++ ignore integer overflows. Treatment of
dhision by O and all floating-point exceptions varies among machines, and is usually
adjustable by a library function.

Except where noted, operands of types const T, volatile T, T&, const T&, and volatile
T& can be used as if they were of the "plain" type T. Similarly, except where noted, operands
of type T*const and T*volatile can be used as if they were of the "plain" type T*. Such
usages do not count as standard conversions when considering overloading resolution (§13.2).

If an expression has the type "reference to T" (§8.2.2, §8.4.3), the value of the expression is the
object of type 11 T" denoted by the reference. The expression is an lvalue. A reference can be
thought of as a name of an object.

User-defined conversions of class objects to and from fundamental types, pointers, etc., can be
defined (§12.3). If unambiguous (§13.2), such conversions may be applied wherever a class
object appears as an operand of an operator, as an initializer (§8.4), as the controlling
expression in a selection (§6.4) or iteration (§6.5) statement, as a function return value (§6.6.3),
or as a function argument (§5.2.2).

5.1 Primary Expressions
Primary expressions are literals, names, and names qualified by the scope resolution operator

primary-expression:
literal
this
: : identifier
: : operator-function-name
(expression >
name

A literal is a primary expression. Its type depends on its form (§2.5).

C++ Ref ere nee Manual 15

§5 Expressions

'The keyword this is a local variable in the body of a non-static member function (§9.3); it is a
pointer to the object for which the function was invoked. The keyword this cannot be used
outside of a class member function body.

'The operator : : followed by an identifier or an operator-function-name is a primary expression.
Its type is specified by the declaration of the identifier or operator-function-name. The result is
the identifier or operator-function-name. The result is an lvalue if the identifier is. The identifier
or operator-function-name must be of file scope. The identifier may not be a class or type name.
The identifier may be hidden by a type name. Use of : : allows an object or a function to be
referred to even if its identifier has been hidden (§3.2).

A pa:enthesized expression is a primary expression whose type and value are identical to
those of the unadorned expression. The presence of parentheses does not affect whether the
expression is an !value.

A r ... ---ze is a restricted form of a primary-expression that can appear after . and -> (§5.2.4):

na.me:
identifier
operator-function-name
conversion-function-name
qualified-name

An :.:i:.~tifier is a name provided it has been suitably declared (§7). For operator-function-names
see § 13.4. For conversion-function-names see §12.3.2.

qualified-name:
class-name . . identifier
class-name . . operator-function-name
class-name . . conversion-function-name
class-name . . class-name
class-name . . - class-name

A class-name (§9.1) followed by : : and the name of a member of that class (§9.2), or a member
of a base of that class (§10), is a qualified-name; its type is the type of the member. The result is
the member. The result is an lvalue if the member is. The class-name may be hidden by a
non-type name; in this case the class-name is still found and used. Where class-name : : class­
name or class-name : : ... class-name is used the two class-names must refer to the same class; this
notation names constructors (§12.1) and destructors (§12.4), respectively.

5.2 Postfix Expressions
Postfix expressions group left-to-right.

postfix-expression:
primary-expression
postfix-expression [expression l
postfix-expression (expression-listopt)
simple-type-name (expression-listopt)
postfix-expression . name
postfix-expression -> name
postfix-expression ++
postfix-expression

expression-list:
assignment-expression
expression-list , assignment-expression

16 C++ Reference Manual

§5 Expressions

5.2.1 Subscripting
A postfix expression followed by an expression in square brackets is a postfix expression. The
intuitive meaning is that of a subscript. One of the expressions must have the type "pointer to
T" and the other must be of integral type. The type of the result is "T ." The expression
El [E2J is identical (by definition) to* ((El)+ (E2)). See §5.3 and §5.7 for details of* and+
and §8.2.4 for details of arrays.

5.2.2 Function Call
A function call is a postfix expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function.
The postfix expression must be of type "function returning T ," "pointer to function returning
T ," or 11 reference to function returning T ," and the result of the function call is of type "T ."

When a function is evaluated, each formal argument is initialized (§8.4.3, §12.8, §12.1) with its
actual argument. Standard (§4) and user-defined (§12.3) conversions are performed. A
function may change the values of its non-constant formal arguments, but these changes
cannot affect the values of the actual arguments except where a formal argument is of a non­
cons t reference type (§8.2.2). Where a formal argument is of reference type a temporary
variable is introduced if the actual argument is a constant (§7.1.6, §2.5, §2.5.4, §8.2.4) or of a
type that requires type conversion (§12.2). In addition, it is possible to modify the values of
non-<:onstant objects through pointer arguments.

A function may be declared to accept fewer arguments (by declaring default arguments §8.2.6)
or more arguments (by using the ellipsis, . . . §8.2.5) than are specified in the function
definition (§8.3).

A function can only be called if a declaration of it is accessible from the scope of the call. This
implies that, except where the ellipsis (...) is used, a formal argument is available for each
actual argument.

Any actual argument of type float for which there is no formal argument is converted to
double before the call; any of type char, short, etc., for which there is no formal argument
is converted to int or unsigned by integral promotion (§4.1). An object of a class for which
a constructor is declared cannot be passed as an argument except where a formal argument of
an appropriate type is declared. In that case the formal argument is initialized with the actual
argument by a constructor call before the function is entered (§12.2, §12.8).

The order of evaluation of arguments is implementation dependent; take note that compilers
differ. All side effects of argument expressions take effect before the function is entered. The
order of evaluation of the postfix expression and the argument expression list is
implementation dependent.

Recursive calls are permitted.

A function call is an lvalue only if the result type is a reference.

5.2.3 Explicit Type Conversion
A simple-type-name (§7.1.6) followed by a possibly empty parenthesized expression (or an
expression-list if the type is a class with a suitably declared constructor (§8.4)) causes the value
of the expression to be converted to the named type; see also (§5.4). The parentheses may only
be empty if the type is a class with a suitably declared constructor.

5.2.4 Class Member Access
A postfix expression followed by a dot (.) followed by a name is a postfix expression. The
first expression must be a class object, and the name must name a member of that class. The

C++ Reference Manual 17

§5 Expressions

result is the named member of the object, and it is an lvalue if the member is an lvalue.

A postfix expression followed by an arrow (- >) followed by a name is a postfix expression.
The first expression must be a pointer to a class object and the name must name a member of
that class. The result is the named member of the object to which the pointer points, and it is
an h--alue if the member is an lvalue. Thus the expression El->MOS is the same as
(•E:) .MOS.

Kote that "'class objects" can be structures (§9.2) and unions {§9.5). Classes are discussed in §9.

5.2.5 Increment and Decrement
The ,·alue obtained by applying a postfix++ is the value of the operand. The operand must be
a m..--xiifiable lvalue. After the result is noted, the object is incremented by 1. The type of the
resU.: t is the same as the type of the operand, but it is not an lvalue. See the discussions of
addi!:ion (§5.7) and assignment operators (§5.17) for information on conversions.

The operand of postfix -- is decremented analogously to the postfix ++ operator.

5.3 Unary Operators
Expressions with unary operators group right-to-left.

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
* & + -

The unary * operator means indirection: the expression must be a pointer, and the result is an
h·alue referring to the object to which the expression points. If the type of the expression is
11poL"'\ter to T," the type of the result is 11 T."

The result of the unary & operator is a pointer to its operand. The operand must be a
function, an lvalue, or a qualified-name. In the first two cases, if the type of the expression is
"':.," the type of the result is "pointer to T ." In particular, the address of an object of type
const T has type const T*; volatile is handled similarly. For a qualified-name, if the
member is not static and of type "T" in class 11C", the type of the result is "pointer to member
of c of type T ." For a static member of type T, the type is plain "pointer to T ." The address
of an overloaded function (§13) can only be taken in an initialization or assignment where the
left hand side uniquely determines which version of the overloaded function is referred to
(§13..3).

1ne operand of the unary + operator must have arithmetic or pointer type and the result is the
value of the argument. Integral promotion is performed on integral operands. The type of the
result is the type of the promoted operand.

'The operand of the unary - operator must have arithmetic type and the result is the negation
of its operand. Integral promotion is performed on integral operands. The negative of an
u."'\Signed quantity is computed by subtracting its value from 2", where n is the number of bits
in the promoted operand. The type of the result is the type of the promoted operand.

18 Ct+ Reference Manual

J

C

§5 Expressions

The operand of the logical negation operator ! must have arithmetic ~ or be a pointer; its
value is 1 if the value of its operand is O and O if the value of its operand is non-zero. The
type of the result is int.

The operand of must have integral type; the result is the 1 's complement of its operand.
Integral promotions are performed. The type of the result is the type of the promoted
operand.

5.3.1 Increment and Decrement
The operand of prefix ++ is incremented by l. The operand must be a modifiable lvalue. The
value is the new value of the operand; it is an lvalue. The expression ++x is equivalent to
x-=:. See the discussions of addition (§5.7) and assignment operators (§5.17) for information
on conversions.

The operand of prefix -- is decremented analogously to the prefix++ operator.

5.3.2 Sizeof
The s i zeof operator yields the size, in bytes, of its operand. The operand is either an
e).pression, which is not evaluated, or a parenthesized type name. The sizeof operator may
not c-e applied to a function, a bit-field, or an undefined class. A byte is undefined by the
la.-i.g,.:.age except in terms of the value of sizeof; sizeof (char) is 1.

\\'hen applied to a reference, the result is the size of the referenced object. When applied to a
class, the result is the number of bytes in an object of that class including any padding
required for placing such objects in an arrc1:y. The size of any class or class object is larger than
zero. When applied to an array, the result is the total number of bytes in the array. This
implies that the size of an array of n elements is n times the size of an element. It is illegal to
take the size of an array with an unspecified dimension.

The result is a constant of type size_t, an implementation dependent unsigned integral type
defined in the standard header <stddef. h>.

5.3.3 New
The new operator attempts to create an object of the type-name (§8.1) to which it is applied.
This type must be an object type; functions cannot be allocated this way, though pointers to
functions can.

allocation-expression:
: : opt new placement0pt restricted-type-name initializer opt
: :opt new placement0pt (type-name) initializer0pt

placement:
(expression-list

restricted-type-name:
type-specifiers restricted-declarator opt

restricted-declarator:
ptr-operator restricted-declarator opt
restricted-declarator [expressionopt

The lifetime of an object created by new is not restricted to the scope in which it is created.
The new operator returns a pointer to the object it created. When that object is an array, a
pointer to its initial element is returned. For example, both new int and new int [10] :etum
an i:1t• and the type of new int [i] [10] is int (*) [10]. Where an array type {§10) 1s
specified all array dimensions but the first must be constant expressions (§5.19) with positive

Ct+ Reference Manual 19

§5 Expressions

values. The first array dimension can be a general expression even when the type-name is used
(despite the fact that array dimensions in type-names are generally restricted to constant­
expressions (§5.19)).

The new operator will call the function operator new() ·to obtain storage. A first argument
of sizeof (T) is supplied when allocating an object of type T. The placement syntax can be
used to supply additional arguments. For example, new T results in a call of operator
new (sizeof (T)) and new (2, f) T results in a call operator new (sizeof (T), 2, f).

The placement syntax can only be used provided an operatornew() with suitable argument
types (§13.2) has been declared.

When an object of a non-class type (including arrays of class objects) is created with operator
new, the global : : operator new () is used. When an object of a class T is created with
operator new, T:: operator new O is used if it exists (using the usual lookup rules for
finding members of a class and its base classes; §10.1.1); otherwise the global : : operator
new () is used. Using : : new ensures that the global : : opera tor new () is used even if
T: : operator new () exists.

An initializer (§8.4) of the form (expression-list0pt) may be supplied in an allocation-expression.
For objects of classes with a constructor (§ 12.1) this argument list will be used in a constructor
call; otherwise the initializer must be of the form (expression) and will be used to initialize
the object.

If a class has a constructor an object of it can only be created by new if suitable arguments are
provided or if the class has a constructor that can be called without arguments.

No initializers can be specified for arrays. Arrays of objects of a class with constructors can
only be created by operator new if the class has a default constructor (§12.1). In that case, the
default constructor will be called for each element of the array.

Initialization is done only if the value returned by operator new () is non-zero. If the value
returned by the operator new () is 0 (the null pointer) the value of the expression is 0.

In a restricted-type-name used as the operand for new, parentheses may not be used. This
implies that

new int (* [10]) () ;

is an error because the binding is

(new int) (* [10]) ();

// error

// error

Objects of general type can be expressed using the explicitly parenthesized version of the new
operator. For example:

new (int (* [10]) ()) ;

·allocates an array of 10 pointers to functions (taking no argument and returning int).

When parsing the restricted-type in an allocation-expression expressions the longest sequence of
restricted-declarators is used. This prevents ambiguities between declarator operators *, and []
and their expression counterparts. For example,

new int**p; // syntax error: parsed as '(new int**) p'
// not as '(new int)**p'

5.3.4 Delete
The delete operator destroys an object created by the new operator.

20 Ct+ Reference Manual

J

§5 Expressions

deallocation-expression:
: :opt delete cast-expression
: : opt delete [expression] cast-expression

The result has type void. The operand of delete must be a pointer returned by new. The
effect of applying delete to a pointer not obtained from the new operator without a
placement specification is undefined and usually harmful. However, deleting a pointer with
the ,-alue zero is guaranteed to be harmless.

The effect of accessing a deleted object is undefined and the deletion of an object may change
its value. Furthermore, if the expression denoting the object in a delete expression is a
modifiable lvalue its value is undefined after the deletion.

The c.elete operator will invoke the destructor (if any §12.4) for the object pointed to.

To free the store pointed to, the delete operator will call the function operator delete ().
For objects of a non-class type (including arrays of class objects), the global : : operator
dele~e () is used. For an object of a class T, T:: operator delete () is used if it exists
(using the usual lookup rules for finding members of a class and its base classes; §10.1.1);
otherwise the global : : operator delete () is used. Using : : delete ensures that the
global : : operator delete () is used even if T: : operator delete () exists.

The form

delete expression] cast-expression

is used to delete arrays. The second expression points to an array and the first expression
gives the number of elements of that array (see §12.4). The destructors (if any) for the objects
pointed to will be invoked.

5.4 Explicit Type Conversion
cast-expression:

unary-expression
< type-name > cast-expression

An explicit type conversion can be expressed either using functional notation (§5.2.3) or the
cast notation. The cast notation is needed to express conversion to a type that does not have a
simple-type-name.

Any type that can be converted to another by a standard conversion (§4) can also be converted
by explicit conversion and the meaning is the same.

A pointer may be explicitly converted to any integral type large enough to hold it. The
mapping function is implementation dependent, but is intended to be unsurprising to those
who know the addressing structure of the underlying machine.

A value of integral type may be explicitly converted to a pointer. A pointer converted to an
integer of sufficient size (if any such exists on the implementation) and back to the same
pointer type will have its original value; mappings between pointers and integers are
otherwise implementation dependent.

A pointer to one object type may be explicitly converted to a pointer to another object type
(subject to the restrictions mentioned in this section). The resulting pointer may cause
addressing exceptions upon use if the subject pointer does not refer to an object suitably
aligned in storage. It is guaranteed that a pointer to an object of a given size may be
converted to a pointer to an object of the same or smaller size and back again without change.
Different machines may differ in the number of bits in pointers and in alignment requirements
for objects. Aggregates are aligned on the strictest boundary required by any of their
constituents.

C++ Reference Manual 21

§5 Expressions

A pointer to a class B may be explicitly converted to a pointer to a class D that has B as a
direct or indirect base class provided an unambiguous conversion from D to B exists (§4.6,
§10.1.1) and provided that Bis not a virtual base class (§10.1). Such a cast from a base to a
derh~ed class assumes that the object of the base class is a sub-object of an object of the derived
class; the resulting pointer points to the enclosing object of the derived class. If the object of
the base class is not a sub-object of an object of the derived class the cast may cause an
exception. The null pointer (O) is converted into itself.

An object may be explicitly converted to a reference type X& if a pointer to that object may be
explidtly converted to an X*. Constructors or conversion functions are not called as the result
of a cast to a reference. Conversion of a reference to a base dass to a reference to a derived
class is handled similarly to the conversion of a pointer to a base class to a pointer to a derived
class with respect to ambiguity, virtual classes, etc.

The result of a cast to a reference type is an lvalue; the results of other casts are not.
Operations performed on the result of a pointer or reference refer to the same object as the
original (uncast) expression.

A pointer to function may be explicitly converted to a pointer to an object type provided the
object pointer type has sufficient bits to hold the function pointer. A pointer to an object type
may 'be explicitly converted to a pointer to function provided the function pointer type has
sufficient bits to hold the object pointer. In both cases, the resulting pointer may cause
addressing exceptions upon use if the subject pointer does not refer to suitable storage.

A pointer to function may be explicitly converted to a pointer to a function of a different type.
The effect of calling a function through a pointer to a function type that differs from the type
used in the definition of the function is undefined.

An object may be converted to a class object (only) if an appropriate constructor or conversion
operator has been declared (§12.3).

A pointer to member may be explicitly converted into a different pointer to member type
when the two types are both pointers to members of the same class or when the two types are
pointers to member functions of classes derived from each other.

A pointer to an object of a const type can be cast into a pointer to a non-const. The
resulting pointer will refer to the original object. An object of a const type or a reference to
an object of a const type can be cast into a reference to a non-const. The resulting reference
will refer to the original object. The result of attempting to modify that object through such a
pointer or reference is undefined.

5.5 Pointer-to-Member Operators
The pointer-to-member operators->* and . * group left-to-right.

pm-expression:
cast-expression
pm-expression . * cast-expression
pm-expression -> * cast-expression

The binary operator . * binds its second operand, which must be of type "pointer to member
of class T" to its first operand, which must be of class T or of a class publicly derived from
class T. The result is an object or a function of the type specified by the second operand.

The binary operator->* binds its second operand, which must be of type "pointer to member
of T" to its first operand, which must be of type "pointer to T" or "pointer to class publicly
derived from T." The result is an object or a function of the type specified by the second
operand.

22 C++ Reference Manual

J

§5 Expressions

If the result of . * or->* is a function, then that result can be used only as the operand for
the function call operator () . For example,

(ptr_to_obj->*ptr_to_mfct) (10);

calls the member function denoted by ptr_to_mfct for the object pointed to by
ptr_to_obj.

5.6 Multiplicative Operators
The multiplicative operators *, /, and % group left-to-right.

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression I pm-expression
multiplicative-expression % pm-expression

The Oj'erands of * and / must have arithmetic type; the operands of % must have integral
type. The usual arithmetic conversions (§4.5) are performed on the operands and determine
the ~-pe of the result.

The binary * operator indicates multiplication.

The l::.:1ary / operator yields the quotient, and the binary % operator yields the remainder from
the di\ ;sion of the first expression by the second. If the second operand is O the result is
undefined; otherwise (a/b) *b + a%b is equal to a. If both operands are non-negative then
the remainder is non-negative; if not, the sign of the remainder is implementation dependent.

(·_. 5.7 Additive Operators
The additive operators+ and - group left-to-right. The usual arithmetic conversions (§4.5) are
performed for operands of arithmetic type.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and
a value of any integral type may be added. The result is a pointer of the same type as the
original pointer, which points to another object in the same array, appropriately offset from the
original object. Thus if Pis a pointer to an object in an array, the expression P+l is a pointer
to the next object in the array. If the resulting pointer points outside the bounds of the array,
except at the first location beyond the high end of the array, the result is undefined.

The result of the - operator is the difference of the operands. A value of any integral type
may be subtracted from a pointer, and then the same conversions apply as for addition.

No further type combinations are allowed for pointers.

If two pointers to objects of the same type are subtracted, the result is a signed integral value
representing the number of objects separating the pointed-to objects. Pointers to successive
elements of an array differ by 1. The type of the result is implementation dependent, but is
defined as ptrdiff_t in the standard header <stddef .h>. The value is undefined unless
the pointers point to elements of the same array or to the first location beyond the high end of
the array.

C++ Reference Manual 23

§5 Expressions

5.8 Shift Operators
The shift operators<< and>> group left-to-right.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression > > additive-expression

The 0perands must be of integral type and integral promotions are performed. The type of the
result is that of the left operand. The result is undefined if the right operand is negative, or
greater than or equal to the length in bits of the promoted left operand. The value of El <<
E2 is El (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are 0-filled. The value of
El >> E2 is El right-shifted E2 bit positions. The right shift is guaranteed to be logical (0-
fill) if E 1 has an unsigned type or if it has a non-negative value; otherwise the result is
implementation dependent.

5.9 Relational Operators
The relational operators group left-to-right, but this fact is not very useful; a <b<c means
(a<t) <c and not (a<b) && (b<c).

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operators < (less than), > (greater than), <=-(less than or equal to), and >• (greater than or
equal to) all yield O if the specified relation is false and 1 if it is true. The type of the result is
int.

The usual arithmetic conversions are performed on. arithmetic operands. Pointer conversions
are performed on pointer operands. This implies that any pointer may be compared to a
constant expression evaluating to O and any pointer can be compared to a pointer of type
void* (in the latter case the pointer is first converted to void*). Pointers to objects or
functions of the same type (after pointer conversions) may be compared; the result depends on
the relative positions of the pointed-to objects or functions in the address space.

Two pointers to the same object compare equal. If two pointers point to non-static members of
the same object, the pointer to the member defined last compares higher provided the two
members are defined using the same access-specifier (§11.1) and provided their class is not a
union. If two pointers point to non-static members of the same union, they compare equal. If
two pointers point to elements of the same array or one beyond the end of the array, the
pointer to the object with the highest subscript compares higher. Other pointer comparisons
are implementation dependent.

5.1 O Equality Operators
equality-expression:

relational-expression
equality-expression == relational-expression
equality-expression ! = relational-expression

The === (equal to) and the ! = (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d
have the same truth-value.)

24 C++ Reference Manual

C

§5 Expressions

In addition, pointers to members of the same type may be compared. Pointer to member
conversions (§4.8) are performed. A pointer to member may be compared to a constant
expression that evaluates to o.

5.11 Bitwise AND Operator
and-expression:

equality-expression
and-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function of the
operands. The operator applies only to integral operands.

5.12 Bitwise Exclusive OR Operator
exclusive-or-expression:

and-expression
exclusive-or-expression " and-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR function
of the operands. The operator applies only to integral operands.

5.13 Bitwise Inclusive OR Operator
inclusive-or-expression:

exclusive-or-expression
inclusive-or-expression I exclusive-or-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function
of its operands. The operator applies only to integral operands.

5.14 Logical AND Operator
logical-and-expression:

inclusive-or-expression
logical-and-expression & & inclusive-or-expression

The & & operator groups left-to-right. It returns 1 if both its operands are non-zero, 0
othernise. Unlike&, && guarantees left-to-right evaluation; moreover the second operand is
not evaluated if the first operand evaluates to o.
The operands need not have the same type, but each must have arithmetic type or be a
pointer. The result is an int. All side effects of the first expression happen before the second
expression is evaluated.

5.15 Logical OR Operator
logical-or-expression:

logical-and-expression
logical-or-expression I I logical-and-expression

The I I operator groups left-to-right. It returns 1 if either of its operands is non-zero, and 0
othenvise. Unlike I, I I guarantees left-to-right evaluation; moreover, the second operand is
not evaluated if the first operand evaluates to non-zero.

The operands need not have the same type, but each must have arithmetic type or be a
pointer. The result is an int. All side effects of the first expression happen before the second
expression is evaluated.

C++ Reference Manual 25

§5 Expressions

5.16 Conditional Operator
conditional-expression:

logical-{)r-expression
logical-{)r-expression ? expression : conditional-expression

Conditional expressions group right-to-left. The first expression must have arithmetic type or
be a I-,X>inter type. It is evaluated and if it is non-zero, the result of the conditional expression
is the value of the second expression, otherwise that of the third expression. All side effects of
the first expression happen before the second or third expression is evaluated.

If bot.~ the second and the third expressions are of arithmetic type, the usual arithmetic
conversions are performed to bring them to a common type. Otherwise, if both the second
and L~e third expressions are either a pointer or a constant expression that evaluates to O,
pointer conversions are performed to bring them to a common type. Otherwise, if both the
second and the third expressions are references, reference conversions are performed to bring
them to a common type. Otherwise, if both the second and the third expressions are void, the
common type is void. Otherwise the expression is illegal. The result has the common type;
only one of the second and third expressions is evaluated. The result is an lvalue if the second
and t..~e third operand are of the same type and both are lvalues.

5.17 Assignment Operators
There are a number of assignment operators, all of which group right-to-left. All require a
modifiable !value as their left operand, and the type of an assignment expression is that of its
left operand. The result of the assignment operation is the value stored in the left operand
after the assignment has taken place; the result is an lvalue.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= I= %= += -= >>= <<= &= A= I=

In simple assignment(=), the value of the expression replaces that of the object referred to by
the left operand. If both operands have arithmetic type, the right operand is converted to the
type of the left preparatory to the assignment. There is no implicit conversion to an
enumeration (§7.2) so if the right operand is of an enumeration type the left operand must be
of the same type. If the left operand has pointer type, the right operand must be of pointer
type or a constant expression that evaluates to O; the right operand is converted to the type of
the left before the assignment.

A pointer of type T*const can be assigned to a pointer of type T*, but the reverse assignment
is illegal (§7.1.6). Objects of types const T and volatile T can be assigned to 11plain" T
lvalues and to lvalues of type volatile T; see also (§8.4).

If the left operand has pointer to member type, the right operand must be of pointer to
member type or a constant expression that evaluates to O; the right operand is converted to the
type of the left before the assignment.

Assignment to objects of a class (§9) xis defined by the function X: : operator= 0 (§13.4.3).
Unless the user defines an x: : operator= (), the default version is used for assignment
(§12.S). This implies that an object of a class derived from x (directly or indirectly) by public
derivation can be assigned to an x.

A pointer to a member of class B may be assigned to a pointer to a member of class D of the
same type provided o is derived from B (directly or indirectly) by public derivation. .

26 Ct+ Reference Manual

J

§5 Expressions

Assignment to an object of type "reference to T" assigns to the object of type T denoted by
the reference.

The behavior of an expression of the form El op= E2 is equivalent to El • El op (E2);
except that El is evaluated only once. In+= and-=, the 1eft operand may be a pointer, in
which case the (integral) right operand is converted as explained in §5.7; all right operands
and all non-pointer left operands must have arithmetic type.

Note that for class objects assignment is not in general the same as initialization (§8.4, §12.1,
§12.6, §12.8).

5.18 Comma Operator
The comma operator groups left-to-right.

expression:
assignment-expression •
expression , assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left
expression is discarded. All side effects of the left expression are performed before the
evaluation of the right expression. The type and value of the result are the type and value of
the right operand; the result is an lvalue if its right operand is.

In cc:1texts where comma is given a special meaning, for example, in lists of actual arguments
to functions (§5.2.2) and lists of initializers (§8.4), the comma operator as described in this
section can only appear in parentheses; for example,

f (a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

5.19 Constant Expressions
In several places, C++ requires expressions that evaluate to an integral constant: as array
bounds (§8.2.4), as case expressions (§6.4.2), as bit-field lengths (§9.6), and as enumerator
initializers (§7.2).

constant-expression:
conditional-expression

A constant-expression can involve only literals (§2.5), enumerators, const values of integral
types initialized with constant expressions (§8.4), and sizeof expressions. Aoating constants
(§2.53) must be cast to integral types. Only type conversions to integral types may be used.
In particular, except in sizeof expressions, functions, class objects, pointers, and references
cannot be used.

C++ Reference Manual 27

§6 Statements

6. Statements
Except as indicated, statements are executed in sequence.

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement

dstatement:
statement
declaration-statement

6.1 Labeled Statement
A statement may be labeled.

labeled-statement:
identifier : dstatement
case constant-expression : statement
default : statement

An identifier label declares the identifier. The only use of an identifier label is as a target of a
goto. The scope of a label is the current function. Labels cannot be redeclared within a
function. A label can be used in a goto statement before its definition. Labels have their own
name space and do not interfere with other identifiers.

Case labels and default labels may occur only in switch statements.

6.2 Expression Statement
Most statements are expression statements, which have the form

expression-statement:
expressionopt ;

Usually expression statements are assignments or function calls. All side effects from an
expression statement are completed before the next statement is executed. An expression
statement with the expression missing is called a null statement; it is useful to carry a label just
before the } of a compound statement and to supply a null body to an iteration statement such
as while.

6.3 Compound Statement, or Block
So that several statements can be used where one is expected, the compound statement {also,
and equivalently, called "block") is provided:

compound-statement:
{ statement-list0pt

statement-list:
dstatement
statement-list dstatement

Note that a declaration is a dstatement (§6.7).

28 C++ Reference Manual

J

6.4 Selection Statements
Selection statements choose one of several flows of control.

selection-statement:
if (expression } statement
if (expression) statement else statement
switch (expression > statement

6.4.1 If Statements

§6 Statements

The e:,..pression must be of arithmetic or pointer type or of a class type for which an
unambiguous conversion to arithmetic or pointer type exists (§12.3).

The e.xpression is evaluated and if it is non-zero, the first substatement is executed. If else is
used, the second substatement is executed if the expression is zero. The "else" ambiguity is
resoh-ed by connecting an else with the last encountered else-less if.

6.4.2 Switch Statement
The s""itch statement causes control to be transferred to one of several statements depending
on the value of an expression.

The expression must be of integral type or of a class type for which an unambiguous
conversion to integral type exists (§ 12.3). Integral promotion is performed. Any statement
within the statement may be labeled with one or more case labels as follows:

case constant-expression :

where the constant-expression (§5.19) is converted to the promoted type of the switch
expression. No two of the case constants in the same switch may have the same value.

There may also be at most one label of the form

default :

within a switch statement.

Switch statements may be nested; a case or default label is associated with the smallest
SY.itch enclosing it.

When the switch statement is executed, its expression is evaluated and compared with each
case constant. If one of the case constants is equal to the value of the expression, control is
passed to the statement following the matched case label. If no case constant matches the
expression, and if there is a default label, control passes to the labeled statement. If no case
matches and if there is no default then none of the statements in the switch is executed.

case and def a ult labels in themselves do not alter the flow of control, which continues
unimpeded across such labels. To exit from a switch, see break, §6.6.1.

Usually the statement that is the subject of a switch is compound. Declarations may appear in
this statement. However, it is illegal to jump past a declaration with an explicit or implicit
initializer unless the declaration is in an inner block that is not entered (that is, completely
bypassed by the transfer of control). This implies that declarations that contain explicit or
implicit initializers must be contained in an inner block.

6.5 Iteration Statements
Iteration statements specify looping.

C++ Reference Manual 29

§6 Statements

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (for-init-statement expressionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

Note that a for-init-statement ends with a semicolon.

6.5.1 While Statement
In the while statement the substatement is executed repeatedly until the value of the
expression becomes zero. The test takes place before each execution of the statement.

The expression must be of arithmetic or pointer type or of a class type for which an
unambiguous conversion to arithmetic or pointer type exists (§12.3).

6.5.2 Do statement
In the do statement the substatement is executed repeatedly until the value of the expression
becomes zero. The test takes place after each execution of the statement.

The expression must be of arithmetic or pointer type or of a class type for which an
unambiguous conversion to arithmetic or pointer type exists (§12.3).

6.5.3 For Statement
The for statement

for (for-init-statement expression-1opt expression-20pt) statement

is equivalent to

for-init-statement
while (expression-1) {

statement
expression-2 ;

except that a continue in statement will execute expression-2 before re-evaluating expression-·1.
Thus the first statement specifies initialization for the loop; the first expression specifies a test,
made before each iteration, such that the loop is exited when the expression becomes zero; the
second expression often specifies incrementing that is done after each iteration. The first
expression must have arithmetic or pointer type or a class type for which an unambiguous
conversion to arithmetic or pointer type exists (§ 12.3).

Either or both of the expressions may be dropped. A missing expression-1 makes the implied
while clause equivalent to while (1) .

Note that if for-init-statement is a declaration, the scope of the names declared extends to the
end of the block enclosing the for-statement.

A for-statement containing a declaration in its for-init-statement may not be the statement after an
if, else, switch, while, do, or for. This restriction follows from the rule against jumping
past initialized declarations (§6.6).

30 C++ Reference Manual

.)

6.6 Jump Statements
Jump statements unconditionally transfer control.

jump-statement:
break;
continue;
return expressionopt
goto identifier ;

§6 Statements

On exit from a scope (however accomplished), destructors are called for all constructed class
objects in that scope that have not yet been destroyed. This applies to both explicitly declared
objects and temporaries (§12.2).

6.6.1 Break Statement

The break statement must occur in an iteration-statement or a switch statement and causes
termination of the smallest enclosing iteration-statement or switch statement; control passes to
the statement following the terminated statement, if any.

6.6.2 Continue Statement
The continue statement must occur in an iteration-statement and causes control to pass to the
loop-continuation portion of the smallest enclosing iteration-statement, that is, to the end of the
loop. More precisely, in each of the statements

while (...) do { for (...)

contin: ; contin: cont in: ;
} while (...) ;

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

6.6.3 Return Statement
A function returns to its caller by means of the return statement. A return statement without
an expression can be used only in functions that do not return a value, that is, a function with
the return value type void or a constructor (§12.1) or a destructor (§12.4). A return statement
with an expression can be used only in functions returning a value; the value of the expression
is returned to the caller of the function. If required, the expression is converted, as in an
initialization, to the return type of the function in which it appears. This may involve the
construction and copy of a temporary object (§ 12.2). Flowing off the end of a function is
equivalent to a return with no value; this is illegal in a value-returning function.

6.6.4 Goto Statement
The goto statement unconditionally transfers control to the statement labeled by the identifier.
The identifier must be a label (§6.1) located in the current function. It is illegal to jump past a
declaration with an explicit or implicit initializer unless the declaration is in an inner block that
is not entered (that is, completely bypassed by the transfer of control).

6.7 Declaration Statement
A declaration statement is used to introduce a new identifier into a block; it has the form

declaration-statement:
declaration

C++ Reference Manual 31

§6 Statements

li an identifier introduced by a declaration was previously declared in an outer block, the
outer declaration is hidden for the remainder of the block, after which it resumes its force.

Any initializations of auto or register variables are done each time their declaration­
statement is executed. It is possible to transfer into a block, but not in a way that causes
initializations not to be done (§6.6). Destruction of local variables declared in the block is done
upon exit from the block (§6.6).

Initialization of an object with storage class static (§7.1.1) is done the first time control
passes through its declaration (only). The destructor for a local static object will be
executed if and only if the variable was constructed.

6.8 Ambiguity Resolution
There is an ambiguity in the grammar involving expression-statements and declarations: An
expression-statement with a "function style" explicit type conversion (§5.2.3) as its leftmost sub­
expression can be indistinguishable from a declaration where the first declarator starts with a (.
In those cases the statement is a declaration.

To disambiguate, the whole statement may have to be examined to determine if it is an
expression-statement or a declaration. This disambiguates many examples. For example, assume
Tis a simple-type-name (§7.1.6):

T(a)->m = 7;
T(a)++;
T(a,5)<<c;
T(*d) (double(3));

T (* e) (int) ;
T(f)[];
T (g) = { 1, 2 } ;

// expression-statement
// expression-statement
II expression-statement
II expression-statement

II declaration
II declaration
II declaration

The remaining cases are declarations. For example:

T (a); II declaration
T(*b) (); II declaration
T(c)•7; II declaration
T(d),e,f=3; II declaration
T(g) (h,2); II declaration

The disambiguation is purely syntactic; that is, the meaning of the names, beyond whether
they are type-names or not, is not used in the disambiguation.

Note that a simple lexical lookahead can help a parser disambiguate most cases. Consider
analyzing a statement consisting of a sequence of tokens:

type-name (d-or-e) tail

Here, d-or-e must be a declarator, an expression, or both for the statement to be legal. This
implies that tail must be a semicolon, something that can follow a parenthesized declarator or
something that can follow a parenthesized expression, that is, an initializer, const, volatile,
(or [or a postfix or infix operator.

A user can explicitly disambiguate cases that appear obscure. For example:

32 CH-Reference Manual

C

§6 Statements

void f ()

auto int(*p) (); // explicitly declaration
(void) int(*p) (); // explicitly expression-statement
O,int(*p) (); // explicitly expression-statement
(int(*p) ()); // explicitly expression-statement
int(*p) (); // resolved to declaration

A slightly different ambiguity between expression-statements and declarations is resolved by
requ.:.ring a type-name for function declarations within a block (§6.3). For example:

void g()
{

int f (); II declaration
int a; II declaration
f (); II expression-statement
a; II expression-statement

C++ Reference Manual 33

§7 Declaratlons

7. Declarations
Declarations specify the interpretation given to each identifier; they do not necessarily reserve
storage associated with the identifier (§3.1). Declarations have the form

declaration:
decl-spedfiersopt declarator-listopt
asm-declaration
function-definition
linkage-spedfication

The declarators in the declarator-list (§8) contain the identifiers being declared. Only in
function definitions (§8.3) and function declarations may the decl-spedfiers be omitted. Only
when declaring a class (§9) or enumeration (§7.2), that is, when the decl-spedfier is a class­
specifier or enum-spedfier, may the declarator-list be empty. asm-declarations are described in §7.3,
and linkage-specifications in §7.4. A declaration occurs in a scope (§3.2); the scope rules are
summarized in § 10.4.

7.1 Specifiers
The specifiers that can be used in a declaration are:

decl-spedfier:
storage-class-specifier
type-specifier
/ct-specifier
template-specifier
friend
typedef

decl-specifiers:
decl-spedfiersopt decl-spedfier

The longest sequence of decl-spedfiers that could possibly be a type name is taken as the decl­
spedfiers of a declaration. The sequence must be self-consistent as described below. For
example,

typedef char* Pc;
static Pc; // error: name missing

Here, the declaration static Pc is illegal because no name was specified for the static
variable of type Pc. To get a variable of type int called Pc, the type-specifier int must be
present to indicate that the typedef-name Pc is the name being (re)declared, rather than being
part of the decl-specifier sequence. For example,

void f(const Pc); // void f(char*const)
void g(const int Pc); // void g(const int)

Note that since signed, unsigned, long, and short by default imply int, a typedef-name
appearing after one of those specifiers must be the name being (re)declared. For example:

void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)

7 .1.1 Storage Class Specifiers
The 11 storage class" specifiers are:

34 Ct+ Reference Manual

storage-class-specifier:
auto
register
static
extern

§7 Declarations

The auto or register specifiers can be applied only to names of objects declared in a block
(§6.3) and for formal arguments (§8.3). The auto declarator is always redundant and not often
used; one use of auto is explicitly to distinguish a declaration-statement from an expression­
statement (§6.2).

A register declaration is an auto declaration, together with a hint to the compiler that the
variables declared will be heavily used. The hint may be ignored and in most
implementations it will be ignored if the address of the variable is taken.

An object declaration is a definition unless it contains the extern specifier and no initializer
(§3.1). A definition causes the appropriate amount of storage to be reserved and any
appropriate initialization (§8.4) to be done.

The s':.atic and extern specifiers can be applied only to names of objects or functions.
There can be no static function declarations within a block, nor any static or extern
formal arguments. Static class members are described in (§9.4); extern cannot be used for
class members.

A name specified static has internal linkage. Functions declared inline and objects
declared const have internal linkage unless they have previously been given external linkage.
A name specified extern has external linkage unless it has previously been given internal
linkage. A file scope name without a storage-class-specifier has external linkage unless it has
previously been given internal linkage and provided it is not declared const or inline. All
linkage specifications for a name must agree. For example:

static char* f () ; I I f () has inter.nal linkage
char* f() II f() still has internal linkage

{ I* ... *I }

char* g(); II g() has external linkage
static char* g() II error: inconsistent linkage specifications

{ I* *I }

static int a; II 'a' has internal linkage
int a; II error: two definitions

static int b; II 'b' has internal linkage
extern int b; II 'b' still has internal linkage

int c; II 'c' has external linkage
static int c; II error: inconsistent linkage specifications

extern d; II 'd' has external linkage
static int b; II error: inconsistent linkage specifications

7.1.2 Function Specifiers
Some specifiers can only be used in function declarations:

C++ Reference Manual 35

§7 Declaratlons

fct-spedfier:
inline
virtual

The inline specifier gives the function default internal linkage (§3.3); it is also a hint to the
compiler that inline substitution of the function body is to be preferred to the usual function
call implementation. The hint may be ignored. A function (§5.2.2, §8.2.5) defined within the
declaration of a class is inline by default.

A global inline function may explicitly be given external linkage provided it is not called
between the extern declaration and the inline definition. For example:

extern f ();
extern g ();

h () { return f () ; }

inline f() { /* ... */ }
inline g() { /* ... */ }

// error
// ok

Here g () has external linkage but can be inlined in the (one) source file where its definition
appears.

A clas-s member function need not be declared inline in the class declaration to be inline.
½-1lere no inline specifier is used, linkage will be external unless an inlir.e definition
appears before the first call.

class X {
public:

} ;

int f ();
inline int g ();
int h ();

void h(X* p)
{

int i = p->f O ;
int j = p->g();
I I . o •

// X::g() has internal linkage

// now X::f() has external linkage

inline int X::f() /* ... */ }
inline int X: :g() /* ... */ }
inline int X::h() /*.e• */ } // now X::h() has internal linkage

The virtual specifier may be used only in declarations of non-static class member functions
within a class declaration; see § 10.2.

7.1.3 The typedef Specifier
Declarations containing the decl-specifier typedef declare identifiers that can be used later for
naming fundamental or derived types. The typedef specifier may not be used in a fct­
definition (§8.3).

typedef-name:
identifier

Within the scope (§3.2) of a typedef declaration, each identifier a~pearing as part of any
declarator therein becomes syntactically equivalent to a keyword and names the type
associated with the identifier in the way described in §8. A typedef-name is thus a synonym for

36 C++ Reference Manual

C

§7 Declaratlons

another type. A typedef-name does not introduce a new type the way a class declaration (§9.1)
does. For example, after

typedef int MILES, *KLICKSP;

the constructions

MILES distance;
extern KLICKSP metricp;

are all legal declarations; the type of distance is int; that of metricp is "pointer to int."

A typedef may be used to re-define a name to refer to the type it already referred to - even
in the scope where the type was originally declared. For example,

typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

A typedef may be not be used to re-define a name of a type declared in the same scope to
refer to a different type. For example,

class complex { /* ... */ };
typedef int complex; // error: redefinition of 'complex'

A typ~ef-name that names a class is a class-name (§9.1).

7 .1.4 The template Specifier

The template specifier is used to specify families of types or functions; see §14.

7 .1.5 The friend Specifier
The friend specifier is used to specify access to class members; see §11.4.

7 .. 1.6 Type Specifiers

The type-specifiers are:

type-specifier:
simple-type-name
class-sr,ecifier
enum-specifier
elaborated-type-specifier
const
volatile

The words const and volatile may be added to any legal type-specifier in the declaration
of an object. Otherwise, at most one type-specifier may be given in a declaration. A const
object may be initialized, but its value may not be changed thereafter. Unless explicitly
declared extern, a const object does not have external linkage and must be initialized (§8.4;
§12.1). An integer const initialized by a constant expression may be used in constant
expressions (§5.19). Each element of a const array is const and each member of a const
class object is const (§9.3.1).

There are no implementation•independent semantics for volatile objects; volatile is a hint
to the compiler to avoid aggressive optimization involving the object because the value of the
object may be changed by means undetectable by a compiler. Each element of a volatile
array is volatile and each member of a volatile class object is volatile (§9.3.1).

C++ Reference Manual 37

§7 Declaratlons

If the type-specifier is missing from a declaration, it is taken to be int.

simple-type-name:
class-name
typedef-name
char
short
int
long
signed
unsigned
float
double
void

At most one of the words long or short may be specified together with int. Either may
appear alone, in which case int is understood. The word long may be mentioned together
with double. At most one of the words signed and unsigned may be specified together
·with char, short, int, or long. Either may appear alone, in which case int is understood.
The signed specifier is used to force char objects and bit-fields to be signed; it is redundant
with other integral types.

cl.:ss-specifiers and enum-specifiers are discussed in §9 and §7.2, respectively.

elaborated-type-specifier:
class-key class-name
class-key identifier
enum enum-name

class-key:
class
struct
union

If an identifier is specified, the elaborated-type-specifier declares it to be a class-name; see §9.1.

If defined, a name declared using the union specifier must be defined as a union. If defined,
a name declared using the class specifier must be defined using the class or struct
specifier. If defined, a name declared using the struct specifier must be defined using the
c!ass or struct specifier.

7.2 Enumeration Declarations
An enumeration is a distinct integral type (§3.6.1) with named constants. Its name becomes an
enum-na.me, that is, a reserved word within its scope.

enum-name:
identifier

en um-specifier:
enum identifieropt { enum-lisfopt }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants, and may appear wherever constants

38 Ct+ Reference Manual

J

C

§7 Declarations

are required. If no enumerators with • appear, then the values of the corresponding constants
begin at O and increase by 1 as the declaration is read from left to right. An enumerator with
• gives the associated identifier the value indicated; subsequent identifiers without initializers
continue the progression from the assigned value. The value of an enumerator must be an .
int or a value that can be promoted to int by integral promotion (§4.1).

The names of enumerators must be distinct from those of ordinary variables and other
enllmt:!rators in the same scope. The values of the enumerators need not be distinct. An
em.1merator is considered defined immediately after it and its initializer, if any, has been seen.
For e:-.:ample,

enum { a, b, c•0 };
enum { d, e, f=e+2 };

defines a, c, and d to be 0, band e to be 1, and f to be 3.

Each enumeration defines an integral type that is different from all other integral types. The
type of an enumerator is its enumeration. The value of an enumerator or an object of an
enuineration type is converted to an integer by integral promotion (§4.1). For example,

enum color { red, yellow, green=20, blue };
color col= red;
color* cp = &col;
if (*cp == blue) //

makes color an integral type describing various colors, and then declares col as an object of
that ~-pe, and cp as a pointer to an object of that type. The possible values of an object of
type =olor are red, yellow, green, blue; these values can be converted to the int values
0, 1, ::o, and 21. Since enumerations are distinct types, objects of type color may be
assigned only values of type color. For example:

color c = l; // error: type mismatch,
// (no conversion from color to int)

inti= yellow; // ok: yellow converted to int value 1
// (integral promotion)

See also §B.3.

Enumerators defined in a class (§9) are in the scope of that class and can only be referred to
outside member functions of that class by explicit qualification with the class name (§5.1).
However, the name of the enumeration itself is not local to the class (§9.7). For example:

class X {
public:

enum direction { left•'l', right•'r' };
int f(int i) { return i=•left? 0 : i==right? 1 2; }

} ;

void g(X* p)
{

p->f(left); // error
p->f(X::right); // ok

direction d • X::left;

7.3 Asm Declarations
An asm declaration has the form

P++ Reference Manual 39

§7 Declaratlons

asm-declaration:
asm (string) ;

The meaning of an asm declaration is implementation dependent. Typically it is used to pass
information through the compiler to an assembler.

7.4 Linkage Specifications
Linkage (§3.3) to non-Gt+ code fragments can be achieved using a linkage-speci}ication:

linkage-specification:
extern string { declaration-list0pt
extern string declaration

declaration-list:
declaration
declaration-list declaration

The string is used to indicate what kind of linkage is required. The meaning of the string is
implementation dependent. Linkage to a function written in the C programming language,
"C", and linkage to a G++ function, "C++", must be provided by every implementation.
Default linkage is "C++". For example,

complex sqrt(complex); // C++ linkage by default
extern "C" {

double sqrt(double); // c linkage

Linkage specifications nest. A linkage specification does not establish a scope. A linkage­
specifica.tion may only occur in file scope (§3.2). A linkage-specification for a class applies to non­
member functions first declared within it. A linkage-specification for a function also applies to
functions first declared within it. A linkage declaration with a string that is unknown to the
implementation is an error.

If a function has more than one linkage-specification, they must agree; that is, they must specify
the same string. A function declaration without a linkage specification may not precede the
first linkage specification for that function. A function may be declared without a linkage
specification after an explicit linkage specification has been seen; the linkage explicitly specified
in the earlier declaration is not affected by such a function declaration.

At most one of a set of overloaded functions (§13) with a particular name can have C linkage.

Linkage can be specified for objects. For example,

extern "C" {
I I ...
_iobuf _iob[_NFILE];
I I ...
int _flsbuf(unsigned,_iobuf*);
I I ...

Functions and objects may be declared static within the {} of a linkage specification. In
that case, the linkage directive is ignored for that function or object. Otherwise, a function
declared in a linkage specification behaves as if it was explicitly declared extern. For
example,

extern "C" double f();
static double f(); // error

is an error (§7.1.1).

40 Ct+ Reference Manual

J

C

C

C

§7 Deel a rations

Linkage from C++ to objects defined in other languages and to objects defined in C++ from
other languages is implementation and language dependent. Only where the object layout
strategies of two language implementations are sufficiently similar can such linkage be
achieved.

Where the name of a programming language is used to name a style of linkage in the string in
a linhige-specification, it is recommended that the spelling be taken from the document defining
that language, for examp]e, Ada (not ADA) and FORTRAN (not Fortran).

C++ Reference Manual 41

§8 Declarators

8. Declarators
The d.eclarator-list appearing in a declaration is a comma-separated sequence of declarators,
each of which may have an initializer.

declarator-list:
init-declarator
declarator-list , init-declarator

init-declarator:
declarator initializer opt

The t'vvo components of a declaration are the specifiers (decl-s-pecifiers; §7.1) and the declarators
(decl.; .. ator-list). The specifiers indicate the fundamental type, storage class, etc., of the objects
and functions being declared. The declarators specify the names of these objects and functions
and ~ optionally) modify the type with operators such as* (pointer to) and () (function
returning). Initial values can also be specified in a declarator; initializers are discussed in §8.4
and §12.6.

Declarators have the syntax:

declarator:
dname
ptr-operator declarator
declarator (argument-declaration-list) cv-qualifier-listopt
declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-listopt
& cv-qualifier-listopt
class-name : : * cv-qualifier-listopt

cv-qualifier-list:
cv-qualifier cv-qualifier-list0pt

cv-qualifier:

dname:

const
volatile

name
class-name
... class-name
typedef-name

A class-name has special meaning in a declaration of the class of that name and when qualified
by that name using the scope resolution operator : : (§12.1, §12.4).

8.1 Type Names
To specify type conversions explicitly, and as an argument of sizeof or new, the name of a
type must be specified. This is accomplished with a type-name, which is syntactically a
declaration for an object or function of that type that omits the name of the object or function.

type-name:
type-specifier abstract-declarator opt

42 C++ Reference Manual

§8 Declarators

abstract-declarator:
ptr-operator abstract-declarator opt
abstract-declarator opt (argument-declaration-list) cv-qualifier-list0pt
abstract-declarator opt [constant-expressionopt]
< abstract-declarator)

It is possible to identify uniquely the location in the abstract-declarator where the identifier
would appear if the construction were a declarator in a declaration. The named type is then
the same as the type of the hypothetical identifier. For example,

int II int i
int* II int *pi
int *[3] II int *p[3]
int (*) [3] II int (*p3i) (3]
int * () II int *f ()
int (*) (double) II int (*pf) (double)

name respectively the types 11integer," "pointer to integer," "array of 3 pointers to integers,"
11pointer to array of 3 integers," "function taking no arguments and returning pointer to
integer," and "pointer to function taking a double argument and returning an integer."

8.2 Meaning of Declarators
A list of declarators appears after a (possibly empty) list of decl-specifiers (§7.1). Each declarator
contains exactly one dname; it specifies the identifier that is declared. Except for the
declarations of some special functions (§12.3, §13.4) a dname will be a simple identifier. An
auto, static, extern, register, friend, inline, virtual, or typedef specifier applies
directly to each dname in a declarator-list; the type of each dname depends on both the decl­
specifiers (§7.1) and its declarator.

Thus, a declaration of a particular identifier has the form

T D

where T is a type and D is a declarator. In a declaration where D is an unadorned identifier
the type of this identifie.r is T.

In a declaration where D has the form

(Dl)

the type of Dl is the same as that of D. Parentheses do not alter the type of the embedded
dname, but they may alter the binding of complex declarators.

8.2.1 Pointers
In a declaration TD where D has the form

* cv-qualifier-listopt D 1

the type of the contained identifier is" ... cv-qualifier-list pointer to T." The cv-qualifiers apply
to the pointer and not to the object pointed to.

For example, the declarations

const ci = 10, *pc= &ci, *const cpc = pc;
inti, *p, *const cp = &i;

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a
constant integer; i, an integer; p, a pointer to integer; and cp, a constant pointer to integer.
The value of ci, cpc, and cp cannot be changed after initialization. The value of pc can be
changed, and so can the object pointed to by cp. Examples of legal operations are:

C++ Reference Manual 43

§8 Declarators

i - ci; *cp • ci; pc++; pc= cpc; pc - p; II ok

Examples of illegal operations are:

ci • 1; ci++; *pc• 2; cp • &ci; cpc++; p = pc; II errors

Each is illegal because it would either change the value of an object declared const or allow it
to be changed through an unqualified pointer later.

vola-:ile specifiers are handled similarly.

See also §5.17 and §8.4.

There can be no pointers to references (§8.2.2) or pointers to bit-fields (§9.6).

8.2.2 References
In a declaration T D where D has the form

& cv-qualifier-lisf opt D 1

the type of the contained identifier is" ... cv-qualifier-list reference to T." The type void& is not
perm.:tted.

For example,

void f(double& a) {a+= 3.14; }
I I ...
doubled= 0;
f (d) ;

declares a to be a reference argument of f so that the call f (d) will add 3 . 14 to d.

int v[20];
I I ...
int& g(int i) { return v[i]; }
I I ...
g(3) = 7;

declares the function g () to return a reference to an integer so that g (3 > =7 will assign 7 to
the fourth element of the array v.

void h (link*& p)
{

}

II

p->next • first;
first• p;
p - 0;

link* q = new link;
h(q);

declares p to be a reference to a pointer to link so that h (q) will leave q with the value O.
See also §8.4.3.

There can be no references to references, no references to bit-fields (§9.6), no arrays of
references, and no pointers to references. The declaration of a reference must contain an
initWu:er (§8.4.3) except when the declaration contains an explicit extern specifier (§7.1.1), or
is a class member (§9.2) declaration within a class declaration, the declaration of an argument
type, or the declaration of a return type (§8.2.5).

44 C++ Reference Manual

J

C

§8 Declarators

8.2.3 Pointers to Members
In a declaration T D where D has the form

class-name : : * cv-qualifier-listopt D 1

the type of the contained identifier is 11
... cv-qualifier-list pointer to member of class class-name

of type T."

For example,

class X {
public:

.} ;

void f(int);
int a;

int X::* pmi = &X::a;
void (X::* pmf) (int) = &X::f;

declares pmi and pmf to be a pointer to a member of x of type int and a pointer to a member
of x of type void (int), respectively. They can be used like this:

X obj;
I I . ..
obj.*pmi = 7; // assign 7 to an integer

// member of obj
(obj. *pmf) (7); //calla function member of obj

// with the argument 7

Note that a pointer to member cannot point to a static member of a class (§9.4). See also §5.5
and §5.3.

8.2.4 Arrays
In a declaration TD where D has the form

D 1 [constant-expression0pt J

then the contained identifier has type " ... array of T." If the constant-expressum (§5.19) is
present, it must be of integral type and have a value greater than O. The constant expression
specifies the number of elements in the array. If the constant expression is N, the array has N
elements numbered O to N- l.

An array may be constructed from one of the fundamental types (except void), from a
pointer, from a pointer to member, from a class, from an·enumeration, or from another array.

When several "array of" specifications are adjacent, a multi--dimensional array is created; the
constant expressions that specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful for function arguments of array types and
when the array is external and the actual definition, which allocates storage, is given
elsewhere. The first constant-expression may also be omitted when the declarator is followed
by an initializer-list (§8.4). In this case the size is calculated from the number of initial elements
supplied (§8.4.1).

The declaration

float fa[l7], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. The
declaration

C++ Reference Manual 45

§8 Declarators

static int x3d[3] [5] [7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d
is an array of three items; each item is an array of five arrays; each of the latter arrays is an
array of seven integers. Any of the expressions x3d, x3d (i], x3d (i] [j], x3d [i] [j] [k J
may reasonably appear in an expression.

When an identifier of array type appears in an expression, except as the operand of sizeof or
& or used to initialize a reference (§8.4.3), it is converted into a pointer to the first member of
the array. Because of this conversion, arrays are not modifiable lvalues. Except where it has
been declared for a class (§13.4.5), the subscript operator [J is interpreted in such a way that
El [E2 J is identical to * ((El)+ (E2)) . Because of the conversion rules that apply to +, if El
is an array and E2 an integer, then El [E2] refers to the E2-th member of El. Therefore,
despite its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If Eis an n-dimensional
array of rank ix jx • • • xk, then E appearing in an expression is converted to a pointer to an
(n-1 >-dimensional array with rank jx • • • xk. If the * operator, either explicitly or implicitly
as a result of subscripting, is applied to this pointer, the result is the pointed-to (n -1 }­
dimensional array, which its~lf is immediately converted into a pointer.

For example, consider

int x[3] [5];

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a
pointer to (the first of three) 5-membered arrays of integers. In the expression x [i], which is
equivalent to * (x+i), xis first converted to a pointer as described; then x+i is converted to
the type of x, which involves multiplying i by the length of the object to which the pointer
points, namely 5 integer objects. The results are added and indirection applied to yield an
array (of 5 integers), which in tum is converted to a pointer to the first of the integers. If there
is another subscript the same argument applies again; this time the result is an integer.

Itfollows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and
that the first subscript in the declaration helps determine the amount of storage consumed by
an array but plays no other part in subscript calculations.

8.2.S Functions
In a declaration T D where D has the form

D 1 (argument-declaration-list) cv-qualifier-listopt

the contained identifier has the type 11
••• cv-qualifier-list0pt function taking arguments of type

argument-declaration-list and returning T ."

argument-declaration-list:
arg-declaration-list0pt ... opt
arg-declaration-list ,

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-spedfiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator opt
decl-specifiers abstract-declarator0pt = expression

46 C++ Reference Manual

_)

C

C

C

§8 Declarators

If the argument-declaration-list terminates with an ellipsis, the number of arguments is known
only to be equal to or greater than the number of argument types specified; if it is empty, the
function takes no arguments. The argument list (void) is equivalent to the empty argument
list. Except for this special case void may not be an argument type (though types derived
from void, such as void*, may). Where legal, 11, ••• " is synonymous with" ... ". The
standard header <stda rg. h> contains a mechanism for accessing arguments passed using the
ellipsis.

A single name may be used for several different functions in a single scope; this is function
overloading (§13.1). All declarations for a function taking a given set of arguments must agree
exactly both in the type of L11e value returned and in the number and type of arguments; the
presence or absence of the ellipsis is considered part of the function type. Argument types
that differ only in the use of typedef names or unspecified argument array bounds agree
exactly. The argument types, but not the default arguments (§8.2.6), are part of the function
type. A cv-qualifier-list can be part of a member function declaration, member function
definition, or pointer to member function only; see §9.3.1. It is part of the function type.

Functions cannot return arrays or functions, although they can return pointers and references
to such things. There are no arrays of functions, although there may be arrays of pointers to
functions.

The argument-declaration-list is used to check and convert actual arguments in calls and to check
pointer-to-function assignments and initializations.

An identifier can optionally be provided as an argument name; if present in a function
dec]aration, it cannot be used since it immediately goes out of scope; if present in a function
definition (§8.3), it names a formal argument. In particular, argument names are also optional
in function definitions and names used for an argument in different declarations and the
definition of a function need not be the same.

The declaration

inti, *pi, f(), *fpi(int), (*pif)(const char*, const char*);

declares an integer i, a pointer pi to an integer, a function f taking no arguments and
returning an integer, a function fpi taking an integer argument and returning a pointer to an
integer, and a pointer pif to a function which takes two pointers to constant characters and
returns an integer. It is especially useful to compare the last two. The binding of *fpi (int)
is* (fpi (int)), so that the declaration suggests, and the same construction in an expression
requires, the calling of a function fpi, and then using indirection through the (pointer) result
to yield an integer. In the declarator (*pif) (const char*, const char*), the extra
parentheses are necessary to indicate that indirection through a pointer to a function yields a
function, which is then called.

The declaration

fseek(FILE*, long, int);

declares a function taking three arguments of the specified types. Since no return value type is
specified. it is taken to be int (§7.1.6). The declaration

printf(const char* ...);

declares a function that can be called with varying number and types of arguments. For
example:

printf("hello world");
printf("a=%d b=%d", a, b);

However, it must always have a value that can be converted to a const char* as its first
argument.

C++ Reference Manual 47

§8 Declarators

8.2.6 Default Arguments
If an expression is specified in an argument declaration this expression is used as a default
argument. All subsequent arguments must have default arguments. Default arguments will
be used in calls where trailing arguments are missing. A default argument cannot be
redefined by a later declaration (not even to the same value). However, a declaration may add
default arguments not given in previous declarations.

The declaration

point(int = 3, int= 4);

declares a function that can be called with zero, one, or two arguments of type int. It may be
called in any of these ways:

point(l,2); point(l); point();

The last two calls are equivalent to point (1, 4) and point (3, 4), respectively.

Default argument expressions have their names bound and their types checked at the point of
declaration, and are evaluated at each point of call. In the following example, g will be called
with the value f (2) :

int a= 1;
int f(int);
int g(int x f(a)); // default argument: f(::a)

void h () {
a= 2;
{

int a= 3;
g (); II g(f(::a))

Note that default arguments are evaluated before entry into a function and that the order of
evaluation of function arguments is implementation dependent. Consequently, formal
arguments of a function may not be used in default argument expressions. Formal arguments
of a function declared before a default argument expression are in scope and may hide global
and class member names. For example:

int a;
int £(int a, int b • a); II error: argument 'a'

// used as default argument
typedef int I;
int g(int I, int b • 1(2)); // error: 'int' called

Similarly, the declaration of x: :meml () in the following example is illegal because no object is
supplied for the non~static member x: : a used as an initializer:

class X {

int a;
static b;
meml(int

mem2 (int
} ;

i - a);

i • b);

// error: non~static member 'a'
// used as default argument
/I ok

However, the declaration of x: : mem2 () is legal, since no object is needed to access the static
member x: : b. Classes, objects, and members are described in §9.

48 Ct+ Reference Manual

A default argument is not part of the type of a function:

int f(int = 0);

h()
{

f (1);

f(); // fine, means f{O)

int (*pl) (int) = &f;
int (*p2) () = &f; // error: type mismatch

8.3 Function Definitions
Function definitions have the form

/ct-definition:
decl-specifierSopt declarator ctor-initializer opt Jct-body

/ct-body:
compound-statement

The declarator in a /ct-definition must contain a declarator with the form

D 1 (argument-declaration-list) cv-qualifier-listopt

as described in §8.2.5.

The formal arguments are in the scope of the outermost block of the /ct-body.

A simple example of a complete function definition is

int max(int a, int b, int c)
{

int m = (a> b) ? a : b;
return (m > c) ? m: c;

§8 Declarators

Here int is the decl-specifiers; max (int a, int b, int c) is the declarator; { . . . } is the
/ct-body.

Actor-initializer is used only in a constructor; see §12.1 and §12.6.

A co-qua.lifter-list can be part of a member function declaration, member function definition, or
pointer to member function only; see §9.3.1. It is part of the function type.

Note that unused formal arguments need not be named. For example:

void print(int a, int)
{

printf("a = %d\n",a);

8.4 Initializers
A declarator may specify an initial value for the identifier being declared.

Ct+ Reference Manual 49

§8 Declarators

initializer:
-= assignment-expression
• { initializer-list , opt
(expression-list)

initializer-list:
expression
initializer-list , expression
{ initializer-list , opt }

Automatic, register, static, and external variables may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

int f(int);
int a• 2;
int b = f(a);

A pointer of type const T*, that is, a pointer to constant T, can be initialized with a pointer of
type T*, but the reverse initialization is illegal. Objects of type T can be initialized with ob.jects
of type T independently of const and volatile modifiers on both the initialized variable
and on the initializer. For example:

int a;
const int b • a;
int c • b;

const int* pO • &a;
const int* pl= &b;
int* p2 ,_ &b;

int *const p3 - p2;
int *const p4 .. pl;

const int* pS = pl;

II error: makes a pointer to non-const
II point to a const

II error: makes a pointer to non-const
II point to a const

The reason for the two errors is the same: had those initializations been allowed they would
have allowed the value of something declared const to be changed through an unqualified
pointer.

Default argument expressions are more restricted; see §8.2.6.

Variables with storage class static (§3.5) that are not initialized are guaranteed to start off as O
converted to the appropriate type. The initial values of automatic and register variables that
are not initialized are undefined.

When an initializer applies to a pointer or an object of arithmetic type, it consists of a single
expression, perhaps in braces. The initial value of the object is taken from the expression; the
same conversions as for assignment are performed.

Note that since () is not an initializer,

X a();

is not the declaration of an object of class x, but the declaration of a function taking no
argument and returning an x.
Initialization of objects of classes with constructors is described in §12.6.1. Copying of class
objects is described in §12.8.

The order of initialization of static objects is described in §3.4 and §6.3.

50 C++ Reference Manual

C

§8 Declarators

8.4.1 Aggregates
An aggregate is an array or an object of a class (§9) with no constructors (§12.1), no private or
protected members (§11), no base classes (§10), and no virtual functions (§10.2). When an
aggregate is initialized the initializer may be an initializer-list consisting of a brace-enclosed,
comma-separated list of initializers for the members of the aggregate, written in increasing
subscript or member order. If the aggregate contains subaggregates, this rule applies
recursively to the members of the subaggregate. If there are fewer initializers in the list than
there are members of the aggregate, then the aggregate is padded with O's.

For example,

struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };

initializes ss. a with 1, ss. b with "asdf", and ss. c with O.

An aggregate that is a class may also be initialized with an object of its class or of a class
publicly derived from it (§12.8).

Braces may be elided as follows. If the initializer-list begins with a left brace, then the
succeeding comma-separated list of initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer-list or a
sub-aggregate does not begin with a left brace, then only enough elements from the list are
taken to account for the members of the aggregate; any remaining members are left to initialize
the next member of the aggregate of which the current aggregate is a part.

For example,

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three members, since no size was
specified and there are three initializers.

float y[4] [3] -{
{ 1, 3, 5 } '
{ 2, 4, 6 } ,
{ 3, 5, 7 } ,

} ;

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y [OJ,
namely y[O] [OJ, y[O] [1], and y[OJ [2]. Likewise the next two lines initialize y[l] and
y [2 J. The initializer ends early and therefore y [3 J is initialized with O's. Precisely the same
effect could have been achieved by

float y[4J [3J = {
1, 3, 5, 2, 4, 6, 3, 5, 7

} ;

The last (rightmost) index varies fastest (§8.2.4).

The initializer for y begins with a left brace, but that for y [O] does not, therefore three
elements from the list are used. Likewise the next three are taken successively for y [1 J and
y[2J. Also,

float y[4] [3] = {
{ 1 }, { 2 }, { 3 }, { 4}

} ;

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest O.

Initialization of arrays of objects of a class with constructors is described in §12.6.1.

C++ Reference Manual 51

§8 Declarators

The initializer for a union with no constructor is either a single expression of the same type, or
a brace-enclosed initializer for the first member of the union. For. example,

union u int a; char* b; };

u a = 1 } ;

u b • a;
u C = l; II error
u d = { o, "asdf" } ; II error
u e = { "asdf" } ; II error

There may not be more initializers than there are members or elements to initialize. For
examp1e,

char cv[4] = { 'a', 's', 'd', 'f', 0 }; II error

is an error.

8.4.2 Character Arrays
A c:1a = array (whether signed or unsigned) may be initialized by a string; successive
characters of the string initialize the members of the array. For example,

char rnsg[] = "Syntax error on line %s\n";

show·s a character array whose members are initialized with a string. Note that because ' \n'
is a single character and because a trailing' \0' is appended, sizeof (rnsg) is 25.

There may not be more initializers than there are array elements. For example,

char cv[4] • "asdf"; II error

is an error since there is no space for the implied trailing ' \ O ' .

8.4.3 References
A variable declared to be a T&, that is "reference to type T" (§8.2.2), must be initialized by an
object of type T or by an object that can be converted into a T. For example:

inti;
int& r • i;
r • 1;
int* p = &r;
int& rr == r;

II 'r' refers to 'i'
// the value of 'i' becomes 1
// 'p' points to 'i'
// 'rr' refers to what 'r' refers to, that is to 'i'

A reference cannot be changed to refer to another object after initialization. Note that
initialization of a reference is treated very differently from assignment to it. Argument passing
(§5.2.2) and function value return (§6.6.3) are initializations.

The initializer may be left out for a reference only in an argument declaration (§8.2.5), in the
declaration of a function return type, in the declaration of a class member within its class
declaration (§9.2), and where the extern specifier is explicitly used. For example:

int& rl;
extern int& r2;

II error: initializer missing
II ok

If the initializer for a reference to type Tis an lvalue of type Tor of a type publicly derived
(§10) from T the reference will refer to the initializer; otherwise, an object of type Twill be
created and initialized with the initializer. The reference then becomes a name for that object.
The lifetime of an object created in this way is the scope in which it is created (§3.5). For
example:

52 C++ Reference Manual

J

J

C

§8 Declarators

double& rd= 1;

is legal and rd will point to a double containing the value 1. O. Also,

char c = 'c';
char& re= c;
signed char& rsc = c;
~nsigned char& rue= c;

Here, either rsc or rue (but not both) will be initialized to a temporary dependent on
whether 'plain' char is signed or unsigned. The initialization of re does not require the use
of a temporary.

Note that a reference to a class B can be initialized by an object of a class D provided Bis a
public base class of D (in that case a D is a B); see §4.7.

C++ Reference Manual 53

§9 Classes

9. Classes
A class is a type. Its name becomes a class-name (§9.1), that is, a reserved word within its
scope:

class-name:
identifier

Class-specifiers and elaborated-type-specifiers are used to make class-names. An object of a class
consists of a (possibly empty) sequence of members:

class-s7Jecifier:
class-head { member-listopt }

class-head:
class-key identifier opt base-S7JeCopt
class-key class-name base-spec~pt

class-key:
class
struct
union

The name of a class can be used as a class-name e~en within the member-list of the class
specifier itself. A class-specifier is commonly referred to as a class declaration. A class is
considered defined when its class-specifier has been seen even though its member functions are
in general not yet defined.

Class objects may be assigned, passed as arguments to functions, and returned by functions
(except objects of classes for which copying has been restricted; see §12.8). Other plausible
operators, such as equality comparison, can be defined by the user; see §13.4.

A structure is a class declared with the class-key struct; its members and base classes (§10)
are public by default (§11). A union is a class declared with the class-key union; its members
are public by default and it holds only one member at a time (§9.5).

9.1 Class Names
A class declaration introduces a new type. For example:

struct X int a; };
struct Y { int a; };
X al;
Y a2;
int a3;

declares three variables of three different types. This implies that

al• a2;
al• a3;

II error: Y assigned to X
// error: int assigned to X

are type mismatches, and that

int f(X);
int f(Y);

declare an overloaded (§13) function f () and not simply a single function f () twice. For the
same reason,

struct S { int a; };
struct S { int a; }; // error, double definition

is an error because it defines s twice.

54 C++ Reference Manual

§9 Classes

A class declaration introduces the class name into the scope where it is declared and hides any
class, object, function, etc., of that name in an enclosing scope (§3.2). If a class name is
declared in a scope where an object, function, or enumerator of the same name is also declared
the dass can only be referred to using an elaborated-type-specifier (§7.1.6). For example,

struct stat {
I I ...

} ;

int stat(struct stat*);

void f ()

struct stats;
stat(&s);

// 'struct' needed to name struct
// call of the function stat()

This re-use of a class name is not legal for classes with constructors (§ 12.1). An elaborated-type­
specifier with a class-key used without declaring an object or function introduces a class name
exactly like a class declaration but without declaring a class. For example,

struct s { int a; } ;

void g ()

struct s; // hide global struct 's'
s* p; // refer to local struct 's'
struct s { char* p; }; // declare local struct 's'

Such declarations allow declaration of classes that refer to each other. For example:

class vector;

class matrix
I I ...
friend vector operator*(matrix&, vector&);

} ;

class vector
II ...
friend vector operator*(matrix&, vector&);

} ;

Declaration of friends is described in §11.4, operator functions in §13.4. If a class mentioned
as a friend has not been declared its name is entered in the same scope as the name of the
class containing the friend declaration (§11.4).

An elaborated-type-specifier (§7.1.6) can also be used in the declarations of objects and functions.
It differs from a class declaration in that if a class of the elaborated name is in scope the
elaborated name will refer to it. For example:

C++ Reference Manual 55

§9 Classes

struct s { int a; };

void g()
{

struct s* p;
p->a • 1;

// refer to global 's'

A name declaration takes effect immediately after the identifier is seen. For example,

class A* A;

first specifies A to be the name of a class and then redefines it as the name of a pointer to an
object of that class. This means that the elaborated form class A must be used to refer to the
class. Such artistry with names can be confusing and is best avoided.

A ty;:,edef-na.me (§7.1.3) that names a class is a class-name.

9.2 Class Members
member-list:

member-declaration member-listopt
access-specifier : member-listopt

member-declaration:
decl-s,,ecifiers"P.t member-declarator-listopt :
function-definition ; opt
qualified-na.me ;

member-declarator-list:
member-declarator
member-declarator-list member-declarator

member-declarator:
declarator pure-specifier opt
identifier opt : constant-expression

pure-specifier:
= 0

A member-list may declare data, function, class, enum (§7.2), bit-field members (§9.6), friends
(§11.4), and type names (§7.13, §9.1). A member-list may also contain declarations adjusting the
access to member names; see §11.3. A member may not be declared twice in the member-list.
The member-list defines the full set of members of the class. No member can be added
elsewhere.

Note that a single name can denote several function members provided their types are
sufficiently different (§13) and that a member-declarator cannot contain an initializer (§8.4).

A member may not be auto, extern, or register.

The decl-specifiers can be omitted in function declarations only. The member-declarator-list can be
omitted after a class-specifier, an enum-spedfier, or decl-spedfiers of the form friend elaborated­
type-specifier only. A pure-specifier may be used in the declaration of a virtual function only
(§10..2).

Members that are class objects must be objects of previously declared classes. In particular, a
class cl may not contain an object of class cl, but it may contain a pointer or reference to an
object of class c 1.

56 C++ Reference Manual

J

A simple example of a class declaration is:

struct tnode {

} ;

char tword[20];
int count;
tnode *left;
tnode *right;

§9 Classes

which contains an array of 20 characters, an integer, and two pointers to similar structures.
Once this declaration has been given, the declaration

tnode s, *sp;

declares s to be a tnode and sp to be a pointer to a tnode. With these declarations,

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structures; and

s.right->tword[O]

refers to the initial character of the tword member of the right subtree of s.

Data members of a class within the same access-s-pecifier are allocated so that later members
have higher addresses within a class object. The order of allocation across access-specifiers is
implementation dependent. Implementation alignment requirements may cause two adjacent
members not to be allocated immediately after each other; so may requirements for space for
managing virtual functions (§10.2) and virtual base classes (§10.1); see also §5.4.

9.3 Member Functions
A function declared as a member (without the friend specifier; §11.4) is called a member
function, and is called using the class member syntax (§5.2.4). For example,

struct tnode {
char tword[20];
int count;
tnode *left;
tnode *right;
void set(char*, tnode* 1, tnode* r);

} ;

Here set is a member function and can be called like this:

void f ()
{

tnode nl, n2;
nl.set("abc",&n2,0);
n2.set("def",0,0);

The definition of a member function is considered to be within the scope of its class. This
means that it (provided it is non-static §9.4) can use names of members of its class directly. If

the definition of a member function is lexically outside the class declaration, the member
function name must be qualifie~ by the class name using the : : operator. For example:

CH-Reference Manual 57

§9 Classes

void tnode::set(char* w, tnode* 1, tnode* r) {
count• strlen(w);
if (sizeof(tword)<•count)

error("tnode string too long");
strcpy(tword,w);
left= l;
right== r;

The notation tnode: : set specifies that the function set is a member of and in the scope of •
class tnode. The member names tword, count, left, and right refer to members of the
object for which the function was called. Thus, in the call nl . set ("abc", &n2, 0), t word
refers to nl. tword, and in the call n2. set ("def", O, O) it refers to n2. two rd. The
functions strlen, error, and strcpy must be declared elsewhere.

Members may only be defined (§3.1) outside their class declaration (provided they have
already been declared in the class declaration); they may not be redeclared.

The effect of calling a non-static member function (§9.4) of a class x for something that is not
an object of class x is undefined.

9.3.1 The this Pointer

In a non-static (§9.3) member function, the keyword this is a pointer to the object for which
the function is called. The type of this in a member function of a class xis x *const unless
the member function is declared const or volatile; in those cases, the type of this is
cons~ X *const and volatile X *canst, respectively. See also §B.3.3. For example,

struct s {
int a;
int f() const;
int g() { return a++; }
int h() canst { return a++; } // error

} ;

int s::f() canst { return a; }

The a++ in the body of s : : h is an error because it tries to modify (a part of) the object for
which s : : h () is called. This is not allowed in a const member function where this is a
pointer to const, that is, *this is a const.

A const member function (that is, a member function declared with the con.st qualifier) may
be called for const and non-const objects, whereas a non-const member function may be
called for a non-const object only. For example,

void k ()
{

s x;
const s y;
x.f();
x.g();
y.f();
y.g(); // error

The call y. g () is an error because y is const and s: : g () is a non-const member function
that could (and does) modify the object for which it was called.

58 C++ Reference Manual

C

§9 Classes

Similarly, only volatile member functions (that is, a member function declared with the
volatile specifier) may be invoked for volatile objects. A member function can be both
const. and volatile.

Constructors (§12.1) and destructors (§12.4) need not be const member functions to be used
for const objects.

9.3.2 lnline Member Functions
A member function may be defined (§8.3) in the class declaration, in which case it is inline
(§7.1..2). Defining a function within a class declaration is equivalent to declaring it inline and
defining it immediately after the class declaration; this rewriting is considered to be done after
preprocessing but before syntax analysis and type checking. Thus:

int b;
struct X {

char* f () { return b;
char* b;

} ;

is equivalent to:

int b;
struct X {

char* f ();
char* b;

} ;

inline char* x::f() { return b; } // moved

Thus the b used in x: : f () is x: : b and not the global b.

Member functions can be defined even in local or nested class declarations where this
rewriting would be syntactically illegal. In these cases the function definition is handled as if
it occurred outside any function or class. It is still considered within the scope of its class,
however. For example:

void f ()

int b;
struct x {

} ;

II

int mem;
int f ()
int g ()

return mem;
return b; }

// ok
// error

The b used in x: : g () is undefined because, appearances to the contrary, x: : g () is not in the
scope of : : f () (§3.2).

The following rule limits the context sensitivity of the rewrite rules for inline functions,
typedefs and nested classes (§9.7), and for class member declarations in general. A class-name
or a typedef-name may not be redefined in a class declaration after being used in the class
declaration, nor may a name that is not a class-name or a typedefname be redefined to a class­
name or a typedef-name in a class declaration after being used in the class declaration. For
example:

Ct+ Reference Manual 59

§9 Classes

typedef int c;
class X {

int f ()
char c;

} ;

9.4 Static Members

return sizeof(c); }
II error: typedef name redefined after use

A data or function member of a class may be declared static in the class declaration. There
is only one copy of a static data member, shared by all objects of the class in a program. A
static member is not part of objects of a class. Static members, except inline functions, of a
global class have external linkage (§3.3). The declaration of a static member in its class
declaration is not a definition. A definition is required elsewhere; see also §B.3.

A static member function does not have a this pointer so it can only access non-static
members of its class by using . or->. A static member function cannot be virtual. There
cannot be a static and a non-static member function with the same name and the same
argument types.

Static members of a class declared local to some function have no linkage and cannot be
initialized. It follows that a local class cannot have static members that require initialization
(exce?t for the default "all zeros" initialization (§8.4)).

A static member mem of class cl can be referred to as cl: :mem (§5.1), that is, independently of
any object. It can also be referred to using the . and -> member access operators (§5.2.4); in
this case, the expression on the left hand side of . or-> is not evaluated. It exists even if no
objects of class cl have been created. For example,

class process {
static int no_of_processes;
static process* run_chain;
static process* running;
static process* idle;
II

public:

} ;

f ()

II
int state();
static void reschedule();
I I ...

process::reschedule();

Static members of a global class are initialized exactly like global objects and only in file scope.
For example,

void process::reschedule() { I* ... *I };
int process::no_of_processes • 1;
process* process::running • get_main();
process* process::run_chain = process::running;

Static members obey the usual class member access rules (§11) except that they can be
initialized (in file scope).

The type of a static member does not involve its class name; thus the type of
process: :no_of_processes is int and the type of &process:: reschedule is
void(*) ().

60 Ct+ Reference Manual

.J

.J

§9 Classes

9.5 Unions
A union may be thought of as a structure whose member objects all begin at offset O and
whose size is sufficient to contain any of its member objects. At most one of the member
objects can be stored in a union at any time. A union may have member functions (including
constructors and destructors). A union may not have base classes. A union may not be used
as a base class. An object of a class with a constructor or a destructor cannot be a member of a
union. A union can have no static data members.

A union of the form

union { member-list } ;

is called an anonymous union; it defines an unnamed object (and not a type). The names of
the members of an anonymous union must be distinct from other names in the scope in which
the union is declared; they are used directly in that scope without the usual member access
syntax (§5.2.4). For example,

void f ()
{

union
a= 1;
I I ...

int a; char* p; };

p = "asdf";
I I ...

Here a and pare used like ordinary (non-member) variables, but since they are union
members they have the same address.

A global anonymous union must be declared static. An anonymous union may not have
private or protected members (§11).

A union may not have function members.

A union for which objects or pointers are declared is not an anonymous union. For example,

union { int aa; char* p; } obj, *ptr • &obj;
aa = 1; // error
ptr->aa - 1; // ok

The assignment to "plain" aa is illegal since the member name is not associated with any
particular object.

9.6 Bit-Fields
A member-declarator of the form

identifier opt : constant-expression

specifies a bit-field; its length is set off from the bit-field name by a colon. Allocation of bit­
fields within a class object is implementation dependent. Fields are packed into some
addressable allocation unit. Fields straddle allocation units on some machines and not on
others. Alignment of bit-fields is implementation dependent. Fields are assigned right-to-left
on some machines, left-to-right on others.

An unnamed bit-field is useful for padding to conform to externally-imposed layouts. As a
special case, an unnamed bit-field with a width of O specifies alignment of the next bit-field at
an allocation unit boundary.

A bit-field must have integral type (§3.6.1). It is implementation dependent whether a "plain"
int field is signed or unsigned. The address-of operator & may not be applied to a bit-field,

C++ Reference. Manual 61

§9 Classes

so there are no pointers to bit-fields. There are no references to bit-fields either.

9.7 Nested Class Declarations
A class may be declared within another class. That, however, is only a notational convenience
since the inner class has the same scope as the enclosing class. For example:

int x;

class enclose
int x;
class inner

int y;
void f(int);

} ;

int g (inner*);
} ;

inner a;
void inner::f(int i) { x - i; } // assign to ::x
int enclose::g(inner* p) { return p->y; } // error

The definition of enclose: : g () is an error since inner: : y is private and e:1close: : g ()
has no special access rights to it despite class inner being declared within class enclose.

Similarly, typedefs (§7.1.3) and enumeration names (§7.2) declared within a class can be used
outside. For example,

class x {

} ;

I b;

typedef int I;
I a;

The "exporting" of classes and typedefs and enumeration names into an enclosing scope
continues until the global or a local (block) scope is reached.

62 Ct+ Reference Manual

C

§ 1 o Derived Classes

10. Derived Classes
A list of base classes may be specified in a class declaration using the notation:

base-spec:
: base-list

base-list:
base-specifier
base-list , base-specifier

base-specifier:
class-name
virtual access-specifier0pt class-name
access-specifier virtualopt class-name

access-specifier:
private
protected
public

The class-name in a base-specifier must denote a previously declared class (§9), which is called a
base class for the class being declared. A class is said to be derived from its base classes. For
the meaning of access-specifier see §11. protected may not be used as the access-specifier in a
base-specifier for a base class. Unless re-defined in the derived class, members of a base class
can be referred to as if they were members of the derived class. The base class members are
said to be inherited by the derived class. A base member can also be referred to explicitly
using the : : operator (§5.1). This allows a name that has been re-defined in the derived class
to be. accessed. A derived class can itself serve as a base class subject to access control; see
§ 11.2. A pointer to a derived class may be implicitly converted to a pointer to a public base
class (§4.6). A reference to a derived class may be implicitly converted to a reference to a
public base class (§4.6).

For example:

class base {
public:

int a, b;
} ;

class derived: public base {
public:

int b, c;
} ;

void f ()
{

derived d;
d. a • 1;
d.base: :b • 2;
d.b ... 3;
d.c • 4;
base* bp = &d; // standard conversion: derived* to base*

}

assigns to the four members of d and makes bp a pointer to d.

A class is called a direct base if it is mentioned in the base-list, and an indirect base if it is not but
is a base class of one of the classes mentioned in the base-list.

C++ Reference Manual 63

§ 1 o Derived Classes

Note that in the class-name : : name notation, name may be a name of a member of an indirect
base class; the notation simply specifies a class in which to start looking for name. For
example:

class A ·public: int f (); } ;
class B A { } ;

class C B { public: int f (); } ;

int C::f()

B::f(); // call A's f()

Here, A: : f <) is called since it is the only f () in e.

10.1 Multiple Base Classes
A class may be derived from any number of base classes (i.e., multiple inheritance):

class A } ;
class B o. • } ;

class C • . . } ;
class D public A, public B, public C { ... };

The order of derivation is not significant except possibly for default initialization by
constructor (§12.1), for cleanup (§12.4), and for storage layout (§5.4, §9.2, §11.1). The order in
which storage is allocated for base classes is implementation dependent.

A class may not be specified as a direct base class of a derived class more than once but it may
be an indirect base class more than once:

class B ... } ;

class D B, B { } ; II illegal

class X public B { } ;

class y public B { } ;

class z public x, public Y { ... } ; // legal

In this case an object of class z will have two sub-objects of class B. Note that every access to
a member of e in a D would have been ambiguous (§10.1.1).

The keyword virtual may be added to a base class specifier. A single sub-object of the
virtual base class is shared by every base class that specified the base class to be virtual. For
example:

class X virtual public B ... };
class Y virtual public B ... };
class z public x, public Y { ... };

Here class z has only one sub-object of class e.
A class may have both virtual and non-virtual base classes of a given type:

class X virtual public B { };
class Y: virtual public B { ... };
class Z: public B { ... };
class AA: public X, public Y, public z { ... };

Here class AA has two sub-objects of class e: z's Band the virtual B shared by x and Y.

64 C+t-Reference Manual

§ 1 o Derived Classes

10.1.1 Ambiguities
Access to base class members must be unambiguous. Access to a base class member is
ambiguous if the expression used refers to more than one function, object, or enumerator. The
check for ambiguity takes place before access control (§11) and before type checking.

class A {
public:

int a;
int f ();

} ;

class B
int a;

public:
int f;

} ;

class C public A, public B {};

void g(C* pc)
{

pc->a = 1;
pc->f () ;

II error, ambiguous: A::a or B::a?
II error, ambiguous: A::f or B::f?

Ambiguities can be resolved by qualifying a name with its class name:

class A

public:
int f ();

} ;

class B
public:

int f ();
} ;

class C : public A, public B {
int f () { return A: : f () + B: : f () ;

} ;

When virtual base classes are used, a function, object, or enumerator may be reached through
more than one path through the directed acyclic graph of base classes. Th.is is not an
ambiguity. The identical use with non-virtual base classes is an ambiguity; in that case more
than one sub-object is involved. For example:

class V public: int v; };
class A public: int a; };
class B public A, public virtual V {};
class C public A, public virtual V {};

class D public B, public C { public: void f(); };

void D:: f ()
{

v++; II ok: only one 'v' in 'D'
a++; II error, ambiguous: two 'a's in 'D'

C++ Reference Manual 65

§ 1 o Derived Classes

When virtual base classes are used, more than one function, object, or enumerator may be
reached through paths through the directed acyclic graph of base classes. For objects and
enumerators this is an ambiguity. For functions it is not in all cases.

A function B : : f () dominates a function A: : f <) if its class B has A as a base. If a function
dominates another no ambiguity exists between the two and the dominant function is used
where there is a choice. For example:

class A public: int f(); int x; };
class B public virtual A { public: int f(); int x; };
class C public virtual A { };

class D public B, public C { void g(); };

void D: :g()
{

x++; II error, ambiguous: A::x or B::x?
£(); II ok: B::f() dominates A::f()

An explicit or implicit conversion from a derived class to one of its base classes must
unambiguously refer to the same object representing the base class. For example:

class V } ;

class A } ;

class B public A, public virtual V } ;

class C public A, public virtual V } ;

class D public B, public C { } ;

void g ()
{

D d;
B* pb • &d;
A*
V*

pa • &d;
pv • &d;

II error, ambiguous: C's A or B's A?
II fine: only one V sub-object

}

10.2 Virtual Functions
If a dass base contains a virtual (§7.1.1) function vf, and a class derived derived from it
also contains a function vf of the same type then a call of vf for an object of class derived
invokes derived: :vf (even if the access is through a pointer or reference to base). The
derived class function is said to override the base class function. If the function types (§8.2.5)
are different, however, the functions are considered different and the virtual mechanism is
not invoked (see also § 13.1). It is an error for a derived class function to differ from a virtual
base class function in the return type only. For example:

struct base {

} ;

virtual void vfl();
virtual void vf2();
virtual void vf3();
void f ();

66 c.+ Reference Manual

C

class derived: public base {
public:

void vfl();
void vf2(int);

§ 1 O Derived Classes

char vf3(); // error: differs in return type only
void f ();

} ;

void g()
{

derived d;
base* bp = &d;
bp->vfl ();
bp->vf2 ();
bp->f ();

// standard conversion: derived* to base*
// calls derived::vfl
// calls base::vf2
// calls base::£

The c.alls invoke derived: :vfl, base: :vf2, and base: :f, respectively, for the class
de r :!. ·;:ed object named d. That is, the interpretation of the call of a virtual function depends
on the type of the object for which it is called, whereas the interpretation of a call of a non­
virtual member function depends only on the type of the pointer or reference denoting that
objec:.

The •;-irtual specifier implies membership, so a virtual function cannot be a global (non­
mem...~r) (§7.1.1) function. A virtual function cannot be a static member either since a
virtual function call relies on a specific object for determining which function to invoke. A
virtu.al function can be declared a friend in another class. An overriding function is itself
considered virtual. The virtual specifier may be used for an overriding function in the
derived class, but such use is redundant. A virtual function in a base class must be defined or
declared pure (§10.3). A virtual function that has been defined in a base class need not be
defined in a derived class. In that case, the function defined for the base class is used in all
calls.

10.3 Abstract Classes
An abstract class is a class that can only be used as a base class of some other class; no objects
of an abstract class may be created except as sub-objects of some other class. A class is
abstract if it has at least one pure virtual function. A virtual function is specified pure by using
a pure-specifier (§9.2) in the function declaration in the class declaration. A pure virtual
function need only be defined if explicitly called with the qualified-name syntax (§5.1). For
example:

class shape { // abstract class
point center;
I I ...

public:

} ;

where() { return center; }
move(point p) { center•p; draw();
virtual void rotate(int) • 0; // pure virtual function
virtual void draw() • 0; // pure virtual function
I I ...

An abstract class may not be used as an argument type or as a function return type. Pointers
and references to an abstract class may be declared. For example:

Ct+ Reference Manual 67

§ 1 o Derived Classes

shape x;
shape* p;
shape f () ;
void g (shape) ;
shape& h(shape&);

// error: object of abstract class
// Ok
// error
// error
// ok

However, references that require the use of a temporary in the initialization (§8.4.3) are illegal.

A class with an abstract class A as its immediate base class must define or declare pure every
pure \irtual function in A.

class circle : public shape {
int radius;

public:
void rotate(int) {}
void draw(); // circle::draw() must be defined somewhere

} ;

Member functions can be ~alled from a constructor of an abstract class; calling a pure virtual
function directly or indirectly from such a constructor causes a run-time error.

The abstract class mechanism supports the notion of a general concept, such as a shape, of
which only more concrete variants, such as circle and square, can actually be used. An
abstract class can also be used to define an interface for which derived classes pro,ide a
variety of implementations.

10.4 Summary of Scope Rules
The scope rules for G++ programs can now be summarized. These rules apply uniformly for
all names (including typedef-names (§7.1.3) and class-names (§9.1)) wherever the grammar allows
such names in the context discussed by a particular rule. This section discusses lexical scope
only; see §3.3 for an explanation of linkage issues. The notion of point of declaration is
discussed in (§3.2).

When looking for the object, function, type, etc., that a name refers to, at first the name only is
considered and ambiguities are detected (§10.1.1). Only if the name is found to be
unambiguous in its scope are access rules considered (§ 11). Only if no access control errors are
found is the type of the object, function, etc., considered.

A name used outside any function and class or prefixed by the unary scope operator : : (and
not qualified by the binary : : operator or the - > or . operators) must be the name of a global
object, function, or enumerator.

A name specified after x : : , after obj . , where obj is an x or a reference to x, or after pt r- >,
where pt r is a pointer to x, must be the name of a member of class X or be a member of a
base class of x.

A name that is not qualified in any of the ways described above and that is used in a function
that is not a non-static class member must be declared in the block in which it occurs or in an
enclosing block or be a global name. The declaration of a local name hides declarations of the
same name in enclosing blocks and global names. In particular, no overloading occurs of
names in different scopes (§13.4).

A name that is not qualified in any of the ways described above and that is used in a function
that is a non-static member of class x must be declared in the block in which it occurs or in an
enclosing block, be a member of class x or a base class of class x, or be a global name. The
declaration of a local name hides declarations of the same name in enclosing blocks, members
of the function's class, and global names. The declaration of a member name hides
declarations of the same name in base classes.

68 C++ Reference Manual

J

§10 Derived Classes

A function argument name in a function definition (§8.3) is in the scope of the outermost block
of the function. A function argument name in a function declaration (§8.2.5) that is not a
function definition is in no scope at all. A default argument is in the scope determined by the
point of declaration .(§3.2) of its argument, but may not access local variables or non-static class
members; it is evaluated at each point of call (§8.2.6).

Actor-initializer (§12.6.2) is evaluated in the scope of the outermost block of the constructor it
is specified for. In particular, it can refer to the constructor's argument names.

C++ Reference Manual 69

§11 Member Access Control

11. Member Access Control
A member of a class can be

private; that is, its name can.be used only by member functions and friends of the class
in which it is declared.

protected; that is, its name can be used only by member functions and friends of the
class in which it is declared and by member functions and friends of classes derived from
this class (see § 11.5).

p-..iblic; that is, its name can be used by any function.

Members of a class declared with the keyword class are private by default. Members of a
class declared with the keyword struct are public by default. For example:

class X
int a; II X::a is private by default

} ;

struct S {
int a; II S::a is public by default

} ;

All members of a union are public and no access-specifier (§11.1) is allowed in a union.

11.1 Access Specifiers
Member declarations may be labelled by an access-specifier (§10):

access-specifier : member-listopt

An access-specifier specifies the access rules for members following it until the end of the class
or until another access-specifier is encountered. For example:

class X
int a; II X: :a is private by default: 'class' used

public:
int b; II X: :b is public
int c; II X: :c is public

} ;

Any number of access specifiers is allowed and no particular order is required. For example:

struct s {

int a; II S: :a is public by default: 'struct' used
protected:

int b; II S: :b is protected
private:

int c; II S:: C is private
public:

int d; II S: :d is public
} ;

The order of allocation of data members with separate access-specifiers is implementation
dependent (§9.2).

11.2 Access Specifiers for Base Classes
If a class is declared to be a base class (§10) for another class using the public· access specifier,
the p·.:.blic members of the base class are public members of the derived class and
protected members of the base class are protected members of the derived class. If a class

70 C++ Reference Manual

C

C

§ 11 Member Access Control

is declared to be a base class for another class using the private access specifier, the public
and protected members of the base class are private members of the derived class.
Private members of a base class remain inaccessible even to derived class members unless
friend declarations within the base class declaration are used to explicitly grant access.
protected cannot be used as the access-specifier in a base-specifier for a base class.

In the absence of an access-specifier for a base class, public is assumed when the derived class
is declared struct and private is assumed when the class is declared class. For example:

class D1 private base { ... };
class D2 : public base { ... };
class D3 : base { ... }; // 'base' private by default
struct D4 public base { ... };
struct D5 : private base { ... };
struct D6 : base { ... }; // 'base' public by default

Here base is a public base of D2 and D4, and D6, and a private base of 01, D3, and os.

11.3 Access Declarations
The access to a member of a base class in a derived class can be adjusted by mentioning its
quali_-:ed-name in the public or protected part of a derived class declaration. Such mention
is ca::ed an access declaration.

For example:

class base
int a;

public:

} ;

int b, c;
int bf();

class derived
int d;

public:

private base {

base::c; // adjust access to 'base::c'
int e;
int df () ;

} ;

int ef(derived&);

The external function ef can use only the names c, e, and df. Being a member of derived,
the function df can use the names b, c, bf, d, e, and df, but not a. Being a member of base,
the function bf can use the members a, b, c, and bf.

This notation may not be used to prevent access to a member that is accessible in the base
class, nor may it be used to enable access to a member that is not accessible in the base class.
For example:

Ct+ Reference Manual 71

§11 Member Access Control

class B {
public:

int a;
private:

int b;
protected:

int c;
} ;

class D: private B {
public:

B: :a; II make
B: :b; II make

'a' a public member of D
'b' a public member of D

II error: attempt to grant access
protected:

B:: c; II make 'a' a protected member of
B:: a; II make 'a' a protected member of

II error: attempt to reduce access
} ;

D
D

An access declaration for the name of an overloaded function adjusts the access to all functions
of that name in the base class.

11 .4 Friends
A friend of a class is a function that is not a member of the class but is permitted to use the
private and protected member names from the class. A friend is not in the scope of the class
and is not called with the member access operators (§5.2.4) unless it is a member of another
class. The following example illustrates the differences between members and friends:

class X {
int a;
friend void friend_set(X*, int);

public:
void member_set{int);

} ;

void friend_set(X* p, inti) { p->a = i;
void X::member_set(int i) {a= i; }

X obj;
friend_set(&obj,10);
obj.member_set(lO);

Friend declarations are not affected by access-specifiers (§9.2).

When a friend declaration refers to an overloaded name or operator, only the function
specified by the argument types becomes a friend. A member function of a class x can be a
friend of a class Y. For example,

class X {

} ;

friend char* Y::foo(int);
I I ...

All the functions of a class x can be made friends of a class Y by a single declaration using an
elaborated-type-specifier (§9.1):

72 C++ Reference Manual

class Y {

} ;

friend class X;
I I ...

§ 11 Member Access Control

If a class mentioned as a friend has not been declared its name is entered in the same scope as
the name of the class containing the friend declaration (§9.1).

A friend function defined in a class declaration is inline and the re-writing rule specified
for member functions (§9.3.2) is applied.

Friendship is inherited but not transitive. For example:

class A {
friend B;

int a;
} ;

class B {
friend C;
} ;

class C
void f(A* p) { p->a++; } // error

} ;

11.5 Protected Member Access
A friend or a member function of a derived class can access any public or protected static
member of a publicly derived base class. A friend or a member function of a derived class can
access a protected non-static member of a base class only through a pointer to, reference to, or
object of the derived class of which it is a friend or member (and pointers to, references to, and
objects of classes publicly derived from this class). For example:

class B {
protected:

inti;
} ;

class 01
} ;

public B {

class D2 : public B {
friend void fr(B*,0l*,02*);
void mem(B*,0l*);

} ;

void fr(B* pb, D1* pl, D2* p2)
{

pb->i • 1; II illegal
pl->i = 2; II illegal
p2->i = 3; II ok (access through a 02)

Ct+ Reference Manual 73

§11 Member Access Control

void 02::mem(B* pb, Dl* pl)
{

pb->i = l;
pl->i • 2;
i = 3;

// illegal
// illegal
// ok (access through 'this')

void g(B* pb, Dl* pl, D2* p2)
{

pb->i = l;
pl->i = 2;
p2->i = 3;

// illegal
// illegal
// illegal

11.6 Access to Virtual Functions
The access rules (§11) for a virtual function are determined by its declaration and are not
affected by the rules for a function that later overrides it. For example:

class base {
public:

virtual f();
} ;

class derived public base {
private:

f () ;
} ;

void f ()
{

derived d;
base* pb = &d;
derived* pd• &d;

pb->f();

pd->f();

Access is checked at the call point.

11.7 Multiple Access

// ok: base::£() is public,
// derived::£() is invoked
// error: derived::f() is private

li a name can be reached through several paths through a multiple inheritance graph, the
access is that of the path that gives most access. For example:

class W
class A
class B
class C

public: f () ; } ;
private W { } ;
public w { } ;
public A, public B { f () { W: : f () ; } } ; // ok

Since w: : f () is available to c : : f <) along the public path through B access is legal.

74 C++ Reference Manual

J

C

§ 12 Special Member Functions

12. Special Member Functions
Some member functions are special in that they affect the rules for how objects of a class are
created, copied, and destroyed, and how values may be converted to values of other types. In
many cases such special functions are called implicitly.

'These member functions obey the usual access rules (§11). For example, declaring a
constructor protected ensures that only derived classes and friends can create objects using
it.

12.1 Constructors
A member function with the same name as its class is called a constructor; it is used to
construct values of its class type. If a class has a constructor, each object of that class will be
initialized before any use is made of the object; see §12.6.

A constructor can be invoked for a canst or volatile object even if it is not declared to be a
c::::.st or volatile member function (§9.3.1). A constructor may not be virtual.

A de:".:zult constructor for a class xis a constructor that can take no argument, that is, of the form
x: : x () . A default constructor will not be generated for a class x if any constructor has been
declared for class x. A constructor that can be called with no arguments because of default
arguments, for example x: : x (int=O), is not a default constructor.

A C.."'".,:Y constructor for a class xis a constructor that can be called to copy an object of class x;
that is, one that can be called with a single argument of type x. For example, x: : x C con st
X& > and x: : x (X&, int=O) are copy constructors. A copy constructor is only generated if
needed (§12.8) and if no copy constructor is declared.

Constructors are not inherited. · However, default constructors and copy constructors are
generated (by the compiler) where needed (§ 12.8). Generated constructors are public.

A constructor for a class x may not take an argument of type x. For example, X: :X (X) is
illegal.

Constructors for array elements are called in increasing subscript order.

Ha class has base classes or member objects with constructors, their constructors are called
before the constructor for the derived class. The constructors for base classes are called first.
See § 12.6.2 for an explanation of how arguments can be specified for such constructors and
how the order of constructor calls is determined.

An object of a class with a constructor cannot be a member of a union.

No return type (not even void) can be specified for a constructor. A return statement in the
body of a constructor may not specify a return value. It is not possible to take the address of a
constructor.

A constructor can be used explicitly to create new objects of its type, using the syntax

typedef-no.me argument-list opt)

For example,

complex zz • complex(l,2.3);
cprint(complex(7.8,l.2));

An object created in this way is unnamed (unless the constructor was used as an initializer for
a named variable as for zz above), with its lifetime limited to the expression in which it is
created; see §12.2.

Member functions may be called from within a constructor; see §12.7.

C++ Reference Manual 75

§12 Speclal Member Functions

12.2 Temporary Objects
When compiling GH-it is sometimes necessary and sometimes just convenient (for the
compiler) to introduce a temporary variable. The use of such temporary variables is
implementation dependent. When a compiler induces a temporary variable of a class that has
a constructor then it must ensure that a constructor is called for the temporary variable.
Similarly, the destructor must be called for an object of a class where a destructor is defined.
For example,

class X {
II

public:

} ;

II
X(int);
X(X&);
... x ();

X f(X);

void g ()
{

X a(l);
X b = f(X(2));
a= f(a);

Here, one might use a temporary in which to construct x (2) before passing it to f (> by
x (X& >; alternatively, x (2) might be constructed in the space used to hold the argument for
the first call of f () . Also, a temporary might be used to hold the result of f < x (2)) before
copying it to b by x (X&); alternatively, f () 's result might be constructed in b. On the other
hand, for many functions f (), the expression a•f (a) requires a temporary for either the
argument a or the result off (a) to avoid undesired aliasing of a.

The compiler must ensure that a temporary object is destroyed. There are only two things that
can be done with a temporary: fetch its value (implicitly copying it) to use in some other
expression, or bind a reference to it. If the value of a temporary is fetched, that temporary is
then dead and can be destroyed immediately. If a reference is bound to a temporary, the
temporary must not be destroyed until the reference is. This destruction must take place
before exit from the scope in which the temporary is created.

Another form of temporaries is discussed in §8.4.3.

12.3 Conversions
Type conversions of class objects can be specified by constructors and by conversion functions.

Such conversions, often called user-defined conversions, are used implicitly in addition to
standard conversions (§4). For example, an assignment to an object of class x is legal not only
if the type T of the assigned value is x, but also if a conversion has been declared from T to x.
User-defined conversions are used similarly for conversion of initializers (§8.4), function
arguments (§5.2.2, §8.2.5), function return values (§6.6.3, §8.2.5), expression operands (§5),
expressions controlling iteration and selection statements (§6.5, §6.4), and explicit type
conversions (§5.2.3, §5.4).

See § 13.2 for a discussion of the use of conversions in function calls as well as examples below.

A conversion may not be defined by both a constructor and a conversion function. For
example:

76 Ct+ Reference Manual

C

§12 Special Member Functions

class B;

class A {

II ...
A(const B&);

} ;

class B {

II ...
operator A(); II error: a conversion of a B to an A

II is already declared
} ;

12.3.1 Conversion by Constructor
A constructor taking a single argument specifies a conversion from its argument type to the
type of its class. For example:

class X {
I I ...
X(int);
X(const char*, int= 0);

} ;

f(X arg) {

X a = l; II a = X (1)

X b = "asdf"; II b' = X("asdf",0)
a= 2; II a = X(2)
f (3); II f(X(3))

When no constructor for class x accepts the assigned type, no attempt is made to find other
constructors to convert the assigned value into a type acceptable to a constructor for class x.
For example:

X(int); };
Y(X); };

class X {
class Y {
Ya= l; II illegal: Y(X(l)) not tried

12.3.2 Conversion Functions
A member function of a class x with a name of the form

conversion-function-name:
operator conversion-type-name

conversion-type-name:
type-specifiers ptr-operator opt

specifies a conversion from x to the type specified by the conversion-type-name. Neither
argument types nor return type may be specified. The type of a conversion function from a
type F to a type Tis T*F:: ().

Conversion operators are inherited.

An example:

CH-Reference Manual 77

§12 Speclal Member Functions

class X {
I I ...
operator int();

} ;

X a;
inti= int(a);
i = (int)a;
i = a;

In all three cases the value assigned will be converted by X: : operator int(). User-defined
conversions are not restricted to use in assignments and initializations. For example:

X a, b;
I I ...
inti= (a) ? l+a : 0;
int j = (a&&b) ? a+b: i;

At most one user-defined conversion (constructor or conversion function) is implicitly applied
to a single value. For example:

class X { operator int(); };
class Y { ... operator X(); };
Ya;
int b = a; II illegal:

II a.operator X() .operator int() not tried
int C == X (a); II ok: a.operator X() .operator int()

12.4 Destructors
A member function of class cl named ... cl is called a destructor; it is used to destroy values of
type cl immediately before the object containing them is destroyed. It takes no arguments,
and no return type can be specified for it. A destructor can be invoked for a const object
even if it is not declared to be a const member function (§9.3.1).

Base class destructors are implicitly executed after the destructors for their derived classes.
Destructors for non-virtual base classes are executed in reverse order of their declaration in the
derived class. Destructors for virtual base classes are executed after destructors for non-virtual
base classes in the reverse order of their appearance in a depth-first left-to-right traversal of the
directed acyclic graph of base classes. Member destructors are implicitly executed in reverse
order of their declaration in the class they are members of. A destructor for a member object
is executed after the destructor for the object it is a member of. This rule applies recursively
for virtual bases of virtual bases.

Destructors are not inherited. A destructor calling destructors for bases and members are
generated for a derived class. Generated destructors are public.

Destructors for elements of an array are called in reverse order of their construction.

A destructor may be virtual.

It is not possible to take the address of a destructor.

Member functions may be called from within a destructor; see §12.7.

An object of a class with a destructor cannot be a member of a union.

Destructors are invoked implicitly when an auto (§3.5) or temporary (§12.2, §8.4.3) object goes
out of scope and for static (§3.5) objects at program termination (§3.4). They can be invoked
through use of the delete operator (§5.3.4) for objects allocated by the new operator (§5.3.3)
and explicitly using the destructor's fully qualified name. When invoked by the delete

78 C++ Reference Manual

)

§12 Speclal Member Functions

operator, memory is freed by the destructor for the most derived class (§12.6.2) of the object
using an operatordelete() (§5.3.4). For example,

class X { /* ... */ XO; };

void* operator new(size_t, void* p) { return p; }

void f(X* p);

static char buf[sizeof(X)];

void g ()
{

X* p - new X(args); // allocate and initialize
f(p);
delete p; // cleanup and deallocate

p - new(&buf) X(args); // use buf[] and initialize
f(p);
p->X::~X(); // cleanup

Explicit calls of destructors are only necessary for objects placed at specific addresses using a
new operator as shown in the example. Such use of explicit placement and destruction of
objects can be necessary to cope with dedicated hardware resources and for writing memory
management facilities.

12.5 Free Store
When a class object is created with the new operator, an operator new() function is
(implicitly) used .to obtain the store needed (§5.3.3).

An X: : operator new () for a class xis a static member (even if not explicitly declared
static). Its first argument must be of type size_t, an implementation dependent integral
type defined in the standard header <stddef .h>; it must return void*. For example:

class X {
I I ...
void* operator new(size_t);
void* operator new(size_t, arena*);

} ;

See §5.3.3 for the rules for selecting an operator new ().

An x: : operator delete () for a class xis a static member (even if not explicitly declared
static) and must have its first argument of type void*; a second argument of type size_t
may be added. It cannot return a value; its return type must be void. For example

class X {
I I ...
void operator delete(void*);

} ;

class Y {
I I ...
void operator delete(void*, size_t);

} ;

If the two argument style is used, operator delete () will be called with a second argument
indicating the size of the object being deleted. The size passed is determined by the (static)

C++ Reference Manual 79

§12 Speclal Member Functions

type of the pointer being deleted; that is, it will be correct either if the type of the pointer
argument to the delete operator is the exact type of the object (and not, for example, just the
type of base class) or if the type is that of a base class with a virtual destructor and a
destructor was defined for the derived class.

The return type of the operator delete () used determines the type of a delete expression
(§5.3.4).

The global operator new () and operator delete () are used for arrays of class objects.
The number of elements must be specified when deleting an array (§5.3.3, §5.3.4). For
example:

class X {X () ; } ;
X* p = new X[size];
delete[size] p;

The size argument is assumed to be the number of elements in the array. What happens if
this is not the case is undefined. •

Since X: : operator new () and X: : operator delete () are static they cannot be
virtual.

12.6 Initialization
An object of a class with no constructors, no private or protected members, no virtual
functions, and no base classes can be initialized using an initializer list; see §8.4.1. An object of
a class with a constructor must be either initialized or have a default constructor (§12.1). The
default constructor is used for objects that are not explicitly initialized.

12.6.1 Explicit lnltializatfon
Objects of classes with constructors (§12.1) can be initialized with a parenthesized expression
lisL This list is taken as the argument list for a call of a constructor doing the initialization.
Alternatively a single value is specified as the initializer using the= operator. In this case, its
value is used as the initial value for the object if it is of the object's class or of a class publicly
derived from that class; otherwise it is used as an argument to a constructor. For example:

class complex {
public:

} ;

complex();
complex(double);
complex(double,double);
II ...

complex sqrt(complex,complex);

80 Ct+ Reference Manual

§ 12 Special Member Functions

complex a(l); // initialize by a call of
// complex::complex(double)

complex b = a; // initialize by a copy of 'a'
complex c = complex(l,2); // initialize by a call of

// complex::complex(double,double)
complex d = sqrt(b,c); // initialize by a call of

// sqrt(complex,complex);
complex e; // initialize by a call of

// complex::complex()
complex z = 3; // initialize by a call of

// complex::complex(double)

Overloading of the assignment operator= has no effect on initialization. If a copy constructor
(§12.1) exists, it will be invoked when an object is initialized with another object of that class
(as for b above), but not when an object is initialized with a constructor (as for c above).

Arrays of objects of a class with constructors use constructors in the initialization (§12.1) just
like individual objects. If there are fewer initializers in the list than elements in the array, the
default constructor (§12.1) is used. If there is no default constructor the initializer-list must be
complete. For example,

complex cc= { 1, 2 }; // error; use constructor
complex v[6] = { 1,complex(l,2),cornplex(),2 };

Here, v [0] and v [3] are initialized with complex: : complex (double), v [1] are initialized
with complex: : complex (double, double), and v [2 J, v [4], and v [5] are initialized with
complex: : complex () .

An object of class M can be a member of a class x only (1) if M does not have a constructor, or
(2) if M has a default constructor, or (3) if x has a constructor that specifies actor-initializer
(§12.6.2) for that member. In case 2 the default constructor is called when the aggregate is
created. If a member of an aggregate has a destructor then that destructor is called when the
aggregate is destroyed.

Constructors for non-local static objects are called in the order they occur in a file; destructors
are called in reverse order. See also §3.4, §6.7, §9.4.

12.6.2 Initializing Bases and Members
Initializers for base classes and for members may be specified in the definition of a constructor.
This is most useful for class objects, constants, and references where the semantics of
initialization and assignment differ. Actor-initializer has the form

ctor-initiali:zer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initiali:zer:
class-name (expression-list0pt)
identifier (expression-lisfopt)

The argument list is used to initialize the named non-static member or base class object. This
is the only way to initialize const and reference members. For example:

C++ Reference Manual 81

§12 Special Member Functions

struct basel
struct base2

basel(int);
base2(int);

struct derived: basel, base2 {
derived(int);
basel b;
const c;

} ;

derived::derived(int a)

} ;
} ;

base2(a+l), basel(a+2), c(a+3), b(a+4)
{ I* ... *I }

derived d (10) ;

First, the base classes are initialized in declaration order (independent of the order of mem­
initializers), then the members are initialized in declaration order (independent of the order of
mern-initializers), then the body of derived: :derived() is ~xecuted (§12.1). The declaration
order is used to ensure that sub-objects and members are destroyed in the reverse order of
initialization.

Virtual base classes constitute a special case. A virtual base is constructed before any of its
deriYed. classes. Virtual bases are constructed before any non-virtual bases and in the order
they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes.
This rule applies recursively for virtual bases of virtual bases.

A complete object is an object that is not a sub-object representing a base class. Its class is said
to be the most derived class for the object. All sub-objects for virtual base classes are initialized
by the constructor of the most derived class. If a constructor of the most derived class does
not specify a mem-initializer for a virtual base class then that virtual base class must have a
default constructor or no constructors. Any mem-initializers specified in a constructor for a
class that is not the class of the complete object are ignored. For example:

class v
class A
class B
class c

public: V(); V(int); I* ... *I };
public virtual V { public: A(); A(int); I* ... */ };
public virtual V { public: B(); B(int); I* ... *I };
public A, public B { public: C(); C(int); /* ... */ };

A: :A(int i) V(i) { I* *I
B: :B (int i) { I* ... *I
C: :C(int i) { I* ... *I
V v(l); II use V(int)
A a(2); II use V(int)
B b(3); II use V()
C c(4); II use V()

A mem-initializer is evaluated in the scope of the constructor in which it appears. For example,

class X {
int a;

public:
const int& r;
X(): r(a) {}

initializes x : : r to refer to x : : a for each object of class x.

82 C++ Reference Manual

J

§12 Speclal Member Functions

12.7 Constructors and Destructors
Member functions may be called in constructors and destructors. This implies that virtual
functions may be called (directly or indirectly). The function called will be the one defined in
the constructor's (or destructor's) own class or its bases; but not any function redefining it in a
derived class. This ensures that unconstructed objects will not be accessed during construction
or destruction. For example:

class X {
public:

virtual void f();
X () { f () ; } / / calls X: : f ()
""X () { f () ; } / / calls X: : f ()

} ;

class Y: public X {
int& r;
void f() { r++; // disaster if r is uninitialized
Y (int& rr) : r (rr) {}

} ;

A constructor for an abstract class may not call a member function for the object for which it
was invoked.

12.8 Copying Class Objects
A class object can be copied in two ways, by assignment (§5.17) and by initialization (§12.1,
§8.4, including function argument passing (§5.2.2) and function value return (§6.6.3)).
Conceptually, for a class x these two operations are implemented by an assignment operator
and a copy constructor (§12.1). The programmer may define one or both of these. If not
defined by the programmer, they will be defined as member-wise assignment and member­
wise initialization of the members of x, respectively.

If all bases and members of a class x have copy constructors accepting const arguments the
generated copy constructor for x will take a single argument of type const X&:

X: : x (con st X&)

otherwise it will take a single argument of type X& :

X: : X (X&)

and copying of const x objects will not be possible.

Similarly, if all bases and members of a class x have assignment operators accepting const
arguments the generated assignment operator for X will take a single argument of type const
X&:

X& X::operator•(const X&)

otherwise it will take a single argument of type X&:

X& X::operator•(X&)

and copying of const x objects will not be possible. The default assignment operator will
return a reference to the object for which is is invoked. Generated assignment operators are
public.

Using member-wise assignment and member-wise initialization implies that if a class x has a
member of a class M, M's assignment operator and M's copy constructor are used to implement
assignment and initialization of the member, respectively. If a class has a constant member, a
reference member, or a member of a class with a private operator==(), the default

C++ Reference Manual 83

§12 Special Member Functions

assignment operation cannot be generated. Similarly, if a member of a class M has a private
copy constructor then the default copy constructor cannot be generated.

The default assignment and copy constructor will be declared, but they will not be defined
(that is, a function body generated) unless actually needed. That is, x: : operator=() will be
generated only if no assignment operation is explicitly declared and an object of class x is
actually assigned an object of class x or an object of a class derived from x or if the address of
x: : operator= is taken. Initialization is handled similarly.

If generated, assignment and copy constructor will be public members and the assignment
operator for a class x will be defined to return a reference of type X& referring to the object
assigned to.

If a class x has any x:: operator= () defined, even one that takes an argument of a type
unrelated to X, X: : operator= (const X&) will not be generated. If a class has any copy
constructor defined, x (const X&) will not be generated. For example:

class X {

II ...
X(int);
X(const X&, int= 1);

} ;

X a (1) ; II calls X(int);
X b(a,O); II calls X(const X&,int);
X C = b; II calls X(const X&,int);

Assignment of class objects of class xis defined in terms of X: :operator (const X&). This
implies that objects of a derived class can be assigned to objects of a public base class. For
example:

class X {

public:
int b;

} ;

class y : public X {

public:
int Ci

} ;

void f ()
{

X xl;
y yl;

xl = yl; II ok
yl = xl; II error

.
Here yl . b is assigned to xl . b and yl . c is not copied.

Copying one object into another using the default copy constructor of the default assignment
operator does not change the structure of either object. For example:

84 C++ Reference Manual

_)

J

§ 12 Speclal Member Fu ncttons

struct s {
virtual f () ;
I I ...

} ;

struct ss : publics {
f ();
II

} ;

void f ()

s a;
ss b;
a= b;
b = a;
a.f();
b.f();

// really a.s::operator=(&b)
II error
// calls s::f
// calls ss::f

The call a. f () will invokes: : f () (as is suitable for an object of class s (§10.2)) and the call
b. f {) will call ss: : f () (as is suitable for an object of class ss).

An object of a class x with a constructor cannot be passed as an argument to a function that
does not supply an appropriate argument declaration (§8.2.5). For example,

class X {
I I ...
X(X&);

} ;

int f(int ...);

void g(X a)

f(l,a); // error: no formal argument for object
// of class with copy constructor

CH-Reference Manual 85

§13 Overloading

13. Overloading
When several different function declarations are specified for a single name in the same scope,
that name is said to be overloaded. When that name is used, the correct function is selected
by comparing the types of the actual arguments with the formal argument types. For example,

double abs(double);
int abs(int);

// call abs(int); abs(l);
abs (1. 0); // call abs(double);

Since for any type T, a T and a T& accept the same set of initializers, functions with argument
types differing only in this respect may not have the same name. For example,

int f(int i) { /* ... */ }
int f(int& r) { /* ... */ } // error: function types

// not sufficiently different

Similarly, since for any type T, a T, a const T, and a volatile T accept the same set of
ini tia.lizers, functions with argument types differing only in this respect may not have the same
name. It is, however, possible to distinguish between const T&, volatile T&, and plain T&

so functions that differ only in this respect may be defined.

Functions that differ only in the return type may not have the same name.

Member functions that differ only in that one is a static member and the other isn't may not
have the same name (§9.4).

A typedef is not a separate type, but only a synonym for another type (§7.13). Therefore,
functions that differ by typedef "types" only may not have the same name.· For example,

.J

typedef int Int; --)

f(int i) { /* ... */ }
f(Int i) { /* ... */ } // error: redefinition off

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded
functions. For example,

enum E {a};

£ (int i) { / * . . . * / }
f (E i) { /* ... */ }

Argument types that differ only in a pointer * vs an array [l are identical. Note that only the
second and subsequent array dimensions are significant in argument types (§8.2.4):

f(char*);
f(char[]); // same as f(char*);
f(char[7]); // same as £(char*);
f(char[9]); // same as £(char*);

g (char (*) [10]) ;
g (char [5] [10]);
g (char [7] [10]) ;
g (char (*) [2 0]) ;

I I same as g(char(*) [10]);
// same as g (char(*) [10]);
// different from g(char(*) [10]);

13.1 Declaration Matching
Two function declarations of the same name refer to the same function if they are in the same
scope and have identical argument types (§13). A function member of a derived class is not in

86 Ct+ Reference Manual

§13 Overloadlng

the same scope as a function member of the same name in a base class. For example,

class B {
public:

int f(int);
} ;

class D: public B {
public:

int f(char*);
} ;

Here D:: f (char*) hides B:: f (int) rather than overloading it. So:

void h (D* pd)
{

pd->f(l);
pd->B: :f(l);
pd->f("asdf");

II error: D::f(char*) hides B::f(int)
II ok
I I ok, calls D: : f ·

A locally declared function is not in the same scope as a function in file scope.

int f(char*);
void g ()
{

extern f (int);
f("asdf"); // error: f(int) hides f(char*)

II so there is no f(char*) in this scope

Different versions of an overloaded member function may be given different access rules. For
example:

class buffer {
private:

char* p;
int size;

protected:
void buffer(int sz, char* store) { size= sz; p = store; }
I I ...

public:
void buffer(int sz) { p • new char[size = sz]; }
I I ...

} ;

13.2 Argument Matching
A call of a given function name chooses, from among all functions by that name that are in
scope, the function that best matches the actual arguments. The best-matching function is the
intersection of sets of functions that best match on each argument. Unless this intersection has
exactly one member, the call is illegal.

For purposes of argument matching, a function with n default arguments (§8.2.6) is considered
to be n + 1 functions with different numbers of arguments.

For purposes of argument matching, a non-static member function is considered to have an
extra argument specifying the object for which it is called. This extra argument requires a
match by either the object or pointer specified in the explicit member function call notation

Ct+ Reference Manual 87

§13 Overloading

(§5.2.4) or by the first operand of an overloaded operator (§13.4). Where the member function
is explicitly called for a pointer using the-> operator, this extra argument is assumed to have
type const X* for const members and X* for others. Where the member function is
explicitly called for an object using the . operator or the function is invoked for the first
operand of an overloaded operator (§13.4), this extra argument is assumed to have type const
X& for const members and X& for others.

An ellipsis in a formal argument list (§8.2.5) is a match for an actual argument of any type
except a type T for which T (T&) exists.

A function matches on an argument only if there exists an admissible sequence of conversions
leading from the type of the actual argument to the type of the corresponding formal
argument. A sequence is admissible unless it contains an admissible subsequence or more
than one user-defined conversion. A best-matching sequence is an admissible sequence for
which no better admissible sequence exists.

For example, int->f loat->double is a sequence of conversions from int to double, but it
is not an admissible sequence because it contains the shorter admissible sequence int -
>d.:,::.ble; thus the rule against admissible sub-sequences ensures that only shortest sequences
of conversions are ever considered.

Except as mentioned below, the following trivial conversions involving a type T do not affect
which of two conversion sequences is better:

from: to:
T T&
T& T
T [] T*
T(args) (*T) (args)
T const T
T volatile T

Sequences of trivial conversions that differ only in order are indistinguishable.

A temporary variable is needed for a formal argument of type T & if the actual argument is not
an]value, has a type different from T, or is a canst and T isn't. In this case, a conversion of a
T to a T& is not a trivial conversion but a conversion requiring a temporary (see [4] below).

Sequences of conversions are considered according to these rules:

(1) Exact match: Sequences of zero or more trivial conversions are better than all other
sequences. Of these, those that do not convert T* to canst T*, T* to volatile T*, T& to
const T&, or T& to volatile T& are better than those that do.

[2] Match with promotions: Of sequences not mentioned in {l], those that contain only integral
promotions (§4.1), conversions from float to double, and trivial conversions are better than
all others.

[3] Match with standard conversions: Of sequences not mentioned in [2], those with only
standard (§4) and trivial conversions are better than all others. Of these, if B is publicly
derived directly or indirectly from A, converting a B* to A* is better than converting to void*
or const void*; further, if C is publicly derived directly or indirectly from B, converting a C*
to B* is better than converting to A* and converting a C& to B& is better than converting to A&.

[4] Match with conversions requiring temporaries: Of sequences not mentioned in [3], those
that involve only conversions to T& requiring the use of temporary values (§8.4.3), user-defined
(§12.3), standard (§4) and trivial conversions are better than all other sequences.

[5] ~fatch with user-defined conversions: Of sequences not mentioned in [41, those that involve
onlv user-defined conversions (§12.3), conversions to T& requiring the use of temporary values
(§8:4.3), standard (§4) and trivial conversions are better than all other sequences.

88 Ct+ Reference Manual

J

C

§13 Overloading

[6] Match with ellipsis: Sequences that involve matches with the ellipsis are worse than all
others.

13.2.1 Examples
Consider

f(char&);
f (short);
f(char*);

void g()
{

f('c'); // call f(char&);
char v[lO];
f(v); // call £(char*);
const char ch= 'c';
f(ch); // call f(char&);
f(3); // call f(short);

Here, temporary variables are needed for the first call of f () because ' c' is a literal (of type
char) and also for the third call because ch is a const char rather than the required char.
Since f (3) can be interpreted as a call of f (short) without the use of a temporary variable,
f (short) is preferred to f (char&) which requires the use of a temporary.

Note that O is of type int so that it is an exact match on an int argument but a match with
standard conversions on arguments of types short, double, char*, etc.:

int £(char);
int £(double);

void g (short si)
{

// matches f(char) f('a');
f (0); // ambiguous: the int O can be converted

// to either char or double
f(si); // ambiguous: si can be converted

// to either char or double
f (L Of); // matches £(double)

The last call is not ambiguous because the promotion from float to double is better than the
standard conversion· of a float to a char.

Integral promotions (§4.1) are implementation dependent:

int £(int);
int £(unsigned);

void g(unsigned short us)
{

inti= f(us);

Here f (int) is called if sizeof (short) <sizeof (int); otherwise f (unsigned) is called.

Enumerators are of the type of their enumeration (§7.2) and can be used in overloaded
function calls:

Ct+ Reference Manual 89

§13 Overloading

enum e { A, B } ee;

void f(int);
void f (e);

void g()

{

f (0) ; II matches f(int)
f (A) ; II matches f(e)
f(A+l); II matches f(int)
f(ee); II matches f(e)

It is possible to declare two functions that differ only in const in a pointer or reference
argu:rnent:

void f(const int*);
void f(int*);

void g(const int a, int b)
f(&a); II calls f(const int*)
f(&b); II calls f(int*)

This is especially important in the case of const objects and const member functions:

class x {
public:

void f() const;
void f ();
I I ...

} ;

void g(const X& a, X b)

a.f ();
b.f ();

II calls X::f() const
II calls X::f()

An inheritance hierarchy defines a preference order for the standard pointer and reference
conversions (§4.6, §4.7):

class A{};
class B public A{};
class C: public B {};

void g (A*);
void g(B*);

C cc;

void f ()

g(&cc); I/ ok: call g(B*)

In a sense, void* is the root of such hierarchies:

90 Ct+ Reference Manual

J

(.. -

void h(void*);
void h(A*);

void hh ()
{

h(&cc);
h (0);

§13 Overloading

// ok: call h(A*)
// error: ambiguous

Standard conversions (§4) may be applied to the argument for a user-defined conversion, and
to the result of a user-defined conversion:

struct S { S(long); operator int(); };

int f(long), £(char*);
int g(S), g(char*);
int h(S&), h(char*);

void k(S& a)
{

f(a); // f(long(a.operator int()))
g(l); // g(S(long(l)))
h(l); // h(S(long(l)))

If user-defined coercions are needed for an argument, no account is taken of any standard
coercions that might also be involved. For example,

class x {
public:

x(int);
} ;

classy {
public:

y(long);
} ;

extern f (x) ;
extern f (y) ;

void g()
{

f(l); // ambiguous

The call f (1) is ambiguous despite f (y (long (l))) needing one more standard conversion
thanf(x(l)).

ff different combinations of standard or user-defined conversions are possible, the call is
ambiguous:

CH-Reference Manual 91

§13 Overloading

extern f(int,long);
extern f(long,int);

void g()
{

f(3,4); // ambiguous

A call needing only standard conversions is preferred over one requiring user-defined
conversions:

extern h(int,complex);
extern h(double,double);

void hh ()
{

h(3,4); II ok: h(double(3),double(4)}

However, where identical conversions exist for an argument, matching is determined by other
arguments (if any):

extern k(int,complex);
extern k(double,complex);

void kk () {
k{l,2);

k(l.0,2);

}

// ok: k(l,complex(2)),
// that is, k(int,complex);

// ok: k(l.O,complex(2)),
// that is, k(double,complex);

No preference is given to conversion by constructor (§12.1) over conversion by conversion
function (§12.3.2) or vice versa:

struct X {
operator int();

} ;

struct Y {
Y(X);

} ;

Y operator+(Y,Y);

void f(X a, X b)
{

a+b; II
II
II

error, ambiguous:
operator+(Y(a), Y(b)) or
a.operator int() + b.operator int()

Default arguments can cause ambiguities:

92 C++ Reference Manual

J

int f ();
int f(int i 1);

void g()
{

f(ll);

f () ;
II fine
II error, ambiguous: f() or f(l)

The ellipsis (...) can also cause ambiguities:

f(int);
f (int ...) ;
f(int, char* ...);

void g ()
{

§13 Overloading

f (1) ;

f (1,2);
f(l,"asdf");

II error, ambiguous: f(int) or f(int ...)
II fine: f{int ...)
II fine: f(int, char* ...)

f (1, "asdf", 2); II fine: f(int, char* ...)

13.3 Address of Overloaded Function
A us.e of a function name without arguments picks out, among all functions of that name that
are in scope, the (only) function that matches the target, which may be

an object being initialized (§8.4)

a parameter of a function (§5.2.2)

a parameter of a user-defined operator (§13.4)

the right side of an assignment (§5.17)

Note that if f () and g () are both overloaded functions, the cross product of possibilities must
be considered to resolve f (&g), or the equivalent expression f (g).

For example:

int f (double) ;
int f(int);
int (*pfd) (double) = &f;
int (*pfi) (int) • &f;
int (*pfa) (...) • &f; II error: type mismatch

The last initialization is an error because no f () with type int (... > has been defined, and
not because of any ambiguity.

Note also that there are no standard conversions (§4) of one pointer to function type into
another (§4.6). In particular, even if B is a public base of o we have:

O* f ();
B* (*pl)() === &f; II error

void g(O*);
void (*p2) (B*) = &g; II error

C++ Reference Manual 93

§13 Overloadlng

13.4 Overloaded Operators
Most operators can be overloaded.

operator-function-name:
operator operator

operator: one of
new delete
+ *

= <
&= I=

<= >= &&
() []

I
>
<<
11

% A & I
+= *= I= %=
>> >>= <<= == !=
++ ->* ->

The last two operators are function call (§5.2.2) and subscripting (§5.2.1).

Both the unary and binary forms of

+
can be overloaded.

* &

The following operators cannot be overloaded:

* ? :

nor can the preprocessing symbols t and H (§16).

Operator functions are usually not called directly; instead they are invoked to implement
operators (§13.4.1, §13.4.2). They can be explicitly called, though. For example:

complex z - a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);

The operators new and delete are described in §5.3.3 and §5.3.4 and the rules described
below in this section do not apply to them.

An operator function must either be a member function or take at least one argument of class
type. It is not possible to change the precedence, grouping, or number of operands of
operators. The pre-defined meaning of the operators= and (unary) & applied to class objects
may be changed. With the exception of operator= () operator functions are inherited; see
§12.8 for a description of the rules for operator= ().

Identities among operators applied to basic types (for example ++a= a+-=l) need not hold for
operators applied to class types. Some operators, for example assignment, require an operand
to be an lvalue when applied to basic types; this is not required when the operators are
declared for class types.

13.4.1 Unary Operators
A unary operator, whether prefix or postfix, may be declared by a non-static member function
(§9.3) taking no arguments or a non-member function taking one argument. Thus, for any
unary operator @, both x@ and @x can be interpreted as either x. operator@<) or
operator@ (x). If both forms of the operator function have been declared, argument
matching (§13.2) determines which, if any, interpretation is used. When the operators++ and
-- are overloaded, it is not possible to distinguish prefix application from postfix application
from within the overloading function.

94 C++ Reference Manual

C

§13 Overloading

13.4.2 Binary Operators
A binary operator may be declared either by a non-static member function (§9.3) taking one
argument or by a non-member function taking two arguments. Thus, for any binary operator
@, x@y can be interpreted as either x. operator@ (y) or operator@ (x, y). If both forms of
the operator function have been declared, argument matching (§13.2) determines which, if any,
interpretation is used.

13.4.3 Assignment

The assignment function operator• () must be a non-static member function; it is not
inherited (§12.8). Instead, unless the user defines operator= for a class X, operator= is
defined, by default, as memberwise assignment of the members of class x:

X& X::operator=(const X& from)
{

/* copy members of X */

13.4.4 Function Call

Function call

primary-expression (expression-list opt)

is considered a binary operator with the primary-expression as the first operand and the possibly
empty expression-list as the second. The name of the defining function is operator (). Thus,
a call x (argl, arg2, arg3) is interpreted as x.operator O (argl, arg2, arg3) for a class
object x. operator() must be a non-static member function.

13.4.5 Subscripting

Subscripting

primary-expression expression

is considered a binary operator. A subscripting expression x [y] is interpreted as
x. operator (] (y) for a class object x. operator [J must be a non-static member function.

13.4.6 Class Member Access
Class member access using ->

primary-expression - > primary-expression

is considered a unary operator. An expression x->m is interpreted as (x. operator-> ()) -
>rn for a class object x. It follows that operator-> () must either return a pointer to a class
object or an object of a class for which operator-> () is defined. operator-> must be a
non-static member function.

C++ Reference Manual 95

§14 Templates (experimental)

14. Templates (experimental)
<< The template design is experimental; see Bjarne Stroustrup: Parameterized T-ypes for C++,
Proc. USENIX C++ Conference, Denver, October, 1988. >>

96 C++ Reference Manual

____________________ • §15 Exception Handling (experimental)

15. Exception Handling (experimental)
<< The exception handling design is experimental »

C

Ct+ Reference Manual 97

§16 Complier Control Lines

16. Compiler Control Lines
This section will be replaced with one based on the preprocessing defined for ANSI C. The
obvious adjustment for the additional C+1-keywords and tokens will be made. C++ style
comments will be added so that the two styles of comments can be used to comment out each
other as described in (§2.2), so that macro expansion will not take place within / / comments,
and so that / / style comments appearing in macro definitions will be turned into whitespace
before the macro is expanded.

The compiler contains a preprocessor capable of macro substitution, conditional compilation,
and incl us ion of named files.

The name __ cplusplus is defined when compiling a C++ program.

Lines beginning with t communicate with this preprocessor. These lines have syntax
independent of the rest of the language; they may appear anywhere and have effect which
lasts (independent of scope) until the end of the source program file.

Note that const and inline definitions provide alternatives to many uses of #define.

16.1 Token Replacement
A compiler-control line of the form

#define identifier token-string

causes the preprocessor to replace subsequent instances of the identifier with the given string
of tokens. Semicolons in, or at the end of, the token-string are part of that string. A line of
the form

tdef ine identifier< identifier , . . . , identifier > token-string

where there is no space between the first identifier and the (, is a macro definition with
arguments. Subsequent instances of the first identifier followed by a (, a sequence of tokens
delimited by commas, and a) are replaced by the token string in the definition. Each
occurrence of an identifier mentioned in the formal argument list of the definition is replaced
by the corresponding token string from the call. The actual arguments in the call are token
strings separated by commas; however commas in quoted strings or protected by parentheses
do not separate arguments. The number of formal and actual arguments must be the same.
Strings and character constants in the token-string are scanned for formal arguments, but
strings and character constants in the rest of the program are not scanned for defined
identifiers.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a
long definition may be continued on another line by wriµng \ at the end of the line to be
continued. A control line of the form

tundef identifier

causes the identifier's preprocessor definition to be forgotten.

16.2 File Inclusion
A compiler control line of the form

#include "filename"

causes the replacement of that line by the entire contents of the file filename. The named file is
searched for first in the directory of the original source file, and then in a sequence of specified
or standard places. Alternatively, a control line of the form

98 C++ Reference Manual

C

§16 Compiler Control Lines

#include <filename>

searches only the specified or standard places, and not the directory of the source file. (How
the places are specified is not part of the language.)

Hnclude's may be nested.

16.3 Conditional Compilation
A compiler control line of the form

#if expression

checks whether the expression evaluates to non-zero. The expression must be a constant
expression (§12). In addition to the usual C++ operations a unary operator defined can be
used. When applied to an identifier, its value is non-zero if that identifier has been defined
using #define and not later undefined using #undef; otherwise its value is 0. A control line
of the form

Hf def identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has
been the subject of a #define control line. A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.

All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

and then by a control line

#endif

If the checked condition is true then any lines between #else and iendif are ignored. If the
checked condition is false then any lines between the test and a #else or, lacking a #else,
the iendif, are ignored.

These constructions may be nested.

16.4 Line Control
For the benefit of other preprocessors that generate C++ programs, a line of the form

t line constant "filename "opt

causes the compiler to believe, for purposes of error diagnostics, that the line number of the
next source line is given by the constant and the current input file is named by the identifier.
If the identifier is absent the remembered file name does not change.

C++ Reference Manual 99

Appendix A: Grammar Summary

Appendix A: Grammar Summary
This appendix is not part of the C++ reference manual proper and does not define C++
language features.

This summary of C++ syntax is intended to be an aid to comprehension. It is not an exact
statement of the language. In particular, this grammar accepts a superset of valid C++
constructs and the disambiguation rules (§6.8, §10.1.1} must be used to distinguish expressions
from declarations and access control, ambiguity, and type rules must be used to weed out
syntactically valid, but meaningless constructs.

A.1 Key Words
New context-dependent keywords are introduced into a program by typedef (§7.1.3), class
(§9), enumeration (§7.2), and template (§14) declarations:

class-name:
identifier

enum-name:
identifier

typedef-name:
identifier

Note that a typedef-name naming a class is also a class-name (§9.1).

A.2 Expressions
expression:

assignment-expression
expression , assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
• *• /• %• += -= >>= <<= &= ~- I=

conditional-expression:
logical-or-expression
logical-or-expression ? expression conditional-expression

logical-or-expression:
logical-and-expression
logical-or-expression I I logical-and-expression

logical-and-expression:
inclusive-or-expression
logical-and-expression & & inclusive-or-expression

inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression I exclusive-or-expression

exclusive-or-expression;
and-expression
exclusive-or-expression "' and-expression

1 oo Ct+ Reference Manual

and-expression:
equality-expression
and-expression & equality-expression

equality-expression:
relational-expression
equality-expression === relational-expression
equality-expression ! = relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <== shift-expression
relational-expression >= shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression I pm-expression
multiplicative-expression % pm-expression

pm-expression:
cast-expression
pm-expression . * cast-expression
pm-expression -> * cast-expression

cast-expression:
unary-expression
< type-name) cast-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression
deallocation-expression

unary-operator: one of
* & + -

allocation-expression:

Appendix A: Grammar Summary

: : opt new placement0pt restricted-type-name initializer opt
: : opt new placement0pt (type-name) initializer opt

C++ Reference Manual 101

Appendix A: Grammar Summary

placement:
(expression-list .)

restricted-type-name:
type-specifiers restricted-declarator opt

restricted-declarator:
ptr-operator restricted-declarator opt
restricted-declarator [expressionopt

deallocation-expression:
: : opt delete cast-expression
: : opt delete [expression] cast-expression

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (expression-listopt)
simple-type-name < expression-list0pt)
postfix-expression . name
postfix-expression -> name
postfix-expression ++
postfix-expression

expression-list:
assignment-expression
expression-list , assignment-expression

primary-expression:
literal
this

name:

: : identifier
: : operator-function-name
(expression)
name

identifier
operator-function-name
conversion-function-name
qualified-name

qualified-name:

literal:

class-name . . identifier
class-name • • operator-function-name
class-name . . conversion-function-name
class-name • • class-name
class-name . . - class-name

integer-constant
character-constant
floating-constant
string

A.3 Declarations

102 Ct+ Reference Manual

C

declaration:
decl-specifierSopt declarator-listopt
asm-declaration
function-definition
linkage-specification

decl-specifier:
sc-specifier
type-specifier
/ct-specifier
template-specifier
friend
typedef

decl-specifiers:
decl-specifiersopt decl-specifier

sc-specifier:
auto
register
static
extern

fct-spedfier:
inline
virtual

type-specifier:
simple-type-name
class-specifier
en um-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char
short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
en um enum-name

class-key:
class
struct
union

Appendix A: Grammar Summary

c.+ Reference Manual 103

Appendix A: Grammar Summary

en um-specifier:
enum identifier0pt { enum-listopt }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier constant-expression

constant-expression:
conditional-expression

linkage-specification:
extern string { declaration-list0pt
extern string declaration

declaration-list:
declaration
declaration-list ; declaration

A.4 Declarators
declarator-list:

init-declarator
declarator-list , init-declarator

init-declarator:
declarator initializer opt

declarator:
dname
ptr-operator declarator
declarator < argument-declaration-list) cv-qualifier-listopt
declarator [constant-expressionopt]
(declarator)

ptr-operator:
* cv-qualifier-listopt
& cv-qualifier-listopt
class-name. : : * cv-qualifier-listopt

cv-qualifier-list:
cv-qualifier cv-qualifier-list0pt

cv-qualifier:

dname:

const
volatile

name
class-name
- class-name
typedef-name

type-name:
type-specifier abstract-declarator opt

104 C++ Reference Manual

Appendix A: Grammar Summary

abstract-declarator:
ptr-operator abstract-declarator opt
abstract-declaratoropt (argument-declaration-list) cv-qualifier-listopt
abstract-declarator opt (constant-expressionopt]
(abstract-declarator)

argument-declaration-list:
arg-declaration-list0pt ... opt
arg-declaration-list ,

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declatation:
decl-specifiers declarator
decl-specifiers declarator expression
decl-specifiers abstract-declarator opt
decl-specifiers abstract-declaratoropt = expression

/ct-definition:
decl-specifiersopt declarator ctor-initializer opt /ct-body

/ct-body:
compound-statement

initializer:
• expression
= { initializer-list , opt }
(expression-list)

initializer-list:
expression
initializer-list , expression
{ initializer-list , opt

A.5 Class Declarations
class-specifier:

class-hea.d { member-listopt

class-hea.d:
class-key identifier opt base-specopt
class-key class-name base-spec0pt

member-list:
member-declaration member-listopt
access-specifier : member-lisfopt

member-declaration:
decl-specifiers"P.t member-declarator-list0pt
function-definition ; opt
qualified-name ;

member-declarator-list:
member-declarator
member-declarator-list member-declarator

C++ Reference Manual 105

Appendix A: Grammar Summary

member-declarator.
declarator pure-specifier opt
identifier opt : constant-expression

pure-specifier:
= 0

base-spec:
: base-list

base-list:
base-specifier
base-list , base-specifier

base-specifier:
class-name
virtual access-specifieropt class-name
access-specifier virtualopt class-name

access-specifier:
private
protected
public

conversion-function-name:
operator conversion-type-name

conversion-type-name:
type-specifiers ptr-operator opt

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
class-name (argument-listopt)
identifier (argument-lisfopt >

operator-function-name:
operator operator

operator: one of
new delete
+ * I % - < > +-

&=- 1- << >>
<= >= && 11 ++
() []

A.6 Statements

106 C++ Reference Manual

,.

--
>>•

&

*- 1- %=
<<= -- !=

->* ->

Appendix A: Grammar Summary

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement

labeled-statement:
identifier : dstatement
case constant-expression statement
default : statement

dstatement:
statement
declaration-statement

expression-statement:
expression0pt ;

compound-statement:
{ statement-listopt

statement-list:
dstatement
statement-list dstatement

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (for-init-statement expressionopt ; expressionopt) statement

for-init-statement:
expression-statement
declaration-statement

jump-statement:
break;
continue;
return expressionopt ;
goto identifier ;

declaration-statement:
declaration

A.7 Preprocessor

C++ Reference Manual 107

Appendix A: Grammar Summary

tde fine identifier token-string
Ide fine identifier (identifier , ... , identifier > token-string
#else
fendif
f if expression
f if def identifier
Hfndef identifier
f include "filename"
#include <filename>
t line constant "filename" opt
fundef identifier

108 C++ Reference Manual

Appendlx B: Compatlblllty

Appendix B: Compatibility
This appendix is not part of the C++ reference manual proper and does not define C++
language features.

C++ is based on C (K&R78) and adopts most of the changes specified by the draft ANSI C
report. Converting programs among C++, K&R C, and ANSI C may be subject to vicissitudes
of expression evaluation. All differences between C++ and ANSI C can be diagnosed by a
compiler. With the following two exceptions, programs that are both C-++ and ANSI C have
the same meaning in both cases:

In C, sizeof ('a') equals sizeof (int); in C++, it equals sizeof (char). In C,
given

enum e { A } ;

sizeof (A) equals sizeof (int); in C++, it equals sizeof (e), which need not equal
sizeof (int).

A structure name declared in an inner scope can hide the name of an object, function,
enumerator, or type in an outer scope. For example,

int x[99];
void f ()
{

struct x { int a; };
sizeof(x); /* size of the array in C */

/* size of the struct inc++*/

8.1 Extensions
This section summarizes the major extensions to C provided by C++.

B.1.1 C++ Features Available In 1985

This subsection summarizes the extensions to C provided by C++ in the 1985 version of this
manual:

The types of function arguments can be specified (§8.2.5) and will be checked (§5.2.2). Type
conversions will be performed (§5.2.2). This is also in ANSI C.

Single-precision floating point arithmetic may be used for float expressions; §3.6.1 and §4.3.
This is also in ANSI C.

Function names can be overloaded; §13.

Operators can be overloaded; §13.4.

Functions can be inline substituted; §7.1.1.

Data objects can be const; §7.1.6. This is also in ANSI C.

Objects of reference type can be declared; §8.2.2 and §8.43.

A free store is provided by the new and delete operators; §5.3.3, §53.4.

Classes can provide data hiding (§11), guaranteed initialization (§12.1), user-defined
conversions (§12.3), and dynamic typing through use of virtual functions (§10.2).

The name of a class or enumeration is a type name; §9.

C++ Reference Manual 109

Appendix B: Compatlblllty

Any pointer can be assigned to a void* without use of a cast; §4.6. This is also in ANSI C.

A declaration within a block is a statement; §6.7.

J\nonymous unions can be declared; §9.5.

B.1.2 Ct+ Features Added Since 1985

This subsection summarizes the major extensions of Ct+ since the 1985 version of this manual:

A class can have more than one direct base class (multiple inheritance); §10.1.

Class members can be protected; §11 .

Pointers to class members can be declared and used; §8.2.3, §5.5.

Operators new and delete can be overloaded and declared for a class; §5.3.3, §5.3.4, §12.5.
This allows the "assignment to this" technique for class specific storage management to be
remo\·ed to the anachronism section; §B.3.3.

Objects can be explicitly destroyed; §12.4.

Assignment and initialization are defined as member-wise assignment and initialization; §12.8.

The c· . .-erload keyword was made redundant and moved to the anachronism section; §B.3.

General expressions are allowed as initializers for static objects; §8.4.

Data objects can be volatile; §7.1.6. Also in ANSI C.

Initializers are allowed for static class members; §9.4.

Member functions can be static; §9.4.

Member functions can be const and volatile; §9.3.1.

Linkage to non-Ct+ program fragments can be explicitly declared; §7.4.

Operators->,->*, and , can be overloaded; §13.4.

Classes can be abstract; §10.3.

Templates (experimental); §14.

Exception handling (experimental); §15.

B.2 Ct+ and ANSI C
In general, Gt+ provides more language features and fewer restrictions than ANSI C so most
constructs in ANSI C are legal in Ct+ with their meanings unchanged. The exceptions are:

ANSI C programs using any of the C++-keywords

asm
class

catch
delete

friend
inline

as identifiers are not Ct+ programs; §2.4.

new
operator

private
protected

public
template

this
virtual

Though deemed obsolescent in ANSI C, a C implementation may impose Draconian limits on
the length of identifiers; a C++-implementation is not permitted to; §2.3.

In C++, a function must be declared before it can be called; §5.2.2.

The function declaration f () ; means that f takes no arguments (§8.2.5); in C it means that f
can take any number of arguments of any type at all. Such use is deemed obsolescent in ANSI
C.

11 o C++ Reference Manual

J

Appendix B: Compatlblllty

In A..'JSI Ca global data object may be declared several times without using the extern
specifier; in C++ it must be defined exactly once; §3.3.

In C++; a class may not have the same name as a typedef declared to refer to a different type
in the same scope; §9.1.

In A..'-JSI Ca void* may be used as the right-hand operand of an assignment to or
initialization of a variable of any pointer type; in G++ it may not; §7.1.6.

C allows jumps to bypass an initialization; Ct+ does not.

In A. 'JS! C, a global const by default has external linkage; in C-++ it does not; §3.3.

"Old style" C function definitions and calls of undeclared functions are considered
anachronisms in C++ and may not be supported by all implementations; §B.3.1. This is
deemed obsolescent in ANSI C.

Enumerators declared within a struct are in the scope of the struct in C-++ (§7.2) and in the
scope enclosing the struct in ANSI C.

Assignment to an object of enumeration type with a value that is not of that enumeration type
is considered an anachronism in C-++ and may not be supported by all implementations; §7.2.
ANS I C recommends a warning for such assignments.

SulJ': us characters are not allowed in strings used to initialize character arrays; §8.4.2.

The type of a character constant is char in C-++ (§2.5.2) and int in C.

The type of an enumerator is the type of its enumeration in C-++ (§7.2) and int in C.

In addition, the ANSI C standard allows conforming implementations to differ considerably;
this may lead to further incompatibilities between C and C-++ implementations. In particular,
some C implementations may consider certain incompatible declarations legal. G++ requires
consistency even across compilation boundaries; §3.3.

B.2.1 How to Cope
In general, a C-++ program uses many features not provided by ANSI C. In this case, the
minor differences of §B.2 don't matter since they are dwarfed by the C++ extensions. Where
ANSI C and C-++ need to share header files, more care must be taken so that such headers are
written in the common subset of the two languages:

No advantage must be taken of C-++ specific features such as classes, overloading, etc.

A name should not be used both as a structure tag and as the name of a different type.

Functions taking no arguments should be declared f (void) and not simply f (>.
Global consts must be declared explicitly static or extern.

Conditional compilation using the C-++ predefined name __ cplusplus may be used to
distinguish information to be used by an ANSI C program from information to be used by a
C-++ program.

Functions that are to be callable from both languages must be explicitly declared to have C
linkage.

B.3 Anachronisms
The extensions presented here may be provided by an implementation to make it easier to use
C programs as C-++ programs or to provide continuity from earlier C++ implementations. Note
that each of these features has undesirable aspects. An implementation providing them should
also provide a way for the user to ensure that they do not occur in a source file. A C-++

C++ Reference Manual 111

Appendix B: Compatlblllty

implementation is not obliged to provide these features.

The word overload may be used as a decl-specifier(§7) in a function declaration or a function
definition. In this case overload is a reserved word and cannot be used as an identifier.

The definition of a static data member of a class for which the default "all zeros initialization"
(§9.4) applies may be omitted.

An old-style (i.e., pre-ANSI C) C preprocessor may be used.

An ::.:1t may be assigned to an object of enumeration type.

The number of elements in an array may be left unspecified when deleting an array of a type
for v,·hich there is no destructor; §5.3.4.

B.3.1 Old Style Function Definitions
The C function definition syntax

old-function-definition:
decl-specifiersopt old-function-declarator declaration-listopt Jct-body

old-function-declarator:
declarator (parameter-list opt)

parameter-list:
identifier
parameter-list , identifier

for example

max(a,b) int b; { return (a<b) ? b: a; }

may be used. If a function defined like this has not been previously declared its argument
type will be taken to be (...) , that is, unchecked. If it has been declared its type must agree
with that of the declaration.

Class member functions may not be defined with this syntax.

B.3.2 Old Style Base Class Initializer

In a mem-initializer(§12.6.2), the class-name naming a base class may be left out provided there
is exactly one immediate base class. For example

class base {
II ...
base (int);

} ;

class derived: public base {
I I ...
derived(int i) : (i) { /* ... */ }

} ;

causes the base constructor to be called with the argument i.

B.3.3 Assignment to this

Memory management for objects of a specific class can be controlled by the user by suitable
assignments to the this pointer. By assigning to the this pointer before any use of a
member, a constructor can implement its own storage allocation. By assigning a zero value to

112 Ct+ Reference Manual

J

Appendix B: Compatlbllfty

this, a destructor can avoid the standard de-allocation operation for objects of its class.
Assigning a zero value to this in a destructor also suppressed the implicit calls of destructors
for bases and members. For example:

class cl {
int v[lO];
cl() { this == my_allocator (sizeof (cl)) ; }
-cl() { my_deallocator(this); this== 0; }

On entry into a constructor, this is non-zero if allocation has already taken place (as is the
case for auto, static, and member objects) and zero otherwise.

Calls to constructors for a base class and for member objects will take place (only) after an
assignment to this. If a base class's constructor assigns to this, the new value will also be
used by the derived class's constructor (if any).

Note that if this anachronism exists the type of the this pointer either cannot be a *ce►nst or
the enforcement of the rules for assignment to a constant pointer must be subverted for the
this pointer.

B.3.4 Cast of Bound Pointer
A pc~nter to member function for a particular object may be cast into a pointer to function, for
example, (int (*) ()) p->f. The result is a pointer to the function that would have been
called using that member function for that particular object. Any use of the resulting pointer
is - as ever - undefined.

C++ Reference Manual 113

Appendix C: Implementation Specific Behavior

This appendix describes implementation specific behavior of the AT&T C++ Language System. Imple­
mentation specific behaviors can be categorized as follows:

1. behavior that the Product Reference Manual defines as uimplementation dependent"

2. behavior that depends on the underlying C compiler or preprocessor used with Release 2.0

3. properties that are defined in the standard header files stddef. h, limits. h, and std.lib. h

4. translation limits

5. language constructs that are not implemented in this release

This appendix addresses categories 1, 2, 4, and 5. For details about properties defined in the standard
head.:r files (category 3), see the headers themselves. Additional information about constructs that are
not L-nplemented is provided in Appendix D, which contains an alphabetical listing of the 11not imple­
ment-c~" messages.

The c-rdering and numbering of sections in this appendix corresponds to the order and numbering of
the r.::lated sections in the Reference Manual. The section entitled "Translation Limits", which does not
have a corresponding section in the Reference Manual, precedes the numbered sections.

Translation Limits

Release 2.0 of the AT&T C++ Language System imposes the following translation limits:

■ 50 nesting levels of compound statements

■ 127 nesting levels of fincluded files

■ 10 nesting levels of linkage declarations

■ 4088 characters in a token

■ 22222 virtual functions in a class

■ 15000 identifiers generated by the implementation

These limits can be changed by recompiling the translator. Additional translation limits may be inher­
ited from the underlying C compiler and preprocessor.

2.3 Identifiers (Names)

Identifiers reserved by Release 2.0: In addition to identifiers that contain a sequence of two under•
scores, Release 2.0 also reserves the identifiers reserved in the proposed ANSI C standard.

114 C++ Reference Manual

.. J

J

Appendix C: Implementation Specific Behavior

2.5.2 Character Constants

~alue of multicharacter constants: The Reference Manual states that the value of a multicharacter con­
stant, such as 'abed', is implementation dependent. Release 2.0 passes these constants to the under­
lying C compiler, which detennines their values. A multicharacter constant containing more characters
than sizeof (int) is reported as an error by Release 2.0.

Value of (single) character constants: The Reference Manual states that the value of a character con­
stant is implementation dependent if it exceeds that of the largest char. Release 2.0 accepts octal and
hexadecimal character literals that do not fit in a char. It uses the low order bits that make up the
value of the constant. Thus, the octal character constant '\ 777', for example, will be tn~ated as
'\377'. The hexadecimal character constant '\x123' will be treated as '\x23'.

Wide character constants: Release 2.0 does not implement wide character constants, such as L' ab'.
A "not implemented" message is reported.

2.5.3 Floating Constants

Long double floating constants: When compiling with the +ao option, Release 2.0 will remove an l
or L suffix from a floating constant before passing the constant to the underlying C compiler. Under
the +al option such a constant will be passed unchanged to the underlying C compiler. In either case,
the constant will be considered to be of type long double for purposes of resolving overloaded func­
tion calls.

2.5.4 String Literals

Wide character strings: Release 2.0 does not implement wide character strings, such as L"abcd". A
11not implemented" message is reported.

3.4 Start and Termination

Type of main() : The Reference Manual states that the type of main() is implementation dependent.
Release 2.0 itself does not impose any restrictions on the type of main O, but the underlying C com­
piler or the target environment may impose such restrictions.

3.6.1 Fundamental types

Signed integral types: Release 2.0 does not implement the type specifier signed; it issues a warning
and proceeds as though the specifier signed had not appeared.

Long double type: When Release 2.0 is invoked with the +ao option, the type long double will be
the same size and precision as type double in the underlying C compiler. Under the +al option,
long double will passed to the underlying C compiler as long double. In either case, type long
double will be considered a distinct type for purposes of resolving overloaded function declarations
and invocations.

C++ Reference Manual 115

Appendix C: Implementation Specific Behavior

5. Expressions

Overflow and divide check: The Reference Manual states that the handling of overflow and divide
check in expression evaluation is implementation dependent. Release 2.0 detects division by zero
when the value of the denominator is known at compile time and issues a warning, but overflow and
other divide check conditions are handled by the underlying C compiler and execution environment.

5.4 Explicit Type Conversion

Explicit conversions between pointer and integral types: The Reference Manual states that the value
obtained by explicitly converting a pointer to an integral type l~ge enough to hold it is implementa­
tion dependent. This behavior is defined by the underlying C &mpiler. Similarly, the behavior when
explicitly converting an integer to a pointer depends on the underlying C compiler.

5.6 Multiplicative Operators

Sign of the remainder: The Reference Manual states that the sign of the result of the % operator is
non-negative if both operands are non-negative; otherwise, the sign of the result is implementation
dependent. This behavior depends on the underlying C compiler except when the values of both
operands are known at compile time. In this case, the sign of the result is the same as the sign of the
numerator.

5.8 Shift Operators

Result of right shift: The Reference Meinual states that the result of a right shift when the left operand
is a signed type with a negative value is implementation dependent. This behavior depends on the
underlying C compiler.

5.9 Relational Operators

Pointer comparisons: According to the Reference Manual, certain pointer comparisons are implementa­
tion dependent. For Release 2.0, the results of these comparisons depend on the underlying C com•
piler.

7 .1.1 Storage Class Specifiers

Inline functions: The Reference Manual states that the inline specifier is a hint to the compiler.
Release 2.0 performs inline substitution of inline functions wherever possible. lnline calls are not,
however, generated in the following cases:

116 C++ Reference Manual

J

Appendix C: Implementation Specific Behavior

■ For an inline function with a non-void return type, the presence of an iteration, switch, labeled,
or goto statement within the inline function precludes generating code inline. In these cases, a
warning message is issued and code to call the function out-of-line is generated.

■ For an inline function with void return type, the presence of a return statement precludes gen­
erating code inline. If a call to such a function is seen, a "not implemented" message is issued.

■ For an inline function containing a static object, a "not implemented" message is issued.

■ For an inline function containing an automatic array object, a "not implemented" message is
issued if the function is called.

■ For an in!ine function containing a recursive call, out-of-line code is generated.

■ In general, if a call to an inline function precedes (lexically) the definition of the inline function,
an out-of-line call is generated.

These restrictions may be relaxed in future releases of the AT&T C++ Language System.

7 .1.6 Type Specifiers

Volatile: Release 2.0 does not implement the type specifier volatile; it is ignored and a warning
messa g-e is issued.

Signed: Release 2.0 does not implement the type specifier signed; it is ignored and a warning mes­
sage is issued.

7.3 Asm Declarations

Effect of an asm declaration: Release 2.0 passes asm declarations to the underlying C compiler
without modification.

7.4 Linkage Specifications

Languages supported: Release 2.0 supports linkage to C and C++.

Linkage to functions: The effect of a "C" linkage specification (extern "C") on a function that is not
a member function is that the function name is not encoded with type infonnation, as is otherwise
done for C++ functions. Member functions are not affected by linkage specifications.

Linkage to non-functions: The "C" linkage specification, (extern "C") when applied to a non­
function declaration, does not affect the C code generated.

C++ Ref ere nee Manual 117

Appendix C: Implementation Specific Behavior

9.3 Member Functions

Calling a non-static member function: The Reference Manual states that the effect of calling a non­
static member function of a class X for something that is not an object of class Xis implementation
dependent. In such cases Release 2.0 generates code to call the member function and assigns to this
the address of the object for which the function is called. This behavior is not guaranteed to be sup­
ported in future releases of the AT&r:T C++ Language System.

9.6 Bit Fields

Allocation and alignment of bit fields: The Reference Manual states that the allocation and alignment
of bit fields within a class object is implementation dependent. Responsibility for the allocation and
alignn1ent of bit fields rests with the underlying C compiler.

13.2 Argument Matching

Integral arguments: The type of the result of an integral promotion (§4.1) depends on the execution
emi:.:inment, as does the type of an unsuffixed integer constant (§2.5.1). Consequently, the determina­
tion of which overloaded function to call may also depend on the execution environment, as illustrated
by the example in §13.2 of the Reference Manual.

14. Templates (experimental)

Release 2.0 does not implement templates. The keyword template is reserved for future use. A 11 not
implemented" message is reported if template is seen.

15. Exception Handling (experimental)

Release 2.0 does not implement exception handling. The keyword catch is reserved for future use. A
"not implemented" message is reported if catch is seen.

16. Compiler Control Lines

Behavior of the preprocessor: Lines beginning with f communicate with the preprocessor. The effect
of these lines depends on the underlying preprocessor.

118 C++ Reference Manual

Appendix C: Implementation Specific Behavior

C 16.1 Token Replacement

Predefined macro names: The following macro names are defined by Release 2.0:

The decimal constant 1. _cplusplus

c_plusplus The decimal constant 1. This macro name is provided for compatibility with
previous releases and is not guaranteed to be supported in future releases.

8.3 Anachronisms

The anachronisms supported in Release 2.0 are not guaranteed to be supported in future releases of
the AT&T C++ Language System.

The word overload is reserved. It may be used as a decl-spedfier in a function declaration or a func­
tion definition; it cannot be used as an identifier.

The definition of a static data member of a class may be omitted. When a definition is not given for a
static data member, its initial value will be zero.

The AT&T C++ Language System Release 2.0 does not include a preprocessor. Nothing in Release 2.0
precludes the use of an old-style (that is, pre-ANSI C) C preprocessor.

An int may be assigned to an object of enumeration type.

The number of elements in an array may be left unspecified when deleting an array of a nonclass type.

B.3.1 Old Style Function Definitions

Programs may use the old C function definition syntax.

B.3.2 Old Style Base Class Initializer

The name of the base class may be omitted in a member initializer list when there is exactly one
immediate base class.

B.3.3 Assignment to this

Release 2.0 allows assignment to this pointers in constructors and destructors to control memory
management of class objects.

C++ Reference Manual 119

Appendix C: Implementation Specific Behavior

B.3.4 Cast of Bound Pointer

Release 2.0 allows casting a pointer to member function for a particular object into a pointer to func­
tion. Any use of the resulting pointer is undefined.

120 C++ Reference Manual

Ap endix D: ,,

This
AT&

.Jpendix contains .
C++ Language

Ead .)cssage is prcccd
w hi a problem has b

'·~c mplcmentcd" ffk

pr'-1~ m linked. Rclca~.'-

; of op

_value op too

.\ n operand rcqu i r
:hat has side effect
sion, an increment

int i, j;
int *pl=&(+

"file", line 2:
"file", line 2 :

1 .,..+ of op

The operand of the
produces side effcc

int i, j;
int k = ++(i

"file", line 2 :

1 1st operand of

The first operand of
expression that ma:,

struct S { ,
int (S: : *pr.L
s *f();

int i = (f ()

C++ ef ere nee Manual

ented" M ages

;1,1tion for all "not messages prod
TI-icy arc listed here in zilphabetical order.

line number. n~, rnbcr is usually the ,, ,' on

,.,Jn1mand to fail; i is not genera tc.J,
to cxamin'--· . ,f your program for ,)thL·r

the operand of the unary :, . ~1t")r is .1n
of & might ~', for c, -:

rcn-icnt opL'ration.

·:'.?lerrented: ++ of %•
,~:ef:'lented: & of ++

the

contains a ? : operator, a comma operator, or an (1~,crJtur that

cor;;plicated

c;1l1 expression involves a pointer to a mi::mbcr functir)P zind is an
cfL-cts or may require a temporary.

f(); };

I,

121

Appendix D: "Not Implemented" Messages

l.ine 5: not implemented: .1•t. operand.: of • • too· coa;,licated

■ 2nd operand of.* too complicated

The second operand of a pointer to member operator is an expression that has side effects.

struct S { int f(); };
int (S::*pmf) () • &S::f;
S *sp - new S;
inti - S;
int j - (sp->*(i+-s, pmf)) ();

"filell, line S: not iq>lemented: 2nd operand of . * too complicated

■ anonymous unions nested deeper than 2 levels

Anonymous unions are nested to more than two levels.

static union {

} ;

union {

} ;

int i;
union

} ;

chaJ:' c;
int j;

"file", iine 7: not ·implemented: anon~< uniona nested deeper than 2 levels

■ cannot expand inline function function with for statement

A for statement appears in the declaration of an inline function.

122

struct S {
int s[lOO];
S () { for (int i • 0; i < 100; i++) s [i] • i;

} ;

C++ Reference Manual

C

Appendix D: '"Not Implemented" Messages

■ cannot expand inline function function with return stater:-.ent

A return statement without an expression appears in the declaration of an inlinE? function.

inline void f ()
return;

".,. . .
. , ' '. ·.·· '"' ",

11/Ue11
, line 2:•not.imple~t~: caririotexpand inline •function f() with retum statement

■ cannot expand inline function/unction with statement after "return"

A value•retuming inline function contains a statement following a ret :.irn statement.

inline int f(int i) {
if (i) return i;
return 0;

11file11
, line 4: not implemen~ed: cannot expand inline function f O with statement

after "retum"

■ cannot expand inline function function with two local variables with the
same name (name)

Two variables with the same name and different types are declared within the body of a value•
returning inline function.

inline int f(int i) {
{ int X • i; }
{ double x • i;
return 0;

C++ Reference Manual 123

Appendix D: "Not Implemented" Messages

"fire"~ .1.ine 5: not imp~t~f f dannot ~< iril!ne • function • f () vith • two
vatiables · with tbe· Nma.· nm Jx) : • •

■ cannot expand inline function needing temporary variable in non function
context

This message should not be produced.

■ cannot expand inline function needing temporary variable of vector type

An inline function that contains a local declaration of an array object is called.

inline int f(int i) {
int a[l];
a[O] - i;
return i;

int v - f(O);

"file", Hqe 6: not iarplemented: canrlot expand.· inline function needing
tenporary variable of vector t~

■ cannot expand inline function with return in if statement

This condition occurs as a result of implementation-generated statements. It can be circum­
vented by avoiding unnecessary return statements in inline functions.

struct S {
S () {return;}

} ;

,' .·· ' ,'' -••·. ·,

"file~, lir1111,· 1: ~t iq,lemant:fld: ~ot.~. inliritit function S::SO witb;jtat~nt••·· ...

:;~~; :~i~"not illp1.#.a~: ~ot: ~;l~i~ ttirlction: ~ith mtuih !:in>i~ sfat~nt: ••.

■ cannot expand inline function with static name

An inline function contains the declaration of a static object.

124 C++ Ref ere nee Manual

Appendix D: "Not Implemented" Messages

inline void f() {
static inti• 5;

"file"~ line 2: not impleraent~: cannot expand inline function with static i

■ cannot expand inline void function called in comma expression

■ cannot expand inline void function called in for expression

A call of an inline void function that cannot be translated to an expression (that is, one that
includes a loop, a goto, or a switch statement) appears as the first operand of a comma
operator or appears in the second expression of a for statement.

int i;
void inline fl() { for (; ;) ;

void inline f2 () { i +== 5; }

void g() { for (fl O, i•i;;) }

void h() { for (f2 (), i•i;;) }

void j () { for (.. I I fl()) ; }

void k() { for (.. , , f2 ()); }

"file", line 4: riot implemented: caririot: expand inline void fl() called in eoama. expression
"file", line 6: not implemented: ca.nnot upand inline void fl O called in for expression

■ cannot expand value-returning inline function with call of ...

A value-returning inline function is defined, and it contains a call to another inline function that
is not val ue-retuming.

inline void f () { for(;;); }
inline int g() { f(); return 0; }

.,~. ~~ ~; ~r~l~,a ~ t~~r~~ inlim g(I
nor1~value~:cetw::riing • inline ? O · · · · · · · · · • •. · · ·•

■ cannot merge lists of conversion functions

A derived class with multiple bases is declared and there are conversion operators declared in
more than one of the base classes.

C++ Reference Manual 125

Appendix D: "Not Implemented" Messages

struct Bl {
operator int();

} ;
struct B2 {

operator float();
} ;

struct D: public Bl, public B2 { };

11/ile~•, > lir.wt 7: not impl.elaanted: o.annot :me~ ;bts of conversion functions

■ class detined within sizeof

A class definition appears as the type name in a sizeof expression.

inti - sizeof (struct S {inti; });

"file", line 1: not implemented: class defined within sizeof

■ class hierarchy too complicated

This message should not be produced.

■ conditional expression with type

The second and third operands of a conditional expression are member functions or pointers to
member functions.

struct S {
int t;
f () { return t; }
g() { return l; }

h() { return (t?f:g) (); }

} ;

•[Je•, i~ 5: not ~lemnted: ~[i]~]ti~Gith int S::I)
"file", line 5: error: object or pointer missing for•?· of. type int S:: ()

■ constructor as default argument

■ constructor needed for argument initializer

The default value for an argument is a constructor or is an expression that invokes a constructor.

126 C++ Reference Manual

Appendix D: "Not Implemented" Messages

struct S { S(int); };
int f(S - S(l));
int g(S • 5);

"filefl, lihe ~•=·· not 1mp1em&l\ted: <JOnatructor>u default argumerit
"file", lim • 3: not in;>lemarit~ f co~tructor needed for· argument initializer

■ copy of member [J , no memberwise copy for class

An implementation-generated copy operation for a class Xis required, but the operation cannot
be generated because X has an array member of one of the following kinds of types: a class with
a virtual base class, a class with a programmer-defined X (X&), or a class with a programmer­
defined operator•().

struct Sl {};
struct S2 : virtual S1 {};
struct X { S2 m[l]; };
X varl;
X var2 • varl;

"file", line 5: not implemented: copy of S2[], no membei:wise oopy for S2

■ default argument too complicated

A default argument in a declaration not at file scope requires the generation of a temporary.

struct S { int f(int &r • (int) 'x'); };

•ifiJe", line 1: not iq,lemented: default argumilmt toe> coq,licated
"file:, .. ~ine ·1.:. potinlpleme11tfJld: ••. ~.· t#-9.#.~vu~;~Jo,valuate ~nt .i.l.l.t.,w.i.c, . .i..i.,".:;:.a..

■ default arguments for constructor for array of class name

A constructor with default arguments is invoked to initialize an array of class objects without an
explicit initializer.

struct S { S(int•S); };
S s[2];
S *sp • new S[2];

C++ Reference Manual 127

Appendix D: "Not Implemented" Messages

\ .. :·-· ·:: /i< //\\(\·· > > /' •• .. ·.< : :/) /\({):/:_ ·:: :; ·., '. :·:·:~: ._:_: :-::.
11/ife", <line. 2: .not iq,l~ted:. defauit argua1111•il:· fo~ conatr\letor for array of . class s
"file", line .3: not iq;)lemented: defau;t a.rguaienta •. for constr\letor for array of cla.s~ •• S

■ delete array through pointer or array of arrays

The object deleted by a delete operator has the type "pointer to array of class." This can be
either a single- or multi-dimensional array. This error does not occur if the type is 11 pointer to
class."

struct S {};
typedef S Al[l];
void f () {

Al *p - (Al*) new Al;
delete p;

"file", line .6: not iq;)lemented: delete array through pointer or array of arrays

■ expression in for statement needs temporary of class with destructor

An expression in a for statement requires a temporary of a class type for which there is a des­
tructor.

struct S { S(int); -S(); } s(0);
main O {

for(inti• 10; i; s • --i);

. . ,

"filt"~ Jine:3:.not impierailnted: e;xpression·J.h toi-•atatement Df!leda tecporary of class S
with destructor · · · • • • • ••• •

■ general initializer in initializer list

The initializer list in a declaration contains an expression that is not constant.

int f O;
int i [1] • { f () } ;

128 C++ Reference Manual

C

Appendix D: "Not Implemented" Messages

..

"file", line 2: not itnplemfKlt'-1: • ~~al initializer. in initializer liat

■ catch

The keyword catch appears; catch is reserved for future use.

int catch;

. . . .
.... · .. ·· _;·:.

"{ik", line. 1: . llOt iq>lemente.d: c:&teb • •
"file.", li?Mt .. 1: •·.warning~. ~n,e e:xpeQt~< in cl~laratit)n · list

■ initialization of automatic aggregate

An aggregate at local scope is initialized. This message is not issued if the +al option (pro­
duces declarations acceptable to an ANSI C compiler) is specified.

void f () {
int i [1] • {l } ;

"fik", lirie 2: not implement~: initialization e>f automatic aggregate

■ initialization of union with initializer list

An object of union type is initialized with an initializer list. This message is not issued if the
+al option (produces declarations acceptable to an ANSI C compiler) is specified.

union U { inti; float f; };
U u • { 1 };

■ initializer for local static too complicated

This message should not be produced.

■ initializer for multi-dimensional array of objects of classc~ss with con­
structor name

A multi-dimensional array of a class with a constructor has an explicit initializer.

C++ Reference Manual 129

Appendix D: "Not Implemented" Messages

struct S { S(int); };
S s[2] [2] • {1,2,3,4};

"file", • line 2: n.ot iq,lemanted: .. iiiitializer. tor• m1ti-dimensiona.l
array.ot·objects .. of clua $ vitll~tJ:µc:t;9i:.-):•

■ label in block with destructors

A labeled statement appears in a block in which an object with a destructor exists.

struct S { S(int); -S(); };
void f () {

S s(S);
xyz:
}

destructors

■ lvalueop too complicated

See "& of op."

■ needs temporary variable to evaluate argument initializer

A default argument requires a temporary variable.

void g() {
int h(int & • 5);

11/~", Une 2: not implemanted: nfiflda telfl>.(),;~ V'ariable to evaluate a..tg'l.lment initia;izer

■ non-trivial declaration in switch statement

130

A 11 non-trivial" declaration appears within a switch statement. Such a declaration might declare
an object of reference type, a static object, a canst object, an object of a class type with con­
structor or destructor, an object with an initializer list, or an object initialized with a string
literal.

C++ Reference Manual

Appendix D: "Not Implemented" Messages

void f(int i) {
switch (i)

default:
int& j - i;

... '.','. '

"/ile~,<i~> 2:. not/·:· ..
(trf encl()Sll¥J Jt · '

switcb statement

Note that since it is illegal to jump past a declaration with an explicit or implicit initializer unless
the declaration is in an inner block that is not entered, most declarations in switch statements
and not contained in inner blocks will be errors.

■ pointer expression too complicated for delete

■ pointer expression too complicated for delete[]

The delete operator is applied to an object or an array of objects of a type with a virtual des­
tructor, and the operand is not a simple expression.

struct S {
s ();
virtual -s ();

} ;

s *f O;
void g()

delete f();
delete [2] f();

"file", l.irie . 9:. not implemented: pointer .xpxeasion too 001rplicated for delete
"file", li:rie 9: not iq>lemnted: poillt::er : -#~••ion too 001rplicated for delete [l

A variable can be introduced to circumvent the unimplemented functionality. For example,

void g2 0 {
S* sp;
sp • f();
delete sp;

■ pointer to member function type too complicated

This message should not be produced.

C++ Reference Manual 131

Appendix D: "Not Implemented" Messages

■ pointer to member of not first base

A pointer to member function is initialized with or assigned the address of a member of a base
class other than its lexically first base.

struct Bl {};
struct B2 { int f(); };
struct D: Bl, B2 {};
int (D::*pmf) () - D::f;

•.·.•-.·,·--. -. ..· .. ·,

line 4: ~t iq)l~t~: irit:'.132{::() ~•igned to int (D: :*) () (too conplieated)
line 4: nc,t .f#iemen~C!ld: ·.l'C)#t41r,'t.o manber of not first base

■ public specification of overloaded function

The base class member in an access declaration refers to an overloaded function. A similar mes­
sage is issued for illegal private and protected access declarations.

struct B { int f(); int f(int); };
class D : private B {
public:

B: :f;
} ;

"fik", line 2: not implemented: public specification of overloaded B: :fO

■ struct name member name

This message should not be produced.

■ template

The keyword template appears; template is reserved for future use.

int template;

"fill", line 1: not implemented: tenpla.te
"file", line 1: warning: name expect'4. in declaration list

■ temporary of class name with destructor needed in expr expression

132

An expression containing a ? : , I I, or && operator requires a temporary object of a class that
has a destructor.

C++ Reference Manual

Appendix D: "Not Implemented" Messages

struct S { S(int); -S(); };
S f (int i) {

return i ? S (1) : S (2)

"fi1eit,).i11e . 3: not iq>lemented: tenporary of class S with destructor needed in 1':

■ too few initializers for name

The initializer list for an array of class objects has fewer initializers than the number of elements
in the array. •

struct S { S (int) ; } ;
S a[2] =-= {1};

"file", lil'le 2: not implemented: too few initializers for : : a

■ type1 assigned to type2 (too complicated)

A pointer is initialized or assigned with an expression whose type is too complicated.

struct Sl {};

struct S2 { int i; } ;

struct S3 : Sl, S2 {};

int S3:: *pmi - &S2: : i;

"file", line 4: not iq>lemented.: int S2: :* assigned to int S3: :* (too complicated.)

■ visibility declaration for conversion operator

An access declaration is specified for a conversion operator.

struct B { operator int(); };
class D : private B {
public:

B: : operator int;
} ;

C++ Reference Manual 133

Appendix D: "Not Implemented" Messages

11/ile", line 1: not implemented: visibility declaration for conversion operator

■ wide character constant

■ wide character string

134

A wide character constant or a wide character string is used.

int wc - L'ab';
char *ws - L"abcd";

"fi1e", lirie 1: not iq>lemented: wide <=hara.ct.er oonatant
"file", line 2: • not implemented: wide character string

C++ Reference Manual

I Index

Index 1-1

C

C
Table of Contents

1-·
\

•..,>v<

Index

A
abort O 9
abstract class 67
abstract-declarator 42
access control 70
access declaration for conversion operator, not

implemented message 133
access specifier 70
access-specifier 63
access to base class member 71
access to member name 70
addition operator + 23
additive operators 23
additive-expression 23
address of bit-field 61, 62
address of constructor 75
address-of operator & 18
address-of qualified name 18
aggregate 51
aggregate at local scope, not implemented mes-

sage 129
alert 5
alignment of array 21
alignment of bit-field 61
alignment of class 21
alignment of class member 21
alignment restriction 21
allocation-expression 19
allocation of store 20
ambiguity 15
ambiguity detection 87
ambiguous class conversion 66
ambiguous if-else 29
anachronisms 111, 119
anonymous union 61

not implemented message 122
ANSI C 4
argument-declaration 46
argument passing 17
arithmetic conversions 12
arithmetic type 1 0
array declaration 45
array declarator [] 45
array explanation of subscripting 46
array initialization 51
array of class objects 80, 81
asm declaration 39, 117
assembler 39

Index

assignment expression 26
assignment to overcomplicated type, not imple-

mented message 133
assignment and lvalue 26
assignment-expression 26
assignment of 0 26
assignment of derived class 26
assignment-operator 26
assignment operator - 26
assignment operators 26
assignment to class object 26
assignment to pointer 26
assignment to pointer to member 26
assignment to reference 27
assignment to this 112, 113
atexit() 9
auto specifier 34
auto storage class 9

B
backslash character \b 5
backspace 5
base class 63, 64
base class access 70
base class initializer 49

old 119
base-list 63
base of constant integer 4
base-specifier 63
bit fields 61, 118
bitwise AND operator & 25
bitwise operators 25
bitwise exclusive OR operator A 25
bitwise inclusive OR operator I 25
block statement { } 28
block structure 32
break statement 31
byte 19

C
C++ C compatibility 110
C++ C function declaration 110
C++ C name space 111
C++ extensions 109
C function definition anachronism 112
call by reference 17

1-1

Index

call by value 17
call of overloaded function 91
call of function 17
C++ and ANSI C 1
C++ and C 1, 109
C++ and ANSI C shared header files 111
carriage return 5
case label 29
cast operator () 18
cast-expression 21
cast operator 21, 42
catch keyword, not implemented message 129
char int conversion 12
char type 10, 38
character constant 4, 115
character array initialization 52
character string 5
class 10
class conversions 76
class declaration { } 54
class defined within sizeof, not implemented

message 126
class definition 54
class member : : operator 57
class member declaration 56
class member function 57, 118
class member initializer 49
class scope 7
class struct union 54
class temporary needing destructor, not imple-

mented message 132
class and type 54
class-key 38, 54
class member operator -> 17
class member operator . 17
class member semantics 17
class member syntax 17
class-name 54
class name new type 54
class object copy 83
class object initialization 51, 80
class-spedfier 54
comma operator

27
, not implemented message 125

comment /* * / 3
comment // 3
compiler control line 98, 118
complete object 82
compound statement 28

1-2

compound-statement 28
condition 29
conditional compilation 99
conditional expression with type operand, not

implemented message 126
conditional expression operator ? : 26
consistency of linkage specifications 40
const array 37
const class object 37, 58
const initialization 50
const member function 58
const pointer assignment 26
const pointer initialization 50
const type 37
constant 4, 10, 15
constant expression 27
constant-expression 27
constructor 75

as default argument, not implemented mes­
sage 126

needed for argument initializer, not imple-
mented message 126

constructor definition 49, 81
constructor order of execution 75
constructor for temporary 76
continue statement 31
conversion lvalue 12, 22
conversion operator 15
conversion by assignment 27
conversion for overloaded function 91
conversion from user-defined type 29
conversion-function-name 77
conversion of const 22
conversion of function 13
conversion of pointer to member 113
conversion of pointer to function 22
conversions, not implemented message 125
conversion to class object 22
conversion to fundamental type 77
conversion to integral type 29
conversion to pointer type 29
conversion to reference 22
copy constructor 75, 83
copy operation for class, not implemented mes­

sage 127
copy of class object 76

cplusplus 98,111
ctor-initializer 81
cv-qualifier 42

C++ Reference Manual

)

C

C

D
dangerous extensions 111
deallocation-expression 20
de-allocation of store 21
decimal 4
declaration 7
declaration 34
declaration 34, 102
declaration expression ambiguity 32
declaration statement 31
declaration type ambiguity 34
declaration within switch statement, not imple-

mented message 130
declaration-list 40
declaration of constant pointer 43
declaration of default function argument 48
declaration of function 46
declaration of function argument 47
declaration of nested class 62
declaration of pointer 43
declaration of reference 44
declaration without name 34
declarator 42
declarator 42
declarator-list 42
decl-specifier 34
decrement operator - 18, 19
default argument, not implemented message 127
default arguments 81
default arguments requiring temporary variable,

• not implemented message 130
default array size 45
default constructor 75
default initialization 50
default label 29
default type int 38
default-arguments scope evaluation 48
#define 98
defined operator 99
definition 7
definition of virtual function 67
deletion of pointer to array of class, not imple-

mented 128
dereferencing 15, 18, 95
derived class 63
derived type 10
destructor - 9, 78
destructor for temporary 76
differences between C++ and C 109
direct base class 63

Index

distinct string 5
division operator / 23
dname 42
do statement 30
dominance 66
double constant 5
double quote 5
double type 10, 38
dstatement 28
dynamic binding 66
dynamic initialization 9

E
E suffix 5
elaborated class name 38
elaborated enum name 38
elaborated-type-specifier 38
ellipsis ... 17, 47
telse 99
empty statement 28
tend.if 99
enum declaration { } 38
enumeration 38
enumeration constant 38
enumerator 38
enumerator members of class 39
enumerator point of definition 39
enumerator re-definition 39
equality operator -- 24
equality-expression 24
escape character \b 5
escape character \b in macro 98
escape sequence 5
example of ambiguity 20
example of class declaration 57
example of *const 43
example of const 43
example of constant pointer 43
example of declaration 47
example of default argument 48
example of derived class 63
example of enumeration 39
example of friend function 72
example of function declaration 47
example of member function 57, 72
example of member name access 71
example of nested class declaration 62
example of subscripting 45
example of typedef 37

Index

1-3

Index

example of use of ellipsis 47
example of virtual function 66
exception handling 97, 118
exit() 9
explicit class of destructor 79
explicit conversion operator 18
explicit type conversion 17, 21, 116
explicit use of constructor 75
expression 15, 100, 116
expression 27
expression evaluation 109
expression-list 16
expression-statement 28
expression statement 28
external linkage 8
extern and linkage 35

F
F suffix 5
fct-body 49
/ct-definition 49
/ct-specifier 35
field declaration 61
file scope 7
file inclusion 98
float constant 5
float double conversion 12
float int conversion 12
float type 10, 38
floating type 10
floating point constant 5
for statement 30

not implemented message 122, 125, 128
formal argument 7, 49
formal argument of function 17
form feed 5
form of initializer 27
free store 19, 20, 79
free store and constructor 113
free store and destructor 113
friend class 72
friend example 55
friend function 72
friend specifier 37
friend of member function 72
function 10
function argument conversion 17
function argument type checking 17
function body 49

1-4

function declaration ambiguity 50
function declaration matching 86
function declarator () 46
function definition 49
function definition syntax, old 119
function type 47
function argument type conversion 47
function argument type-conversion 76
function call 17
function call operator () 17, 94
fundamental type 10

G
general initializer in initializer list, not imple-

mented message 128
generated constructor 75
generated function 83
global name 7
goto statement 31
grammar 100
greater than operator > 24
greater than or equal to operator >== 24

H
hex number 5
hexadecimal constant 4
horizontal tab 5

I
identifier 3, 16, 114
tif 99
if statement 29

not implemented message 124
tifdef 99
tifnd.ef 99
implementation specific behavior 114-120
implementation dependent 4, 5, 17
implementation dependent / 23
implementation dependent << 24
implementation dependent allocation 57
implementation dependent allocation of bit-

field 61
implementation d~pendent ANSI C 111
implementation dependent arguments of

main() 8
implementation dependent asm 39

C++ Reference Manual

implementation dependent C linkage 40
implementation dependent char int 12
implementation dependent float double 10
implementation dependent

integral promotion 89
implementation dependent

language extensions 111
implementation dependent member function

call 58
implementation dependent objects 41
implementation dependent

overflow handling 15
implementation dependent pointer com-

parison 24
implementation dependent pointer integer 21
implementation dependent pointers - 23
implementation dependent signed

unsigned 12
implementation dependent sign of bit-field 61
implementation dependent sign of char 10, 53
implementation dependent sizeof 19
implementation dependent size of integers 10
implementation dependent temporary objects 76
implementation dependent type sizes 10
implementation dependent volatile 37
#include 98
increment operator ++ 18, 19
indirection 18
indirection operator * 18
inequality operator ! • 24
inheritance 63
inheritance of constructor 75
inheritance of conversions 77
init-declarator 42
initialization 17, 49
initialization and goto 111
initialization by constructor 80, 81
initialization in block 32
initialization of array of class objects 51, 81
initialization of auto object 50
initialization of base class 81
initialization of class object 79
initialization of local static 32
initialization of member objects 81
initialization of reference 52
initialization of static member 60
initialization of static object 50
initialization of static objects 9
initializer 49
initializer 50

Index

initializer for multi-dimensional array of class,
not implemented message 129

initializer list { } 51
initializer-list 50
inline friend function 73
inline function 36
inline functions 116-117
inline member function 59
inline member rewriting rule 59
inline specifier 36
int type 38
integer constant 4
integral conversion 12
integral type 10
integral promotion 17
interpretation of binary operator 95
interpretation of unary operator 94
int-pointer conversion 21, 23
iteration statement 29

J
jump statement 31

K
Kernighan and Ritchie 1

L
L suffix 4
label : 28

Index

label in block with destructor, not implemented
message 130

label name space 28
label statement 28
left shift operator << 24
length of name 3
less than operator < 24
less than or equal to operator <• 24
lexical conventions 3
<limits. h> 4, 10
limits. h header file 114
fline 99
linkage 7, 111, 117
linkage consistency 35
linkage file program 8
linkage and static 40
linkage of objects 41

1-5

Index

linkage of overloaded function 40
linkage-specification 40, 117
linkage to C 40
li~t of keywords 3
list of operators 94
literal 4
literal 4, 15
local scope 7
local static, initializer for, not implemented

message 129
logical AND operator && 25
logical negation operator ! 18, 19
logical OR operator I I 25
long constant 4
long type 10, 38
long double type 10
L prefix 5, 6
lvalue 11

M
macro 107
macro preprocessor 98, 118
main() 8
manual organization 1
meaning of declarator 43
member access ambiguity 65
member-declaration 56
member-declarator 56
member function definition 59
member-list 56
member of class 56
mem-initializer 81
memory management anachronism 112
missing function argument name 34
missing storage class specifier 35
missing type 38
modifiable lvalue 11
modulus operator 23, 116
most derived class 82
multi-dimensional array 46
multiple inheritance 64
multiplication operator * 23
multiplicative operators 23
multiplicative-expression 23

N
name 3, 7

name 16
too few initializers for, not implemented mes-

sage 133
name hiding 8, 16
name of class 54
names 114
new-line 5
not implemented messages 121-134
null O pointer 13, 24
null statement 28

0
object 7, 11
object layout 64, 70
octal constant 4
octal number 5
one's complement operator ~ 18, 19
operand of ++, not implemented message 121
operations on class object 54
operator 26
operator ,- 26
operator*- 26
operator+- 26
operator - 26
operator/- 26
operator<<• 26
operator >>- 26
operator"• 26
operator I• 26
operator 94
operator +- 19
operator • 83
operator () 95
operator -> 95
operator - 95
operator : : example 65
operator [] 95
operator delete 20
operator new 19, 79
operator overloading 94
operator delete() 21
operator-function-name 94
operator new () 20
operators 3
order of argument evaluation 17
order of destructor evaluation 78
order of evaluation of expression 15
order of initialization 64
overflow 15

C++ Reference Manual

C

C

C

overload keyword 110, 119
overloaded assignment operator 95
overloaded binary operator 95
overloaded function name 86
overloaded function call operator 95
overloaded subscripting operator 95
overloaded unary operator 94
overloaded function argument matching 87, 118
overloaded operator 94
overloading 54, 86
overloading and access 87
overloading and char 89
overloading and const 86
overloading and default arguments 92
overloading and derived class 86
overloading and enum 86
overloading and float 89
overloading and inheritance 90
overloading and multiple arguments 91
overloading and pointer conversion 90
overloading and reference 86
overloading and reference conversion 90
overloading and scope 86
overloading and short 89
overloading and typedef 86
overloading and unsigned 89
override 66

p
parameterized types; see templates 96
parenthesized expression 16
placement 19
placement of object 79
pm-expression 22
pointer 10
pointer ambiguity 90
pointer arithmetic 23
pointer comparison 24
pointer conversion ambiguity 13
pointer conversions 13
pointer declarator * 43
pointer expression too complicated for delete,

not implemented message 131
pointer subtraction 23
pointer terminology 11
pointer to member function, not implemented

message 131-132
pointer-int conversion 21, 23
pointer-pointer conversion 21, 23

Index

pointers to member conversions 13
pointers to members 10
pointer to base 13
pointer to const assignment 26
pointer to const initialization 50
pointer to function comparison 24
pointer to member 22
pointer to member conversion 13
pointer to volatile assignment 26
pointer to volatile initialization 50
pointer to member conversion ambiguity 13
pointer to member declarator : : ·* 45
pointer to member operator ->* 22
pointer to member operator . * 22
point of declaration 8
postfix expression 16
postfix ++ and - 18
precedence of operator 15
pre-defined meaning of operators 94
prefix ++ and - 19
preprocessor 107
primary expression 15
private 70
private base class 70
private member 70
program 8
program start 8
program termination 8, 9
protected 70
protected member access 73
ptr-operator 42
public 70
public base class 70
public member 70
public overloaded function, not implemented

message 132
punctuation 3
pure virtual function 67
pure-specifier 56

Q
qualified-name 16
question mark 5

R
recursion 17
redefinition of typedef 37

Index

1-7

Index

reference 10
reference & of op, not implemented mes-

sage 121, 130
reference argument 44
reference conversion ambiguity 13
reference conversions 13
reference declarator & 44
reference expression 15
reference and temporary object 52
reference to base 13
register declaration 35
relational operators 24, 116
relational-expression 24
remainder operator 23, 116
reserved words 3
restricted-type-name 19
restriction on auto 35
restriction on bit-field 62
restriction on enumerator 39
restriction on extern 35
restriction on overloading 94
restriction on register 35
restriction on static 35
return statement 31

not implemented message 123
right shift operator >> 24
run-time initialization 9

s
scope 7
scope resolution operator .. 15, 16
selection statement 29
sequencing operator , 27
sequencing of statements 28
shift operators 24, 116
shift-expression 24
short type 10, 38
side effects 15
side effects of , operator 27
signed char 10, 117
signed character 10
simple-type-name 38
single quote 5
size of array 19
size of class object 19
sizeof enum 39
sizeof operator 18, 19

not implemented message 126
size of reference 19

1-8

sizeof string 6
size t 19
special member functions 75
standard conversions 12
standard headers 4
start and termination 115
statement 28
statement 106
static class member 60
static linkage 8
static member function 60
static specifier 34
static storage class 9
static and linkage 35
<stdarg.h> 47
<stddef. h> 4, 6, 19
std.def. h header file 114
<std.lib. h> 4
std.lib. h header file 114
storage class specifier 116-117
storage class 7
storage class declaration 34
storage class specifier 34
storage order of array 46
store allocation operator new 19
store de-allocation operator delete 20
string concatenation 5
string terminator O 6
string constant 5
struct name member name, not implemented

message 132
structure 10
structure tag 38 .
structure tag; see class name 54
subscripting operator [] 17, 94
subtraction operator - 23
summary of scope rules 68
switch statement 29
syntax notation 1
syntax summary 100

T
template keyword, not implemented mes-

sage 132
template specifier 37
templates 96, 118
temporary objects 76
this pointer 16, 58, 119
this and constructor 113

C++ Reference Manual

C

C

this and destructor 113
token 3
token replacement 98, 119
translation limits 114
translation unit file 3
translation unit and consistency 111
truncation rounding 12
type 7
type conversion return 31
type declaration 43
type equivalence 36, 54
type-conversion operator 77
type conversion rules 12
type-conversion by constructor 77
typedef new type 36
typedef and class name 63
typedef in class 62
typedef-name 36
type generators; see templates 96
type-name 42
type name 42
type of o 89
type of bit-field 61
type of character constant 4
type of constructor 75
type of conversion 77
type of enwn 38, 39
type of integer constant 4
type of static member 60
type of string 5
type of this 58
type of virtual function 66
types, fundamental 115
type-specifier 37

u
u suffix 4
unary expression 18
unary operators 18
unary-expression 18
unary minus operator - 18
unary-operator 18
unary plus operator + 18
tundef 98
undefined 5, 6, 12, 19, 21, 24, 50, 80
undefined / 23
underscore character 3
union 10, 61
union constructor 61

Index

union destructor 61
union initialization 52
union initialization 61
union initilialization, not implemented mes-

sage 129
union member function 61
unknown function argument type 47
unnamed bit-field 61
unnamed object 75
unsigned char 10
unsigned constant 4
unsigned type 10, 38
use of operator : : 60
user-defined conversions 15
user-defined type-conversion 76

V
vertical tab 5
virtual base class 64
virtual base initialization 82
virtual base class initialization 82
virtual destructor 78
virtual function 66
virtual function call 83
virtual specifier 36
virtual and friend 67
virtual function access 7 4
void* 11
void& 44
void argument 47
void* pointer 13
void* pointer comparison 24
void* pointer type 110
void type 10, 38
volatile array 38
volatile class object 38
volatile member function 58, 59
volatile pointer assignment 26
volatile pointer initialization 50
volatile type 37, 117

w
wchar t 5,6
while statement 30
whitespace 3
wide character 5
wide character constant or string, not imple­

mented message 134

Index

1-9

Index

wide-character string 6

X
X(X&) 83

z
zero-width bit-field 61

1-10 C++ Reference Manual

	Preface
	Contents
	1. Introduction
	2. Lexical Conventions
	3. Basic Concepts
	4. Standard Conversions
	5. Expressions
	6. Statements
	7. Declarations
	8. Declarators
	9. Classes
	10. Derived Classes
	11. Member Access Control
	12. Special Member Functions
	13. Overloading
	14. Templates (experimental)
	15. Exception Handling (experimental)
	16. Compiler Control Lines
	Appendix A: Grammar Summary
	Appendix B: Compatibility
	Appendix C: Implementation Specific Behavior
	Appendix D: "Not Implemented" Messages
	Index

