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ABSTRACT 

Some programs are most naturally expressed as a set of relatively independent 
activities communicatina to achieve a common goal. Each activity, here called a 
task, has its own locus of control, a program to execute, and its own private 
data. Tasks can communicate by explicit sharing of data, by messages, or by data 
pipes. 

This memorandum descnoes C+ + 7.S classes for a range of. styles of multi• 
programming techniques in a sinaJ.e language, single address-space environment. 
Cass task is a base class for representation of an activity in a multi-programmed 
system. A task can be· suspended and resumed without interfering with its internal 
state. Class qhead and class qtail enable a wide ranae of messaae passing and 
data buffering schemes to be implemented simply. 

The task system can be used for writing event driven simulations. Tasks exe­
cute in a simulated time frame presented by the variable clock, and objects of 
class timer provide a convenient and efficient facility for using the clock. 



1 Introduction 

Some programs are most naturally expressed as a set of relatively independent activities com­
municating to achieve a cammon goal. Such activities, here called tasks, must be able to execute 
in parallel with each other and communicate through means convenient to the chosen style of task 
usage. 

Facilities for multi-thread computation can be provided in the semantics of a language, as is 
done in Concurrent Pascal 1 and Mesa5

, or a languaae without such facilities can be a~cnted 
using special run-time support systems and library functions, as has been done for BCPL6 and c!. 
The use of C classes to implement tasks represents an intermediate approach pioneered by 
Simula672. 

The tools presented here provide the basic facilities for several styles of multi-thread program­
ming in a single language, single address-space environment. The underlying facility is a simple 
and efficient tasking system with non-preemptive scheduling. That is, a task will only be suspended 
on its own request, so no "system policy" can be enforced without the cooperation of all tasks. ln 
contrast to pure co-routine systems, however, the task system provides provides a framework for 
processor sharing and cammunication between tasks. 

The task system is intented for applications, like event driven simulations, where tasks are used 
to express a quasi-parallel structure for a single program. For this class of applications a concept 
of simulated time is implemented. A unit of simulated time can represent any amount of real 
time, and it is possible to compute without consuming simulated time. A few simple random 
number generating classes and a class histogram for data aathcring are also provided. The task 
system is not intented for handling real parallelism of some underlying real-time system. Conse­
quently, no facilities are provided to map interrupts and other real-time events into the concepts 
provided by the task system. 

2 Tasks 

The declaration of class task looks like this (the ellipsis ... is used , un-gramatically, to indi­
cate where details not considered relevant to the discussion has been removed): 

+ the class object. ued in the declaration of class ta■k is a simple base class used by all classes in the task system. It 
contains some of the pointm used by the task system's imanal uhouse-keeplna", and also a value indicath,g the type of the 

object. Oas object is presented in appendix A. 
The ellipsis ••• is used (un ,numna1ically) to indicau details not considered relevant to the discussion. 



claaa taak: public object { 

public: 
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taak(char• •0, int •0• int •O); 

tuk• t_next; 

} ; 

cbar• t_;name; 

int rctatate ( ) ; 
long rdtime (); 

void reaultia(int); 
int reault(taak•); 
void cancel(int); 

void aleep(); 
void wakeup ( ) ; 

void delay(int); 
int preempt ( ) ; 

void wait(object•); 
int waitvec(object••>; 
int wait1iat( ... ); 

void print(int); 

A task is a locus of control, a virtual processor. It can only be used as a base class. A task exe­
cutes the program supplied as a derived class's constructor. The most basic feature of an object of 
class task is that it can be suspended and later resumed so that several tasks can run in quasi­
parallel. Most class task functions are conditional or unconditional requests for suspension. 

A task can be in one of three states: 
RUNNING: 

The task is executing instructions or it will be scheduled to do so without further intcrven• 
tion from other tasks. 

IDLE: 
The task is not RUNNING, but it can be transferred to the RUNNING state by some suit­
able action. 

TERMINATED: 
The task has completed its work. It cannot be resumed, but its result can be retrieved. 

The class t.ask function rd.state ( ) returns the state. 
A simple example of the use of tasks is where one task creates another to run in parallel with 

itself. Later the creator can obtain the result produced by the "secondary" task. For example, a 
task which counts the number of spaces in a string could be declared. FttSt a class spaces must 
be declared. 

atruct apacea: public task { 
epacee(char•); 

} ; 

In the case of class spaces the declaration is trivial. It states that spaces is derived from class 
task so that each object of class spacea becomes an independently scheduled entity. The pro­
gram for the task is provided by the constructor spaces. spaces(). This use of this constructor 
resembles the use of main{) in a C program. 
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apacea.apacea(char* a) 
{ 

int 1 • O; 
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while<*•> if (*8++ ••' ') i++; 
reaul ti■ ( i) ; 

} 

This function connts the spaces in its argument string and return the result using the class task 
function resul tis ( ) . A task of class spaces can now be created and used like this: 

space■ sscna line with four apace,-); 
count• ss.reault(); 

When a new task is created, like ss here, its constructor is called with the argument list pro­
vided, and the two tasks now run in parallel. The task function result ( ) returns the value 
returned from spaces. spaces ( ) by the call of the task function resul tis C ) , that is, in this 
example the value 4. Ha task calls result() for another task which has not yet completed it 
will be suspended waiting for that task to become TERMINATED. When that happens it will be 
resumed. A task waiting for another to complete is IDLE. H a task calls result ( ) for itself it 
will cause a run time errort. 

A task cannot return a value using the usual function return mechanism; it must use the class 
task function resul tis ( ) . This function puts the task into the TERMINATED state from 
which it can not be resumed. 

3 Queues 

A queue is a type of storage that is organized so that objects are retrieved from it in the order 
in which they were inserted into it. A queue has a head from which data is retrieved and a tail 
to which data is added. With a little elaboration this basic type of data structure makes an excel­
lent inter-task communication facility. 

There is a function put ( ) which adds an object to the tail of a queue and a function get C ) 
which retrieves an object from the head of a queue. There is no "class queue" available to a 
user. Instead, the two classes qhead and qta i 1 provide the services needed. This allows explicit 
separation between the source and the recipient of data. The declaration of class qhead looks like 
this: 

+ The hanclling of run time errcrs will be described below. 
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cla.aa qbead public object { 

public: 
qbead(int •WMOD!, int •10000); 

object• qet(); 
int putback(object•); 

int rdaount(); 
int rdmode(); 
int rdmax(); 
void aetmode (int) ; 
void Htmax (int) ; 

qtaih tail(); 

qbead• cut(); 
void aplice(qtail•); 

void print (int) ; 
} ; 

A queue can be created like this: 

qbead qh; 

To obtain a qtail for an existing queue execute tail C) for its qhead: 

qtail• qtp • qh.tail(); 

The queue could now be used as a one way inter-task communication channel by giving its head 
and tail as arguments to two new tasks: 

producer PP(qtp); 
conaumer CC(&qh); 

The producer task PP can now put() objects to its qtail (denoted by the pointer qtp) and the 
consumer task cc can get{) those objects from its qhead (denoted by the pointer Lqh). The 
class qtail function put() takes a pointer to a class object as argument, and the class qhead. 
function get < ) returns such a pointer. Unless the user has specified otherwise a task executing 
put ( ) will be suspended temporarily if the queue is fullt. When the queue becomes empty the 
suspended task is resumed. Similarly a task executing get ( ) on an empty queue will be 
suspended until the queue becomes non-empty. 

The objects transmitted through a queue m.ust be of class object or derived from it. Class 
object is provided by the task system, and it is up to the programmer to define types of objects 
suitable for each application. Appendix A describes class object. 

4 Example: A Server Task 

As an example of the use of tasks and queues we will define a "server0 task that receives 
requests for service in the form of messages on a queue, handles the requests and returns replies 
on other queues. One could define a class message as follows: 

+ lhe default maxim.um size fer a queue is 10000. 'Ibat is, the queue can hold up to 10000 poimers. It does not, however, 
pre-allacate space. 
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atruct meaaage: public object { 
int r_operation; 
int r_arg1; 
int r_arg2; 
qtail• r_reply; 

} ; 

A message, that is an object of class message, describes an operation r_operation that is to be 
performed by the recipient of the message. Arguments for this operation can be passed as r_arg 1 
and r_arg2, and the result of the operation is to be returned as a message on the queue denoted 
by r_reply. 

A task serving requests presented as messages on a queue can be defined as follows: 

claaa aerver : public taak { 
aerver ( qheach ) ; 

} ; 

aerver. ■erver(qhead• in) 
{ 

for (;;) { 
meaaage• req • (me■aage•) in->get(); 
queue• reply• req•>r_reply; 
int rea • VALUE; 
int val; 

awitch (req->r_operation) { 
caae PLUS: 

val• req->r_arg1 + req->r_arg2; 
break; 

caae MINOS: 

default: 
rea • EUOR; 

} 

req->r_operation • rea; 
req->r_arg1 • v&l; 
reply->put(req); 

This style of server has proved useful in many contexts. In particular, it is the backbone of 
many "message-based systems". In this particular example a server, that is an object of class 
server, and the queue on which it depends can be declared: 

qtail• rq • new qtail; 
aerver• aer • new aerver(rq->head()}; 

Other tasks can now send a request to this particular server through rq. For example: 

qhead rply; 
qhead• rply_to • rply.tail(); 
meaaage• meaa • new meaaage; 

meaa->r_operation • PLUS; 
meaa->r_arg1 • 1; 
meaa->r_arg2 • 2; 
meaa->r_reply • reply_to; 

rq->put(me■a); 
meaa • (meaaage•) rply->get(); 
if (meaa->r_operation •• l!:UOJl) error(); 
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! More about Queues: Mode and Size 

A qbead has a private variable mode that controls what happens when get ( ) is executed on 
an empty queue. In EMODE this causes an run time error. In ZMODE it will cause get() to 
return the NULL pointer instead of a pointer to an object. In WMODE a task executing a get c ) 
on an empty queue will wait on that queue, that is become IDLE, until the queue becomes non­
empty. Unless the user specifies the mode explicitly a qbead will be in WM ODE. The qbead 
function setmode ( ) can be used to reset the mode. The function rd.node ( ) returns the mode of 
a qhead.. 

As mentioned above a queue also has a maximum size. This can be reset using the function 
setmax ( ) ,. and read usina the function rd.max C ) . 

The mode and maximum size for a queue can also be specified when the queue is created. For 
example: 

qhead Q1(ZMOD!,10); 
qhe&d* QP2 • new qhead(EMOD!,64•1024); 

The public part of the declaration of class qtai l is similar to that of class qhead. The two 
classes complement each other, and together they provide a representation of the general idea of a 
queue: 

class qtail public object { 

public: 
qtail(int •WMOD!, int •10000): 

int r4apace(); 
int rd:\&X ( ) ; 
int rdmod.e ( ) ; 

void aetmax (int) ; 
void aetmode(int); 

qhead• head(); 

qt&il• cut(); 
void aplice(qhead•); 

void print(int); 
} ; 

A qtail's mode controls what happens on queue overflow in the same way as qhead.'s mode con­
trols what happens on queue underflow. For cumple, when a task executes put ( > on a full queue 
where the qtai 1 is in WMODE, then that task will be suspended waiting for a get ( ) on the 
bead. The mode of a qhead. or a qtai 1 can be inspected by rdmod.e C ) and changed at any time 
by setmod:e ( ) . The modes of a queue's qbead and qtatl need not be the same. 

Similarly the maximum number of objects which can be on a queue can be examined by 
rd.max ( ) and changed by setmax ( ) . Decreasing the max below the current number of objectS on 
the queue is legal. Doing this simply implies that no new objects can be put() on the queue until 
the queue bas been drained below the new limit. 

The qhead function rd.count C ) returns the current number of objects in a queue, and the 
qtail function rdspace < ) returns the number of objects which can be inserted into a queue 
before it becomes full. 

The qhead function putl:>ack C ) puts its argument back at the bead of the queue, that is 



qhead qh(WMODZ,10); 
object• 00 • qh.get(); 
qh.putb&ck(oo); 
oo • qh. get { ) ; 
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will assign ~e same object to oo twice. Putl:>ack( > has proved to be a useful function in many 
systems in the past, and it also allows a qhead. to operate as a stack. When putbaclt() is used, 
the task executing it competes for queue space with tasks using put() on the queue's tail. A 
putback{) to a full queue causes a run time error in both EMODE and WMODE. In ZMODE 
it returns NUIL. 

6 More about Tasks 

When a task is created it can be given three arguments. The first is a character string pointer 
which is used to initialize the class task variable t_name. This name can be used to provide 
more readable output and does not affect the behavior of the task. Toe string denoted by the 
pointer will not be copied. The t_name is used by the debugging aids and enor reporting func. 
tions described below. The other two class taak arguments are tuning parameters and will be 
described below. If an argument is NULL a system default \Vill be used. For example, we could 
have given each server task a name like this: 

claaa aerver: public taak { 

} ; 

void aerver.aerver(ch&r* name, qheac!• in) (nue,0,O) 
{ 

} 

aerver my_na.me_ia_fred("fred",qhp); 

The class task function sleep() suspends the task unconditionally without specifying what is 
supposed to cause it to be resumed. The function wakeup C ) can be used to resume it. 

The class function cancel ( > puts a task into the TERMINATED state and sets the return 
value just like resul tis ( ) . However, cancel C ) does not invoke the scheduler. 

The pointer 

taak• thiataak; 

denotes the currently active task. If no tasks have been created its value is o. It is illegal to assign 
to thistask. The use of thistaslt enables the class task functions to be used from extern 
functions without explicit passing of the current task's this pointer. 

The pointer 

taak• taak_chain; 

is the start of a chain of all taSks. In the following loop t points to every task in turn: 

for (taak• t•taak_chain; t; t•t-►t_next) ; 

It is not possible to have only one task. Therefore, when the first task is created in a program 
another task is implicitly created. Main() acts as its constructor, ~ its name is "main". It can 
be suspended and resumed like any other task. Please remember that a return from main(> ter­
minates a C program. If the "main" task should be terminated when there are other tasks 
which should be left running, then reaul tis ( ) can be used. For example, 

thiataak->reault.ia(O); 

can be executed in ma in C ) . The program will then run on until no more tasks are or can become 
RUNNING. 
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It is undefined what happens if a task,s constructor returns. Always call resul tis c ) instead 
of return, and never just "drop out of the bottom" of such a constructor. Unless a task's new 
function contains an infinite loop so that it will never terminate place a call of resultis () at the 
end ofits body. 

The task system does not provide a garbage collector. It is left to the programmer to ensure 
that pointers to deallocated store are not used. 

7 Waitina 

Functions like task.result ( ) , qhead.. get ( ) , and qta:Ll. put ( ) each provide a way of 
waiting for one single specific event to happen. More general facilities are sometimes needed. 
The class task function wait C ) provides a way of waiting on an arbitrary object. For example, 
if taskp is a pointer to a task then 

wait(taakp); 

will suspend the task executing it until the task denoted by taakp becomes TERMINATED. 
Each class derived from class object which is ever going to be "waited on" must have some 

rules associated with it specifying under which conditions a task executing a wait C ) for it will be 
resumed. The rules for class task, for class qhead., and for class qta i l have been stated. 

The conditions for wakeup are reflected in state changes in the objects, and are not just transi­
tory unrecorded signals. For example, if a task executes a wait ( ) for a non-empty qhead. it will 
immediately continue, that is the condition for returning from a wait() for a qhead is that the 
queue is non-empty, not a brief state chanae from empty to non-empty. Rules of this type simplify 
programming considerably by eliminating race conditions. 

The class task functions wai tvec, ) and wai tlist () suspend a task waiting for one of a 
list of objects, for example to wait for messages to arrive on one of a number of qheads. 
Wai tlist ( ) takes a list of object pointers terminated by a zero as argument, for example: 

qhead• q1; 
qhead• q2; 
ahort who• w&itliat(q1,q2,0); 

will suspend the task executing it until either q1 or q2 is non-empty. If either is non-empty when 
wai tlist ( ) is executed the task will continue immediately. 

The value returned is the position in the list of the object that caused the return from the wait, 
that is if q2 caused the task to resume the value 1 will be assigned to who. Positions are num­
bered starting from o. waitlist() can take any number of arguments. The degenerated exam­
ple 

waitliat(O); 

causes unconditional suspension of the task executing it without any guarantee of later resumption. 
It is equivalent to sleep C ) and wait ( o). 

Please note that one should not assume that because wai tlist C ) returns a particular value 
indicating one object as the cause of resumption none of the other objects are "ready". The value 
returned by wai tlist ( ) only indicates what is known to have happened, and it does not exclude 
other independent possibilities. On the other hand, even if wai tvec ( ) indicates a particular 
object, that object cannot in all circumstances be assumed to be "ready". For example, two tasks 
could be taking objects from the same qhead, each using waitvec() to wait for several objects. 
If wai tvec C ) returns with an indication that the queue has become non-empty, then this does not 
guarantee that the queue is still non-empty. 

Because every class in the task systein allows non-blocking examination of the conditions which 
might lead to suspension using the. three wait functions, the value returned by wai tvec ( ) can 
always be ignored. The information it conveys can always be obtained by direct inquiry. In many 
cases, however, the value returned can be trusted and used to write simpler, more efficient pro­
grams. 

Wai tvec ( ) takes the address of a vector holding a list of object pointerst for example: 
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object• vec[j • { q1, q2, 0 }; 

short who• w&itvec(vec); 

is equivalent to the previous example. 

8 System Time and Timers 

The long variable clock measures simulated time. It is initialized to zero. It is illegal to 
assign to clock. 

The task function delay suspends a task for a specified time. That is, 

long t • clock; 
delay(n); 
actual_delay • clock-t; 

will assign the value n to actual_d.elay. Delay() is useful for representing service delays in 
simulations. While a task is delayed in this way its state is still RUNNING, but it will not be 
affected by the actions of other tasks except if cancel ( ) or preempt ( > is used on it. 
Delay( n) makes an IDLE task RUNNING so that it will start executing at time cloek+n. 

The class task function preempt C ) makes a RUNNING task IDLE and returns the number 
of time units left of its delay. Applying preempt() to a IDLE or TERMINATED task causes a 
run time error. This function is useful when tasks are used to rep.resent processes in a system with 
preemptive scheduling and delay times are used to rep.resent the time used by executing processes. 
The value returned by preempt C ) allows the preempted task to be rHtarted with a new delay 
time which is a function of the delay time at the time of preemption. For example: 

int time_left • other_taak->preempt(); 
other_taak•>del&y(time_left+10}; 

A timer provides a facility for implementing time-outs and other time dependent phenomena. 
Class timer has this declaration: 

claaa timer public object { 

public: 
timer (int); 

int rdat&te(); 
int reault(); 

void re■et C int) ; 
void cancel (int); 

void print (int) ; 
}; 

A timer is quite similar to a task with a constructor consisting of the single statement 
d.e lay ( d.) ; that is, when a timer is created it simply waits for the number of time units given to it 
as its argument, and then wakes up any tasks waiting for it. 

A timer's state can be either RUN1'TING or TERMINATED. This state can be inspected by 
using rd.state C ) . 

A common use of timers is to wait for a task and a timer. For example, one can wait for the 
completion of a task handling an input operation and also on a timer. The timer ensures that the 
waiting task will eventually be resumed even if the input operation is never completedt: 

t In a quasi-parallel system this will only be true J)l'OVided no infinite loop without talk synmn calls exists. Such a loop con­
stitutes an crrar that only a system with we parallelism can recover from. 
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timer* tt • new timer(15); 
abort rea • waitliat(io_ptr,tt,O); 

switch ( rea) { 
case 0: '* normal completion of i/o */ 

break; 
case 1: I• time out occurred •I 

break; 
default: 

error(IMPOSSIBL!); 

The class timer function result C ) is very similar to task.result C ) . They differ only in 
. that the value returned by timer.result C ) is undefined unless cancel C ) was used. In the 
same way timer. cancel ( ) is identical to task. cancel ( ) . 

The function reset C) re-sets the timer delay to the value of its argument. This makes 
repeated use of timers possible. A timer can be reset C ) even when it is TERMINATED. 

A unit of simulated time can be used to represent any unit of real time. Only use of delay() 
causes the clock to advance. 

9 More about Queues: Cuttina and Splldna 

One of the most convenient and powerful ways of using tuks involves tasks defined to do a 
transformation on a data stream. Such a taSk is called a filter. It reads its input from one queue 
and writes its output onto another queue. Tasks at the "other ends" of these queues tend to view 
these queues plus the filter as one entity. The data source simply sees an output queue that is being 
emptied at some rate, and the task at the receiving end sees an input queue being filled. In other 
words, a task sees only its input and output queues and cares little about the "internal organiza­
tion'' of the programs that operate on the other ends of those queues. 

For example, one task could produce a stream of lines of characters, that is objects of class 
line, and another expect an input stream consisting of words, that is objects of class word.. A 
filter that handles the conversion could be defined and used like this: 

atruct line_to_word: public task { 
line_to_word(qhe&d*, qt&il•); 

word• next_word(line•); 
} ; 

line_to_word.line_to_word(qbead• in_q,qtail• out_q) 
{ 

for (;;) { 
word• w: 
line• l • in_q•>get(); 
while(w • next_word(l)) out_q->put(w); 

} 

qhe&d* line_q • new qbead(WMODZ,10); 
qhe&d* word_q • new qtail(WMOD!,50); 

producer* prod• new pro4ucer(line_q->tail()); 
conam.er• cona • new conaumer(worc!_q•>bead()); 
line_to_word• filt • new line_to_word(line_q,woru); 

In this way the filter filt is programmed into the path between cons and prod using two queues 
to separate filt's input from its output. 

This is a fairly static use of a filter. Often one would like to insert a filter into an existing data 
path. For example, a macro-based text formatting program could be organized as a sequence of 



- 12 -

filters - each doing its small part of the common task. First some filters re-arrange the input into a 
form suitable for the formatter proper, then the "input independent" formatter does its job produc­
ing output of a standard form, and last some output filters adjust this output to a form suitable for 
physical output. Toe task f i l t is an example of such a filter. In this scenario it would be useful 
to have each macro defined as a filter which the formatter proper insens just in front of itself 
when the macro expansion is needed and which removes itself when it is not needed any more. 
Assuming that data streams are represented by queues, this can be achieved by using the class 
qhead functions cut() and aplioe() 

When the task formatter recognizes a call to the macro "foo" it creates a new task of class 
macro to handle a macro of type FOO and diverts its own input through it. This is done by first 
"cutting" the input queue to create a place to insen the new filter, and then creating the filter giv­
ing it the new qhead and qtail as arguments: 

qhead• newhead • input_queue->cut(); 
qt.ail• newt.ail• input_queue->tail(); 
macro• f • new maero(FOO,newhead,newtail); 

cut< ) splits the queue to which it is applied into two. Newbe.ad, the pointer returned from 
cut (), denotes the qhead for the original queue and has the same mode as the original qhead. 
Toe original qhead is now attached to a new empty queue with the same max as the original. 

Put C) 's to the original qtail will therefore place objects on the filter's input queue, and 
get () 's from the original qhead will retrieve objects from the filter's output queue. 

The result of these operations has been to insert a filter with an input and an output queue into 
a queue without changing the appearance of· that queue to anyone using it, and without halting the 
flow of objects through that queue. In our example the macro expansion filter :f oo will ;-et C ) the 
input which would otherwise have gone to the formatter, interpret it as macro arguments, and out­
put the expanded input as its output. 

Toe filter can be removed again by splicing its input and output queues together with 
splice(): 

newhea.d->splice(newtail): 

Splice () deletes the qhead to which it is applied, the qtail given to it as an argument, and 
the queue denoted by that qta i l. If the spl i ee C ) operation causes an empty queue to become 
non-empty or a full queue to become non-full all tasks waiting for such a state change are 
resumed. 

Deleting the filter completes the cleanup: 

delete filt; 

_Typically a filter would remove itself when its task was completed, because the task that 
inserted it would not be programmed to be aware of the presence of the filter it inserted. The 
sequence of operations which enables a task to remove itself without a trace is: 

cancel(any_value); 
delete thia; 

This will work because cancel ( ) does not imply immediate suspension, only a guarantee that the 
task cannot be resumed. 

Toe qtail functions cut() and splice() are similar to qhead's, but they operate on the 
other end of the queue. 
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10 Encapsulation 

Passing information between tasks through queues can lead to rather tedious repetitive ( and 
therefore error prone) packing and unpacking of information into messages. Simple encapsulation 
techniques can be used to relieve the programmer of this. For example, by adding a constructor to 
the class message the server example could be re-written thus: 

atruct maesage: public object { 
int r_operation; 
int r_arg1; 
int r_ar;2; 
qtaih r_reply; 

meaaaqe(int op, int &1, int a2, qt&il• rp) 
{ r_operation•op; r_arg1•a1; r_arg2•a2; r_reply•rp; }; 

} ; 
rq-►put( new meaaage(Pius, 1, 2, reply_to) ); 
meaaage• me■■• (meaaa;e•) rply•>get(); 
if (meaa->r_operation •• EUOR) error(); 

Funhcrmore, because the message queues obviously are meant to hold only message objects a 
specific message queue could be defined and used: 

atruct mqhead: public qhaad { 
mea■ap• get() { return (m••••~••> qhead.get(); }; 

atruct mqt&il: public qtail { 
int putCm••••r•• m) { return qtail.put(m); }; 

} ; 

The use of mqtail. put ( ) ensures that only class message objects are put on the queue, and no 
type cast is needed when class message objects are taken from the queue using mqhead. get ( ) . 
For example: 

meas• rply->get(); 

Because the body of mqtail . put ( ) is present in the class mqtail declaration calls of 
mqtai l. put C ) will be expanded inline. This ensures that using a mqtail is no less efficient as 
using a qta i l directly. In many cases some error handling can also be handled by the derived 
put ( ) and get ( ) functions. 

An alternative solution is to provide the server class with functions which handle the packmg: 

claaa server: public task { 

public: 

} ; 

qhead• inp; 

aerver(cbar• name) : (name) { inp•new qtail(WMOt>E,100); } 
int plua(int, int, mqtail•); 
int minua(int, int, mqtail•); 

int aerver.plua(int arg-1, int arg-2, mqhead• rqt) 
{ 

} 

inp•>put( new meaaage(PLUS,arq1,arg2,rq) ); 
message• m••• • rqt•>head()•>get(); 
int x • meaa-►:r_ope:raticn; 
delete mesa; 
return x; 

so now the server task can be requested to perform services like this: 



(_ 

mqtail qq; 
server SS("plua_anv,inua"); 
int two• SS.plua(1,1,&qq); 
int ten• ss.minua(12,2,,qq); 
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For large programs this style of inter-task communication promises not only increased clarity; 
but also increased efficiency. The message queue interaction may, where necessary, be tran­
sparently replaced by a specially tailored inter-task communication facility. 

11 HistolflllllS and Random Numbers 

To ease data gathering cl.ass histogram is provided. 
atruct hiato;ru { 

} ; 

int l, r, nbin; 
int• h; 
long sum; 
long aqaum; 
void hiatogru(int•16, int•O, int•16); 
void add (int); 
void print(); 

A histogram consists of nl:>in bins h [ o l . . . h [ nbin-1 J covering a range t 1 : :r J of integers. 
The function add< > adds one to the correct bin for its integer argument. The sum of the inteaers 
added is maintained in sum, and the sum of their squares is maintained in sqsum. Jf an argument 
to add C ) is outside the range [ l : :r l the range is adapted by either decreasing l or increasing :r. 
The number of bins remains constant so the size of the range covered by a bin is doubled each 
time the size of the range [l:r] is. The print(} function prints out the numbers of entries for 
each non-empty bin. 

In most simulations some form of random number generation is needed. The generators pro­
vided here are intended to help the developer of a simulation to get started and to provide a para­
digm for generators of more suitable distributions. 

claaa randint { 
/• uniform diatribution of poaitive integer• and floata •/ 

public: 

} ; 

void aeed(long); 
randint(lonq • •0) { aeed(a); }; 

int drav(); 
float fdraw(); 

The following program shows the use of class rand.int. The int• returned by draw() are uni­
formly distributed in the interval [ O: la:rgest_posi tive_int t. The floats returned by 
fdraw() arc uniformly distnbuted in the interval r o: 1 [. 

main() 
{ 

} 

randint i:r; 

for (register i•O; ic100; i++) 
printf("i•,Cc!I f•"f ", ir.4:aw(), i:r.fdraw()); 

Each object of cl.ass rand.int provides an independent sequence of random numbers. The 
seed() function can be used to reinitialize a generator. The d.:raw() function uses the same algo­
rithm as the C library rand C ) '. using class randint, generators for other distributions 
arc easily programmed. Note that erand.d.:raw() calls log() from the math library, so a pro­
gram using it must be loaded with -lm. 
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atruct urand: public randint { 
I• uniform distribution in the interval [low:highJ •I 

int low, h:lg-h; 
urand(int ll, int hh) { low•ll; high•hh; }; 

int d.raw(); 
} ; 

atruct erand: public randint { 
I• exponential diatribution with mean •mean• •I 

int mean; 

} ; 

erand(int m) { mean•m; }; 
int draw(); 

12 Implementation Details 

The following sections contain many implementation-dependent details. The implementation 
described is the version for a VAX running UNIX9

. Implementation-dependent information is 
unfortunately often necessary to allow tuning and ease debugging. 

13 Task Stack Allocation 

The two arguments mode and atackaize allow the user to guide the system's handJing of the 
task. Their exact interpretation is implementation dependent. Users who are not interested in 
implementation details and/or want a more portable program should set them both to zero. The 
system will then choose (hopefully reasonable) implementation-dependent default values. 

The stacksize argument indicates the maximum amount of stack storaae that the task is. 
allowed to use. Using more is an error. It will be expressed in a unit of store suitable for stack: 
allocation on the host system. The stack is the one which is supp:,rted by the standard compiler 
and operating system. 

The mode provides additional informati.on:The value SHARED indicates that the stack: space 
should be taken from the stack space of the parent task, that is the task which created the new 
task. 'Where SHARED stacks are used the active part of the stack is copied to a save area when a 
task is suspended, and copied back when it is resumed. Since stack locations are not dedicated to a 
single task pointers to local variables should not be passed to other tasks. Toe time needed to 
suspend and resume a task with SHARED stack is approximately proportional to the amount of 
stack space actually used at the time of suspension. . 

If, on the other hand mode is DEDICATED then a new and separate stack area is allocated, 
and no copying of stack space will occur. 

14 Scheduling 

Functions of a system class, known as the scheduler, are invoked as the result of any function 
of class task which causes the suspension of a running task, and may be invoked by any function 
from the standard classes described here. Toe scheduler selects the next task to run. When the 
scheduler finds no more tasks to run it examines the pointer variable exi t_f ct, and if this is 
non-zero the scheduler will call the function denoted by it. 

Whenever clock is advanced the scheduler examines the pointer variable clock_taak. If 
this denotes a task, then that task will be resumed before any other task. The clock_taak must 
be IDLE when resumed by the scheduler. The class task function sleep() is useful to ensure 
this. 



1! Debugging and Tuning Aids 

The task system has been designed under the assumption that a typical use of tasks may involve 
hundreds of tasks and need tuning to achieve an acceptable time.space tradeoff. The task of debug­
ging such a system can safely be assumed to be non-trivial. 

Classes were used in the implementation of the task system largely because they allow the scope 
of data and functions to be explicitly restricted to the object to which they belong. This allows 
better type checking of a multi-threaded program than could be achieved by a function-based 
implementation. The classes which constitute the task system were designed to allow quite strong 
type checking of proarams using them. 

A number of run time errors are detected by the task system. For example it is illegal to 
delete a queue on which a task is waiting. 'When such a run time error is detected the task sys­
tem function task._error is called with the number of the error and the this pointer of the 
object which caused the error as arguments. Appendix B is a list of run time errors. 
Task._error C ) will in tum examine the pointer error_f ct, and if this is non-zero call the func­
tion denoted by it with a copy of its own arguments. Otherwise taalc_error C ) will call the sys­
tem function e:x:i t C > with the error number as argument. 

When returning from taalc_errorC) after executing an error_fet which returned rather 
than using e:x:i t C ) the task system will re-try the operation which caused the error (provided that 
error_fct could have affected the condition which caused the error). For example, a put() to 
a qhead will be re-tried because the user's error_f ct might have either caused the get C ) func. 
tion to be used on the queue, or used chmax C ) to allow more objects to be inserted into that 
queue. Note that allocation operations using the new operator which failed due to lack of free 
store will be re-tried because some kind of garbage collection may have been implemented in 
er:ror_f ct by the user. 

Beware of infinite loops. 
All task system classes have a function print() which can be used to print the contents of 

their objects on stdout. A print C ) function takes an int argument indicating the amount of 
information to be printed. Print ( o l gives the minimum amount of information, 
print (VER.BOSE) rather more, and print (CHAIN) will call print C ) for objects on lists associ­
ated with the object with its own arguments. The print C ) argument constants can be combined 
by the or operator. For example 

thiataak->print((V'ERBOU); 
run_chain•>print(VD80SIICHAIN); 

will verbosely describe every non-TERMINATED timer and every RUNNING task. For tasks 
information about the nm time stack is printed by print (STACK'.) . If the function hwm ( ) has 
been called print c STACIC) will also give an estimate of the maximum amount of stack space ever 
used by the task, the stack's "high water mark". For tasks that share a stack, the high water mark 
printed will be the high water mark of most greedy task. For example, information describing 
stack usage for all tasks can be printed by: 

taak_chain->print(STACXICHAIN); 

The output of the print ( ) functions is implementation-dependent and hopefully self­
explanatory. 

16 Overheads and Performance 

The store used for representing a class object in addition to the user specified data is: 

object 3 word• 
timer 5 word■ 
taak 16 word•• stackaize 
queue 10 worda (including the qhead and the qt.ail) 

The time needed to execute some of the task system functions are approximately: 



procedure call+ return 
taak auapend + resume 
put 
get 
wait, waitvec, or waitliat 
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1 unit 
9 units (using reault()) 
2 units 
2 units 
3 unit• 

Toe last four actions can all cause a task to be suspended. When this happens add 6 units of time. 
The task system uses about SK bytes of store for program and data. 
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19 Appendix A: Objects 

The task system as described above is implemented using a lower level of abstraction based on 
the direct use of the class object. Cass object can also be used as a base for other (user 
defined) abstractions, but beware, it is an implementation tool that is not intended to be used 
directly. 

Class object is a base class for all classes in the task system and also the most basic facility 
for inter-task communication. The declaration of class object looks like this: 

cl&H object { 
olink• o_link; 

public: 

} ; 

object(int •O); 
•object(); 

short o_type; 
object• o_next; 

void remember(taak•); 
void forget(taak•); 
void. alert ( ) ; 

void printCint); 

The task system implements objects of type TASK, QHEAD, Q!All.., and TIMER. 
A task can be added to the set of tasks "remembered" by an object by executing remember ( ) 

and a task can be removed from this set by executing f c:>rget C ) • Executing alert ( ) has the 
effect of transferring all IDLE tasks remembered by the object to the RUNNING state. A task 
can be "remembered" by several objects or several times by the same object without any bad 
effects. Forget C ) will insure that its argument is not "remembered" any more, and it causes no 
bad effects when used for an object that does not "remember" its argument task. No record is 
kept of how many alert C ) operations have been executed on an object. Alert C ) does not cause 
an object to forget() tasks. Executing a remember() does not suspend a task. Applying 
alert C ) to an object that does not remember any tasks is legal, but has no effect. Caveat emp­
tor! 

The class object functions remember(), forget(), and alert() provide a simple, effi. 
cient, but unstructured and therefore error-prone, communication mechanism. 

The declarations for the task system classes can be found in <taalc.h>. 


