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ABSTRACT 

This memo describes a data type complex providing the basic facilities for 
using complex arithmetic in C + +. The usual arithmetic operators can be used on 
complex numbers and a library of standard complex mathematical functions is pro­
vided. For example: 

#include <complex.h> 

ma.in(){ 
complex xx; 
complex yy • complex(1,2.718); 
xx• log(yy/3); 

-. cout<<1+xx; 
} 

initializes yy as a complex number of the form (real+imag*i), evaluates the 
expressions and prints the result: ( o . 7 O 61 o 7 , 1 . 1 o 715 ) . 

The data type complex is implemented as a class using the data abstraction 
facilities in C+ + 1. The arithmetic operators + - • I, the assignment operators • 
+• -• •• I•, and the comparison operators •• I• are provided for complex 
numbers. So are the trigonometric and mathematical functions: sin(), cos (), 
cosh(), sinb(), sqrt(), log(), exp(), conj(), a.rg(), abs(), norm(), 
pow ( ). Expressions such as ( xx+ 1 ) * log C yy*1og C 3. 2) ) that involves a mix­
ture of real and complex numbers are handled correctly. The simplest complex 
operations, for example + and +•, are implemented without function call over­
head. 

[l] Bjarne Stroustrup: "The C+ + Programming Language• Reference Manual'" lit this volume. 
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Introduction 

The C+ + language does not have a built-in data type for complex numbers, but it does provide 
language facilities for defining new data types (see also references 2 and 3). The type .complex 
was designed as a useful demonstration of the power of these facilities. 

There are three plausible ways to support complex numbers in C+ +. First, the type complex 
could be directly supported by the compiler in the same way as the types int and float are. 
Alternatively, a preprocessor could be written to translate all use of complex numbers into stan­
dard C+ +. A third approach was used to implement type complex; it was specified as a user­
defined type. This demonstrates that one can achieve the elegance and most of the efficiency of a 
built in data type without modifying the compiler. It is even much easier to implement than the 
pre-processor approach, which is likely to provide an inferior user interface. 

This facility for complex arithmetic provides the arithmetic operators + / * -, the assignment 
operators • +• -• o I•, and the comparison operators •• I• for complex numbers. Input and 
output can be done using the operators « ("put to") and >> ("get from"). The initialization 
functions and operator > > accept a Cartesian representation of a complex. The functions real ( ) 
and imag ( ) return the real and imaginary part of a complex, respectively, and operator « 
prints a complex as (real, imaginary). The internal representation of a complex, is, how­
ever, inaccessible and in principle unknown to a user. Polar coordinates can also be used. The 
function polar () creates a complex given its polar representation, and abs ( ) and arg( ) return 
the polar magnitude and angle, respectively, of a complex. The function norm() returns the 
square of the magnitude of a complex. The following complex functions arc also provided: 
sqrt (), exp(), log{), sin{), cos (), sinh(), cosh(), pow{), conj (). The declaration 
of complex and the declarations of the complex functions can be found in Appendix A A com­
plete program using complex numbers can be found in ~ndix B. 

Complex V arlables and Data Initialization 

A program using complex arithmetic will contain declarations of complex variables. For exam­
ple: 

complex zz • complex(3,-5); 

will declare zz to be complex and initialize it with a pair of values. The first value of the pair is 
taken as the real part of the Cartesian representation of a complex number and the second as the 
imaginary part. The function complex ( ) constructs a complex value given suitable argumcntst. 
It is responsible for initializing complex variables, and will convert the arguments to the proper 
type (double). Such initializations may be written more compactly. For example: 

complex zz(3,-5); 
complex CJl&me(-3.9,7); 
complex rpr(SQRT_2,root3); 

A complex variable can be initialized to a real value by using the constructor with only one 
argument. For example: 

complex ra ■ complex(1); 

will set up ra as a complex variable initialized to < 1, o). Alternatively the initialization to a real 
value can also be written without explicit use of the constructor: 

complex rb ■ 123; 

The integer value will be converted to the equivalent complex value exactly as if the constructor 
complex{ 123) had been used explicitly. However, no conversion of a complex into a double 
is defined, so 

[2] Bjame Stroustrup: "Data Abstraction in C+ +" In this volume. 
[3] Bjame Stroustrup: "Operator Overloading in C+ +" In this volume. 
+ Such a function is called a constructcr. A constructor for a type always has the same name as the type itself. 
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double dd • com~lex( 1, 0); • 

is illegal and will cause a compile time error. 
H there is no initialization in the declaration of a complex variable, then the variable is initial­

ized to ( o , o ) . For example: 

complex orig; 

is equivalent to the declaration: 

complex orig• complex(O,0); 

Naturally a complex variable can also be initialized by a complex expression. For example: 

complex cx(-0.5000000e+02,O.8660254e+02); 
complex cy • cx+log(cx); 

It is also possible to declare arrays of complex numbers. For example: 

complex carray[30J; 

sets up an array of 30 complex numbers, all initialized to ( O, o). Using the above declarations: 

complex carr[J • { ex, cy, carray[2J, complex(1.1,2.2) }; 

sets up a complex array carr[] of four complex elements and initializes it with the members of 
the list. However, a struct style initialization cannot be used. For example: 

complex cwrong[J • {1.5, 3.3, 4.2, 4}; 

is illegal, because it makes unwarranted assumptions about the representation of complex numbers. 

Input and Output 

Simple input and output can be done using the operators » ("get from") and « ("put to") . 
They are declared like this using the facility for overloading operators: 

oatream& operator<<(oatre~, complex); 
istream& operator>>(istre~, complex&.); 

When z:z: is a complex variable cin»zz reads a pair of numbers from the (standard) input 
stream cin into zz. The first number of the pair is interpreted as the real part of the Cartesian 
representation of a complex number and the second as the imaginary part. The expression 
cout«zz: writes z:z to the (standard) output stream eout. For example: 

void copy(iatream& from. oatream& to) 
{ 

complex zz; 
while ( from>>zz) toc<zz; 

} 

reads a stream of complex numbers like ( 3. 400000, s. 000000) and writes them like ( 3. 4, s). 
Toe parentheses and comma are mandatory delimiters for input, while white space is optional. A 
single real number, for example 1 0e-7 or ( 123 ) , will be interpreted as a complex with O as the 
imaginary part by operator > >. 

A user who does not like the standard implementation of« and» can provide alternate ver­
sions. 

Cartesian and Polar Coordinates 

The functions real C) and imag() renmt the real and imaginary parts of a complex number, 
respectively. This can, for example, be used to create differently formatted output of a complex: 

complex cc• comple.x(3.4,5); 
cout<<real(cc)<<•+•ccimag(cc)••i"; 

will print 3. 4+5•i. 
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The function polar C ) creates a complex given a pair of polar coordinates (magnitude, 
angle). The functions arg C ) and abs ( ) both take a complex argument and return the angle and 
piagnitude (modulus), respectively. For example: 

complex cc• polar(SQRT_2,PI/4); /* alao known aa complex(1,1) •I 
double magn • aba(cc); /* magn • aqrt(2) */ 
double angl • arg(cc); /* angl • PI/4 •I 
cout<<"(m•"<<maqn<<", a•"<<angl<<")"; 

H input and output functions for the polar representation of complex numbers are needed they 
can easily be written by the user. 

Arithmetic operators 

The basic arithmetic operators + - (unary and binary)/ *, the assignment operators • o -• 
u I•, as well as the equality operators •• t • can be used for complex numbers. The operators 
have their conventional precedences. For example: a•b*C+d for complex variables a, b, c, and d 
is equivalent to a■ ( b•c) +d. There are no operators for exponentiation and conjugation; instead 
the functions pow() and .conj () are provided. The operators +• -• •• /■ do not produce a 
value that can be used in an expression; thus the following examples will cause compile time 
errors: 

complex a, b; 

if ( (a+•2)••0 ) { ... } 
b •a•• b; 

Mixed Mode Arithmetic 

Mixed mode expressions are handled correctly. Real values will be converted to complex where 
necessary. For example: 

complex xx(3.5,4.0); 
complex yy • log(yy) + log(3.2); 

nus expression involves a mixture of real values: log ( 3. 2 ) , and complex values: log ( yy) and 
the sum: Another example of mixing real and complex, xx• 1 is equivalent to xx■complex C 1 ) 
which in turn is equivalent to xx•complex ( 1 , O ) . The interpretation of the expr~ssion 
( xx+ 1) *YY*3. 2 is ( ( ( xx+complex( 1)) *YY) *Complex( 3. 2)) 

Mathematical Functions 

A library of complex mathematical functions is provided. A complex function typically has a 
counterpart of the same name in the standard mathematical library. In this case the function name 
will be overloaded. That is, when called, the function to be invoked will be chosen based on the 
argument type. For example, log( 1) will invoke the real log(), and log( complex( 1)) will 
invoke the complex log ( ) . In each case the integer 1 is converted to the real value 1 . o. 

These functions will produce a result for every possible argument. Hit is not possible to pro­
duce a mathematically acceptable result, the function comple:x_error ( ) will be called and some 
suitable value returned. In particular, the functions try to avoid actual overflow, calling 
eomplex_error C ) with an overflow message instead. The user can supply comple:x_error ( ) . 
Otherwise a function that simply sets the integer errno is used. See appendix C for details. 

complex conj(complex); 

conj ( zz) returns the complex conjugate of zz. 

double norm(complex); 

Norm ( zz) returns the square of the magnitude of zz. It is faster than abs C zz) , but more likely 
to cause an overflow error. It is intented for comparisons of magnitudes. 



overload pow; 
double pow(double, double); 
complex pow(doubl,, complex); 
complex pow(complex, int); 
complex pow(complex, double); 
complex pow(complex, complex); 
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Pow ( aa, bb) raises aa to the power of bb. For example, to calculate ( 1-i) **4: 

cout«pow(· complex(1,-1), 4); 

The output is ( - 4 , O ) • 

overload log; 
double log(double); 
complex log(complex); 

Log(zz) computes the natural logarithm of zz. Log(O) causes an error, and a huge value is 
returned. 

overload exp; 
double exp(double); 
complex exp(complex); 

Exp(zz) computes e**ZZ, e being 2.718281828 ... 

overload sqrt; 
double sqrt(double); 
complex sqrt(complex); 

Sqrt C zz) calculates the square root of zz. The trigonometric functions available are: 

overload sin; 
double sin(double); 
complex sin(complex); 

overload cos; 
double coa(double); 
complex coa(complex); 

Hyperbolic functions are also available: 

overload sinh; 
double sinh(double); 
complex sinh(complex); 

overload cosh; 
double coah(double); 
complex coah(complex); 

Other trigonometric and hyperbolic functions, for example tan() and tanh(), can be written 
by the user using overloaded function names. 

Efficiency 

C+ + 's facility for overloading function names allows complex to handle overloaded function 
calls in an efficient manner. If a function name is declared to be overloaded, and that name is 
invoked in a function call, then the declaration list for that function is scanned in order, and the 
first occurrence of the appropriate function with matching arguments will be invoked. For further 
detail see reference 4. For example, consider the exponential function: 

overload exp; 
double exp(double); 
complex exp(complex); 

When· called with a doub~e argument the first, and in this case most efficient, exp() will be 
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invoked. If a complex result is needed, the double result is then implicitly converted using the 
appropriate constructor. For example: 

complex foo • exp(3.5); 

is evaluated as 

complex foo • complex( exp(3.5) ); 

and not 

complex foo • exp( complex(3.5) ); 

Constructors can also be used explicitly. For example: 

complex add(complex a1, complex a2) /* silly way of doing a1+a2 */ 
{ 

return complex( real(a1)+real(a2), imag,a1)+imag(a2) ); 
} 

Inline functions are used to avoid function call overhead for the simplest operations, for exam­
ple, conj (), +, +•, and the constructors (Sec appendix A). 
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Appendix A: Type complex 

This is the definition of type complex. It can be included as <eomplex.h>. A friend 
declaration specifies that a function may access the internal representation of a complex. Toe file 
stream. h is included to ~ow declaration of the stream i/o operators « and » fc~ complex 
numbers. 

#include <stream.h> 
#include <errno.h> 

overload cos; 
overload cosh; 
overload. exp; 
overload log; 
overload. pow; 
overload sin; 
overload. sinh; 
overload. aqrt; 
overload. ab•; 

#include <ma.th.h> 

class complex { 
double ret im; 

public: 
complex(double r • o, double i • 0) { re•r; im■i; } 

friend 
friend 
friend. 
friend. 
friend 
friend 
friend 
friend 
friend 
friend. 
friend 
friend. 
friend 
friend 
friend 
friend 
friend 
friend 

friend 
friend 
friend 
friend 
friend 
friend 
friend 

double ab■ (complex); 
double norm(complex); 
double arg(complex); 
complex conj(complex); 
complex co■ (complex); 

complex coah(complex); 
complex exp(complex); 
double ima.g(complex); 
complex log(complex); 
complex pow(double. complex); 
complex pow(complex. int); 
complex pow(complex. double); 
complex pow(complex, complex); 
complex polar(double, double• O); 
double real(complex); 
complex ain(complex); 
complex ainh(complex); 
complex aqrt(complex); 

complex operator+(complext complex); 
complex operator-(complex); 
complex operator-(complex, complex); 
complex operator•(complext complex); 
complex operator/(complext complex); 
int operator••Ccomplext complex); 
int operatorl•(complex, complex); 

void operator+•(complex); 
void operator-•(complex); 
void operator••Ccomplex); 
void operator/•(complex); 
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ostream& operator<<(ostream&, complex); 
istream& operator>>(iatream&, complex&); 

inline complex operator+(complex a1, complex a2) 
{ 

return complex(a1.re+a2.re, a1.im+a2.im); 
} 

inline complex operator-(complex a1,complex &2) 
{ 

return complex(a1.re-a2.re, a1.im-a2.im); 
} 

inline complex operator-(complex a) 
{ 

return complex(-a.re, a.im); 
} 

inline complex conj (complex a) 
( 

return complex(a.re,. -a.im); 
} 

inline int operator••Ccomplex •• complex b) 
{ 

return (a.re••b.re &&. a.im••b.im); 

inline int operatort•(complex a, complex b) 
{ 

return (a.ret•b.re II a.iml•b.im); 

inline void complex.operator+•(complex a) 
{ 

re+• a.re; 
im +• a.im.; 

} 

inline void complex.operator-•(complex a) 
{ 

re-• a.re; 
im -• a.im; 

} 
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Appendix B: A FFT Function 

Transcribed from Fortran as presented in "FFT as Nested Multiplication, with a Twist" by Carl 
de Boor in SIAM Sci. Stat. Comput. Vol 1 No 1, March 1980. • 

#include <complex.h> 

void fftstp(complex•, int, int, int, complex•); 

conat NEXTMX • 12; 
int prime[NEXTMXJ • { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 }; 

complex• fft(complex •z1, complex •z2, int n, int inzee) 
I• 

Construct the discrete Fourier transform of z1 (or z2) in the 
Cooley-Tukey way, but with a twist. 

z1[beforeJ, z2[beforeJ. 
inzee••1 means input in z1;. inzee••2 meana input in z2 

int before• n; 
int after• 1; 
int next• O; 
int now; 

do { 
int np • prime[next]; 
if C (before/np)•np <before) { 

} 
else { 

if (++next< NEXTMX) continue; 
now • before: 
before• 1; 

now • np; 
before/• np; 

} 

if (inzee •• 1) 
fftatp(z1, after, now, before, z2); 

else 
fftatp(z2, after, now, before, z1); 

inzee • 3 - inzee; 
after•• now; 

} while (1 < before) 

return (inzee••1) ? z1 z2; 
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void fftstp(complex* zin, int after, int now, int before, complex• zout) 

zin(after,before,now) 

•I 
{ 

zout(after,now,before) 

there are ample acope for optimization 

double angle• PI2/(now*after); 
complex ome~a • complex(coa(angle), -ain(angle)); 
complex arg • 1; 
int j; 
for (j•O; j<now; j++) { 

int ia; 

} 

for (ia■ O; ia<after; ia++) { 
int ib; 
for (ib•O; ib<before; ib++) { 

int in; 
I• value• zin(ia,ib,now) */ 

complex value• zin[ia + ib•after + (now-1)•before•afterJ; 

for (in•now-2; O<•in; in--) { 
I• value• value.,,arg + zin(ia,ib,in) */ 

value•• arg; 
value•• zin[ia + ib•after + in*before•afterj; 

} 
I• zout(ia,j,ib) • value •I 

. zout[ia + j•after + ib•now•afterJ • value; 
} 

arg •• omega; 
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The main program below calls f ft ( ) with a sine curve as argument. The complete unedited 
output is presented on the next page. All but two of the numbers ought to have been zero. The 
very small numbers shows the roundoff errors. Since double-precision floating-point arithmetic 
was used these ettors are smaller than the equivalent errors obtained using the published Fortran 
version. 

#include <complex.b> 

main() 
/• 

} 

test fft() with a aine curve 

inti, n•26; 
complex •z1; 
complex •z2; 
complex •&out; 
extern complex• fft(complex•, complex•, int, int); 

&1 • new complex[nJ; 
z2 • new compla:[nJ; 

coutcc•input: \:n"; 
for (i • O; i < n ;i++) { 

z1UJ • ainti*1 1I2/n); 
cout<<&1[i)<<•,n•; 

} 

e:rrno • 0; 
zout • fft(z1, z2, n, 1); 
if (errno) cout<<"Cerror •ccerrnocc• occurred\n"; 

coutcc•output: \n"; 
for Ci• 0; i c n ;i++) 

COUt<<&out[iJ ◄◄ "\n"; 



iriput: 
( 0, 0) 
(0.239316, 0) 
(0.464723, 0) 
(0.663123, 0) 
(0.822984, 0) 
(0.935016, 0) 
( 0. 992709, 0) 
(0.992709, 0) 
(0.935016, 0) 
(0.822984, 0) 
( 0 • 663123 , 0 ) 

(0.'64723, 0) 
( 0. 239316, 0) 
(4.359He-17, 0) 
(-0.239316, 0) 
(-0.464723, 0) 
(-0.663123, 0) 
(-0-.822984, 0) 
(-0.935016, 0) 
(-0.992709, 0) 
(-0.992709, 0) 
(-0.935016, 0) 
(-O.B22984, D) 
( - 0 • 66312 3 , 0 ) 
(-O.46'723, 0) 
(-0.239316, 0) 
output: 
(9.56'01e-17, 0) 
(-3.7666Se-16, -13) 
(9.39828e-17, 1.11261e-17) 
(6.42219e-16, -4.20613e-17) 
(7.37279e-17, 2.33319e-16) 
(2.85084e-16, 2.S791Be-16) 
(4.03134e•17, 5.1789e-17) 
(2.60865e-16, 6.78794e-17) 
(-S.71667e-17, -3.86348••17) 
(2.76315e-16, 2.36902e-17) 
(-6.43755e-17, -3.80255e-17) 
(1.95031e-16, 9.77858e-17) 
(1.49087e-16, -7.57345e-17) 
(3.17224e-16, 1.64294••17) 
(1.49087e-16, 7.57345e-17) 
(2.7218e-16, -4.03777e•17) 
(-6.4l75Se•17, 3.B0255e-17) 
(4.93B05e-16, 3.36874e-17) 
(-5.71667e-17, 3.86348e-17) 
(7.86047e·16, -4.1106Be-18) 
(4.03134e-17, -S.1789a-17) 
(1.60788e-15, -1.06841e-16) 
(7.37279e-17, -2.33319••16) 
(5.45186e-15, 2.,2719e•16) 
(9.3982Be-17, -1.11261e-17) 
(-1.12013e•14, 13) 

• 12 • 
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Appendix C: Errors and Error Handllna 

These are the declarations used by the error handling: 

int errno; 
int complex_error(int, double); 

Toe user can supply eomplel(..error C ) . 
Toe exceptions generated are: 

Otherwise a function that simply sets errno is used. 

cosh(zz): 
C_COSH_RE 
C_COSH_lM 

exp(zz): 
C_EXP _RE_POS 
C_EXP _RE_NEG 
C_EXP_IM 

log(zz): 
C_LOG_0 

sinh(zz): 
C_SlNH_RE 
C_SlNH_Ild 

p!Z.rel too large. Value with correct angle and huge magnitude returned. 
rz;z.iml too larp. Complex(0,0) returned. 

zz.im too small. Value with correct anJle and huge magnitude returned. 
zz.re too small. Complex(0,0) returned. 
rz;z.iml too larp. Complex(0,0) returned. 

zz=•O. Value with a large real part and zero imaginary pan returned. 

p!Z.rel too large. Value with correct angle and huge magnitude returned. 
lzz.iml too larp. Complex(0,0) returned. 


