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ABSTRACT 

C+ + is a superset of the C programming language; it is fully implemented and 
has been used for non-trivial projects. The facilities for data abstraction provided 
in C+ + are described. These include Simula-like classes providing ( optional) 
data hiding, ( optional) guaranteed initialization of data structures, ( optional) 
implicit type conversion for user defined types, and ( optional) dynamic typing; 
mechanisms for overloading function names and operators; and mechanisms for 
user-controlled memory management. It is shown how a new data type, like com­
plex numbers, can be implemented, and how an "object-based" graphics package 
can be structured. A program using these data abstraction facilities is at least as 
efficient as an equivalent program not using them, and the compiler is faster than 
older C compilers. 
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Introduction 

Toe aim of this paper is to show how to write C++ programs using "data abstraction" as 
described belowt. This paper presents some general discussion of each new language feature to 
help the reader to understand where that feature fit in the overall design of the language, which 
programming techniques it is intended to support, and what kind of errors ancj costs it is intended 
to help the programmer to avoid. However, the paper is not a reference manual, so it does give 
not complete details of the language primitives; these can be found in reference 9. 

C+ + evolved from c! through some intermediate stages, collectively known as "C with 
classes"8•

9
• Toe primary influence on the design of the abstraction facilities was the Sim.ula67 class 

conccpt1.2. The intent was to create data abstraction facilities which are both expressive enough to 
be of significant help in structuring large systems, and at the same time useful in areas where C's 
terseness and ability to express low level detail are great assets. Consequently, while C+ + classes 
provide general and flexible structuring mechanisms, great care has been taken to ensure that their 
·use does not cause run time or storage overhead which could have been avoided in C. 

Except for details like introduction of new keywords, C+ + is a superset of C; see section 
"Implementation and Compatibility" below. The language is fully implemented and in use. Tens 
of thousands of lines of code have been written and tested by dozens of programmers. 

Toe paper falls into three main sections: 
[ 1] A brief presentation of the idea of data abstraction. 
(2) The bulk of the paper descnoes the facilities provided for the support of that idea through 

the presentation of small examples. This in itself falls into three sections: 
.[a] Basic techniques for data hiding, access to data, allocation, and initialization. Casses, 

class member functions, constructors, and function name overloading are presented. 
(Starts with section "Restriction of Access to Data"). 

(b] Mechanisms and techniques for creating new types with associated operators. Operator 
overloading, user defined type conversion, references, and free store operators are 
presented. (Starts with section "Operator Overloading and Type Conversion"). 

[ c] Mechanisms for creating abstraction hierarchies, for dynamic typing of objects, and for 
creating polymorphic classes and functions. Derived classes and virtual functions are 
presented. (Starts with section ''Derived Classes"). 

Sections (b) and [c] do not depend directly on each other. 
[3] Finally some general observations on programming techniques, on language implementation, 

on efficiency, on compatibility with C, and on other languages are offered. (Starts with sec­
tion "Input and Output"). 

A few sections are marked as "digressions"; they contain information that, while important to a 
programmer, and hopefully of interest to the general reader, does not directly relate to data 
abstraction. 

Data Abstraction 

"Data abstraction" is a popular, but generally ill-defined, technique for programming. The 
fundamental idea is to separate the incidental details of the implementation of a sub-program from 
the properties essential to the correct use of it. Such a separation can be expressed by channeling 
all use of the sub-program through a specific "interface". Typically the interface is the set of func­
tions that may access the data structures which provide the representation of the "abstraction". 
One reason for the lack of a generally accepted definition is that any language facility supporting it 
will emphasize some aspects of the fundamental idea at the expense of others. For example: 

t Note on the name C+ +: + + is the C inaemcm operator; when applied u, a variable (typically a vector ind.ell or a 
pointer) it inaements the variable so that it denotes the suc::ceedin& element. The name C+ + was coined by Rich Masc:itti. 
The slightly shorter name C+ is a symu error; it bas also been used as the name of an unrelated language. Ccnnoisseun 
ci C semantics find C+ + inferior to + +C, but the latter is not an acceptable name. 1be language is not called D, since it 
is an extension of C and does not attempt to remedy problems. inhercm in the basic structure of C. The name C+ + signi• 
fies the evolutionary nature of the changes from old C. For yet another interpretation of the name C+ + see the appendix 
ex ref etence 7. 



-3-

[1] Data hiding 
Facilities for specifying interfaces that prevent com1ption of data and relieve a user from the 
need to know about implementation details. 

[2] Interface tailoring 
Facilities for specifying interfaces that support and enforce particular conventions for the use of 
abstractions. Examples include operator overloading and dynamic typing. 

(3) Instantiation 
Facilities for creating and initializing of one or more "instances" (variables, objects, copies, 
versions) of an abstraction. 

( 4] Locality 
Facilities for simplifying the implementation of an abstraction by taking advantage of the fact 
that all access is channeled throu&h its interface. Examples include simplified scope rules and 
calling conventions within an implementation. 

(5] Programming Environment· 
Facilities for supportina the construction of programs using abstractions. Examples include 
loaders which understand abstractions, horaries of abstractions, and debuggers that allow the 
programmer to work in terms of abstractions. 

[ 6] Efficiency 
To be useful, a language facility must be "efficient enough". The intended range of applica­
tions is therefore a major factor in determining which facilities can be provided in a language. 
Conversely, the efficiency of the facilities determine how freely they can be used in a given pro­
gram. Efficiency must be considered in three separate contexts: compile time, link time, and 
run time. • 
The emphasis in the design of the C++ data abstraction facility was on 2, 3, and 6, that is, on 

facilities enabling a programmer to provide elegant and efficient interfaces to abstractions. In 
C+ +, data abstraction is supported by enabling the programmer to define new types, called 
"classes". The members of a class cannot be accessed, except in an explicitly declared set of func­
tions. Simple data hiding can be achieved like this: 

claaa data_type { 
I• data declaration• •I 
I• liat of function• that may uae the data declaration■ (''friend•'') •I 

} ; 

where only the "friends" can access the representation of variables of class data_type as defined 
by the data declarations. Alternatively, and often more eleaantly, one can define a data type 
where the set of functions that may access the representation is an integral part of the type itself: 

cl••• object_type { 
I• declaration■ used to implement object_type •/ 

public: 
I• declaration■ specifying the interface to object_type •I 

} ; 

One obvious, but non-trivial, aim of many modern language designs is to enable programmers 
to define .. abstract data types" with properties similar to the properties of the fundamental data 
types of the languages. Below it will be shown how to add a data type complex to the C++ 
language, so that the usual arithmetic operaton can be applied to complex variables. For example: 

complex a. x, y, z; 
a • x/y + lu:; 

The idea of treating an object as a black box is further supported by a mechanism for hierarchi­
cally constructing classes out of other classes. For example: 

clasa shape { ... }; 
class circle: shape { ... }; 

The class circle can be used as a simple shape in addition to being used as a circle. Class 
circle is said to be a derived class with class shape as its base class. It is possible to leave the 
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resolution of the type of objects sharing common base classes to run time. This allows objects of 
diff~ent types to be manipulated in a uniform manner. 

Restriction of Access to Data 

Consider a simple old C fragmentt, outlining an implementation of the concept of a date: 

atruct date ( int day, month, year; }; 
atruct date today; 
extern void aet_date(), next_date(), next_tod.ay(), print_d.ate(); 

There are no explicit connections between the functions and the data type, and no indication that 
these functions should be the only ones to access the members of the structured.ate. It ought to 
be possible to state such an intent. 

A simple way of doing this is to declare a data type that can only be manipulated by a specific 
set of functions. For example: -

claaa date { 

} ; 

int d.ay, month, year; 
friend. void. aet_d.ate(date•, int, int, int), 

next_date(date•), 
next_tod.ay ( ) , 
print_date(d.ate•); 

Toe keyword class indicates that only functions mentioned as "friends" in the declaration can 
use the class member names day, month, and year; otherwise a class behaves like a traditional 
C struct. That is, the class declaration itself defines a new type of which variables can be 
declared. For example: 

date my.J>irthd.ay, today; 

aet_date(&my.J>irthd.ay,30,12,195O); 
aet_d.ate(&tod.ay,23,6,1983); 
print_date(&tod.ay); 
next_date(&tod.ay); 

Friend functions are defined in the usual manner. For example: 

void. next_d.ate(d.ate• d.) 
( 

if ++d.-►d.ay ► 28) ( 
I• do the hard part •I 

} 
} 

This solution to the problem of data hiding is simple, and often quite effective. It is not per­
fectly flexible because it allows access by the "friends" to all variables of a type. For example, it is 
not possible to have a different set of friends for the dates my_birthd.ay and today. A function 
can, however, be the friend of more than one class. Toe importance of this will be demonstrated 
below. There is no requirement that a friend should only manipulate variables passed to it as 
arguments. For example, the name of a global variable may be built into a function: 

void next_today() 
( 

} 

if ++today.day> 28) { 
I• do the hard part •I 

} 

Toe protection of the data from functions that are not friends relics on restriction on the use of the 

+ The keyword void. sped.fies that a fimc:tion does not return a value. It was introduced into C about 1980. 
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class member names. It can therefore be circumvented by address manipulation and explicit type 
conversion. 

There arc several benefits to be· obtained from restricting access to a data structure to an expli­
citly. declared list of functions. Any error causing an illegal state of a date must be caused by code 
in the friend functions, so the first stage of debuggina, localization, is completed before the pro­
gram is even run. This is a special case of the general observation that any change to the behavior 
of the type date can and must be effected by changes to its friends. Another advantage is that a 
p:nential user of such a type need only examine the definition of the friends to learn to use it. 
Experience has amply demonstrated this. 

Dfaresslon: Arpment Types 

The argument types of the functions above were declared. This could not have been done in 
old C; neither would the matching function definition syntaX used for next_date have been 
accepted. In C+ + the semantics of argument passing are identical to those of initialization. In 
particular, the usual arithmetic conversions arc performed. A function declaration that does not 
specify an argument type, for example next_toclay(), specifies that the function does not accept 
any argumentst. The argument types of all declarations and the definition of a function must 
match exactly. 

It is still possible to have functions which take an unspecified and possibly variable number of 
arguments of unspecified types, but such relaxation of the type checking must be explicitly 
declared. F':)r example 

int wild( ... ); 
int fprintf(PILE*, char• ... ); 

The ellipsis specifics that any arguments ( or none) will be accepted without any checking or 
conversion exactly as in old C. For example: 

wild(); wild("aadf",10); wild(1.3,"ghjk",wild); 
fprintf(atdout,•x•"4",10); 
fprintf(atderr,"file ~• line ld\n", file..;n.ame, line..;n.o); 

Note that the first two arguments of fprintf must be present and will be checked. 
As ever, undeclared functions may be used and will be assumed to return integers. They must, 

however, be used consistently. For example: 

undef1(1, •aadf"); undef1(2, •ghjk"); I• fina •I 
undef2(1. •aadf•); undef2("ghjt•. 2); I• error •I 

Toe inconsistent use of undef2 is detected by the compiler. 

Objects 

The structure of a program using the claaa/friend mechanism to restrict access to the 
representation of a data type is exactly the same as the structure of a program not using it. This 
implies that no advantage has been taken of the new facility to make the functions implementing 
the operations on the type easier to write. For many types, a more elegant solution can be 
obtained by incorporating such functions into the new type itself. For example: 

claaa date { 

public: 

} ; 

int day, month, year; 

void aet(int, int, int); 
void next ( ) ; 
void print(); 

Functions declared this way are called member functions and can be invoked only for a specific 

+ This is different frcm old C; see section "Implementation and Qmpatibility" below. 
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variable of the appropriate type using the standard C structure member syntax. Since the function 
names no longer are global they can be shorter: 

my_birthday.print(); 
today. next ( ) ; 

On the other hand, to define a member function one must specify both the name of the function 
and the name of its class: 

void date.next() 
{ 

if ++day> 28) { 
/• do the ha.rd part•/ 

} 

Variables of such types are often referred to as objects. The object for which the function is 
invoked constitutes a hidden argument to the function. In a member function, class member names 
can be used without explicit reference to a class object. In that case, like the use of day above, the 
name refers to that member of the object for which the function was invoked. A member function 
sometimes needs to refer explicitly to this object, for example to return a pointer to it. This is 
achieved by having the keyword this denote that object in every class function. Thus, in a 
member function this->day is equivalent to day for every member of the class date. 

The public label separates the class body into two parts. The names in the first, "private", 
part can only be used by member functions (and friends). The second, "public", part constitutes 
the interface to objects of the class. A class function may access both public and private members 
of every object of its class, not just members of the one for which it was invoked. 

Toe relative merits of friends and member functions will be discussed in section "Friends vs 
Members" after a larger body of examples has been presented. For now, it is sufficient to notice 
that a friend is not affected by the public/private mechanism and operates on objects in a 
standard and explicit manner. A member, on the other hand, must be invoked for an object and 
treats that object differently from all others. 

Static Members 

A class is a type, not a data object, and each object of the class has its own copy of the data 
members of the class. However, there arc concepts (abstractions) which are best supported if the 
different objects of the class share some data. For example, to manage tasks in an operating sys­
tem or a simulation a list of all tasks is often useful: 

clasa task { 

} ; . 

task• next; 
static task• taalc_chain; 
void schedule(int); 
void wait(event); 

Declaring the member task_chain as static ensures that there will only be one copy of it, not 
one copy per task object. It is still in the scope of class task, however, and can only be accessed 
from "the outside" if it was declared public. In that case its name must be qualified by its class 
name: 

task::taslc_chain 

In a member function it can be referred to as plain task_chain. The use of static class 
members can reduce the need for global variables considerably. 

The operator : : (colon colon) is used to specify the scope of a name in expressions. As a 
unary operator it denotes external (global) names. For example, if the task function wait in a 
simulator needs to call a non-member function wait it can be done like this: 



void taak.wait(event e) 
{ 

: :wait(e); 

Constructors and Overloaded Functions 
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The use of functions like set_date C) to provide initialization for class objects is inelegant and 
error prone. Since it is nowhere stated that an object must be initialized, a programmer can forget 
to do so or, often with equally disastrous results, do so twice. A better approach is to allow the 
programmer to declare a function with the explicit purpose of initializing objects. Because such a 
function constructs values of a given type it is called a constructor. A constructor is recognized by 
having the same name as the class itself. For example: 

class date { 

date(int, int, int); 
} ; 

When a class has a constructor all objects of that class must be initialized: 

date today• date(23, 6, 1983); 
date xmaa(25, 12, 0); I• legal abbreviated form •I 
date july4 • today; 
date my_birthday; I• illegal, initializer missing •I 

It is often nice to provide several ways of initializing a class object. This. can be done by pro­
viding several constructors. For example: 

class date { 

} ; 

date(int, int, int); 
date (char•) ; 
date(int); 
date (); 

I• day month year •I 
I• date in string representation •I 
I• day, assume current month and year •I 
I• default date: today •I 

As long as the constructor functions differ in their argument types the compiler can select the 
correct one for each use: 

date toda.y(4); 
date july4("July ,, 1983"); 
date guy( "5 Nov"); 
date now; /• default initialized •I 

Constructors are not restricted to initialization, but can be used where ever it is meaningful to 
have a class object: 

date ua_date(int month, int day, int year) 
{ 

return date(day, month, year); 
} 

some_function( us_date(12,24,1983) ); 
aome_function( date(24.12,1983) ); 

When several functions are declared with the same name, that name is said to be overloaded. 
The use of overloaded function names is not restricted to constructors. However, for non•member 
functions the function declarations must be preceded by a declaration specifying that the name is to 
be overloaded. For example: 



overload print; 
void print(int); 
void print(char•); 

or possibly abbreviated like this: 

overload void print(int), print(char•); 

As far as the compiler is concerned, the only thing common for a set of a set of functions of the 
same name is that name. Presumably they are in some sense similar, but the language does not 
constrain or aid the programmer. Thus, overloaded function names are primarily a notational con­
venience. This convenience is significant for functions with conventional names like sqrt, print, 
and open. Where a name is semantically significant, as in the case of constructors, this conveni­
ence becomes essential. For example, consider writing a single constructor for class date above. 

For arguments to functions with overloaded names the C+ + type conversion rules do not apply 
fully. The conversions that may destroy information are not performed, leaving only 
char->short->int->long, float->double, and int->double. It is, however, possible to provide 
different functions for integral and floating types. For example: 

overload print(int), print(double); 

The list of functions for an overloaded name will be searched in order of appearance for a match, 
so that print C 1) will invoke the integer print function, and print ( 1. o) the floating-point print 
function. Had the order of declaration been reversed both calls would have invoked the floating­
point print function with the double representation of 1. 

Operator Overloading and Type Conversion 

Some languages provide a complex data type, so that programmers can use the mathematical 
notion of complex numbers directly. Since C+ + does not, it is an obvious test of an abstraction 
facility to see to what extent the conventional notion of complex numbers can be supportedt. The 
aim of the exercise is to be able to write code like this: 

complex x; 
complex a• complex(1, 1.23); 
complex b • 1 ; 
complex c • PI; 

if (x! ■a) x • a+log(b•c)/2; 

That is, the standar~ arithmetic and comparison operators must be defined for complex numbers 
and for mixtures of complex and scalar constants and variables. 

Here is a declaration of a very simple class complex: 

clasa complex { 

public: 

} ; 

double re, im; 

friend complex operator+ (complex, complex); 
friend complex operator• (complex, complex); 
friend int operator!• (complex, complex); 

complex() { re•im•O; } 
complex(double r) { re•r; im•O; } 
complex(double r, double i) { re■r; im•i; } 

An operator is recognized as a function name when it is preceded by the keyword operator. 

t Note, however, that complex is an unusual data type in that it has an extremely simple representation and there are very 
strong traditions for its proper use. It is therefore primarily a test of the abstraction facility's power to imitate conventional 
notation. In most other cases the designer's attention will be directed towards finding a good representation of the abstrac• 
tion and towards findin& a suitable way of presenting the abstraction to its users. 
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When an operator is used for a class type the compiler will generate a call to the appropriate func­
tion, if declared. For example, for complex variables xx and yy the addition xx+yy will be inter­
preted as opera tor+ (xx, yy) given the declaration of class complex above. The complex add 
function could be defined like this: 

complex operator+(complex a1, complex a2) 
{ 

return complex(a1.re+a2.re, a1.im+a2.im); 
} 

Naturally, all names of the form operatortl> are overloaded. To ensure that the language is 
only extendible and not mutable, an operator function must take at least one class object argument. 
By declaring operator functions the programmer can assign meaning to the standard C + + opera­
tors applied to objects of user specified data types. These operators retain their usual places in the 
C+ + syntax, and it is not possible to add ·new operators. It is therefore not possible to introduce 
a unary plus operator, to change the precedence of an operator, or to introduce a new operator 
(for example, ** for exponentiation). This restriction keeps the analysis of C+ + expressions sim­
ple. 

Declarations of functions for unary and binary operators are distinguished by their number of 
arguments. For example: 

claaa complex { 

friend complex operator•(complex); I• un•ry •I 
friend complex operator-(complex, complex); /•binary•/ 

} ; 

There are three ways the designer of class complex could decide to handle mixed-mode arith­
metic, like xx+ 1, where xx is a complex variable. It can simply be considered ·illegal, so that the 
user has to write the conversion from double to complex explicitly: xx+complex( 1). Alterna­
tively, several complex add functions may be specified: 

complex operator+(complex. complex); 
complex operator+(complex. double); 
complex operator+(double, complex); 

so that the compiler will choose the appropriate function for each call. Finally, if a class has con­
structors that take a single argument then they will be taken to define conversions from their argu­
ment type to the type they construct values for. Thus, with the declaration of class complex above 
xx+ 1 would automatically be interpreted as operator+ (xx, complex C 1) ) . 

This last alternative violates many people's idea of strong typing. However, using the second 
solution will nearly triple the number of functions needed and the first provides little notational 
convenience to the user of class complex. Note that complex numbers are typical with respect to 
the desirability of mixed-mode arithmetic. A typical data type does not exist in a vacuum. Furth­
ermore, for many types there exists a trivial mapping from the C+ + numeric and/or string con­
stants into a subset of the values of the type (similar to the mapping of the C+ + numeric con­
stants into the complex values on the real axis). 

The friend approach was chosen in favor of using member functions for the operator func­
tions. The inherent asymmetry in the notion of objects does not match the traditional mathematical 
view of complex numbers. 

Digression: Default Arguments and Inline Functions 

Class complex had three constructors, two of which simply provided the default value zero for 
notational convenience of the programmer. This use of overloading is typical for constructors, and 
has also been found to be quite common for other functions. However, overloading is a quit~ ela­
borate and indirect way of providing default argument values and, in particular for more compli­
cated constructors, quite verbose. Consequently, an facility for expressing default arguments 
directly is provided. For example: • 
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class complex { 

public: 
complex(doul:>le r • o, double i • 0) { re•r; im■i; } 

} ; 

When a trailing argument is missing the default constant expression can be used. For example: 

complex &(1,2); 
complex b(1); 
complex e; 

I• b • complex(1,0) •I 
/• c • complex(O,O) •/ 

When a member function, like complex above, is not only declared, but also defined (that is, its 
body is presented) in a class declaration it may be inline substituted when called, thus eliminating 
the usual function call overhead. An inline substituted function is not a macro; its semantics are 
identical to other functions. Any function can be declared inline by preceding its definition by the 
keyword inline. lnline functions can make class declarations quite untidy, they will only 
improve run-time efficiency if used judicially, and will always increase the time and space needed 
to compile a program. They should therefore be used only when a significant improvement of 
run-time is expected. They are included in C+ + because of experience with C macros. Macros 
are sometimes essential for an application ( and it is not possible to have a class member macro), 
but more often they create chaos by appearing to be functions without obeying the syntax, scope, 
and argument passing rules of functions. 

Storage Management 

There are three storage classes in C++: static, automatic (stack), and free (dynamic). Free 
store is managed by the programmer through the operators new and delete. No standard gar­
bage collector is providedt. 

Constructors are handy for hiding details of free store management. For example: 

class string { 

} ; 

char• rep; 
atring(char•); 
·string() { delete rep;} 

string.atring(char• p) 
{ 

} 

rep• new char[strlen(p)+1J; 
strcpy(rep,p); 

Here the use of free store is encapsulated in the constructor string() and its inverse, the des­
tructor • string C ). Destructors are implicitly called when an object goes out of scope. They are 
also called when an object is explicitly deleted by delete, but never for static objects. The new 
operator takes a type as its argument and returns a pointer to an object of that type; delete takes 
such a pointer as argument. A string may itself be allocated on the free store. For example: 

string• p • new atring("asdf"); 
delete p; 
p • new string("qwerty"); 

It is furthermore possible for a class to take over the free store management for its objects. For 

+ It is, however, not that difficult to write a garbage collecting implementation of the new operator, as has been done for 
the C free store allocator function malloc C). It is not in general possible to distinguish pointers from other data items 
when looking at the memory of a running C+ + program, so a garbage collector must be conservative in its choice of what 
to delete, 8.lld it must examine unappealingly large amounts of data. They have been found useful far some applications, 
though. 
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class node { 
int type; 
node• l; 
node• r; 
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node() { if (this••O) this• new_node(); } 
·node() { free_node(thia); this• O; } 

} ; 

For an object created by new, the this pointer will be zero when a constructor is entered. H the 
constructor does not assign to this the standard allocator function is used. The standard dealloca­
tor function will be used at the end of a destructor if and only if this is non-zero. An allocator 
provided by the programmer for a specific class or set of classes can be much simpler and at least 
an order of magnitude faster than the standard allocator. 

Using constructors and destructors the designer may specify data types, like string above, 
where the size of the representation of an object can vary, even though the size of every static and 
automatic variable must be known at load time and compile time, respectively. Toe class object 
itself is of fixed size, but its class maintains a variable sized secondary data structure. 

Hiding Storage Management 

Constructors and destructors cannot completely hide storage management details from the user 
of a class. When an object is copied, either by explicit assignment or by passing it as a function 
argument, the pointers to secondary data structures are copied too. This is sometimes undesirable. 
Consider the problem of providing value semantics for a simple data type string. A user sees a 
string as a single object, but the implementation consists of two parts as outlined above. After 
the assignment s 1 • s 2 both strings refer to the same representation, and the store used for the old 
representation of s 1 is unreferenced. To avoid this the assignment operator can be overloaded. 

class string- { 
char• rep; 
void operator■ (atring-); 

} ; 

void atring.operator•Catring source) 
{ 

} 

if (rep l• source.rep) { 
delete rep; 

} 

rep• new char[ atrlen(aource.rep)+1 J; 
atrcpy(rep,aource.rep); 

Since the function needs to modify the target string it is best written as a member function tak­
ing the source string as argument. The assignment s 1 •s2 will now be interpreted as 
s1.operator■ (s2). 

This leaves the problem of what to do with initializers and function arguments. Consider 

string a1 • "aadf"; 
string a2 • a1; 
do_aomething(a2); 

This leaves the strings s1, s2, and the argument of do_something with the same rep. The 
-standard bitwise copy clearly does not preserve the desired value semantics for strings. 

The semantics of argument passing and initialization are identical; both involve copying an 
object into an uninitialized variable. They differ from the semantics of assignment ( only) in that 
an object assigned to is assumed to contain a value, and an object being initialized is not. In par­
ticular, a constructors are used in argument passing exactly as in initialization. Consequently, the 
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undesirable bitwise copy can be avoided if we can specify a constructor to perform the proper copy 
operation. Unfortunately, using the obvious constructor 

claaa string { 

string(string); 
} 

leads to infinite recursion. It is therefore illegal. To solve this problem a new type "reference" is 
introduced. It is syntactically identified by the declarator &. which is used in the same way as the 
pointer declarator *. When a variable is declared to be a T&., that is a reference to T, it can be ini­
tialized either by a pointer to type T or an object of type T. In the latter case the address-of opera­
tor & is implicitly applied. For example 

int x; 
int& r1 • &x; 
int& r2 • x; 

assigns the address of x to both r 1 and r2. When used a reference is implicitly dereferenced, so 
for example: 

r1 • r2 

means copy the object pointed to by r2 into the object pointed to by r 1. Note that initialization of 
a reference is quite different from assignment to it. 

Using references class string can now be declared like this: 

claaa string { 

} ; 

char• rep; 
string( char•); 
string( string&.); 
·string(); 
void operator•Catring&); 

string(atring& source) 
{ 

} 

rep• new char[ atrlen(aource.rep)+1 ]; 
atrcpy(rep.aource.rep); 

Initialization of one string with another (and passing a string as an argument) will now involve a 
call of the constructor string( string&.) that will correctly duplicate the representation. The 
string assignment operator was redeclared to take advantage of references. For example: 

void string.operator•(atring&. source) 
{ 

if (this I• &.aource) { 
delete rep; 

} 
} 

rep• new char[ atrlen(aource.rep)+1 J; 
atrcpy(rep,source.rep); 

This type string will not be efficient enough for many applications. It is, however, not diffi. 
cult to modify it so that the representation is only copied when necessary and shared otherwise. 

Further Notational Convenience 

It is. curious that references, a facility with great similarity to the "call by reference" rules for 
argument passing in many languages, are introduced primarily to enable a programmer to specify 
"call by value" semantics for argument passing. They have several other uses as well, however, 
including of course "by reference" argument passing. In particular, references provide a way of 
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having.non-trivial expressions on the left-hand side of assignments. Consider a string type with a 
substring operator: 

claaa string { 

void operator■ (atring&); 

void operator■ (cha.r•); 

string& operator()(int, int); /• substring: (poa,length) •/ 
} ; 

where operator () denotes function application. 

string a1 ■ "aadf"; 
atring 82 • •ghjkl"; 
81(1,2) • •xyz•; 
a2 • a1(0,3); 

/* 81 •• "axyzf" */ 
I* a2 •• "axy" •I 

Toe two assignments will be interpreted as: 

( a1.operator()(1,2) )->operator■ ("xyz"); 

s2.operator•C a1.operator()(0,3) ); 

Toe operator() function need not know whether it is invoked on the left-hand or the right-hand 
side of the assignment. The operator■ function can talce care of that. 

Vector element selection can be similarly overloaded by defining operator[ J. 

Digression: References and Type Conversion 

Conversions defined for a class are applied even when references are involved. Consider a 
class string where assignment of simple character-strings is not defined, but the construction of a 
string from such a character string is: 

claas string { 

atring(ch&r*); 
void operator■ (atring&); 

} ; 

string a ■ "aadf"; 

Toe assignment 

a • "ghjk"; 

is legal, and will produce the desired effect. It is interpreted as 

a.operator■ ( (temp.atring("ghjk"),&temp) ) 

where temp is a temporary variable of type string. Applying constructors before taking the 
address as required by the reference semantics ensures that the expressive power provided by con­
structors is not lost for variables of reference type. In other words, the set of values accepted by a 
function expecting an argument of type 'l' is the same as that accepted by a function expecting a 'l'&. 
(reference to '1'). 

Derived Classes 

Consider writing a system for managing geometric shapes on a terminal screen. An attractive 
approach is to treat each shape as an object that can be requested to perform cenain actions like 
"rotate" and "change color". Each object will interpret such requests in accordance with its type. 
For example, the algorithm for rotation is likely to be different (simpler) for a circle than for a tri­
angle. What is needed is a single interface to a variety of co-existing implementations. The dif .. 
ferent kind of shapes cannot be assumed to have similar representations. They may differ widely 
in complexity, and it would be a pity to be unable to utilize the inherent simplicity of basic shapes 
like circle and triangle because of the need to support complex shapes like "mouse" and "British 
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Isles". 
The general approach is to provide a class shape defining the common properties of shapes, in 

particular a "standard interface". For example: 

class shape { 
point center; 
int color; 
shape• next; 
static shape• ahape_chain; 

public: 

} ; 

void 
point 
virtual 
virtual 

move(point to) {center• to; draw(); } 
where() { return center; } 
void rotate(int); 
void draw ( ) ; 

The functions that cannot be implemented without knowledge of the specific shape are declared 
virtual. A virtual function is expected to be defined later. At this stage only its type is 
known; this, however, is sufficient to check calls to it. 

A class defining a particular shape may be defined like this: 

claaa circle: public ahape { 

public: 

} ; 

float radiua; 

void rotate(int angle) {} 
void draw(); 

This specifies a circle to be a shape, and as such it has all the members of class shape in 
addition to its own memben. The class circle is said to be derived from its "base class" 
shape. Circles can now be declared and used: 

circle c1; 
shape• ah; 
point p(100.30); 

cl .draw(); 
cl . move ( p ) ; 
ah• &c1; 
ah->draw(); 

Naturally the function called by c1.draw() is cirele::draw(), and since circle did not 
define its own move ( ) , the function called by c 1 . move ( p) is shape : : move ( ) , which class 
circle inherited from class shape. However, the function called by sh->draw( ) is also 
circle: : draw() despite the fact that no reference to class circle is found in the declaration of 
class shape. A virtual function is defined (or redefined) when a class is derived from its class. 
Each object of a class with virtual functions contains a type indicator. This enables the compiler to 
find the proper virtual function for a call even when the type of the object is not known at com­
pile time. Calling a virtual function is the only way of using the hidden type indicator in a class (a 
class without virtual functions does not have such an indicator). 

A shape may also provide facilities which cannot be used unless the programmer knows its par­
ticular type. For example: 
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class clock_face: public circle { . 
line hour_lland, minute_lland; 

public: 
void draw(); 
void rotate(int); 
void aet(int, int); 
void advance(int); 

The time displayed by the clock can be set C ) to a panicular time, and one can advance ( ) the 
displayed time a number of minutes. The draw( ) in clock_face hides circle: : draw( ) , so 
that the latter can only be called by its full name. For example: 

void clock_face.draw() { 
circle:: draw(); 
hour_hand.draw(); 
minute_lland._draw(); 

} 

Note that a virtual function must be a member. It cannot be a friend, and there is no equivalent 
in the class/friend style of programming to the use of dynamic typing presented here and in 
the following section. 

Digression: Structures and Uniom 

The old C constructs _struct and union are legal, but conceptually absorbed into classes. A 
struct is a class with all members public, that is 

struct a { . . . } ; 

is equivalent to 

clas■ • { public: ... }; 

A union is a struct that can hold exactly one data member at a time. 
These definitions imply that struct or a union can have function members. In particular they 

can have constructors. For example: 

union uu { 

} ; 

int i; 
char• p; 
uu(int ii) ( i•ii;} 
uu(char• pp) { p•pp; } 

This takes care of most problems concerning initialization of unions. For example: 

uuu1 • 1; 
uu u2 • "aadf"; 

Polymorphic Functions 

By using derived classes one can design interfaces providing uniform access to objects of unk­
nown and/or different classes. This can be used to write polymorphic functions, that is functions 
where the algorithm is specified so that it will apply to a set of different argument types. For 
example: 

void sort(object• v[j, int size) 
< 

/* sort the vector of object■ ''v[aizej'' •I 
} 

Toe sort function need only be able to compare objects to perform its task. So, if class 
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object has a virtual function cmpr(), sort () will be able to sort vectors of objects of any 
class derived from class object for which cmpr ( ) is defined. For example: 

claaa object { • 

virtual int cmpr(object•); 
} ; 

class apple : public object { 

int key; 

} ; 

int cmpr(object• arg) 
{ /• assume that arg is also an apple •I 

int k • ((apple•)arg)->key; 
return (key••k)? 0 : (key<k)? -1 : 1; 

class orange: public object { 

} ; 

The cmpr { ) function was preferred to the superficially more attractive approach of overloading 
the ' ' < ' ' operator because my favorite sort algorithm uses a three-way compare. To write a 
sort C ) to operate on a vector of objects, rather than on a vector of pointers to objects, a virtual 
"size" function would be needed. 

Should it be desirable to compare an apple with an orange, some way for the comparison 
function to find its sort-key would be needed. Cass object could, for example, contain a 
virtua 1 sort-key extraction function. 

Polymorphic Classes 

Polymorphic classes can be constructed in the same way as polymorphic functions. For exam­
ple: 

class set: public object { 

public: 

} ; 

claaa aet_mem { 
aet_mem• next; 
object• mem; 
aet_mem(object• m, aet...mem• n) { mem•m; next•n; } 

} •tail; 

int inaert(object•); 
int remove(object•); 
int ia_member(object•); 

Ht ( ) { tail • 0 ; } 
·set() { if (tail) error(O,"non-empty set deleted"); } 

That is, a set is implemented as a linked list of set_mem objects, each of which points to an 
object. Pointers to objects (not objects) are inserted. For completeness a set is itself an object 
so that you can create a set of sets. Since class set is implemented without relying on data in the 
member objects, an object can be member of two or more sets. This model is quite general and can 
be (and indeed has been) used to create "abstractions" like set, vector, linked._list, and 
table. The most distinctive feature of this model for "container classes" is that in general the 
container cannot rely on data stored in the contained objects nor can the contained objects rely on 
data identifying their container ( or containers). This is often an important structural advantage; 
classes can be designed and used without concerns about what kind of data structures programs 
using them may need. ~ts most obvious disadvantage is that there is a minimum overhead of one 
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pointer per member (two pointers in the linked list implementation of class set above)t. Another 
advantage is that such container classes are capable of holding heterogeneous collections of 
members. Where this is undesirable, it is trivial to deriv~ a class which will accept only members 
of one particular class. For example: 

class apple_aet: public set { 
public: 

int insert(apple• a) { return aet::inaert(a); } 
int remove(apple• a) { return aet::remove(a); } 
int ia.J(\ember(apple* a)·{ return set::ia_member(a); 

} ; 

Note that since the functions of class apple_set do not perform any actions in addition to those 
performed by the base class set, they will be optimized away. They serve only to provide compile 
time type checking. 

Input and Output 

C does not have special facilities for handling input and output. Traditionally the programmer 
relies on library functions like print£ () and scanf (). For example, to print a data structure 
representing a complex number one might write: 

printf("("9',Kg),nff, zz.real, zz.imag); 

Unfortunately, since the C standard input/output functions know only the standard types it is 
necessary to print a structure member by member. This is often tedious and can only be done 
where the members are accessible. Toe paradigm cannot be cleanly and generally extended to han­
dle user-defined types and input/output formats. 

Toe approach taken in C++ is to provide (in a "standard" library, NOT in the language itself) 
the operator « ("put to") for a data type ostream and each basic and user-defined type. Given 
an output stream cout one can write 

cout<<zz; 

The implementor of class complex defines < < for a complex number. For example: 

ostream& operator<<(oatream&. a, complex& c) 
{ 

} 

The < < operator was chosen in preference to a function name to avoid the tedium of having to 
write a separate call for each argument. For example: 

put(cout,ff("); I• intolerably verbose*/ 
put(cout.c.real); 
put ( cout, ", ff ) ; 
put(cout,c.imag); 
put(cout, ff,nff); 

There is a loss of control over the formatting of output when using < < compared with using 
printf. Where such finer control is necessary, one can use "formatting functions". For exam­
ple: 

cout <<"hexadecimal x ■" <<hex(x) <<"octal x • ff <<oct(x); 

where hex() and oct() return a string representation of their first argument. 
Input is handled by providing the operator» ("get from") for a data type istream and each 

basic and user-defined type. If an input operation fails the stream is put into an error state that 
will cause subsequent operations on it to fail. For a variable zz of any type one can write code 
like this 

t plus another pointer f cr the implementJt.tion of the virtual function mechanism. See section .. Efficiency" below. 
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while ( cin>>zz) cout<<zz; 

. Surprisingly enough, the input operations are typically trivial to write, since there inv_ariably is a 
constructor to do the non-trivial part of the job, and the arguments to the constructor(s) give a 
good first approximation of the input format. For example: 

istrea.m& operator>> (istre~ •• complex& zz) 
{ 

} 

if (la) returns; 
double re• O, im • O; 
char c1 • O, c2 • O, cl• O; 
a >>c1 >>re >>c2 >>im >>c3; 
if (c11•'C' I I c21•'•' II ell•')') a.state• _bad; 
if (a) zz • complex(re,im); 
return a; 

The convention for functions implementing the input and output operators is to return the argu­
ment stream and indicate success or failure in its state. This example is a bit too simple for real 
use, but it will change the value of its argument zz and return the stream in a non-error state iff a 
complex. number of the form (double• double) was found. The interpretation of a test on a 
stream as a test on its state is handled by providing a conversion from ostream which examines 
s. state. 

Note that there is no loss of type information when using « and >>, so, compared with the C 
printf/scanf paradigm, a large class of errors has been eliminated. Furthermore, « and » 
can be defined for a new (user-defined) type without affecting the "standard" classes istream 
and ostream in any way, and without any knowledge of the internals of these classes. An 
ostream can be bound to a real output device (buffered or unbuffered) or simply to an in-core 
buffer. So can an istream. This extends the range of uses considerably and eliminates the need 
for the old C functions sscanf and sprint£. 

Character level operations put () and get C) are also available for i/o streams. 

Friends vs Members 

When a new operation are to be added to a class there are typically two ways it can be imple• 
mented, as a friend or as a member. Why are two alternatives provided, and for what kind of 
operations should each alternative be preferred? 

A friend function is a perfectly ordinary function, distinguished only by its permission to use 
private member names. Programming using friends is essentially programming as if there were no 
data hiding. The friend approach cleanly implements the traditional mathematical view of values 
that can be used in computation, assigned to variables, but never really modified. This paradigm 
is then compromised by using pointer arguments. 

A member function, on the other hand, is tied to a single class and invoked for one particular 
object. The member approach cleanly implements the idea of operations that change the state of an 
object, for example assignment. Because a single object is distinguished the language can take 
advantage of local knowledge to provide notational convenience, efficient implementation, and let 
the meaning of the operation depend on the value of that object. Note that it is not possible to 
have a virtual friend. Constructors, too, must be members. 

As the first approximation, use a member to implement an operation if it might conceivably 
modify the state of an object. Note that type conversion, if declared, is performed on arguments, 
but not on the object for which a member is invoked. Consequently, the member implementation 
should also be chosen for operations where type conversion is undesirable. 

A friend function can be the friend of two or more classes while a member function is a 
member of a single class. This makes it convenient to implement operations on two or more classes 
as friends. For example: 
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class matrix { 
friend matrix operator*(matrix, vector); 

} ; 

class vector { 
friend matrix operator*(matrix, vector); 

} ; 

It would take two members matrix: : operator* C ) and vector: : operator* ( ) to achieve 
what the friend operator* () docs. 

The name of a friend is global while the scope of a member name is restricted to its class. 
'When structuring a large program one tries to minimize the amount of global information, there­
fore friends should be avoided in the same way as global data is. Ideally, at this level, all data is 
encapsulated in classes and operated on using member functions. However, at a more detailed 
level of programming this becomes tedious and often inefficient; here friends come into their own. 

Finally, if there is no obvious reason for preferring one implementation of an operation over 
another make that operation a member. 

Separate Compllation 

For separate compilation the traditional C approach has been retained. Type specifications are 
shared by textually including them in separately compiled source files. There is no automatic 
mechanism that ensures that the header files contain complete type specifications and that they are 
used consistently. Such checks must be specifically requested and performed separately from the 
compilation process. The names of external variables and functions from the resulting object files 
are matched up by a loader which has no concept of data type. A loader that could check types 
would be of great help, and would not be difficult to provide. 

A class declaration specifies a type so it can be included in several source files without any ill 
effects. It must be included in every file using the class. Typically, member functions do not 
reside in the same file as the class declaration. The language does not have any expectations of 
where member functions are stored. In particular, it is not required that all member functions for 
a class should be in one file, or that they should be separated from other declarations. 

Since the private and the public parts of a class arc not physically separated, the private part is 
not really "hidden" from a user of a class, as it would be in the ideal data abstraction facility. 
Worse, any change to the class declaration may necessitate recompilation of all files using it. Obvi­
ously, if the change was to the private part, only the files containing member functions or friends 
have to be recompiledt. A facility that could determine the set of functions (or the set of source 
files) that needs to be re-compiled after a change to a class declaration would be extremely useful. 
It is unfonunately non-trivial to provide one that does not slow down the compiler significantly. 

Efficiency 

Run time efficiency of the generated code was considered of primary importance in the design 
of the abstraction mechanisms. The general assumption was that if a program can be made to run 
faster by not using classes, many programmers will prefer speed. Similarly, if a program can be 
made to use less store by not using classes, many programmers will prefer compact representation. 
It is demonstrated below that classes can be used without any loss of run time efficiency or data 
representation compactness compared to "old C" programs. 

This insistence on efficiency led to the rejection of facilities requiring garbage collection. To 
compensate, the overloading facility was designed to allow complete encapsulation of storage 

+ The addition of a new member ft.mction will in most cases not create a need for any re-compilation. The addition may. 
however. hide an extern function used in some other member function. thus changing the meaning of the program. Unfor­
tunately, this rare event is quite hard to detect. 
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management issues in a class. Furthermore, it has been made easy for a programmer to provide 
special purpose free store managers. As described above, constructors and destructors can be used 
to handle allocation and deallocation of class objects. In addition, the functions operator new() 
and operator delete C) can be declared to redefine the meaning of the new and delete opera­
tors. 

A class which does not use virtual functions uses exactly as much space as a C struct with 
the same data members. There is no hidden per object store overhead. There is no per class store 
overhead either. A member function does not differ from other functions in its store require­
ments. If a class uses virtual functions there is an overhead of one pointer per object plus one 
pointer per virtual function. 

When a (non-virtual) member function is called, for example ob. f C x) , the address of the 
object is passed as a hidden argument: f ( &.ob, x) . Thus call of a member function is as least as 
efficient as a call of a non-member function. The call of a virtual function p->f (x) is roughly 
equivalent to an indirect call ( * ( p- ►virtual [ 5]) ) C p, x) . Typically this causes three memory 
references more than a call of an equivalent non-virtual function. 

If the function call overhead is unacceptable_ for an operation on a class object the operation can 
be implemented as an inline function, thus achieving the same run-time efficiency as if the object 
had been directly accessed. 

Implementation and Compatibility 

The C++ compiler front end, cfront, consists of a YACC parser11 and a C++ program. 
Qasses are used extensively. It is about same size as the equivalent part of the PCC compiler for C 
(13500 lines including comments etc.). It runs a bit faster, but uses more store. The amount of 
store used depends on the number of external variables and the size of the largest function. It will 
never run on machines with a 128K byte address space (like a DEC PDPll/70); three times that 
amount of store appears to be more reasonable. A completely type checked internal representation 
is produced. This can then be transformed into suitable input for a range of new and old code gen­
erators. In particular, an "old C" version of any C+ + program can be produced. lb.is makes it 
trivial to transfer cfront to any system with a C compiler. 

With few exceptions the C+ + complier accepts old C. The runtime environment, the linkage 
conventions, and the method for specifying separate compilation remain unchanged. The major 
incompatibility is that a function declaration, for example 

int f (); 

in old C declares a function with an unknown number of arguments of unknown types. In C+ +, 
that declaration specifies that f takes no arguments. A C+ + version of the declarations for the 
standard libraries exists. Another difference is that in C+ + a non-local name can only be used in 
the file in which it occurs, unless it is explicitly declared to be extern; in old C a non-local name 
is common to all files in a multi-file program, unless it is explicitly declared to be static. Name 
clashes with the new key words class, const, delete, friend, inline, new, operator, 
overload, public, this, and virtual may cause minor irritations. 

It is often claimed that one of C's major virtues is that it is so small that every programmer 
understands every construct in the language. In contrast, languages like Plll and Ada arc 
presented as if every programmer writes in his own subset of the language and can understand pro­
grams written by others only with great difficulty. It follows from this view that extension of C is 
bad. This argument against "big languages" ignores the simple fact that the dependencies between 
data structures and the functions using them exist in a program independently of whether or not 
they have been recorded in a class declaration. Programs using classes tend to be marginally 
shorter than their unstructured countcrpartst. Furthermore, C is already large enough for sub­
cultures using subsets of the language to exist, and the macro facilities are often used to create 
arbitrarily incomprehensible variations of the language. 

t l % to 10% shorter is typical; 50% sh<rter has been seen; the author has yet to see a program that grew without func• 
tionality being added. • 
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The C+ + manual is only 14% longer than the C manual so the effort of learning the new 
language facilities should not be prohibitively large. In particular, it should be a small effort com­
pared with learning a new language containing data abstraction features. However, when classes 
are used to create new data types, a new dialect of the language is in fact created. This will lead to 
different incompatible "dialects". This is not that much different from the current state of affairs, 
and hopefully "standard" classes providing basic facilities like input/output, sets, tables, strings, 
graphics, etc. will win wide acceptance. 

Comparison with Other_ Languages 

To compare two languages takes a whole paper, if not a book. Consequently, this single page 
can provide only a few personal opinions and pointers to the main areas of difference between the 
languages. For completeness C+ + itself is criticized in the same way as the other languages. 

The C+ + class facility is modeled on the original Simula67 classes1•
2

. Simula relies on garbage 
collection both for class objects and procedure activation records, and does not provide facilities for 
function name or operator overloading. It is, however, a most beautiful and expressive language, 
and C+ + classes owe more to it than to any other language. • 

Smalltalk3 is another language with the same kind of facilities for creating class hierarchies. 
There, however, all functions arc virtual and all type checking done at run time. This means that . 
where a C+ + base class provides a fixed type-checked interface to a set of derived classes, a 
Smalltalk superclass provides a minimal untyped set of facilities that can be arbitrarily modified. 
Smalltalk relies on garbage collection and on dynamic resolution of member function names. It 
does not provide operator overloading in the usual sense, but an operator may be the name of a 
member function. Smalltalk provides an extremely nice integrated environment for program con• 
struction. The resulting programs are very demanding of resources, however. 

Modula-i12 provides a rudimentary abstraction facility called a module. A module is not a 
type but a single object containing data and access functions. It is somewhat similar to a class 
with all data members static. There is no facility equivalent to derived classes. It does not 
allow overloading of function names or operators. No garbage collection is provided. 

Mesa's6 modules arc distinguished by a clean and flexible separation of the interface of a 
module from its implementation. This enables and requires sophisticated facilities for separate com­
pilation and linking. A module can import and export both procedure and type names. The rules 
for instantiation of modules (object creation and initialization) arc so general as to make them 
inelegant. Some space and time overheads are incurred by using modules. There are no facilities 
for constructing module hierarchies and no facilities for operator overloading. Mesa relies on gar­
bage collection both for data objects and procedure activation records. Consequently, it will run 
efficiently only where hardware support for garbage collection is available. 

Ada's4 data abstraction facility, the package, is essentially similar to the class/friend 
facility in C+ +. There is no equivalent to member functions or constructors; this leads to verbos­
ity. Nor is there an equivalent to derived classes, so the shape example above does not appear to 
have an elegant solution in Ada. Operators and function names can be overloaded; assignment can 
not. Packages can be generic. That is, a package can be defined with types as arguments. The 
standard example is a stack of elements where the type of an element is an argument. The facility 
is far less flexible than C+ + "polymorphic classes", but more space efficient for simple abstrac­
tions. Ada does not provide garbage collection. 

C+ + provides no integrated environment for editink debugging, control of separate compila­
tion, and source code control. The Unix/C environment •5 provides a tool kit of such services, but 
it leaves much to be desired. No garbage collection is provided. C+ + classes distinguish them­
selves by combining facilities for creating class hierarchies with efficient implementation. The 
facilities for object creation and initialization are notable. The facilities for overloading assignment 
and argument passing arc unique to C+ +. 
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Conclusion 

The addition of classes represents a quantum jump for the C language, the least extension that 
provides facilities for data abstraction for systems programming. The experience of three years 
with intermediate versions ("C with classes") demonstrated both the usefulness of classes and the 
need for the more general facilities presented here. The efficiency of both the compiled code and 
the compiler itself compares favorably with old C. 
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