Operator Overloading in C+ +

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Tlus paper describes the mechanism: for operator overloading provided in
C++1. Exccpt for minor details C++ is a superset of the C programming
language’. A programmer can define a meaning for the standard C++ operators
when applied to objects of a specific class®. Most operators can be defined for
objects of a class; in addition to arithmetic, logical, and relational operators, call
**{ )’ * and element selection **[ ]’ can be defined, and both assignment and
initialization can be redefined. It is not possible to change the meaning of opera-
tors applied to non-class objects, nor to change the syntax or precedence rules for
operators. Constructors can be used both to provide constants for a user-defined
type and to specify conversions between types.

Examples of how to define data types like complex, matrix, and string
are presented. In these examples it is shown how to handle expressions involving
objects of mixed type, large objects, and objects of varying size.

The overloading facilities are discussed in some detail to demonstrate the run-
nme efficiency that can be achieved when using them and the simplicity of their

implementation in the compiler. C+ + has been in use for non-trivial applications
since October 1983; there are now more than a hundred installations.

[1] Bjarne Stroustrup: “The C+ + Programming Language - Reference Manual” In this volume.
[2] B.Kernighan and D.Ritchie: “The C Programming Language™ Prentice-Hall 1978.
[3] Bjarne Stroustrup: “Data Abstraction in C++"" In this volume.



( ~\'z

.
\

1 Introduction

Programs often manipulate objects that are concrete representations of abstract concepts. For
example, the C++ data type int together with the operators + - « / etc., provides a (restricted)
implementation of the mathematical concept of mtcgcrs Such concepts typxcally include a set of
operators representing basic operations on objects in a terse, convenient, and conventional way.
Unfortunately, only very few such concepts are or can be dlrectly supported by a programmmg
languagc For example, ideas like complex arithmetic, matrix algebra, logic signals, and strings
receive no direct support in C++. Classes provide a facility for specifying a representation of
non-primitive objects in C++ together with a set of operations that can be performed on such
objects. Defining operators to operate on class objects sometimes allows a programmer to provide
a more conventional and convenient notation for manipulating class objccts than could be achieved
using only the basic functional notation. For example:

class complex {
double re, 1m.
public:
complex{double r, double 1) { re=r; imei; }
friend complex operator+(complex, complex);
friend complex operators*(complex, complex);
}

defines a simple implementation of the concept of complex numbers, where a number is
represented by a pair of double precision floating point numbers manipulated (exclusively) by the
operators + and #. The programmer provides a meaning for + and by defining functions named
operator+ and operator#. For example, giver b and ¢ of type complex, b+c means (by
definition) operator+(b,c). It is now possible to approximate the conventional interpretation
of complex expressions. For example:

complex a = complex(1, 3.1)}
complex b = complex(1.2, 2);
complex ¢ = Dbj;

a = b+c}
b = becxa;
¢ = asb+complex(1,2);

The usual precedence rules hold so the second statement assigns b+ (c*a) to b.

2 Overview

First the aims of the design of the overloading mechanism are briefly stated. Then the facilities
for defining class complex are described. A complex number has a trivial representation, the set
of basic operations is well known, and there exists a conventional notation for these operations.
This allows the discussion of complex numbers to focus on the problem of providing that conven-
tional notation. This will involve discussion of several language facilities that do not directly con-
cern operator overloading. These facilities (“friend functions”, ‘“‘constructors”, and “overloaded
function names’’) can be used to make a user-defined data type convenient to use. It will be
shown how to specify rules for initializing variables, how to provide constants for a type, how to
specify type conversion rules, and how to accommodate the need to use conventional names like
abs and + for operations on different types.

Once these techniques have been presented, it is possible to consider data types where the
representation is non-trivial. Class matrix is an example of a data type where it is prohibitively
expensive to copy an object each time an operation is performed on it. A new data type “‘refer-
ence” is introduced to cope with this. Class string shows how a data type whose implementation
involves free store management and sharing of objects can be implemented. Finally, the tech-
niques used to implement the overloading facilities are discussed. The relation of the C++ opera-
tor overloading facilities to those provided in other languages is not discussed.



7

3 Aims

The main aims for the design of the overloading mechanism described here are:

[1] It must be possible to define data types like complex, matrix, and string with a user

interface as elegant as one would expect from a built in data type.

[2] It must be possible to provide efficient implementations of the basic operations on such user

defined data types.

[3] The base language must remain immutable, that is, it should not be possible to redefine the

meaning of operators applied to objects of a non-class type.

[4] Programs using the overloading facilities must be relatively easy to compile.

In particular, the first aim is considered to imply that

[a] all storage management issues in the implementation of a new type can be hidden from a

user.

[b] a binary operator can be defined to accept one operand of a user-defined type and the other

operand of some other user-defined or basic type. '

[c] constants can be defined for a user defined type.

[d] variables of a user defined type can be initialized like variables of basic data types.

It is not the intention to provide facilities for the user to change the syntax of the language in any
way Furthermore, except for minor details C+ + is a superset of C; see reference 11.

It is not the intention to provide any ‘‘default semantics’ for operators, nor is it the intention to
restrict definitions of operators to some preconceived idea of what is reasonable. For example, it
is quite possible to define = to mean plus and + to mean assignment. The only protection provided
against idiotic use is the guarantee that the base language is immutable.

4 Friends and Members

Two kinds of functions can be defined to manipulate the representation of a user-defined data
type: member functions and friend functions. They differ in both scope and calling syntax. Con-
sider a simple class complex with a conjugation function of each kind:

class complex {
float re, im;
public:
complex member_conij();
friend complex friend_conj(complex arg);

3

The member function has the more elegant definition since it can refer to the representation of the
object for which it was invoked directly; the friend function must refer to it through an argument:

complex complex.member_conj()
{
return complex(re,-im);

}

complex friend _conj{complex arg)

{

return complex(arg.re,-arg.im);
}

However, only the friend can be called using conventional mathematical notation; the member
must use object.member notation:
complex a;

a.member_conj();
friend_coni(a);

*+ The major incompatibility is that in C++ int £{) declares a function taking no arguments, whereas in C it declares a
function accepting any number of arguments of any type.



-4-

For a conjugation operation the calling syntax for the friend function is obviously preferable. The
calls of a member function conj() are simply too ugly to live with. Consider, for example,
a+b.conj() and (a+b).conj().

Friends are ideal for implementing traditional arithmetic operations. However, if it is necessary
to modify the contents of one operand, as in a function defining an assignment operator, a member
function must be used. Furthermore, where there is no other reason to prefer the one implementa-
tion over the other an operation should be a member. A definition of a member is typically shorter
than the definition of the eqmvalem friend, the implicit passing of the pointer xdcnn.fymg the
object for which a member is invoked is potentially more efficient than argument passing, and the
name of a member is restricted to its proper scope rather than global. Finally, constructors (§5)
and destructors (§15) MUST be members.

5 Constructors

A class may have a function member with the name of the class itself, like complex() in class
complex above. Such a function is called a constructor. A constructor is a prescription for initial-
izing a class object; in other words, it constructs a value of the class type. If a class has a construc-
tor then the constructor will be called to initialize objects of the class before their use. If the con-
structor requires arguments they must be provided. The following examples are equivalent, that is,
the three variables will be initialized to the same value:

complex a = complex{1,2);
complex b(1,2);
complex ¢ = bj;

Initialization with an object of the same type is an alternative to calling the constructor.
A constructor can also be used in expressions, often replacing explicit use of a temporary vari-
able. For example, operator+() can be defined without use of an explicit temporary variable:

complex operator+(complex at, complex a2)

{

return complex{al.re+a2.re, al.im+a2.im);
}

6 'Operator Functions
Functions defining meanings for the following operators can be declared for a class:
* - » / % ~ & H - t = < >

= - *= /= K= Am &= im << >> >>= <<= ==
13
;

™ <= >= && e - [ () new delete

The last four are subscript (§14), function call (§13), free-store allocation, and free-store dealloca-
tion. The following operators can not be defined or re-defined:

-> . sizeof ?: ’

The name of an operator function is the keyword operator followed by the operator itself, for
example operator<<. An operator function is declared and can be called like any other function;
a use of the operator is only a shorthand for an explicit call of the operator function.

A binary operator can be defined either by a member function taking one argument or by a
friend function taking two arguments. Thus, for any binary operator @, aa®bb can be interpreted
as either aa.operator®(bb) or operator®(aa,bb). I both operator® functions are
defined the former interpretation is used. A unary operator, whether prefix or postfix, can be
defined by either by a member function taking no arguments or a friend function taking one argu-
ment. Thus, for any unary operator ® both aa® and ®aa can be interpreted as either
aa.operator®() or operator®(aa). If both operator® functions are defined the former
interpretation is used. For example, X.operator& () defines the operator usually called “address
of” for a class X, and not the binary operator “and”’. When the operators ++ and -~ are over-
loaded, it is not possible to distinguish prefix application from postfix application.



-

&

-5-

The meanings of some operators are defined to be equivalent to some combination of other
operators on the same arguments. For example: ++a means a+=1 which in turn means a=a+1.
Such relations do not hold for overloaded operators unless the user defines them that way. For
example, the definition of operator+= cannot be deduced from the definitions of operator+
and operator=. No assumptions are made about the meaning of overloaded operators. In partic-
ular, since an overloaded ‘“‘assignment operator’” is not assumed to implement assignment to its
first argument no test is made to ensure that that argument is an lvalue.

Because of historical accident the operators = and & have pre-defined meanings when applied to
class objects. There is no elegant way of “‘undefining” these two operators. They can, however, be
disabled for a class X. For example, by declaring X.operator&() but not providing a definition
for that function one can ensure that no program taking the address of an x will run.

An operator function must either be a member or take at least one class object argument (func-
tions re-defining the new and delete operators need not). This rule ensures that a user cannot
change the meaning of any expression not involving a user-defined data type. In particular, it is
not possible to define an operator function which operates exclusively on pointers. It is not possible
to define a new operator or to change the precedence of an existing operator.

Note that an operator function intended to accept a basic type as its first operand cannot be a
member function. For example, consider addition of a complex variable aa and and integer 2:
aa+2 can with a suitable declared member function be interpreted aa.operator+(2), but 2+aa
cannot since there is no class int for which to overload + to mean 2.operator+(aa) (and even
if there was, two different functions would be needed to cope with 2+aa and aa+2).

7 Overloaded Function Names

The implementation of complex numbers presented in the introduction is too restrictive to
please anyone, so it must be extended. This is mostly a trivial repetition of the techniques
presented above. However, two desirable features cannot be handled that easily: unary minus and
mixed operations on complex and real numbers. Both require two different interpretations for a
single operator symbol. For example:

class complex {
double re, im;

public: .
complex(double r, double i) { re=r; imsi; }
complex operator-(); /% unary minus #/
friend complex operator-(complex, complex); /% binary minuss/

friend complex operator+(complex, complex);
friend complex operators(complex, complex);
friend complex operators(complex, double);
friend complex operators(double, complex);
3 :
When several (different) function declarations are specified for a single name, that name is said to
be overloaded. When that name is called, the correct function to execute is selected by comparing
the types of the actual arguments with the argument types in the function declaranons Of the
“ysual arithmetic conversions” defined in §6.6 of the C++ reference manual® only the conversions
char—>short— >int, int—>double, int—>long, and float—>double are performed.
With this declaration of conplex we can now write:

complex a{1,1), b(2,2), c(3,3), d4{4,4), e(5,5);
a = -b-c3

b = cx2,0sc3

c = (dee)sa;

Any function name can be overloaded, not just operators. The names of non-member func-
tions must explicitly be declared overloaded. For example:



overload abs;

int abs(int);
double aba(double);
complex abs(complex);

When an overloaded name is called, the list of functions is scanned in order to find one which can
be invoked. For example abs{12) will invoke abs(int) and abs(12.0) will invoke
abs(double). Had the order of declarations been reversed, both calls would have invoked
abs(double). .

All operators are by definition overloaded.

8 Conversion

Writing a function for each combination of complex and double, as for operators()
above, is unbearably tedious. For example, a realistic facxhty for complex arithmetic provides more
than 10 functions taking two complex or real arguments An alternative is to declare a construc-
tor that creates a complex given a double. For example

class complex {
complex{double r) { re=r; ims0; }
b

A constructor requiring a single argument need not be called explicitly. For example

complex z1 = complex(23);
complex 22 = 23;

are both legal, and z1 and z2 will both be initialized calling by complex{23).

A constructor is a prescription for making a value of a given type. Where a value of a type is
expected, and where such a value can be created by a constructor, given the value to be assigned,
the constructor will be used. For example, class complex could be declared like this:

class complex {
double re, im;

public:
complex(double r, double 1) { resy; ims=i; }
complex{double r) { re=y; im=0; }

friend complex operator+(complex, complex);
friend complex operators(complex, complex);
b
and operations involving complex variables and intcgcr constants would be legal. An integer con-
stant will be interpreted as complex with the imaginary part zero. For example: asb#2 generates
code like asoperators(b,complex(double{2))).

An assignment to an object of class X is therefore legal if either the assigned value is an X, or if
X has a constructor accepting a single argument of the type of the assigned value.

In some cases a value of the desired type can be constructed by repeated use of constructors.
This must be handled by explicit use of constructors; only one level of implicit construction is legal.
Note that the standard conversions described above are always performed and do not count as
“implicit construction”. In some cases a value of the desired type can be constructed in more than
one way. Such cases are illegal. For example:

[4] Leonie V. Rose and Bjarne Stroustrup: “Complex Arithmetic in C”* In this volume.




-7-

class x { ... x{(int); x{char#); }:
class y { ... y(int); };
class z { ... z(x); };

overload £
x £(x);
y £(y);

z glz);

£(1); /+ illegal: ambiguous £(x(1)) or £(y(1)) «/
£(x(1));

£(y(1))3 .
g("asdf"); /+ 1llegal: g(z(x("asdf"))) not tried «/
gl{z("asdf"));

Where an overloaded function takes an argument of a type for which a constructor exists more
than one interpretation may appear legal. For example:

class x { ... x(int); };
overload h(double), h(x);
h{1);

The call could be interpreted either as h(double(1)) or as h(x(1)) and would appear to be
illegal according to the rule above. However, the first interpretation is an ‘‘exact match” and will
be chosen; the rule against ambiguities applies only to user-defined conversions.

These rules for conversion are neither the simplest to implement, the simplest to document, nor
the most general which could be devised. Consider the requirement that a conversion must be
unique to be legal. A simpler approach would allow the compiler to use any conversion it could
find; thus it would not be necessary to consider all possible conversions before declaring an expres-
sion legal. Unfortunately, this would mean that the meaning of a program depended on which
conversion was found. In effect, the meaning of a program would in some way depend on the
order of the declaration of the conversions. Since these will often reside in different source files
(written by different programmers), the meaning of a program would depend on the order in
which its parts were merged together. Alternatively, implicit conversions could be disallowed.
Nothing could be simpler, but this rule leads to either inelegant user interfaces or an explosion of
overloaded functions as seen in the class complex in the previous section.

The most general approach would take all available information into account. For example,
using the declarations above, it would handle aa=£(1) because the type of aa will determine a
unique interpretation. If aa is an x, £(x{1)) is the only one yielding the x needed in the assign-
ment. The most general approach would also cope with g("asdf") because
g{z(x("asdf”))) is a unique interpretation. The problem with this approach is that it requires
extensive analysis of a complete expression to determine the interpretation of each operator and
function call. This leads to slow compilation and also to surprising interpretations and error mes-
sages, as the compiler considers conversions defined in libraries etc. It simply takes more informa-
tion into account than the programmer writing the code can be expected to know!

9 More about Conversion

A type conversion from type T1 to type T2 is defined as a constructor for class T2 accepting
a single argument of type T1. For example

class complex {
complex(double d) { re=d; im=0; }
}s
This has implications that can be undesirable:

[1] There can be no implicit conversion from a user-defined type to a basic type (since the basic
types are not classes).



()

-8-

[2] It is not possible to specify a conversion from a new type to an old one without modifying
the declaration for the old one.
[3] 1t is not possible to have a constructor with a single argument without also having a conver-
sion.
To cope with these problems a facility for defining a type conversion from one type into another as
part of the declaration of the “source type” was added. A member function X: :operator T()
where T is a type name defines a conversion from x to T. For example:

class boolean {
int b;
public:
friend boolean operator+(boolean, boolean):;
boolean(int i) { b = {i=0; }
operator int() { return b; }
}i

boolean b1 = 1, b2 = 03
int 11 = 10, 12 = 20;

i1 = b1 /% 31 = 1 «/
b2 = 12; /% b2 = 1 &/
i = b1+b2;

extern £(int);
£(b1); /% £(1) »/

The rules for handling of ambiguities are unchanged: A user defined conversion must be unique to
be applied implicitly, so given the declarations above the expression

b1+t

is an error because it could be interpreted as either
b1.operatoxr int() + 1

or
b1.operator+(1)

Declaring both

class X { ... X(¥); }3

and
class Y { ... operator X(); };

is an error since anycd use of operator X() would be ambiguous.

10 Constants

It is not possible to define constants of a class type in the sense that 1.2 and 12e3 are con-
stants of type double. However, constants of the basic types can often be used instead if class
member functions are used to provide an interpretation for them. Constructors taking a single
argument provides a general mechanism for this. Where constructors are ‘‘simple” and inline sub-
sttuted, as in class complex above, it is quite reasonable to think of constructor invocations as
constants. For example zz1#3+zz2#complex(1,2) will cause three function calls and not five.



N

TN

11 References

For each use of a complex binary operator a copy of the second operand is passed as an argu-
ment to the function implementing the operator. The overhead of copying two doubles is notice-
able but probably quite acceptable. Unfortunately, not all classes have a conveniently small
representation. To cope with this, one could try to declare operator functions to take pointer argu-
ments. For example:

class matrix {

) double m[41[4]; /% 128 bytes on a VAX #/
public:
matrix();
friend matrix operator+(matrixs, matrixs):
friend matrix operators{matrixs, matrixs);
}s

Unfortunately, this leads to rather strange looking expressions.

matrix a, b, cj
a = &b + &c;

This is clearly not acceptable. Furthermore, the declarations of the matrix operator functions
above are illegal, since they do not take any class object arguments (pointers to class objects do not
count). The alternative is to define matrix operations to take ‘“‘references” as arguments, rather
than pointers. :

A reference, like a pointer, embodies the idea of an address of an object. The notation X&
means reference to X. A reference differs from a pointer in that

[1] When a reference is used the dereference operator * will be implicitly applied.

[2] When a variable is declared to be a X&, it can be initialized by an X. The address operator

& will be implicitly applied. It is also legal to initialize a X& by a x».

For example:
matrix m;
matrix& r = m; /% means Y = &m %/
matrix m2 = r; /% means m2 = Y %/
r = nm; /% means #r = m «/
ma ¥} /4% Mmeans m = &Y %/

Note that initialization of a reference is treated very differently from assignment to it. This is rea-
sonable, since dereferencing of an uninitialized variable is known to be meaningless. For example:

int aj
int& r1 = a; /% means r1 = §a %/
int& r2; r2 = a; /s« erroxr: uninitialized reference %/

Argument passing and function value return are considered to be initializations, so:

matrix& £(int);
matrix operator+(matrixi, matrixh);

m= £{1)} /« means m = «+£(1); */
£(2) = m2; /+ meana +£(2) = m2; «/
m+m2; /% means +{&m,8&m2) %/
Y+m; /% means s»r+m that is +(&+x,&m) that is +(r,&nm) %/

Despite appearances, no operator operates on a reference. For example,

int 14 = 03
ints rr = ii;
Yr++}

is legal, but rr++ does not increment the reference rr; rather, the interpretation is (*rr)++.

That is, ++ is applied to an int which happens to be ii.

The value of a reference cannot be changed after initialization. To get a pointer pp to denote
the same object as a reference rr one can write pp=5rxr. This will be interpreted as pp=&arz.



/“‘«,
\
{ i

N

-10-

Consider the declaration:
doublel dr = 1;

Here, the initializer is not an lvalue. In fact, it is not even of the right type. In such cases
[1] first the conversion rules are applied,
[2] then the resulting value is.placed in a temporary variable,
[3] finally the address of this is used as the value of the initializer.

Thus, the interpretation of the example above is:

doubles dr;
double temp;
temp = double(1);
dr = Stemp;

References allow the use of conventional expressions involving the usual arithmetic opcfators
for “large objects” without requiring an implementation that causes excessive copying. The plus
operator could be defined like this:

matrix operator+(matrix& argt, matrixs arg2)

{

matrix sum;
int 4, 33

for (i=0; 1<4; i1++)
for (J=0; j<d; d++)
sum.m{i]}[J] = argt.m[11[J] + arg2.m[i][J4];
return sum;

}

The dot is used for member selection, rather than —>, because arg1 and arg2 are implicitly
dereferenced; arg1.mem[i][ 3] means («arg1) .mem[1][3].

12 Returning a Class Object

In the example above operator+(matrixs,matrix&) operates on the operands to +
through references, but returns an object value rather than a reference. Returning a reference
would appear to be more efficient. For example:

class matrix {

friend matrix& operator+{matrixif, matrix&);
friend matrix& operators(matrixsi, matrixd);
};

This would be legal, and the matrix expression a*b+c would be interpreted as
operator+(operator*(&a,8b),&c). However, the user would have to implement some kind
of temporary variable to hold the result of operator#*(). Since a reference to it will be passed
out of the function as the return value, it cannot be a local variable. It would typically be allocated
on the free store, and later freed for re-use. Copying the return value will often be cheaper (in
execution time, code space, and data space) and simpler to program.

For medium sized objects the style of declaring an operator function to take reference argu-
ments and return an object value is probably the best approach. The implementation of functions
returning medium and large objects relies on passing a pointer to an object where the result is
deposited. If a function, like the original operator+(matrixs&,matrixA) above, composes its
return value in a local variable and then returns it, the compiler will ensure that the result value is
composed right in the object where it would eventually have been copied to (this will be explained
in greater detail below). This means that the code generated for an operator taking reference argu-
ments and returning an object value operates on three objects through pointers: the two reference
arguments and the result through a compiler provided target pointer. ’




.11 -

13 Overloading Function Call: operator()

Function call, that is, the notation expression(expression-list), can be interpreted as a binary
operation and the call operator () can be overloaded in the same way as other operators. For
example:

class string { .
chars 8; /+ representation =/

int length; .

strings sub_of; /% gubstring of «/
public:

string(chars);

string();

string operators(stringd); /% aasignment */

string cperator()(int pos, int len); /% pubstring selector «/
I

With suitable definitions of operators() and operator()() onc can define assignment and
subscripting to be used like this:

string a="foo", b="bar", c;
c = b3

c = b{(1,2);

a{0,1) = b;

The basic idea is to let the substring function return an object containing a pointer to the original
string which can be used to manipulate that string. For example:

string string.operator()(int pos, int lgt) {
{

string sub;

sub.sub_of = this;

sub.length = lgt;

sub.8 = s+poB;

return sub;
}

void string.operators=(stringl from)

{ if {(sub_of) { /% assign to sub_of->s, etc, »/
ilae { /+ assign to s, etc. #/

) }

This technique for assigning to a part of an object through an object returned by a selector function
is useful in many contexts.

An argument list for an operator() function is evaluated and checked according to the usual
argument passing rules.

14 Overloading Subscripts: operator(]

An operator[] function can be used to give subscripts a meaning for class objects. For
example:
class string {
char+ 8;

«on

chars operator[]{int 1) { return (O«=i && i<length) ? 8[i] : 0; }
}s
Note that because the value returned by string.operator[]() is a char& that function can be
used on either side of an assignment. For example:



Y

-12-

string ss = "asdf";
ss[1] = g8[3];

The assignment is interpreted as #(ss.operator[](1))=#(ss.operator[](3)) that is, the
new value of ss is "afdf”.

The second argument (the subscript) of an operator(] function may be of any type. This
makes it possible to define associative arrays, etc.

15 Destructors

A destructor is a function that will be called (implicitly) when a class object is destroyed. A
class object is destroyed if it goes out of scope or if it is explicitly deleted using the delete opera-
tor. The name of the destructor for class X is ~X, and it takes no argument. Destructors are often
useful to clean up secondary data structures. For example:

class vector {
ints v;
int size;

vector(int sz) { v = new int[sizessz]; }
~vector() { delete v; }
¥
Note that a destructor is not invoked when a value is destroyed by assignment. For example,

vector vi(10), v2(20);
vl = v2;

will not cause the destructor ~vector() to be invoked for v1. Otherwise, assignment of an
object to itself, for example vi=v1, would lead to chaos. To ensure that v1's vector of integers is
not lost vector .operator=() can be defined.

16 Constructors Revisited

When operators() is declared it will be called for all uses of the assignment operator =.
However, an object can also be copied as an argument to a function, as a return value, or as an
initializer for a new class object. Each of these three cases involves the construction of a value in
an uninitialized object. They are treated identically and are collectively referred to as initialization.

Consider the problem of implementing “call by value” for objects of class string. A user
sees a string as a single object, but its implementation consists of two parts: the class object itself
and the string representation pointed to by it. When a copy is made of a class string object both
copies will denote the same representation and further operations on them may corrupt it. To han-
dle explicit assignments operator=() can be declared (for simplicity substrings and assignments
like s=s will be ignored here):

vold string.operator=(stringh from) {
delete s;
length = from->length;
8 = new char[length+1];
strepy(s,from->8);

}

- To cope with initialization for a class X, a constructor is needed since the default initialization

method, bitwise copy, may cause chaos. Intuitively, a constructor X(X) would implement con-
struction of one X from another. However, to avoid infinite regression the constructor invoked to
implement passing of arguments of type X cannot itself take an X as an argument. Consequently,
it is illegal to declare a constructor X(X), and a constructor X (X&) is used instead.

The constructor X{x8) will typically be simpler than the corresponding X.operators() for
the same class. For example:



-13 -

string.string(stringsd from)

{
length = from->length;
8 = new char[length+1];
strepy(s,from->8);

} .

One can now use strings without ending up with shared representations.

string a = "asdf";
string b = aj /% a’s representation will be copied ( b.string(&a) ) =/
fla); /+ a’s repregsentation will be copied {see below) %/

17 Function Return Revisited

In the following pseudo-C will be used to describe generated code. Syntactically illegal names
will be used freely. Consider the function

X £()

{
X a(1);
X b(2);
b->compute();
return b;

}

where the constructor X(X&) has been declaredt. The (unoptimized) code generated will be some-
thing like this:

void £(Xs tp) { /« pass result location »/
X a, b;
a.X(1); /+ construct value #/
b.X(2);

b.compute();

tp->X(&b); /% return result #/
a."xX(); /% destroy value #/
b.~X();

}

Assuming that the constructor X{) and the destructor ~X{) have also been declared, they must be
called as the scope of the function is entered and left, respectively.
By using the result variable, *tp, as the local variable b the code can be optimized to some-
thing like this:
voild £(X+ tp) {
X a;
a.xX(1)s
tp->X(2); /% b.X(2); «/
tp->compute(); /s b.compute(); »/
a.~X();
}

The object denoted by tp now needs to be initialized because it is manipulated under the name b.
However, b is not deleted because it does not belong to the scope of this function.
Now consider a call of £():

+ For unintersting historical reasons C+ + Release E uses a less elegant method for returning values in this case.



e

-14-

X x(0);
x = £{);
Assuming X.operators() is declared the code generated is
X x;
X temp;
x.%X(0);
f(&temp);

x.operators(&temp);
temp.~X()

where temp is used nowhere else. Note that this code is independent of whether the return opera-
tion is optimized.

An obvious optimization appears to have been missed here. Why wasn’t £(&x) generated so
that the temporary could be omitted and no copying at all would occur? This further optimization
can only be done where it is known that the value of x is not used during the execution of £().
Unfortunately, for most functions this cannot be deduced at compile time. However, where this is
known, it is considered legal to optimize away temporary variables of type X even when X(x&),
X.operators= (), or ~X{) is defined by the user.

18 Argument Passing Revisited

Consider a function £() that takes an argument of class X for which the constructor X(X&) has
been declared:

vold £(x a) { ... }
The code generated will be something like this:
void £(X a) {

a.-x();
}
The code generated for calls

£({x);
£(g()); /% g{) returns a class X object &/

is something like this
X temp; /+ uninitialized »/
temp.X(&x)
fitemp):

g(&temp); /+ g() returns its value in temp »/
f(temp);

19 Caveat

Like most programming language features, operator overloading can be both used and misused.
In particular, the ability to define new meanings for old operators can be used to write programs
that are well nigh incomprehensible. Imagine, for example, the problems facing a reader of a pro-
gram where the operator + has been made to denote subtraction, or a program where all common
operations are invoked using the arithmetic operators even though the types used have no conven-
tional association with those operators.

The mechanism presented here should protect the programmer/reader from the worst excesses
of overloading by not enabling a programmer to change the meaning of operators for basic data
types like int, and by preserving the syntax of expressions and the precedence of operators.



~

-15-

20 Acknowledgements

Stu Feldman, Doug Mclliroy, and Jon Shopiro contributed greatly to the design of these
mechanisms.



