
The C+ + Programming Language - Reference Manual

Bjarn, Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

C+ + is C extended with classes, inline functions, operator overloading,
function name overloading, constant types, references, free store management,
function argument checking, and a new function definition syntax. This manual
was derived from the Unix System V C reference manual, and the general organi­
zation and section numbering have been preserved whereever possible. The differ ..
cnccs between C+ + and C are summarized. Except for details like introduction
of new keywords, C++ is a superset ef C. An index and a table of contents are
also provided. For a more readable presentation of most of the new featmes see

Bjarne Stroustrup: ''AC++ Tutt>rlal''. or
Bjame Stroustrup: u77r., C+ + Programming Longug, • R1/er1nc1 Manual".

Both in this volume.

C01'fl'ENTS

(_ 1. lNTR.ODUCTION 1

2. LEXICAL CONVENTIONS . 1
2.1 Comments . 1
2.2 Identifiers (Names) . 1
2.3 Keywords 1
2.4 Constants 1
2.5 Strings 2
2.6 Hardware characteristics 3

3. SYNTAX NOTATION 3

4. WHAT'S IN A NAME? 3
4.1 Scopes 3
4.2 Storage classes 4
4.3 Fundamental types 4
4.4 Derived typeS • 4

S. OBJECTS AND LV ALUES . 5

6. C0}'.1'VERSIONS 5
6.1 Characters and integers 5
6.2 Float and double . 5
6.3 Floating and integral s
6.4 Pointers and integers 5
6.S Unsigned 5
6.6 Arithmetic conversions • 6
6.7 Void 6

7. EXPRESSIONS . 6
7.1 Primary expressions . 7
7.2 Unary operators . 8
7.3 Multiplicative operators 10
7.4 Additive operators 10
1.S Shift operators 11
7.6 Relational operators 11
7.7 Equality operators 11
7.8 Bitwise AND operator 11
7.9 Bitwise exclusive OR operator 12
7 .10 Bitwise inclusive OR operator 12
7 .11 Logical A~ operator 12
7.12 Logical OR operator 12
7.13 Conditional operator 12
7 .14 Assignment operators 12
7 .15 Comma operator . 13
7.16 Overloaded operators 13

(_ 8. DECLARATIONS . 14
8.1 Scope and storage class specifiers 14
8.2 Type specifiers lS
8.3 Declarators 16
8.4 Meaning of declarators • 17
8.5 Cass declarations 19
8.6 Initialization 28
8.7 Type names 30

.. i -

8.8 Typedef 31
8.9 Overloaded function names 32
8.10 Enumeration declarations . 33
8.11 Asm declaration • 33

9. STATEMENTS . 33
9.1 Expression statement 33
9.2 Compound statement, or block 34
9.3 Conditional statement 34
9.4 While statement . 34
9.S Do statement • 34

!'- 9.6 For statement . 34
I 9.7 Switch statement • 35 _

9.8 Break statement • 35
9.9 Continue statement • 35
9.10 Return statement 35
9.11 Goto statement 36
9.12 Labeled statement 36
9.13 Null statement 36
9.14 Delete statement . 36
9.15 Declaration statement 36

10. EXTERNAL DEFINmONS 37
10:l Function definitions . 37
10.2 Extc:mal data definitions 38

11. SCOPE RULES • 38

12. COMP.ll..ER CON!ROL LINES 38
12.1 Token replacement 38
12.2 File inclusion . 38
12.3 Conditional compilation 39
12.4 Line control 39

13. lMPIJCIT DEa.ARATIONS 39

14. TIPES REVISITED 39
14.l Oasses . 39
14.2 Functions 40
14.3 Arrays, pointers, and subscrlptina 40
14 .4 Explicit pointer conversions 40

15. CONSTANT EXPRESSIONS 41

16. PORTABILITY CONSIDERATIONS . 41

17. FREE STORE 42

18. SYNTAX SUMMAY 42
18.1 Experessions 43
18.2 Declarations 44
18.3 Statements . 47
18.4 E.xtemal definitions . 47
18.S Preprocessor 48

19. DIFFERENCES FROM C 48
19.1 Extensions . 48
19 .2 Summary of incompatibilities . 48
19 .3 Anachronisms 49

. ii •

The C+ + Programming Language - Reference Manual
Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This manual describes the C++ programming language. C++ is C as described in the C bookt
extended with classes, inline functions, operator overloading, function name overloading, constant
types, references, free store management, function argument cbecldng, and a new function
definition syntax. The differences between C+ + and C are summarized in §19. This manual
describes the language as of October 1984.

2. LEXICAL CONVENTIONS

There are six classes of tokens: identifim, keywords, constants, strings, operators, and other
separators. Blanks, tabs, new-lines, and comments (collectively, "white space'') as described
below are ignored except as they serve to separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been paned into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments

The characters / * introduce a comment, which terminates with the characters * /. Comments do
not nest.

2.2 Identifiers (Names)

An identifier is an arbitrarily long sequence of letters and digits; the first character must be a
letter; the underscore_ counts as a letter. Upper- and lower-case letters are different.

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

asm auto break caae char claaa const
default delete do double else enum extern
float for friend. goto if inline int
long new operator overload pub.lie register return
short sizeof static •truct switch this typedef
union unsigned virtual void while

2.4 Constants

There are several kinds of constants, as listed below. Hardware characteristics that affect sizes are
summarized in §2.6.

2.4.1 Integer constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with o (digit
zero), decimal otherwise. The digits a and 9 are not octal digits. A sequence of digits preceded by
Ox or ox (digit zero) is taken to be a hexad=mal integer. The hexadecimal digits indude a or A
through f or F with values 10 through 15. A decimal constant whose value exceeds the largest

+ This manual is or~ed like the reference manual in The C Programming Language by Brian W.
Kernighan and Dennis M. Ritchie, Prentice Hall, 19'78.

C++ Reference Manual 2

signed integer is taken to be long; an octal or hex constant which exceeds the largest unsigned
integer is lik_ewise taken to be long; otherwise integer constants are taken to be int.

2.4.2 Explicit long constants

A decimal, octal, or hexadecimal integer constant immediately followed by l (letter ell) or L is a
long constant.

2.4.3 Character constants

A character constant is a character enclosed in single quotes, as in 'x' . The value of a character
constant is the numerical value of the character in the machine's character set. Character comtants
are taken to be int.

Certain non-graphic characters, the single quote ', and the backslash \, may be represented
according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab Hr \t
vertical tab VT \v
backspace m \b
carriage return CR. \%'
form feed FF \f
backslash \ \\
single quote I \'
bit pattern ddd \ddd

Toe escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to
specify the value of the desired character. A special case of this construction is \0 (not followed
by a digit), which indicates the character NUL. If the character following a backslash is not one of
those specified, the backslash is ignored.

2.4.4 Floating constants

A floating constant consists of an integer pan, a decimal pohlt, a fraction pan, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both C0JlSist of a sequence of
digits. Either the integer part or the fraction part (not both) may be missing; either the decimal
point or thee (E) and the exponent (not both) may be missing. A floating constant which cannot
be represented exactly as a single-precision float is taken to be double-precision; see §2.6.

2.4.S Enumeration constants

Names declared as enumerators (see §8.S) are ~tants of type int.

2.4.6 Declared constants

An object (§5) of any type can be specified to have a constant value throughout the scope (§4.1) of_
its name. For pointers the •const declarator (§8.3) is used to achieve this; for non-pointer
objects the specifier con.st (§8.2) is used.

2.5 Strings

A string is a sequence of characters surrounded by double quotes, as in " ... ". A string has type
"array of characters" and storage class static (see §4 below), and is initialized with the given
characters. All strings, even when written identically, are distinct. The compiler places a null byte
,o at the end of each string so that programs which scan the string can find its end. In a string,
the double quote character " must be preceded by a,; in addition, the same escapes as described
for character constants may be used. Finally, a new-line may occur only immediately following a
\; then both the \ and the new-line are ignored.

C+ + Reference Manual

2. 6 Hardware characteristics

The following table summarizes certain hardware properties that vary from machine to machine.

char
int
short
long
float
double
pointer
float range
double range
field type
field order
char

DEC VAX
ASCII

8 bits
32
16
32
32
64
32

:t: 10=38
:t: 10=38

sianed
right-to-left

si ed

3. SYNTAX NOTATION

Motorola 68000
ASCH

8 bits
16
16
32
32
64
32

:t: 10=38
:t: 10±38
unsigned

left•to-rlght
ed

mM370
EBCDIC

8 bits
32
16
32
32
64
24

:t:10±76
:1::10±76
unsigned

left-to-right
unsi ed

AT&T3B
ASCD

8 bits
32
16
32
32
64
32

:1::10=38
::t 10±308

unsigned
left-to-right

ed

3

In the syntu notation used in this manual, syntactic categories arc indicated by italic type, and
literal words and characters in constant width type. Alternatives are listed on separate lines.
An optional terminal or non•tcrminal symbol is indicated by the subscript "opt," so that

{ expressionopt }

indicates an optional expression enclosed in braces. The syntax is summarized in §19.

4. WHAT'S IN A NAME?
A name denotes an object, a function, a type, or a value. A name can only be used within a
region of program text called its scope. A name has a type which determines its use. An object is
a region of storage. An object has a storage class which determines its lifetime. The meanin& of
the values found in an object is determined by the type of the name used to access it.

4.1 Scopes

There are four kinds of scope: local, file, program, and class.

Local: A name declared in a block is local to that block and can only be used in it after the
point of declaration and in blocks enclosed by it. Exceptions are labels f§9.12) which can be
used anywhere in the function in which they are declared, and function names which belong
to the file or program scope. Names of formal parameters for a function are treated as if
they were declared in the outermost block of that function.

File: A name declared outside any block (§9.2) or class (§8.5) can be used in the file in
which it is declared after the point of declaration. It is not accessible from other files in a
multi-file program unless it is explicitly declared extern.

Program: A name declared extern is common to every file in a multi-file program, so that a
declaration of that name in another file refers to the same object (§5), function (110.1), type
(§8. 7), or value (§8.10).

Class: The name of a class member is local to its class and can only be used either in a
member function of that class, for an object of its class using the . operator (§7.1), or for a
pointer to an object of its class using the - ► operator (§7.1). Static class members (§8.S.l)
and function members can also be referred to where the name of their class is in scope by
using the : : operator (§7 .1).

C+ + Reference Manual 4

A name may be hidden by an explicit declaration of that same name in a block or class. A name in
a block or class can only be hidden by a name declared in an enclosed block or class. A hidden
non-local name can still be used when its scope is specified using the : : operator; see §7 .l.

4.2 Storage classes
There are two declarable storage classes: automatic and static.

Automatic objects are local to each invocation of a block and are discarded upon exit from it.

Static objects exist and retain their values throughout the execution of the entire program.

Some objects are not associated with names and their lifetimes are explicitly controlled using the
new and delete operators; see §7.2, §9.14, and §17.

4.3 Fundamental types

Objects declared as characters (char) are large enough to store any member of the
implementation's character set, and if a genuine character from that character set is stored in a
character variable, its value is equivalent to the integer code for that character. Other quantities
may be stored into character variables, but the implementation is machine-dependent.

Up to three sizes of integer, declared abort int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either shon
integers, or long integers, or both, equivalent to plain integers. "Plain" integers have the natural
size suggested by the host machine architecture; the other sizes are provided to meet special needs.

Each enumeration (§8.9) is a set of named constants. The properties of an enwn are identical to
those of an int. •

Unsigned integers, declared unsigned., obey the laws of arithmetic modulo zn where n is the
number of bits in the representation.

Single-precision floatina point (float) and double-precision floatin& point (4ouble) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmsric types. Types char, int of all sizes, and enam will colleetively be called tmtt,ral
types. float and double will collectively be called.floating types.

Toe void type specifies an empty set of value:S; see §6. 7.

4.4 Derived types

Besides the fundamental arithmetic typeS there is a conceptually infinite number of derived types
constructed from the fundamental types in the follOWUll ways:

a"ays of objects of a given type;

functions which take arguments of given types and return objects of a given type;

pointers to objects of a given type;

references to objects of a given type;

constants which are values of a given type;

classes containing a sequence of objects of various types, a set of functions for manipulating
these objects, and a set of restrictions on the acoess to these objects and functions;

structures which are classes without access restrlc1ions;

unions which are sttuctUreS capable of containing objects of different types at ctifferent times.

ln general these methods of constructing objects can be applied recursively.

C++ Reference Manual 5

5. OBJECTS AND LVALUES

An object is a region of storage; an /value is an expression referring to an object. An obvious
example of an lvalue expression is the name of an object. There are operators which yield !values:
for example, if E is an expression of pointer type, then *Eis an !value expression referring to the
object to which E points. The name "!value" comes from the assignment expression E 1 • E2 in
which the left operand E1 must be an lvalue expression. The discussion of each operator below
indicates whether it expects lvalue operands and whether it yields an !value.

6. CONVERSIONS

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such
conversions. §6.6 summarizes the conversions demanded by most ordinary operators; ·it will be
supplemented as required by the discussion of each operator. §8.S.6 describes user-defined
conversions.

6.1 Characters and integers

A character or a shon integer may be used wherever an integer may be used. In all cases the
value is convened to an integer. Conversion of a shoner integer to a longer always involves sign
extension; integers are signed quantities. Whether or not sign-extension occurs for characters is
machine dependent; see §2.6. The more explicit type unsigned char forces the values to range
from O to a machine dependent maximum.

On machines that treat characters as signed, the characters of the ASCII set are all positive.
However, a character constant specified with an octal escape suffers sign extension and may appear
negative; for example, '\377' has the value -1.

'When a longer integer is converted to a shorter or to a char, it is truncated on the left; excess bits
are simply discarded.

6.2 Float and double

Floating arithmetic is carried out as if in double•precision. Conversions between single-precision
and double-precision floating-point numbers are as mathematically correct as the hardware allows.

6.3 Floating and integral

Conversions of floating values to integral type tend to be machine-dependent; in particular the
direction of truncation of negative numbers varies from machine to machine. The result is
undefined if the value will not fit in the space provided.

Conversions of integral values to floating type arc well behaved. Some loss of precision occurs if
the destination lacks sufficient bits.

6.4 Pointers and integers

An expression of integral type may be added to or subtracted from a pointer; in such a case the
first is converted as specified in the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is convened to
an int or a long- dependent on the machine; see §7.4.

6.5 Unsigned

'Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to
unsigned and the result is unsiped. The value is the least unsigned integer congruent to the
signed integer (modulo 2wordsize). In a 2's complement representation, this conversion is
conceptual and there is no actual change in the bit pattern.

C_

C+ + Reference Manual 6

'When an unsigned integer is converted to long, the value of the result is the same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions

A great many operators cause conversions and yield result types in a similar way. This pattern
will be called the "usual arithmetic conversions."

First, any operands of type char, unsigned char, or short are converted to int, and
any of type float is converted to doul)le.

Then, if either operand is doul>le, the other is converted to double and that is the type of
the result.

Otherwise, if either operand is unsigned long the other is converted to unsigned long
and that is the type of the result.

Otherwise, if either operand is long, the other is converted to long and that is the type of
the result.

Otherwise, if either operand is unsigned, the other is converted to unsigned and that is
the type of the result.

Otherwise, both operands must be int, and that is the type of the result.

6.7 Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit conversions may be applied. Because a void expression denotes a nonexistent value, such
an expression may be used only as an expression statement (§9.1) or as the left operand of a
comma expression (§7.15).

An expression may be converted to type void by use of a cast. For example, this makes explicit
the discarding of the value of a function call used as an expression statement.

A object of type void• (pointer to void) can be used to point to objects of unknown type.

7. EXPRESSIONS

The precedence of expression operators is the same as the order of the major subsections of this
section, highest precedence first. Thus, for example, the expressions referred to as the operands of
+ (§7.4) arc those expressions defined in §§7.1-7.4. Within each subsection, the operators have
the same precedence. Left- or right-associativity is specified in each subsection for the operators
discussed therein. The precedence and associativity of all the expression operators is summarized
in the grammar of §18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the
subexpressions involve side effects. The order in which side effects take place is unspecified.
Expressions involving a commutative and associative operator (*, +, &., I, A) may be rearranged
arbitrarily, even in the presence of parentheses; to force a particular order of evaluation an explicit
temporary must be used.

Toe handling of overflow and divide check in expression evaluation is machine-dependent. Most
existing implementations of C++ ignore integer overflows; treatment of division by 0, and all
floating-point exceptions, varies between machines, and is usually adjustable by a library function.

In addition to the standard meanings described in §7.2-7.15 operators may be overloaded, that is
given meanings when applied to user-defined types; sec §7 .16.

C+ + Reference Manual

7 .1 Primary expressions

Primary expressions involving . , .. ,., : : , subscripting, and function calls group left-to-right.

id:
idemifier
operaror-funcd.on-name
typedef-namt! : : identifier
typedef-no:ru : : operator-function-name

primary-expression:
id
: : idtnrijier
constant
string
this
(expression)

primary-expression C expression]
primary-expression (expression-list ,)
primary-expression • id op

primary-expression -> id

expression-list:
expression
expression-list , expression

7

An identifier is a primary expression, provided it has been suitably declared as discussed below.
Its type is specified by its declaration. If the type of the identifier is ''array of ... '', however, then
the value of the identifier-expression is a pointer to the first object in the array, and the type of the
expression is "pointer to ... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared "function returning ... ", when used except in the
function-name position of a call, is converted to "pointer to function returning ... ". An operator­
.function-name is an identifier with a special meaning; see §7.16 and §8.S.10.

The operator : : followed by an identifier is a primary expression, provided the identifier has been
suitably declared in the file or program scope (§4.1). Its type is specified by the declaration of the
identifier. It allows an object to be referred to by name even if its identifier bas been redefined in
a local scope.

A typedef-namt! (§8.8) followed by : : folowed by an identifier is a primary expression. The
typedef-111l1M must denote a class (§8.5) and the identifier must denote a member of that class. Its
type is specified by the declaration of 'the identifier.

A constant is a primary expression. Its type may be int, long, or double depending on its
form.

A string is a primary expression. Its type is origmally "array of char"; but following the same
rule given above for identifiers, this is modified to "pointer to char" and the result is a pointer to
the first character in the string. (There is an exception in certain initializers; see §8.6.).

The keyword this is a primary expression in the body of a member function (see §8.5). There it
refers to the object for which the member function was invoked.

A parenthesized expression is a primary expression whose type and value are identical to those of
the unadorned expression. The presence of parentheses does not affect whether the expression is
an lvalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, tbe primary expression has type "pointer to ... ",
the subscript expression is int, and the type of the result is " ... ". 'Ihe expression £ 1 t E2 J is

C

C+ + Reference Manual 8

identical (by definition) to * C { E 1) + < E2)) . All the clues needed to understand this notation are
contained in this section together with the discussions in§§ 7.1, 7.2, and 7.4 on identifiers, *, and
+ respectively; §14.3 below summarizes the implications.

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list ·of expressions which constitute the actual arguments to the function. The
primary expression must be of type "function returning ... ", and the result of the function call is
of type " ... ". A hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer. Its argument type will be
declared to that of the argument list of the call.

Toe actual arguments are compared with the formal arguments and conversions are performed as if
the formal argument were initialized with its actual argument (see §8.6).

In preparing for a call to a function, a copy is made of each actual parameter. A function may
change the values of its formal parameters, but these changes cannot affect the values of the actual
parameters. On the other hand, it is possi'ble to pass a pointer or a reference on the understanding
that the function may change the value of the object to which the pointer or reference points. An
array name is a pointer expression.

A function may be declared to accept fewer arguments or more arguments than are specified in the
function declaration; see §8.4. Any actUal argument of type :float for which there is no formal
argument are converted to double before the call; any of type char or short are converted to
int; and as usual, array names are converted to pointers. The order of evaluation of arguments is
undefined by the language; take note that the various compilers differ.

Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier (or an identifier qualified by a
typedef-name using the : : operator) is an expression. The first expression must be a class object,
and the identifier must name a member of that class. The value is the named member of the
object, and it is an !value if the first expression is an !value. Note that "class objects" can be
structures (§8.5.11) and unions (§8.5.12).

A primary expression followed by an arrow (• >) followed by an identifier (or an identifier
qualified by a typedef-name using the : : operator) is an expression. The first expression must be
a pointer to a class object and the identifier must name a member of that class. Toe result is an
!value referring to the named member of the class to which the pointer expression points. Thus
the expression E1•►MOS is the same as (•E1) .MOS. Oasses are discussed in §8.5.

If a primary expression yields a value of type "reference to ... " (see §8.4 and §8.6.3) that value is
immediately dereferenced so that the value of the expression is· the object denoted by the
reference. H this object is also a reference, it too will be dereferenced, and so on. A reference
can be thought of as a name of an object; see §8.6.3.

7 .2 Unary operators
Expressions with unary operators group riaht•to•left.

C+ + Reference Manual

unary-expression:
unary-operator expression
expression + +
expression - -
C rype-name) expression
simple-rype-name C expression-list)
sizeof expression
sizeof (type-name
new type-name
new (rypt-name

unary-operator: one of
• & • I • ++

9

The unary • operator means indirection: the expression must be a pointer, and the result is an
lvalue rdening to the object to which the expression points. If the type of the expression is
"pointer to ... ", the type of the result is " ... ".

Toe result of the unary &. operator is a pointer to the object referred to by the operand. The
operand must be an lvalue. If the type of the expression is " ... ", the type of the result is
"pointer to ... ".

Toe result of the unary - operator is the negative of its operand. The operand must be of integral
type. The usual arithmetic conversions are performed. The negative of an unsigned quantity is
computed by subtracting its value from 2n, where n is the number of bits i:n an int. There is no
unary + operator.

The result of the logical negation operator I is 1 if the value of its operand is 0, 0 if the value of
its operand is non-zero. 1b.e type of the result is int. It is applicable to any arithmetic type or to
pointers.

The • operator yields the one's complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

The operand of prefix ++ is incremented. The operand must be an !value. Toe value is the new
value of the operand, but is not an lvalue. The expression ++x is equivalent to x+• 1. See the
discussions of addition (§7.4) and assignment operators (§7.14) for information on conversions.

The operand of prefix - - is decremented analogously to the prefix + + operator.

The value obtained by applying a postfix + + is the value of the operand. The operand must be an
lvalue. After the result is noted, the object is incremented in the same manner as for the prefix++
operator. The type of the result is the same as the type of the operand.

The value obtained by applying a postfix -- is the value of the operand. Toe operand must be an
!value. After the result is noted, the object is decremented in the manner as for the prefix -­
operator. The type of the result is the same as the type of the operand.

A simple-rype-name (§8.2) followed by a parenthesized expression causes the value of the
expression to be c.onverted to the named type. To express conversion to a type that does not have
a simple name the rype-namt (§8. 7) must be parenthesized; in this case the expression need not be
parenthesized. This construction is called a cast. The method for defining conversions for user­
defined types (classes) is described in §8.5.S and 18.5.6. For user-defined types an expression list,
rather than a simple expression, can be used; see §8.S.S.

The sizeof operator yields the size, in bytes, of its operand. (A lrjtt is undefined by the
language except in terms of the value of 111 izeof. However, i:n all existing implementations a byte
is the space required to hold a char.) "When applied to an array, the result is the total number of
bytes in the array. The size is determined from the declarations of the objects i:n the expression.
This expression is semantically an unai gned. constant and may be used anywhere a constant is

(_

C+ + Reference Manual 10

required. Its major use is in communication with routines like storage allocators and 1/0 systems.

Toe sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size, in bytes, of an object of the indicated type.

Toe new operator creates an object of the type-name (see §8.7) to which it is applied. The lifetime
of an object created by new is not restricted to the scope in which it is created. The new operator
returns a pointer to the object it created. When applied to an object of type T it therefore generally
returns a value of type T•. However, the type yielded for an array type T [] is T• . For example,
both new int and new int [10] return an int•. See §17 for details of how the free store is
managed.

7. 3 Multiplicative operators

Toe multiplicative operators •, /, and " group left-to-right. The usual arithmetic conversions are
performed.

multiplicative-expression:
expression * expression
expression / expression
expression " expression

The binary * operator indicates multiplication. The * operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

Toe binary / operator indicates division. When positive integers are divided truncation is toward
0, but the form of truncation is machine-dependent if either operand is negative. On all machines
covered by this manual, the remainder has the same sign as the dividend. It is always true that
(a/b) •b + aXb is equal to a (if bis not 0).

The binary" operator yields the remainder from the division of the first expression by the second.
Toe usual arithmetic conversions arc performed. The operands must not be floating.

7.4 Additive operators

Toe additive operators + and - group left-to-right. The usual arithmetic conversions are
performed. There arc some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

Toe result of the + operator is the sum of the operands. A pointer to an object in an array and a
value of any integral type may be added. The latter is in all cases converted to an address offset
by multiplying it by the length of the object to which the pointer points. The result is a pointer of
the same type as the original pointer, and which points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an object in an array, the
expression P + 1 is a pointer to the next object in the array.

No further type combinations are allowed for pointers.

The + operator is associative and expressions with several additions at the same level may be
rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual arithmetic conversions
are performed. Additionally, a value of any integral type may be subtracted from a pointer, and
then the same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by
the length of the object) to an integer representing the number of objects separating the pointed-to
objects. Depending on the machine the resulting integer may be of type int or type long; see
§2.6. This conversion will in general give unexpected results unless the pointers point to objects in

C+ + Reference Manual 11

the same array, since pointers, even to objects of the same type, do not necessarily differ by a
multiple of the object-length.

7 .5 Shift operators

The shift operators << and >> group left•to-right. Both perform the usual arithmetic conversions
on their operands, each of which must be integral. Then the right operand is converted to int;
the type of the result is that of the left operand. The result is undefined if the right operand is
negative, or greater than or equal to the length of the object in bits.

shift--,xpression:
expression < < expression
expression > > expression

The value of E: 1 < < E:2 is E: 1 (interpreted as a bit pattern) left-shifted £2 bits; vacated bits are 0-
filled. The value of E: 1 ► ► E2 is E: 1 right-shifted E:2 bit positions. The right shift is guaranteed
to be logical (0-fill) if E1 is unsigned; otherwise it may be arithmetic (fill by a copy of the sign
bit).

7 .6 Relational operators

Toe relational operators group left-to-right, but this fact is not very useful; a <b< c does not mean
what it seems to.

• relational-expression:
expression < expression
expression > expression
expression < • expression
expression > • expression

Toe operators < (less than), > (greater than), <■ (less than or equal to) and >• (greater than or
equal to) all yield O if the specified relation is false and 1 if it is true. The type of the result is
int. The usual arithmetic conversions are performed. Two pointers may be compared; the result
depends on the relative locations in the address space of the pointed-to objects. Pointer
comparison is portable only when the pointers point to objects in the same array.

7. 7 Equality operators

equality-expression:
expression •• expression
expression I • expression

The •• (equal to) and the ! • (not equal to) operators are exactly analogous to the relational
operators except for their lower precedence. (Thus a<b •• e<d is 1 whenever acb and c<d
have the same truth-value.)

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to which
0 has been assigned is guaranteed not to point to any object, and will appear to be equal to O; in
conventional usage, such a pointer is considered to be null.

7 .8 Bitwise AND operator

and-expression:
expression&. expression

Toe &. operator is associative and expressions invoh-ing &. may be rearranged. The usual arithmetic
conversions ·are performed; the result is the bitwise AND function of the operands. The operator
applies only to integral operands.

(_

C + + Reference Manual

7. 9 Bitwise exclusive OR operator

exclusive-or-expression:
expression " expression

12

The ,. operator is associative and expressions involving,. may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise exclusive OR function of the operands. The
operator applies only to integral operands.

7 .10 Bitwise inclusive OR operator

inclusive-or-expression:
expression I expression

The I operator is associative and expressions involving I may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands. The
operator applies only to integral operands.

7 .11 Logical AND operator

logical-and-expression:
expression ll expression

The &.&. operator groups lefMo-right. It returns 1 if both its operands are non-zero, 0 otherwise.
Unlike &., &.& guarantees left-to-right evaluation; moreover the second operand is net evaluated if
the first operand is O.

The operands need net have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7 .12 Logical OR operator

logical-or-expression:
expression I I u:pression

The I I operator groups left-to-right. It returns 1 if either of its operands is non-zero, and 0
otherwise. Unlike I, J I guarantees left-to-right evaluation; moreover, the second operand is net
evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7 .13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The fint expression is evaluated and if it is non-zero,
the result is the value of the second expression, otherwise that of third expression. If possi"ble, the
usual arithmetic conversions are performed to bring the second and third expressions to a common
type; otherwise, if both are pointers of the same type, the result has the common type; otherwise,
one must be a pointer and the other the constant 0, and the result has the type of the pointer.
Only one of the second and third expressions is evaluated.

7 .14 Assignment operators

There are a number of assignment operators, all of which group right-to-left. All require an lvalue
as their left operand, and the type of an assignment expression is that of its left operand. The
value is the value stored in the left operand after the assignment has taken place.

C++ Reference Man111Jl 13

assignment-expression:
expression assignment-operator expression

assignment-operator: one of
• +• -· •• I• X• >►• <<• &• A. ,.

In the simple assignment with •, the value of the expression replaces that of the object referred to
by the left hand operand. If both operands have arithmetic type, the right operand is convened to
the type of the left preparatory to the assignment. Both operands may be class objects of the same
type or pointer objects of the same type. Objects of some derived classes cannot be assigned; see
§8.5.3. A pointer to a class may be assigned to a pointer to a public base class of that class; see
§8.5.3. Any pointer may be assigned to a pointer of type void•. The constant 0 may be assigned
to a pointer, and it is guaranteed that this value will produce a null pointer distinguishable from a
pointer to any object.

Since a reference is implicitly dereferenced, assignment to a object of type "reference to ... "
assigns to the object denoted by the reference.

The behavior of an expression of the form E 1 op • E2 may be inferred by taking it as equivalent
to E1 • E1 op < £2); however, £1 is evaluated only once. In +a and -•, the left operand may
be a pointer, in which case the (integral) right operand is converted as explained in §7.4; all right
operands and all non-pointer left operands must have arithmetic type.

7.15 Comma operator
comma-expression:

expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left
expression is discarded. Toe type and value of the result are the type and value of the right
operand. This operator groups left-to-right. In contexts where comma is given a special meaning,
for example in lists of actual arguments to functions (§7 .1) and lists of initializers (§8.6), the
comma operator as described in this section can only appear in parentheses; for example,

f(a, (t•3, t+2), c)

has three arguments, the second of which has the value 5.

7 .16 Overloaded operators
Most operators can be declared to accept class objects as operands (see §8.5.10). It is not pos11olc
to change the precedence of operators. It is not possible to change the meaning of operators when
applied to non-class objects. The pre-defined meaning of the operators • and (unary) &. when
applied to class objects can be changed.

The meanings of some operators are defined to be equivalent to some combination of other
operators on the same arguments. For example, ++a means a+a 1. Such relations do not hold for
defined operators unless the user defines them that way. Some operators, for example assiamnent,
require an operand to be an lvalue; this is not required for defined operators.

7.16.1 Unary operators
A unary operator, whether prefix or postfix, can be defined by either by a member function (see
§8.5.4) taking no arguments or a friend function (see §8.S.9) taking one argument. Thus, for
any unary operator II, both d and llx can be interpreted as either x. operatortl C) or
ope:ratorll(:x) • If both ope:ratorll functions are defined the former interpretation is used.
When the operators + + and -- are overloaded, it is not possible to distinguish prefix application
from postfix application.

C++ Reference Manual 14

7 .16.2 Binary operators
A binary operator can be defined either by a member function taking one argument or by a
friend. function taldng two arguments. Thus, for any binary operator tt, x(ty can be interpreted
as either x.operatortP(y) or operatorl'(x,y). If both operatorfl) functions are defined the
former interpretation is used.

7 .16.3 Special operators

Function call

primary-upression (expression-list opt

and subscripting

primary-upression [expression J

are considered binary operators. The names of the defining functions are operator() and
operator rJ, respectively. Thus, a call x C arg} is interpreted as x. operator C) (arg) for a
class object x. The type of the argument list is defined by the operator () function. A
subscripting xtyJ is interpreted as x.operatorr J (y). Toe type of the argument is defined by
the opera tort J function.

8. DECLARATIONS

Declarations are used to specify the interpretation given to each identifier; they do not necessarily
reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifi,rs qpt declarator-list opt ;
namt-declarauon
asm-declaration

The declarators in the declarator-list contain the ident:ifien being declared. Only in external
function definitions (§10.1) or external function declarations may the decl-specijiers be omitted.
Only when declaring a class (§8.S) or enumeration (§8.10), that is when the decl-specifin-s is a
class-specifier or enum-specijier, may the declarator-list be empty. Name-declarations are described
in. §8.8; asm declarations arc described in §8.11.

dee I-specifiers:
decl-specifier decl-specifiers opt

decl-specifter,·
ss-spedjier
type-specifi,r
fct-specifitr
friend
typedef

The list must be self-consistent in. a way descn"bed below.

8.1 Scope and storage class specifiers

The ss-specifiers are:

ss-specijier:
auto
static
extern
register

C

C

C++ Reference Manual 15

Declarations using the auto, static, and register specifiers also serve as definitions in that
they cause an appropriate amount of storage to be reserved. If an extern declaration is not a
definition (that is, neither a data declaration with an initializer nor a function declaration with a
body) there must be an external definition (§10) for the given identifiers somewhere else.

A register declaration is best thought of as an auto declaration, together with a hint to the
compiler that the variables declared will be heavily used. The hint may be ignored. The address-of
operator & cannot be applied to them.

The auto or register specifiers can only be used for names declared in a block and for formal
parameters. There can be no static functions within a block, nor any static formal
arguments. The scope of name declared with the static specifier outside a function or a class is
ftle (§4.1). The scope of the name of an object or function declared extern is program (§4.1).

At most one ss-specifi~r may be given in a declaration. If the ss .. specijier is missina from a
declaration, the storage class is taken to be automatic inside a function and static outside.
Exception: functions are never automatic. If the ss-specifler is missing from a declaration, the
scope of the name is taken to be local in a block, class in a class declaration, and file elsewhere.
Exception: The scope of the name of a function that is declared but not defined (§10) is taken to
be program unless it is explicitly declared static.

Some specifiers can only be used in function declarations and definitions:

Jct-specifiers:
overload
inline
virtual

The overload specifier enables a single name to be used to denote several functions; see §8.9.

The inline specifier is only a hint to the compiler, does not affect the meaning of a program,
and can be ignored. It is used to indicate that when the function is called inline substitution of the
function body is to be preferred to the usual function call implementation. It can only be used in
function definitions (§10.1). A function (§8.5.2 and §8.5.9) defined within the declaration of its
class is inline by default.

The virtual specifier can only be used in declarations of class members; see 18.5.4.

The friend specifier is used to override the name hiding rules for class members and can only be
used within a class declaration; see §8.S.9.

The typedef specifier is used to introduce a name for a type; see §8.8.

8.2 Type specifiers
The type-specifiers are

type-specifier:
simple•type•namtt
class-specifter
mum-specifier
conat

C++ Reference Manual

simple-type-name:
typedef-name
char
short
int
long
unsigned
float
double
void

16

Toe words long, short, and unsigned may be thought of as adjectives. They can be applied to
int; unsigned can also be applied to char, short, and long. The word const may be added
to any legal type-specifier. Otherwise, at most one type-specifier may be given in a declaration.
An object of const type is not an lvalue. If the type-specifier is missing from a declaration, it is
taken to be int.

Cass and enumeration specifiers are discussed in §8.5 and §8.10, respectively.

8.3 Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each
of which may have an initializer.

declarator-list:
init-declarator
inii-declarator , declarator-list

init-declarator:
declarator initializer opt

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage
class of the objects to which the declarators refer. Declarators have the syntaX:

declarator:
dname

dname:

(declarator)
* const opt declarator
&. const

0
t declarator

declarator ~ argument-declaration-list
tkclarator [constant-expression opt J

simple-dname
typedef-name • simple-dntJtM

simple-dn.amt:
identifier
typedef-name
• typedef-name
operator-function-1Jt21'M
conversion-junction-1Jt21'M

The grouping is the same as in expressions.

C

C++ Reference Manual 17

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as the
declarator appears in an expression, it yields an object of the indicated type and storage class.
Each declarator contains exactly one dnam.e; it specifies the identifier that is declared. Except for
the declarations of some special functions (see §8.5.2) a dn.omt \Vill be a simple identifier.

Jf an unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

A declarator in parentheses is identical to the unadomed declarator, but the binding of complex
declarators may be altered by parentheses; see the examples below.

Now imagine a declaration

T 01

where T is a type-specifier (like int, etc.) and 01 is a declarator. Suppose this declaration makes
the identifier have type" ... T," where the" ... " is empty if 01 is just a plain identifier (so that
the type of x in "int x" is just int). Then if 01 has the form

the type of the contained identifier is " . . . pointer to T."

Jf o 1 has the form

* eonst o

the type of the contained identifier is" ... constant pointer to T" that is, the same type as •O, but
the contained identifier is not an !value.

Jf o 1 has the form

SJ)

or

& const D

the type of the contained identifier is '' . . . reference to T. '' Smee a reference by definition cannot
be an lvalue, use of const is redundant. It is not possiole to have a reference to void (a
void&).

Jf D 1 has the form

D (argument•declaratitin-list)

then the contained identifier has the type " . . . function taking arguments of type argument­
declaraiion-list and returning T."

argument-declaration-list:
arg-declaration-Ust opt ••• opt

arg-declaraiion-list:
arg-declaration-list , argument-declaration
argumenr-declarati.on

argument-declaration:
decl-sp,cijiers declaratar
decl-specljiers declarator • constant-apression

If the argument-declaration-list terminates with an ellipsis the number of arguments is only known
to be equal to or greater than the number of argument types specified; if it is empty the function
takes no arguments. All declarations for a function must agree exactly both in the type of the

C

C++ Reference Manual 18

value returned and in the number and type of arguments. 'Ibe keyword void may be used to
indicate that a function takes no arguments, thus (void) is equivalent to C).

The argumenr-declarmion-list is used to check and convert acrual arguments in calls and to check
pointer-to-function assignments. If a constant expression is specified as initializer for an argument
this value is used as a default argument value. A default value for an argument cannot be
redefined by a later declaration. However, a declaration may add default values for argumenis not
given such values in previous declarations. Default araument values will be used in calls where
trailing arguments are missing. In an argument-cleclararion the identifier in the declarator may be
left out (as in an abstract-declarator (§8.7)). If present, the identifier can in fact never be used
since it goes out of scope at the end of the function declaration.

If D 1 bas the form

D [constant-expression J

or

D[J

then the contained identifier has type " . . . array of T. '' In the first case the constant expression is
an expression whose value is determinable at compile time, and whose type is int. (Constant
expressions are defined in §15.) When several "may of., specifications are adjacent, a multi•
dimensional array is created; the constant expressions which specify the bounds of the arrays may
be missing only for the first member of the sequence. 'Ibis elision is useful when the array is
external and the actual definition, which allocates storage, is given elsewhere. The first constant­
expression may al.so be omitted when the declarator is followed by initialization. In this case the
size is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or
union, or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are permitted. The restrictions are as follows:
functions may not retUrn arrays or functions, although they may return pointers to such things;
there arc no arrays of functions, although there may be arrays of pointers to functions.

As an example, the declaration

inti, •ip, f(), •fip(), (•pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip
retumina a pointer to an integer, and a pointer pfi to a function which returns an integer. It is
especially useful to compare the last two. The binding of •f'ip(). is • (fip()), so that the
declaration suggests, and the same construction in an expression requires, the calling of a function
fip, and then using indirection through the (pointer) result to yield an integer. In the declarator
(•pf i > C) , the extra parentheses are necessary, as they are in an expression, to indicate that
indirection through a pointer to a function yields a function, which is then called. The functions f
and fip are declared to take no arguments, and pfi to point to· a function which takes no
argument.

Toe declaration

const a• 10, •pc• La, •conat cpc • pc;
int b, •conat cp • &.b;

declares a: a constant integer, pc: a pointer to a constant integer, cpc: a constant pointer to a
constant integer, b: an integer, and cp: a constant pointer to integer. The value of a, cpc, and cp
cannot be changed after initialization. The value of pc can be changed, and so can the object
pointed to by cp. Examplex of illegal operations are:

C

C++ Reference Manual

a• 1; a++; •pc• 2; cp • &a; cpc++;

Examples of legal operations are:

b • a; •cp • a; pc++; pc• cpc;

The declaration

fseek(FILE•, long, int);

19

declares a function taking three arguments of the specified types. Since no return value type is
specified it is taken to be int (§8.2). The declaration

point(int • o, int• O);

declares a function which can be called with zero, one or two arguments of type int. For
example:

The declaration

point(1,2);
point(1);
point();

/• meaning point(1,0); •/
/• meaning point(O,O); •/

printf(char• ...);

declares a function which can be called with varying number and types of arguments. For
example:

printf("hello world");
printf("a•Kd b•Kd", a, b);
printf ("string • "•" , st) ;

However, it must always have a char• as its first argument.

As another example,

float fa[17J, •afp[17];

declares an array of float numbers and an array of pointers to float numbers. Fmally,

static int x3d[3J[5][7J;

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, xld. is
an array of three items; each item is an array of five arrays; each of the latter arrays is an array of
seven integers. Any of the expressions x3d., x3d [i J, x3d [i] r j J, x3d [i l [j l t kl may
reasonably appear in an expression. The first three have type "array," the last has type int.

8.5 Cass declarations

A class specifies a type. Its name becomes a typedef-name (see §8.8) which can be used even
within the class specifier itself. Objects of a class consist of a sequence of members.

class-specifier:
class-head { member-list }
class-head { member-list: public : memb,r .. list

0
pt }

class-head:

aggr:

aggr idtln'li.fier
1

aggr idtlnti.fier :, public opt typedef-name

clasa
struct
union

C+ + Reference Manual 20

A structure is a class with all members public; see §8.S.8. A union is a structure which holds only
one member at a time; see §8.5.12. A member-list may declare data, function, class, typedef,
enum, and field members. Fields arc discussed in §8.5.13. A member-list may also contain
declarations adjusting the visibility of member names; see §8.5.8.

member-list:
member-declaration member-list , op

member-declaration:
decl-specifiers ,,,,, member-declarator initializer opt

function-definiizon ; opt

member-declararor:
declarator
idemifter opt : constont-apression

Members that arc class objects must be objects of previously declared classes. In particular, a class
cl may not contain an object of class cl, but it may contain a pointer to an object of class cl.

The member names in different classes do not conflict with each other or with ordinary variables.

Only declarations of static members (§8.S.1) may contain initializers.

A simple example of a struct declaration is

struct tnode { .
char tword[20];
int count;
tnode •left;
·tnode •right;

} ;

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once
this declaration has been given, the declaration

tnode a, •ap;

declares a to be a tnod.e and ap to be a pointer to a tnod.e. With these declarations

sp••count

refers to the count field of the structure to which sp paints;

a.left

refers to the left subtree pointer of the structures; and

s.right•>tword(O]

refers to the first character of the tword member of the right subtree of •.

8.5.1 Static members

A data member of a class may be static; function members may not. Members may not be
auto, register, or extern. There is only one copy of a static member shared by all objects of
the class in a program. A static member mem of class cl can be referred to as cl : : mein, that is
without referring to an object. It exists even if no objects of class cl have been created.

8.5.2 Member functions

A function declared as a member (without the friend specifier (§8.5.9) is called a member
function, and is called using the class member syntax (§7.1). For example:

C

(__

C++ Reference Manual 21

struct tnode {
char tword[20J;
int count;
tnocle *1e:ft;
tnode •right;
void set(char•, tnode• l, tnode• r);

} ;

tnode n 1 , n2 ;
n1.set("asd:f",Ln2,0);
n2.set("ghjk",O,O);

The definition of a member function is considered to be within the scope of its class. This means
that it can use names of its class directly. If the definition of a member function is lexically
outside the class declaration the member function name must be qualified by the class name using
the rypedef-111J.me.simple-dnt1ffl4 notation; see §8.3.3. Function definitions are discussed in 110.1.
For example:

void tnode.aet(char• w, tnode• 1, tnode• r) {
count• atrlen(w);

}

i:f (siseof(tword)ocount) errorC .. tnode string too long");
strcpy(tword,w);
left• l;
right• r;

The function name tnode. aet specifies that the function aet is a member of class tnod.e . This
enables the member names word, count, left, and right to be used. 1n a member function a
me:mber name refers to the object for whicll the function was called. Thus, in the call
n 1 • set (...) , tword refers to n 1 . tword, and in the call n2. set C ...) it refers to
n2. tword. In this example, the functions strlen, error, and strcpy are assumed to be
declared elsewhere; sec §10 . .l.

ln a member function, the keyword this points to the object for which the function is called. The
type of this in a function whicll is the member of a class cl is cl•. If mem is a member of class
cl, mem and thia->m.em are synonymous in a class cl member function (unless m.em has been
used as the name of a local variable in an intermediate scope).

A member function may be defined (§10.l) in the class declaration. Placing a member function
definition in the class declaration is just a shorthand for declaring it in the class declaration and
then defining it inline (§8.1) just after the class declaration. For example:

int b;
struct x {

int f() { return b; }

int b;
} ;

means

int b;
atruct x {

int f();
int b;

} ;
inline x.:f {) { return b; }

C+ + Reference Manua.l 22

The specifier over load (§8.2) need not be used for member functions: if a name is declared to
denote several functions in a class it is overloaded (see §8.9).

It is legal to apply the address-of operator to a member function. However, the type of the
resulting pointer to function is undefined, so that any use of it is implementation dependent.

8.5.3 Derived classes

In the construct

aggr identifier : public opt typedef-namt

the typedef-namt must denote a previously declared class, which is called a base class for the class
being declared. The latter is said to be derived from the former. For the meaning of put,lic see
§8.5.8. The members of the base class can be referred to as if they were members of the derived
class itself, except when a base member name has been re-defined in the derived class; in this case
the typedef-nome::identiflD' notation (17.1) can be used to refer to the hidden name. For example:

struct base {
int a, b;

atruct derived: public baae {
int b, c;

} ;

derived d;

d.a • 1;
d.base: :b • 2;
d.b • 3;
d.c • 4;

assigns to the four members of d..

A derived class can itself be used as a base class. It is not possible to derive from a =ion
(§8.5.12). Assignment is not implicitly defined (see §7.14 and §14.1) for a objects of a class
derived from a class for which operator• () bas been defined (§8.5.10).

8.5.4 Virtual functions

If a base class base contains a virtual (§8.1) function vf, and a derived class d.eri ved also
contains a function vf then a call of vf for an object of class derived invokes derived: :vf.
For example:

struet base {

} ;

virtual void vf();
void. f();

atruet derived.: public base {
void vf ();
void f();

} ;

C.

C + + Reference ManUlll

derived d;
base• bp • &.d;

bp->vf();
bp->f ();

23

The calls invoke derived: :vf and base: :f, respectively for the class derived object named
d. That is, the interpretation of the call of a virtual function depends on the type of the object for
which it is called, whereas the interpretation of a call of a non-virtual member function depends
only on the type of the pointer denoting that object. This implies that the type of objects of classes
with virtual functions and objects of classes derived from such classes can be determined at run
time.

If a derived class has a member of the same name as a virtual function in a base class the its type
must be the same in both classes. A virtual function cannot be a f:riencl (§8.5.9). A function f
in a class derived from a class which has a virtual function f is itself considered virtual. A virtual
function in a base class must be defined. A virtual function which has been defined in a base class
need not be defined in a derived class. In that case, the function ddined for the base class is used
in all calls.

8.S.S Constructors

A member function with the same name as its class is called a comtructor. A constructor has no
return value type; it is used to construct values of its class type. A constructor can be used to
create new objtcts of its type, using the syntax

For example,

rypede/-1111me (argument-list ,)
op

complex zz • complex(1, 2.3);

cprint(complex(7.8, 1.2));

Objects created in this way are unnamed (unless the constructor was used as an initializer as for
zz above), with their lifetime limited to the scope in which they are created. They can often be
considered constants of their type. lf a class has a construct0r it is called for each object of that
cl.ass before any use is made of. the object; see §8.6. A constructor may be over load, but not
virtual oi friend.

If a class has a base class with a constructor, the constructor for the base class is called before the
constructor for the derived class. The constructors for member objects, if any, are executed after
the constructor for the base class and before the constructor for the object containing them. See
§10.1 for an explanation of how arguments can be specified for a base class c:onstrUetor, and see
§17 for an explanation of how constructors can be used for free storage management.

An object of a class with a constructor cannot be a member of a union.

8.5.6 Conversions
A constructor taking a single argument specifies a conversion from its argument type to the type of
its· class. Suell conversions are used implicitly in addition to the usual arithmetic conversiOJlS. An
assignment to an object of class x is therefore legal if either the assigned value is an x, or if a
conversion has been declared from the type of the assianed value to x. Constructors are used
similarly for conversion of function arguments (§7 .1) and initializers (§8.6). For example:

C++ Reference Manual

class X { ... X(int)i };
f (X arg) {

}

X a• 1;
a• 2;
f (3) ;

I• a• X(1) •I
I• a• X(2) 1,/

1* f(X(3)) •I

24

\Vhen no constructor ford.ass xis found which accepts the assigned type, no attempt is made to
find other constructors to convert the assigned value into a type which would be acceptable to a
constructor for class x. For example:

class X {
class Y {
ya. 1;

XC int) i } ;
Y(X); };

/• illegal: Y(X(1)) not tried •I

A member function of a class x with a name of the form

conversion-function-name:
operator type

specifies a conversion from ryp, to x. It will be used implicitly like the constructors above, or it
can be called explicitly using the cast notation. For example:

class x {

operator int();
} ;

X a;
int i • int(a);
i • (int)a;
i • a;

In all three cases the value assigned will be found by a call of the function X: : operator int C) .

A user defined type conversion is implicitly applied only if it is unique; see §8.9. Note that if a
d.ass x has a conversion to an integral or pointer type declared, an x can be used whercever an
expression of such a type is required. For example

X a, b;

inti• (a)? 1+a: O;
int j • (a&&b)? a+b: i;

8.5. 7 Destructors

A member function of class cl named •cl is called a destructor. A destructor has no return
value and takes no arguments; it is used to destroy values of type cl immediately before the object
containing them is destroyed. A destructor cannot be OYerload or friend.

Toe destructor for a base class is executed after the destructor for its derived class. Destructors
for member objects are executed before the destructor for the object they are members of. See § 17
for an explanation of how destructors can be used for free storage management.

An object of a class with a destructor cannot be the member of a union.

8.5.8 Visibility of member names
Toe members of a class declared with the keyword class are private, that is, their names can
only be used by member functions (§8.5.2) and friends (see §8.5.10), unless they appear after the

C++ Reference Man""l 25

"public:,, label; in that case they arc public. A public member can be used in any function. A
struet is a class with all members public; see §8.S.11.

If the keyword public precedes the base class name in the declaration of a derived class the
public members of the base class are public for the derived class; if not, they are private. A public
member mem of a private base class base can be declared to be public for the derived class by a
declaration of the form

typedef-111J111e • identifier ;

where the typedef-name denotes the base class and the identifier is the name of a member of the
base class. Such a declaration must occur in the public part of the derived class.

C.onsider

claaa baae {
int a;

public:
int b, c;
int bf ();

} :
class derived l:>aae {

int d;
public:

l:>ase.c;
int e;
int df (>;

int ef(derived.&.);

Toe external function ef can use only the names c, e, and df. Being a member of derived, the
function df can use the names b, c:, bf, d., e, and d.f, but not a. Being a member of baae, the
function bf can use the members a, b, c, and bf.

8.S .9 Friends
A friend of a class is a non-member function which may use the private member names from the
class. A friend is not in the scope of a class and is not called using the member selecrion syntax
(unless it itself is the member of some class). The following example illustrates the differences
between members and friends:

class private {
int a;
friend. void friend_set(private•, int);

public:
void meml)er_aet(int);

} ;

void friend_aet(private• p, inti) { p•>a • i; }

void private.member_aet(int i) {a• i; }

private obj;

friend_aet(~obj,10);

obj.member_set(10);

C+ + Reference Manual 26

When a friend declaration refers to an overloaded name or operator only the function specified
by the argument types becomes a friend. A member of a class c 11 can be the friend of a class
el2. For example

class el2 {
friend char• el1::foo(int);

} ;

All the functions of a class el 1 can be made friends of a class c 12 by a single declaration

class cl2 {
friend cl1 ;

Placing the definition of a fr i encl function in a class declaration is a shorthand for declaring it
and then defining it inline just as for member functions; see §8.5.2.

8.S.10 Operator functions

Most operators can be overloaded to take class object operands.

operator-function-name:
operator operator

operator: one of
new delete
+ * / " "' ' • < > +• -· •• /• "· "'• &• ,. <C< >> >>• <<• •• I•
<• ►• &S. II ++ () Cl

Toe last two operators are function call and subscripting. An operatOI function (except operator
new() and operator delete(); see 117) must either be a member function or take at least one
argument of class type. See also §7.16.

8.S .11 Structures

A structure is a class with all members public. That is

atruct • { ... };

is equivalent to

class s { public: ... };

A structure may have member functions (including constructors and destructors).

8.5.12 Unions

A union may be thought of as a structure all of whose member objects begin at offset O and whose
size is sufficient to contain any of its member objects. At most one of the member objects can be
stored in a union at any time. A union may have member functions (including constructors and
destructors). It is not possible to derive a class from a union. An object of a class with a
constructor or a destructor cannot be a member of a union.

A union of the form

union { member-list } ;

is called an anonymous union; it defines an unnamed object. The names of the members of an

C+ + Reference ManUJJI 27

anonymous union must be distinct from other names in the scope where the union is declared; they
can be used directly in that scope without using the usual member access syntax (§8.5). For
example

union { int a; char• p; };
a• 1;

p • "asdf'";

Here a and p are used like ordinary (non-member) variables, but since they are union members
they have the same address.

8.5 .13 Bit fields

A member-declarator of the form

identifier opt : constant-expression

specifies a field; its length is set off from the field name by a colon. Fields are packed into
machine integers; they do not straddle words. A field which does not fit into the space remainina
in an integer is put into the next word. No field may be wider than a word. Fields are assigned
right-to-left on some machines, left-to-right on other machines; see §2.6.

An unnamed field is useful for padding to conform to extemally-imposed layouts. As a special
case, an unnamed field with a width of O specifies alignment of the next field at a word boundary.

Implementations are not required to support any but integer fields. Moreover, even int fields
may be c:onsidered to be unsigned. For these reasons, it is recommended that fields be declared as
unsigned. The address-of operator&. may not be applied to them, so that there are no pointers
to fields.

Fields may not be union members.

8.5.14 Nested classes

A class may be declared within another class. In this case, the scope of the name of the inner class
and its public names is restricted to the enclosing class. Except for this restriction the inner class
could have been declared outside its enclosing class. Declaring a class within another does not
affect the rules for access to private members, nor does it place the member functions of the inner
class in the scope of the enclosing class. For example:

int x;

class encloae {
int x;
class inner {

int y;
f () { X • 1; }

int inner;

encloae.g(inner• p) { ... }

In this example, the x in f refers to the x declared before class enclose. Since y is a private
member of inner, g can not use it. Since g is a member of enclose, names used in g are

(_

C + + Reference ManUJJl 28

resolved in the scope of class enclose. Therefore inner in the argument declaration for 9 refers
to the enclosed type inner, and not to the int.

8. 6 Initialization

A declarator may specify an initial value for the identifier being declared. The initializer is
preceded by •, and consists of an expression or a list of values nested in braces.

initializer:
• expression
• { initializer-tin }
• { inirializer-lin , }
(upr,ssion-lin)

initializer-list:
expression
initializer-list , initializer-lin
{ initiali:er-lin }

All the expressions in an initializer for a static or external variable must be constant expressions,
which arc described in § 15, or expressions which reduce to the address of a previously declared
variable, possibly offset by a constant expression. Automatic or register variables may be
initialized by arbitrary expressions involving constants, previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0; automatic
and register variables which are not initialized are guaranteed to start off as prbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a
single expression, perhaps in braces. The initial value of the object is taken from the expression;
the same conversions as for assignment are performed.

Note that since C > is not an initializer, ' 'X a C) ; ' ' is not the declaration of an object of class x,
but the declaration of a function taking no argument and returning an x.
8.6.1 Initializer lists

When the declared variable is an aggregate (a class or an array) then the initializer may consist of
a brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in
increasing subscript or member order. If the array contains subaggreaates, this rule applies
recursively to the members of the aggregate. If there are fewer initializers in the list than there
are members of the aggregate. then the aggregate is padded with O's.

Braces may be elided as follows. If the initializer begins with a le~ brace, then the succeeding
comma•scparated list of initializers initializes the members of the aggregate; it is erroneous for
there to be more initializers than members. If, however, the initializer does not. begin with a left
brace, then only enough elements from the list are taken to account for the members of the
aggregate; any remaining members arc left to initialize the next member of the aagregate of which
the current aggregate is a pan.

For example,

int xtJ • { 1, 3, 5 };

declares and initializes x as a 1-dimensional array which has three members, since no size was
specified and there are three initializers.

(
\. •

C_

C++ Reference Manual 29

float y[4]t3J • {
{ 1' 3, s } '
{ 2, 4, 6 } ,
{ 3, s, 7 } '

} ;

is a completely•bracketed initialization: 1, 3, and 5 initialize the first row of the array y[o J,
namely y t o H o l , y t o Jt 1 l , and y t o H 2 l. Likewise the next two lines initialize y t 1 J and
yt 2 J. The initializer ends early and therefore y[3 J is initialized with 0. Precisely the same
effect could have been achieved by

float y[4)C3J • {
,, 3, 5, 2, 4, 6, 3, 5, 7

} ;

The initializer for y begins with a left brace, but that for y t o J does not, therefore three elements
from the list are used. Likewise the next three are taken successively for yr 1 J and y[2 J. Also,

float y[4l[3J • {
{ 1 }, { 2 }, { 3 }, { 4}

};

initializes the first column of y (resarded as a two-dimensional array) and leaves the rest 0.

8.6.2 Cass objects

An object with private members cannot be initialized by simple assignment to its members as
described above; neither can a union object. An object of a class with a constructor must be
initialized. If a class has a construetor which does not take argumems that constructor is used for
objects which are not explicitly initialized.

The arguments for a constructOr can also be presented as a parenthesized list; this style· must be
used when creating objects on the free store. For example:

struct complex {
float re, im;

} ;

complex(float r, float i) { re•r; im•i; }
complex(float r) { re•r; im•O; }

complex zz(1, 2.3);
complex* zp • new complex(1, 2.3);

Initialization can also be performed by explicit assignment; conversions are performed. For
example,

complex zz1 • complex(1, 2.3);
complex zz2 • complex(123);
complex zz3 • 123;
complex zz4 • zz3;

If a constructor taking a reference to an object of its own class exists, it will be invoked when an
objc-ct is initialized with another object of that class, but not when an object is initialized with a
constructor.

An object can be a member of an agregate only if the object's class does not have a constructor or
if one of its .constructors takes no arguments. In the latter case that constructor is called when the
aggregate is created. If a member of an aggregate is of a class with a destructor then that
destructor is called when the aggregate is destroyed.

\

C++ Reference Manual 30

8.6.3 References
When a variable is declared to be a T&., that is "reference to type T", it can be initialized either by
a pointer to type T, or by an object of type T. In the latter case the address-of operator & will be
implicitly applied. For example:

int i;
int&. r1 • i;
int&. r2 • &i;

Both r 1 and r 2 will reference i.

Initialization of a reference is treated very differently from assignment to it. As described in §7.1 a
reference is implicitly dereferenced when used. For example

r1 • r2;

means copy the integer referenced by r2 into the integer referenced by r 1.

A reference must be initialized. Because of the implicit dereferencing the value of a reference
camiot be changed after initialization. A reference can therefore be thought of as a name of an
object.

The expression &r 1 yields the address of the object referenced by r 1. Thus to get a pointer pp to
denote the same object as r 1 one can write pp•&r 1.

If the initializer for a reference to type T is not an !value an object of type T will be created and
initialized with the initializer using the usual initialization rules. The address of that object then
becomes the value of the reference. !be lifetime of an object created in this way is the scope in
which it is created. For example:

double&. rr • 1;

is legal and rr will point to a double containing the value 1 . O.

References are particularly useful as formal argument types.

8.6.4 Character arrays
A final abbreviation allows a char array to be initialized by a string. In this case successive
charactm of the string initialize the members of the array. For example,

char msgtJ • nsyntax error on line Ka,n•;

shows a character array whose members are initialized with a string.

8. 7 Type names
Sometimes (to specify type conversions explicitly, and as an argument of a:lzeof or new) it is
desired to supply the name of a data type. This is accomplished using a "type name," which in
essence is a declaration for an object of that type which omits the name of the object.

type-~:
type-sp,cifls' abstract-declarator

abmac1-declarazor:
empty
• abmact-decllll'ator
absrract-declarator (lll'gument-declaration-list)
abstract-declarator [constant-expression opt J
C abstract-declarator >

It is possible to identify uniquely the location in the abstract-declarator where the identifier would
appear if the construction were a declarator in a declaration. The named type is then the same as
the type of the hypothetical identifier. For example,

(~

C

C+ + Reference Manual 31

int
int*
int •[3J
int •()
int < • > ()

name respectively the types "integer," "pointer to integer," "pointer to an array of three
integers," "function returning pointer to integer," and "pointer to function returning an integer."

8.8 Typedef

Declarations containing the decl-specijier typedef define identifiers which can be used later as if
they were type keywords naming fundamental or derived types.

typedef-'fl/J'IM:
ideruifler

Within the scope of a declaration involving typedef, each identifier appearing as part of any
declarator therein becomes syntactically equivalent to the type keyword naming the type associated
with the identifier in the way described in §8.4. The name of a class or an enum is also a rypedef­
'fl/J'IM . For example, after

typedef int MILES, •ICLICICSP;
struct complex { double re. im; };

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, •zp;

are all legal declarations; the type of distance is int, that of metricp is "pointer to int".

typedef does not introduce brand new types, only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type
as any other int object.

A class declaration, however, does introduce a new type. For example:

struct X { int a; };
atruct Y { int a;};
X a1;
y a.2;
int a3;

declares three variables of three different types.

A declaration of the form

name-declaration:
a,gr ukntifer ;
enum identifier ;

specifies that an identifier is the name of some (possibly not yet defined) class or enumeration.
Such declarations allows declaration of classes which refer to each other. For example:

C++ Reference Manual

class vector;

class matrix {

friend matrix operator•CmatrixL, vector&);
} ;

class vector {

friend matrix operator•Cmatrix&, vector&);
} ;

8.9 Overloaded function names

32

When several (different} function declarations are specified for a single name, that name is said to
be overloaded. When that name is used, the correct function is selected by comparing the types of
the actual arguments with the argument types in the function declarations.

Of the usual arithmetic conversions defined in §6.6 only the conversions char->short->int, int­
>double, int->long, and jloat->double are performed for a call of an overloaded function. To
overload the name of a non-member function an overload declaration must precede any
declaration of the function; see §8.2. For example,

overload aba;
int abs (i.nt) ;
double abs(double);

When an overloaded name is called, the list of functions is scanned in order to find one which can
be invoked. For example abs C 12) will invoke abs C int) and abs (12 .. O) will invoke
abs (double) . Had the order of declarations been reversed, both calls would have invoked
abs (double) .

If, for a call of an overloaded name, no function is found by the method above, the set of user­
defined conversions (§8.S.6) is examined. If there is a unique set of user-defined conversions
which makes the call legal, it is implicitly applied. For example:

claaa x { X(int); };
claaa Y { Y (int) ; } ;
class z { Z(char*)i };

overload int f(X), f(Y);
overload int g(X), g(Z);

f (1) ;

g(1) ;

I• illegal: ambiguous f(X(1)) or f(Y(1)) •/
I• g(X(1)) •I

g("asdf"); I• g(Z{"asdf")) •I

All operator function names are automatically overloaded.

The address-of operator & may only be applied to an overloaded name in an assignment or an
initialization where the type expected determines which function to take the address of. For
example:

int operator•Cmatrix&, matrix&.);
int operator•(vector&, vector&);
int C•pfm)(matrix&., matrix&)• &operator•;
int C•pfv)(veetor&, vector&)• &operator•;
int C•pfx)(...) • &operator•; I• error •I

C++ Reference Manual

8.10 Enumeration declarations

Enumerations are int types with named constants.

enum-specifier:
enum identifier opt { enum-lin }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier• conna.,u-expression

33

The identifiers in an enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with • appear, then the values of the corresponding constants begin at
0 and increase by 1 as the declaration is read from left-to-right. An enumerator with • gives the
associated identifier the value indicated; subsequent identifiers continue the progression from the
assigned value.

The names of enumerators must be distinct from those of ordinary variables. The names of
enumerators with different constants must also be distinct. The values ot the enumerators need
not be distinct.

Toe role of the identifier in the mum-specifier is entirely analogous to that of the class name; it
names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret•20, winedark };

color •cp, col;

col• claret;
cp • Lcol;

if (•cp •• b\lrgundy) ...

makes color the name of a type describing various colors, and then declares cp as a pointer to an
object of that type, and col as an object of that type. The possible values are drawn from the set
{0, 1, 20, 21}.

8.11 Asm declaration

An asm declaration has the form

aam C srring) ;

The meaning of an asm declaration is not defined. Typically it is used to pass information through
the compilC'l' to an assembler.

9. STATEMENTS

Except as in?icated, statements are executed in sequence.

9.1 Expression statement

Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

C++ Reference Manual 34

9.2 Compound statement, or block

So that several statements can be used where one is expected, the compound statement (also, and
equivalently, called "block") is provided:

compound-statement:
{ sta1ement-llsr opt }

statement-llsr:
statement
statement statement-llsr

Note that a declaration is an example of a statement (§9.15).

9 .3 Conditional statement

The two forms of the conditional statement are

if (expression) .statement
if (expression) statement elae statement

The expression must be of integral or pointer type or of a class type for which a conversion to
integral or pointer type is defined (see §8.5.6). Toe expression is evaluated and if it is non-zero,
the first substatement is executed. If else is used the second substatement is executed if the
expression is 0. As usual the "else" ambiguity is resolved by connecting an else with the last
encountered else-less if.

9.4 \Vhile statement
The while statement has the form

while (aprtsslon) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero.
The test takes place before each execution of the statement. The expression is handled as in a
conditional statement (§9.3).

9 .S Do statement

The do statement has the form

do statement while (upression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test
takes place after each execution of the statement. The expression is handled as in a conditional
statement (§9 .3).

9.6 For statement

Toe for statement has the form

for (statement-I expression-I opt upression-2 opt) statement-2

This statement is equivalent to

statement-I
while (expression-I) {

statement-2
expression-2 ;

}

Thus the first statement specifies initialization for the loop; the first expression specifies a test,
made before each iterationt such that the loop is exited when the expression becomes O; the second
expression often specifies an incrementing that is performed after each iteration.

C

C++ Reference Manual 35

Either or both of the expressions may be dropped. A missing expression-} makes the implied
while clause equivalent to while (1). Note that if statement-1 is a declaration, the scope of the
name declared extends to the end of the block enclosing the for-statement.

9. 7 Switch statement

Toe switch statement causes control to be transferred to one of several statements depending on
the value of an expression. It has the form

switch (expression) statement

The type of the expression must be of integral or pointer type. Any statement within the statement
may be labeled with one or more case prefixes as follows:

case constant-expression :

where the constant expression must be of the same type as the switch expression; the usual
arithmetic conversions are performed. No two of the case constants in the same switch may have
the same value. Constant expressions are defined in §15.

There may also be at most one statement prefix of the form

default:

When the swi teh statement is executed, its expression is evaluated and compared with each case
constant. If one of the case constants is equal to the value of the expression, control is passed to
the statement following the matched case prefix. If no case constant matches the expression, and if
there is a default prefix, control passes to the prefixed statement. If no case matches and if
there is no default then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control, whicll continues
unimpeded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8 Break statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes
to the statement following the terminated statement.

9 .9 Continue statement

The statement

continue;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for
statement; that is to the end of the loop. More precisely, in each of the statements

while(...) { do { for(...) {

eontin: ;
}

contin:
} while

.
' (...) ; contin: ;

}

a continue is·equivalent to goto eontin. (Following the contin: is a null statement, 19.13.)

9 .10 Return statement

A function returns to its caller by means of the return statement, which has one of the forms

C

C++ Reference Manua.l 36

return;
return upression

The first form can be used only in functions which does not return a value, that is, a function with
the return value type void. Toe second form can be used only in functions retumina a value; the
value of the expression is returned to the caller of the function. If requited, the expression is
converted, as in an initialization, to the type of the function in which it appears. Flowing off the
end of a function is equivalent to a return with no returned value.

9 .11 Goto statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (§9.12) located in the current function. It is not possible to transfer
control past a declaration with an (implicit or explict) initializer.

9 .12 Labeled statement

Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as a taraet of a 90to.
The scope of a label is the current function, excluding any sub-blocks in which the same identifier
has been redeclared. See §4.l.

9.13 Null statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to supply a
null body to a looping statement such as while.

9 .14 Delete statement

The delete statement has the form

de 1 ete expression

The result of the expression must be a pointer. The object pointed to is deleted. That is, after the
delete statement the object cannot be assured to have a well defined value; see §17. The effect of
applying delete. to a pointer not obtained from the new operator (§7.1) is undefined. However,
deleting a pointer with the value zero is harmless.

9.15 Declaration statement

A declaration statement is used to introduce a new identifier into a block; it has the form

declaration-statement:
declaration

If an identifier introduced by a declaration were previously declared, the outer declaration is
pushed down for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time their declat'arion­
statement is executed. It is possible to transfer into a block, but not in a way that causes
initializations not to be performed; see §9.11. Initializations of variables with storage class natic
(§4.2) are performed only once when the program begins execution.

C

C

C++ Reference Manual 37

10. EXTERNAL DEFINITIONS

A program consists of a sequence of external definitions. The scope of external definitions persists
to the end of the file in which they are declared. The syntax of external definitions is the same as
that of declarations, except that only at this level and within class declarations may the code for
functions be given.

10.1 Function definitions

Function definitions have the form

function-definition:
decl-specifiers opt function-declarator base-class-initializer opt function-body

The decl-spedjiers register, auto, typedef' may not be used, and friend, and virtual may
only be used within a class declaration (§8.S). A function declarator is similar to a declarator for a
"function returning ... " except that it includes the names of the formal parameters of the function
being defined. Function declarators have the form

function-declarator:
declarator (argument-declaration-list)

The form of an argument-declaration-Un is specified in §8.4. If an argument is specified
register, the corresponding actual parameter will be copied, if possible, into a register at the
outset of the function. If a constant expres-sion is specified as initializer for an argument this value
is used as a default argument value.

The function-body has the form

function-body:
compound-statement

A simple example of a complete function definition is

int max(int a, int b, int c)
{

}

int m •(a> b)? a: b;
return (m > c). ? m : c ;

Here int is the type-specifier; max (int a, int b, int c) is the function-declarator; { . . . }
is the block giving the code for the statement.

Since in expression context an array name (in particular as an actual parameter) is taken to mean a
pointer to the first element of the array, declarations of formal parameters declared "array of ... "
are adjusted to read "pointer to ... ".

A base class initializer has the form

base-class-initializer:
: (arp:ment-list opt)

It is used to specify arguments for a base class constructor in a constructor for a derived class. For
example:

struct base { baae(int); ... };
struet derived: base { derived(int); } ;

derived.derived(int a) : (a+1} { ... }

derived d.(10);

Toe base class's construetor is called for the object d with the argument 11.

C

C++ Reference Manual

10.2 External data definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data is static.

38

If there is more than one external data definition of the same name, the definitions must agree
exactly in type and storage class and all initializers (if any) must have the same value.

11. SCOPE RULES
See §4.1.

12. COMPil..ER CONTROL LINES

The compiler contains a preprocessor capable of macro substitution, conditional compilation, and
inclusion of named files. Llnes beginning with# communicate with this preprocessor. These lines
have syntaX independent of the rest of the language; they may appear anywhere and have effect
which lasts (independent of scope) until the end of the source program file.

Note that eonat and inline definitions provide alternatives to most uses of #define.

12.1 Token replacement
A compiler-control line of the form

#d.ef ine identifier roken-nring

causes the preprocessor to replace subsequent instances of the identifier with the given suing of
tokens. Semicolons in, or at the end of, the token-suing are part of that string. A line of the
form

#define identifier(identifier • • • • , identlfler) roun-nring

where there is no space between the first identifier and the < , is a macro definition with
arguments. Subsequent instances of the tint identifier followed by a < , a sequence of tokens
delimited by commas, and a) arc replaced by the token string in the definition. Each occurrence
of. an identifier mentioned in the formal parameter list of the definition is replaced by the
c.mresponding token string from the call. The actual arguments in the call are token strings
separated by oommas; however commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameten must be the same. Strings and
character constants in the token-string are scanned for formal parameters, but strings and character
constants in the rest of the program are not scanned for defined identifiers.

ln both forms the replacement string is rescanned for more defined identifiers. ln both forms a
long definition may be continued on another line by writing \ at the end of the line to be
continued. A control line of the form

#undef ldentljier

causes the identifier's preprocessor definition to be forgotten.

12.2 File inclusion

A compiler control line of. the form

#include "ftlenamt"

causes the replacement of. that line by the entire contents of the file .filename. The named file is
searched for first in the directory of the original source file, and then in a sequence of specified or
standard places. Alternatively, a control line of. the form

C+ + Reference Manual 39

#include <flltname >

searches only the specified or standard places, and not the directory of the source file. (How the
places are specified is not part of the language.)

#includ.e's may be nested.

12.3 Conditional compilation

A compiler control line of the form

#if ,apression

checks whether the expression evaluates to non•zero. The expression must be a constant
expression as discussed in § 15; the following additional restriction applies here: the comtant
expression·may not contain aizeof or an enumeration constant.) ln addition to the usual C++
operations a unary operator defined can be used. 'When applied to an identifier, its value is non­
zero if that identifier has been defined using #define and not later undefined using lund.ef;
otherwise its value is o. A control line of the form

#ifd.ef id1ntifter

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been
the subject of a #define control line. A control line of the form

#ifnd.ef identift,r

checks whether the identifier is currently undefined in the preprocessor.

All three forms are followed by an arbitrary number of lines, possibly containing a control line

#else

and then by a control line

#end.if

If the checked condition is true then any lines between #else and #end.if are ignored. If the
checked condition is false then any lines between the test and an #else or, lacking an #else, the
#end.if, are ignored.

These constrUctions may be nested.

12.4 Line control

For the benefit of other preprocessors which generate C++ programs, a line of the form

#line constant "ftl~ •

causes the compiler to believe, for purposes of error diagnostics, that the line number of the nert
source line is given by the constant and the current input file is named by the identifier. If the
identifier is absent the remembered file name does not change.

13. IMPLICIT DECl..ARATIONS
See §8.l.

14. TYPES REVISITED

'Ibis section summarizes the operations which can be performed on objects of certain types.

14.1 Oasses

Cass objects may be assisned, passed as arguments to functions, and returned by functions (except
objects of some derived classes; see §8.5.3). Other plausible operators, such as equality
comparison, can be defined by the user; see §8.5.10.

C++ Reference Manual 40

14.2 Functions

There are only two things that can be done with a function: call it, or take its address. If the name
of a function appears in an expression not in the function-name position of a call, a pointer to the
function is generated. Thus, to pass one function to another, one might say

typedef int (*PP)();
extern g (PP) ;
extern f ();

g(f);

Then the definition of g might read

g(PP funcp)
{

(•funcp)();

}

Notice that f must be declared explicitly in the calling routine since its appearance in g c f) was
not followed by < .

14.3 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to the
first member of the array. Because of this conversion, arrays are not lvalues. By definition, the
subscript operator t J is interpreted in such a way that !1 [!2] is identical to • (< !1) + (!2)) .
Because of the conversion rules which apply to +, if E 1 is an array and !2 an integer, then
E1[!2l refen to the !2-th member of E1. Therefore, despite its asymmetric appearance,
subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If ! is an n-dimensional
array of rank i x j x • • • x k, then ! appearing in an expression is converted to a pointer to an
(n -1)-dimensional array with rank Jx • • • xk. If the * operator, either explicitly or implicitly as
a result of subscripting, is applied to this pointer, the result is the pointed-to (n -1)-dimensional
array, which itself is immediately converted into a pointer.

For example, consider

int x[3]t5];

Here xis a 3x5 array of integers. When x appears in an expression, it is converted to a pointer
to (the fint of three) 5-membered arrays of integen. In the expression x[i J, which is equivalent
to * C x+i l, x is first convened to a pointer as described; then i is converted to the type of x,
which involves multiplying i by the length the object to which the pointer points, namely 5 integer
objects. The results are added and indirection applied to yield an array (of 5 integers) which in
turn is convened. to a pointer to the first of the integers. lf there is another subscript the same
argument applies again; this time the result is an integer.

It follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and
that the first subscript in the declaration helps determine the amount of. storage consumed by an
array but plays no other part in subscript calculations.

14.4 Explicit pointer conversions

Certain conversions involving pointers are permitted but have implementation-dependent aspects.
They are all specified by means of an explicit type-conversion operator, §§7 .2 and 8. 7.

(_

C++ Reference Manual 41

A pointer may be converted to any of the integral types large enough to hold it. 'Whether an int
or long is required is machine dependent. The mapping function is also machine dependent, but
is intended to be unsurprising to those who know the addressing structure of the machine. Details
for some particular machines were given in §2.6.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer convened from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be convened to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably
aligned in storage. It is guaranteed that a pointer to an object of a given size may be converted to
a pointer to an object of a smaller size and back again without change. Different machines may
differ in the number of bits in pointers and in alignment requirements for objects. Aggregates are
aligned on the strictest boundary required by any of their constituents.

15. CONSTANT EXPRESSIONS
In several places C++ requires expressions which evaluate to a constant: as array bounds (§8.3),
as case expressions (§9.7), as default function arguments (§8.3), and in initializers (§8.6). In the
fint case, the expression can involve only integer constants, character constants, ernmieration
constants, names declared conat, and aizeof expressions, possi"bly connected by the binary
operators

+ - * I " &.

or by the unary operators

- ... f

or by the ternary operator

?:

A << >> •• I• < ► <• ►• &.&. ''

Parentheses can be used for grouping, but not for function calls.

More latitude is permitted for the other three uses; besides constant expressions as discussed
above, float constants are permitted, and one can also apply the unary &. operator to estemal or
static objects, or to enernal or static arrays subscripted with a constant expression. The unary &.
can also be applied implicitly by appearance of unsubscripted arrays and functions. The basic rule
is that initializers must evaluate either to a constant or to the address of. a previously declared
ex:temal or static object plus or minus a constant.

Less latitude is al.lowed for constant expressions after #if; names declared conat, sizeof
expressions, and enumeration constants are not permitted.

16. PORTABIL!IY CONSIDERATIONS
Certain parts of. C+ + are inherently machine dependent. The following list of potential trouble
spots is not meant to be all-inclusive, but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer
division have proven in practice to be not much of. a problem. Other facets of the hardware are
reflected in differing implementations. Some of. these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are placed in a word, are a
nuisance that must be carefully watched. Most of. the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine, as does the set of valid types. Nonetheless, the compilers all do things properly for their
own machine; excess or invalid register declarations are ignored.

C

C+ + Reference Manual 42

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to
write programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. It is right-to-left
on some machines left-to-right on others. Toe order in which side effects take place is also
unspecified.

Since character constants arc really objects of type int, multi-character character constants may be
permitted. Toe specific implementation is very machine dependent, however, because the order in
which characters arc assigned to a word varies from one machine to another. On some machines
fields are assigned left-to-right in a word, in others right-to-left.

These differences are invisible to isolated programs which do not indulge in type punning (for
example, by converting an int pointer to a char pointer and inspecting the pointed-to storage),
but must be accounted for when conforming to externally-imposed storage layouts.

17. FREE·STORE

The new operator (§7.2) will call the function

extern void* operator new(lon;);

to obtain storage. The argument specifies the number of bytes required. The store will be
uninitialized. H operator new() cannot find the amount of store required it will return zero.
The delete operator will call the function

extern void operator delete(void*)i

to free the store pointed to for re-use. The effect of c.alling operator delete C) for a pointer not
obtained from operator new() is undefined, and so is the effect of calling operator
delete C) twice for the same pointer. However, deleting a pointer with the value zero is
harmless.

Default versions of operator new() and operator delete() are provided, but a user may
supply others more suitable for particular applications.

'When a class object is created using the new operator the constructor will (implicitly) use
operator new() to obtain the store needed. By assigning to the this pointer before any use of
a member a constructor can implement its own storage allocation. By assigning a zero value to
this, a destructor can avoid the standard deallocation operation for objects of its class. For
example:

class cl {

}

int v[10];
cl() {this• my_own_alloeator(sizeof(cl)); }
•cl{) { my_own_deallocator(this); this• O; }

On entry into a constructor this is non-zero if allocation has already taken place (as is the case
for auto objects) and zero otherwise.

If a derived class assigns to this, the call to its base class's constructor (if any) will take place
after the assignment so that the base class constructor will refer to the object allocated by the
derived class's constructor. Ha base class's constructor assigns to thia, the new value will also be
used by the derived class's constructor (if any).

18. SYNTAXSUMMAY
This summary of C+ + syntax is intended to be an aid to comprehension. It is not an exact
statement of the language.

C+ + Reference Manual

18.1 Experessions

expression:
term

term:

expression binary-operator ,xpr,ssion
expression ? expression : expression
expression-list

primary
* term
&tam
- term
I term
- tam
++ term
-- term
term++
ram--
(ryp,-name) expression
simple-type-name (upression-ltsr)
aizeof expr,ssion
sizeof (fYJ#•name
new rype-name
new C type-name)

primary:

id:

id
: : identifier
connant
nring
this
(expression)
primary [expression J
primary (expression-Jin opt >
primary • id
primary -> id

identifier
operator-function-name
rypedej-lllllM : : identifier
iypedef•l'lll1ne : : op,rator-function-ntllnt!

expression-list:
expression
expression-list , expression

operator:
unary-operator
binary-operator
special-op,raior
free-store-operator

Binary operators have precedence decreasing as indicated:

43

C++ Reference Manual

binary-operator: one of . / "
+
<< >>
< >

•• I•
&
A

ll
I I
I I

• +• -·
unary-operator: one of

• &

special-operator: one of
0 Cl

jre,-store-opermor: one of
new delete

type-name:

/•

thcl-specijiers abstract-declarator

abstract-declarator:
empty
* abstract-declarator

++

abstract-declarator (argument-declaration-list)
abstract-declarator [connant-apr,uion opt J

simple-type-NDM:
typedef-name
cbar
ahort
int
long
unsigned.
float
double
void.

typedef-name:
identifier

18.2 Declarations

declaration:
thcl-specijiers qpt declarator-list opt ;
name-declaration
asm-declaration

44

C++ Reference Manual

name-declaration:

aggr:

aggr identifier ;
enum identifier ;

class
struct
union

asm-declaration:
asm (string) ;

decl-sp,cijiers:
dee I-specifier decl-specijiers opt

dee I-specifier:
ss-specijier
,ype-sp,cifier
Jct-specifier
friend
typedef'

,ype-sp,cifitr
simplNypc-1Ulllle
class-specifier
enum-speclfier
conat

ss-specifter:
auto
extern
regiater
static

Jct-specifier:
inline
overload
virtual

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer opt

declarator:
dname
(declarator)
• const , declarator
&. conat opt declarator
declarator°~ argument-declaration-list
declarator [constant-expression opt l

45

C++ Reference Manual

dname:
simple-dname
typedef-narM . simple-dntZrM

simple-d~:
identifier
rypedef-ntZrM
• typedef-ntZrM
operator-.functi.on-ntUM
conversion-juncti.on-narM

operaror-functi.on-narM:
operator operaror

conversion-fu.ncti.on-ntUM:
operator type

argument-declaration-list:
arg-declaration-list opt ••• opt

arg-declaration-list:
arg-declararion-list , argument-declaration
argument-declaration

arg111Mnt-declaration:
decl-specifiers declarator
decl-specifiers declarator • constant-expression

class-spedfier:
class-htad { member-list t }

class-htad { member-list°;;,, public : member-list
0
pt }

class-htad:
aggr identifier

1
4ggr idenrijier:, : publicopt typedef-na1M

member-list:
member-declaration member-list opt

member-declaration:
decl-specifiers

O
, member-declarator initializer

1
Ju . ,.,.t:1.· JI op

nctlOn11..,Jt.nltlOn ; opt

member-declarator:
declarator
identifier opt constanr-apression

initializer:
• expression
• { initializer-list }
• { initializer-list , }
(expression-list)

46

(_

C+ + Reference Manual

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }

enum-specifier:
enum identifier t { enum-list }

op

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier• constant-expression

18. 3 Statements

compound-statement:
{ statement-list opt }

statement-list:
Statement
statement statement-list

statement:
declaration
expression :
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (statement expression opt ; expression o. t
switch (expression) statement "
case constant-expnssion : staremem
default : statement
break:
continue;
return expression t
goto identifier ; op

identifier : statement
delete expression

18.4 External definitions

program:
external-definition
external-definition program

exterMl-definition:
function-definition
declaration

47

) statement

)

C++ Reference Manual

function-definition:
decl-specifiers opt function-declarator base-class-initializer opt function-body

function-declarator:
declarator (argument-declaration-list)

function-body:
compound-statement

base-class-initializer:
: (argument-list opt

18.5 Preprocessor
#define identifier token-string
#define identifier { identifier , ... , identifier) token-string
#else
#endif
#if expression
#if def idsntifi•
#ifnd.ef idenrifier
#include " file~ "
#inelude <file~>
#line constant "filename "
#undef idenrifier

19. DIFFERENCES FROM C
19 .1 Extensions

48

The typeS of function arguments can be specified (§8.4) and will be checked (§7.1). Type
conversions will be performed (§7.1).

Single-precision floating arithmetic may be used for float expressions; §6.2.

Function names can be overloaded; §8.6.

Operators can be overloaded; §7 .16, §8.5.10.

Functions can be inline substituted; §8.1.

Data objects can be const; §8.3.

Objects of reference type can be declared; §8.3, §8.6.3.

A free store is provided by the new and delete operators; §17.

Casses can provide data hiding (§8.5.8), guaranteed initialization (§8.6.2), user-defined
conversions (§8.S.6), and dynamic typing through use of virtual functions (§8.S.4).

The name of a class is a type name; §8.5.

Any pointer can be assigned to a void• without use of a cast; §7.14.

A declaration within a block is a statement; §9.15.

Anonomous unions can be declared; §8.5.12.

19.2 Summary of incompatibilities

Most constructs in C are legal in C+ + with their meaning unchanged. The exceptions are as
follows

C+ + Reference Manual

Programs using one of the new keywords

class
new

as identifiers are not legal.

Toe function declaration

f () ;

const delete
operator overload

friend
public

inline
this virtual

means that f takes no arguments, in C it means that f could take arguments of any type at all.

49

Toe default scope of a name declared outside any block or class is fl.le; in Cit was program. This
implies that to make a name visible to functions in other files a name must explicitly be declared
extern; thus

int a; f() O

in C++ is

static int a; static f() {}

in C, and

extern int a; int a; extern f() {}

in C++ is

int a; f() {}

in C. However, note that

int f ();

means

extern int f();

in both C++ and C.

Since class names in C++ are in the same name space as other names, constructs like

struct • { int a; } a;
atruct stat stat();

cannot be used.

19.3 Anachronisms

A class name can be prefixed with the one of the keywords claaa, atruct, or union in the
declaration of class objects, pointers, etc. For example

atruet a a, •p;
atruct a f();

Programs using the old function definition syntax

C+ + Reference Manual 50

old.function-definition:
decl•specifiers opt old,function-declararor declaration-lfst function-body

old.function-declarator:
declararor (parameter-list)

parameter-list:
identifkr
identifier , identifier

for example

max(a,b) { return (a<b) ? b: a; }

may be used.Ha function defined like this has not been previously declared its argument type will
be taken to be C ...) , that is, unchecked. lf it has been declared its type must agree with that of
the declaration.

+ addition opcratcr 10
& address opcratcr 9
backslash c:haracrer 2

& bitwise AND operator 11
.. bitwise exdusive OR operator 12
I bitwise inclusive OR operator 12
. class member operator 7
-► dus poi.ma: operator 1
? : conditional expression 12
-- dec'temem operator 9
/ division operator 10
•• equality operator 11
escape character 2
C) • function call opcratcr 8
► greater than operator 11
►• Feater than er equal to opcraur 11
++ inc:teme:m operator 9
• indirectim operator 9
I• inequality opcratcr 11
cc left shift operaur 11
c less than operator 11
c• less than or equal to operator 11
u. logical AND operator 12
1 lopal negation operator 9
I I logical OR operator 12
" modulus operator 10
• multiplication operator 10
one's complement operator 9

: : ope:ratcr 7
►► right shift operator 11
: : • scope operator 7
r l, sublaipt opcratcr 7
- subtraction operator 10
- unary minus operator 9
abstract declaratcr 30
addition operator, + 10
additive operators 10
address-of field 27
address-of member function 22
address of overloaded name 32
address of register 15
address operator. & 9
anreaaie 2s
alignment of fields 27
alignment restriction 41
alloc:ation of. norap 42
ambiguity, u-elH 34
anachrcnism C function definition 49
anachronism dass names 49
anac:brcmsm \fCWstNCt\fP 49
anadlrcnism \fCWunion\fP 49
anmymous union 26
arpment evaluation, order of 8
argument, function 8
arithmetic conversions 6
arithmetic ope:ratcrs 10
arithmetic, pointer 10
arithmetic types 4
array dedaration 18

Index

array explanation of subscripd.n, 40
array initialization 28
array. multi-dimcmsio:nal 40
array, sunp crder of 40
array name, canversian of 7
array name arJI.IIIIIID% 37
array size, default 18
asm declaration 33
assignment, convmian by 13
assipmmt CXJl'Cllion 12
usipmatt operatcrs 12, 26
usigrmlcmt of class objects 22
assignment to pointer to dus object 13
usipment to reference 13
associativity of open.ten 6
auto specliic 14
automatic func:l:ions 1'
automatic storll• dus 4
automatics, inlnalimton of 28
bacblub chmcler, 2
based• 22
base dus members, visibility of 25
binary operator, intcrpretatim of 14
binary operators, overloaded 14
bit fields 27
bitwise Clpel'lton 11
bitwise AND operator, & 11
bitwise exclusive OR operatar, .. 12
bitwise inclusive OR operator, I 12
block 34
Hodes, imtializaticm in 36
bladtmucture 36
1:a:aak statement 35
byte 9
C++ C 1,48
C, C++ 1, 48
C+ + C compatibility 48
C+ + C defauli scc,pc 49
C+ + C functim declaration • 49
C++ Cnamespace 49
C ccmpatibility, C++ 48
C default scope, C+ + 49
C+ + mensions 48
C function declamion. C+ + 49
C funcrion definitian, anachronism 49
C+ + keywords 49
Cnamcspece,C++ 49
can cl, function s
call ci overloaded functicm 32
ca•• pre& 35
cast opcramr B, 9, 30
char type 4, 16
character constant 2
dmacter, siped 4
character array initialization 30
charactc:r-imegC' CGnYC'sion S
diaracter string 2
class, base 22
dus declaration 19

C

class, derived 22
class, friend 26
class, friend of 26
class member function 20
class member name 20
class, member of 20
class, name of 19
class scope 3
claH 1truct union 20
class declaration, aample ct. 20
class declarations, nesting of 27
classes 4
classes, operations permitted on 39
classes, ove:rloeding 26
class member semantics 8
class member, 1tatic 20
class member sym.u 8
class member operau:r, . 7
class name new type 31
class names, anachronism 49
class object initialization 28, 29
class objects, assignment of 22
class pointer operator, •> 7
comma operator 13
comment 1
commutative operators 6
comparison, pointer 11
compatibility, C+ + C 48
compiler control lines 38
compound statement 34
conditicri 34
conditicxial amipilation 39
cxmditicml e:qression, ? : 12
con1t, eumpl.e of 18
conat type 16
conmm,clmacter 2
constant, double 2
constant expressim 41
constant, floating 2
constant, hexadecimal 1
constant, integer 1
constant, l0n9 2
amstant, octal 1
constant type 16
constant pointer, declaration of 17
constant pointer, cumple of 18
constants 1, 4·
constants, enumeraticxi 33
consttUCtOr typc-cxmvenion 23
amstrUCtOn23
construetOrS, free stare 42
construetOn, initializaticxi 29
consttuetors, overloading and 32
construetors, muctures 26
constrUCtOn, thil 42
constrUCtOrS, unicxi 26
constrUCtOn and initialization 29
a:mstrueton for initialization, example of 29
continue statement 35
conversion, character-integer 5
cxmvcrsion, double-float 5
conversion, float-double 5
conversion, floating-integer 5
conversion, funetion argument 8
conversion, integer-character S
conversion, integer-floating 5
conversion, integer-lon; S
conversion, integcr-poimer 10, 41
conversion, integer-un■ i;ned 5
conversion, long-integer 5
conversion, overloading and 32
conversion, painter 10, 40
cxmversion, pointer-imepr 5, 10, 41

. 2.

conversion, un■igued-imeger S
conversion by assignment 13
conversion by return 36
conversion from user-defined type 34
conversion of array name 7
conversion of function 7
conversion operator, explicit 8, 40
conversions, arithmetic 6
conversions for overloaded functions 32
conversion to fundamental types 24
conversion to imegral type 34
conversion to pointer type 34
data definitions 38
declaration 44
declaration, array 18
declaration, asm 33
declaration, clus 19
declaration, enwa 33
declaration, example ct. 18
declaration, extern 15
declaration, fidd 27
declaration, name 31
declaration, ra;iat•r 15
declaration, stcrap class 14
declaration, type 17
declaration, typedef 31
declaration of constant pointer 17
declamion of default function araumenu 18
declaration of function 17
dec1aration of function, implicit 8
declaration of function ar,uments 17
declaration of pointer 17
declaration of refermce 17
declarations 14
declaration statm.tm.t 36
declarator 16
declaraur, absUact 30
decrement opcmor. -- 9
default array size 18
default ini1:ializa1:im 28
default scope, C+ + C 49
default ar,uniems. eumple of 19
default function arguments, declaration of 18
default pre& 35
#define 38
defined operuor 39
definitim, eztrmaI 37
definitim, f&mclion 37, 47
ddiniticr,., member function 21
ddinitim of virtual function 23
definitims, ate:rnal 47
delete operaur 42
dclerc sratemmt 36
daderenc:tna 8
derived dass 22
derived types 4
derived class, example of 22
datructars 24
destructars, free store 42
desuucurs, thi• 42
division, imeger 41
division operatcr. / 10
do statement 34
double constant 2
double type 16
double-float cmversicxi 5
ellipsis 17
#elH 39
empty Statement 36
#endif 39
anum declaration 33
enumeration 33
enumeration constants 33

enumeraticm, e.umple of 33
enumerators, restrictiom on 33
equality openlTOl'S 11
equality operator, •• 11
equivalence, type 31
escape character, 2
escape sequence 2
evaluation, order of 6, 42
evaluation, order of araummt 8
cxample of class declaration 20
example of conat 18
cumple of constant pointer 18
example of con.srructors for initialization 29
example of dedaraticm 18
example of default arguments 19
eumple of derived class 22
example of enumeration 33
eumple of friend functicm 2S
example of functicm declaration 19
cumple of member function 20
example of member functions 2S
example of member name visibility 2S
e.umple of nested class declanions 27
cumple of subscriptina 19
=tample of typedef 31
=tample of use of ellipsis 19
=tample of vinual function 22
explanation of subscripting, array 40
explicit conversion opcrmor 8, 40
apression 6, 43
apression, assignment 12
expression, amstant 41
expression, parenthesized. 7
expression, primary 7
apression, reference 8
apression, unary 8
expressions, order of evaluation of 6
expression statement 33
cztcnsions, C+ + 48
extern declaration 15
ext.em, scope of 15
m.cmal definition 37
m.cma1 definitions 47
enema! data definitions 38
\fCWstruct\tP, anachronism 49
\fCWunion\fP, anachronism 49
field, address-of 27
field dedaraticm 27
field union 27
fields, alignment ca 27
fields, order d 3
fields, restrictions on 27
fields, type of 3
fields, unnamed 27
fields, zero.sized 27
file scape 3
file inclusicm 38
float type 16
float-double conversion 5
floatin, caistant 2
floatin, types 4
floatin,-imepr conversion S
farm.al paramecer 37
for statement 34
free storage 42
free ncre consttuctors 42
free stcre desrructors 42
friend class 26
friend func:dons 25
friend specifier 15
friend, virtual and 23
friend-function, inlin• 26
friend function,. example of 25

-3-

friend of class 26
friend of member function 26
functionargumcm B
function call of 8
funcrion. call d overloaded 32
function, class member 20
fun.c:don, conversion of 7
function, dcdaration of 17
function definition 37, 47
function, implic:it declaration of 8
function. inlinc member 21
funcrian name, overloaded 32
function, pcintet to 40
funcrian UJUIM!lt conversion 8
function mpmem type-cmversicn 23
function ar,umem type caive:rsion 18
function arguments, declaration of 17
function argument rypes, unknown 17
function call operator 26
function call operator (> 8
function call operator. overlae.ded 14
function call semantics 8
function can synm: s
function declaration, C+ + C 49
function declaration, example of 19
function definition, anachronism C 49
functions 4
functions, automatic 15
functions, friend 25
functions, operations permitted on 40
fu:nciions, virtual 22
fundamental typeS 4
fundamcmal typet, conversion to 24
90to SUttaDmt 36
area= than opcraror, > 11
arntcr than or equal to c,perau, •• 11
hardware 3
ba:ada:imal consiam 1
idcm:ificr 1
#if 39
#if4•~ 39
u ... 1 .. ambiguity 34
if•elH flatcmem 34
#ifn4af 39
implicit declaration d function 8
#include 38
incrcmem opcratar, ++ 9
indirection opcraur, • 9
inequality operator, I • 11
initialization 28
initialization, array 28
initialization, cba1'llctet may 30
initialization, class object 28, 29
initialization construcrors 29
initialization, consttuctors and 29
initialization, default 28
initialization, eumple of construCl'OrS for 29
initialization in blQ:ks 36
initialization of auromatics 28
initialization of references 30
initialization of mtics 28
initializer 28
initializer, permitted. form of 41
inlin• friend-function 26
inline mcmbor function 21
inlin• specifier 15
int type 16
integer cmmam 1
inteaer-character ccnversion 5
integer-floatina ccmvenion 5
integer-10119 ccnversion 5
mu,er-pointer conversion 10, 41
integer-uuaipn conversion 5

C

integral types 4
integral type, conversion to 34
interpretation of binary operator 14
interpretation of unary operator 13
keyword, public 24
keywords, C+ + 49
keywords, list of 1
label 36
labeled statement 36
left shift operator, cc 11
length d. names l
less than operator, c 11
less than ar equal to operator, ca 11
lexical conventions l
#lino 39
list of keywords 1
list of operators 26
local scope 3
logical AND operator, && 12
logic:al negatica operator, ! 9
logic:al OR operator, I I 12
lon9 constant 2
long type 4, 16
long-integer conversion 5
lvalue S, 16
machine dependency 41
maao 48
macro preprocessor 38
member function, class 20
member function, inlinc 21
member name, class 20
member function, address-of 22
member function definition 21
member function, example ci 20
member function, friend of 26
member functions, example of 25
member functions, overloaded 22
member functions, sttuc:tures 26
member functions, union 26
member name visibility, example d. 25
member names, visil:ility of 24
member of class 20
members, private 24
members, public 24
missing storage class specifier 15
modulus operator, " 10
multi •dimcnsicaal array 40
multiplication OJ)e:l'ator, • 10
multiplicative operators 10
name 1, 3
name, class member 20
name declaration 31
name, overloaded functiai 32
name cl class 19
names, length of l
name space, C+ + C 49
nested class declartions, example of 27
nesting of class dcdaraticas 27
new operator 42
new operator 8, 10
new type, class name 31
new type, typedef 31
WU, pointer l3
null statement 36
numbers, size of 3
object 3, 5
oeta1 constant 1
cne's complement operator, 9
operations permitted on classes 39
operaticm permitted on functions 40
operator, : : 7
operator, defined 39
operator, delete 42

operator, function c:all 26
operator, new 42
operator, subsa.ipting 26
: : operator, use m 20
operarors, additive 10
operarors, arithmetic 10
cpcrarors, assi,ament 12, 26
operarors, associativity of 6
operators, bitwise 11
operators, commutative 6
operators, equality 11
operators, list of 26
operators, multiplicative 10
operators, overloactina of 26
operatDn, J:rcicedm:e of 6
operators, relational 11
operarors, shift 11
operators, mmy 8
arder of argument evaluation 8
arder of evaluation 6, 42
arder of fields 3
arder of evaluation of e,qressions 6
overflow 6
ove:load spedfier 15
overloaded binary operators 14
overloaded funa:icn, call of 32
overloaded fll11Caan name 32
overloaded funa:icn call operator 14
overloaded member functions 22
overlaaded subscriJXinl operator 14
overloaded unary operaton 13
overloaded functicm, canversions for 32
overloaded name, address of 32
overloaded opcratars 13
overloading classes 26
ova:loadina, restriction on 26
overloading and COftstructors 32
overloading and COftversial 32
overloading of opemars 26
parameter, formal 37
parenthesized expression 7
permitted form of initializer 41
permitted on classes, operaTicns 39
permitU:d on functions, operations 40
pointer arithmetic 10
pointer comparison 11
pointer conversion 10, 40
pointer, declaration of 17
pointer, 1M.1, 13
pointer, thi• 7, 21
pointer-iniepr ccmvetsion 5, 10, 41
poimm 4
po_imm, size of 3
pointer to function 40
pointer to class object, assignment to 13
pointer type, conversion to 34
pointer type, void• 13, 48
portability 41
pos1:fix ++ and -- 9
precedence of cpemors 6
J:re& ♦♦ and -- 9
pr~ 48
preprocesscr, macro 38
pimary expression 7
private members 24
program 47
program scope 3
program format l
JN,blic keywcrd 24
public members 24
recursion 8, 4
reference, usig:mne:nt to 13
reference, declaration of 17

reference aprcssion 8
refc:rcnces 4
rc:f c:rences, initialization of 30
register, address of L5
regiate:r: declaration L5
re,isten, restrictions on 41
relational operat0r5 11
reserved words 1
restriction on overloading 26
restrictions on enumerators 33
restriClions on fields 27
restriClions on registers 41
restrictions on at.atic L5
restrictions on types 18
return, type convmion by 36
return statement 35
right shift opcntcr, >> 11
rules, type conversion 6
scope l
scope, C + + C default 49
scope, dus 3
scope, file 3
scope, local 3
scope, program 3
scope s.peafier 14
scope of extern L5
scope of at& tic L5
scope operator : : 7
semantics, class member 8
sequcndng of swcmcms 33
shift openu,rs 11
abOrt type 4, 16
side effects 6
signed character 4
sip exu:nsion 41
size of numbers 3
size of. poimers 3
aiHOf operator 8
specifier, auto 14
spedfier, !rind L5
specifier, inl.in• L5
spec:lfier, missma storap class 1.5
specifier, overload 15
specifier I scope 14
specifier, •tatic 14
sped.fier, storage class 14
specifier, type ts
specifier, virt\'l&l 1!
statement 47
statements 33
statements, sequencing of 33
•tat::l.c class member 20
atatic., restrictions on L5
et.atic, scope of L5
atatic spedfier 14
static storage dass 4
natics, initializaticn cl. 28
storage, allocation of 42
storaae, free 42
storqe allocation operator 8
stcnp class 3
storage dass, automatic 4
storage dass declaration 14
norage dass specifier 14
storage class sped.tier, mitsing 15
storaae dass, static 4
storage order of may 40
string, type of 7
string constant 2
S1J'UCt union, cl••• 20
atructu:r:•• 4, 25
atructur•• conatructor■ 26
atructurH member function■ 26

. s.

aul:lacripting, array •xplanation of 40
aw:iacr::l.ptin9, exam.pl• of 19
aubacript::l.ng operator 26
aubac:iptin; operator. ova:loa4ed 14
aubacript opa:r:ator (J 7
subtraction operau:r, - 10
awi tch statement 35
syntu 42
syntax, class member 8
syntax notation 3
thi■ comi:rucrors 42
thia des1rucla's 42
thi• pointer 7, 21
tobn replacement 38
type 3
type, char 4, 16
type, conat 16
type, constant 16
type, convenicn from user-defined 34
type declaration 17
type. double 16
type equivalence 31
type, fl.oat 16
type, int. 16
type, lon9 4, 16
type, •hort 4, 16
type spcdfia- L5
type, IU'l■igned 4, 16
type, void 4, 6, 16
type-convenion, construcrar 23
type-conversion, function argument 23
type c:onvmion, function arpment 18
type conversion rules 6
type conversion uniqumcss 32
type-canvmion uniquesness, um•dcfimd 24
type-conversion· user-defined 23
type conversion by return 36
typ•4•t declaration 31
typedef, eump.e of 31
typedef new type 31
type names 30
type of fields 3
type of string 7
rype of vi.nual function 23
types, arithmetic 4
typeS,derived 4
typeS, tloatina 4
types, fundamcmal 4
typcs,intepal 4
rypes, restrictions en 18
unary expression 8
unary operators 8
unary minus opem0t', - 9
unary operator, imerpmation of 13
unary operators, overloaded 13
#uncSef 38
underseore charactrr l
union, anonymous 26
union, claa■ atruct 20
union con■tructor■ 25
union. field 27
union IU&lll:ler function■ 25
union■ 4, 25
uniquenHa, type conv•r■icm 32
uniqu.e■n•••. uae:•detinad type•conva:r:aicm

24
\U!.lcnown funct.icm ar;ument typH 17
=.named. field.a 27
unaignad type 4, 16
unaipad.•inteaer conversion .5
use ci : : operator 20
use ci ellipsis. cu.mple of 19
user-defined type, conversion from 34

user-defined, type,,COnVcnion 23
user-defined tyJ»CODVc::nion uniquesness 24
virtual functiau 22
virtual specifier 15
virtual and friend 23
virtual functicm, defini1im ci 23
virtual functim, example of 22
virtual functim, type of 23
visibility, example of member name 25
visibility of base dass members 25
visibility of member names 24
void& 17
vo:1.4• pointer type 13, 48
void type 4, 61 16
while statement 34
mo-sized fields 27

- 20 ..

20 AppendJx B: Run Time Erron

When an error is detected at run time, task_error () is called. This function will examine
error_f et , and if this variable denotes a function, that function will be called with the error
number and this as arguments, otherwise the error number will be given as argument to
print_error() which will print an error message on stderr and terminate the program.

[E_OI,INJCJ
[E_ONEX'l'J
[UUTFULLJ
[!JUTOBJJ
[!_BACJCOBJJ
[!_BACa'ULLJ
[!_G!TEMPTYJ
[!_SE'I'CLOCICl
[E_ltES'I'DMJ
[E_ttESRUNJ
[E_NEGTIM! J
[E_USOBJJ
[E.J{IS'I'OJ
[E_TASICMOt>E J
[Z_TASlCt>EL J
[E_'I'ASlc:PR! J
[!_'I'IME:at>EI, J
[!_SCH'I'IM! J
[E_SCHOBJ J
[!_Qt)!I,J
[!_CLOCJCil)t,IJ
[E_S'I'ACJCJ
[E_S'1'01l!J
[E_ttESULTl
[E_WAITJ

Attempt to delete object which remember• a taak.
Attempt to delete an object which is atill on aome chain.
Attempt to put to a full queue.
Attempt to put an object already on aome queue.
Attempt to put.back an object already on aome queue.
Attempt to putback to a full queue.
Attempt to get from an empty queue.
Clock wa■ non-aero when ■etclock() wa• called.
Attempt to resume TERMINAT!t> taak.
Attempt to resume RONNING taak.
Negative ar;ument to delay().
Attempt to resume taak or timer already on aome queue.
Bad ugwn.ent■ for hiatogru.new().
Bad mode for ta.ale.new().
Attempt to delete non•'rZRMINATEn taalc.
Attempt to preempt a non-RUNNING taalc.
Attempt to delete a non-TEUINATZn timer.
Scheduler chain corrupted: bad time.
Scbe4uler chain corrupted: bad object.
Attempt to delete a non-empty queue.
Tbe ,clock.,..taalc waa non-lnL! when clock waa advanced.
'I'aak run time ■tack overflow.
No more free ■tore - NEW failed.
A ta■k attempted to obtain ita own result().
A taak attempted to wait() for itself to TERMINAT!.

C

- 21-

21 Appendix C: A Program usina Tasks

#include ctaak.h>

I• trivial test example:
make a aet cf t&aka which paaa an object round between themaelvea
use printf to indicate progre••
WAllNING: this prog,ram aeta up an infinite loop

claaa pc: public taak {
pc(char•, qtail•• qhead•);

};

void pc.pc(char• n, qt&il• t, qhea4• h) :(n,O,0)
{

printf("new pc(ka,kd,"4)\n",n,t,h);

while (1) {
object• p • h->get();
printf("taak ka\n",n);
t->put(p);

}

}

main()
{

}

qhead• hh • new qhead;
qtail• t • hh•>tail();
qhe.ad• h;

for (int i•D; ic20; i++) {

}

char• n • new char[2j; I• make a one letter t&ak nue •I
n[OJ • 'a"'+i;
n[1J • 0;

h • new qhead;
new pc (n , t, h > ;
printf(flmain()'a loop\n");
t • h • >tail () ;

new pc(flfirat pc•,t,hh);
printf("main: here we go\n");
t•>put(new object);
printf("main: exit\n");
thiataak->reaultia(O);

	Contents
	1. Introduction
	2. Lexical Conventions
	3. Syntax Notation
	4. What's in a Name?
	5. Objects and Values
	6. Conversions
	7. Expressions
	8. Declarations
	9. Statements
	10. External Definitions
	11. Scope Rules
	12. Compiler Control Lines
	13. Implicit Declarations
	14. Types Revisited
	15. Constant Expressions
	16. Portability Considerations
	17. Free Store
	18. Syntax Summary
	19. Differences from C
	Index
	[Appendix B: Run Time Errors]
	[Appendix C: A Program Using Tasks]

