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ABSTRACT 
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1 Introduction 

AC++ Tutorial 

Bjarnt Stroustrup 

AT&T Bell Laboratories 
Murray Hill, New Jersey 07974 

"The only way to learn a new programming language is by writing program, in it .. (K&R1 ,pap 5). 

This tutorial will guide you through a sequence of C+ + programs and. program fragments. At 
the end Y.OU should have a general idea about the facilities of C+ +, and enough information to 
write simple programs. Little is assumed about your knowledge of programming, but the progress 
through the concepts may be mind-boggling if you are a novice. If you are familiar with C you 
will notice that with few exceptions C+ + is a superset of it. However, the examples have been 
chosen so that only few could have been written identically in C. 

A precise and complete explanation of the concepts involved in even the smallest complete 
example would require pages of definitions. To avoid this paper turning into a manual or a discus­
sion of general ideas, examples are presented first with only the briefest definition of the terms 
used. Many of these terms are reviewed later when a larger body of examples are available to aid 
the discussion. References 2 and 3 contain more systematic and complete discussions of C+ +. 

Output 

Let us first of all write a program to write a line of output: 

#include <stream.h> 

main() 
( 

} 

The line #include <stream..h> instructs the compiler to "include" the declarations of the 
standard input and output facilities into the program. Without these declarations the statement 
cout«"Hello, world\n"; would make no sense. The operator « ("put to") writes its 
second argument onto its first (in this case, the string "Hello, world\n" onto the standard out­
put stream cout). A string is a sequence of characters surrounded by double quotes; in a string 
the backslash character \ followed by another character denotes a single "special" character; in 
this case \n is the newline character, so that the characters written are Hello, world and new­
line. 

The rest of the program 

main() { . • . } 

defines a function called main. A program must have a function named main, and the program 
is started by executing that function. 

Compilation 

Where did the output stream cout and the code implementing the output operator << come 
from? A C+ + program must. be compiled to produce executable code (the compilation process is 
essentially the same as for C, and shares most of the programs involved): The program text is read 
and analyzed, and if no error is found code is generated. ·Then the program is examined to find 
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names and operators that have been used but·not defined (in our case cout and«). If possible, 
the program is then completed by adding the missing definitions from a library (there is a standard 
library and users can provide their own). In our case cout and<< were declared (in stream.h); 
that is, their types were given, but no details of their implementation were provided. The standard 
library contains the specification of the space and initialization code for cout and the code for <<. 
Naturally there are many other things in that library, some of which are declared in stream.h, 
but only the subset of the library needed to complete our program is added to the compiled ver­
sion. The C+ + compile command is typically called cc. It is used like cc for C programs; see 
your manual for details. 

Input 

The following (rather verbose) conversion program prompts you to enter a number of inches. 
When you have done that it will print the correspondina number of centimeters. 

#include <stream.h> 

main() 
{ 

} 

int inch; 
cout<<"inche•••; 
cin>>inch; 
cout<<inch; 
cout<<" in•"; 
cout<<inch•2.S,; 
cout<<" cm\n"; 

The first line of ma in C ) declares an integer variable inch. Its value is read in using the operator 
» ("get from") on the standard input stream cin. The declarations of cin and>> are of course 
found in <stream. h>. 

After executing it your terminal might look like this 

inchea•12 
12 in• 30.48 cm 

This example had one statement per output operation; this is unnecessarily verbose. The output 
operator < < can be applied to its own result, so that the last four output operations could have 
been written in a single statement: 

Input and output will be described in greater detail below. In fact, this whole tutorial can be 
seen as an explanation of how it is possible to write the programs above in a language that does 
not provide an input or an output operator! That is, the C++ language as described in the refer­
ence manual2 does not define facilities for input and output; instead, the operators > > and < < were 
defined using only language facilities available to every programmer. 

2 Types and Declarations 

Every name and every expression has a type that determines the operations that may be per• 
formed on it. For example, the declaration 

int inch; 

specifies that inch is of type int ; that is, inch is an integer variable. 
A declaration is a statement that introduces a name into the program. It must specify a type 

for that name. A type defines the proper use of a name or an expression. Operators like + - • 
and/ are defined for integers; so are, after stream.h has been included, the input opei:ator » 
and the output operator < <. 

The type of an object determines not only which operations can be applied to it, but ·a1.so the 
meaning of those operations. For example, the statement 
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correctly treats the 4 values to be written out differently. The strings are printed as presented, 
whereas the integer inch is converted from its internal representation to a character representation 
fit for human eyes. So is the floating point number obtained by multiplying the integer inch by 
the floating point constant 2. 54. 

C+ + has several basic types and several ways of creating new ones. The simplest forms of 
C + + types are presented in the sections below; the more interesting ones are saved for later. 

Buie Types 

The basic types, corresponding most directly to hardware storage facilities are: 
char abort int long 
float double 

The first four are used for representing integers. A variable of type char is of the natural size to 
hold a character on a given machine (typically a byte), and a variable ~nt is of the natural size for 
integer arithmetic on a given machine (typically a word). The range of integers that can be 
represented by a type depends on its size. In C++ "sizes" are measured in multiples of the size of 
a char , so by definition char has size one. The relation between the integer types can be written 
like this: 

1 •si:eo/( char )'!!ti. si:eo/( short)Ssi:eo/( int )Ssizeo/(long) 

In general it is foolish to assume more about the sizes of inteaers. In particular, it is not true for 
all machines that an integer is large enough to hold a pointer. 

Float and ·d~uble are used for representing floating point numbers. 

si:eoftjloat)Ssizto/( double) 

The adjective const can be applied to a basic type to yield a type that has identical properties 
to the original, except that the value of variables of a const type cannot be changed after initiali­
zation. 

conat float pi• 3.1,; 
conat char plu■ • '+'; 

Note that most often a constant defined like this need not occupy storage; its value can simply be 
used directly where needed. A constant MUST be initialized at the point of declaration, as shown 
above. For variables the initialization is optional, but strongly recommended. There are very few 
good reasons for introducing a local variable without initializing it. 

The arithmetic operators 

+ 
- (both unary ancl binary) 

* 
I 

can be used for any combination of these types. So can the comparison operators 

•• (equal) 
I• (not equal) 
< (leas than) 
> (greater than) 
<• (lea■ than or equal) 
>• (greater than or equal) 

though if you use • • or I • on the result of floating point computations you are likely to get what 
you deserve. Note that integer division will yield an integer result: 7 /2 is 3. The operator " can 
be used on integers to produce the remainder: 7"2 is 1. 

In assignments and in arithmetic operations C+ + will perform all meaningful conversions 
between the basic types so that they can be mixed freely. For example: 
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doubled• 1; 
inti• 1; 
d • d+i; 
i • d+i; 

-4-

The compiler will, however, warn about loss of precision in the last assignment. 

Derived Types 

These operators create new types from the basic types: 

• 
•const 
&. 
[ J 
() 

For example, 

char• p; 

pointer to 
constant pointer to 
reference to 
vector of 
function returning 

char •conat q; 
char v[ 10]; 
int f(char•); 

declares p as a pointer to character, q as a constant pointer to character, v as a vector of 10 char­
acters, and fas a function takinJ an argument of typ: char• and returning an integer. A pointer 
variable can hold the address of an object. of the appropriate type. For example: 

char c; 
P • &.c; 

Unary & is the ''address of'' operator. 
The name of a vector doubles as the name of its first element, so given the declarations above 

you could write: 

P • v; 
X • f (V); 

X • f (p); 

The first statement could alternatively have been written: 

p•&.v[OJ; 

since all vectors have zero as their lower bound. 
For a more exhaustive treatment of these derived types sec reference 1 or 2. Functions will be 

explained in §4. References will be explained in §10. 

3 Expressions and Statement.I 

Except for a minor extension to the syntax of the for statement, C + + statements are identical 
to those provided by C, but note that in C+ + local declarations are statements and can be mixed 
freely with other statements. Except for the addition of the scope resolution operator : : (§14) 
C+ + expressions are identical to those provided by C. If you know C, please skip this section. 
The discussion of expressions and statements below is very brief. See reference 1 for more details 
and examples. 

Expressions 

C + + has a host of operators that will be explained if and where needed. However, it can be 
noted that the operators 
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(not) 
(complement) 

& (and) 
A (exclusive or) 

(inclusive or) 
cc (left logical shift) 
>> (right logical shift) 
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apply to integers, and that there is no separate data type for logical operations. 
C+ + has an assignment operator •, rather than an "assignment statement" as in some 

languages. Assignments can therefore appear in contexts where one might not expect them. For 
example x■sqrt{a•3•x). This is often useful; for example a•b•c means assign c to band then 
to a. • Another aspect of the assignment operator is that it can be combined with most binary 
operators into "assignment operators". For example x [ i + 3 ] ••4 means x [ i + 3 J •x [ i + 3 ] • 4 
except the expression x [ i + 3 J is evaluated only once. This gives a pleasing degree of run-time effi­
ciency without having to resort to optimizing compilers. It is also more concise. 

Pointers are used extensively in most C+ + programs. The unary • operator dereferences a 
pointer. For example, given char• p; •p is the character pointed to by p. An alternative way of 
expressing this is p [ O ] . In fact, p [ i ] is defined to mean • ( p+ i) . Not only can a vector name 
be used as a pointer but a pointer can be used as if it were the name of a vector. A vector name is 
a constant though, whereas a pointer is a variable·unless declared otherwise. The increment opera­
tor ++ and the decrement operator -- are often used for pointers. 

Expression statement, 

The most common form of a statement is an expression statement; it consists of an expression 
followed by a semicolon. For example: ·, 

a• b*3+c; 
coutcc•go go go•; 
laeek(fd,0,2); 

Null statement, 

The simplest statement is the null statement, 

it do.es nothing. It can, however, be useful when the syntax requires a statement, but you have no 
need for one. 

Blocks 

A block is a possibly empty list of statements enclosed in curly braces. For example: 

{ a•b+2; b++; } 

It enables you to treat several statements as one. The scope of a name declared in a block extends 
from the point of declaration to the end of the block. It can be "hidden" by declarations of the 
same name in inner blocks. 

If statements 

The following example performs both inch to centimeter and centimeter to inch conversion; you 
are supposed to indicate the unit of the input by appending i for inches or e for centimeters: 
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#include <atream.h► 

:main () 
{ 

} 

conat float fac • 2.54; 
float x, in, cm; 
char ch• O; 
coutcc•enter length: •; 
cin►►X►>ch; 

if (ch•• 'i') { 
in• x; 
cm• x•fac; 

} 

else if (ch•• 'c') { 
in• x/fac; 
cm • x; 

} 

else 
in • cm • 0; 

cout<<incc• in• •cccmcc• cm\n•; 

As can be seen the condition in an if-statement must be parenthesized. The else part may be 
omitted. For the input 101 this program will produce 

10 in• 2s., cm 

Switch statements 

A switch-statement tests a value against a set of constants. The tests in the example above 
could have been written like this: 

awi tch ( ch) { 
case 'i': 

in• x; 
cm• x•fac; 
brealc; 

case 'c': 
in• x/fac; 
cm• x; 
break; 

default: 

} 

in• cm• O; 
break; 

The break statements are used to exit the switch-statement. The case constants must be distinct, 
and if the value tested does not match any of them the default is chosen. 

While statements 

Consider copying a string given a pointer p to its first character and a pointer q the target. By 
convention a string is terminated by the character NULL. 

while C•p I• NOLL) { 
•q. •p; 
q. q+1; 
p. p+1; 

} 

•q ·• NULL; 

The condition following while must be parenthesized. The condition is evaluated, and if its value 
is non-zero the statement directly following is executed. This carries on until the condition 
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evaluates to zero. 
This ex8?1ple is rather verbose. The operator++ can be used to,express increment directly, and 

the test can be simplified using the observation that the value of NULL is zero: 

while (*P) *q++ • *P++; 
•q • O; 

where the construct •p+ + means: "take the character pointed to by p then increment p". 
Toe example can be further compressed since the pointer. p is dereferenced twice each time 

round the loop. Toe character copy can be performed at the same time as the condition is tested: 

while (*q++ • *P++) ; 

which takes the character pointed to by p, increments p, copies that character to the location 
pointed to by q and increments q. If the character is non:..zero, the loop is repeated. Since all the 
work is done in the condition, no statement is needed. The null-statement is used to indicate this. 
C is both loved and hated for enabling such extremely terse expression oriented coding. 

For statements 

Consider copying ten clements from one vector to another: 

for (int 1•0; 1<10; i++) q[iJ ■p[i] ;. 

This is equivalent to 

int 1 • O; 
while (1<10) { • 

q[iJ. p[i]; 
i++; 

} 

but more readable since all the information controlling the loop is localized. The first part of a 
for-statement need not be a declaration, any statement will do. For example: 

for (i■ O; ic10; i++) q[i]•p[iJ; 

is again equivalent provided i is suitably declared earlier. 

4 Functions 

A function is a named part of a proaram that can be invoked from other parts of the proaram 
as often as needed. For example, consider writing out powers of 2: 

float pow(float,int); 

main() 
{ 

} . 

The first line is a function declaration specifying pow to be a function taking a float and an int 
argument returning a float. A function declaration is used wherever the type of a function 
defined elsewhere is needed. 

In a call each function argument is checked against its expected type exactly as if a variable of 
the declared type were being initialized. This ensures proper type checking and type conversion. 
For example, a call pow C 12 . 3 , " 1 o ti ) will cause the compiler to complain because " 1 o ti is a 
string and not an int, and for the call pow C 2 , i ) the compiler will convert the integer constant 2 
to a float as expected by the function. 

Pow might be defined as a power function like this: 
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if (n c 0) error(• ■orry, cannot handle negative exponent■•); 

} 

■witch (n) { 
caae O: return 1; 
ca■• 1: return x; 
default: return x•pow(x,n-1); 
} 

Toe first part of a function definition specifies the name of the function, the type of the value it 
returns (if any), and the types and names of its arguments (if any). A value is returned from a 
function using a return-statement as shown. • 

Different functions typically have different names, but for functions performing similar tasks on 
different types of objects it is sometimes nicer to let these functions have the same name. When 
their argument types are different the compiler can distinguish them anyway. For example, one 
could have one power function for integers and another for floating point variables: 

overload pow; 
int pow(int,int); 
double pow(double,double); 

x • pow(2,1O); 
y • pow(2.o.10.o); 

5 Program structure 

AC++ program typically consists of many source files, each containing a sequence of declara­
tions of types, functions, variables, and constants. For a name to refer to the same thing in two 
source files it must be declared to be external. For example: 

extern double aqrt(double); 
extern iatream cin; 

Toe most common way of guaranteeing consistency between source files is to place such dcclara­
•tions in separate files, called "header files", and then "include", that is copy, those header files in 
all files needing the declarations. For example, if the declaration of sqrt was stored in the header 
file for the standard mathematical functions ma th. h, and you wanted to take the square root of 4 
you could write: • 

#include cmath.h> 
x • aqrt(4); 

Since a typical header file is included into many source files it does not contain declarations that 
should not be replicated. For example, function bodies are only provided for inline functions (§13) 
and initializers only for constants (§2.1). Except for those cases, a header file is a repository for 
type information; it provides an interface between separately compiled parts of a program. 

In an include directive a file name enclosed in angle brackets like <ma th. h> above refers to 
the file of that name in a "standard include directory"; files elsewhere are referred to by names 
enclosed in double quotes. For example 

#include •math1.h" 
#include "/uar/b■/math2.h• 

would include math 1 . h from the user's current directory and math2 .h from the directory 
/usr/bs. 
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6 Structures 

Let us define a new type ostream to represent an output stream. The first version is trivially 
simple, but it will be refined until you get a feel for the real ostream used in the stream i/o sys­
tem. The idea is to put characters into a buffer buf until it is full and then write buf to a file 
file: 

atruct oatream < 
FILE• file; 

} ; 

int nextchar; 
char buf [ 128J; 

You can now declare an output stream like this: 

oatream my_out • { atdout. 0 }; 

The construct 

• < . . . } 

is an initializer. The members of my_out are initialized in order, so that my_out. file is 
stdout, my_out.nextchar is zero and my_out.buf uninitialized. (The . (dot) operator is 
used to access a member of a structure; stdout is the "standard output stream" of the underlying 
operating system. The basic output operation write can be used for stdout). 

A simple character output function can be defined for an ostream like this: 

void putchar(oatream• •• char ch) 
< 

} 

if (a->nextchar••128) < 
.write(fileno(a->file). ■ ->buf.128); 

a->nextchar • 0; 

a->buf[a->nextchar++J • ch; 

The keyword void is used to indicate that putchar does not return a value. As shown, the - ► 
operator is used to get to a member of a structure given a pointer. This code is sloppy (why?), but 
will actually handle the simplest cases; by writing 

putchar(&my_out,'H'); 
putchar(&my_out,'e'); 

you could eventually manage to say Hello, world. 
Naturally you would next define a function like 

void putatring(oatream• •• char• p) 

< 
for (inti• O; p[iJ; i++) putchar(a,p[iJ); 

} 

and a put long, and a putdouble, etc. 

7 Problems 

Proceeding as described above you could get a quite acceptable i/o system: C standard i/o is 
designed along this line. To save writing you would add functions that implicitly applied to the 
most common output stream. For example: 

void mputlong(long i) 
< 

putlong(&my_atream,i); 
} 

These functions produce a character string representation of their arguments. Versions that write 
that representation onto a string instead of a file are also useful: 
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} 
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However, there are problems. The most obvious, the proliferation of function names, can be 
handled simply by giving them all the same name: 

overload put; 
void put(oatream•, char•); 
void put(oatream•, long); 
void put(o■tream•, double); 

void put(char•); 
void put (long) ; 

Worse, there is no formal connection between these put functions and type ostream. Suppose 
' you wanted to change the representation of an ostream.. In any but the smallest program there is 

no easy way of finding all the places a member of oatream was used, and supposing oatream 
was a type used by many programs, how would you find the programs needing modification after 
even the most trivial change? Reversing the order of declaration of file and nextchar would 
potentially affect every program on your system, and would also invalidate every initializer. 

8 Classes 

A solution is to split the declaration of ostream. into two parts: a private part holding informa­
tion only needed by its implementer, and a public part presenting an interface to the general pub­
lic: 

claaa oatream { 
FILE• file; 
int next.char; 
char buf[128J; 
void putchar(char); 

public: 
put(char•); 
put(long); 
put(double); 

} ; 

Now a user can only call those three put functions, and only those can use the names of the data 
members. In other words a class is a struct whose members are private unless their declarations 
appear after the label public. For example 

my_atream.put("Hello, world,n•); 

calls put using the usual syntax for members. A member function can only be called for a speci­
fied object of its type. When in a member function, the object for which the function was called is 
accessed through a pointer called this. In a member function of class c, the keyword this is 
implicitly defined as 

C• this; 

You can now write 
void oatream.put(char• p) 
{ 

while (•p) thia->putchar(•p++); 
} 

The ostream. prefix is necessary to distinguish ostream's put from functions called put in 
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other classes. The function body can be simplified, however, since this use of this is optional; in 
a member function, member names used without qualification refer to the object for which the 
function was called. 

void. oatream.put(char• p) 
{ 

while (•p) putchar(•p++); 
} 

would have been enough, and that is the more typical way of writing member functions. Conse­
quently, most uses of this are implicit. 

A struct is actually defined as a class with all members public, so a atruct can have 
member functions too. 

Since the representation of an oatrea.m now is private, output functions for user-defined types 
must be written in terms of the basic put functions. For example, if you had a type complex you 
could define a put function for it: • 

void. put(oatream• •• complex z) 
{ 

} 

■•>put("(");, 

a->put(z.real); 
■->put(","); 
■•>put(z.imag); 

■•>put(")"); 

It could be called like this: 

complex z 
put(&my_atream, z); 

This is actually not very nice: the syntax for printing a value of a "basic" type is different from the 
one needeµ to print a value of a user-defined type. Furthermore, you need to write a separate call 
for each value. 

9 Operator Overloadln& 

Both problems can be overcome by using an output operator rather than an output function. To 
define a C+ + operator • for a user-defined type you define a function called operatorlt which 
takes arguments of the appropriate type. For example: 

claaa oatream { 

oatream operator<<(char•); 
} ; 

oatream oatream.operatorcc(char• p) 
{ 

} 

while C•p) putchar(•p++); 
return •thia; 

defines the « operator as a member of class ostream, so that s«p will be interpreted as 
a. opera tore< ( p) when a is an ostrea.m and p is a character pointer. Returning the ostream 
as the return value enables you to apply « to the result of an output operation. For example 
a«p«q is interpreted as a.operator«(p) .operator«(q). 'Ibis is the way output opera­
tions are provided for the "basic" types. Using the set of operations provided as public members 
of cl.ass ostream, you can now define« for a user-defined type like complex without modifying 
the declaration of class ostream: 
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oatream operatorcc(oatream a, complex z) 
{ 

return acc•(•ccz.realcc•,•ccz.1mag<<")"; 
} 

This will write the values out in the right order since < <, like most C+ + operators, groups left­
to-right; that is, a«b«c means (a«b) «c. The compiler knows the difference between 
member functions and non-member functions when interpreting operators. For example, if z is a 
complex variable a«z will be ·expanded using the standard ·(non-member) function call 
operator<<(a,z). 

10 Refereneea 

This last version of oatream unfortunately contains a serious error and is furthermore very 
inefficient. The problem is that the oatream is copied twice for each use of<<: once as an argu­
ment and once as the return value. This leaves nextchar unchanged after a call (the example 
above does work correctly, however; why?). A facility for passing a pointer to that oatream 
rather than the ostream itself is needed. 

A reference to a type '1', written '1'&., can be initializect by either an object of that type or a 
pointer to one; in the former case the address of operator &. is implicitly applied. For example: 

oatream& ■ 1 • my_atream; 
oatream& a2 • &my_atreu; 

Both s 1 and s2 now refer to my_stream and can be used as alternative names for it. When 
used, a reference refers to the variable with which it has been initialized. For example, assignment 

a1 ■ a2; 

copies the object referred to, in this case my_stream. Members are selected using the dot opera­
tor 

a1.put(•dcm't uae -►•); 

and if you apply the address operator you get the address of the object referred to: 

&a1 •• &.my_atream 

The first obvious use of references is to ensure that a pointer rather than the object itself is 
passed to an output function (this is called "call by reference" in some other languages): 

oatream& operator(oatream& •• complex a) { 
return acc•(•ccz.realc<•,•ccz.imagcc•)•; 

} 

Interestingly enough the body of this function is unchanged, but had you assigned to a you would 
now have affected the object liven as the argument itself rather than a copy. In this case, return• 
ing a reference also improves efficiency. 

References are also essential for the definition of input streams, since the input operator is 
liven the variable to read into as an operand. 

cl••• ietream { 

int state; 
public: 

} ; 

istream& operator>>(char&); 
iatream& operator>>(char•); 

• ietream& operator>>(int&); 
istream& operator>>(long&); 

Note that istream needs more functions than ostream, since type conversion applies to basic 
types like int and long, but not to pointers to those types. 
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11 Constructors 

The definition of ostream as a class made the data members private. In particular it rendered 
the initialization • 

o■tream my_atream • { ■tdout, 0 }; 

illegal. Only a member function can access the private members, so you must provide one for ini­
tialization. Such a function is called a constructor and is distinguished by having the same name as 
its class: 

cla■• o■tream { 

oatream(FILI• fp); 
oatream(int aize, char• a); 

} ; 

Here two were provided; one takes a file descriptor like stdout above for real output; the other 
takes a character pointer and a size for string formatting. 

You can now declare streams like this: 

o■tream my_atream(atdout); 
char xx[256j; 
o■tream xx_atream(256,xx); 

Providing a class with a constructor not only provides a way of initializing objects, but also 
ensures that all objects of that class will be initialized. It is not possible to declare a variable of a 
class with a constructor without a constructor being called. If a class has a constructor that does 
not take arguments, that constructor will be called if no arguments are given in the declaration. 

12 Vectors 

The vector concept built into C++ was designed (for C) to allow.maximal run-time efficiency 
and minimal store overhead. It is also, especially when used together ·with pointers, an extremely 
versatile tool for building "higher level" facilities. You could, however, complain that a vector 
size must be specified as a constant, that there is no vector bounds checking, etc. The answer to 
such complaints is "you can program that yourself''. Let us therefore test C+ + 's abstraction facil­
ities by trying to provide these features for vector types of our own design and observe the difficul­
ties involved, the costs incurred, and the convenience of use of the resulting vector types. 

cla■- vector { 
int•v; 
int az; 

public: 
vector(int); 
·vector(); 
int aise() { return az;} 
v.oid aet_aize(int); 
int& operator[j(int); 
int& elem(int i) { retum &v[iJ; } 

The function size returns the number of elements of the vector, that is indices must be in the 
range co . . size( )-1]; set_aize is provided to change that size; elem provides access to 
members without checking the index, and operator [ J provides access with bounds check. 

The idea is to have the class itself be a fixed sized structure controlling access to the actual vec­
tor storage which is allocated by the vector constructor using the free store allocator operator new: 

~ ' : ' '' ''. '/ ; 

L.1;:t,.•:J::/:·.::·,:· .. • :' 
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if (s<•0) error(•bacS vector size"); 
az • a; 
v • new int[ ■]; 

} 

You can now declare vectors very nearly as elegantly as "real vectors": 

vector v1 ( 100); 
vector v2(nelem•2-4); 

The access operation can be defined as 

int& vector.operator[l(int i) ( 

} 

if (D<•i && i<■z) return &v[i]; 
error(•vector in4ex out of ran~••> 

The operator ll ( andand) is a logical-and operator. Its right hand operand is only evaluated if 
necessary, that is, provided its left hand operand does not evaluate to zero. Returning a reference 
ensures that the [ J notation can be used on either side of an assignment: 

v1 [xl • v2[yl; 

The function with the funny name ·vector is a destructor. A destructor is called implicitly 
when a class object goes out of scope, so if you define it like this: 

vector. ·vector ( ) 
( 

4elete v; 
} 

it will, using the delete operator, deallocate the space allocated by the constructor, so that when 
a vector goes out of scope all its space is reclaimed for potential re-use. 

13 lnlloe expansion 

Oiven the frequency of very small functions you might worry about the cost of function calls. A 
member function is no more expensive to call than a non-member function with the same number 
of arguments (remembering that a member function always has at least one argument), and C++ 
function calls are about as efficient as you can get for any language. However, for extremely small 
functions the call overhead can become an issue. If so, you might consider specifying a function to 
be ''inline expanded''. If you do, the compiler will try to generate the proper code for the function 
at the place of the call. The semantics of the call is unchanged. For example: 

vector ■ (100); 

i ■ a.aize() 
x • elem(i-1); 

will generate code equivalent to 

i • 100; 
x • a.v[i-1]; 

The C++ compiler is usually smart enough to generate code as good as you would have got from 
straightforward macro expansion. Naturally it will sometimes have to use temporary variables and 
other little tricks to preserve the semantics. 

You can indicate that you want a function inline expanded by preceding its definition by the 
keyword inl ine, or, for a member function, simply by including the function definition in the 
class declaration, as was done for size C) and elem() above. , 

Inline functions slow down compilation and clutter class declarations so they should be avoided 
when they are not necessary. For inline substitution to be a significant benefit for a function the 
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function must be very small. When used well inl ine functions simultaneously increase the run­
nina speed and decrease the object code size. 

14 Derived claaes 

Now let us define a vector for which a user can define the index bounds: 

claaa vec: public vector { 
int low. high; 

public: 
vec(int, int); 
int&. elem(int); 
int&. operator[](int); 

} 

Defining vec as 

: public vector 

means that first of all a vec is a vector. That is, type vec has all the properties of type vector 
in addition to the ones declared specifically for it. Cass vector is said to be the "base" class for 
vec, and conversely vec: is said to be "derived" from vector. 

Class vec modifies class vector by providing a different constructor, requiring the user to 
specify the two index bounds rather than the size, and by providing its own access functions 
elem() and operator[] (). A vec's elem() is easily expressed in terms of vector's 
elem(): 

int&. vec.elem(int i) 
{ 

return vector::elem(i-low); 
} 

Toe scope resolution operator : : is used to avoid getting caught in an infinite recursion by calling 
vec::: elem() from itself (unary : : can be used to refer to global names). 

The constructor can be written like this: 

vec.vec(int lb. int hb) : (hb-lb+1) 
{ 

} 

if (hb•lb<O) hb • lb; 
low• lb; 
high• hb; 

Toe construct : (hb-lb+1) is used to specify the argument list needed for the base class construc­
tor vector ( ) . 

This line of development of the vector type can be explored further. It is quite simple to pro­
vide multi-dimensional arrays ( overload < ) as the access function), arrays where the number of 
dimensions is specified as an argument to a constructor, Fortran style arr~ys that can be accessed 
both as having two and three dimensions etc. 

Such a class controls access to some data. Since all access is through the interface provided by 
the public part of the class, the representation of the data can in fact be changed arbitrarily to suit 
the needs of the implementer. For example, . it would be trivial to change the representation of a 
vector to a linked list. The other side of this coin is that any suitable interface for a given imple­
mentation can be provided. 
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15 More about operators 

An alternative direction of development is to provide vectors with operations: 

atruct Vee: public vector { 
Vee (int); 

} ; 

Vec(Vec&); 
•Vee (); 
void operator•(Vec&); 
void operator••(Vec&); 
void operator••(int); 

Since a Vee has no private members (except the ones inherited from vector) it can be specified 
as a atruct. Toe assignment operator is overloaded, and can be defined like this: 

void Vec.operator•(Vec& a) 
{ 

} 

int • • aize(); 
if (al•a.aize()) error("bad vector size for••>; 
for (inti• 0; i<a; i++) v[iJ•a.v[iJ; 

Assignment of vecs now truly copies the elements, whereas assignment of vectors simply copies 
the structure controlling access to the elements.· However, the latter also happens when a vector 
is copied without explicit use of the assignment operator: (1) when a vector is initialized by 
assignment of another vector, (2) when a vector is passed as an argument, and (3) when a 
vector is passed as the return value from a function. To gain control in these cases for Vee vec­
tors you define the constructor: 

Vec.Vec(Vec& a) : (a.size()) 
{ 

for (inti• 0; i<az; i++) v[iJ•a.v[iJ; 
} 

This constructor initializes a vector as the copy of another, and will be called in the cases men­
tioned before. 

For operators like • and +• the expression on the left is clearly "special" and it seems natural 
to implement them as operations on the object denoted by that expression. In particular, it is then 
possible to change that object's value. For operators like + and - the left hand operand does not 
appear to need special attention. You could, for example, pass both arguments by value and still 
get a correct implementation of +: 

Vee operator+(Vec •• Vee b) 
{ 

} 

int•• a.aize(); 
if (a I• b.aize()) error("bad vector aize for+"); 
Vee& aum • new Vec(a); 
for (int 1 • 0; i<a; 1++) aum.elem(i) • a.elem(i) + b.elem(i); 
return aum; 

This function does not operate directly on the representation of a vector, indeed it couldn't since it 
is not a member. However, it is sometimes desirable to allow non-member functions to access the 
private part of a class object. For example, had there been no "un~hecked access" function, 
vector:: elem(), you would have been forced to check the index i against the vector bounds 
three times every time round the loop. This problem was avoided here, but it is typical, so there is 
a mechanism for a class to grant access to its private part to a non-member function. A declaration 
of the function preceded by the keyword friend is simply placed in the declaration of the class. 
For example, given 



claa■ vector· { 

frien4 Vee operator+(Vee, Vee); 
} ; 

you could have written: 

Vee operator+(Vec a, Vee b) 
( 

} 

int•• a.size(); 
if (a I• b.aize()) error("bad. vector size for••>; 
Vee& sum• new Vee( ■); 
int• •P • aum.v; 
int• ap • a.v; 
int• bp • b.v; 
while( ■--) •ap++ • •ap++ + •bp++; 
return ■um; 

One particularly useful aspect of the friend mechanism is that a function can be the friend of two 
or more classes. To see this consider defining a vector and matrix and then defining a multipli• 
cation function. 

16 Generic vectors 

"So far so good", you might say, "but I want one of those vectors for the type matrix I just 
defined". Unfortunately, C++ does not provide a facility for defining a class vector with the type 
of the elements as an argument. One way to proceed is to replicate the definition of both the class 
and its member functions. This is not ideal, but often acceptable. 

You can use a macro processor to mechanize that task. For example, class vector presented 
above is a simplified version of a class that can be found in a standard header file. You could 
write: 

#include cvector.h> 

declare(vector,int); 

main() 
{ 

vector(int) vv(1O); 
vv[2J • 3; 
vv[10J • 4; I• range error •I 

} 

implement(vector,int); 

The file vector. h defines macros so that declare (vector, int) expands to the declaration of 
a class vector very much like the one defined above, and implement C vector, int) expands 
to the definitions of the functions of that class. Since implement(vector, int) expands into 
function definitions it can only be used once in a program, whereas declare ( vector , int) 
must be used once in every file manipulating this kind of integer vectors. 

deelare(vector,char); 
implement(vector,ehar); 

would give you a (separate) type of vector of characters. 
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17 Polymorphic vectors 

Alternatively you might define your vector and other "container classes., in terms of pointers to 
objects: 

claaa cvector { 
common•• v; 

public: 

} ; 

common•& elem(int); 
common•& operator[J(int); 

Note that since pointers and not the objects themselves are stored in such vectors an object can be 
"in" several such vectors at the same time. 'Ibis is a very useful feature for container classes like 
vectors, linked lists, classes, etc. 

Furthermore, a pointer to a derived class can be assigned to a pointer to its base class, so the 
eveetor above can be used to hold pointers to objects of all classes derived from common. For 
example: 

claaa apple: public common { ... }; 
claaa orange: public common { ... }: 
cvector fruitbowl(10O); 
apple aa; 
orange 00; 

fruitbowl[O) • &aa; 
fruitbowl[1J • &oo; 

However, the exact type of an object entered into such a container class is no longer known by the 
compiler. For example, in the example above you know that an element of the vector is a common, 
but is it an apple or an orange? Typically that exact type must be recovered later in order to 
use the object correctly. To do this you must either store some form of type information in the 
object itself or ensure that only objects of a given type are put in the container. The latter is trivi­
ally achieved using a derived class. For example, you could make a vector of apple pointers: 

cl••• apple_vector: public cvector { 
public: 

apple•& elem(int i) { return (apple•&) cvector::elem(i); } 

} ; 

using the "type casting" notation (type) expression to convert the common•&. (a reference to a 
pointer to a common) returned by cvector: :elem to an apple•&.. The alternative, storing type 
identification in each object, brings us to the style of programming teferred to as "object based". 

18 Virtual functions 

Consider writing a program for displaying shapes on a screen. The common attributes of shapes 
will be represented by class shape, specific attributes by specific derived classes: 

cla•• ahap• { 
point center; 
color col; 

public: 

} ; 

void move(point to) { center•to; draw(); } 
point where() { return center; } 
virtual void draw(); 
virtual void rotate(int); 
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Functions that can be defined without knowledge of the specific shape (for example move, and 
where), can be declared as usual. The rest is declared virtual, that is to be defined in a derived 
class. For example: 

cla•• circle: public ahape { 
int rad.iua; 

public: 
void. d.raw(); 
void. rotate(int i) {} 

} ; 

Now if shape_vec is a vector of shapes as defined above you can write: 

for (int 1 • 0; icno_of_.hapea; i++) ahape_vec[i].rotate(,S); 

to rotate (and re-draw) all shapes 45 degrees. 
This style is extremely useful in all interactive programs where "objects" of various types are 

treated in a uniform manner by the basic software. In a sense the typical operation is for the user 
to point to some object and say Who are you? What are you? or Do your stuff! without providing 
type information. The program can and must figure that out for itself. 

19 CompatibDity 

C+ + is not completely compatible with C, but it comes very close. In C+ + 

int f(); 

declares a function that does not accept arguments; in C it declares a function that takes any 
number of arguments of any types (in C+ +, that can be stated as int f < ... > ). In C+ + the 
scope a non-local name is limited to its source file; in C every non-local name is "external". Con­
sequently, to compile a C program as a C++ program you typically (only) need re-write your own 
header files (there are already C++ versions of the standard ones). In addition, C++ has 11 
more keywords than C; these cannot be used as names of variables, etc. You can link C and C++ 
object files together without modification. 

20 Effldency 

Run time efficiency of the generated code and compactness of the representation of user 
defined data structures was considered of primary importance in the design of C+ +. A call of a 
member function is as fast as an equivalent (C+ + or C) non-member function call with the same 
number of arguments. A call of a virtual function typically involves only three memory references 
extra. The representation of a class object takes up only the space needed for the data members 
specified by the user ( allocated conforming to machine dependent alignment requirements). When 
virtual functions are declared for a class, objects of that class will containing one extra hidden 
pointer. 

21 Caveat 

Experienced C programmers have ended up with perfectly awful C+ + programs because they 
immediately started using all the new features at once. It is worth remembering that most pro­
grams are best written without operator overloading, and using only a few examples of inline func­
tions, private data, friends, references, derived classes, and virtual functions. Proceed with cau­
tion. 
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22 Aeknowledaements 

C+ +, as presented here could never have matured without the constant help and constructive 
criticism of my colleagues and users; notably Tom Cargill, rim Coplien, Stu Feldman, Sandy 
Fraser, Steve Johnson, Brian Kernighan, Ban Locanthi, Doug Mcllroy, Dennis Ritchie, Ravi Sethi, 
and Jon Shapiro. .C+ + clearly owes most to C; the influence of Simula67 is pervasive in the class 
facilities, and you may also notice Algol68 like facilities. 
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