
0

0

0

0

0

0

t\

xx
xx
xx
xx:xxx
797 - laserl

11111111
IJ II
II
II
II II
IIINNI

If
If

IIIIIIIIII
I#
II

IJ
If

IJflflllll
II
II

Request id: laser-9680
Transit time: 1 minutes

Printer: laserl From: sfbc (laser-9004) Via: nsc
Sat Feb 9 19:35:33 EST 1985

Feb 8 12:47 1985 makefile Page 1

%Z% %M% %I% %H% %T%

cfront makefile

CC=CC
CFLAGS=-c
YACC=yacc
YFLAGS=
OSUF=.o
HDRS=cfront.h \

size.h \
token.h \
typedef.h \
yystype.h

OBJS=alloc$(0SUF) \
dcl$(0SUF) \
dcl2$(0SUF) \
del$(0SUF) \
error$(0SUF) \
expand$(0SUF) \
expr$(0SUF) \
expr2$(0SUF) \
lex$(0SUF) \
main$(0SUF) \
norm$(0SUF) \
norm2$(0SUF) \
print$(0SUF) \
repr$(0SUF) \
simpl$(0SUF) \
size$(0SUF) \
table$(0SUF) \
typ$(0SUF) \
typ2$(0SUF)

all cfront

cfront $(0BJS) y.tab$(0SUF)
$(CC) $(0BJS) y.tab$(0SUF)

y.tab.c gram.y
$(YACC) $(YFLAGS) gram.y

y.tab$(0SUF) : y.tab.c $(HDRS)
$(CC) $(CFLAGS) +E y.tab.c

alloc$(0SUF) : alloc.c
$(CC) $(CFLAGS) alloc.c

dcl$(0SUF) : dcl.c
$(CC) $(CFLAGS) dcl.c

dcl2$(0SUF) : dcl2.c
$(CC) $(CFLAGS) dcl2.c

del$(0SUF) : del.c
$(CC) $(CFLAGS) del.c

-o cfront

Feb 8 12:47 1985 makefile Page 2

error$(0SUF)
~)

: error.c
$(CC) $(CFLAGS) error.c

expand$(0SUF) : expand.c) $(CC) $(CFLAGS) expand.c

expr$(0SUF) : expr.c
$(CC) $(CFLAGS) expr.c

expr2$(0SUF) : expr2.c
$(CC) $(CFLAGS) expr2.c

lex$(0SUF) : lex.c
$(CC) $(CFLAGS) lex.c

main$(0SUF) : main.c
$(CC) $(CFLAGS) main.c

norm$(0SUF) : norm.c
$(CG) $(CFLAGS) norm.c

norm2$(0SUF) : norm2.c
$(CC) $(CFLAGS) norm2.c

print$(0SUF) : print.c
$(CC) $(CFLAGS) print.c

repr$(0SUF) repr.c ,)
$(CC) $(CFLAGS) repr.c

simp1$(0SUF) : simpl. c
$(CC) $(CFLAGS) simpl. c

size$(0SUF) : size.c
$(CC) $(CFLAGS) size.c

table$(0SUF) : table.c
$(CC) $(CFLAGS) table.c

typ$(0SUF) : typ.c
$(CC) $(CFLAGS) typ.c

... "'

typ2$(0SUF) : typ2.c _)
$(CC) $(CFLAGS) typ2.c

$(0BJS) $(HDRS)

clean
rm -f $(0BJS) y.tab.c y.tab$(0SUF) *.i * .. c

clobber clean
rm -f cfront

J

Feb 8 12:48 1985 alloc.c Page 1

/* %Z% %M% %I% %H% %T% */
#include "cfront.h"

extern void free(char*);
extern char *malloc(unsigned);
extern void print_free();

typedef class header HEADER;

static HEADER *morecore(unsigned);

class header { /* free block header*/
public:

} ;

HEADER .,,_.next ;
unsigned size;

/* next free block*/
/* size of this free block*/

HEADER base; /* empty list to get started*/
/* last allocated block*/ HEADER *allocp = NULL;

void print_free()
{

register HEADER* p, *q = O;
register int amount= O;
register int number= O;

for (p=allocp; q!=allocp; q=p=p->next) {
number++;
amount+= p->size;

}
fprintf(stderr, "free: %d %d\n" ,number,amount-,•~sizeof(HEADER)) ;

char ,•~malloc(unsigned nbytes) /* general-purpose storage allocator*/
{

register HEADER *p, *q;
register int nunits;

Nalloc++;
nunits = l+(nbytes+sizeof(HEADER)-1)/sizeof(HEADER);
if ((q = allocp) = NULL) { /* no free list yet*/

base.next= allocp = q = &base;
base.size= O;

}
for (p=q->next; ; q=p, p=p->next) {

if (p->size >= nunits) { /~~ big enough */
if (p->size = nunits) /*exactly*/

q->next = p->next;
else { /* allocate tail end*/

p->size -= nunits;

}

p += (int)p->size;
p->size = nunits;

allocp = q;

Feb 8 12:48 1985 alloc.c Page 2

/'\-fprintf(stderr, "malloc(%d %d)->%d %d\n" ,nbytes ,nunits~'"sizeof (HEADER) ,p+l ,p+nunits) J
register int* x = (int*)(p+l);
register int* y = (int*)(p+nunits);
while (x < y) *--y = O; -,,
return (char*) x; J

}
}

}
if (p == allocp) /* wrapped around free list*/

if ((p = morecore(nunits)) = NULL)
return(NULL); /* none left*/

#define NALLOC 1024 /* #units to allocate at once*/

static HEADER *morecore(unsigned nu) /* ask system for memory*/
{

char *sbrk(int);
register char *cp;
register HEADER *up;
register int rnu;
register int rnu2;

rnu = NALLOC * ((nu+NALLOC-1) / NALLOC);
cp = sbrk(rnu2 = rnu*sizeof(HEADER));
Nfree_store += rnu2;

/'\-fprintf (stderr, "morecore %d %d -> %d Nf=%d\n", nu, rnu2, cp, Nfree_store); ff lush(
,tr/

}

if ((int)cp == -1) /* no space at all*/
error("free store exhausted");

up= (HEADER *)cp;
up->size = rnu;
free((char *)(up+l));
return(allocp);

int NFn, NFtn, NFbt, NFpv, NFf, NFe, NFs, NFc;

void free(char* ap)
{

register HEADER *p, *q;

if (ap == 0) return;

p = (HEADER*)ap - 1;

Nfree++;

if (Nspy) {

/*

Pname pp= (Pname) ap;
TOK t = pp->base;
char* s = O;

switch (t) {

case TNAME: case NAME:

/* put block on free list*/

/* point to header*/

J

Feb 8 12:48 1985 alloc.c Page 3

/*

*I

*/

-;'./

}

NFn++;

fprintf(stderr,"??name %d %d sz=%d\n",pp,t,p->size); fflush(stderr)
break;

case INT: case CHAR: case TYPE: case VOID: case SHORT: case LONG:
case FLOAT: case DOUBLE: case COBJ: case EOBJ: case FIELD:

NFbt++; break;

case PTR: case VEC:
NFpv++; break;

case FCT: NFf++; break;

case INCR: case DECR: case ASSIGN: case CALL: case PLUS: case MINUS:
case DEREF: case MUL: case DIV: case ASPLUS: case MOD: case UMINUS:
case DOT: case REF: case CAST: case NEW: case NOT: case COMPL: case ER:
case EQ: case NE: case GT: case LT: case LE: case GE:
case ANDAND: case AND: case OR: case OROR: case SIZEOF:
case ILIST: case ELIST: case CM: case QUEST: case RS: case LS:
case TEXT: case IVAL: case FVAL:

NFe++;

fprintf(stderr, 0 ??expr %d %d sz=%d\n",pp,t,p->size); fflush(stderr)
break;

case ICON: case CCON: case STRING: case FCON: case THIS:
NFc++; break;

case IF: case SM: case FOR: case WHILE: case DO: case BLOCK:
case BREAK: case CONTINUE: case DEFAULT: case SWITCH: case CASE:
case PAIR: case LABEL: case GOTO: case RETURN: case DELETE: case ASM:

NFs++; break;

J'kdefault: if (O<t && t<140) fprintf(stderr,"delete tok %d\n",t);

}

/-;'c-fprintf(stderr, "free(%d)\n" ,ap) ;-.':/

}

for (q=allocp; !(p > q && p < q->next); q=q->next)
if (q >= q->next && (p > q I Ip< q->next))

break; /*atone end or other*/

if (p+p->size == q->next) {/*join to upper nbr */
p->size += q->next->size;
p->next = q->next->next;

} else
p->next = q->next;

if (q+q->size == p) { /* join to lower nbr */
q->size += p->size;
q->next = p->next;

} else
q->next = p;

allocp = q;

Feb 8 12:47 1985 cfront.h Page 1

/* %Z% %M% %I% %H% %T% */

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

cfront.h:

Here is all the class definitions for cfront, and most of the externs

/* WARNING:
This program relies on non-initialized class members being ZERO.
This will be true as long as they are allocated using the "new" operator

#include "token.h"
#include "typedef.h"

extern char* prog_name;
extern bit old_fct_accepted;

extern bit fct_void;

extern TOK scope_default;

extern
extern

,. /
.,.

extern
extern
extern

bit st_init;
int inline_restr;

free lists -;': I
Pname name_free;
Pexpr expr_free;
Pstmt stmt_free;

r-1: compiler name and version ,•: I
/* if set:

*I ;,~

*I ;,•:

if

if

old style function definitions are legal,
implicit declarations are legal

set:
f() means f of no arguments
f() means f (...)

not:
f() illegal
f() means f of no arguments

default scope of externals
STATIC or EXTERN

static objects can be initialized by ctor */
inline expansion restrictions '-1: /

extern int Nspy, Nn, Nbt, Nt, Ne, Ns, Nstr, Ne, Nl;

extern TOK
extern Pni3.me
extern bit

lex();
syn();
print_mode;

/* stage initializers:*/
extern void init_print();

_)

/,,,··

'-·

Feb 8 12:47 1985 cfront.h Page 2

extern void init_lex();
extern void int_syn();
extern void ext(int);

extern char* make_name(TOK);

class loc /* a source file location*/
{
public:

short
short

file;
line;

/* index into file_name [], or zero -;•~ /

void
void

put(FILE*);
putline();

} ;

extern Loe curloc;
overload error;
extern int error(int, loc*, char* ...);
extern int error(int, char* ...);
extern int error(loc*, char* ...);
extern int error(char* ...);
extern int error_count;
extern bit debug;

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern

FILE,,.. in_file;
FILE* out_file;
char scan_started;
bit warn;
int br_leve 1;
int hl_level;
Ptahle ktbl; /* keywords and typedef names*/
char* oper_name(TOK);
Ptahle gtbl; /* global names*/
Pc lass eel;
Phase defa_type;
Phase moe_type;

Pstmt Cstmt; /* current statement, or O */
Pname Cdcl; /* name currently being declared, or O */
void put_dcl_context();

extern Ptah le any_thl; /-;'~ table of undefined struct members -;'; /
extern Phase any_type;
extern Phase int_type;
extern Phase char_type;
extern Phase short_type;
extern Phase long_type;
extern Phase uchar_type;
extern Phase ushort_type;
extern Phase uint_type;
extern Phase ulong_type;
extern Ptype Pchar_type;
extern Ptype Pint_type;

Feb 8 12:47 1985 cfront.h Page 3

extern Ptype Pfctvec_type;
extern Phase float_type;
extern Phase double_type;
extern Phase void_type;
extern Ptype Pvoid_type;
extern Phase zero_type;
extern Ptype char2_type;
extern Ptype char3_type;
extern Ptype char4_type;

extern int byte_offset;
extern int bit_offset;
extern int max_align;
extern int stack_size;
extern int enUllLCOunt;
extern int const_save;

extern Pname class_name(Ptable,char 1'.- ,bit);
extern Pname gen_find(Pname,Pfct);
extern char* gen_name(char*,char);

extern Pexpr dummy; /-1: the empty expression -1:/

extern Pexpr zero;
extern Pexpr one;
extern Pname sta_name; /* qualifier for unary::*/

#define DEL(p) if (p && (p->permanent==O)) p->del()
#define PERM(p) p->permanent=l
#define UNPERM(p) p->permanent=O

struct node
TOK
TOK
bit

} ;

{
base;
n_key; /* for names in table: class*/
permanent;

extern Pclass Ebase, Epriv; /* lookc return values*/

class table: public node {
/-1: a table is a node only to give it a "base" for debugging -1.-;

short size;

public:

short hashsize;
Pname1': entries;
short-,': hashtbl;
short free_slot; /* next free slot in entries*/

short

Pstmt

init_stat;

reaLblock;

/* ==O if block(s) of table not simplified,
==1 if simplified but had no initializers,
==2 if simplified and had initializers.

;': I
/* the last block the user wrote,

not one of the ones cfront created
·le/

table(short, Ptable, Pname);
Ptable next; /* table for enclosing scope*/
Pname t_name; /* name of the table*/

Feb 8 12:47 1985 cfront.h Page 4

} ;

Pname
Pname
void
void
void
Pname

void
Pname
Pexpr
void

extern bit Nold;

look(char*, TOK);
insert(Pname, TOK);
grow(int);
set_scope(Ptable t)
set_name(Pname n)
get_mem(int);
int max()
dcl_print(TOK,TOK);
lookc(char*, TOK);
find_name(Pname, bit,
del ();

extern bit vec_const;
extern void restore();
extern void set_scope(Pname);
extern Plist modified_tn;

{next= t; };
{ t_name = n; };

{ return free_slot-1; };

Pexpr);

extern Phase start_cl(TOK, Pname, Pname);
extern void end_cl();
extern Phase end_enum(Pname, Pname);

/************ types : basic types, aggregates, declarators************/

extern bit new_type;
extern Pname cl_obj_vec;
extern Pname eobj;

struct type
bit

pub lie node {
defined;

void print();

/*

void dcl_print(Pname);
void base_print();
void del();

0 if only declared
1 if only defined
2 if simplified
not used systematically yet

Pname
void
int
bit
int
TOK
TOK
TOK
TOK
bit
bit
bit
Ptype
Pptr
char,'c-

is_cl_obj ();
dcl(Ptable);
tsizeof ();
tconst();

/* sets cl_obj_vec */

align();
kind(TOK,TOK);
integral(TOK oo)
numeric(TOK oo)
num_ptr(TOK oo)
fct_type();
vec_type();
check(Ptype, TOK);
deref ();
addrof();
signature(char*);

{ return kind(oo,I); };
{ return kind(oo,N); };
{ return kind(oo,P); };

Feb 8 12:47 1985 cfront.h Page 5

} ;

extern bit vrp_equiv;

class enumdef
public:

public type { /* ENUM -;~/

} ;

Pname
bit
int

void
void
void
void

mem;
e_body;
no_of_enumerators;
enumdef(Pname n)
print();
dcl_print(Pname);
dcl(Pname, Ptable);
simpl ();

{ base=ENUM; mem=n; };

class classdef : public type { /";~ CLASS f: /
public:

Ptable
short
char
Ptable

void
void
void

Pname
Plist
Pname

void
void
bit

Pname
Pname
Pname
Pname
Pname

Pname
bit
bit
TOK

clbase;
pubbase;
c_body;
csu;
string;
pubmem;

char*
Pname
memtbl;
obj_size;
obj_align;
_m; short _o; char _a;

classdef(TOK, Pname);

print();
dcl_print(Pname);
simpl ();

privmem;
friend_list;
pubdef;
Plist
Pclass
Ptype
char

tn_list;
in_class;
this_type;
virt_count;

Pname* virt_init;
Pname itor;
Pname conv;
print_members();
dcl(Pname, Ptable);
has_friend(Pname);
TOK is_simple()

/* print definition only once*/
/* CLASS, STRUCT, UNION, or ANON*/
/* name of class*/

/* list of member names hiding type names a
/* enclosing class, or O */

/* number of virtual functions
incl. virtuals in base classes

*/
/* vector of jump table initializers*/
/* constructor X(X&) */
/* operator T() chain*/

{ return (csu=CLASS)?O:csu; };
has_oper (TOK);
has_ctor() { return memtbl->look("_ctor",O); }
has_dtor() { return memtbl->look("_dtor",O); }
has_itor() { return itor; }
has_ictor();

)

Feb 8 12:47 1985 cfront.h Page 6

class basetype
J-;'r

{
public:

} ;

*I
/-;'r

-;'r I

bit
bit

bit
bit
bit
bit
bit

char
TOK
Pname
Pexpr
char
Ptable
Pname

Phase
Pbase
Phase
Phase
Pname
void
void
Pbase

: public type
ZTYPE CHAR SHORT INT LONG FLOAT DOUBLE
FIELD EOBJ COBJ TYPE ANY

used for gathering all the attributes
for a list of declarators

ZTYPE is the (generic) type of ZERO
ANY is the generic type of an undeclared name

b_unsigned;
b_const;

b_typedef;
b_inline;
b_virtual;
b_short;
b_long;

b_offset;
b_sto;
b_name;
b_field;
b_bits;
b_table;
b_xname;

/* AUTO STATIC EXTERN REGISTER O */
J-;'r name of non-basic type -;'r /

/* field size expression for a field*/
/* number of bits in field*/
/* memtbl for b_name, or O */
/* extra name*/

basetype(TOK, Pname);

type_adj (TOK) ;
base_adj(Pbase);
name_adj(Pname);
check(Pname);
aggr();
normalize();
dcl_print ();
arit_conv(Pbase);

struct fct : public type /-Ir FCT */
{

Ptype
Pname
Ptype
Pname
Pblock
Pexpr
short
TOK
TOK
char

returns;
argtype;
s_returns;
f_this;
body;
Linit;
frame_size;
nargs;
nargs_known;
f_virtual;

/* KNOWN, ELLIPSIS, or O */
/* l+index in virtual table, or O */

Feb 8 12:47 1985 cfront.h Page 7

} ;

char
Pexpr
Pexpr

void
Ptype
void
void
bit
void
Pexpr

f_inline;
Lexpr;

/* 1 if inline, 2 if being expanded, else O */
/* body expanded into an expression .,,, /

last_expanded;
fct(Ptype, Pname, TOK);

argdcl(Pname);
normalize(Ptype);
dcl_print();
dcl(Pname);
declared() { return (nargs_known); };
simpl ();
expand(Pname,Ptable,Pexpr);

struct name_list {
Pname f;
Plist 1;

name_list(Pname ff, Plist 11) { f=ff; 1=11; };
} ;

struct gen: public type /f: OVERLOAD i~ /

{

} ;

Plist
char*

Pname
Pname

fct_list;
string;
gen (chari:) ;
add(Pname, int);
find(Pfct);

struct vec: public type /* VEG -;'r/

{

} ;

/* typ [dim]*/

Ptype
Pexpr
int

typ;
dim;
size;

vec(Ptype t, Pexpr e) { Nt++; base=VEC; typ=t; dim=e; };

Ptype normalize(Ptype);
void print();

struct ptr: public type
{

} ;

Ptype
bit

typ;
rdo;

ptr(TOK b, Ptype t, bit r = 0) { Nt++; base=b; typ=t; rdo=r; };
Ptype normalize(Ptype);

)

J

(_

Feb 8 12:47 1985 cfront.h Page 8

/* STRING ZERO ICON FCON CCON ID*/
/* IVAL FVAL LVAL */

extern Pexpr next_elem();
extern void new_list(Pexpr);
extern void list_check(Pname, Ptype, Pexpr);
extern Pexpr ref_init(Pptr,Pexpr,Ptable);
extern Pexpr class_init(Pexpr,Ptype,Pexpr,Ptable);
extern Pexpr check_cond(Pexpr, TOK, Ptable);

class expr
/-;'::

/-;'::

: public node /* PLUS, MINUS, etc.*/

{
public:

IMPORTANT: all expressions are of sizeof(expr) */

*/

union
Ptype
int
} ;
union
Pexpr
char-;':
} ;
union
Pexpr
Pexpr
} ;
union
Ptype
Pname
Pexpr
Pname
Ptype
Ptable
Pin
} ;

void
void
Pexpr
int

DEREF => *el (e2==O) OR el[e2]
UMINUS => -e2
INCR (el=O) => ++e2
INCR (e2==O) => el++
CM => el, e2
ILIST => LC el RC (an initializer list)
a Pexpr may denote a name

{
tp;
syn_class;

{
el;
string;

{

{

e2;
n_initializer;

/* used by the derived classes*/
tp2;
fct_name;
cond;
mem;
as_type;
n_table;
il;

expr(TOK, Pexpr, Pexpr);
~expr();

del ();
print();
typ(Ptable);
eval O;

Feb 8 12:47 1985 cfront.h Page 9

} ;

int
Ptype
Pexpr
Pexpr
void
Pexpr
bit

lval(TOK);
fct_call(Ptable);
address();
contents();
simpl();
expand();
not_simple();

extern char* Neval;

struct typed_obj : public expr {

} ;
typed_obj(TOK t, char* s) : (t,(Pexpr)s,O) { this=O; }

struct texpr: public expr /* NEW CAST VALUE*/
{

} ;
texpr(TOK bb, Ptype tt, Pexpr ee) : (bb,ee,O) { this=O; tp2=tt; }

struct call : public expr /*CALL*/
{

call(Pexpr aa, Pexpr bb) (CALL,aa,bb) { this=O; }

} ;

void
Pexpr

simpl ();
expand(Ptable);

struct qexpr : public expr
/* cond? el : e2 */
{

/1: QUEST ·l: /

qexpr(Pexpr ee, Pexpr eel, Pexpr ee2) (QUEST,eel,ee2) { this=O; c
} ;

struct ref: public expr /* REF DOT*/
/* el->mem OR el.mem */
{

ref(TOK ba, Pexpr a, Pname b) : (ba,a,O) { this=O; mem=b; }
} ;

class name: public expr {
/'': NAME TNAME and the keywords in the ktbl ,':: /

public:
/* Pexpr

int
TOK
TOK
TOK
TOK
short
Pname

n_initializer;
n_val;
n_oper;
n_sto;
n_stclass;
n_scope;
n_offset;
n_list;

;':: I
/* the value of n_initializer */
/* name of operator or O */
/* STO keyword: EXTERN, STATIC, AUTO,
/* STATIC AUTO REGISTER O */
/* EXTERN STATIC FCT ARG PUBLIC O */
/* byte offset in frame or struct */

REGIS

Feb 8 12:47 1985 cfront.h Page 10

Pname
J-k Ptable

short
short
short
char
bit
short
Loe
union {
Pname
Ptable

} ;

void
void
void
Pname
Pname
Pname
Pname
int
void
void
void
void
void
void
void
void

} ;

n_tbLlist;
n_table;
n_used;
n_addr_taken;
n_assigned_to;
n_union;
n_evaluated;
lex_level;
where;

n_qualifier;
n_realscope;

name(char* =O);
~name();

del ();
print();
dcLprint (TOK);
normalize(Pbase,
tdef ();
tname (TOK);
dcl(Ptable,TOK);
no_of_names();
hide();
unhide()
use()
assign();
call 0
take_addr()

*/

/* 0 or union index*/
/ 1~ 0 or n_val holds the value -It/

/* for labels (always entered in

*/

function table) the table for the actual
scope in which label occurred.

Pblock, bit);

{ n_key=O; n_list=O; } ;
{ n_used++; } ;

{ n_used++; } ;
{ n_addr_taken++; } ;

check_oper(Pname);
simpl ();

class stmt: public node { /* BREAK CONTINUE DEFAULT*/
/* IMPORTANT: all statement nodes have sizeof(stmt) */
public:

Pstmt s·
' Pstmt s_list;

Loe where;
union {
Pname d·

' Pexpr e2;
Pstmt has_default;
int case_value;
} ;
union {
Pexpr e;

Feb 8 12:47 1985 cfront.h Page 11

} ;

bit
Pstmt
} ;
Ptable
union {
Pstmt
Pstmt
Pstmt
} ;

void
void
void
void
Pstmt
Pstmt
Pstmt

own_tbl;
s2;

memtbl;

for_init;
else_stmt;
case_list;

stmt(TOK, lac, Pstmt);
~stmt();

del ();
print();
dcl();
reached();
simpl ();
expand();
copy();

extern Pname dcl_temp(Ptable, Pname);
extern char'i': temp (char-.'.-, char*, char'i'r) ;
extern Ptable scope;
extern Ptable expand_tbl;
extern Pname expand_fn;

struct estmt : public stmt /* SM WHILE DO SWITCH RETURN DELETE CASE*/

{

} ;

/* SM (e!=O) => e;
in particular assignments and function calls
SM (e=O) => (the null statement)

CASE
';': I

=> case e: s ;

estmt(TOK t, loc 11, Pexpr ee, Pstmt ss) (t,11,ss) { this=O; e=ee

struct ifstmt : public stmt /-;': IF .,,., /
/* else_stme=O => if (e) s
else_stmt!=O => if (e) s else else_stmt
*/

{
ifstmt(loc 11, Pexpr ee, Pstmt ssl, Pstmt ss2)

: (IF,11,ssl) { this=O; e=ee; else_stmt=ss2; };
} ;

struct lstmt
I*

public stmt

d : s

/* LABEL GOTO -;': /

goto d

{
lstmt(TOK bb, loc 11, Pname nn, Pstmt ss) (bb,11,ss) { this=O; d=

} ;

)

_)

Feb 8 12:47 1985 cfront.h Page 12

struct forstmt : public stmt /-;': FOR */
{

forstmt(loc 11, Pstmt fss, Pexpr eel, Pexpr ee2, Pstmt ss)
: (FOR,11,ss) { this=O; for_init=fss; e=eel; e2=ee2; }

} ;

struct block public stmt
/-;': { d s } -1: I

{

/*BLOCK*/

block(loc 11, Pname nn, Pstmt ss)
void dcl(Ptable);
Pstmt simpl();

} ;

struct pair: public stmt /*PAIR*/
{

(BLOCK,11,ss) { this=O; d=nn; }

pair(loc 11, Pstmt a, Pstmt b) : (PAIR,11,a) { this=O; s2 = b; }
} ;

class nlist {
public:

} ;

Pname
Pname

void
void

head;
tail;
nlist (Pname);
add(Pname n) { tail->n_list = n; tail= n; };
add_list (Pname);

extern Pname name_unlist(nlist*);

class slist {
public:

} ;

Pstmt
Pstmt

void

head;
tail;
s list (Pstmt s)
add(Pstmt s)

{ Nl++; head= tail= s; };
{ tail->s_list = s; tail= s; };

extern Pstmt stmt_unlist(slist*);

class elist {
public:

} ;

Pexpr
Pexpr

void

head;
tail;
elist(Pexpr e)
add(Pexpr e)

{ Nl++; head= tail= e; };
{ tail->e2 = e; tail= e; };

extern Pexpr expr_unlist(elist*);

extern class dcl_context * cc;

class dcl_context {
public:

Pname c_this; /.,'r current fct' s "this" -ir /

Feb 8 12:47 1985 cfront.h Page 13

Ptype tot; /i: type of "this" or O i: /
"this"' s class or O -I: I Pname not; ;,~ name of

Pclass cot; /i: the definition of "this"'s class
Ptable ftbl; 1-;~ current fct's
Pname nof; /;'(current fct's

void stack() { cc++;
void unstack() { cc--;

} ;

#define MAXCONT 20
extern dcl_context ccvec[MAXCONT];

extern bit can_coerce(Ptype, Ptype);
extern void yyerror(char*);
extern TOK back;

/* "spy" counters:*/
extern int Nspy;

symbol table*/
name i: I

,•:cc = ,•: (cc-1); } ;
} ;

,'r /

extern int Nfile, Nline, Ntoken, Nname, Nfree_store, Nalloc, Nfree;
extern int NFn, NFtn, NFpv, NFbt, NFf, NFs, NFc, NFe, NFl;
extern char* line_format;

extern Plist isf_list;
extern Pstmt st_ilist;
extern Pstmt st_dlist;

extern Ptype np_promote(TOK, TOK, TOK, Ptype, Ptype, TOK);
extern void new_key(char*, TOK, TOK);

extern Pname dcl_list;
extern int over_call(Pname, Pexpr);
extern Pname Nover;
extern Pname Ncoerce;
extern Nover_coerce;

canst MIA= 8;
struct iline {

Pname
Pin
Ptable
Pname
Pexpr
Ptype

} ;

fct_name;
i_next;
Ltable;
local [MIA];
arg[MIA];
tp [MIA] ;

extern Pexpr curr_expr;
extern Pin curr_icall;
#define FUDGElll 111

extern Pstmt curr_loop;
extern Pblock curr_block;
extern Pstmt curr_switch;
extern bit arg_err_suppress;
extern loc last_line;

/* fct called*/

/* local variable for arguments*/
;,•: actual arguments for call * /
/* type of formal arguments*/

--..
..)

C

C

C

Feb 8 12:47 1985 cfront.h Page 14

extern no_of_undcl;
extern Pname undcll, undcl2;

extern int strlen(char*);
extern int strcpy(char*,char*);
extern int strcmp(char*,char*);
extern int str_to_int(char*);

extern Pname vec_new_fct;
extern Pname vec_del_fct;
/*end*/
/* testing edget */

Feb 8 12:48 1985 dcl.c Page 1

/* %Z% %M% %I% %H% %T% */
/"'':i':*,':*-lr·l:,'c~•r,':-;':-.':-l:;':*-lr,':,':;':-l:-lr,':,':-;'r;':~'c,~*,':;':;':;':;~-l:-;':*·l(1':,':,':,'r*-1r~'c,'r,'r"l:;'r·lr***;':,',,'r-l:,~**,'r-;'c-;'c"4~'4'(~'r*~':*,'r-lr**-1r'it

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

dcl.c:

''declare'' all names, that is insert them in the appropriate symbol tables

Calculate the size for all objects (incl. stack frames),
and find store the offsets for all members (incl. auto variables).
"size.h" holds the constants needed for calculating sizes.

Note that (due to errors) functions may nest

#include "cfront.h"
#include "size.h"

class dcl_context ccvec[MAXCONT], *cc= ccvec;
int byte_offset;
int bit_offset;
int max_align;
int stack_size;
int enurn_count;
int friend_in_class;

void name.check_oper(Pname en)
{

switch (n_oper) {
case CALL:

if (en - 0) error("operator() must be aM");
break;

case DEREF:

case 0:

if (en - 0) error("operator[] must be aM");
break;

case TNAME: /*maybe a constructor*/
if (en && strcmp(cn->string,string)=O) {

if (tp->base = FCT) {

}
else

Pfct f = (Pfct)tp;
if (f->returns!=defa_type &&

error("%s: :%s () with
£->returns= void_type;
string= "_ctor";
n_oper = CTOR;

fct_void==O)
returnT",string,string

C.

C.

C

Feb 8 12:48 1985 dcl.c Page 2

error('s' ,"struct%cnM%n",cn,cn);
}
else

n._oper = O;
break;

case DTOR: /* must be a destructor -.'r /

if (en= 0) {
n._oper = O;
error ("destructor ~%s () not inC 0

, string);
}
else if (strcmp(cn->string,string) = 0) {

Pfct f = (Pfct)tp;
string= "_dtor";

}
else {

}
break;

case TYPE:

if (tp->base != FCT) {
error("%s::~%s notF",cn->string,cn->string);
tp = new fct(void_type,0,1);

}
else if (f->returns!=defa_type && fct_void=O)

error("%s: :~%s() with returnT" ,cn->string,cn->strin
if (f->argtype) {

if (fct_void=O) error("%s: :~%s() withAs" ,cn->strin
f->nargs = O;
f->nargs_known = 1;
f->argtype = O;

}
£->returns= void_type;

error (''~%s in%s", string, cn->string);
n_oper = O;

if (en= O) {

}
else {

error (11operator%t () not aM", (Ptype)n_initializer);
n_oper = O;
n_initializer = O;

Pfct f = (Pfct)tp;
Ptype tx = (Ptype)n_initializer;

;-.•cerror ('d 1
, "operator%t ()", tx); ')'c /

n._initializer = O;
if (£->base != FCT) error("badT for%n: :operator%t()" ,cn,tx)
if (£->returns != defa_type) {

}

if (f->returns->check(tx,O)) error("bad resultT for
DEL(f->returns);

if (f->argtype) {
error("%n: :operator%t() withAs" ,en, tx);
f->argtype = O;

}
£->returns= tx;
Pname nx = tx->is_cl_obj();
if (nx && can_coerce(tx,cn->tp)) error("both %n::%n(%n) and
char buf[128];

Feb 8 12:48 1985 dcl.c Page 3

}
break;

}
}

char* bb = tx->signature(buf);
int 12 = bb-buf-1;
char* p = new char[12+1];
strcpy(p,buf);
string= p;

Pname name.dcl(Ptable tbl, TOK scope)
/*

enter a copy of this name into symbol table "tbl";
- create local symbol tables as needed

"scope" gives the scope in which the declaration was found
- EXTERN, FCT, ARG, PUBLIC, or 0

Compare "scope" with the specified storage class "n_sto"
- AUTO, STATIC, REGISTER, EXTERN, OVERLOAD, FRIEND, or 0

After name.de!()
n_stclass = 0

REGISTER
AUTO
STATIC

n_scope 0
PUBLIC
EXTERN
STATIC
FCT
ARG
ARGT

typecheck function bodies;
typecheck initializers;

class or enum member
auto variables declared register
auto variables not registers
statically allocated object
private class member
public class member
name valid in this and other files
name valid for this file only
name local to a function
name of a function argument
name of a type defined in an argument list

note that functions (error recovery) and classes (legal) nest

The return value is used to chain symbol table entries, but cannot
be used for printout because it denotes the sum of all type information
for the name

names of typenames are marked with n_oper--TNAME

WARNING: The handling of scope and storage class is cursed!
*/
{

Pname nn;
Ptype nnt = O;
Pname odcl = Cdcl;

if (this== 0) error('i' ,"O->name.dcl()");
if (tbl = 0) error(' i', "%n->name. dcl(tbl=O, %k)", this, scope);
if (tbl->base != TABLE) error('i' ,"o/on->name.dcl(tbl=%d,%k)",this,tbl->base,
if (tp = 0) error('i' ,"name.dcl(%n,%k)T missing",this 1scope);

/*fprintf(stderr,"(%d %s)->dcl(tbl=%d,scope=%d) tp = (%d %d)\n',this,string,tbl,scop

J

Feb 8 12:48 1985 dcl.c Page 4

Cdcl = this;
switch (base) {
case TNAME:

tp->dcl(tbl~;
PERM(tp);
nn = new name(string);
nn->base = TNAME;
nn->tp = tp;
tbl->insert(nn,0);
delete nn;
Cdcl = odcl;
return this;

case NAME:
switch (n....oper) {
case TNAME:

if (tp->base != FCT) n_oper = 0;
break;

case COMPL:

}

if (tp->base != FCT) {
error("~%s notF",string);
n....oper = 0;

}
break;

break;
default:

error (' i' , 11NX in name. dcl () ");
}

if (n....qualifier) { /* class function: c.f(); */
if (tp->base != FCT) {

error("QdN%n inD of nonF",this);
Cdcl = odcl;
return 0;

}

Pname en= n_qualifier;
switch (cn->base) {
case TNAME:

break;
case NAME:

default:

}

en= gtbl->look(cn->string,0);
if (en && en->base==TNAME) break;

error("badQr%n for%n",n....qualifier,this);
Cdcl = odcl;
return 0;

en= ((Pbase)cn->tp)->b_name;
if (n_oper) check_oper(cn);

Pclass cl= (Pclass)cn->tp;
if (cl= cc->cot) {

}

n....qualifier = 0;
goto xdr;

Feb 8 12:48 1985 dcl.c Page 5

xdr:
}

else if (cl->defined = 0) {
error("C%nU",cn);
Cdcl = odcl;
return O;

}

Ptable etbl = cl->memtbl;
Pname x = etbl->look(string,O);
if(x=O I I x->n_table!=etbl) {

error("%n is not aM of%n",this,cn);
Cdcl = odcl;
return O;

}

if (n_oper && tp->base!=FCT && n_sto!=OVERLOAD)
error("operator%k not aF",n_oper);

/* if a storage class was specified
check that it is legal in the scope

else
provide default storage class

some details must be left until the type of the object is known

n_stclass = n_sto;
n_scope = scope; /* default scope & storage class*/

if (n_sto-0 && scope=EXTERN) {
if (scope_default=STATIC) {

switch (tp->base) {
case FCT:
{

Pfct f = (Pfct)tp;
if (strcmp(string,"main"))

break;
}
case CLASS:
case ENUM:
default:

n_scope = (f->body)? STATIC

n_scope = STATIC;
}

}
}

switch (n_sto) {
default:

error(1 i' , 11unX %k",n_sto);
case FRIEND :
{

Pclass cl= cc->cot;

switch (scope) {
case 0:

EXTERN;

C

C

Feb 8 12:48 1985 dcl.c Page 6

case PUBLIC:
break;

default:

}

error("friend%n not in classD(%k)",this,scope);
base= O;
Cdcl = odcl;
return O;

switch (n_oper) {
case 0:
case NEW:
case DELETE:
case CTOR:
case DTOR:

n_sto = O;
break;

default:
n_sto = OVERLOAD;

}

switch (tp->base) {
/* case INT: undefined: implicitly define as class

nn = tname(CLASS);
nn->tp->dcl(gtbl);
break;

case COBJ:
nn = ((Pbase)tp)->b_name;
break;

case CLASS:
nn = this;
break;

case FCT:
cc->stack();
cc->not = O;
cc->tot = O;
cc->cot = O;
friend_in_class++;
nn = dcl(gtbl,EXTERN);
friend_in_class--;

/'\-fprintf(stderr, "ff %s %d\n" ,nn->string,nn->tp->base) ;''~/
cc->unstack();

}

if (nn->tp->base = OVERLOAD) {
Pgen g = (Pgen)nn->tp;

}
break;

default:

nn = g->find((Pfct)tp);

error("badT°t,t of friend%n", tp, this);
}
PERM(nn);
cl->friend_list = new name_list(nn,cl->friend_list);
Cdcl = odcl;
return nn;

Feb 8 12:48 1985 dcl.c Page 7

case OVERLOAD:
n_sto = O;
switch (scope) {
case 0:
case PUBLIC:

}

error('w', "overload inCD (ignored)");
switch (tp->base) {
case INT:

base= O;
Cdcl = odcl;
return this;

case FCT:
return dcl(tbl,scope);

if (n_oper && tp->base FCT) break;
nn = tbl->insert(this,O);

if (Nold) {

}
else {

}

if (nn->tp->base != OVERLOAD) {
error("%n redefined as overloaded",this);
nn->tp = new gen(string);

nn->tp = new gen(string);

switch (tp->base) {
case INT:

base= O;
Cdcl = odcl;
return nn;

case FCT:
break;

default:

}
break;

case REGISTER:

error("N%n ofT%k cannot be overloaded",this,tp->base);
Cdcl = odcl;
return nn;

if (tp->base == FCT) {
error('w', "o/on: register (ignored)", this);
goto ddd;

}
case AUTO:

switch (scope) {
case 0:
case PUBLIC:
case EXTERN:

}
break;

case EXTERN:

error("%k not inF",n_sto);
goto ddd;

Feb 8 12:48 1985 dcl.c Page 8

switch (scope) {
case ARG:

error("externA");
goto ddd;

case 0:
case PUBLIC:

}

/* extern is provided as a default for functions without bo
if (tp->base != FCT) error("externM%n",this);
goto ddd;

n_stclass = STATIC;
n_scope = EXTERN; /* avoid FCT scoped externs to allow better
break;

case STATIC:

case O:
ddd:

switch (scope) {
case ARG:

case 0:

error("static used forA%n",this);
goto ddd;

case PUBLIC:

default:

}
break;

n_stclass = STATIC;
n_scope = scope;
break;

n_scope = STATIC;

switch (scope) { /* default storage classes*/
case EXTERN:

switch (tp->base) {
case FCT: /* anomaly: f(int); => extern f(int); *

break;
default:

n_scope = scope_default;
}
n_stclass = STATIC;
break;

case FCT:
if (tp->base = FCT) {

n_stclass = STATIC;
n_scope = EXTERN;

}
else

n_stclass = AUTO;
break;

case ARG:

case 0:

if (tp->base == FCT) error("%n asA",this);
n_stclass = AUTO;
break;

case PUBLIC:

}

n_stclass = O;
break;

Feb 8 12:48 1985 dcl.c Page 9

}

/*
now insert the name into the appropriate symbol table,
and compare types with previous declarations of that name

do type dependent adjustments of the scope
*!

switch (tp->hase) {
case ASM:
{ Phase h = (Phase)tp;

Pname n = tbl->insert(this,O);
n->assign();
n->use();
return this;

}

case CLASS:
{ Pclass cl;

Phase ht;
Pname bn;
Pclass nest;
Pname nx = ktbl->look(string,O);

;,'-'fprintf (stderr, "%s: nx %d\n", string,nx) ;* /
if (nx == 0) {

;,'r search for hidden name for

;,'r TNAME ir I

(1) nested class declaration
(2) local class declaration

}
else {

}
bbh:

for (nx=kthl->look(string,HIDDEN); nx; nx=nx->n_tbl_list) {
if (nx->n_key != HIDDEN) continue;

}

if (nx->tp->base != COBJ) continue;
ht= (Pbase)nx->tp;
hn = bt->b_name;
cl= (Pclass)hn->tp;
if (cl== 0) continue;
if ((nest=cl->in_class) && nest==cc->cot)

goto bhh;
else if (cc->nof /*fudge*/

&& cc->nof->where.line<nx->where.line)
goto bhh;

error('i' ,"%n is not aTN",this);

bt = (Phase)nx->tp;
bn = bt->b_name;
nest= O;

/* COBJ */

/,'cfprintf(stderr, "bbb: ht %d %d\n" ,bt,bt->base); fflush(stderr) ;*/
bn->where = nx->where;
Pname bnn = tbl->insert(bn,CLASS); /*copy for member lookup*/
cl= (Pclass)bn->tp;

Feb 8 12:48 1985 dcl.c Page 10

/"'rfprintf(stderr,"cl %d %d\n",cl,cl->base); fflush(stderr);1r/
if (cl->defined)

error("C%n defined twice",this);
else {

/1: CLASS -le/

if (bn->n_scope = ARG) bn->n_scope = ARGT;
cl->dcl(bn,tbl);
if (nest) {

int 11 = strlen(cl->string);
int 12 = strlen(nest->string);
char* s = new char[ll+l2+2];
strcpy(s,nest->string);
s [12] = '_';
strcpy(s+l2+1,cl->string);
cl->string = s;

/* cl->memtbl->t_name->string = s;*/

}

}
}
tp = cl;
Cdcl = odcl;
return bnn;

case ENUM:
{ Pname nx = ktbl->look(string,0);

if (nx == 0) {
nx = ktbl->look(string,HIDDEN);

}
Phase ht= (Pbase)nx->tp;
Pname bn = bt->b_name;
Pname bnn = tbl->insert(bn,CLASS);
Penum en= (Penum)bn->tp;
if (en->defined)

error("enum%n defined twice",this);
else {

/"'c TNAME * /

/* hidden TNAME */

j'lc EOBJ -Ir/

/* ENUM */

if (bn->n_scope == ARG) bn->n_scope = ARGT;
en->dcl(bn,tbl);

}

}
tp = en;
Cdcl = odcl;
return bnn;

case FCT:
{ Pfct f = (Pfct)tp;

Pname class_name;
Ptable etbl;
int can_overload;
int in_class_dcl = (int)cc->not;
int just_made = 0;

if (f->f_inline) n_sto = STATIC;

if (f->argtype) {
Pname a;
int oo = const_save;

Feb 8 12:48 1985 dcl.c Page 11

cons t_s ave = 1 ; .)

}

for (a=f->argtype; a; a=a->n_list) {
Pexpr init;
if (init = a->n_initializer) {

inti= O;

}

init = init->typ(tbl);
if (a->tp->check(init->tp,ARG)==O
I I (i=can_coerce(a->tp,init->tp))) {

if (1 < i) error("%d possible conve
if (Ncoerce) {

}
else {

}

}

Pname en= init->tp->is_cl_
Pclass cl= (Pclass)cn->tp;
Pref r = new ref(DOT,init,N
init = new expr(G_CALL,r,O)
init->fct_name = Ncoerce;
init->tp = a->tp;

init->simpl ();
init->permanent = 2;
a->n_initializer = init;

error("badirT%t forA%n",init->tp,a)
DEL(init);
a->n_initializer = O;

flattenl:

}

switch (a->tp->base) {
case TYPE:

a->tp = ((Pbase)a->tp)->b_name->tp;
goto flattenl;

case CHAR:
case SHORT:
/f: error('w', "A ofT%k (becomes int)" ,a->tp->ba

a->tp = int_type;
break;

case FLOAT:
/* error('w' ,"A ofT float (becomes double)");

a->tp = double_type;
break;

}

const_save = oo;

tp->dcl(tbl); /* must be done before the type check*/

if (n_qualifier) { /* qualified name: c.f() checked above*/
if (in_class_dcl) {

error("unXQN%n",this);
Cdcl = odcl;
return O;

}
class_name = ((Pbase)n_qualifier->tp)->b_name;

J

Feb 8 12:48 1985 dcl.c Page 12

}
else {

}

etbl = ((Pclass)class_name->tp)->memtbl;

class_name = cc->not;
/* beware of local function declarations in member function
if (class_name && tbl!=cc->cot->memtbl) {

}

class_name = O;
in_class_dcl = O;

if (n_oper) check_oper(class_name);
etbl = tbl;

if (etbl=O 11 etbl->base!=TABLE) error(' i', 11N.dcl: etb1=%d" ,etbl);

switch (n_oper) {
case NEW:
case DELETE:

case 0:

switch (scope) {
case 0:
case PUBLIC:

error("%nMF",this);
}

can_overload = in_class_dcl;
break;

case CTOR:
if (f->f_virtual) {

}

error("virtual constructor");
f->f_virtual = O;

case DTOR:

default:

}

if (fct_void) n_scope = PUBLIC;
can_overload = in_class_dcl;
break;

can_overload = 1; /* all operators are overloaded*/

switch (scope) {
case FCT:
case ARG:
{ Pname nx = gtbl->insert(this,O);

n_table = O;

}
default:

}

n_tbLlist = O;
/* no break -:.~ I

nn = etbl->insert(this,O);
nn->assign();
n_table = etbl;
break;

if (Nold) {

Feb 8 12:48 1985 dcl.c Page 13

Pfct nf = (Pfct)nn->tp;
/*error('d' ,"%n: tp%t nf%t",nn,tp,nf);-l;/

if (nf->base==ANY I I f->base==ANY)

' else if (nf->base = OVERLOAD) {
Pgen g = (Pgen) nf; __)

}

nn = g->add(this,O);
string= nn->string;
if (Nold= 0) {

}
else {

}

if (f->body) {

}

if (n_qualifier) {
error(O,"badAL for overload
Cdcl = odcl;
return O;

}
else if (f->f_inline==O && n_oper=

error (• w • , "over loaded %n de

goto thth;

if (f->body==O && friend_in_class==O) error

nf = (Pfct)nn->tp;

if (f->body && nf->body) {
error("two definitions of overloaded%n",nn)
Cdcl = odcl;
return O;

}

if (f->body) goto bdbd;

goto stst;

else if (nf->base != FCT) {
error("%n declared both as%t and asF",this,nf);
£->body= O;

}
else if (can_overload) {

if (nf->check(f,OVERLOAD) I I vrp_equiv) {

/--,':error ('d' , "n1%n n2%n \n", nl, n2) ; -1~ I

}

if (f->body && n_qualifier) {
error("badAT for%n",nn);
Cdcl = odcl;
return O;

}
Pgen g = new gen(string);
Pname nl = g->add(nn,in_class_dcl);
Pname n2 = g->add(this,O);

nn->tp = (Ptype)g;
nn->string = g->string;
nn = n2;
goto thth;

Feb 8 12:48 1985 dcl.c Page 14

}
else if

}
else if

}
else if

bdbd:

if (in_class_dcl) {
error("two declarations of%n",this);
f->body = O;
Cdcl = odcl;
return O;

if (nf->body && f->body) {
error("two definitions of%n",this);
f->body = O;
Cdcl = odcl;
return O;

}

if (£->body) goto bdbd;

goto stst;

(nf->check(f,O)) {
switch (n_oper) {
case CTOR:
case DTOR:

f->s_returns = nf->s_returns;
}
error("%nT mismatch:%t and%t",this,nf,f);
f->body = O;

(nf->body && f->body) {
error("two definitions of%n",this);
f->body = O;

(f->body) {
Pname al, a2;

if (f->nargs_known && nf->nargs_known)
for (al=f->argtype, a2=nf->argtype; al; al=al->n_li

int il = al->n_initializer I I al->n_evaluat
int i2 = a2->n_initializer I I a2->n_evaluat
if (il) {

}

if (i2
&& (al->n_evaluated=O

I la2->n_evaluated=O
I I al->n_val!=a2->n_val)

)
error("twolrs for%nA%n",nn,

}
else if (i2) {

}

al->n_initializer = a2->n_initializ
al->n_evaluated = a2->n_evaluated;
al->n_val = a2->n_val;

f->f_virtual = nf->f_virtual;
f->f_this = nf->f_this;

/*fprintf(stderr, 0 bdbd %s: f %d inl %d nf %d inl %d\n",string,f,f->Linline,nf,nf->f

Feb 8 12:48 1985 dcl.c Page 15

/~'c
}
else {
thth:

}
else {

stst:

stst2:

nn->tp = f;
if (f->f_inline) {

}

if (nf->Linline==O && nn->n_used) error("%
nf->f_inline = 1;
nn->n_sto = STATIC;

else if (nf->f_inline) {

}

/-;':error("%n defined as inline but not decla
f->f_inline = 1;

goto stst2;

/* two declarations*/
Pname al, a2;
f->f_this = nf->f_this;

if (f->nargs_known && nf->nargs_known)
for (al=f->argtype, a2=nf->argtype; al; al=al->n_li

int il = al->n_initializer I I al->n_evaluat
int i2 = a2->n_initializer I I a2->n_evaluat
if (il) {

}

}

if (i2) {

}

if (al->n_evaluated=O
I I a2->n_evaluated=O
I I al->n_val!=a2->n_val)

error(11tw0Irs for%n

else if (class_name)
error("defaultA for%n",nn);

else if (i2) {

}

al->n_initializer = a2->n_initializ
al->n_evaluated = a2->n_evaluated;
al->n_val = a2->n_val;

if (f->f_inline) n_sto = STATIC;
if (n_sto) {

}
else {

}

if (nn->n_scope!=n_sto && f->f_inline=O)
error("%n both%k and%k",this,n_sto,

if (nn->n_scope=STATIC && n_scope=EXTERN)

n_scope = nn->n_scope; /* first specifier wins*/
/* n_sto = nn->n_sto;*/

}
((Pfct)nn->tp)->nargs_known = nf->nargs_known; */

/* new function: make f_this for member functions*/

just_made = 1;
if (f->f_inline) nn->n_sto = STATIC;

j'~':£printf(stderr,1'thth %s: f %d nn->tp %d inl %d\n",string,f,nn->tp,f->f_inline); 1~/

j

C

C

Feb 8 12:48 1985 dcl.c Page 16

}

if (class_name && etbl!=gtbl) {/*beware of implicit decla
Pname en= nn->n_table->t_name;

}

Pname tt = new name("this");
tt->n_scope = ARG;
tt->n_sto = REGISTER;
tt->tp = ((Pclass)class_name->tp)->this_type;
PERM(tt);
((Pfct)nn->tp)->f_this = f->f_this = tt;
tt->n_list = f->argtype;

if (f->f_virtual) {

}

switch (nn->n_scope) {
default:

case 0:

error("nonC virtua1%n".,this);
break;

case PUBLIC:

}

cc->cot->virt_count = 1;
((Pfct)nn->tp)->f_virtual = 1;
break;

/* an operator must take at least one class object or
reference to class object argument

"~ I
switch (n_oper) {
case CTOR:

if (f->nargs == 1) { /* check for X(X) and X(X&) */
Ptype t = f->argtype->tp;

clll:

}
break;

case TYPE:

switch (t->base) {
case TYPE:

t = ((Pbase)t)->b_name->tp;
goto clll;

case RPTR: /* X(X&) ? */

cxll:
t = ((Pptr)t)->typ;

switch (t->base) {
case TYPE:

t = ((Pbase)t)->b_name->tp;
goto cxll;

case COBJ:

}
break;

if (class_name == ((Pbase)t)->b_nam
((Pclass)class_name->tp)->i

case COBJ: /* X(X)? */

}

if (class_name -- ((Pbase)t)->b_name)
errorC'impossible constructor: %s (%

Feb 8 12:48 1985 dcl.c Page 17

/-;'c:error('d', "just_made %d %n" ,just_made, this);-;':/
if (just_made) {

}

case
case
case
case
case

}
break;

DTOR:
NEW:
DELETE:
CALL:
0:

nn->n_list = ((Pclass)class_name->tp)->conv;
((Pclass)class_name->tp)->conv = nn;

break;
default:

cok:;
}

/*

if (f->nargs_known != 1) {
error("ATs must be fully specified for%n",nn);

}
else if (class_name == 0) {

Pname a;

}
else {

}

switch (f->nargs) {
case 1:
case 2:

default:

}

for (a=f->argtype; a; a=a->n_list) {
Ptype tx = a->tp;

}

if (tx->base = RPTR) tx = ((Pptr)t
if (tx->is_cl_obj()) goto cok;

error("%n must take at least oneCTA",nn);
break;

error("%n must take 1 or 2As",nn);

switch (f->nargs) {
case 0:
case 1:

break;
default:

error("%n must take O or lAs",nn);

the body cannot be checked until the name
has been checked and entered into its table

if (£->body) f->dcl(nn);
break;

case FIELD:
{ Phase fld = (Pbase)tp;

char x;

._)

C

Feb 8 12:48 1985 dcl.c Page 18

}

if (cc->not=O I I cc->cot->csu==UNION) {
if (cc->not)

}

error("field in union");
else

error("field not inC");
PERM(tp);
Cdcl = odcl;
return this;

if (string) {

}

nn = tbl->insert(this,O);
n_table = nn->n_table;
if (Nold) error("twoDs of field%n",this);

tp->dcl(tbl);
if (fld->b_bits == 0) {/*force word alignment*/

int b;

}

if (bi t_of fset)
fld->b_bits = BI_IN_WORD - bit_offset;

else if (b = byte_offset%SZ_WORD)
fld->b_bits = b 1r BLIN_BYTE;

x = bit_offset += fld->b_bits;
if (BI_IN_WORD < x) {

fld->b_offset = O;
byte_offset += SZ_WORD;
bit_offset = fld->b_bits;

}
else {

}

fld->b_offset = bit_offset;
if (BI_IN_WORD = x) {

bit_offset = O;
byte_offset += SZ_WORD;

}
else

bit_offset = x;

n_offset = byte_offset;
break;

case COBJ:
{ Pclass cl= (Pclass) ((Pbase)tp)->b_name->tp;

J-;'rfprintf(stderr,"COBJ %d %s -> (%d %d)\n",tp,((Pbase)tp)->b_name->string,cl,cl->bas
if (cl->csu == ANON) { /* export member names to enclosing scope*

Pname nn;
int i;
int uindex;
Ptable mtbl = cl->memtbl;
char* p = cl->string;

if (tbl == gtbl) error('s' ,"global anonomous union");
while (*p++ != 'C'); /*UGH!!!*/
uindex = str_to_int(p);

Feb 8 12:48 1985 dcl.c Page 19

}

}

for (nn=mtbl->get_mem(i=l); nn; nn=mtbl->get_mem(++i)) {
Ptable tb = nn->n_table;

}

nn->n_table = O;
Pname n = tbl->insert(nn,O);
n->n_union = uindex;
nn->n_table = tb;

goto cde;

case VEC:
case PTR:
case RPTR:

tp->dcl(tbl);

default:
cde:

nn = tbl->insert(this,O);

n_table = nn->n_table;
/-;',error('d', "Nold %d tbl %d nn %do/on tp%t" ,Nold, tbl ,nn,nn,nn->tp) ;'ir /

if (Nold) {
if (nn->tp->base == ANY) goto zzz;
if (tp->check(nn->tp,O)) {

error("twoDs of%n;Ts:%t and%t",this,nn->tp,tp);
Cdcl = odcl;
return O;

}

if (n_sto && n_sto!=nn->n_scope)
error("%n both%k and%k",this,n_sto,nn->n_scope);

else if (nn->n_scope==STATIC && n_scope==EXTERN)
error("%n both%k and%k",this,n_sto,nn->n_scope);

else if (nn->n_scope = STATIC)
error("static%n declared twice",this);

n_sto = nn->n_sto;
n....scope = nn->n....scope;

first scope specifier wins*/

switch (scope) {
case FCT:

if (nn->n_stclass==STATIC && n....stclass==STATIC) bre
error("twoDs of%n",this);
Cdcl = odcl;
return O;

case ARG:

case 0:

error("two arguments%n",this);
Cdcl = odcl;
return O;

case PUBLIC:

}

error("twoDs ofM%n",this);
Cdcl = odcl;
return O;

Feb 8 12:48 1985 dcl.c Page 20

/* n....val */

zzz:

if (n_initializer) {

}

if (nn->n.....initializer) error("twoirs for%n",this);
nn->n....initializer = n....initializer;

if (base!= TNAME) {
Ptype t = nn->tp;

/*fprintf(stderr,"tp %d %d nn->tp %d %d\n",tp,tp->base,nn->tp,nn->tp?nn->tp->base:0)
switch (nn->n_stclass) {

}

default:
switch (t->base) {
case FCT:
case OVERLOAD:

break;
default:
{ int x = t->align();

int y = t->tsizeof();

}
}
break;

if (max_align < x) max_align = x;

while (O < bit_offset) {
byte_offset++;
bit_offset -= BI_IN_BYTE;

}
bit_offset = O;

if (byte_offset && l<x) byte_offset = ((byt
nn->n....offset = byte_offset;
byte_offset += y;

case STATIC:

}

switch (t->base) {
case FCT:
case OVERLOAD:

break;
default:

t->tsizeof ();
}
break;

/* check that size is known

{ Ptype t nn->tp;
int const_old = const_save;
bit vec_seen = O;
Pexpr init = n....initializer;

if (init) {
switch (n_scope) {
case 0:
case PUBLIC:

Feb 8 12:48 1985 dcl.c Page 21

/*

111:

if (n_stclass!=STATIC) error(nir forM%n",this);
break;

}

if (n_scope == EXTERN) break;

switch (t->base) {
case RPTR:

*/

/~i'fprintf (stderr, "RPTR init=%d\n", init) ;-Jc/
if (init) {

}
else {

}
break;

case COBJ:

init = init->typ(tbl);
nn->n_initializer = n_initializer = ref_init((Pptr)
nn->assign();

switch (nn->n_scope) {
default:

error ("unid referenceo/on", this);
break;

case ARG:
case PUBLIC:
case 0:

break;

/~'.-fprintf (stderr, "COBJ %s init=%d scope %d n_scope %d\n",string,init,scope,nn->n_sco
TEMPORARY fudge /*

·#/

to allow initialization of
global objects

if (init && st_init==0)
switch (nn->n_scope) {
case EXTERN:
case STATIC:

if (init->base -- ILIST) goto str;
}

{ Pname en= ((Pbase)t)->b_name;
Pclass cl= (Pclass)cn->tp;
Pname ctor = cl->has_ctor();
Pname dtor = cl->has_dtor();
if (dtor) {

Pstmt dls;
switch (nn->n_scope) {
case EXTERN:

if (n_sto EXTERN) break;
case STATIC:

if (st_init=0) {
if (ctor==0) error('s' ,"staticO %n
break;

}
if (vec_seen) { /* _vec_delete(vec,noe,sz,

int esz = cl->tsizeof();

Feb 8 12:48 1985 dcl.c Page 22

}
}

}
else {

}

Pexpr noe = new expr(IVAL, (Pexpr)(
Pexpr sz = new expr(IVAL,(Pexpr)esz
Pexpr arg = new expr(ELIST,dtor,O);
dtor->lval(ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,nn,arg);
arg = new call(vec_del_fct,arg);
arg->base = G_CALL;
arg->fct_name = vec_del_fct;
dls = new estmt(SM,nn->where,arg,O)

/* nn->cl.~cl(O); */
Pref r = new ref(DOT,nn,dtor);
Pexpr ee = new expr(ELIST,zero,O);
Pcall dl = new call(r,ee);
dls = new estmt(SM,nn->where,dl,O);
dl->base = G_CALL;
dl->fct_name = dtor;

if (st_dlist) dls->s_list = st_dlist;
st_dlist = dls;

if (ctor) {

/*error(' d', "ctor init=%d
Pexpr oo = (vec_seen)? nn->contents()

n_scope=%d", ini t, nn->n_scope); -;r /

switch (nn->n_scope) {
case EXTERN:

nn;

if (init==O && n_sto==EXTERN) goto ggg;
case STATIC:

default:

if (st_init=O) {

}

error('s' ,"static0%n ofC%n that has
nn->n_initializer = n_initializer =
goto ggg;

if (vec_seen && init) error("Ir forC0%n\[\]
break;

case ARG:
if (init == 0) goto ggg;

case PUBLIC:
case 0:

}

init = new texpr(VALUE,cl,O);
init->e2 = oo;
nn->n_initializer = n_initializer = init =
goto ggg;

const_save = 1;
nn->assign();
if (init) {

if (init->base--VALUE && init->tp2=cl) {
init->e2 = oo;
init = init->typ(tbl);

}
else {

Feb 8 12:48 1985 dcl.c Page 23

}

}

}
else {

}

init = init->typ(tbl);
init = class_init(nn,nn->tp,init,tb

}

init = new texpr(VALUE,cl,0);
init->e2 = oo;
init = init->typ(tbl);

if (init && st_init) {

}

switch (nn->n_scope) {
case EXTERN:
case STATIC:

if (vec_seen) { /* _vec_new(vec,no
Pname c = cl->has_ictor();
if (c = 0) error("vector o
int esz = cl->tsizeof();
Pexpr nae= new expr(IVAL,(
Pexpr sz = new expr(IVAL,(P
Pexpr arg = new expr(ELIST,
c->lval(ADDROF);

}

arg = new expr(ELIST,sz,arg
arg = new expr(ELIST,noe,ar
arg = new expr(ELIST,nn,arg
init = new call(vec_new_fct
init->base = G_CALL;
init->fct_name = vec_new_fc

{ Pstmt ist = new estmt(SM,nn->where,
static Pstmt itail = O;

}
}

if (st_ilist = 0)
st_ilist = ist;

else
itail->s_list = ist;

itail = ist;
init = O;

nn->n_initializer = n_initializer = init;
const_save = const_old;

else if (init = 0)
goto str;

/* no initializer*/

/ 1~ struct -Ir/ else if (cl->is_simple())
goto str;

else {

}
break;

/* bitwise copy ok? */
init = init->typ(tbl);
if (nn->tp->check(init->tp,ASSIGN)=0)

goto str;
else

error("cannotI%n:C %s has privateMs but no

case VEC:

Feb 8 12:48 1985 dcl.c Page 24

t = ((Pvec)t)->typ;
vec_seen = l;
goto 111;

case TYPE: -

default:
str:

t = ((Pbase)t)->b_name->tp;
goto 111;

if (init = 0) {

}

switch (n_scope) {
case ARG:
case 0:
case PUBLIC:

break;
default:

if (n_sto!=EXTERN && t->tconst(1,)
error ('w' , "unid const%n ',this);

}

break;

const_save = const_save I I n_scope==ARG I I (t->tconst() &&
nn->n_initializer = n_initializer = init = init->typ(tbl);
if (const_save) PERM(init);
nn->assign();
const_save = const_old;

switch (init->base) {
case !LIST:

new_list (ini t);
list_check(nn,nn->tp,O);
if (next_elem()) error("IrL too long");
break;

case STRING:

default:

if (nn->tp->base = VEC) {
Pvec v = (Pvec)nn->tp;
if (v->typ->base = CHAR) {
/* error('w' ,"\"char[]= string\"");;t;oJ

v->size = Pvec(init->tp)->size;
break;

}
}

{ Ptype nt = nn->tp;

tlx:

if (vec_seen) {
error("badir for vector%n",nn);
break;

}

switch (nt->base) {
case TYPE:

nt = ((Pbase)nt)->b_name->tp;
goto tlx;

case INT:

Feb 8 12:48 1985 dcl.c Page 25

case PTR:

case CHAR:)
case SHORT:

if (init->base==ICON && init->tp==long_type
error('w' ,"longir constant for%k%n"

case LONG: ~)
if (((Pbase)nt)->b_unsigned .
&& init->base=UMINUS
&& init->e2->base==ICON)

error('w' ,"negativeir for unsigned%
if (((Pbase)nt)->b_const) {

int i;

}

Neval = O;
i = init->eval();
if (Neval == 0) {

DEL(init);
nn->n_evaluated = n_evaluat
nn->n_val = n_val = i;
nn->n_initializer = n_initi

/* if (i) {

*/
}

}
else {

}

nn->n_initializer =
nn->n_val = i;
n_initializer = O;
n_val = i;

nn->n_initializer =
n_initializer = zer

goto cvcv;

{ Pfct ef = (Pfct)((Pptr)nt)->typ;
if (ef->base == FCT) {

Pfct f;
Pname n = O;
switch (init->base) {
case NAME:

f = (Pfct)init->tp;
n = Pname(init);
switch (f->base) {
case FCT:
case OVERLOAD:

}
goto ad;

case DOT:
case REF:

init = new expr(G_ADDROF,O,init);
init->tp = f;

f = (Pfct) init->mem->tp;
switch (f->base) {
case FCT:
case OVERLOAD:

n = Pname(init->mem);
init = new expr(G_ADDROF,O,init);

Feb 8 12:48 1985 dcl.c Page 26

cvcv:

/*error(1 d 1 ,"dcl

}
}

init = init->typ(tbl);
}
goto ad;

case ADDROF:
case G_ADDROF:

ad:

}

}

f = (Pfct)init->e2->tp;

if (£->base= OVERLOAD) {
Pgen g = (Pgen)f;

}

n = g->find(ef);
if (n == 0) {

error("cannot deduceT for &
}
init->e2 = n;
n_initializer = init;
n->lval(ADDROF);
goto stgg;

if (n) n->lval(ADDROF);

{ Pname en;
inti;

}

if ((cn=init->tp->is_cl_obj())
&& (i=can_coerce(nt,init->tp))
&& Ncoerce) {

if (1 < i) error("%d possible conversions forlr");
%t<-%t 11 ,nt,init->tp) ;·k/

}

else {
stgg:

Pclass cl= (Pclass)cn->tp;
Pref r = new ref(DOT,init,Ncoerce);
Pexpr c = new expr(G_CALL,r,O);
c->fct_name = Ncoerce;
c->tp = nt;
n_initializer = c;
goto stgg;

if

if

(nt->check(init->tp,ASSIGN))
error("badirT%t for%n (%tX)11 ,init->tp,this,

(init && n_stclass= STATIC) {
/* check if non-static variables are used*
/*INCOMPLETE*/
switch (init->base) {
case NAME:

if (init->tp->tconst()==O) error("v
break;

case DEREF:
case DOT:
case REF:
case CALL:
case G_CALL:

Feb 8 12:48 1985 dcl.c Page 27

ggg:

}

}
}

}
} /*switch*/

} t"- block * I
} ;-.~ default ... ~ /

} ;-.~ switch ..,1,: /

PERM(nn);
switch (n_scope) {
case FCT:

error("%k inir of static%n",init->b
}

nn->n_initializer = n_initializer;
break;

default:
{/*

px:

}
}

Pexpr ii= nn->n_initializer;*/
Ptype t = nn->tp;
if (ii) PERM(ii);*/

PERM(t);
switch (t->base) {
case PTR:
case RPTR:
case VEC:
case TYPE:
case FCT:
}

t = ((Pptr)t)->typ; goto px;
t = ((Pvec)t)->typ; goto px;
t = ((Pbase)t)->b_name->tp; goto px;
t = ((Pfct)t)->returns; goto px; /* args? */

Cdcl = odcl;
return nn;

int inline_restr; /* report use of constructs that the inline expanded cannot
handle here

*/

void fct.dcl(Pname n)
{

int nmem = TBLSIZE;
Pname a;
Pname 11;
Ptable ftbl;

Pptr cct = O;
int const_old = const_save;

int bit_old = bit_offset;
int byte_old = byte_offset;
int max_old = max_align;
int stack_old = stack_size;

if (base!= FCT) error('i' ,"fct.dcl(%d)",base);
if (body=O 11 body->memtbl) error('i' ,"fct.dcl(body=%d)",body);

_j

Feb 8 12:48 1985 dcl.c Page 28

if (n=O 11 n->base!=NAME) error(' i', 11fct.dcl(name=%d %d)" ,n, (n)?n->base:O) -

body->memtbl = ftbl = new table(nmem+3,n->n_table,O);
body->own_tbl = 1; -

max_align = AL_FRAME;
stack_size = byte_offset = SZ_BOTTOM;
bit_offset = 0;

cc->stack();
cc->nof = n;
cc->ftbl = ftbl;

switch (n->n_scope) {
case 0:
case PUBLIC:

}

cc->not = n->n_table->t_name;
cc->cot = (Pclass)cc->not->tp;
cc->tot = cc->cot->this_type;
if (Lthis=O 11 cc->tot==O) error('i' ,"fct.dc1(%n): Lthis=%d cc->
f_this->n_table = ftbl; /* fake for inline printout*/
cc->c_this = f_this;

Pname ax;
for (a=argtype, 11=0; a; a=ax) {

ax= a->n_list;

}

Pname nn = a->dcl(ftbl,ARG);
nn->n_assigned_to = nn->n_used = nn->n_addr_taken = O;
nn->n_list = O;
switch (a->tp->base) {
case CLASS:
case ENUM: /* unlink types declared in arg list*/

default:

a->n_list = dcl_list;
dcLlist = a;
break;

if (11)

else {

}

11->n_list = nn;

argtype = nn;
if (f_this) f_this->n_list = argtype;

11 = nn;
delete a;

/* handle initializer for base class constructor*/
if (n->n_oper = CTOR) {

Pname bn = cc->cot->clbase;

if (bn) {
Pclass bcl = (Pclass)bn->tp;

Feb 8 12:48 1985 dcl.c Page 29 .

}

}

Pname bnw = bcl->has_ctor();

if (bnw) {

}

Ptype bnwt = bnw->tp;
Pfct bnwf = (Pfct) ((bnwt->base==FCT)? bnwt ((Pg
Ptype ty = bnwf->f_this->tp;
Pexpr v = new texpr(VALUE,bcl,f_init);
Pexpr th= new texpr(CAST,ty,f_this);
v->e2 = new expr(DEREF,th,O);
const_save = 1;
f_init = v->typ(ftbl);
const_save = const_old;

else if (Linit)
error(O,"unXAL: noBC constructor");

else if (f_init/i
error ('unXAL: no BC 11

) ;

else if (f_init)
error(O,"unXAL: not a constructor");

PERM(returns);
if (returns->base != VOID) {

}

Pname rv = new name("_result");
rv->tp = returns;
ftbl->insert(rv,O);
delete rv;

const_save = f_inline?l:O;
inline_restr = O;
body->dcl(ftbl);
if(f_inline && inline_restr) {

Linline = O;

}

error('w', ''\"inline\" ignored, %n contains%s%s%s%s" ,n,
(inline_restr & 8) ? " loop" : 1111

,

(inline_restr & 4) ? "switch" : "",
(inline_restr & 2)? "goto" : ""
(• 1' & 1) ? " label" •. 1111

) ,· in 1ne_restr

const_save = const_old;

if (Linline) {
is f_list = new name_list (n, is f_list);

}

defined = 1;

frame_size = stack_size + SZ_TOP;
frame_size = ((frame_size-1)/AL_FRAME)')'"AL_FRAME+AL_FRAME;
bit_offset = bit_old;
byte_offset = byte_old;
max_align = max.....old;
stack_size = stack_old;

Feb 8 12:48 1985 dcl.c Page 30

cc->unstack();
}

Feb 8 12:48 1985 dcl2.c Page 1

/ 1~ %Z% %M% %I% %H% %T% 7" /
/ ;'~;'c-.':,':~•:,'r~':;'r*,'ci~-,':'i'r"J':~'(1':-;':,'c*--;'r,':,'ri':·l:,':·lr'i'r-;'c-l:·l:;~-/t'!r-l:*,':;'r-,"\;'.-;'c,'c*,'ric,':r;',4':•lr*·-l~-/:-;~i'r*ir*,'f-l:-J:,':-l~-;•:,':,'c,':,"~'c·l:,'c-.~,'r***

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

dcl2.c:

#include "cfront.h"
#include "size.h"

Pname classdef.has_ictor()

}

does this class have a constructor taking no arguments?

Pname c = has_ctor();
Pfct f;
Plist 1;

if (c -- 0) return O;

f = (Pfct)c->tp;

switch (£->base) {
default:

error('i' ,"%s: bad constructor (%k)",string,c->tp->base);

case FCT:
switch (f->nargs) {
case 0: return c;
default: if (f->argtype->n....initializer) return c;
}
return O;

case OVERLOAD:

}

for (l=((Pgen)f)->fct_list; 1; 1=1->l) {
Pname n = 1->f;
f = (Pfct)n->tp;
switch (f->nargs) {
case 0: return n;
default: if (f->argtype->n_initializer) return n;
}

return O;

gen.gen(char* s)

Feb 8 12:48 1985 dcl2.c Page 2

}

char* p = new char[strlen(s)+l];
base= OVERLOAD;
strcpy(p,s);
string= p;
fct_list = 0;

Pname gen.add(Pname n,int sig)
;,tr

add "n" to the tail of "fct_list"
(overloaded names are searched in declaration order)

detect: multiple identical declarations
declaration after use
multiple definitions

Pfct f = (Pfct)n->tp;
Pname nx;

if (f->base != FCT) error(O,"%n: overloaded non-F",n);

if (fct_list && (nx=find(f))) {

}
else {

Pfct nf = (Pfct)nx->tp;

if (nf->body) {
if (f->body) error("two definitions for overloaded%n",n);

}
else {

if (f->body) nf->body = £->body;
}

Nold= 1;

char* s = string;

if (fct_list I I sig) {
char buf[128];

}
else

char* bb = n->tp->signature(buf);
int 11 = strlen(s);
int 12 = bb-buf-1;
char* p = new char[ll+l2+1];
strcpy(p,s);
strcpy(p+ll,buf);
n->string = p;

n->string = s;

nx = new name;
*nx = i~n;
PERM(nx);
Nold= O;

Feb 8 12:48 1985 dcl2.c Page 3

}

}

if (fct_list) {
Plist gl;

}
else

for (gl=fct_list; gl->l; gl=gl->l)
gl->1 = new name_list(nx,0);

fct_list = new name_list(nx,0);
nx->n_list = 0;

return nx;

Pname gen.find(Pfct f)
{

Plist gl;

for (gl=fct_list; gl; gl=gl->1) {
Pname nx = gl->f;
Pfct fx = (Pfct)nx->tp;
Pname a, ax;

/,'-'fprintf (stderr, "find %s\n" ,nx->string); fflush(stderr) ;* /

if (fx->nargs_known != f->nargs_known) continue;

for (ax=fx->argtype, a=f->argtype; a&&ax; ax=ax->n_list, a=a->n_lis
/,'-'fprintf (stderr, "ax %d %d a %d %d\n", ax->tp, ax->tp->base, a->tp, a->tp->base); fflush

Ptype at= ax->tp;

.J

if (at->check(a->tp,0) I I vrp_equiv) goto xx;
switch (at->base) {)
case CHAR:

xx:;
}

case SHORT:
case INT:
case LONG:

if (((Pbase)at)->b_unsigned ~ ((Pbase)a->tp)->b_uns
}

}

if (ax) {

}

if (a) {

}

if (ax->n_initializer)
error("Ir makes overloaded %s() ambiguous" ,string);

continue;

if (a->n_initializer)
error("Ir makes overloaded %s() ambiguous" ,string);

continue;

if (fx->returns->check(f->returns,0))
error("two different return valueTs for overloaded %s: %ta

return nx; J

J

Feb 8 12:48 1985 dcl2.c Page 4

return O;
}

void classdef.dcl(Pname cname, Ptable tbl)
{

int nmem;
Pname p;
Pptr cct;
Phase ht;
Pname px;
Ptable btbl;
int bvirt;
Pclass bcl;
inti;

int byte_old = byte_offset;
int bit_old = bit_offset;
int max_old = max_align;
int boff;

int in_union;
int usz;

/* this is the place for r,aranoia */
if (this == 0) error (' i', '0->Cdef. dcl (%d) ", tbl);
if (base!= CLASS) errorCi 1 ,"Cdef.dcl(%d) 11 ,base);
if (cname = 0) error('i' ,"unNdC");
if (cname->tp != this) error('i' ,"badCdef");
if (tbl = 0) error(' i', "Cdef .dcl(%n,O)'' ,cname);
if (tbl->base != TABLE) error('i' , 11Cdef.dcl(%n,tbl=%d)",cname,tbl->base);

nmem = pubmem->no_of_names() + privmem->no_of_names() + pubdef->no_of_names
in_union = (csu==UNION I I csu=ANON);

if (clbase) {

}
else {

if (clbase->base != TNAME) error("BC%nU",clbase);
clbase = ((Pbase)clbase->tp)->b_name;
bcl = (Pclass)clbase->tp;
if (bcl->defined = 0) error("BCo/onU" ,clbase);
tbl = bcl->memtbl;
if (tbl->base != TABLE) error('i' ,"badBC table %d",tbl);
btbl = tbl;
bvirt = bcl->virt_count;
if (bcl->csu = UNION) error('s' ,"C derived from union");
if (in_union)

error("derived union");
else

csu = (pubbase)? bcl->csu
boff = bcl->tsizeof();
max_align = bcl->align();

btbl = O;
bvirt = O;
boff = O;

CLASS;

if (!in_union) csu = (virt_count)? CLASS STRUCT;

Feb 8 12:48 1985 dcl2.c Page 5

while (tbl !=gtbl && tbl->t_name) tbl = tbl->next; ;,•~ nested classes ..)
max_align = AL_STRUCT;

}

memtbl->set_scope(tbl);
memtbl->set_name(cname);
if (nmem) memtbl->grow((nmem<=2)?3:nmem);

cc->stack();
cc->not = cname;
cc->cot = this;

byte_offset = usz = boff;
bit_offset = O;

bt = new basetype(COBJ,cname);
bt->b_table = memtbl;
this_type = cc->tot = cct = new ptr(PTR,bt,O);
PERM(cct);
PERM(bt);

for (p=privmem; p; p=px) {
Pname m;
px = p->n_list;
if (p->tp->base==FCT) {

}
else {

Pfct f = (Pfct)p->tp;
Pblock b = f->body;
f->body = O;
switch(p->n_sto) {
case AUTO:
case STATIC:
case REGISTER:
case EXTERN:

}

error("M%n cannot be%k",p,p->n_sto);
p->n_sto = O;

m = p->dcl(memtbl,O);
if (b) {

}

if (m->tp->defined)
error("two definitions of%n",m);

else if (p->where.line!=m->where.line)
error('s' ,"previously declared%n cannot be

else
((Pfct)m->tp)->body = b;

m = p->dcl(memtbl,O);
if (m) {

if (m->n_stclass=STATIC
&& m->n_initializer)

error('s' ,"staticM%n withir",m);
if (in_union) {

}

if (usz < byte_offset) usz = byte_offset;
byte_offset = O;

)

)

(~

Feb 8 12:48 1985 dcl2.c Page 6

}
}

}
if (privmem && csu=:::STRUCT) CSU = CLASS;

for (p=pubmem; p; p=px) {
Pname m;

}

px = p->n_list;
if (p->tp->base == FCT) {

}
else {

}

Pfct f = (Pfct)p->tp;
Pblock b = f->body;
£->body= O;
switch(p->n_sto) {
case AUTO:
case STATIC:
case REGISTER:
case EXTERN:

}

error("M%n cannot be%k",p,p->n_sto);
p->n_sto = O;

m = p->dcl(memtbl,PUBLIC);
if (b) {

}

if (m->tp->defined)
error("two definitions of%n",m);

else if (p->where.line!=m->where.line)
error('s' ,"previously declared%n cannot be

else
((Pfct)m->tp)->body = b;

m = p->dcl(memtbl,PUBLIC);
if (m) {

}

if (m->n_stclass=STATIC
&& m->n_initializer)

error(' s', "staticM%n withir" ,m);
if (in_union) {

}

if (usz < byte_offset) usz = byte_offset;
byte_offset = O;

/-Jrde lete p; ·k /

/* pubmem = O;
,tr/

if (in_union) byte_offset = usz;

if (virt_count I I bvirt) {
Pname vp [100];
Pname nn;

nn = has_ctor();

/* assign virtual indices*/

if (nn=O I I nn->n_table!=memtbl)
error('s' ,"C%n with virtual but no constructor",cname);

Feb 8 12:48 1985 dc12.c Page 7

{

}

/* FUDGE vtbl
so that the name can be used in initializers

·#/
char* s = new char[2O];
sprintf(s,"%s_vtbl",string);
Pname n = new name(s);
n->tp = Pfctvec_type;
Pname nn = gtbl->insert(n,O);
nn->use();

if (virt_count = bvirt)
for (i=O; i<bvirt; i++) vp[i] = bcl->virt_init[i];

for (nn=memtbl->get_mem(i=l); nn; nn=memtbl->get_mem(++i)) {
switch (nn->tp->base) {
case FCT:
{ Pfct f = (Pfct)nn->tp;

if (bvirt) {

}
else {
vvv:

Pname vn = btbl->look(nn->string,O);
if (vn) { /* match up with base class*/

}
else

if (vn->n_table=gtbl) goto vvv;
Pfct vnf;
switch (vn->tp->base) {
case FCT:

vnf = (Pfct)vn->tp;
if (vnf->f_virtual) {

}
else

if (vnf->check(f,O)) error("virtual
f->f_virtual = vnf->f_virtual;
vp[f->f_virtual-1] = nn;

goto vvv;
break;

case OVERLOAD:
{ Pgen g = (Pgen)vn->tp;

if (f->f_virtual

}
default:

}

I I ((Pfct)g->fct_list->f->tp)->f_virtual)
error('s' ,"virtua1%n overloaded inB

break;

goto vvv;

goto vvv;

/-;'(error('d', "vvv: %n f_virtual %d virt_count %d" ,nn, f->f_virtual, virt_count) ;·k/
if (f->f_virtual) {

f->f_virtual = ++virt_count;
switch (f->f_virtual) {
case 1:
{ Pname vpn = new name("_vptr");

Feb 8 12:48 1985 dcl2.c Page 8

}
}
break;

}

}
default:

}

vpn->tp = Pfctvec_type;
(void) vpn->dcl(memtbl,PUBLIC);
delete vpn;

vp[f->f_virtual-1] = nn;

case OVERLOAD:
{ Plist gl;

Pgen g = (Pgen)nn->tp;
/-l~error('d', "overload%n bvirt-%d" ,nn,bvirt) ;*/

if (bvirt) {
Pname vn = btbl->look(nn->string,O);
Pgen g2;
Pfct f2;
if (vn) {

/*error(' d', "vn%n tp%k", vn, vn->tp->base) ;-;•~ /

}
else

if (vn->n_table == gtbl) goto ovvv;
switch (vn->tp->base) {
default:

goto ovvv;
case FGT:

f2 = (Pfct)vn->tp;
if (f2->f_virtual
I I ((Pfct)g->fct_list->f->tp)->f_virtual)

error('s' ,"virtual%n overloaded in
break;

case OVERLOAD:

}

g2 = (Pgen)vn->tp;

for (gl=g->fct_list; gl; gl=gl->1) {
Pname fn = gl->f;

}
break;

Pfct f = (Pfct)fn->tp;
Pname vn2 = g2->find(f);

if (vn2 - 0) {

}
else {

}

if (f->f_virtual) error('s'

Pfct vn2f = (Pfct)vn2->tp;
if (vn2f->f_virtual) {

f->f_virtual = vn2f
vp[f->f_virtual-1]

}

goto ovvv;

Feb 8 12:48 1985 dcl2.c Page 9

}
else {
ovvv:

for- (gl=g->fct_list; gl; gl=gl->l) {
Pname fn = gl->f;
Pfct f = (Pfct)fn->tp;

j'lrfprintf(stderr,"fn %sf %d %d %d count %d\n",fn->string,f,f->base,f->f_virtual,vir

}

}

}
}
break;

}

if (f->f_virtual) {

}

f->f_virtual = ++virt_eount;
switch (£->£_virtual) {
case 1:
{ Pname vpn = new name("_vptr");

vpn->tp = Pfctvec_type;

}
default:

}

(void) vpn->dcl(memtbl,O);
delete vpn;

vp[f->f_virtual-1] = fn;

virt_init = new Pname[virt_count];
for (i=O; i<virt_count; i++) virt_init[i] = vp[i];

for (p=pubdef, pubdef=O; p; p=p->n_list) {
char* qs = p->n_qualifier->string;
char* ms= p->string;

ok:

Pname ex;
Ptable ctbl;
Pname mx;

if (strcmp(ms,qs)==O) ms= "_etor";

for (ex= elbase; ex; ex= ((Pclass)cx->tp)->clbase) {
if (strcmp(cx->string,qs) = 0) goto ok;

}
error("publicQr %s not aBC" ,qs);
continue;

ctbl = ((Pclass)cx->tp)->memtbl;
mx = ctbl->lookc(ms,0);

if (Ebase) {
if (!Ebase->has_friend(cc->nof)) error("QdMN%n is in privat

}
else if (Epriv) {

if (!Epriv->has_friend(cc->nof)) error("QdMN%n is private",
}
if (mx = 0) {

C

c_

Feb 8 12:48 1985 dcl2.c Page 10

error("C%n does not have aM %s",cx,p->string);
p->tp = any_type;

}
else {

if (mx->t~->base==OVERLOAD)
error(s' ,"public specification of overloaded%n",mx);

p->base = PUBLIC;
}

p->n_qualifier = mx;
(void) memtbl->insert(p,O);
if (Nold) error("twoDs of CM%n",p);

}

if (bit_offset) byte_offset += SZ_WORD;
if (byte_offset < SZ_STRUCT) {

Pname n = new name("_dummy");
switch (SZ_STRUCT-obj_size) {
case 1: n->tp = char_type; break;
case 2: n->tp = char2_type; break;
case 3: n->tp = char3_type; break;
case 4: n->tp = char4_type; break;
default: n->tp = new vec(char_type,O);

Pvec(n->tp)->size = SZ_STRUCT-obj_size;
}
(void) n->dcl(memtbl,O);
delete n;

/.,':error('d', "dummy bo=%d", byte_offset) ;* /
}
int waste= byte_offset%max_align;
if (waste) { /* fudge, ensure derived class get

waste= max_align-waste;
/-;,':error('d' ,"%s: waste %d tbl=%d",string,waste,memtbl);ir/

Pname n = new name("_waste");
switch (waste) {
case 1: n->tp = char_type; break;
case 2: n->tp = char2_type; break;
case 3: n->tp = char3_type; break;
case 4: n->tp = char4_type; break;

right sizeof */

default: n->tp = new vec(char_type,O);
Pvec(n->tp)->size = waste;

}

}
(void) n->dcl(memtbl,O);
delete n;
if (byte_offset%max_align) error(' i', "failed to align %s", string);

/irerror ('d', "sz=%d a1=%d", byte_offset ,max_align) ;-;,': /
obj_size = byte_offset;
obj_align = max_align;

if (has_dtor() && has_ctor()==O)
error('w' ,"%s has destructor but no constructor",string);

if (itor==O && has_oper(ASSIGN))
error('w' ,"%s has assignment defined but not initialization (no %s(

Feb 8 12:48 1985 dcl2.c Page 11

defined = 1;

for (p=memtbl->get_mem(i=l); p; p=memtbl->get_mem(++i)) {
/* define members defined inline */

}

switch (p->tp->base) {
case FCT:
{ Pfct f = (Pfct)p->tp;

}

if (£->body) {

}
break;

f->Linline = 1;
p->n....sto = STATIC;
f->dcl(p);

case OVERLOAD:
{ Pgen g = (Pgen)p->tp;

Plist gl;

}
}

for (gl=g->fct_list; gl; gl=gl->l) {
Pname n = gl->f;

}

Pfct f = (Pfct)n->tp;
if (f->body) {

}

f->f_inline = 1;
n->n....sto = STATIC;
f->dcl (n);

Plist fl; /* define friends defined inline */
for (fl=friend_list; fl; fl=fl->l) {

Pname p = fl->f;
switch (p->tp->base) {
case FCT:
{ Pfct f = (Pfct)p->tp;

}

if (£->body && f->defined==O) {
f->Linline = 1;
p->n....sto = STATIC;
f->dcl(p);

}
break;

case OVERLOAD:
{ Pgen g = (Pgen)p->tp;

Plist gl;

}

for (gl=g->fct_list; gl; gl=gl->l) {
Pname n = gl->f;
Pfct f = (Pfct)n->tp;
if (£->body && f->defined=O) {

f->Linline = 1;
n->n_sto = STATIC;
f->dcl (n);

}
}

J

_)

J

(_

Feb 8 12:48 1985 dcl2.c Page 12

}

}

byte_offset = byte_old;
bit_offset = bit_old;
max__align = max_old;

cc->unstack();

void enumdef.dcl(Pname, Ptable tbl)
{
#define FIRST_ENUM 0

int nmem = mem->no_of_names();
Pname p;
Pname ns = O;
Pname nl;
int enum_old = enum_count;
no_of_enumerators = nmem;

enum_count = FIRST_ENUM;

if (this= 0) error('i' ,"O->enumdef.dc1(%d) 0 ,tbl);

for(p=mem, mem=O; p; p=p->n_list) {

}

Pname nn;
if (p->n_initializer) {

}

Pexpr i = p->n_initializer->typ(tbl);
Neval = O;
enum_count = i->eval();
if (Neval) error("%s",Neval);
DEL(i);
p->n...initializer = O;

p->n_evaluated = 1;
p->n_val = enum_count++;
nn = tbl->insert(p,O); /* ??? */
if (Nold) {

}
else {

}

if (nn->n_stclass -- ENUM) {
if (p->n_val != nn->n_val) error("twoDs of enum con

}
else

error("incompatibleDs of%n",nn);

nn->n_stclass = ENUM; /* no store will be allocated*/
if (ns)

nl->n_list = nn;
else

ns = nn;
nl = nn;

delete p;

mem = ns;

Feb 8 12:48 1985 dcl2.c Page 13

}
J-lr

enum_count = enum_old;
defined = 1;

void fct.dcl(Ptable tbl)

{

The argument names are placed in the memtable of the body.
This makes

f(int a) { int a; };
illegal

The argument names/types remain linked even after they are entered
into the symbol table,
but class and enum declarations are unlinked

int nmem = TBLSIZE;
Pname a;
Pname 11;
int bit_old = bit_offset;
int byte_old = byte_offset;
int max_old = max_align;
int stack_old = stack_size;

if (base != FCT) error(' i', "fct.dcl(%d)" ,base);
if (body==O 11 body->memtbl) error('i' ,"fct.dc1(%d?i",body);
if (tbl->base != TABLE) error('i' , 11fct.dcl(tbl=%d) ',tbl->base);

body->memtbl = new table(nmem,tbl,O);
body->own_tbl = 1;

max_align = AL_FRAME;
stack_size = byte_offset = SZ_BOTTOM;
bit_offset = 0;

for (a=argtype, 11=0; a; a=a->n_list) {
Pname n = a->dcl(body->memtbl,ARG);
n->n_list = 0;
switch (a->tp->base) {
case CLASS:
case ENUM:

break;
default:

}
}

if (11)
11->n_list = n;

else
argtype = n;

11 = n;

frame_size = stack_size + SZ_TOP;
frame_size = ((frame_size-1)/AL_FRAME)*AL_FRAME+AL_FRAME;
bit_offset = bit_old;
byte_offset = byte_old;
max_align = max_old;

.)

Feb 8 12:48 1985 dcl2.c Page 14

stack_size = stack_old;

Pstmt curr_loop;
Pstmt curr_switch;
Pblock curr_block;

void stmt.reached()
{

register Pstmt ss = s_list;

if (ss = 0) return;

switch (ss->base) {
case LABEL:
case CASE:
case DEFAULT:

break;
default:

error('w', "statement not reached");
/* delete unreacheable code*/
for(; ss; ss=ss->s_list) {

switch (ss->base) {
case LABEL:
case CASE:
case DEFAULT: /-;'c' reachable -;'c /

s_list = ss;
return;

case IF:
case DO:
case WHILE:
case SWITCH:
case FOR:
case BLOCK: /.," may hide a label ic/

s_list = ss;
return;

}
}
s_list = O;

}
}

bit arg_err_suppress;

Pexpr check_cond(Pexpr e, TOK b, Ptable)
{

Pname en;
if (en= e->tp->is_cl_obj()) {

Pclass cl= (Pclass)cn->tp;
inti= O;
Pname found= O;
for (Pname on= cl->conv; on; on=on->n_list) {

Pfct f = (Pfct)on->tp;
Ptype t = £->returns;

xx:
switch (t->base) {

Feb 8 12:48 1985 dcl2.c Page 15

}

case TYPE:
t = ((Pbase)t)->b_name->tp;
goto xx;

case CHAR:
case SHORT:
case INT:
case LONG:
case EOBJ:
case FLOAT:
case DOUBLE:
case PTR:

i++;
found= on;

}

switch (i) {
case 0:

case 1:
{

error("%n0 in%k expression",cn,b);
return e;

/-;'~error ('d', "cond%t<-%t", ((Pfct) found->tp)->returns, e->tp); ,-: /
Pclass cl= (Pclass)cn->tp;

}

}
default:

}

}

Pref r = new ref(DOT,e,found);
Pexpr c = new expr(G_CALL,r,O);
c->fct_name = found;
c->tp = ((Pfct)found->tp)->returns;
return c;

error("%d possible conversions for%n0 in%k expression",i,cn
return e;

e->tp->num_ptr(b);
return e;

void stmt. dcl ()
1-1~

typecheck statement "this" in scope "curr_block->tbl"

Pstmt ss;
Pname n;
Pname nn;
Pstmt ostmt = Cstmt;

for (ss=this; ss; ss=ss->s_list) {
Pstmt old_loop, old_switch;
Cstmt = ss;
Ptable tbl = curr_block->memtbl;

/*error('d' ,"ss %d%k tbl %de %d%k s %d%k s1 %d%k", ss, ss->base, tbl, ss->e, (ss->e
switch (ss->base) {
case BREAK:

Feb 8 12:48 1985 dcl2.c Page 16

if (curr_loop==O && curr_switch==O)
error("%k not in loop or switch",BREAK);

ss->reached();
break;

case CONTINUE:
if (curr_loop -- 0) error("%k not in loop",CONTINUE);
ss->reached();
break;

case DEFAULT:

case SM:

if (curr_switch = 0) {
error("default not in switch");
break;

}
if (curr_switch->has_default) error("two defaults in switch
curr_switch->has_default = ss;
ss->s->s_list = ss->s_list;
ss->s_list = O;
ss ->s->dcl ();
break;

ss->e = (ss->e !=dummy)? ss->e->typ(tbl) O;
break;

case DELETE:
{ inti;

}

ss->e = ss->e->typ(tbl);
i = ss->e->tp->num_ptr(DELETE);
if (i != P) error("nonP deleted");
break;

case RETURN:
{ Pname fn = cc->nof;

Ptype rt= ((Pfct)fn->tp)->returns;
Pexpr v = ss->e;
if (v != dummy) {

if (rt->base = VOID)
error('w', "unX return value");

else {

lx:
v = v->typ(tbl);

switch (rt->base) {
case TYPE:

rt= ((Pbase)rt)->b_name->tp;
goto lx;

case RPTR:
ss->e = ref_init((Pptr)rt,v,tbl);
break;

case COBJ:
{ Pname rv = tbl->look(11_result 11,O);

ss->e = class_init(rv,rt,v,tbl);
break;

}

Feb 8 12:48 1985 dcl2.c Page 17

}

}
}
else {

case ANY:
break;

case INT:
case CHAR:
case LONG:
case SHORT:

if (((Pbase)rt)->b_unsigned
&& v->base==UMINUS
&& v->e2->base==ICON)

error('w', "negative retured
default:

}

ss->e = v;
if (rt->check(v->tp,ASSIGN))

error("bad return valueT fo

if (rt->base != VOID) error('w'., "return valueX");
}
ss->reached();
break;

case DO: /* in DO the stmt is before the test*/
old_loop curr_loop;
curr_loop = ss;
if (ss->s->base == DCL) error(1 s 1 .,"Das onlyS in do-loop");
ss->s->dcl ();

/* tbl = curr_block->memtbl;*/
ss->e = ss->e->typ(tbl);
ss->e = check_cond(ss->e,DO,tbl);
curr_loop = old_loop;
break;

case WHILE:
inline_restr I= 8;
old_loop = curr_loop;
curr_loop = ss;
ss->e = ss->e->typ(tbl);
/-;'.-ss->e->tp->num_ptr (ss->base) ;* /
ss->e = check_cond(ss->e,WHILE,tbl);
if (ss->s->base = DCL) error('s' ,"Das onlyS in while-loop
ss->s->dcl O;
curr_loop = old_loop;
break;

case SWITCH:
{ int ne = O;

inline_restr I= 4;
old_switch = curr_switch;
curr_switch = ss;
ss->e = ss->e->typ(tbl);
ss->e->tp->num_ptr (SWITCH);-;'.-/
ss->e = check_cond(ss->e,SWITCH,tbl);
{ Ptype tt = ss->e->tp;

Feb 8 12:48 1985 dcl2.c Page 18

}

sii:

}

switch (tt->base) {
case TYPE:

tt = ((Pbase)tt)->b_name->tp; goto sii;
case EOBJ:

ne = Penum(Pbase(tt)->b_name->tp)->no_of_en
case ZTYPE:
case ANY:
case CHAR:
case SHORT:
case INT:
case LONG:

break;
default:

error('s' ,"%t switch expression",ss->e->tp)
}

ss->s->dcl O;
if (ne) { /-t: see if the number of cases is "close to"

but not equal to the number of enumerato
*/

inti= O;
Pstmt cs;
for (cs=ss->case_list; cs; cs=cs->case_.list) i++;
if (i && i!=ne) {

if (ne < i) {
ee: error('w', "switch (%t) with %d case

}
}

}
else {

switch (ne-i) {
case 1: if (3<ne) goto ee;
case 2: if (7<ne) goto ee;
case 3: if (23<ne) goto ee;
case 4: if (60<ne) goto ee;
case 5: if (99<ne) goto ee;
}

}

curr_switch = old_switch;
break;

case CASE:
if (curr_switch = 0) {

error("case not in switch");
break;

}
ss->e = ss->e->typ(tbl);
ss->e->tp->num_ptr(CASE);
{ Ptype tt = ss->e->tp;
iii:

switch (tt->base) {
case TYPE:

tt = ((Pbase)tt)->b_name->tp; goto iii;
case ZTYPE:
case ANY:

Feb 8 12:48 1985 dcl2.c Page 19

}
if (1) {

}

case CHAR:
case SHORT:
case INT:
case LONG:

break;
default:

error(' s', "%t
}

Neva!= O;
inti= ss->e->eval();
if (Neval == 0) {

Pstmt cs;

case expression",ss->e->tp);

for (cs=curr_switch->case_list; cs; cs=cs->
if (cs->case_value = i) error("cas

}

}
ss->case_value = i;
ss->case_list = curr_switch->case_list;
curr_switch->case_list = ss;

if (ss->s->s_list) error('i' ,"case%k",ss->s->s_list->base);
ss->s->s_list = ss->s_list;
ss->s_list = 0;
ss->s->dcl ();
break;

case GOTO:
inline_restr I= 2;
ss->reached();

case LABEL:
/* Insert label in function mem table;

labels have function scope.
-;'r/

n = ss->d;
nn = cc->ftbl->insert(n,LABEL);

/*Seta ptr to the mem table corresponding to the scope

*/

in which the label actually occurred. This allows the
processing of goto's in the presence of ctors and dtors

if(ss->base = LABEL) {

}

nn->n_realscope = curr_block->memtbl;
inline_restr I= 1;

if (Nold) {

}
else {

if (ss->base == LABEL) {
if (nn->n_initializer) error("twoDs of labe
nn->n_initializer = (Pexpr)l;

}
if (n != nn) ss->d = nn;

if (ss->base -- LABEL) nn->n_initializer = (Pexpr)l

)

)

Feb 8 12:48 1985 dcl2.c Page 20

case IF:

nn->where = ss->where;
}
if (ss->base == GOTO)

nn->use();
else {

}

if (ss->s->s_list) error('i' ,"label%k",ss->s->s_lis
ss->s->s_list = ss->s_list;
ss->s_list = O;
nn->assign();

if (ss->s) ss->s->dcl();
break;

{ Pexpr ee = ss->e->typ(tbl);
if (ee->base = ASSIGN) {

Neva!= O;
(void)ee->e2->eval();
if (Neval = 0) error('w' ,"constant assignment inc

}
ss->e = ee = check_cond(ee,IF,tbl);
switch (ee->tp->base) {
case INT:
case ZTYPE:
{ int i;

Neva!= O;
i = ee->eval();

/-;'-fprintf (stderr, "if (%d) %d
if (Neval == 0) {

%d\n",i,ss->e,ss->e->base);*/
Pstmt sl = ss->s_list;
if (i) {

}

}
}
}
ss->s->dcl ();

}
else {

DEL(ss->else_stmt);
ss->s->dcl ();
*ss = irss ->s;

DEL(ss->s);
if (ss->else_stmt) {

ss->else_stmt->dcl();
*ss = *ss->else_stmt;

}
else {

ss->base = SM;
ss->e = dummy;
ss->s = O;

}
}
ss->s_list = s1;
continue;

if (ss->else_stmt) ss->else_stmt->dcl();
break;

Feb 8 12:48 1985 dcl2.c Page 21

case FOR:
inline_restr I= 8;
old_loop = curr_loop;
curr_loop = ss;
if (ss->for_init) {

Pstmt fi = ss->for_init;
switch (fi->base) {
case SM:

default:

if (fi->e = dummy) {
ss->for_init = O;
break;

}

fi->dcl();
break;

case DCL:

/*error ('d', "dcl=>%k", fi->base); -Jc/

fi->dcl();

if (0)

}

switch (fi->base) {
case BLOCK:
{
/* { ... for({a} b; c) d; e}

}
}

}

=>
{ . . . { a for (; b ; c) d ; e } }

Pstmt tmp = new stmt (SM,curloc,0);
*tmp = *ss; /* tmp =for*/
tmp->for_init = 0;
*ss = *fi; /* ss = {} */
if (ss->s)

ss->s->s_list = tmp;
else

ss->s = tmp;
curr_block = (Pblock)ss;
tbl = curr_block->memtbl;
ss = tmp; /* rest of for and
break;

if (ss->e -- dummy)
ss->e = 0;

else {
ss->e = ss->e->typ(tbl);
ss->e = check_cond(ss->e,FOR,tbl);

}
if (ss->s->base = DCL) error('s', "D as onlyS in for-loop")
ss->s ->dcl O;
ss->e2 = (ss->e2 =dummy)? 0: ss->e2->typ(tbl);
curr_loop = old_loop;
break;

case DCL: /* declaration after statement*/

{ Pname n;

_j

Feb 8 12:48 1985 dcl2.c Page 22

}

{

Pexpr in;
if (curr_block->own_tbl==O) {

}

curr_block->memtbl = tbl = new table(8,tbl,O);
curr_block->own_tbl = 1;

Pname dd = ss->d;
if (dd->n_list) error(' s', "list ofDs not at head of block")
n = dd->dcl(tbl,FCT);
in= n->n_initializer;
ss->base = SM;
if (n->n_stclass = STATIC && in) {

error('s' ,"Id static not at head of block");
goto dum;

}
Pname cln = n->tp->is_cl_obj();
if (cln && ((Pclass)cln->tp)->has_dtor())

error(' s', "%n ofCo/on with destructor not at head of
if (in) {

}
else {
dum:

}
break;

n->n_initializer = O;
switch (in->base) {
case G_CALL: /*constructor?*/

{

}

Pname fn = in->fct_name;
if (fn==O I I fn->n_oper!=CTOR) goto ass;
break;

case ILIST:
error(' s', "Ir list not at head of block");
goto dum;

case STRING:

default:
ass:

}

n->n_initializer = in; /*constant*/
goto dum;

in= new expr(ASSIGN,n,in);

ss->e = in;

ss->e = dummy;

/* collect all the contiguous DCL nodes from the
head of the s_list. find the next statement

-;'cf

int non_trivial = O;
int count= O;
Pname tail= ss->d;
for (Pname nn=tail; nn; nn=nn->n_list) {

/* find tail;
detect non-trivial declarations

*/

Feb 8 12:48 1985 dcl2.c Page 23

/*error('d',"in %d",in);;~/

}

count++;
if (nn->n_list) tail= nn->n_list;
Pname n = tbl->look(nn->string,O);
if (n && n->n_table=tbl) non_trivial = 2;
if (non_trivial) continue;
Pexpr in= nn->n_initializer;

if (in== 0) continue;
if (non_trivial = 0) non_trivial = 1;
if (nn->n_stclass==STATIC) {

}

non_trivial = 2;
continue;

switch (in->base) {
case ILIST:
case STRING:

}

non_trivial = 2;
continue;

Pname cln = nn->tp->is_cl_obj();
if (cln = 0) continue;
if (((Pc lass) cln->tp) ->has_dtor ()) non_trivial = 2.;

/;'-:error('d', "non_trivial %d" ,non_trivial); 'I-:/

while(ss->s_list && ss->s_list->base==DCL) {
Pstmt sx = ss->s_list;
tail = tail->n_list = sx->d; /'le add to tail ·k/
for (nn=sx->d; nn; nn=nn->n_list) {

/* find tail;

*/
count++;

detect non-trivial declarations

if (nn->n_list) tail= nn->n_list;
Pname n = tbl->look(nn->string,O);
if (n && n->n_table=tbl) non_trivial = 2;
if (non_trivial) continue;
Pexpr in= nn->n_initializer;
if (in= 0) continue;
if (non_trivial == 0) non_trivial = 1;
if (nn->n_stclass=STATIC) {

}

non_trivial = 2;
continue;

switch (in->base) {
case ILIST:
case STRING:

}

non_trivial = 2;
continue;

Pname cln = nn->tp->is_cl_obj();
if (cln == 0) continue;
if (((Pclass)cln->tp)->has_dtor()) non_triv

}
ss->s_list = sx->s_list;

/* delete sx; */
}

)

Feb 8 12:48 1985 dcl2.c Page 24

Pstmt next_st = ss->s_list;
/*error('d' ,"non_trivial %d curr_block->own_tbl %d inline_restr %d",non_trivial,curr

if (non_trivial=2 /*must*/
11 (non_trivial=l /-;'r might */

) {

}

&& (curr_block->own_tbl==O
I I inline_restr&3

/* just as well*/
/-lr label seen -;'r /)

)

/* Create a new block,

*/

put all the declarations at the head,
and the remainder of the slist as the
statement list of the block.

ss->base = BLOCK;

/* check that there are no redefinitions since
"real" (user-written, non-generated) block

,~ /
for(nn=ss->d; nn; nn=nn->n_list) {

Pname n;

}

if(curr_block->own_tbl
&& (n=curr_block->memtbl->look(nn->string,
&& n->n_table->real_block=curr_block->mem

error("twoDs of%n",n);

/* attach the remainder of the s_list
as the statement part of the block.

*/
ss->s = next_st;
ss->s_list = O;

/* create the table in advance, in order to se
real_block ptr to that of the enclosing tab

*I
ss->memtbl = new table(count+4,tbl,O);
ss->memtbl->real_block = curr_block->memtbl->real_b

((Pblock)ss)->dcl(ss->memtbl);

else { /* to reduce the number of symbol tables,
do not make a new block,

*/

instead insert names in enclosing block,
and make the initializers into expression
statements.

Pstmt sss = ss;
for(nn=ss->d; nn; nn=nn->n_list) {

Pname n = nn->dcl(tbl,FCT);
/irerror('d' ,"%n->dcl(%d) -> %d init %d sss=%d",nn,tbl,n,n->n_initializer,sss);ir/

if (n == 0) continue;
Pexpr in= n->n_initializer;
n->n_initializer = O;
if (ss) {

sss->base = SM;
ss = O;

Feb 8 12:48 1985 dcl2.c Page 25

}

Cstmt
}

}
else

sss = sss->s_list = new estmt(SM,ss
if (in) {

switch (in->base) {
case G_CALL: /*constructor?*/
{

Pname fn = in->fct_name;
if (fn && fn->n_oper==CTOR)

}
default:

in= new expr(ASSIGN,n,in);
}
sss->e = in->typ(tbl);

}
else

sss->e = dummy;
}
ss = sss;
ss->s_list = next_st;

}
break;

}

case BLOCK:
((Pblock)ss)->dcl(tbl);
break;

case ASM:

default:

}

ostmt;

/* save string*/
break;

error('i' ,"badS(%d %d)",ss,ss->base);

void block.dcl(Ptable tbl)

Note: for a block without declarations memtbl denotes the table
for the enclosing scope.
A function body has its memtbl created by fct.dcl().

int bit_old = bit_offset;
int byte_old = byte_offset;
int max_old = max_align;
Pblock block_old = curr_block;

if (base != BLOCK) error(' i', 11block.dcl(%d)" ,base);

curr_block = this;

Feb 8 12:48 1985 dcl2.c Page 26

if (d) {
Pname n;
own_tbl = 1;
if (memtbl = 0) {

}
else

int nmem = d->no_of_names()+4;
memtbl = new table(nmem,tbl,0);
memtbl->real_block = this;
/* this is a "real" block from the

source text, and not one created by DCL's
inside a block.*/

if (memtbl != tbl) error('i',"block.dcl(?)");

Pname nx;
for (n=d; n; n=nx) {

nx = n->n_list;
n->dcl(memtbl,FCT);
switch (n->tp->base) {
case CLASS:
case ANON:
case ENUM:

break;
default:

delete n;
}

}
}
else

if (s) {

memtbl = tbl;

Pname odcl = Cdcl;
Pname m;
int i;

s->dcl();

if (own_tbl)
for (m=memtbl->get_mem(i=l); m; m=memtbl->get_mem(++i)) {

Ptype t = m->tp;

11:

if (t = 0) {
if (m->n_assigned_to = 0) error('w' ,"undefined lab
if (m->n_used = 0) error('w' ,"label %snot used",
continue;

}

switch (t->base) {
case TYPE: t=((Pbase)t)->b_name->tp; goto 11;
case CLASS:
case ENUM:
case FCT:
case VEG : continue;
}

Feb 8 12:48 1985 dcl2.c Page 27

}

if (m->n.._addr_taken = 0) {

}
Cdcl = odcl;

}

d = O;

if (m->n.._used) {

}
else {

}

if (m->n.._assigned_to) {
}
else {

}

switch (m->n.._scope) {
case FCT:

Cdcl = m;
error(1w 1 ,

11%n used but not

if (m->n_assigned_to) {
}
else {

}

switch (m->n.._scope) {
case ARG:

if (m->string[O]=='_' && m­
case FCT:

Cdcl = m·
(1 1 "% d") error w, on not use ,m;

}

if (bit_offset) byte_offset += SZ_WORD;
if (stack_size < byte_offset) stack_size = byte_offset;
bit_offset = bit_old;
byte_offset = byte_old;
curr_block = block_old;

int name.no_of_names()
{

}

register inti= O;
register Pname n;
for (n=this; n; n=n->n.._list) i++;
return i;

static Pexpr lvec[20], *111;
static Pexpr list_back = O;
#define list_put_back(x) list_back = x;

void new_list(Pexpr lx)
{

if (lx->base != !LIST) error('i' , 11IrLX11
);

111 = lvec;

C

Feb 8 12:48 1985 dcl2.c Page 28

111++;
-;'.-111 = lx->el;

}

Pexpr next_elem()
{

}

Pexpr e;
Pexpr lx;

if (111 = lvec) return O;

lx = -;'.-111;

if (list_back) {

}

e = list_back;
list_back = O;
return e;

if (lx == 0) {
111- - ;
return O;

}

switch (lx->base) {
case ELIST:

default:

}

e = lx->el;
*111 = lx->e2;
switch (e->base) {
case ILIST:

111++;
-;\-111 = e->el;
return (Pexpr)l;

case ELIST:
error("nestedEL");
return O;

default:
return e;

}

error('i' ,"IrL");

void list_check(Pname nn, Ptype t, Pexpr il)
/*

/* end of list*/

/* start of new !LIST*/

see if the list 111 can be assigned to something of type t
nn is the name of the variable for which the assignment is taking place.
il is the last list element returned by next_elem()

Pexpr e;
bit 1st= O;
int i;
Pc lass cl;

Feb 8 12:48 1985 dc12.c Page 29

zzz:

switch (
case 0:
case 1:
default:
}

(int)il) {
break;
1st= 1; break;
list_put_back(il);

switch (t->base) {
case TYPE:

t = ((Pbase)t)->b_name->tp;
goto zzz;

case VEC:
{ Pvec v = (Pvec)t;

Ptype vt = v->typ;

if (v->size) { /* get at most v->size initializers*/

xsw:;
}
else {

xx:

for (i=O; i<v->size; i++) {/*check next list element type
ee:

vtz:

e = next_elem();

/* "too few" initializers are legal -J: /

if (e == 0) goto xsw;

switch (vt->base) {
case TYPE:

vt = ((Pbase)vt)->b_name->tp;
goto vtz;

case VEG:
case COBJ:

list_check(nn,vt,e);
break;

default:
if (e = (Pexpr)l) {

error("unXIrL");
goto ee;

}
if (vt->check(e->tp,ASSIGN))

error("badirT for%n:%t (%tX)",nn,e-
}

}
if (1st && (e = next_elem())) error ("end of IrLX after ve

/* determine v->size */
i = O;

while (e=next_elem()) {
i++;

vtzz:
switch (vt->base) {
case TYPE:

/* get another initializer

vt = ((Pbase)vt)->b_name->tp;
goto vtzz;

case VEC:
case COBJ:

)

J

Feb 8 12:48 1985 dcl2.c Page 30

}
break;

}

default:

}
}
v->size = i;

list_check(nn,vt,e);
break;

if (e == (Pexpr)l) {
error("unXIrL");
goto xx;

}
if (vt->check(e->tp,ASSIGN))

error("badirT for%n:%t (%tX)",nn,e-

case CLASS:
cl= (Pclass)t;
goto ccc;

case COBJ: /* initialize members*/
cl= (Pclass)((Pbase)t)->b_name->tp;

ccc:
{ Ptable tbl = cl->memtbl;

Pname m;

if (cl->clbase) {
list_check(nn,cl->clbase->tp,0);

}
for (m=tbl->get_mem(i=l); m; m=tbl->get_mem(++i)) {

Ptype mt= m->tp;

dd:

mtz:

switch (mt->base) {
case FCT:
case OVERLOAD:
case CLASS:
case ENUM:

continue;
}
if (m->n_stclass == STATIC) continue;
/* check assignment to next member*/

e = next_elem();
if (e = 0) break;

switch (mt->base) {
case TYPE:

mt= ((Pbase)mt)->b_name->tp;
goto mtz;

case CLASS:
case ENUM:

break;
case VEC:
case COBJ:

list_check(nn,m->tp,e);
break;

default:

Feb 8 12:48 1985 dcl2.c Page 31

}
default:

}
}

}
}

if (e = (Pexpr)l) {
error("unXIrL");
goto dd;

}
if (mt->check(e->tp,ASSIGN))

error("badirT for %s .%n:%t (%tX)",cl->stri

if (1st && (e = next_elem())) error("end of IrLX afterO");
break;

e = next_elem();

if (e = 0) {

}

error("noir forO");
break;

if (e == (Pexpr)l) {
error("unXIrL");
break;

}
if (t->check(e->tp,ASSIGN))

error("badirT for%n:%t (%tX)''_~nn,e->tp, t);
if (1st && (e = next_elem())) error('end of IrLX afterO");
break;

C

C.

Feb 8 12:48 1985 del.c Page 1

/* %Z% %M% %I% %H% %T% */
;,':*,'r-;':,•~·l(*-l~;tr-;'~**'~'~,'r-ir*4'rt~t'r,'c,'r7~*1~,'r,',*'''""''r*#~·-lr"/:-;'~,'(*-;~·l:-;'r·lr,~-,~,'t-Jr-;':-;':****'~'':1c-J~-;~·lc-/r-/r,~

G++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc.
All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

del.c:

walk the trees to reclaim storage

#include "cfront.h"

void name. del ()
{
/-;':fprintf (stderr, "%d->name. del: %s %d\n", this, (string) ?string:"?", base); fflush(stder

Pexpr i = n_initializer;

}

NFn++;
DEL(tp);
if(i && i!=(Pexpr)l) DEL(i);
n_tbl_list = name_free;
name_free = this;

void type.del()
{
;,'.'fprintf(stderr, 11DEL(type=%d %d)\n" ,this,base) ;*/

permanent= 3; /* do not delete twice*/
switch (base) {
case TNAME:
case NAME:

error(' i', "%d->T. del (): N %s %d", this, ((Pname)this)->string, base);
case TYPE:
{ Phase b = (Pbase)this;

break;
}
case FCT:
{ Pfct f = (Pfct) this;

DEL(f->returns);
/*DEL(f->argtype);

}
case
{

break;

VEC:
Pvec v = (Pvec)
DEL(v->dim);
DEL(v->typ);
break;

this;

Feb 8 12:48 1985 del.c Page 2

}
case PTR:
case RPTR:
{ Pptr p = (Pptr) this;

DEL(p->typ);
break;

}
1•~ case CLASS:

{ Pclass cl= (Pclass)thls;
memtbl. del ();
break;

}
case ENUM:
case OVERLOAD:

break;*/
}

delete this;
}

void expr .del()
{
/'~fprintf(stderr,"DEL(expr=%d: %d %d %d)\n",this,base,el,e2); fflush(stderr);'~/

permanent= 3;
switch (base) {
case !VAL:

if (this -- one) return;
case ICON:
case FCON:
case CCON:
case THIS:
case STRING:
case TEXT:
case FVAL:

goto dd;
case DUMMY:
case ZERO:
case NAME:

return;
case CAST:
case SIZEOF:
case NEW:
case VALUE:

DEL(tp2);
break;

case REF:
case DOT:

DEL(el);
DEL(mem);
goto dd;

case QUEST:
DEL(cond);
break;

case ICALL:
delete il;
goto dd;

j

C_.

C

C

Feb 8 12:48 1985 del. c Page 3

}

DEL(el);
DEL(e2);

/''- DEL(tp) ;.,'-/
dd:

el= expr_free;
expr_free = this;
NFe++;

}

void stmt. del ()
{
/-;'"fprintf(stderr, "DEL(stmt %d %s)\n", this ,keys [base]); fflush(stderr) ;.,'-/

permanent= 3;

dd:

}

switch (base) {
case SM:
case WHILE:
case DO:
case DELETE:
case RETURN:
case CASE:
case SWITCH:

DEL(e);
break;

case PAIR:
DEL(s2);
break;

case BLOCK:
DEL(d);
DEL(s);
if (own_tbl) DEL(memtbl);
DEL(s_list);
goto dd;

case FOR:

case IF:

}

DEL(e);
DEL(e2);
DEL (for_ini t) ;
break;

DEL(e);
DEL(else_stmt);
break;

DEL(s);
DEL(s_list) ;

s_list = stmt_free;
stmt_free = this;
NFs++;

void table.del()
{

register i;

Feb 8 12:48 1985 del.c Page 4

j'#fprintf(stderr,"tbl.del %s %d size=%d used=%d)\n", (t_name)?t_narne->string:"?", th .)

}

for (i=l; i<free_slot; i++) {
Pnarne n = entries[i]·
if (n==O) error (' i', '\able. del (0) ");
switch (n->n_scope) {

}

case ARG:
case ARGT:

break;
default:
{ char* s = n->strin?;

if (s && (s(O]!='_ I I s[l] !='X')) deletes;
/* delete n; -;'r/

}
}

n->del();

delete entries;
delete hashtbl;
delete this;

C.

Feb 8 12:48 1985 error.c Page 1

/* %Z% %M% %I% %H% %T% */
/"~-;~-;'r·l:'1c,~,':;'c**,':,t:,'(·lc,',,1~,•r*,~,1,"ir,':*-,'c*,'';'r1;"(;':,':*,"c7~'i~"lt-lr*.,~*,':·lt·lr,~••,*,':,'(,':,':*,'r*~'c,'r,':-!c,'(-;'~,,,,,r-Jr;':-;'(•lt,':,~-):,'r-;'c.,'t,'t,'c**

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

error.c

write error messages

Until scan_started != 0 no context can be assumed

#include "size.h"
#include "cfront.h"

int error_count;
static int no_of_warnings;
char scan_started;

#define ERRTRACE 20

static char ~': abbrev_tbl ['Z '+1];

extern void error_init();
void error_init()
{

static char errbuf[BUFSIZ];
setbuf(stderr,errbuf);

abbrev_tbl ['A'] = "argument";
abbrev_tbl ['B'] = " base";
abbrev_tbl ['C'] = 11 class 1

;

abbrev_tbl ['D'] = "declaration";
abbrev_tbl ['E'] = " expression";
abbrev_tbl ['F'] = II function";
abbrev_tbl ['I'] = "initialize";
abbrev_tbl ['J'] = " J".
abbrev_tbl ['K'] = ti K" ~
abbrev_tbl ['L'] = 11 list 11

;

abbrev_tbl ['M'] = "member";
abbrev_tbl ['N'] = t1 name";
abbrev_tbl ['0'] = 11 object";
abbrev_tbl['p'] = II pointer";
abbrev_tbl ['Q'] = 11 qualifie 11

;

abbrev_tbl ['R'] = ti RII.
abbrev_tbl ['S'] = 11 st~ternent 11

;

abbrev_tbl ['T'] = "type";
abbrev_tbl ['U'] = II undefined";
abbrev_tbl['V'] = "variable";

Feb 8 12:48 1985 error.c Page 2

}

abbrev_tbl ['W'] = " W";
abbrev_tbl ['X'] = " expected";
abbrev_tbl['Y'] = "Y";
abbrev_tbl['Z'] =" Z";

#define INTERNAL 127

void ext(int n)
/*

remove temp_file and exit
-!(I
{
/* if (n==INTERNAL) abort();*/

exit(n);
}

static void print_loc()
{

class loc * s1 = (Cstmt)? &Cstmt->where: O;
class loc * dl = (Cdcl)? &Cdcl->where O;

if (s1 && dl && s1->file=dl->file)
if (sl->line<=dl->line)

dl->put(out_file);
else

s1->put(out_file);
return;

}

if (sl) {
if (s1->file = curloc.file)

s1->put(out_file);
return;

}
}

if (dl) {
if (dl->file = curloc.file)

dl->put(out_file);
return;

}
}

curloc.put(out_file);
}

static void print_context()
{

putc('\n' ,out_file);

static char in_error = O;
loc dummy_loc;

{

{

{

/ .. -

"-·

C

Feb 8 12:48 1985 error.c Page 3

void yyerror (char,'.- s)
{

error(O,&dummy_loc,s);
}

int error(char* s ...)
{

register,'.- a = (inti.-)&s;
return error(O,&dummy_loc,

}
s, a[l], a[2], a[3], a[4], a[5], a[6], a[7], a[8

int error(int t, char-.'.-s ...)
{

register* a= (int*)&s;
return error(t,&dummy_loc,

}
s, a[l], a[2], a[3], a[4], a[5], a[6], a[7], a[8

int error(loc* 1, char* s ...)
{

register* a= (int*)&s;

}
return error (0, 1, s, a [1] , a [2] , a [3] , a [4] , a [5] , a [6] , a [7] , a [8]) ;

int error(int t, loc* le, char* s ...)
/*

*/
{

"int" not "void" because of "pch" in lex.c
subsequent arguments fill in %mumble fields

legal error types are:
'w'
'd'
ts'
0
'i'
't'

warning (not counted in error count)
debug
"not implemented" message
error
internal error (causes abort)
error while printing error message

FILE* of= out_file;
int c;
char format [3] ; /* used for "% mumble" sequences -1.-/

int* a= &t;
int argn = 3;

/* check variable argument passing mechanism*/
int si = sizeof(int);
int scp = sizeof(char*);
int ssp = sizeof(Pname);

if (si!=ssp I I si!=scp I I ssp!=scp I I &a[2]!=(int*)&s) {
fprintf(stderr,

"\n%s: this c can't handle varargs (%d,%d,%d -- %d %d)\n",
prog_name, si, scp, ssp, &a[l], &s);

ext(l2);
}

if (t -- 'w' && warn=O) return O;

Feb 8 12:48 1985 error.c Page 4

if (in_error++)
if (t!='t' I I 4<in_error) {

fprintf (stderr, "\nUPS ! , error while handling error\n");
ext(l3);

}
else if (t -- 1 t 1

)

t = Ii I;

out_file = stderr;
if (!scan_started)

/'i\-fprintf(out_file, "error during %s initializing: 11 ,prog_name) ;'i\-/

putch('\n');
else if (t='t')

putch(' \n');
else if (le!= &durnmy_loc)

lc->put(out_file);
else

switch (t) {
case 0:

case 'w'

pr int_loc ();

fprintf(out_file,"error: ");
break;

no_of_warnings++;
fprintf(out_file,"warning: ");
break;

case 's':

case 'i'

}

fprintf(out_file,"sorry, not implemented: ");
break;

if (error_count) {

}
else

fprintf(out_file,"sorry, %s cannot recover from earlier err
ext (INTERNAL);

fprintf(out_file,"internal %s error: ",prog_name);
break;

while (c = *s++) {
if ('A'<=c && c<= 1 Z1 && abbrev_tbl['A'])

putstrin?(abbrev_tbl[c]);
else if (c == '%)

switch (c = *s++) {
case 'k':
{ TOK x = a[argn];

}

if (O<x && x<MAXTOK && ke7.s[x))
fprintf(out_file,' %s ',keys[x]);

else
fprintf(out_file," token(%d)",x);

argn++;
break;

case 't': /'i'-: Ptype ;\-/

J

J

Feb 8 12:48 1985 error.c Page 5

}

Ptype tt = (Ptype)a[argn];
if (tt) {

}
break;

TOK pm= print_mode;
extern int ntok;
int nt = ntok;
print_mode = ERROR;
fprintf(out_file," ");
tt->dcl_print(O);
print_mode = pm;
ntok = nt;
argn++;

case 'n' /* Pname */
{ Pname nn = (Pname)a[argn];

}
default:

}
else

}

if (nn) {

}
else

argn++;
break;

TOK pm= print_mode;
print_mode = ERROR;
fprintf(out_file," 11

);

nn->print ();
print_mode = pm;

fprintf(out_file," ?");

format [0] = '% 1
;

format[l] = c;
format[2] = 1 \0 1

;

fprintf(out_file,format,a[argn++]);
break;

putch(c);

if (!scan_started) ext(4);

switch (t) {
case 'd':
case 't':
case 'w'

put ch ('\n');
break;

default:
print_context();

}
fflush(stderr);

/* now we may want to carry on*/

out_file = of;

switch (t) {

Feb 8 12:48 1985 error.c Page 6

}

case 't':
if (--in_error) return O;

case 'i':

case 0:
case's'

}

ext(INTERNAL);

if (MAXERR<++error_count) {

}

fprintf(stderr,"Sorry, too many errors\n");
ext(7);

in_error = O;
return O;

C

C

C

Feb 8 12:48 1985 expand.c Page 1

/* %Z% %M% %I% %H% %T% */
/ *;'r"4'r,'(;':-;':,':-;':-.1:*Yr,'c,'r,'r**-,'(-;'c;'t,':*,'c•l(*"i'r?'(*-l~,'r?'r,tc,'t-Jr,'c7~,'r-lc .. l,-;'r,'c,'c·lr,'r7r-;'c;'c-Jc*''.·lc;'c*,~·l,,',,'c*·l:,':;'c;'r7c,'~;~-Jr

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

expand.c:

expand inline functions

#include "cfront.h"

char* temp(char* vn, char* fn, char* en)
I*

}

make the name of the temporary: _X_vn_fn_cn

if (vn[O] !='_' 11 vn[l] !='X') {
int vnl = strlen(vn);
int fnl = strlen(fn);

}
else

int cnl = (cn)?strlen(cn):O;
char* s = new char[vnl+fnl+cnl+6];

s[O] = '_';
s[lJ = 'X';
strcpy(s+2,vn);
s [vnl+2] = ' ' ;
strcpy(s+vnl+3,fn);
if (cnl) {

s[vnl+fnl+3] = '_';
strcpy(s+vnl+fnl+4,cn);

}
returns;

return vn;

Pname dcl_local(Ptable scope, Pname an, Pname fn)
{

if (scope= 0) {
error('s' ,"cannot expand inlineF needing temporary variable in nonF
return an;

}
if (an->n_stclass = STATIC) error('s' ,"static%n in inlineF",an);
Pname en= fn->n_table->t_name;
char* s = temp(an->string,fn->string,(cn)?cn->string:O);
Pname nx = new name(s);

/;'-error ('d' , "%n: %d->dcl_local (%s)", fn, scope, s); 1~ I

Feb 8 12:48 1985 expand.c Page 2

}

nx->tp = an->tp;
PERM(nx->tp);
nx->n_used = an->n_used;
nx->n_assigned_to = an->n_assigned_to;
nx->n_addr_taken = an->n_addr_taken;
Pname r = scope->insert(nx,0);
delete nx;
return r;

Pstmt stmt.expand()
j-i,

*/
{

copy the statements with the formal arguments replaced by ANAMES

called once only per inline function
expand_tbl!=0 if the function should be transformed into an expression
and expand_tbl is the table for local variables

if (this == 0) error(1 i', "0->stmt. expand() for%n" .,expand_fn);
/-i•error ('d', "stmt %d: %k s=%d e=%d 1=%d", this, base, s, e, s_list); -;'. /

if (memtbl) { /* check for static variables*/
register Ptable t = memtbl;

}

register inti;
for (register Pname n = t->get_mem(i=l); n; n=t->get_mem(++i))

if (n->n_stclass = STATIC) {

}

error ('s' , "static%n in inlineF"., n);
n->n_stclass = AUTO;

if (expand_tbl) {
Pexpr ee;

j-i, make expression * I

if (memtbl && base!=BLOCK) {/*temporaries*/
inti;
Pname n;
Ptable tbl = memtbl;
for (n = tbl->get_mem(i=l); n; n=tbl->get_mem(++i)) {

/*error ('d' , "%n: %n", expand_fn,n); 1• I

}
}

switch (base) {
default:

Pname nn = dcl_local(scope,n,expand_fn);
nn->base = NAME;
n->string = nn->string;

error ('s' , "%kS in inline%n", base, expand_fn);
return (Pstmt)dummy;

case BLOCK:
if (s_list) {

ee = (Pexpr) s_list->expand();
if (s) {

)

C

C.

Feb 8 12:48 1985 expand.c Page 3

}

}

}

ee = new expr(CM, (Pexpr)s->expand(), ee);
PERM(ee);

return (Pstmt) ee;

if (s) return s->expand();

return (Pstmt) zero;

case PAIR:
ee = s2? (Pexpr)s2->expand() : O;
ee = new expr(CM, s?(Pexpr)s->expand():O, ee);
if (s_list) ee = new expr(CM, ee, (Pexpr)s_list->expand());
PERM(ee);
return (Pstmt) ee;

case RETURN:

case SM:

case IF:

s_list = 0;
return (Pstmt) e->expand();

ee = (e==O I I e->base==DUMMY)? zero: e->expand();
if (s_list) {

}

ee = new expr(CM, ee, (Pexpr)s_list->expand());
PERM(ee);

return (Pstmt)ee;

{ Pexpr qq = new expr(QUEST,(Pexpr)s->expand(),O);
qq->cond = e->expand();

}
}

qq->e2 = else_stmt? (Pexpr)else_stmt->expand() : zero;
if (s_list) qq = new expr(CM,qq,(Pexpr)s_list->expand());
PERM(qq);
return (Pstmt)qq;

switch (base) {
default:

if (e) e = e->expand();
break;

case PAIR:
if (s2) s2 = s2->expand();
break;

case BLOCK:
break;

case FOR:
if (for_init) for_init = for_init->expand();
if (e2) e2 = e2->expand();
break;

case LABEL:
case GOTO:
case RETURN:

Feb 8 12:48 1985 expand.c Page 4

}

case BREAK:
case CONTINUE:

error('s' ,"%kS in inline%n",base,expand_fn);
}

if (s) s = s->expand();
if (s_list) s_list = s_list->expand();
PERM (this) ;
return this;

Pexpr expr.expand()
{

if (this= 0) error('i',"expr.expand(O)");
/ 1·fprintf (stderr, "%s (): expr %d: b=%d e1=%d e2=%d\n", expand_fn->string, this, base, el,

switch (base) {
case NAME:

if (expand_tbl && ((Pname)this)->n_scope==FCT) {
Pname n = (Pname)this;

}
case DUMMY:
case ICON:
case FCON:
case CCON:
case IVAL:
case FVAL:
case LVAL:
case STRING:
case ZERO:
case SIZEOF:
case TEXT:
case ANAME:

break;
case ICALL:

char* s = n->string;
if (s[O]='-' && s[l]='X') break;
Pname en= expand_fn->n_table->t_name;
n->string = temp(s,expand_fn->string,(cn)?cn->string:O);

if (expand_tbl && el=O) {

}
break;

case QUEST:

Pname fn = il->fct_name;
Pfct f = (Pfct)fn->tp;
if (f->returns==void_type && fn->n_oper!=CTOR)

error('s' ,"non-value-returning inline%n called in v
else

error("inline%n called before defined".,fn);

cond = cond->expand();
default:

if (e2) e2 = e2->expand();
case REF:
case DOT:

if(el) el= el->expand();
break;

case CAST:

c,

C

C

C

Feb

}

bit
/'Ir

*/
{

8 12:48 1985 expand.c Page 5

PERM(tp2);
el= el->expand();
break;

}

PERM(this);
return this;

expr.not_simple()

is a temporary variable needed to hold the value of this expression
as an argument for an inline expansion?
return 1; if side effect
return 2; if modifies expression

int s;
;-.'rerror ('d' , "not_simple%k", base);-;'(/

switch (base) {
default:

return 2;
case ZERO:
case IVAL:
case FVAL:
case ICON:
case CCON:
case FCON:
case STRING:
case NAME: /* unsafe (alias)*/
case SIZEOF:
case G_ADDROF:
case ADDROF:

return O;
case CAST:
case DOT:
case REF:

return el->not_simple();
case UMINUS:
case NOT:
case COMPL:

return e2->not_simple();
case DEREF:

s = el->not_simple();
if (l<s) return 2;
if (e2==0) returns;
s I= e2->not_simple();
returns;

case MUL:
case DIV:
case MOD:
case PLUS:
case MINUS:
case LS:
case RS:
case AND:

Feb 8

}

12:48

case
case
case
case
case
case
case
case
case
case
case

1985 expand.c Page 6

OR:
ER:
LT:
LE:
GT:
GE:
EQ:
NE:
ANDAND:
OROR:
CM:

s = el->not_simple();
if (l<s) return 2;
s I= e2->not_simple();
returns;

case QUEST:
s = cond->not_simple();
if (l<s) return 2;
s I= el->not_simple();
if (l<s) return 2;
s I= e2->not_simple();
returns;

case ANAME:

bok:
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

}

if (curr_icall) {

aok:

}

Pname n = (Pname)this;
int argno = n->n_val;
Pin il;
for (il=curr_icall; il; il=il->i_next)

if (n->n_table == il->i_table) goto aok;
goto bok;

return (il->local[argno]) ? 0: il->arg[argno]->not_simple(

error('i' ,"expand aname%n",this);
VALUE:
NEW:
CALL:
G_CALL:
ICALL:
ASSIGN:
INCR:
DECR:
ASPLUS:
ASMINUS:
ASMUL:
ASDIV:
ASMOD:
ASAND:
ASOR:
ASER:
ASLS:
ASRS:

return 2;

_)

)

)

J

Feb 8 12:48 1985 expand.c Page 7

Pexpr fct.expand(Pname fn, Ptable scope, Pexpr 11)
/-;'r

;'~ I
{

expand call to (previously defined) inline function in "scope"
with the argument list "11"
(1) declare variables in "scope"
(2) initialize argument variables
(3) link to body

/ 1rerror('d', "expand%n inline=%d last_exp=%d curr_expr=%d", fn, f_inline, last_expanded,
if ((body==O && Lexpr==O) /'Ir called before defined -Jr/
11 (((Pfct) fn->tp)->body->memtbl=scope) /* called while defining -;'r /

11 (f_inline==2) /* recursive call */
I I (last_expanded && last_expanded=curr_expr)

) {

}

fn->take_addr();
if (fn->n_addr_taken = 1) {

Pname nn = new name;
'i'.-nn = 'irfn;

}

nn->n_list = dcl_list;
nn->n_sto = STATIC;
dcl_list = nn;

return O;

f_inline = 2;

Pin il = new iline;
Pexpr ic = new texpr(ICALL,0,0);
il->fct_name = fn;
ic->il = il;
ic->tp = returns;
Pname n;
Pname at= (f_this)? f_this : argtype;
if (at) il->i_table = at->n_table;
inti= O;

/* twice in an expression*

/* so don't expand*/

/* but declare it*/

int not_simple = O; /* is a temporary argument needed?*/

for (n=at; n; n=n->n_list, i++) {
/* check formal/actual argument pairs

and generate temporaries as necessary
-;'cf

if (11 = 0) error('i',"simpl.call:AX for %n",fn);
Pexpr ee;

if (11->base = ELIST) {
ee = 11->el;
11 = 11->e2;

}
else {

ee = 11;
11 = O· ,

}

Feb 8 12:48 1985 expand.c Page 8

int s; /* could be avoided when expanding into a block*/

if (n->n_assigned_to = FUDGElll) {
if (ee != zero) {

}
}

il->local[i] = O;
goto zxc;

/* constructor's this*/
/* automatic or static

then we can use the
actual variable

/*error('d' ,"n=%n addr %d ass %d used %d s %d",n,n->n_addr_taken,n->n_assigned_to,n­
if (n->n_addr_taken

zxc:

}

I I n->n_assigned_to) {

}
else if

}
else

Pname nn = dcl_local(scope,n,fn);
nn->base = NAME;
il->local[i] = nn;
++not_simple;

(n->n_used
&& (s=ee->not_simple())
&& (l<s I I l<n->n_used)) { /*
Pname nn = dcl_local(scope,n,fn);
nn->base = NAME;
il->local[i] = nn;
++not_simple;

il->local[i] = O;

il->arg[i] = ee;
il->tp[i] = n->tp;

not safe -;~J

if (f_expr) { /* generate comma expression*/
char loc_var = O;
/* look for local variables needing declaration:*/
Ptable tbl = body->memtbl;
for (n=tbl->get_mem(i=l); n; n=tbl->get_mem(++i)) {

if (n->base=NAME
&& (n->n_usedl ln->n_assigned_tol ln->n_addr_taken)) {

Pname nn = dcl_local(scope,n,fn);

}
}

nn->base = NAME;
n->string = nn->string;
loc_var++;

;,·,error(' d', "not_simple=%d loc_var=%d last_expanded=%d curr_expr=%d" ,not_simple, loc_
if (not_simple I I loc_var) last_expanded = curr_expr;

Pexpr ex;
if (not_simple) {

Pexpr etail =ex= new expr(CM,0,0);
for (i=O; i<MIA; i++) {

Pname n = il->local[i];

J

C

Feb 8 12:48 1985 expand.c Page 9

if (n=O) continue;
Pexpr e = il->arg[i];

/*error ('d' , "%n
etail->el = new expr(ASSIGN,n,e);

= %k",n,e->base);*/

}

}
else {

}

}
else {

}

}

if (--not_simple)
etail = etail->e2 = new expr(CM,0,0);

else
break;

etail->e2 = f_expr;

ex= f_expr;

ic->el = ex;

/* generate block*/
Pstmt ss;
if (not_simple) {

}
else {

}

last_expanded = curr_expr;
Pstmt st= new estmt(SM,curloc,O,O);
Pstmt stail = st;
for (i=O; i<MIA; i++) {

}

Pname n = il->local[i];
if (n = 0) continue;
Pexpr e = il->arg[i];
stail->e = new expr(ASSIGN,n,e);
if (--not_simple)

stail = stail->s_list = new estmt(SM,curloc
else

break;

stail->s_list = body;
ss = new block(curloc,O,st);

ss = body;

ic->e2 = (Pexpr)ss;

f_inline = 1;
return ic;

Feb 8 12:48 1985 expr.c Page 1

/* %Z% %M% %I% %H% %T% */
/ ,',-Jr--Jc•;'c;'r·l:-l,*i'f~*?~t'c;',1',"'lr,'(;',1'c-1'c*1'r,'r1't,',-.'r,':*-lr,'r,'r-J:,'c-J~,,('1:i:-J:;',-i:*1'(1',1':,~,~*"'c,'r1'c,'r,'c,':-.':,'(;'r**''r-;':*·l:·l~*''c,~-/:;':;':-lc,'r,':i;'ci'rf':

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

expr.c:

type check expressions

#include "cfront.h"
#include "size.h"

int const_save;

Pexpr expr.address()
{

}

if (base==DEREF && e2=0) return el;
if (base== CM) {

e2 = e2->address();
return this;

}
register Pexpr ee = new expr(G_ADDROF,O,this);
ee->tp = new ptr(PTR,tp,O);
if (base -- NAME) ((Pname)this)->take_addr();
returnee;

Pexpr expr.contents()
{

if (base-ADDROF I I base=G_ADDROF) return e2; /* *& */
register Pexpr ee = new expr(DEREF,this,O);
if (tp) ee->tp = ((Pptr)tp)->typ; /* tp==O ??? */
returnee;

}

Pexpr table.find_name(register Pname n, bit f, Pexpr args)
Jii:

find the true name for "n" implicitly define if undefined
if "n" was called f==l and'"args" were its argument list
if n was qualified r->n or o.n £==2

Pname q = n->n_qualifier;
register Pname qn = O;
register Pname nn;
Pclass cl; /* class specified by q */

J'kif (q)
error('d' ,"%d->find_name%s::%s f=%d args=%d ntbl=%d cc->tot=%d\n",this,(q!=sta_name

(_,

C.

Feb 8 12:48 1985 expr.c Page 2

else
error('d' ,"%d->find_name %s f=%d args=%d ntbl=%d cc->tot=%d\n",this,n->string,f,arg

if (n->n_table) {
nn = n;

nq:

}

if (q) {

}

n = O;
goto xx;

Ptable tbl;

if (q == sta_name)
tbl = gtbl;

else {

}

Ptype t = (Pclass)i->tr,;
if (t == 0) error(i', 'Qr%n' sT missing" ,q);

if (q->base == TNAME) {

}

if (t->base != COBJ) {

}

error("badT%k forQr%n",t->base,q);
goto nq;

t = ((Pbase)t)->b_name->tp;

if (t->base != CLASS) {

}

error (''badQr%n(%k) 11
, q, t->base);

goto nq;

cl = (Pclass)t;
tbl = cl->memtbl;

qn = tbl->look(n->string,0);
if (qn == 0) {

n->n_qualifier = 0;
nn = O;
goto def;

}

if (q = sta_name) {
qn->use();
delete n;
return qn;

}

/* explicitly global*/

/* else check visibility*/

if (cc->tot) {
{ for (Ptable tbl = this;;) {

nn = lookc(n->string,0);
/ 7(error ('d', "cc->tot: %n nn=%n sto%k sco%k" ,n,nn,nn->n_stclass ,nn->n_scope) ;7(I

if (nn = 0) goto qq; /* try for friend*/

switch (nn->n_scope) {
case 0:

Feb 8 12:48 1985 expr.c Page 3

}
xx:

case PUBLIC:

}

if (nn->n_stclass = ENUM) break;

if (nn->tp->base = OVERLOAD) break;

if (Ebase
&& Ebase!=cc->cot->clbase->tp
&& !Ebase->has_friend(cc->nof))

error("%n is from a privateBC",n);

if (Epriv
&& Epriv!=cc->cot
&& !Epriv->has_friend(cc->nof))

error("%n is private",n);

if (qn==O I I qn==nn) break;

if ((tbl=tbl->next) = 0) { /* qn/cl test necessary?*/

}
}

if ((qn->n_stclass==STATIC
I I qn->tp->base==FCT
I I qn->tp->base==OVERLOAD)

&& (qn->n_scope=PUBLIC

}
else {

}

I I cl->has_friend(cc->nof))) {
/i"qn->use();
delete n;
return qn;
~•c I
nn = qn;
break;

error("QdN%n not in scope",n);
goto def;

/-lrerror('d', "xx: nn=%n qn=%n n=%n f=%d" ,nn,qn,n, f) ;1:/

if (nn = 0) goto def;
nn->use();
if (f == 2) {

if (qn && nn->n_stclass==O)
switch (nn->n_scope) {
case 0:
case PUBLIC: /* suppress virtual*/

switch (qn->tp->base) {
case FCT:
case OVERLOAD:

i:n = ·kqn;
n->n_qualifier = q;
return n;

}
}

if (n) delete n;

J

J

C.

Feb 8 12:48 1985 expr.c Page 4

}

return nn;
}

switch (nn->n_scope) {
case 0:
case PUBLIC:

default:

}

if (nn->n_stclass == 0) {

}

if (qn) { /* suppress virtual*/
switch (qn->tp->base) {
case FCT:
case OVERLOAD:

*n = ,'rqn;
n->ILqualifier = q;
/,1;-return n; -Jr/
nn = n;
n = O;

}
}

if (cc->c_this = 0) {
switch (nn->ILoper) {
case CTOR:
case DTOR:

default:

}
}

break;

/* in static member initializer*/
error("%n cannot be used here",nn);
return nn;

Pref r = new ref(REF,cc->c_this,nn);
cc->c_this->use();
r->tp = nn->tp;
if (n) delete n;
return r;

if (n) delete n;
return nn;

qq: ' ' " /*error(d, qq: n%n nn%n qn%n", n, nn, qn); .,., /
/* static member?*/ if (qn) {

if

}

(qn->ILscope=O && !cl->has_friend(cc->nof)
error("%n. is private",qn);
if (n) delete n;
return qn;

switch (qn->n_stclass) {
case STATIC:

break;
default:

switch (qn->tp->base) {

) {

Feb 8 12:48 1985 expr.c Page 5

}

case FCT:
case OVERLOAD: /* suppress virtual*/

if (f == 1) error("O missing for%n",qn);
~•.-n = iC"qn;

default:

}
}

if (n) delete n;
return qn;

n->n.....qualifier = q;
return n;

if (f != 2) error("O missing for%n",qn);

if (nn = lookc(n->string,O)) {
switch (nn->n.....scope) {
case 0:

}

if (nn)

}

case PUBLIC:

}

{

if (nn->n.....stclass == ENUM) break;

if (nn->tp->base = OVERLOAD) break;
if (Ebase && !Ebase->has_friend(cc->nof))

error("%n is from privateBG",n);

if (Epriv && !Epriv->has_friend(cc->nof))
error("%n is private",n);

nn->use();
if (n) delete n;
return nn;

def: /* implicit declaration*/
/~'.:error ('d' , "implicit f %d", f); ,'.: I

n->n_qualifier = O;
if (f = 1) { /*function*/

if (n->tp) error('i' ,"find_name(fct_type?)");
if (fct_void) {

}
else {

n->tp = new fct(defa_type,0,0);

Pexpr e;
Pname at= O;
Pname att;

for (e=args; e; e=e->e2) {
Pname ar = new name;
if (e->base != ELIST) error('i' ,"badA %k",e->base);
e->el = e->el->typ(this);
ar->tp = e->el->base==STRING? Pchar_type: e->el->
switch (ar->tp->base) {
case ZTYPE:

Feb 8 12:48 1985 expr.c Page 6

}

}
else {

}

}

}

ar->tp = defa_type;
break;

case FIELD:
ar->tp = int_type;
break;

case ANY:
default:

PERM(ar->tp);
}
if (at)

att->n_list = ar;
else

at= ar;
att = ar;

n->tp = new fct(defa_type,at,1);

n->tp = any_type;
if (this != any_tbl)

if (cc->not && cc->cot->defined==O)
error("C%n isU",cc->not);

else
error("%n isU",n);

nn = n->dcl(gtbl,EXTERN);
nn->n_list = O;
nn->use();
nn->use(); ;-.tc twice to cope with "undef = 1;" i(/

if (n) delete n;

if (f=l)
switch (no_of_undcl++) {
case 0: undcll = nn; break;
default: undcl2 = nn; break;
}

return nn;

Pexpr expr.typ(Ptable tbl)
;-.'(

*I
{

find the type of "this" and place it in tp;
return the typechecked version of the expression:
"tbl" provides the scope for the names in "this"

if (this= 0) error('i' ,"O->expr.typ");
Pnarne n;
Ptype t = O;
Ptype tl, t2;
TOK b = base;
TOK rl, r2;

Feb 8 12:48 1985 expr.c Page 7

#define nppromote(b) t=np_promote(b,rl,r2,tl,t2,1)
#define npcheck(b) (void)np_promote(b,rl,r2,tl,t2,O)

if (tbl->base != TABLE) error('i' ,"expr.typ(%d)",tbl->base);
//if (b = NAME) error('d' ,"name %d %d %s",this,string,string?string:"?");

if (tp) {
/*error(' d', "expr. typ %d (checked) tbl=%d", this, tbl) ;,'.-/

if (b == NAME) ((Pname)this)->use();
return this;

}
//error('d' ,"expr.typ %d%k el %d%k e2 %d%k tbl %d\n",this,base,el,el?el->base:O,e2,e

switch (b) { /* is it a basic type*/
case DUMMY:

error("emptyE");
tp = any_type;
return this;

case ZERO:
tp = zero_type;
return this;

case IVAL:
tp = int_type;
return this;

case FVAL:
tp = float_type;
return this;

case ICON:
/* is it long?

explicit long?
decimal larger than largest signed int
octal or hexadecimal larger than largest unsigned int

'1(I
{ int 11 = strlen(string);

switch (string[ll-1]) {
case '1':
case 'L':
lng:

}

tp = long_type;
goto save;

if (string[O] = '0') { /* assume 8 bits in byte*/

}
else {

nrm:

switch (string[l]) {
case 'x':
case 'X':

default:

}

if (SZ_INT+SZ_INT < 11-2) goto lng;
goto nrm;

if (BI_IN_BYTE*SZ_INT < (11-1)*3) goto lng;
goto nrm;

if (11</*sizeof(LARGEST_INT)-1*/1O) {

tp = int_type;
goto save;

Feb 8 12:48 1985 expr.c Page 8

}

}

}
if (11>10) goto lng;
char* p = string;
char* q = LARGEST_INT;
do if (*p++>*q++) goto Ing; while (*p);

goto nrm;

case CCON:
tp = char_type;
goto save;

case FCON:
tp = float_type;
goto save;

case STRING:
{ int 11 = strlen(string); /* type of "asdf" is char[S] 'i:/

Pvec v = new vec(char_type,O);
v->size = 11+1;
tp = v;
goto save;

}
save:

/-;':error ('d', "%s const_save %d", string, const_save) ;-;': /
if (const_save) {

}

int 11 = strlen(string);
char* p = new char[ll+l];
strcpy(p,string);
string= p;

return this;

case THIS:
delete this;
if (cc->tot) {

cc->c_this->use();
return cc->c_this;

}
error("this used in none context");
n = new name("this");
n->tp = any_type;
return tbl->insert(n,O);

case NAME:
/-;':error ('d' , "name %s", string);-;''(I

{ Pexpr ee = tbl->find_narne((Pname)this,O,O);

}

if (ee->tp->base = RPTR) return ee->contents();
returnee;

case SIZEOF:
t = tp2;
if (t) {

t->dcl(tbl);
if (el && el!=dummy) {

el= el->typ(tbl);
DEL(el);

Feb 8 12:48 1985 expr.c Page 9

}
else {

}

el= dummy;
}

el= el->typ(tbl);
tp2 = el->tp;

tp = int_type;
return this;

case CAST:
{

Ptype tt = t = tp2;
tt->dcl(tbl);

zai: /* is the cast legal?*/
/;''°error('d ,"tt %d %d",tt,tt?tt->base:O);*/

switch (tt->base) {
case TYPE:

= ((Pbase)tt)->b_name->tp;
// necessary?

goto zaq; tt
case RPTR:
case PTR:

if
tt

(((Pptr)tt)->rdo) error("i.-const in cast");
= ((Pptr)tt)->typ;

goto zaq;
case VEC:

tt = ((Pvec)tt)->typ;
goto zaq;

case FCT:

default:

tt = ((Pfct)tt)->returns;
goto zaq;

if (((Pbase)tt)->b_const) error("const in cast");

/* now check cast against value, INCOMPLETE*/

/-;';-error(' d', "cast el %d %d", el, el->base); -;'c-/

tt = t;
if (el== dummr,) {

error('expression missing for cast");
tp = any_type;
return this;

}
el= el->typ(tbl);
Ptype etp = el->tp;
while (etp->base = TYPE) etp = ((Pbase)etp)->b_name->tp;

if (etp->base == COBJ) {
inti= can_coerce(tt,etp);

/-;'.-error('d' ,"cast%t->%t -- %d%n",tt,etp,i,Ncoerce);-;'r/
if (i==l && Ncoerce) {

Pname en= ((Pbase)etp)->b_name;
Pclass cl= (Pclass)cn->tp;
Pref r = new ref(DOT,el,Ncoerce);
Pexpr c = new expr(G_CALL,r,O);

C

Feb 8 12:48 1985 expr.c Page 10

legloop:

}
}

c->fct_name = Ncoerce;
c->tp = tt;
*this= *(Pexpr)c;
delete c;
return this;

switch (etp->base) {
case VOID:

if (tt->base == VOID) {
tp = t;
return this;

}
error("cast of void value");

case ANY:
tp = any_type;
return this;

switch (tt->base) {
case TYPE:

tt = ((Pbase)tt)->b_name->tp; goto legloop;
case VOID:

switch (etp->base) {
case COBJ:

}

switch (el->base) {
case VALUE:
case CALL:
case G_CALL:
{ Pname cln = etp->is_cl_obj();

Pclass cl= (Pclass)cln->t~;
if (cl->has_dtor()) error(s'., "cannot caste

}
}
break;

break;
case PTR:

switch (etp->base) {
case COBJ:

}
break;

error("cannot castCO toP");
break;

case RPTR: // can be simplified?
{ Ptype tl = etp;
refl:

switch (tl->base) {
case TYPE:

tl = ((Pbase)tl)->b_name->tp;
goto refl;

// case PTR:
// case RPTR:
// case VEC:

Feb 8 12:48 1985 expr.c Page 11

}

II break;
case COBJ:

default:

}
break;

}
case COBJ:

el= el->address();
break;

error(O,"cannot cast%t to reference",el->tp);

if (el->lval(O)) { /* (x)a => *(x*)&a */

}
else

break;
case CHAR:
case INT:
case SHORT:
case LONG:
case FLOAT:
case DOUBLE:

Ptype pt= new ptr(PTR,t);
el= el->address();
el= new texpr(CAST,pt,el);
el= el->contents();
,'c'this = -;'c'el;

error('s' ,"cannot cast toCO");

switch (etp->base) {
case COBJ:

}
break;

}
tp = t;
return this;

error("cannot castCO to%k",tt->base);
break;

case VALUE:
{ Ptype tt = tp2;

Pclass cl;
Pname en;

/#error('d' ,"value %d %d (%d %d)",tt,tt?tt->base:O,el,el?el->base:0);-;'C'/

tt->dcl(tbl);
vv:

/ 7rerror ('d' , "vv %d %du, tt, tt?tt->base: 0); ~•r /

switch (tt->base) {
case TYPE:

tt = ((Pbase)tt)->b_name->tp;
goto vv;

case EOBJ:
default:

if (el= 0) {
error("value missing in conversion to%t",tt);
tp = any_type;

)

Feb 8 12:48 1985 expr.c Page 12

return this;
}
base= CAST;
return typ(tbl);

case CLASS:
cl= (Pclass)tt;
goto nn;

case COBJ:

nn:

C. /-lrerror('d', "acn%n

en= ((Pbase)tt)->b_na.me;
cl= (Pclass)cn->tp;

if (el && el->e2=0) { /* single argument*/
el->el = el->el->typ(tbl);
Pname acn=el->el->tp->is_cl_obj();

itor%n" ,acn,cl->itor) ;-Jr/

if (acn && acn->tp=cl) { /* x(x......obj) */
if (cl->has_itor() = 0) return el->el;

}
}

{ /* x(a) => obj.ctor(a); where el==obj */
Pexpr ee;
Pexpr a = el;
Pname ctor = cl->has_ctor();
if (ctor = 0) {

}

error("cannot make a%n",cn);
base= SM;
el= dummy;
e2 = O;
return this;

/-Ir error(' d 1 , "value %n. %n" e2, ctor) ;-Jr/

(e2 = 0) { /* x(a) => x temp; (temp.x(a),temp) */
Ptable otbl = tbl;
if (Cstmt) {/*make Cstmt into a block*/

if (Cstmt->memtbl == 0) Cstmt->memtbl = new
tbl = Cstmt->memtbl;

char-I~ s = make_name ('V') ;
/~'rerror('d', "%s: %d %d", s ,otbl, tbl) ;-;'.-/

}
else

Pname n = new name(s);
n->tp = tp2;
n = n->dcl(tbl,ARG); /* no init! */
n->n_scope = FCT;
n->assign();
e2 = n;
ee = new expr(CM,this,n);
tbl = otbl;

ee = this;

base= G_CALL;
el= new ref(DOT,e2,ctor);
e2 = a;
return ee->typ(tbl);

Feb 8 12:48 1985 expr.c Page 13

}

}
}

case NEW:
{ Ptype tt = tp2;

Ptype tx = tt;
bit v = 0;
bit old= new_type;
new_type = 1;

/-;':error('d' ,"new%t el %d %d",tt,el,el?el->base:0);·k/
tt->dcl(tbl);
new_type = old;
if (el) el= el->typ(tbl);

11:
/-;':error('d' ,"tt %d %d",tt,tt?tt->base:0);-;':/

switch (tt->base) {
default:

if (el) error('i' , 11Ir for new non-G");
break;

case VEC:
V = 1;
tt = ((Pvec)tt)->typ;
goto 11;

case TYPE:
tt = ((Pbase)tt)->b_name->tp;
goto 11;

case COBJ:
{ Pname en= ((Pbase)tt)->b_name;

Pclass cl= (Pclass)cn->tp;
if (cl->defined == 0) {

error("new%n;%n isU",cn,cn);
}
else {

Pname ctor = cl->has_ctor();
TOK su;
if (ctor) {

/*error ('d' , "cobj%n tp%t", ctor, ctor->tp); -,': /

}

el= new call(ctor,el);
el= el->typ(tbl);
/*(void) el->fct_call(tbl);*/

else if (su=cl->is_simple()) {
/-,':error('d', "simple cobj%k" ,su) ;-;':/

if (el) error("new%n withir",cn);
}
else {

/-;':error('d 1
, "not simple and no constructor?") ;·tr/

}
}
}

}

/-,':error('d' ,"v=%d",v);*/

}

tp = (v)? (Ptype)tx
return this;

(Ptype)new ptr(PTR,tx,0);

)

)

c:

Feb 8 12:48 1985 expr.c Page 14

}

if (el==O && e2=0) error('i' ,"no operands for%k",b);

switch(b) {
case ILIST: /* an ILIST is pointer to an ELIST */

el= el->typ(tbl);
tp = any_type;
return this;

case ELIST:
{ Pexpr e;

Pexpr ex;

if (el= dummr. && e2==0) {
error('emptyirL");
tp = any_type;
return this;

/*error(' d', "e %cl %cl ee

for (e=this; e; e=ex) {
Pexpr ee = e->el;

%d %cl" .,e.,e?e->base:O.,ee,ee?ee->base:O) ;-1~/ ·
if (e->base != ELIST) error('i' ,"elist%k",e->base);
if (ex= e->e2) { /*lookahead for end of li

if (ee == dummy) error("EX in EL");

}

}

if (ex->el == dummy && ex->e2 == 0) {
/* { . . . , } ';~ /
DEL(ex);
e->e2 =ex= O;

}

e->el = ee->typ(tbl);
t = e->el->tp;

}
tp = t;
return this;

case DOT:
case REF:
{

Phase b;
Ptable atbl;
Pname nn;
char-;'. s;
Pclass cl;

el= el->typ(tbl);
t = el->tp;

if (base== REF) {
xxx:

switch (t->base) {

Feb 8 12:48 1985 expr.c Page 15

}
else {
qqq:

case TYPE:
default:
case ANY:
case PTR:
case VEC:
}

t = ((Pbase)t)->b_name->tp;
error("nonP ->%n",mem);
atbl = any_tbl;

b = (Pbase)((Pptr)t)->typ;

switch (t->base) {
case TYPE: t = ((Pbase)t)->b_name->tp;
default: error("nonO .%n",mem);
case ANY: atbl = any_tbl;
case COBJ: break;
}

goto xxx;

goto mm;

break;

goto qqq;

goto mm;

switch (el->base) {
case CM:

/* FUDGE, but cannot use lval (cons

{
cfr:

}

I-.<: (. . . , x) . => (. . . , &x) -> ~': I
Pexpr ex= el;
switch (ex->e2->base) {
case NAME:

case CM:

}

base= REF;
ex->e2 = ex->e2->address();
goto xde;

ex= ex->e2;
goto cfr;

case CALL:
case G_CALL:

if (el->fct_name=O
I I ((Pfct)el->fct_name->tp)->f_inline==O) {

/ 7~ f(). => (tmp=f(),&tmp)-> */
Ptable otbl = tbl;

}

if (Cstmt) {/*make Cstmt into a block*/
if (Cstmt->memtbl == 0) Cstmt->memt
tbl = Cstmt->memtbl;

}
char* s = make_name('T');
Pname tmp = new name(s);
tmp->tp = el->tp;
tmp = tmp->dcl(tbl,ARG); /* no init! */
tmp->n_scope = FCT;
el= new expr(ASSIGN,tmp,el);
el->tp = tmp->tp;
Pexpr aa = tmp->address();
el= new expr(CM,el,aa);
el->tp = aa->tp;
base= REF;
tbl = otbl;

break;
case QUEST:

error("non-lvalue .%n",mem);

C

cj

Feb 8 12:48 1985 expr.c Page 16

xxxx:

xde:

}

break;
case NAME:

((Pname)el)->take_addr();
}

b = (Pbase)t;

switch (b->base) {
case TYPE: b = (Phase) b->b_name->tp; goto xxxx;
default: error("badT before %k%n".,base,mem);
case ANY: atbl = any_tbl; goto mm;

case COBJ:

mm:

if (atbl = b->b_table) goto mm;

s = b->b_name->striny; /* lookup the class name*/
if (s == 0) error('i ,u%kN missing",CLASS);
nn = tbl->look(s,CLASS);
if (nn = 0) error(' i', "%k %sU" ,CLASS,s);
if (nn != b->b_name) b->b_name = nn;
cl= (Pclass) nn->tp;
PERM(cl);
if (cl= 0) error('i' ,"%k %s'sT missing",CLASS,s);
b->b_table = atbl = cl->memtbl;

if (atbl->base != TABLE) error('i',"atbl(%d)",atbl->base);
nn = (Pname)atbl->find_name(mem,2,0);

;-:~error ('d' , "nn%n %d %d", nn, nn->n_stc lass, nn->n_s cope) ; * /

}

switch (nn->n_stclass) {
case 0:

mem = nn;
tp = nn->tp;
return this;

case STATIC:

}
}

return nn;

case CALL: /* handle undefined function names*/
if (el->base=NAME && e'i->tp==O) el= tbl->find_name((Pname)el,1,e2
break;

case QUEST:
cond = cond->typ(tbl);

}

if (el) {

}
else

el= el->typ(tbl);
if (el->tp->base -- RPTR) el= el->contents();
tl = el->tp;

tl = O;

Feb 8 12:48 1985 expr.c Page 17

if (e2) {
e2 = e2->typ(tbl);
if (e2->tp->base -- RPTR) e2 = e2->contents();
t2 = e2->tp;

}
else

t2 = O;

TOK bb;
switch (b) {
default:
case DEREF:
case CM:
case QUEST:
case G_ADDROF:
case G_CALL:
}

Pname nl;
if (el) {

/* filter non-overloadable operators out*/
bb = b; break;
bb = (e2)? DEREF: MUL; break;

goto not_overloaded;

Ptype tx = tl;

}
else

while (tx->base = TYPE) tx = ((Pbase)tx)->b_name->tp;
nl = tx->is_cl_obj();

nl = O;

Pname n2;
if (e2) {

}
else

Ptype tx = t2;
while (tx->base == TYPE) tx = ((Pbase)tx)->b_name->tp;
n2 = tx->is_cl_obj();

n2 = O;
/''(error('d',"overload %k: %s %s\n", bb, nl?nl->string:"1", n2?n2->string:"2");*/

if (nl==O && n2==0) goto not_overloaded;
{

/* first try for non-member function: op(el,e2) or op(e2) or op(el) */
Pexpr oe2 = e2;
Pexpr ee2 = (e2 && e2->base!=ELIST)? e2 = new expr(ELIST,e2,0) : O;
Pexpr eel= (el)? new expr(ELIST,el,e2) : ee2;
char* obb = oper_name(bb);
Pname gname = gtbl->look(obb,O);
int go= gname? over_call(gname,eel) : 0;
int nc = Nover_coerce; /* first look at member functions

if (Ro) gname = Nover;
/*error('d', global%n go=%d nc=%d",gname,go,nc);fflush(stderr);*/

if (nl) { ;-.•, look for member of nl * /
Ptable ctbl = ((Pclass)nl->tp)->memtbl;
Pname mname = ctbl->look(obb,O);
if (mname == 0) goto glob;

C /

C

Feb 8 12:48 1985 expr.c Page 18

switch (mname->n_scope) {
default: goto glob;
case 0:
case PUBLIC: break;
}

/* try el.op(?)*/

int mo= over_call(mname,e2);
;-.'(error ('d' , "n1%n %d", mname, mo) ; 'i: I

}

switch (mo) {
case 0:

if (1 < Nover_coerce) goto aml;
goto glob;

case 1: if (go= 2) goto glob;
if (go= 1) {
aml:

}
else {

}
}

error("ambiguous operandTs%n%t for%k",nl,t2,b);
tp = any_type;
return this;

Pclass cl= (Pclass)nl->tp;
if (cl->conv) error('w' ,"overloaded%k may be ambigu

if (bb==ASSIGN && mname->n_table!=ctbl) { /*inherited=*/
error("assignment not defined for class%n",nl);
tp = any_type;
return this;

}

base= G_CALL;
el= new ref(DOT,el,Nover);
if (eel) delete eel;
return typ(tbl);

/* el.op(e2) or el.op()*/

if (n2 && el=O) { /* look for unary operator*/
Ptable ctbl = ((Pclass)n2->tp)->memtbl;
Pname mname = ctbl->look(obb,O);
if (mname = 0) goto glob;
switch (mname->n_scope) {
default: goto glob;
case 0:
case PUBLIC: break; /* try e2.op() */
}

int mo= over_call(mname,O);
/-.'~error('d', un2%n %d" ,mname,mo) ;''-' /

switch (mo) {
case 0:

if (1 < Nover_coerce) goto am2;
goto glob;

case 1: if (go -- 2) goto glob;
if (go = 1) {
am2:

Feb 8 12:48 1985 expr.c Page 19

glob:

}

}
}

error("ambiguous operandT%n for%k",n2,b);
tp = any_type;
return this;

base= G_CALL; /* e2.op() */
el= new ref(DOT,oe2,Nover);
e2 = O;
if (ee2) delete ee2;
if (eel && eel!=ee2) delete eel;
return typ(tbl);

if (1 < nc) {

}

error("ambiguous operandTs%t%t for%k",tl,t2,b);
tp = any_type;
return this;

if (go) {

}

if (go== 1) { /* conversion necessary=> binary*/
if (nl) {

Pclass cl= (Pclass)nl->tp;
if (cl->conv) error('w', "overloaded%k may be ambigu

}
else if (n2) {

}
}
base= G_CALL;
el= gname;
e2 = eel;
return typ(tbl);

Pclass cl= (Pclass)n2->tp;
if (cl->conv) error('w' ,"overloaded%k may be ambigu

/* op(el,e2) or op(el) or op(e2) */

if (ee2) delete ee2;
if (eel && eel!=ee2) delete eel;
e2 = oe2;

/-l:error('d' , 11bb%k",bb);*/
switch(bb) {
case ASSIGN:
case ADDROF:
case CALL:
case DEREF:

break;
default: /-;'~ look for conversions to basic types */
{ int found= O;

if (nl) {
int val= O;
Pclass cl= (Pclass)nl->tp;
for (Pname on= cl->conv; on; on=on->n_list) {

/-;':error ('d' , "oper_coerce nl%n %t", on, (on) ?Pfct (on->tp) ->returns: 0); * I
Pfct f = (Pfct)on->tp;
if (bb=ANDAND 11 bb=OROR) {

Ci

Feb 8 12:48 1985 expr.c Page 20

}

}
if (n2

el= check_cond(el,bb,O);
goto not_overloaded;

I I f->returns->check(t2,ASSIGN)==O
I I t2->check(f->returns,ASSIGN)=O) {

Ncoerce = on;
val++;

}

switch (val) {
case 0:

case 1:
{

}
default:

}
}
if (n2) {

break;

Pref r = new ref(DOT,el,Ncoerce);
el= new expr(G_CALL,r,0);
found = 1;
break;

error('s' ,"ambiguous coercion of%n to basicT",nl);

int val= O;
Pclass cl= (Pclass)n2->tp;
for (Pname on= cl->conv; on; on=on->n_list) {

/1~error('d', "oper_coerce n2%n %t" ,on, (on)?on->tp:O) ;*/

II
}

Pfct f = (Pfct)on->tp;
if (bb==ANDAND I I bb==OROR) {

}

e2 = check_cond(e2,bb,O);
goto not_overloaded;

if (nl
I I f->returns->check(tl,ASSIGN)=O
I I tl->check(f->returns,ASSIGN)==O) {

Ncoerce = on;

}
//if
II
II
}

val++;

(nl I I tl->check(f->returns,COERCE)=O) {
Ncoerce = on;
val++;

switch (val) {
case 0:

case 1:
{

}
default:

}

break;

Pref r = new ref(DOT,e2,Ncoerce);
e2 = new expr(G_CALL,r,O);
found++;
break;

error('s' ,"ambiguous coercion of%n to basicT",n2);

Feb 8 12:48 1985 expr.c Page 21

}

}
}

}
if (found) {
/''r if (found == 2) error('w', "coercions of operands of%k may b

return typ(tbl);
}
if (tl && t2)

error(11bad operandTs%t%t for%k",tl,t2,b);
else

error(11bad operandT%t for%k",tl?tl:t2,b);
tp = any_type;
return this;

not_overloaded:
t = (tl==O)?

;-.'rfprintf (stderr, 11%s:
switch (b) {
case G_CALL:
case CALL:

t2 : (t2==0)? tl: O;
el %d %d e2 %d %d\n11 ,oper_name(b),el,el?el->base:O,e2,e2?e2->b

/* are the operands of legal types -;'(/

tp = fct_call(tbl); /* two calls of use() for el's names*/
if (tp->base == RPTR) return contents();
return this;

case DEREF:
if (el= dummy) error("O missing before []\n");
if (t) { /* *t */

}
else {

}

t->vec_type();
tp = t->deref ();

/-.'r tl [t2]
tl->vec_type();
t2->integral(b);
tp = tl->deref();

*/

if (tp->base == RPTR) return contents();
return this;

case G_ADDROF:
case ADDROF:

if (e2->lval(b) = 0) {
tp = any_type;
return this;

}
tp = t->addrof();

/* look for
switch (e2->base) {
case DOT:
case REF:

&p->member_function */

{ Pname m = e2->mem;
Pfct f = (Pfct)m->tp;

}

if (f->base==FCT && (f->f_virtual=O
DEL(e2);
e2 = m;

}

I I m->n_qualifier)) {

)

J

C.,

Feb 8 12:48 1985 expr.c Page 22

}
return this;

case UMINUS:
t->numeric(b);
tp = t;
return this;

case NOT:
e2 = check_cond(e2,NOT,tbl);
tp = int_type;
return this;

case COMPL:
t->integral (b);
tp = t;
return this;

case INCR:
case DECR:

}

if (el) el->lval(b);
if (e2) e2->lval(b);
rl = t->num_ptr(b);
tp = t;
return this;

if (el==dummy 11 e2==dummy 11 el=O 11 e2=O) error("operand missing for%k 11

switch (b) {
case MUL:
case DIV:

rl = tl->numeric(b);
r2 = t2->numeric(b);
nppromote(b);
break;

case MOD:
rl = tl->integral(b);
r2 = t2->integral(b);
nppromote(b);
break;

case PLUS:
rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);
if (rl=P && r2==P) error("P +P");
nppromote(b);
break;

case MINUS:
rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);
if (r2==P && rl!=P && rl!=A) error("P - nonP");
nppromote(b);
break;

case LS:
case RS:
case AND:
case OR:
case ER:

Feb 8 12:48 1985 expr.c Page 23

case LT:
case LE:
case GT:
case GE:
case EQ:
case NE:

rl = tl->integral(b);
r2 = t2->integral(b);
nppromote(b);
break;

rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);
npcheck (b) ;
t = int_type;
break;

case ANDAND:
case OROR:
/* tl->num_ptr(b);

t2->num_ptr(b);

el= check_cond(el,b,tbl);
e2 = check_cond(e2,b,tbl);
t = int_type;
break;

case QUEST:
cond = check_cond(cond,b,tbl);
if (tl -- t2) { /* not general enough*/

}
else {

}
break;

case ASPLUS:

t = tl;

rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);
nppromote (b) ;
if (t != tl) el= new
if (t != t2) e2 = new

texpr(CAST,t,el);
texpr(CAST,t,e2);

rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);
if (rl==P && r2==P) error("P +=P");
nppromote (b) ;
goto ass;

case ASMINUS:
rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);
if (r2==P && rl!=P && rl!=A) error("P -= nonP");
nppromote (b);
goto ass;

case ASMUL:
case ASDIV:

rl = tl->numeric(b);
r2 = tl->numeric(b);
nppromote (b) ;
goto ass;

case ASMOD:

.J

-
L\

C)

C;

C)

Feb 8 12:48 1985 expr.c Page 24

case
case
case
case
case

ass:

rl = tl->integral(b);
r2 = t2->integral(b);
nppromote(b);
goto ass;

ASAND:
ASOR:
ASER:
ASLS:
ASRS:

rl = tl->integral(b);
r2 = t2->integral(b);
npcheck (b) ;
t = int_type;
goto ass;

as_type = t; /* the type of the rhs */
t2 = t;

case ASSIGN:

lkj:

if (el->lval(b) -- 0) {
tp = any_type;
return this;

}

switch (tl->base) {
case INT:
case CHAR:
case SHORT:

if (e2->base=ICON && e2->tp=long_type)
error('w' ,"long constant assigned to%k",tl->base);

case LONG:
if (b--ASSIGN
&& ((Pbase)tl)->b_unsigned
&& e2->base==UMINUS
&& e2->e2->base=ICON)

error('w' ,"negative assigned to unsigned");
break;

case TYPE:
tl = ((Pbase)tl)->b_name->tp;
goto lkj;

case COBJ:
{ Pname cl= tl->is_cl_obj();

if (cl) {
Pname c2 = t2->is_cl_obj();

/*error ('d', "%t=%t %d %d", tl, t2, cl, c2) ;1t /

}
break;

if (cl != c2) {
e2 = new expr(ELIST,e2,0);
e2 = new texpr(VALUE,tl,e2);
e2->e2 = el;
e2 = e2->typ(tbl);
-;~this = -;~e2;
tp = tl;
return this;

Feb 8 12:48 1985 expr.c Page 25

}
case PTR:

/;':error ('d' , "ptr %d %d", tl, tl ?t 1->base: 0) ;"'~ /
{ Pfct ef = (Pfct)((Pptr)tl)->typ;

if (ef->base == FCT) {
Pfct f;
Pname n = O;
switch (e2->base) {
case NAME:

f = (Pfct)e2->tp;
n = Pname(e2);
switch (£->base) {
case FCT:
case OVERLOAD:

}
goto ad;

case DOT:
case REF:

e2 = new expr(G_ADDROF,O,e2);
e2->tp = f;

;-:~error ('d', "dot %d %d", e2->mem->tp, e2->mem->tp?e2->mem->tp->base: 0) ;* /
f = (Pfct)e2->mem->tp;

}
}

}
break;

switch (£->base) {
case FCT:
case OVERLOAD:

}

n = Pname(e2->mem);
e2 = new expr(G_ADDROF,O,e2);
e2 = e2->typ(tbl);

goto ad;
case ADDROF:
case G_ADDROF:

ad:
f = (Pfct)e2->e2->tp;

if (£->base= OVERLOAD) {
Pgen g = (Pgen)f;

}

n = g->find(ef);
if (n = 0) {

}
else

error("cannot deduceT for &
tp = any_type;

tp = tl;
e2->e2 = n;
n->lval(ADDROF);
return this;

if (n) n->lval(ADDROF);

{ Pname en;
int i;
if ((cn=t2->is_cl_obj())

C

c.:

Feb 8 12:48 1985 expr.c Page 26

&& (i=can_coerce(tl,t2))
&& Ncoerce) {

/;'~error('d' ,"%t =%t",tl,t2);;~/
if (1 < i) error(st%d possible conversions for assig

}
}

Pclass cl= (Pclass)cn->tp;
Pref r = new ref(DOT,e2,Ncoerce);
Pexpr c = new expr(G_CALL,r,O);
c->fct_name = Ncoerce;
c->tp = tl;
e2 = c;
tp = tl;
return this;

/*error('d' ,"check(%t,%t)",el->tp,t2);*/
if (el->tp->check(t2,ASSIGN)) error("bad assignmentT:%t =%t",el->tp

}

t = el->tp; /* the type of the lhs */
break;

case CM:
t = t2;
break;

default:
error('i' ,"unknown operator%k",b);

tp = t;
return this;

Feb 8 12:48 1985 expr2.c Page 1

/* %Z% %M% %I% %H% %T% */

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

expr2.c:

type check expressions

#include "cfront.h"
#include "size.h"

void name.assign()
{

}

if (n_assigned_to++ == 0) {
switch (n_scope) {
case FCT:

}
}

if (n_used && n_addr_taken==O) {
Ptype t = tp;

11:
switch (t->base) {
case TYPE:

t=((Pbase)t)->b_name->tp; goto 11;
case VEG:

default:
break;

if (curr_loop)
error (1 w 1

,
11%n may have been used be

else
error('w' .,"%n used before set",this

}
}

int expr.lval(TOK aper)
{

register Pexpr ee = this;
register Pname n;
int deref = O;
char-;'.-es;

if (this=O 11 tp==O) error('i' ,"%d->lval(O)",this);

switch (oper) {
case ADDROF:
case G_ADDROF:

c,

c:,

C;

()

Feb 8 12:48 1985 expr2.c Page 2

es= "address of";
break;

case INCR:
case DECR:

es= "increment of";
goto def;

case DEREF:

default:

es= "dereference of";
break;

es= "assignment to";
def:

}

if (tp->tconst()) {

}

if (oper) error("%s constant",es);
return O;

forever {
switch (ee->base) {
default:

case
case
case
case

case

if (deref=O) {
if (oper) error("%s %k",es,ee->base);
return O;

}
return 1.

!I

ZERO:
CCON:
ICON:
FCON:

if (oper) error("%s numeric constant",es);
return O;

STRING:
if (oper) error('w' ,"%s string constant",es);
return 1;

case DEREF:
{ Pexpr eel= ee->el;

}

if (eel->base = ADDROF) /**&vanishes*/
ee = eel->e2;

else {

}
break;

ee = eel;
deref = 1;

case INCR:
case DECR:

ee = (ee->el)? ee->el
break;

case DOT:
n = ee->mem;

ee->e2;

if (deref==O && ee->el->tp->tconst(1i) {
if (oper) error("%sM%n of%t',es,n,ee->el->tp);
return O;

Feb 8 12:48 1985 expr2.c Page 3

}
goto xx;

case REF:
n = ee->mem;
if (deref==O) {

Ptype p = ee->el->tp;
zxc:

}
goto xx;

case NAME:

switch (p->base) {
case TYPE: p = ((Pbase)p)->b_name->tp; goto zx
case PTR: break;
default: error('i' ,"%t->%n",p,n);
}
if (((Pptr)p)->typ->tconst()) {

if (aper) error(11%sM%n of%t",es,n,((Pptr)p)
return O;

}

n = (Pname)ee;
xx:

if (deref I I oper=O) return 1;
switch (aper) {
case ADDROF:
case G_ADDROF:
{ Pfct f = (Pfct)n->tp;

if (n->n_sto = REGISTER/, {
if (oper) error('& register%n",n);
return O;

}
if (f = 0) {

}

if (aper) error("& label%n",n);
return O;

if (f->base == OVERLOAD) {

}

if (aper) error("& overloaded%n",n);
return O;

if (n->n_stclass = ENUM) {

}

if (oper) error("& enumerator%n",n);
return O;

n->n_used--;
n->take_addr();
if (n->n_evaluated
I I (f->base=FCT && f->f_inline)) {

/* address of canst or inline: allocate it
Pname nn = new name;
if (n->n_evaluated) {

}

n->n_evaluated = O; /* use allo
n->n_initializer = new expr(IVAL,(P

nn->n_sto = STATIC;
nn->n_list = dcl_list;

Feb 8 12:48 1985 expr2.c Page 4

}
}

}

dcLlist = nn;
}
break;

}
case ASSIGN:

default:

}

n->n_used--;
n->assign();
break;

if

}

/* incr ops, and asops */
(cc->tot && n==cc->c_this) {

error("%n%k",n,oper);
return O;

n->assign();

return 1;

Pexpr Ninit;

bit gen_match(Pname n, Pexpr arg)

}

look for an exact match between "n" and the argument list "arg"

Pfct f = (Pfct) n->tp;
register Pexpr e;
register Pname nn;

for (e=arg, nn=f-.>argtype; e; e=e->e2, nn=nn->n_list) {
Pexpr a= e->el;
Ptype at= a->tp;
if (at->base = ANY) return O;
if (nn = 0) return f->nargs_known==ELLIPSIS;

Ptype nt = nn->tp;

switch (nt->base) {
case RPTR:

if (nt->check(at,COERCE)) {

}
break;

default:

if (((Pptr)nt)->typ->check(at,O)) return O;

if (nt->check(at,COERCE)) return O;
}

}

if (nn) {

}

Ninit = nn->n_initializer;
return Ninit!=O;

return 1;

Feb 8 12:48 1985 expr2.c Page 5

Pname Ncoerce;

bit can_coerce(Ptype tl, Ptype t2)
/* return number of possible coercions of t2 into tl,

Ncoerce holds a coercion function (not constructor), if found
,~ /
{
;,':error ('d 1

, "can_coerce %t->%t", tl, t2) ;-;\-/
Ncoerce = O;
if (t2->base = ANY) return O;
switch (tl->base) {
case RPTR:
rloop:

switch (t2->base) {
case TYPE:

t2 = ((Pbase)t2)->b_name->tp;
goto rloop;

II case VEC:
II case PTR:
II case RPTR:
II if (tl->check(t2,COERCE) == 0) return 1;

}

default:
{ Ptype tt2 = t2->addrof();

}
}

if (tl->check(tt2,COERCE) -- 0) return 1;
Ptype ttl = ((Pptr)tl)->typ;
inti= can_coerce(ttl,t2);
return i;

Pname cl= tl->is_cl_obj();
Pname c2 = t2->is_cl_obj();
int val= O;

if (cl) {
Pclass cl= (Pclass)cl->tp;
if (c2 && c2->tp==cl) return 1;

I* look for constructor
with one argument
or with default for second argument

of acceptable type
*/
Pname ctor = cl->has_ctor();
if (ctor = 0) goto oper_coerce;
register Pfct f = (Pfct)ctor->tp;

switch (f->base) {
case FCT:

switch (f->nargs) {
case 1:
one:

default:

if (f->argtype->tp->check(t2,COERCE)==O) val= 1;
goto oper_coerce;

Feb 8 12:48 1985 expr2.c Page 6

}

if (f->argtype->n_list->n_initializer) goto one;
case 0:

goto oper_coerce;
}

case OVERLOAD:
{ register Plist gl;

}
default:

}

for (gl=Pgen(f)->fct_list; gl; gl=gl->l) {
Pname nn = gl->f;

/·lr look for

}

Pfct ff= (Pfct)nn->tp;
switch (ff->nargs) {
case 0:

break;
case 1:
over_one:

if (ff->argtype->tp->check(t2,COERCE)==O) v
if (ff->argtype->tp->base == RPTR
&& ((Pptr)ff->argtype->tp)->typ->check(t2,C

val = 1;
goto oper_coerce;

}
break;

default:

}
if (ff->argtype->n_list->n_initializer) got

goto oper_coerce;

error(1 i 1 ,"cannot_coerce(%k)\n",f->base);

oper_coerce:
if (c2) {

Pclass cl= (Pclass)c2->tp;
for (register Pname on=cl->conv; on; on=on->n_list) {

/i(error(1 d'," oper_coerce%n %t %d" ,on, (on) ?on->tp: 0 ,on); i(/

}

}

Pfct f = (Pfct)on->tp;
if (tl->check(f->returns,COERCE) == 0) {

Ncoerce = on;

}
}

val++;

if (val) return val;
if (tl->check(t2,COERCE)) return O;
return 1;

int gen_coerce(Pname n, Pexpr arg)

*/

look to see if the argument list "arg" can be coerced into a call of "n"
1: it can
0: it cannot or it can be done in more than one way

Feb 8 12:48 1985 expr2.c Page 7

{
Pfct f = (Pfct) n->tp;
register Pexpr e;
re?ister Pname nn;

;,'rerror ('d , "gen_coerce%n %d" ,n, arg); '1r /

for (e=arg, nn=f->argtype; e; e=e->e2, nn=nn->n_list) {
if (nn = 0) return f->nargs_known==ELLIPSIS;
Pexpr a= e->el;
Ptype at= a->tp;
inti= can_coerce(nn->tp,at);

;,•rerror('d' ,"al %k at%t argt%t -> %d",a->base,at,nn->tp,i);*/
if (i != 1) return O;

}

}
if (nn && nn->n_initializer==O) return O;
return 1;

Pname Nover;
int Nover_coerce;

int over_call(Pname n, Pexpr arg)

return 2 if n(arg) can be performed without user defined coercion of arg
return 1 if n(arg) can be performed only with user defined coercion of arg
return O if n(arg) is an error

register Plist gl;
Pgen g = (Pgen) n->tp;
if (arg && arg->base!= ELIST) error('i' ,"ALX");

/'''error('d' ,"over_ca11%n base%k arg%d%k", n, g->base, arg, arg?arg->tp->base:O);*/
Nover_coerce = O;
switch (g->base) {
default: error(' i', "over_ca11(%t)\n" ,g);
case OVERLOAD: break;
case FCT:

}

Nover = n;
Ninit = O;
if (gen_match(n,arg) && Ninit=O) return 2;
if (gen_coerce(n,arg)) return 1;
return O;

for (gl=g->fct_list; gl; gl=gl->1) { /* look for match*/
Nover = gl->f;
Ninit = O;

/-;':error ('d' , "over_cal 1: gen_match (%n, %k) %d", Nover, arg->el ->base, gen_match (Nover, arg
if (gen_match(Nover,arg) && Ninit=O) return 2;

}

Nover = O;
for (gl=g->fct_list; gl; gl=gl->l) { /* look for coercion*/

Pname nn = gl->f;
/-;'rerror ('d', "over_call: gen_coerce(%n, %k) %d11 ,nn, arg->el->base, gen_coerce(nn, arg)) ;-;'r

if (gen_coerce(nn,arg)) {

.J

/

l_

C

Feb

}

Ptype
/"~

.,, I
{

8 12:48 1985 expr2.c Page 8

if (Nover) {
Nover_coerce
return O;

}
Nover = nn;

}
}

return Nover ? 1 O·
'

expr.fct_call(Ptable tbl)

check "this" call:
el(e2)

el->typ() and e2->typ()

Pfct f;
Pname fn;
int x;
int k;
Pname nn;
Pexpr e;
Ptype t;
Pexpr arg = e2;
Ptype tl;
int argno;
Pexpr etail = O;

has been done

= 2· ,
/ ;': ambiguous 1: /

Pname no_virt; /* set if explicit qualifier was used: c::f() */
/*error ('d 1

, "f ct_cal 1") ; .,, /
switch (base) {
case CALL:
case G_CALL:

break;
default:

error('i' ,"fct_cal1(%k)",base);
}

if (el==O 11 (tl=el->tp)=O) error(' i', "fct_call(e1=%d,el->tp=%t)" ,el,tl);
if (arg && arg->base!=ELIST) error('i' ,"badAL%d%k",arg,arg->base);

switch (el->base) {
case NAME:

fn = (Pname)el;
no_virt = fn->n_qualifier;
break;

case REF:
case DOT:

default:

fn = el->mem;
no_virt = fn->n_qualifier;
break;

fn = O;
no_virt = O;

Feb 8 12:48 1985 expr2.c Page 9

} ;
/''-'error('d', "fn%n t1%k", fn, tl->base) ;*/

switch (tl->base) {
default:

error ("call of%n; o/on is a%t)", fn, fn, el->tp);

case ANY:
return any_type;

case OVERLOAD:
{ register Plist gl;

Pgen g = (Pgen) tl;
Pname found= O;

for (gl=g->fct_list; gl; gl=gl->1) { /* look for match*/
register Pname nn = gl->f;

/*fprintf(stderr,"gen_match %s %d\n",nn->string?nn->string:"?",arg->base);*/
if (gen_match(nn,arg)) {

found= nn;
goto fnd;

}
}

for (gl=g->fct_list; gl; gl=gl->1) { /* look for coercion*/
register Pname nn = gl->f;

;,'.-fprintf (stderr, "gen_coerce %s %d\n" ,nn->string?nn->string: "?", arg->base) ;,tc /
if (gen_coerce(nn,arg)) {

}
}

fnd:

if (found) {

}

error("ambiguousA for overloaded%n",fn);
goto fnd;

found= nn;

//error('d' ,"found%n",found);
if (found) {

Phase b;
Ptable tblx;

f = (Pfct)found->tp;
fct_name = found;

/* is fct_name visible? 'i: /

//error('d' ,"el %d%k",el,el?el->base:O);
switch (el->base) {
case REF:

if (el->el = 0) break; ;,': constructor: this=O .,•~;
b = (Phase) ((Pptr)el->el->tp)->typ; goto xxxx;

case DOT:
b = (Pbase)el->el->tp;

xxxx:
switch (b->base) {
case TYPE: b = (Pbase) b->b_name->tp; goto xxx
case ANY: break;

Feb 8 12:48 1985 expr2.c Page 10

//error('d' ,"scope %d epriv %d

}
}
else {

case COBJ: tblx = b->b_table;
}

if (tblx->lookc(g->string,0) = 0)
error('i',"fct_call overload check");

ebase %d cc %d",found->n_scope,Epriv,Ebase,cc);
switch (found->n_scope) {
case 0:

if (Epriv
&& Epriv!=cc->cot
&& !Epriv->has_friend(cc->nof)) {

error(n%n is private",found);
break;

}
/* no break -.i: I

case PUBLIC:

}

if (Ebase
&& (cc->cot=0

I I (Ebase!=cc->cot->clbase->tp
&& !Ebase->has_friend(cc->nof)))

) {
error("%n is from a privateBC 11,found);

}

error("badAL for overloaded%n",fn);
return any_type;

}
break;

}
case FCT:

f = (Pfct)tl;
if (fn) fct_name = fn;
break;

}

if (no_virt) fct_name = 0;

t = £->returns;
x = f->nargs;
k = f->nargs_known;

;-.'-error ('d' , "f ct_name%n", f ct_name) ; -.•~ /

if (k == 0) return

if (arg = 0) {
switch (x)
default:
case 0:
}

}

t·
'

{
error("AX for%n",fn);
return t;

for (e=arg, nn=f->argtype, argno=l; el Inn; nn=nn->n_list, e=etail->e2, argn

Feb 8 12:48 1985 expr2.c Page 11

Pexpr a;

if (e) {
a = e->el;

/i:error (' d', "e %d%k a %d%k e2 %d", e, e->base, a, a->base, e->e2); ,._. /
etail = e;

if (nn) { /* type check*/
Ptype tl = nn->tp;

lx:
/' 1 .. error('d' .,"lx: t1%t a->tp%t".,tl,a->tp);*/

case PTR:

switch (tl->base) {
case TYPE:

tl = ((Pbase)tl)->b_name->tp;
goto lx;

case RPTR:
e->el = ref_init(Pptr(tl),a,tbl);
break;

case COBJ:
e->el = class_init(O,tl.,a,tbl);
break;

case ANY:
return t;

{ Pfct ef = (Pfct)((Pptr)tl)->typ;
if (ef->base == FCT) {

Pfct f;
Pname n = O;
switch (a->base) {
case NAME:

f = (Pfct)a->tp;
switch (f->base) {
case FCT:
case OVERLOAD:

}

e->el = new expr(G_ADDROF,O,a);
e->el->tp = f;

n = Pname(a);
goto ad;

case DOT:
case REF:

f = (Pfct)a->mem->tp;
switch (f->base) {
case FCT:
case OVERLOAD:

}
goto ad;

case ADDROF:
case G_ADDROF:

n = Pname(a->mem);
a= new expr(G_ADDROF,O,a);
e->el = a->typ(tbl);

f = (Pfct)a->e2->tp;
ad:

if (£->base= OVERLOAD) {
Pgen g = (Pgen)f;

Feb 8 12:48 1985 expr2.c Page 12

}

}
break;

}

J

n = g->find(ef);
if (n == 0) {

}

error("cannot deduceT for &
return any_type;

e->el->e2 = n;

if (n) n->lval(ADDROF);

goto def;

case CHAR:
case SHORT:
case INT:

if (a->base=ICON && a->tp==long_type)
error ('w' , "long constantA for%n, %kX

case LONG:
if (((Pbase)tl)->b_unsigned
&& a->base==UMINUS
&& a->e2->base=ICON)

error('w',"negativeA for%n, unsigne
default:
def:

{ Pname en;
int i;
if ((cn=a->tp->is_cl_obj())
&& (i=can_coerce(tl,a->tp))
&& Ncoerce) {

/''~error('d', "%t<-%t"., tl ,a->tp) ;'''/
if (1 < i) error("%d possib

}
else {

}
}

}

}
}

Pclass cl= (Pclass)cn->tp;
Pref r = new ref(DOT,a,Ncoe
Pexpr c = new expr(G_CALL,r
c->fct_name = Ncoerce;
c->tp = tl;
e->el = c;
return tl;

if (tl->check(a->tp,ARG)) {
if (arg_err_suppress==O) error("bad
return any_type;

}

if (k != ELLIPSIS) {
if (arg_err_suppress=O) error("unX %dA for
return any_type;

}
return t;

Feb 8 12:48 1985 expr2.c Page 13

}

else { /* default argument?*/
a= nn->n_initializer;

}

if (a== 0) {

}

if (arg_err_suppress=O) error("A %d ofT%tX for%n",
return any_type;

e = new expr(ELIST,a,O);
if (etail)

etail->e2 = e;
else

e2 = e;
etail = e;

return t;

int refd;

Pexpr ref_init(Pptr p, Pexpr init, Ptable tbl)
/--1•

*/
{

initialize the "p" with the "init"

register Ptype it= init->tp;
Ptype pl;
Pname cl;
Pexpr a;

rloop:
j'kerror ('d' , "rloop: %d%k", it, i t->base); '1c /

switch (it->base) {
case TYPE:

it= ((Pbase)it)->b_name->tp; goto rloop;
// case VEC:
// case PTR:
// if (p->check(it,ASSIGN) = 0) return init;
// break;

default:
{ Ptype tt = it->addrof();

if (p->check(tt,ASSIGN) = 0) {

}
}

}

pl= p->typ;
cl= pl->is_cl_obj();

if (init->lval(O)) return init->address();
if (init->base==G_CALL /* &inline function call?*
&& init->fct_name
&& ((Pfct)init->fct_name->tp)->f_inline)

return init->address();
pl= p->typ;
goto xxx;

Feb 8 12:48 1985 expr2.c Page 14

xxx:

if (cl) {

}

refd = 1; /* disable itor */
a= class_init(0,pl,init,tbl);
refd = 0;
if (a== init) goto xxx;
switch (a->base) {
case G_CALL:
case CM:

}

init = a;
goto xxx;

return a->address();

if (pl->check(it,ASSIGN)) {
error("badirT:%t (%tX)",it,p);
init->tp = any_type;
return init;

}

/*error ('d' , "xxx: %k", ini t->base) ;-/r /

switch (init->base) {
case NAME:
case DEREF:
case REF:
case DOT: /* init => &init */

init->lval(ADDROF);
return init->address();

case CM:
/-;':error('d', "cm%k", init->e2->base) ;": I

switch (init->e2->base) { /* (a, b) => (a, &b) */
case NAME:
case DEREF:

return init->address();
}

default: /* init = > (temp=init, &temp)*/
{ Ptable otbl = tbl;

if (Cstmt) { /* make Cstmt into a block*/

}

if (Cstmt->memtbl == 0) Cstmt->memtbl = new table(4,tbl,0);
tbl = Cstmt->memtbl;

char* s = make_name('I');
Pname n = new class name(s);

(kerror('d' ,"ref_init tmp %s n=%d tbl %d init=%d%k",s,n,tbl,init,init->base);-;'r/
if (tbl = gtbl) error('s' ,"Ir for global reference not an lvaue");
n->tp = pl;
n = n->dcl(tbl,ARG); /* no initialization!*/
n->n_scope = FCT;
n->assign();
a= n->address();
Pexpr as= new class expr(ASSIGN,n,init);
a= new class expr(CM,as,a);
a->tp = a->e2->tp;

Feb 8 12:48 1985 expr2.c Page 15

}

}
}

tbl = otbl;
return a;

Pexpr class_init(Pexpr nn, Ptype tt, Pexpr init, Ptable tbl)
/''~

•;': I

initialize "nn" of type "ttu with "init"
if nn=O make a temporary,
nn may not be a name

{ Pname cl= tt->is_cl_obj();
Pname c2 = init->tp->is_cl_obj();

/irerror('d', "class_init%n%n%n refd=%d" ,nn,cl,c2, refd) ;,'r/
if (cl) {

if (cl!=c2
I I (refd=O && Pclass(cl->tp)->has_itor())) {

/* really ouht to make a temp if refd,
but ref_init can do that

-1r;

inti= can_coerce(tt,init->tp);
if (Ncoerce) {

if (1 < i) {

}

error (1'%d possible ways of making a%n from
return init;

/*error('d' ,"coerce%n=(%d%k).%n",nn,init,init->base,Ncoerce);*/
switch (init->base) {
case CALL:
case G_CALL:
case CM:
case NAME: /* init.coerce() */
{ Pref r = new ref(DOT,init,Ncoerce);

Pexpr c = new expr(G_CALL,r,O);
c->fct_name = Ncoerce;
init = c;
break;

}
default: /* (temp=init,temp.coerce()) */
{ Ptable otbl = tbl;

if (Cstmt) {/*make Cstmt into a block*/
if (Cstmt->memtbl == 0) Cstmt->memt
tbl = Cstmt->memtbl;

}
char* s = make_name('U');
Pname tmp = new name(s);
tmp->tp = init->tp;
tmp = tmp->dcl(tbl,ARG); /* no init! */
tmp->n_scope = FCT;
Pexpr ass= new expr(ASSIGN,tmp,init);
ass->tp = tt;
Pref r = new ref(DOT,tmp,Ncoerce);
Pexpr c = new expr(G_CALL,r,O);
c->fct_name = Ncoerce;

C

Feb 8 12:48 1985 expr2.c Page 16

}

}
}

init = new expr(CM,ass,c);
tbl = otbl;

return init->typ(tbl);

Pexpr a= new class expr(ELIST,init,O);
a= new class texpr(VALUE,tt,a);
a->e2 = nn;
a= a->t7.p(tbl);

/*error('d', "class_init%n: %k %t ',nn,a->base, tt) ;''(/
return a;

}
/*error(' d', "class_init%n: init%t" ,nn, init->base, init->tp) ;'~/

return init;

}

}

if (tt->check(init->tp,ASSIGN) && refd==O) {
error("badirT:%t (%tX)",init->tp,tt);
init->tp = any_type;

}
return init;

int char_to_int (char-;'.-s)
/* assumes points to a string:

'c'

*/
{

or '\c'
or '\O'
or 1 \ddd'
or multi-character versions of the above

register inti= O;
register char c, d, e;

switch ('i'rs) {
default:

error('i' ,"char constant store corrupted");
case'''•

error('s' ,"bed constant");
return O;

case'\":
break;

}

forever /* also handle multi-character constants*/
switch (c = 'i'r++s) {
case '\'':

return i;
case '\\': /* special character*/

switch (c = *++s) {
case 'o': case '1': case 1 2': case '3': case '4':
case 'S': case 1 6 1

: case 1 7': /* octal representation*/
C -= IQ I;

switch (d = *++s) { /* try for 2 */

Feb 8 12:48 1985 expr2.c Page 17

}

const
const

case

case

case

case

case

case

case

}

case 1 0 1
: case '1': case 1 2': case '3': case '4':

case '5': case 1 6 1
: case '7':

d -= 'O';
switch (e = -;';-++s) { /-;';-try for 3 */

case 'O': case '1': case '2': case 1 3 1
: case '4':

case '5': case 1 6 1

: case 1 7 1

:

default:

}

c = c*64+d*8+e-'O';
break;

C = c''.-s+d;
s--;

break;
default:

s--·
' }

break;
'b':

C = '\b I;

break;
If':

C = I \f';
break;

'n' :
= '\n I

C ;
break;

'r f :
C = I \r I;

break;
't':

C = I\ t I;

break;
'\\I:

C = 1 \ \ t;

break;
'\II:

C = I\ I I;

break;

/* no break -.'r /

default:

}

AlO
alO

=
=

if (i) i <<= BI_IN_BYTE;
i += c;

'A'-10;
'a'-10;

int str_to_int (register char·:lc-p)
;-.'c-

read decimal, octal, or hexadecimal integer

"' _)

C

Feb 8 12:48 1985 expr2.c Page 18

register c;
register i = O;

if ((c=1:p++) - ' 0 ') {
switch (c = *p++) {
case 0:

}

return O;

case '1':
case 'L': /* long zero*/

return O;

case 'x':
case 'X':

while
/*hexadecimal*/

(c=-;':p++)

default:

}

switch (c) {
case 'I':
case 'L':

return i;
case 'A':
case 'B':
case 'c':
case 'D':
case 'E':
case 'F':

i = i*16 + c-AlO;
break;

case 'a':
case 'b':
case 'c':
case 'd':
case 'e'
case 'f':

default:

}

i = i*16 + c-alO;
break;

i = i*16 + c-'o';

return i;

do
;.,i: octal .,i: I

switch (c) {
case 'l':
case 'L':

return i;
default:

i = i'i:8 + c- '0' ;
}

while (c=·kp++);
return i;

J;': decimal * /
i = c- '0';
while (c=1:p++)

Feb 8 12:48 1985 expr2.c Page 19

}

switch (c) {
case 1 1 1

:

case 'L':
return i;

default:
i = i*l0 + c- 1 0';

}
return i;

char-;'.-Nev al;

int expr. eval ()
{

if (Neval) return 1;

switch (base) {
case ZERO:
case IVAL:
case ICON:
case CCON:
case FCON:
case STRING:
case EOBJ:
case SIZEOF:
case NAME:

return O;
return (int)el;
return str_to_int(string);
return char_to_int(string);
Neval = "float in constant expression"; return 1;
Neval = "string in constant expression"; return 1;
return ((Pname)this)->n_val;
return tp2->tsizeof();

{ Pname n = (Pname)this;

}

if (n->n_evaluated) return n->n_val;
Neval = "cannot evaluate constant";
return 1;

case ICALL:
if (el) {

}

il->i_next = curr_icall;
curr_icall = il;
inti= el->eval();
curr_icall = il->i_next;
return i;

Neval = "void inlineF";
return 1;

case ANAME:
{ Pname n = (Pname)this;

int argno = n->n_val;
Pin il;

aok:

bok:

for (il=curr_icall; il; il=il->i_next)
if (il->i_table = n->n_table) goto aok;

goto bok;

if (il->local[argno]) {

Neval = "inlineF call too complicated for constant expressi
return 1;

,, "

C._.

Feb 8 12:48 1985 expr2.c Page 20

Pexpr aa = il->arg[argno];
return aa->eval();

}
case CAST:
{ inti= el->eval();

Neval = "cast in constant expression";
return i;

}
case UMINUS:
case NOT:
case COMPL:
case PLUS:
case MINUS:
case MUL:
case LS:
case RS:
case NE:
case LT:
case LE:
case GT:
case GE:
case AND:
case OR:
case ER:
case DIV:
case MOD:
case QUEST:
case EQ:
case ANDAND:
case OROR:

break;
default:

Neval = "bad operator in constant expression";
return 1 • ' }

int i1 = (el) ? el->eval() O·
' int i2 = (e2) ? e2->eval() O·
'

switch (base) {
case UMINUS: return -i2;
case NOT: return !i2;
case COMPL: return ,...i2;
case CAST: return i1;
case PLUS: return il+i2;
case MINUS: return il-i2;
case MUL: return il*i2;
case LS: return il«i2;
case RS: return il»i2;
case NE: return il!=i2;
case EQ: return il=i2;
case LT: return i1 <i2;
case LE: return il<=i2;
case GT: return il>i2;
case GE: return il>=i2;
case AND: return il&i2;

Feb 8 12:48 1985 expr2.c Page 21

case OR:
case OROR:
case ER:
case MOD:
case QUEST:
case DIV:

}
}

return i1 I i2;
return il I I i2;
return il Ai2;
return (i2=0) ? 1 : i1%i2;
return (cond->eval ()) ? i1
if (i2=0) {

Neval = "divide by
return 1;

return il/ i2;

i2;

zero";

bit classdef.has_friend(Pname f)

does this class have function "f" as its friend?

Plist I;
Ptable ctbl = f->n_table;

/ 7"fprintf (stderr, "(%d %s)->has_friend (%d %s) \n", this, string, f, (f)? £->string:"''); f fl
for (l=friend_list; l; 1=1->l) {

Pname fr = 1->f;
/ 7"fprintf (stderr, "fr %d %d %d\n", fr ,fr->tp, fr->tp->base); fflush(stderr); ,>: /

switch (fr->tp->base) {

}

}

case CLASS:
if (((Pclass)fr->tp)->memtbl - ctbl) return 1;
break;

case COBJ:
if (((Pbase)fr->tp)->b_table - ctbl) return 1;
break;

case FCT:
if (fr== f) return 1;
break;

case OVERLOAD:
{/* Pgen g = (Pgen)fr->tp;

Plist 11;

}
default:

for (ll=g->fct_list; 11; 11=11->l) {
if (11->f = f) return 1;

}*/
1->f =fr= ((Pgen)fr->tp)->fct_list->f; /* first fct */
if (fr= f) return 1;
break;

error('i' ,"bad friend %k",fr->tp->base);

return O;

Feb 8 12:50 1985 gram.y Page 1

/* %Z% %M% %I% %H% %T% */

gram.y:

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

This is the syntax analyser.

Old C features not recognized:
(1) "+="as the operator"+="
(2) any construct using one of the new keywords as an identifier
(3) initializers without"=" operator
(4) structure tags used as identifier names

Additions:
(1) Classes (keywords: CLASS THIS PUBLIC FRIEND and VIRTUAL)

(classes incorporate STRUCT and UNION)
(2) the new and delete operators (keywords: NEW DELETE)
(3) inline functions (keyword INLINE)
(4) overloaded function names (keyword OVERLOAD)
(5) overloaded operators (keyword OPERATOR)
(6) constructors and destructors
(7) constant types (keyword: CONST)
(8) argument types part of function function type (token: ...)
(9) new argument syntax (e.g. char f(int a, char b) { ... })
(10) names can be left out of argument lists

Syntax extensions for error handling:
(1) nested functions
(2) any expression can be empty
(3) any expression can be a constant_expression

note that a call to error() does not change the parser's state
*/

/ %{
\..... #include "size. h"

#include "cfront.h"

#define YYMAXDEPTH 300

Phase defa_type;
Phase moe_type;
Pexpr dummy;
Pexpr zero;

Pclass eel;
int cdi = O;
Pname cd = O, cd_vec[BLMAX];

Feb 8 12:50 1985 gram.y Page 2

char stmt_seen = O, stmt_vec[BLMAX];
Plist modified_tn = 0, tn_vec[BLMAX];

Pname sta_name = (Pname)&sta_name;

bit cm_warn;

extern TOK back;
TOK back;
#define lex_unget(x) back= x

#define Ndata(a,b)
#define Ncast(a,b)
#define Nfct(a,b,c)
#define Ntype(p)
#define Nstclass(p)
#define Nlist(p)
#define Ncopy(n)
(Pname)

((Pname)b)->normalize((Pbase)a,0,0)
((Pname)b)->normalize((Pbase)a,0,1)
((Pname)b)->normalize((Pbase)a,(Pblock)c,O)
((Pname)p)->tp
((Pname)p)->n_stclass
((Pname)p)->n_list
((((Pname)n)->base=TNAME)? new name(((Pname)n)->string)

#define Nhide(n) ((Pname)n)->hide()
#define Ntname(t,n) ((Pname)n)->tname(t) */

#define fieldN(e)
#define enumdefN(m)
#define Fargtype(p)
#define Finit(p)
#define Finline(p)
#define Fargdcl(p,q)
#define Freturns(p)
#define fctN(t,a,k)
#define vecN(e)
#define Vtype(v)
#define Ptyp(p)

#define conN(t,v)

#define nlistN(n)
#define Nadd(l,n)
#define Nadd_list(l,n)
#define Nunlist(l)
#define slistN(s)
#define Sadd(l,s)
#define Sunlist(l)
#define Eadd(l,e)
#define Eunlist(l)

new basetype(FIELD,(Pname)e)
new enumdef(m)
((Pfct)p)->argtype
((Pfct)p)->f_init
((Pfct)p)->f_inline = 1
((Pfct)p)->argdcl(q)
((Pfct)p)->returns
new fct(t,a,k)
new vec(O,e)
((Pvec)v)->typ
((Pptr)p)->typ

new expr(t,(Pexpr)v,O)

(PP)new nlist((Pname)n)
((class nlist *)1)->add((Pname)n)
((class nlist *)1)->add_list((Pname)n)
name_unlist((nlist*)l)
(PP)new slist((Pstmt)s)
((slist*)l)->add((Pstmt)s)
stmt_unlist((slist*)l)
((elist*)l)->add((Pexpr)e)
expr_unlist((elist*)l)

;--.i: avoid redefinitions ..,•: /
#undef EOFTOK
#undef ASM
#undef BREAK
#undef CASE
#undef CONTINUE
#undef DEFAULT
#undef DELETE
#undef DO
#undef ELSE
#undef ENUM

Feb 8 12:50 1985 gram.y Page 3

#undef FOR
#undef FORTRAN
#undef GOTO
#undef IF
#undef NEW
#undef OPERATOR
#undef PUBLIC
#undef RETURN
#undef SIZEOF
#undef SWITCH
#undef THIS
#undef WHILE
#undef LP
#undef RP
#undef LB
#undef RB
#undef REF
#undef DOT
#undef NOT
#undef GOMPL
#undef MUL
#undef AND
#undef PLUS
#undef MINUS
#undef ER
#undef OR
#undef ANDAND
#undef OROR
#undef QUEST
#undef COLON
#undef ASSIGN
#undef GM
#undef SM
#undef LG
#undef RC
#undef ID
#undef STRING
#undef ICON
#undef FCON
#undef CCON
#undef ZERO
#undef ASOP
#undef RELOP
#undef EQUOP
#undef DIVOP
#undef SHIFTOP
#undef ICOP
#undef TYPE
#undef TNAME
#undef EMPTY
#undef NO_ID
#undef NO_EXPR
#undef ELLIPSIS
#undef AGGR
#undef MEM
#undef CAST

Feb 8 12:50 1985 gram.y Page 4

Pname syn()
{

}

%}

%union

}
%{
extern
%}
/')'C'

-..'C'/

%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token

return (Pname) yyparse();

{
char·lC" s;
TOK t;
int i;
lac l·

' Pname pn;
Ptype pt;
Pexpr pe;
Pstmt ps;
Phase pb;
pp p;

YYSTYPE yylval;

/·lr

,'C'/

fudge: pointer to all class node objects
neccessary only because unions of class
pointers are not implemented by cpre

the token definitions are copied from token.h,
and all %token replaced by %token

;,•: keywords in alphabetical order*/
EOFTOK 0
ASM 1
BREAK 3
CASE 4
CONTINUE 7
DEFAULT 8
DELETE 9
DO 10
ELSE 12
ENUM 13
FOR 16
FORTRAN 17
GOTO 19
IF 20
NEW 23
OPERATOR 24
PUBLIC 25
RETURN 28
SIZEOF 30
SWITCH 33
THIS 34
WHILE 39

;,'C' operators in priority order (sort of)*/
%token LP 40

)

(_.

C.

(~.

Feb 8 12:50 1985 gram.y Page 5

%token RP
%token LB
%token RB
%token REF
%token DOT
%token NOT
%token COMPL
%token MUL
%token AND
%token PLUS
%token MINUS
%token ER
%token OR
%token ANDAND
%token OROR
%token QUEST
%token COLON
%token ASSIGN
%token CM
%token SM
%token LC
%token RC
%token CAST

%token ID
%token STRING
%token ICON
%token FCON
%token CCON

%token ZERO

%token ASOP
%token RELOP
%token EQUOP
%token DIVOP
%token SHIFTOP
%token ICOP

%token TYPE

%token TNAME
%token EMPTY
%token NO_ID
%token NO_EXPR
%token ELLIPSIS
%token AGGR
%token MEM

%type <p>

41
42
43
44
45
46
47
50
52
54
55
64
65
66
67
68
69
70
71
72
73
74
113

/* constants etc.*/
80
81
82
83
84

86

/* groups of tokens*/
90 /*op=*/
91 / 7c LE GE LT GT -;'-: /
92 /* EQ NE*/
93 /* DIV MOD*/
94 /* LS RS*/
95 /* INCR DECR */

97

123
124
125
126

INT FLOAT CHAR DOUBLE
REGISTER STATIC EXTERN AUTO
CONST INLINE VIRTUAL FRIEND
LONG SHORT UNSIGNED
TYPEDEF -;': /

155 /* ... */
156 /* CLASS STRUCT UNION*/
160 /-;',: : : ';~ /

external_def fct_dcl fct_def att_fct_def arg_dcl_list

Feb 8 12:50 1985 gram.y Page 6

base_init
data_dcl ext_def vec ptr
type tp enum_dcl moe_list
moe
tag class_head class_dcl mem_~ist cl_mem_list
cl_mem dl decl_list
fname decl initializer stmt_list
block statement simple ex_list elist e term prim
cast_decl cast_type c_decl c_type c_tp
arg_decl at arg_type arg_list arg_type_list
new_decl new_type
condition
TNAME tn_list

%type <l>

%type <t>

LC RC SWITCH CASE DEFAULT FOR IF DO WHILE GOTO RETURN DELETE
BREAK CONTINUE
oper
EQUOP DIVOP SHIFTOP ICOP RELOP ASOP
ANDAND OROR PLUS MINUS MUL ASSIGN OR ER AND
LP LB NOT COMPL AGGR
TYPE

%type <s> ID CCON ZERO ICON FCON STRING

%left
%left
%left

%left

%left
%right
%right
%left
%left
%left
%left
%left
%left
%left
%left
%left
%left
%right
%right
%left

EMPTY
NO_ID
RC LC ID BREAK CONTINUE RETURN GOTO DELETE DO IF WHILE FOR CASE DEFAULT
AGGR ENUM TYPE
NO_EXPR

CM
ASOP ASSIGN
QUEST COLON
OROR
ANDAND
OR
ER
AND
EQUOP
RELOP
SHIFTOP
PLUS MINUS
MUL DIVOP
NOT COMPL NEW
CAST ICOP SIZEOF
LB LP DOT REF MEM

%start ext_def

%%
I*

this parser handles declarations one by one,
NOT a complete .c file

Feb 8 12:50 1985 gram.y Page 7

/-;'r**-;'dr-.'rlr,'r-;'r·ldr-.'r** DECLARATIONS in the outermost scope: returns Pname *-lr-;'dr-.'dr-;'r /

ext_def

external_def

fct_dcl

att_fct_def

fct_def

external_def
{

SM
{

EOFTOK
{

data_dcl
{

att_fct_def
{

fct_def
{

fct_dcl
{ mod:

}

return $<i>l; }

return 1 • '
}

return O·
'

}

modified_tn = O; if ($<pn>l=O) $<i>$ = 1; }

goto mod; }

goto mod; }

if (modified_tn) {
restore();
modified_tn = O;

}

ASM LP STRING RP SM
{ Pname n = new name(make_name('A'));

n->tp = new basetype(ASM,$<pn>3);

}

decl SM
{

}

$$ = n;

Pname n = $<pn>l;
switch (n->tp->base) {
case FCT:

default:

}

$$ = Nfct(defa_type,n,O);
break;

error("TX for%n",n);
$$ = Ndata(defa_type,$1);

type decl arg_dcl_list base_init block
{ $$ = Nfct($1,$2,$5);

Fargdcl(Ntype($$),Nunlist($3));
Finit(Ntype($$)) = $<pe>4;

}

decl arg_dcl_list base_init block
{ $$ = Nfct(defa_type,$1,$4);

Fargdcl(Ntype($$),Nunlist($2));
Finit(Ntype($$)) = $<pe>3;

Feb 8 12:50 1985 gram.y Page 8

base_init

arg_dcl_list

dl

decLlist

}

COLON LP elist RP
{ $$ = $3; }

%prec EMPTY
{ $$ = O; }

arg_dcLlist
{

}
%prec EMPTY

data_dcl
if ($<pn>2 i:::= 0)

error("badAD");
else if ($<pn>2->tp->base = FCT)

error("FD inAL (%n)",$<pn>2);
else if ($1)

Nadd_list($1,$2);
else

$$ = nlistN($2);

{ $$ = O; }

decl
ID COLON e

{

}
COLON e

{

}

%prec CM
$$=new name($<s>l);
Ntype($$) = fieldN($<pe>3);

%prec CM
$$=new name;
Ntype($$) = fieldN($<pe>2);

decl ASSIGN initializer
{ $<pn>l->n_initializer = $<pe>3; }

dl
{ if ($1) $$ = nlistN($1); }

decLlist CM dl
{ if ($1)

else {

}
}

if ($3)

else
Nadd($1,$3);

error("DL syntax");

if ($3) $$ = nlistN($3);
error (''DL syntax");

Feb 8 12:50 1985 gram.y Page 9

data_dcl

tp

type

type decl_list SM
{ $$ = Ndata($1,Nunlist($2)); }

type SM
{ $$ = $<pb>l->aggr(); }

TYPE
{

TNAME
{

class_dcl
enum_dcl
AGGR tag

{

}
ENUM tag

{

$$=new basetype($<t>l,O); }

$$=new basetype(TYPE,$<pn>l); }

Pname n = $<pn>2;
TOK t = $<t>l;
if (n->base = NAME) { /* implicit dcl

n = n->tname(t);

}

modified_tn = modified_tn->1;
n->lex__level = O;

$$ = n->tp;

Pname n = $<pn>2;

,': I

/-!: not loca

if (n->base = NAME) { /* implicit dcl */
n = n->tname(ENUM);

tp
type

type

type

type

type

}

TYPE

}

modified_tn = modified_tn->l;
n->lex_level = O;

$$ = n->tp;

{ $$ = $<pb>l->type_adj($<t>2); }
TNAME
{ $$ = $<pb>l->name_adj($<pn>2); }
class_dcl
{ $$ = $<pb>l->base_adj($<pb>2); }
enum_dcl
{ $$ = $<pb>l->base_adj($<pb>2); }
AGGR tag
{ Pname n = $<pn>3;

TOK t = $<t>2;

}

if (n->base = NAME) { /* implicit dcl */
n = n->tname(t);

}

modified_tn = modified_tn->l;
n->lex_level = O;

$$ = $<pb>l->base_adj((Pbase)n->tp);

type ENUM tag
{ Pname n = $<pn>3;

if (n->base = NAME) { /* implicit dcl */
n = n->tname(ENUM);

Feb 8 12:50 1985 gram.y Page 10

enum_dcl

moe_list

moe

class_dcl

class_head

}

}

modified_tn = modified_tn->1;
n->lex_level = O;

$$ = $<pb>l->base_adj((Pbase)n->tp);

ENUM LC moe_list RC
{ $$ = end_enum(O,$<pn>3); }

ENUM tag LC moe_list RC
{ $$ = end_enum($<pn>2,$<pn>4); }

moe
{ if ($1) $$ = nlistN($1); }

moe_list CM moe
{ if($3) if ($1) Nadd($1,$3); else$$= nlistN($3);

ID
{

ID ASSIGN e
{

$$=new name($<s>l); Ntype($$) = moe_type; }

$$=new name($<s>l);
Ntype($$) = moe_type;
$<pn>$->n_initializer = $<pe>3;

$$ = O; }

class_head mem_list RC
{ end_cl(); }

class_head mem_list RC TYPE
{ end_cl();

error("~;' or declaratorX afterCD");
lex_unget($4);
/* lex_unget($4); but only one unget, sorry*/

}

AGGR LC
{ $$ = start_cl($<t>l,O,O); }

AGGR tag LC
{ $$ = start_cl($<t>l,$<pn>2,0); }

AGGR tag COLON tag LC
{ $$ = start_cl($<t>l,$<pn>2,$<pn>4); }

AGGR tag COLON PUBLIC tag LC
{ $$ = start_cl($<t>l,$<pn>2,$<pn>5);

ccl->pubbase = 1;

C.

(_

Feb 8 12:50 1985 gram.y Page 11

tag

mem_list

cLmem_list

cl_mem

}

ID
{

TNAME

cl_mem_list
{

}

$$=new name($<s>l); }

Pname n = Nunlist($1);
if (ccl->is_simple())

ccl->pubmem = n;
else

ccl->privmem = n;
$$ = O;

cl_mem_list PUBLIC cl_mem_list
{ error("' ... :'' missing after ''public''");

ccl->pubmem = Nunlist($3);
goto priv;

}
cl_mem_list PUBLIC COLON cl_mem_list

{ TOK t;

priv:

}

ccl->pubmem = Nunlist($4);

t = ccl->is_simple();
if (t) error("public in%k",t);
ccl->privmem = Nunlist($1);
$$ = O;

cl_mem_list cl_mem
{ if ($2) if ($1) Nadd_list($1,$2); else$$= nlistN(

%prec EMPTY
{ $$ = 0; }

data_dcl
att_fct_def SM
att_fct_def
fct_def SM
fct_def
fct_dcl
tn_list

{

}

tag SM /* public declaration*/
Pname n = Ncopy($2);
n->n_qualifier = (Pname)$1;
n->n_list = ccl->pubdef;
ccl->pubdef = n;
$$ = O;

/************* declarators:

Feb 8 12:50 1985 gram.y Page 12

/* a ''decl'' is used for function and data declarations,

£name

oper

and for member declarations
(it has a name)

an ''arg_decl'' is used for argument declarations
(it may or may not have a name)

an ''cast_decl'' is used for casts
(it does not have a name)

a ''new_decl'' is used for type specifiers for the NEW operator
(it does not have a name, and PtoF and PtoV cannot be expressed)

ID
{

COMPL TNAME
{

DELETE
{

}
NEW

{

}
OPERATOR oper

$$=new name($<s>l); }

$$ = Ncopy($2); $<pn>$->n_oper = DTOR; }

if (fct_void==O) error("deleteF (use destructor)");
$$=new name("_dtor");
$<pn>$->n_oper = DTOR;

if (fct_void==O) error("newF (use constructor)");
$$=new name("_ctor");
$<pn>$->n_oper = CTOR;

{ $$=new name(oper_name($2));
$<pn>$->n_oper = $<t>2;

}
OPERATOR

{

PLUS
MINUS
MUL
AND
OR

}

ER
SHIFTOP
EQUOP
DIVOP
RELOP
ANDAND
OROR
LP RP
LB RB
NOT
COMPL

c_type
Pname n = $<frn>2;
n->string = '_type";
n->n_oper = TYPE;
n->n_initializer = (Pexpr)n->tp;
n->tp = O;
$$ = n;

{
{

$$=CALL; }
$$ = DEREF; }

)

J

Feb 8 12:50 1985

(~

tn_list

C

gram.y Page 13

ICOP
ASOP
ASSIGN
NEW { $$=NEW; }
DELETE { $$ = DELETE; }

TNAME DOT
tn_list TNAME DOT

{ error ('s', "MF of nestedC"); }
tn_lis t ID DOT

{ error(' s', "MF of nestedC"); }

decl arg_list
{ Freturns($2) = Ntype($1);

Ntype($1) = (Ptype)$2;
}

TNAME arg_lis t
{ Pname n = (Pname.) $1;

$$ = Ncopy(n);

}

if (eel && strcmp(n->string,ccl->string)) Nhide(n);
$<pn>$->n_oper = TNAME;
Freturns($2) = Ntype($$);
Ntype($$) = (Ptype)$2;

decl LP elist RP
/* may be class object initializer,

class object vector initializer,

*/
{

if not elist will be a CM or an ID

TOK k = 1;
Pname 1 = $<pn>3;
if (fct_void && l=O) k = O;
Ntype($1) = fctN(Ntype($1),1,k);

}
TNAME LP

{
elist RP

}

fname
ID DOT fname

{

}

TOK k = 1;
Pname 1 = $<pn>3;
if (fct_void && l=O) k = O;
$$ = Ncopy($1);
$<pn>$->n_oper = TNAME;
Ntype($$) = fctN(O,l,k);

$$ = Ncopy($3);
$<pn>$->n_qualifier = new name($<s>l);

tn_list £name
{ $$ = $2;

}
tn_list TNAME

set_scope($<pn>l);
$<pn>$->n_qualifier = $<pn>l;

Feb 8 12:50 1985 gram.y Page 14

arg_decl

}
ptr decl

{

}
ptr TNAME

{

}
TNAME vec

{

}
decl vec

{

}

$$ = Ncopy($2);
set_scope($<pn>l);
$<pn>$->n_oper = TNAME;
$<pn>$->n_qualifier = $<pn>l;

%prec MUL
Ptyp($1) = Ntype($2);
Ntype($2) = (Ptype)$1;
$$ = $2;

%prec MUL
$$ = Ncopy($2);
$<pn>$->n_oper = TNAME;
Nhide($2);
Ntype($$) = (Ptype)$1;

%prec LB
$$ = Ncopy($1);
$<pn>$->n_oper = TNAME;
Nhide($1);
Ntype($$) = (Ptype)$2;

%prec LB
Vtype($2) = Ntype($1);
Ntype($1) = (Ptype)$2;

LP decl RP arg_list /* xxxxx need a CAST here?*/
{ Freturns($4) = Ntype($2);

Ntype($2) = (Ptype)$4;
$$ = $2;

}
LP decl RP vec /-;'~ xxx -;~ /

ID

{ Vtype($4) = Ntype($2);
Ntype($2) = (Ptype)$4;
$$ = $2;

}

{
%prec NO_ID

{

$$=new name($<s>l); }

$$=new name; }
ptr arg_decl

{

}

%prec MUL
Ptyp($1) = Ntype($2);
Ntype($2) = (Ptype)$1;
$$ = $2;

arg_decl vec %prec LB
{ Vtype($2) = Ntype($1);

Ntype($1) = (Ptype)$2;
}

LP arg_decl RP arg_list
{ Freturns($4) = Ntype($2);

Ntype($2) = (Ptype)$4;
$$ = $2;

}

)

Feb 8 12:50 1985 gram.y Page 15

new_decl

cast_decl

c_decl

LP arg_decl RP vec
{ Vtype($4) = Ntype($2);

Ntype($2) = (Ptype)$4;
$$ = $2;

}

%prec N0_ID
{

ptr new_decl
{

}

$$=new name; }
%prec MOL

Ptyp($1) = Ntype($2);
Ntype($2) = (Ptype)$1;
$$ = $2;

new_decl vec %prec LB
{ Vtype($2) = Ntype($1);

Ntype($1) = (Ptype)$2;
}

%prec N0_ID
{ $$=new name; }

ptr cast_decl %prec MUL
{ Ptyp($1) = Ntype($2);

Ntype($2) = (Ptype)$1;
$$ = $2;

}
cast_decl vec %prec LB

{ Vtype($2) = Ntype($1);
Ntype($1) = (Ptype)$2;

}
LP cast_decl RP arg_list

{ Freturns($4) = Ntype($2);
Ntype($2) = $<pt>4;
$$ = $2;

}
LP cast_decl RP vec

{ Vtype($4) = Ntype($2);
Ntype($2) = $<pt>4;

}

%prec N0_ID
{

ptr c_decl
{

}

$$ = $2;

$$ = new name; }

Ptyp($1) = Ntype($2);
Ntype($2) = (Ptype)$1;
$$ = $2;

%prec MOL

Feb 8 12:50 1985 gram.y Page 16

stmt_list

condition

block

simple

stmt_list statement
{ if ($2)

}
statement

if ($1)

else {

}

Sadd($1,$2);

$$ = s listN($2);
stmt_seen = 1;

{ if ($1) {

}

LP e RP
{

}

$$ = $2;

$$ = slistN($1);
stmt_seen = 1;

if ($<pe>$ = dummy) error("empty condition");
stmt_seen = 1;

LC

}

{ cd_vec[cdi] = cd;
stmt_vec[cdi] = stmt_seen;
tn_vec[cdi++] = modified_tn;
cd = O;
stmt_seen = O;
modified_tn = O;

}
stmt_list RC
{ Pname n = Nunlist(cd);

Pstmt ss = Sunlist($3);
$$=new block($<1>1,n,ss);
if (modified_tn) restore();
cd = cd_vec[--cdi];
stmt_seen = stmt_vec[cdi];
modified_tn = tn_vec(cdi];
if (cdi < 0) error(1 i 1 ,"block leve1(%d)",cdi);

}
LC RC

{ $$=new block($<1>1,0,0); }
LC error RC

{ $$=new block($<1>1,0,0); }

e
{ $$ = new estmt(SM,curloc,$<pe>l,O);

BREAK
{ $$ = new stmt(BREAK,$<1>1,0); }

CONTINUE
{ $$ = new stmt(CONTINUE,$<1>1,0); }

RETURN e
{ $$ = new estmt(RETURN,$<1>1,$<pe>2,0);

}

}

)

Feb 8 12:50 1985 gram.y Page 17

statement

GOTO ID
{

}
DELETE e

Pname n = new name($<s>2);
$$=new lstmt(GOT0,$<1>1,n,0);

{ $$ =
DO { stmt_seen=l;

new estmt(DELETE,$<1>1,$<pe>2,0); }
} statement WHILE condition

{ $$ = new estmt(D0,$<1>1,$<pe>5,$<ps>3); }

simple SM
ASM LP STRING RP SM

{

}

if (stmt_seen)

else {

}

$$=new estmt(ASM,curloc,(Pexpr)$<s>3,0);

Pname n = new name(make_name('A'));
n->tp = new basetype(ASM,(Pname)$<s>3);
if (cd) Nadd_list(cd,n); else cd=(Pname)nli
$$ = O;

simple
error('" ; ' miss i.ng after s imp leS") ; } * / {

data_dcl
{

}

if ($<pn>l)
if (stmt_seen) {

}
else

Pname n = $<pn>l;
$$=new block(n->where,n,O);
$<ps>$->base = DCL;

goto dddd;

att_fct_def
{

dddd:

}
block

lex_un.sz:et(RC);
error C1nestedFD (did you forget a ''}' 1 ?) 11

);

if (cd) Nadd_list(cd,$1); else cd = (Pname)nlistN($
$$ = O;

IF condition statement
{ $$=new ifstmt($<1>1,$<pe>2,$<ps>3,0); }

IF condition statement ELSE statement
{ $$=new ifstmt($<1>1,$<pe>2,$<ps>3,$<ps>5); }

WHILE condition statement
{ $$=new estmt(WHILE,$<1>1,$<pe>2,$<ps>3); }

/*I FOR LP { stmt_seen=l; cm_warn++; } e SM e SM e RP statement
{ $$=new forstmt($<1>1,$<pe>4,$<pe>6,$<pe>8,$<ps>10

cm_warn--;
}-i, I

FOR LP { stmt_seen=l; cm_warn++; } statement e SM e RP statement
{ $$=new forstmt($<1>1,$<ps>4,$<pe>5,$<pe>7,$<ps>9)

Feb 8 12:50 1985 gram.y Page 18

elist

ex._list

initializer

cIILwarn--;
}

FOR CAST { stmt_seen=l; cIILwarn++; } statement e SM e RP stateme
{ $$=new forstmt($<1>1,$<ps>4,$<pe>S,$<pe>7,$<ps>9)

cm_warn--
}

SWITCH
{

condition statement

ID COLON
{

$$=new estmt(SWITCH,$<1>1,$<pe>2,$<ps>3); }
{$$=new name($<s>l); stmt_seen=l; } statement

Pname n = $<pn>3;
$$=new lstmt(LABEL,n->where,n,$<ps>4);

}
CASE {

{
stmt_seen=l; } e COLON statement

}

if ($<pe>3 = dummy) error("empty case label");
$$=new estmt(CASE,$<1>1,$<pe>3,$<ps>5);

DEFAULT COLON { stmt_seen=l; } statement
{ $$=new stmt(DEFAULT,$<1>1,$<ps>4); }

ex._list
{

initializer
{

}

Pexpr e = Eunlist($1);
while (e && e->el=dummy) {

if (e->e2) error("EX inEL");
delete e;
e = e->e2;

}
$$ = e;

%prec CM
Pexpr e = new expr(ELIST,$<pe>l,O);
$$ = (PP)new elist(e);

ex._list CM initializer
{ Pexpr e = new expr(ELIST,$<pe>3,O);

Eadd($1,e);
}

e
LC elist RC

{

}

Pexpr e;
if ($2)

else

%prec CM

e = $<pe>2;

e = new expr(ELIST,dummy,O);
$$=new expr(ILIST,e,O);

C

Feb 8 12:50 1985 gram.y Page 19

e

term

/*

e ASSIGN e
{ binop: $$=new expr($<t>2,$<pe>l,$<pe>3); }

e PLUS e { goto binop; }
e MINUS e { goto binop; }
e MUL e { goto binop; }
e AND e { goto binop; }
e OR e { goto binop; }
e ER e { goto binop; }
e SHIFTOP e { goto binop; }
e EQUOP e { goto binop; }
e DIVOP e { goto binop; }
e RELOP e { goto binop; }
e ANDAND e { goto binop; }
e OROR e { goto binop; }
e ASOP e { goto binop; }
e CM e

{ if (cm_warn=O) error('w', "comma not in parentheses
goto binop;

}
e QUEST e COLON e

{ $$ = new qexpr($<pe>l,$<pe>3,$<pe>5); }
term

TYPE LP
{

elist RP
TOK b = $<t>l;
Ptype t;
switch (b) {
case CHAR:
case SHORT:
case INT:
case LONG:
case UNSIGNED:
case FLOAT:
case DOUBLE:
case VOID:
default:

t = char_type; break;
t = short_type; break;
t = int_type; break;
t = long_type; break;
t = uint_type; break;
t = float_type; break;
t = double_type; break;
t = void_type; break;

error("illegal constructor:%k",b);
t = int_type;

}
$$=new texpr(VALUE,t,$<pe>3);

}
TNAME LP elist RP

{ Ptype t = Ntype($1);
$$=new texpr(VALUE,t,$<pe>3);

}
NEW new_type

{ Ptype t = Ntype($2); $$=new texpr(NEW,t,O); }
NEW LP new_type RP

{ Ptype t = Ntype($3); $$=new texpr(NEW,t,0); }
NEW new_type LP elist RP

{ Ptype t = Ntype($2); $$=new texpr(NEW,t,$<pe>4);
NEW LP new_type LP elist RP RP

{ Ptype t = Ntype($3); $$=new texpr(NEW,t,$<pe>S);

Feb 8 12:50 1985 gram.y Page 20

term ICOP
{ $$=new expr($<t>2,$<pe>l,O); }

CAST cast_type RP term /* lex() returns CAST instead of LP*/
{ Ptype t = Ntype($2);

}
MUL term

{
AND term

{
MINUS term

{
NOT term

{
COMPL term

{
ICOP term

{
SIZEOF term

{

}
LB e RB

$$=new texpr(CAST,t,$<pe>4);

$$ = new expr(DEREF,$<pe>2,0); }

$$ = new expr(ADDROF,O,$<pe>2); }

$$ = new expr(UMINUS,O,$<pe>2); }

$$ = new expr(NOT,O,$<pe>2); }

$$ = new expr(COMPL,O,$<pe>2); }

$$ = new expr($<t>l,O,$<pe>2); }

Pexpr e = $<pe>2;
if (e->base == CAST) {

Pexpr ee = e->el;
TOK k = ee->base;
switch (k) {

}
else

case UMINUS:
ee = new expr(MINUS,e,ee->e2);
goto kk;

case DEREF:
if (ee->e2) goto dd;
ee = new expr(MUL,e,ee->el);
goto kk;

case ADDROF:

kk:

default:
dd:

}

ee = new expr(AND,e,ee->e2);

e->base = SIZEOF;
e->el = O;
$$ = ee;
break;

e->base = SIZEOF;
$$ = $2;

$$=new texpr(SIZEOF,O,e);

$$=new expr(DEREF,$<pe>l,$<pe>3); }
term

term
{
LP
{

elist RP
Pexpr ee = $<pe>3;
Pexpr e = $<pe>l;
if (e->base == NEW)

e->el = ee;
else

$$=new call(e,ee);

(_

l

Feb 8 12:50 1985 gram.y Page 21

prim

cast_type

c_tp

}
term REF prim

{ $$=new ref(REF,$<pe>l,$<pn>3); }
term REF TNAME

{ Pname n = Ncopy($3); $$=new ref(REF,$<pe>l,n); }
term DOT prim

{ $$=new ref(DOT,$<pe>l,$<pn>3); }
term DOT TNAME

{ Pname n = Ncopy($3); $$=new ref(DOT,$<pe>l,n); }
MEM tag

{ $$ = Ncopy($2); $<pn>$->n_qualifier = sta_name; }
prim
LP { cm_warn++; } e RP

{ $$ = $3; cm_warn--; }
ZERO

{ $$ = zero; }
ICON

{ $$ = conN(ICON,$1); }
FCON

-. { $$ = conN(FCON,$1); }
STRING

{ $$ = conN(STRING,$1); }
CCON

{ $$ = conN(CCON,$1); }
THIS

{ $$ = conN(THIS,O); }
%prec NO_EXPR

{ $$ = dummy; }

ID
{ $$=new name($<s>l); }

TNAME MEM tag
{ $$ = Ncopy($3);

$<pn>$->n_qualifier = $<pn>l;
}

OPERATOR aper
{ $$=new name(oper_name($2));

$<pn>$->n_oper = $<t>2;
}

TNAME MEM OPERATOR aper
{ $$=new name(oper_name($4));

$<pn>$->n_oper = $<t>4;
$<pn>$->n_qualifier = $<pn>l;

}

type cast_decl
{ $$ = Ncast($1,$2); }

TYPE

Feb 8 12:50 1985 gram.y Page 22

c_type

new_type

arg_type

arg_list

{
TNAME

{

c_tp c_decl

$$=new basetype($<t>l,0); }

$$=new basetype(TYPE,$<pn>l); }

{ $$ = Ncast($1,$2); }

type new_decl
{ $$ = Ncast($1,$2); }

type arg_decl
{ $$ = Ndata($1,$2); }

type arg_decl ASSIGN initializer
{ $$ = Ndata($1,$2);

$<pn>$->n_initializer = $<pe>4;
}

CAST arg_type_list RP
{ TOK k = 1;

}

Pname 1 = $<pn>2;
if (fct_void && l=O) k = O;
$$ = fctN(O,Nunlist(l),k);

CAST arg_type_list ELLIPSIS RP
{ TOK k = ELLIPSIS;

Pname 1 = $<pn>2;

}

if (fct_void && l==O) k = O;
$$ = fctN(O,Nunlist(l),k);

CAST arg_type_list CM ELLIPSIS RP
{ TOK k = ELLIPSIS;

Pname 1 = $<pn>2;

}

if (fct_void && 1==0) k = O;
error('w' ,"syntax error: comma before ellipsis");
$$ fctN(O,Nunlist(l),k);

LP arg_type_list RP
{ TOK k = 1;

}

Pname 1 = $<pn>2;
if (fct_void && l=O) k = O;
$$ = fctN(O,Nunlist(l),k);

LP arg_type_list ELLIPSIS RP
{ TOK k = ELLIPSIS;

Pname 1 = $<pn>2;

}

if (fct_void && l=O) k = O;
$$ = fctN(O,Nunlist(l),k);

LP arg_type_list CM ELLIPSIS RP
{ TOK k = ELLIPSIS;

Pname 1 = $<pn>2;
if (fct_void && l=O) k = O;

Feb 8 12:50 1985 gram.y Page 23

at

ptr

vec

%%

}

error('w' ,"syntax error: comma before ellipsis");
$$ = fctN(O,Nunlist(l),k);

arg_type_list CM at
{ if ($3)

else

}
at %prec CM

if ($1)

else {

}

Nadd($1,$3);

error("AD syntax");
$$ = nlistN($3);

error("AD syntax");

{ if ($1) $$ = nlistN($1); }

arg_type
%prec EMPTY

{ $$ = 0; }

MUL
{

AND
{

MUL TYPE
{

}
AND TYPE

{

LB e RB
{

}

$$=new ptr(PTR,O); }

$$=new ptr(RPTR,O); }

TOK c = $<t>2;
if (c = CONST)

else {

}

$$=new ptr(PTR,0,1);

$$=new ptr(PTR,O);
error("syntax error: ir%k" ,c);

TOK c = $<t>2;
if (c = CONST)

else {

}

$$=new ptr(RPTR,0,1);

$$=new ptr(RPTR,O);
error("syntax error: &%k",c);

Pexpr d = $<pe>2;
$$ = vecN((d!=dummy)?d:O);

Feb 8 12:49 1985 lex.c Page 1

/* %Z% %M% %I% %H% %T% */
/ ,':-;'(;':;':~':·l:·l:,':-;':,'r,':,':.,':-;~·-l:·l:•~•;':;':,~,,r·l~,':,':-;':·l:,~*-1:,':~•\t':*-l:•'r,~,,r·-lr-;'r,':~',-;'r,'r,'r,':,':-lr.,•:·lr"4~-;•:*,~·lc,r'i'rlr-;~-;':*·lr·lr'1c,':-,',*,'c-;':·lr-;'.7r"'f,7r,•r,':

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

lex.c:

#include
#include
#include

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

lexical analyser based on pcc's and cpre's scanners
modified to handle classes:
new keywords: class

public
call
etc.

names are not entered in the symbol table by lex()
names can be of arbitrary length
error() is used to report errors
{}and() must match
numeric constants are not converted into internal representation
but stored as strings

"cfront.h"
"yystype.h"
"size.h"

define CCTRANS(x) x

/* lexical

#define A_ERR 0
#define A_LET 1
#define A_DIG 2
#define A_lC 3
#define A_STR 4
#define A_CC 5
#define A_BCD 6
#define A_SL 7
#define A_DOT 8
#define A_2C 9
#define A_WS 10
#define A_NL 11
#define A_LC 12
#define A_RC 13
#define A_L 14
#define A_R 15
#define A_EOF 16
#define A_ASS 17
#define A_LT 18
#define A_GT 19
#define A_ER 20

actions -;': I

/* illegal character*/
/* saw a letter*/
/* saw a digit*/
/* return a single character*/
/-;'r string ir /

/* character constant*/
/* GCOS BCD constant*/
/-;': saw a / * /
/i: saw a . * /
Ji: possible two character symbol -;': /
/* whitespace (not \n) */
/-;'t: \n -;':/
/-;'r { ic /

/*} */
/* C i: I
/i:) * I

.J

C

l.

C

Feb 8 12:49 1985 lex.c Page 2

#define A_OR
#define A_AND
#define A_MOD
#define A_NOT
tfidefine A_MIN
#define A_MUL
#define A_PL
#define A_COL

21
22
23
24
25
26
27
28

/* character classes*/

define LEXLET 01
define LEXDIG 02
/* no LEXOCT because 8 and 9 used to be octal digits ,i: /

define LEXHEX 010
define LEXWS 020
define LEXDOT 040

/* text buffer*/
char inbuf[TBUFSZ];
char* txtmax = &inbuf[TBUFSZ-1];
char1c txtstart;
char* txtfree;
#define pch (c) ((txtmax<=txt free)? error (1 i' , "input buff er overflow") : (7.-txt free++=c))
#define start_txt() txtstart = txtfree
#define del_txt() txtfree = txtstart

char* file_name[MAXFILE];

class loc curloc;
FILE* out_file = stdout;
FILE* in_file = stdin;
Ptable ktbl;
int br_level = O;
int bl_level = O;

ifdef ibm

define CSMASK 0377
define cssz 256

else

define CSMASK 0177
define cssz 128

endif

short lxmask[CSSZ+l];

/* stack of source file names*/
/* file_name[O] == 0 means stdin */

/* number of unmatched ''(''s */
/'

1
' number of unmatched '' { ' 1 s ,•.-/

int saved; /* putback character, avoid ungetchar */
int lastseen; /* last token returned*/
extern int lxtitle();

#define get(c)
#define unget(c)

(c=getc(in_file))
ungetc(c,in_file)

Feb 8 12:49 1985 lex.c Page 3

#define reti(a,b)
#define retn(a,b)
#define rets(a,b)
#define retl (a)

void ktbl_init()
/*

{ yylval.t = b; return lastseen=a; }
{ yylval.p = (Pnode)b; return lastseen=a; }
{ yylval.s = b; return lastseen=a; }
{ yylval.l = curloc; return lastseen=a; }

enter keywords into keyword table for use by lex()
and into keyword representation table used for output

ktbl = new table(KTBLSIZE,O,O);

new_key("asm",ASM,O);
new_key("auto",AUTO,TYPE);
new_key("break",LOC,BREAK);
new_key("case",LOC,CASE);
new_key("continue",LOC,CONTINUE);
new_key("char",CHAR,TYPE);
new_key("do 11 ,LOC,DO);
new_key("double",DOUBLE,TYPE);
new_key("default",LOC,DEFAULT);
new_key("enum",ENUM,O);

/* new_key("fortran" ,FORTRAN); -1~;

new_key("else",LOC,ELSE);
new_key("extern",EXTERN,TYPE);
new_key("float",FLOAT,TYPE);
new_key("for",LOC,FOR);
new_key("fortran",FORTRAN,O);
new_key("goto",LOC,GOTO);
new_key("if",LOC,IF);
new_key("int",INT,TYPE);
new_key("long",LONG,TYPE);
new_key("return",LOC,RETURN);
new_key("register",REGISTER,TYPE);
new_key("static 11,STATIC,TYPE);
new_key("struct",STRUCT,AGGR);
new_key("sizeof",SIZEOF,O);
new_key("short",SHORT,TYPE);
new_key("switch 11 ,LOC,SWITCH);
new_key("typedef",TYPEDEF,TYPE);
new_key("unsigned",UNSIGNED,TYPE);
new_key("union", UNION ,AGGR);
new_key("void",VOID,TYPE);
new_key("while" ,LOC, WHILE);

new_key("class",CLASS,AGGR);
new_key("delete",LOC,DELETE);
new_key("friend" ,FRIEND, TYPE);
new_key("operator",OPERATOR,O);
new_key("new",NEW,O);
new_key("public",PUBLIC,O);
new_key("const",CONST,TYPE);
new_key("this",THIS,O);
new_key("inline"i:INLINE,TYPE);
new_key("virtual ', VIRTUAL, TYPE);

Feb 8 12:49 1985 lex.c Page 4

new_key("overload",OVERLOAD,TYPE);
}

extern char* src_file_name;
extern char* line_format;
loc last_line;

void loc.putline()
{

}

if (file=O && line=O) return;
if (O<=file && file<MAXFILE) {

char* f = file_name[file];

}

if (f=O) f = (src_file_name)? src_file_name
fprintf(out_file,line_format,line,f);
last_line = *this;

void loc.put(FILE* p)
{

if (O<=file && file<MAXFILE) {
char* f = file_name[file];

}

if (f=O) f = (src_file_name)? src_file_name
fprintf (p, ''\ "%s \ 11

, line %d: ", f, line);

void lxenter(s, m) register char *s; register short m;
/* enter a mask into lxmask */
{

register c;

while(c= *s++) lxmask[c+l] I= m;

}

void lxget(c,m) register c, m;

""

""

;-.•,
put 'c' back then scan for members of character class 'm'
terminate the string read with \0

}

struct

txtfree points to the character position after that \0

pch(c);
while ((get(c), lxmask[c+l]&m)) pch(c);
unget(c);
pch(' \0');

LXDOPE {
short lxch; /';~ the character i, I
short lxact; /-;', the action to be performed ·I. I
TOK lxtok; /1- the token number to be returned ,'r I

} lxdope(] = {
$' ' A_ERR, 0, /* illegal characters go here ... *I

Feb 8 12:49 1985 lex.c Page 5

' ' A_LET, o, /-;': letters point here*/ - ' t QI, A_DIG, o, /-le digits point here*/
' ' A_WS, o, J-;'c whitespace goes here*/ ' '\n', A_NL, 0,
r rt r A_STR, o, 1~~ character string*/ ,
I\ rt J A_CC, 0, ;~tr ASCII character constant*/
f , I A_BCD, o, /* 'foreign' character constant, BCD ·le/ ' e.g.
I (t ' A_L, LP,
I) f) A_R, RP,
I { I > A_LC, LC,
r } r , A_RC, RC,
I [I ' A_lC, LB,
I] r > A_lC, RB,
I -;'c I A_MUL, MUL,
r? I , A_lC, QUEST,
I ' A_COL, COLON, . ' '+', A_PL, PLUS,
I ' A_MIN, MINUS, - '
'I, ' A_SL, DIV,
'% I J A_MOD, MOD,
' & '' A_AND, AND,
r I 1 , A_OR, OR,
r ... r A_ER, ER,
r

1
, A_NOT, NOT,
' I I A_lC, COMPL, ~ I J

' A_lC, CM,
I ~ I ' ,

'
A_lC, SM,

I r A_DOT, DOT, . '
I<! J A_LT, LT,
I> I J A_GT, GT,
'=' A_ASS, ASSIGN,

' EDF, A_EOF, EOFTOK
} ;

/* note: EDF is used as sentinel, so must be <=O and last entry in table -;'c /

struct LXDOPE -;':lxcp [CSSZ+ 1] ;

extern void lex_init();
void lex_init ()
{

register struct LXDOPE -lrp;
register i;
register char *cp;
/*setup character classes*/

/* first clear lexrnask */
for(i=O; i<=CSSZ; i++) lxrnask[i] = O;

lxenter("abcdefghijklrnnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_", LEXLET);
lxenter("Ol23456789u, LEXDIG);
lxenter("0123456789abcdefABCDEF", LEXHEX);

/* \013 should become \v someday; \013 is OK for ASCII and EBCDIC*
lxenter("\t\r\b\f\013", LEXWS);
lxmask['. '+1] I= LEXDOT;

/* make lxcp point to appropriate lxdope entry for each character*/

_)

Feb 8 12:49 1985 lex.c Page 6

}

/* initialize error entries*/

for(i= O; i<=CSSZ; ++i) lxcp[i] = lxdope;

/* make unique entries*/

for(p=lxdope; ; ++p) {
lxcp[p->lxch+l] = p;
if(p->lxch < 0) break;
}

/* handle letters, digits, and whitespace*/
/''• by convention, first, second, and third places -Ir/

cp = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
while(*cp) lxcp[*cp++ + 1] = &lxdope[l];
cp = "123456789";
while (,'rep) lxcp [-;',cp++ + 1 J = &lxdope [2] ;
cp = "\t\b\r\f\013";
while(-;'rep) lxcp[7•cp++ + 1] = &lxdope[3];

file_name[O] = src_file_name;
curloc.file = O;
curloc. line = 1;

ktbl_init ();

lex_clear();

saved= lxtitle();

void lex_clear()
{

txtstart = txtfree = inbuf;
}

char* chconst()

*/
{

read a character constant into inbuf

register c;
int nch = O;

pch('\' ');

forever {
if (SZ_INT < nch++) {

error (''char constant too long");
goto ex;

switch (get(c)) {

Feb 8 12:49 1985 lex.c Page 7

ex:

}

}

case

case

case

case

'\' ':
goto ex;

EOF:
error("eof in char constant");
?oto ex;

'\n:
error("newline in char constant");
2:oto ex;

'\ \ ':
pch(c);
switch (?et(c}){
case 1 \n :

++curloc.line;
default:

pch(c);
break;

case 'O': case '1': case '2': case '3': case '4':
case '5': case 1 6 1

: case '7': case 1 8 1

: case '9':
pch(c);
get(c); /* try for 2 */
if(lxmask[c+l] & LEXDIG){

pch(c);

}

get(c); /* try for 3 */
if (lxmask[c+l] & LEXDIG) pch(c);
else unget(c);

else unget(c);
break;

} ;
break;

default:
pch(c);

}

pch(r \, ,) ;

pch('\0');
return txtstart;

void lxcom()
/-1: process a "block comment 11 * /
{

register c;

forever
switch (get(c)) {
case EOF:

error("eof in comment");
return;

case '\n':
curloc.line++;
Nline++;
break;

case '*':
if (get(c) - '/') return;

l

C

C

Feb 8 12:49 1985 lex.c Page 8

}

unget(c);
break;

case '/ 1
:

}

if (get(c) - ,.,.,,) error('w', "' ';-1,'' in comment");
unget(c);
break;

void linecom()
;-.": process a "line comment" ,tc;
{

}

register c;

forever
switch (get(c)) {
case EOF:

error("eof in comment");
return;

case '\n':
curloc.line++;
Nline++;

}

saved= lxtitle();
return;

struct xyzzy {
TOK t;
int y; /-,tc fake for yystype -1(/

} ;
xyzzy bck;

TOK lex()
{

TOK ret;
Pname n;

if(bck. t) {

}

xyzzy tmp = bck;
bck.t = O;
if(tmp.t==LC I I tmp.t=RC)

retl(tmp.t)
else

rets(tmp.t, (char *)tmp.y)

Ntoken++;

forever {
register lxchar;
register struct LXDOPE ,':p;

start_txt ();

Feb 8 12:49 1985 lex.c Page 9

if (saved) {

}
else

lxchar = saved;
saved= O;

get(lxchar);

switch((p=lxcp[lxchar+l])->lxact){
case A_lC:

/* eat up a single character, and return an opcode*/

reti(p->lxtok,p->lxtok);

case A_EOF:
if (br_level I I bl_level)

error("'%s' missing at end of input",(bl_level)?"
reti(EOFTOK, 0) ;

case A_ERR:
error("illegal character (O%o)",lxchar);
break;

case A_LET:
/* collect an identifier, check for reserved word, and retu
lxget(lxchar, LEXLETILEXDIG);

if (n = ktbl->look(txtstart,O)) {
TOK x;

}
else {

}

case A_DIG:

deLtxt();
switch (x=n->base) {
case TNAME:

retn(TNAME,n);
break;

case LOC:
retl(n->syn_class);

default:
reti(n->syn_class,x);

}

rets(ID,txtstart);

ret = ICON;

if (lxchar=' 0') { ;~~ octal or hexadecimal number -tr/

pch('0');
switch (get(lxchar)) {
case '1':
case 'L':

pch(' L');
pch(O);
rets(ICON,txtstart);

case 'x':

)

J

Feb 8 12:49 1985 lex.c Page 10

l

l

case 'X':
lxget ('X' , LEXHEX) ;
switch (get(lxchar)) {
case '1':
case 'L':

default:

}

txtfree-- •
pch('L');'
pch(O);
break;

saved= lxchar;

rets(ICON,txtstart);
case '8':
case '9':

error("8 or 9 used as octal digit");
case '0':
case '1':
case '2':
case '3':
case '4':
case 1 5':
case '6':
case '7':

pch (lxchar) ;
ox:

case I I

switch (get(lxchar)) {
case '8 1

:

case 'g':
error("8 or 9 used as octal digit")

case 'o':
case '1':
case '2':
case '3':
case '4':
case '5':
case 1 6 1

:

case '7':
pch(lxchar);
goto ox;

case '1':
case 'L':

default:

}

pch('L');
pch(O);
break;

pch(O);
saved= lxchar;

rets(ICON,txtstart);

lxget('. ',LEXDIG);
goto getfp;

default:
saved= lxchar;
reti(ZERO,O);

Feb 8 12:49 1985 lex.c Page 11

getfp:

}
else

lxget(lxchar,LEXDIG);

if (get(lxchar) = 1• ') {
txtfree--;

} ;

lxget(1
• ', LEXDIG);

ret = FCON;
get(lxchar);

switch (lxchar) {
case 'e 1

:

case 'E':
txtfree- - ;
switch (get(lxchar)) {
case'-':
case 1+':

pch('e');
break;

default:

} ;

unget(lxchar);
lxchar = 'e';

lxget(lxchar, LEXDIG);
ret = FCON;
break;

case 'l':
case 'L':

txtfree--;
pch('L');
break;

default:
saved= lxchar;

} ;

pch(O);
rets(ret,txtstart);

case A_DOT:
if (get(lxchar) == '. ') {

if (get(lxchar/i != 1
•

1
)

error ('token ..
saved= lxchar;

}

}
reti(ELLIPSIS,O);

/* look for ellipsis*/
{
? ");

if(lxmask[lxchar+l] & LEXDIG){/* look for floating consta
unget(lxchar);
lxget(1

.', LEXDIG);
goto getfp;

}
saved= lxchar;
reti(DOT,O);

Feb 8 12:49 1985 lex.c Page 12

case A_STR:
/* save string constant in buffer -;':: /
forever
switch (fet(lxchar)) {
case'\\ :

I II t case

pch('\ \');
get(lxchar);
pch(lxchar);
break;

pch(O);
rets(STRING,txtstart);

case 1 \n 1
:

error("newline in string");
pch(O);
rets(STRING,txtstart);

case EOF:

default:

}

case A_CC:

error("eof in string");
pch(O);
rets(STRING,txtstart);

pch (lxchar) ;

/* character constant*/
rets(CCON,chconst());

case A_BCD:
{

}

register i;
int j;

pch(1
'

1
);

for (i=O; i<7; ++i) {
pch(get (j)) i
if (j == 1

') break;
}
pch(O);
if (6<i)

error("bcd constant exceeds 6 characters")
rets(CCON,txtstart);

case A_SL: /* / */
switch (get(lxchar)) {
case'-;':':

lxcom();
break;

case '/':
linecom();
break;

case '=':
reti(ASOP,ASDIV);

Feb 8 12:49 1985 lex.c Page 13

default:

}

saved= lxchar;
reti(DIVOP,DIV);

case A_WS:
continue;

case A_NL:
++curloc.line;
Nline++;
saved= lxtitle();
continue;

case A_LC:
if (BLMAX <= bl_level++) {

error('s' ,"blocks too deaply nested");
ext(3);

}
retl(LC);

case A_RC:
if (bl_level-- <= 0) {

error("unX '}'");
bLlevel = O;

}
retl(RC);

case A_L:
/*

return CAST if the LP is the start of a cast LP otherwise
only

(type-name (
is a real problem

br_level++;
switch (lastseen) {
case NAME:
case TNAME:
case TYPE:

reti(LP,O);
}

if (saved)
lxchar = saved;

else
get(lxchar);

/* f(=> all bets are off*/

while((p = lxcp[lxchar+l)->lxact = A_WS)
get(lxchar);

saved= lxchar;
if(p->lxact != A_LET) reti(LP, 0);

bck. t = lex();
bck.y = int(yylval.s);
switch (bck.t) {
case TYPE:

Feb 8 12:49 1985 lex.c Page 14

case TNAME:
break;

case AGGR:
case ENUM:

reti(CAST.,0);
default:

reti(LP,0);
}

if(saved)
lxchar = saved;

else
get(lxchar);

while((p = lxcp[lxchar+l])->lxact == A_WS)
get (lxchar) ;

saved= lxchar;
switch (lxchar)
case ': ':
case'(':
default:
}

{
reti(LP,0);
break;
reti(CAST,0);

/* (classname::memname */

/* here is the real problem:
CAST: (int (*) ()) p;
LP: (int (,'r p))

4'~ I

ignore

and
and

get(lxchar);

(int (&
(int ([
(int ((problems

while((p = lxc~[lxchar+l
if (lxchar != '*) {

)->lxact == A_WS) get(lxcha

}

unget (lxchar) ;
reti(LP,0);

get(lxchar);
while((p = lxcp[lxchar+l])->lxact = A_WS) get(lxcha
unget(lxchar);
unget (',•,') •

) t I
if (lxchar ==)) reti(CAST,0);

reti(LP,0);

case A_R:
if (br_level-- <= 0) {

error("unX ')'");
br_level = 0;

}
reti(RP,0);

case A_ASS:
switch (get(lxchar)) {
case '=':

reti(EQUOP,EQ);

Feb 8 12:49 1985 lex.c Page 15

default:

}
case A_COL:

saved= lxchar;
reti(ASSIGN,ASSIGN);

switch (get(lxchar)) {
case'·'·

case
reti(MEM,O); ,_,. - .
error('":=' is not a c++ operator");
reti(ASSIGN,ASSIGN);

default:

}
case A_NOT:

saved= lxchar;
reti(COLON,COLON);

switch (get(lxchar)) {
case '=':

reti(EQUOP ,NE);
default:

}
case A_GT:

saved= lxchar;
reti(NOT,NOT);

switc~(~et(lxchar)) {
case >:

switch (get(lxchar)) {
case '=':

reti(ASOP,ASRS);
break;

default:

}

saved= lxchar;
reti(SHIFTOP,RS);

case '=':
reti(RELOP ,GE);

default:
saved= lxchar;
reti(RELOP,GT);

}
case A_LT:

switch (get(lxchar)) {
case '<':

case

switch (get(lxchar)) {
case '=':

reti(ASOP,ASLS);
default:

} ,_,. - .

saved= lxchar;
reti(SHIFTOP,LS);

reti (RELOP, LE);
default:

saved= lxchar;
reti(RELOP,LT);

}

C.

Feb 8 12:49 1985 lex.c Page 16

case A_AND:
switch (get(lxchar)) {
case '&':

reti(ANDAND,ANDAND);
case '=':

reti(ASOP,ASAND);
default:

}
case A_OR:

saved= lxchar;
reti(AND,AND);

switch (get(lxchar)) {
case' I':

reti(OROR,OROR);
case '=':

reti(ASOP,ASOR);
default:

}
case A_ER:

saved= lxchar;
reti(OR,OR);

switch (get(lxchar)) {
case '=':

reti(ASOP,ASER);
default:

}
case A_PL:

saved= lxchar;
reti(ER,ER);

switch (get(lxchar)) {
case'=':

reti(ASOP,ASPLUS);
case '+':

reti(ICOP,INCR);
default:

}
case A_MIN:

saved= lxchar;
reti(PLUS,PLUS);

switch (get(lxchar)) {
case '=':

reti(ASOP,ASMINUS);
' ' case - •

reti(ICOP,DECR);
case '>':

reti (REF, REF);
default:

}
case A_MUL:

saved= lxchar;
reti(MINUS,MINUS);

switch (get(lxchar)) {
case '=':

reti(ASOP,ASMUL);
case 1

/':

error('w', "";"(/ not as end of comment");

Feb 8 12:49 1985 lex.c Page 17

}

int
/*

;•~ I
{

}

lxtitle()

default:

J

saved= lxchar;
reti(MUL.,MUL);

case A_MOD:

default:

}

switch (get(lxchar)) {
case '=':

reti(ASOP,ASMOD);
default:

}

saved= lxchar;
reti(DIVOP ,MOD);

error(' i', "lex act==%d getc()->%d" ,p, lxchar);

error('i' ,"lex, main switch");

called after a newline; set linenumber and file name

register c;

forever
switch (get(c)) {
default:

return c;
/* case EOF:

return EOF; */
case '\n':

curloc.line++;
Nline++;
break;

11:
break;

case 1 #' : j"k ft. lineno "filename" * /
curloc.line = O;
forever
switch (get(c)) {
case '"':

start_txt ();
forever
switch (get(c)) {

I If I case :
pch('\0');
if (get(c) != '\n') error("unX eol on# line");
if U'°txts tart) {

/* maintain stack of file names*/
int f = curloc.file;

Feb 8 12:49 1985 lex.c Page 18

push:

}
else {

}

char* fn;
if (f = 0) goto push;
if ((fn=file_name[f]) && (strcmp(txtstart,

/* same file: ignore*/
}
else if ((fn=file_name[f-1]) && (strcmp(tx

/* previous file: pop*/
/* delete(file_name[f]);*/

}
else {

}

curloc.file--;

/* new file name: push*/
char -;': p;

Nfile++;
p = new char[txtfree-txtstart+l];

if (MAXFILE<=++f) error('i' ,"fileN
file_name[curloc.file=f] = p;
(void) strcpy(p,txtstart);
Nstr++;

/'ir back to the original .c file: "'' 'ir/

int f = curloc.file;
if (1 <f) error (' i' , "fileN buffer (%d)", £);
if(£) delete file_name[f];

curloc.file = O;

del_txt();

curloc.putline();

?oto 11;
case '\n :

error("unX end of line on'# line'");
default:

}
case I T

break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case 1 8':
case '9':

pch(c);

curloc.line = curloc.line*lO+c-'O';
break;

Feb 8 12:49 1985 lex.c Page 19

}

case 'c' /* ignore #class*/
if (get(c) = '1')

while (get(c) != '\n')
curloc.line++;
Nline++;
'?oto 11;

case '\n :
curloc.putline();
goto 11;

default:
error("unX character on'# line'");

}

_J

Feb 8 12:49 1985 main.c Page 1

/* %Z% %M% %I% %H% %T% */
/ -;'c"lri;':-,'r,':-;':"lc·l:·-l:-;'r·lc4'c'i:-,':,':,'(-,'~-.•:-1c-;':•lc4':,':*,':i':-;'r1'r1'~,•:,':,':i':'·l:1':,':;':,'c·l:·l:**'':,':,':1':·l:*"1t*,~'':,':,'c*,':,':-;'r,':,':;':-J:,t;,':,~,•:;':""J'c*,':,~

main.c:

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

Initialize global environment
Read argument line
Start compilation
Clean up end exit

/*#include <signal.h>
.,..,I

#include <time.h>
char* ctime(long*);
long time(long*);
long start_time, stop_time;

#include "cfront.h"

char, prog_name = "<<cfront (release E) 1/30/85>>";

extern char* src_file_name;
char* src_file_name = O;

bit Styp = 1;
bit Ssimpl = 1;

bit old_fct_accepted = 1;
TOK scope_default = STATIC;
bit fct_void;
bit st_init;

char-I, line_format = "\n# %d \ 0 %s\ "\n";

Plist isf_list;
Pstmt st_ilist;
Pstmt st_dlist;

int Nspy;
int Nfile = 1 , Nline, Ntoken;
int Nfree_store, Nalloc, Nfree;
int Nname;
int Nn, Nbt, Nt, Ne, Ns, Ne, Nstr, Nl;
extern int NFn, NFtn, NFbt, NFpv, NFf, NFe, NFs, NFc, NFl;

Feb 8 12:49 1985 main.c Page 2

simpLinit O;
typ_init{);
syn_init();
lex_init O;
error_init();
print_free O;
read_align(char*);
print_align(char*);

void spy(char* s)
{

}

if (s) fprintf(stderr,"%s:\n",s);
fprintf(stderr,"files=%d lines=%d tokens=%d\n",Nfile, Nline, Ntoken);
fprintf(stderr,"Names: distinct=%d global=%d type=%d\n",

Nname, gtbl->max(), ktbl->max());
fflush(stderr);
if (start_time && stop_time) {

}

fprintf(stderr,"start time: %s", ctime(&start_time));
fprintf(stderr,"stop time: %s", ctime(&stop_time));
fprintf(stderr,"real time delay %1d: %d lines per second\n",

stop_time-start_time, Nline/(stop_time-start_time));
fflush(stderr);

fprintf (stderr, "free store=%dbytes alloc()=%d free()=%d "
Nfree_store, Nalloc, Nfree);

print_free ();
fflush(stderr);
fprintf(stderr,"sizeof: n=%d bt=%d f=%d p=%d v=%d e=%d c=%d 1=%d\n",

sizeof(name), sizeof(basetype), sizeof(fct),
sizeof(ptr), sizeof(vec),
sizeof(expr), sizeof(typed_obj), /*sizeof(elist)*/16);

£print£ (stderr, "alloc(): n=%d bt=%d t=%d e=%d s=%d c=%d str=%d 1=%d\n",
Nn, Nbt 1 Nt, Ne, Ns, Ne, Nstr,Nl);

fprintf(stderr, 'free(): n=%d bt=%d t=%d e=%d s=%d c=%d str=? 1=%d\n",
NFn, NFbt, NFpv+NFf, NFe, NFs, NFc, NFl);

fflush(stderr);
fprintf(stderr,"%d errors\n",error_count);
fflush(stderr);

Pname dcl_list; /* declarations generated while declaring something else*/

char *st_name(int);/* generates names of static ctor, dtor callers*/

void run()
/-1:

run the appropriate stages

Pname n;
int i = 1;

while (n=syn()) {
Pname nn;
Pname nx;

Feb 8 12:49 1985 main.c Page 3

if (n = (Pname)l) continue;

if (Styp = 0) {
n->dcl_print(SM);
lex_clear();
continue;

for (nn=n; nn; nn=nx) {
nx = nn->n_list;
nn->n_list = O;
if (nn->dcl(gtbl,EXTERN) - 0) continue;

if (error_count) continue;

if (Ssimpl) nn->simpl();

/* handle generated declarations*/
for (Pname dx, d=dcl_list; d; d=dx) {

}

dx = d->n_list;
d->dcl_print(O);
deleted;

dcl_list = 0;

if (nn->base) nn->dcl_print(O);

switch (nn->tp->base) {/*clean up*/
default:
{ Pexpr i = nn->n_initializer;

if (i && i!=(Pexpr)l) DEL(i);
}

case FCT:
{ Pfct f = (Pfct)nn->tp;

if (£->body && (debug I I f->f_inline==O)) {
DEL(f->body);

/* £->body= O; leave to detect re-definition
}
break;

}

case CLASS:
{ Pclass cl= (Pclass)nn->tp;

register Pname p;
for (p=cl->pubmem; p; p=p->n_list) {

switch (p->tp->base) {
case FCT:
{ Pfct f = (Pfct)p->tp;

if (£->body && (debug I I f->f_inlin
DEL(f->body);

case CLASS:
case ENUM:

£->body= O;

Feb 8 12:49 1985 main.c Page 4

}
}

DEL(nn);
}

lex__clear ();
}

}

break;
case COBJ:
case EOBJ:

DEL(p);
break;

default:

}
delete p;

cl->pubmem = O;

for (p=cl->privmem; p; p=p->n_list) {
switch (p->tp->base) {

}

case FCT:
{ Pfct f = (Pfct)p->tp;

if (£->body && (debug I I f->f_inlin
DEL(f->body);

}
}
case CLASS:
case ENUM:

break;
case COBJ:
case EOBJ:

DEL(p);
break;

default:

£->body= O;

delete p;
}

cl->privmem = O;
cl->permanent = 3;
break;

switch (no_of_undcl) {
case 0:

break;
case 1:

case 2:

default:

}

error('w', "undeclaredF%n called" ,undcll);
break;

error('w' ,"%d undeclaredFs called:%n and%n",no_of_undcl,undcll,undc
break;

error('w' ,"%d undeclaredFs called,%n,%n etc",no_of_undcl,undcll,und

C

C

Feb 8 12:49 1985 main.c Page 5

Pname m;
if (fct_void == 0)
for (m=gtbl->get_mem(i=l); m; m=gtbl->get_mem(++i)) {

;~•rerror('d' ,"global:%k n_key%k perm %d %n", m->base, m->n_key, m->permanent, m);-;':/
if (m->base==TNAME
I I m->n_scope==EXTERN
I I m->n_stclass = ENUM) continue;

Ptype t = m->tp;
if (t = 0) continue;

11:
switch (t->base) {
case TYPE: t=((Pbase)t)->b_name->tp;
case CLASS:
case ENUM:
case COBJ:
case OVERLOAD:
case VEG: continue;

goto 11;

case FCT: if (((Pfct)t)->f_inline) continue;

}

}

if (m->n_addr_taken=O && m->n_used==O) {
Cdcl = m;
if (m->tp->tconst() ==O)

error (1 w' , "static%n dee lared but not used", m);
}

if (st_ilist) { /* make an "init" function;

}

it calls all constructors for static objects
*/

Pname n = new name(st_name('I'));
Pfct f = new fct(void_type,0,1);
n->tp = f;
f->body = new block(st_ilist->where,0,0);
n->n_sto = EXTERN;
(void) n->dcl(gtbl,EXTERN);
n->simpl ();
f->body->s = st_ilist;
f->s impl O;
n->dcl_print(O);

if (st_dlist) { /* make a "done" function;
it calls all destructors for static objects

·le/

Pname n = new name(st_name('D'));
Pfct f = new fct(void_type,0,1);
n->tp = f;
£->body= new block(st_dlist->where,0,0);
n->n_sto = EXTERN;
(void) n->dcl(gtbl,EXTERN);
n->simpl();
f->body->s = st_dlist;

Feb 8 12:49 1985 main.c Page 6

}

f->simpl ();
n->dcl_print(O);

if (debug==O) {/*print inline function definitions*/
Plist 1;
for (l=isf_list; 1; 1=1->l) {

Pname n = 1->f;
Pfct f = (Pfct)n->tp;

switch (f->base) {
case FCT: break;
default: error(' i', "inline list corrupted\n");
case OVERLOAD:

n = ((Pgen)f)->fct_list->f; /* first fct */
f = (Pfct)n->tp;

}

j'kfprintf(stderr,"%s() tp (%d %d) %d %d\n", n->string, n->tp, n->tp?n->tp->base:O, n
if (n->n_addr_taken I I f->f_virtual) {

;-.•r if (st_init) putst ("asm(\ "library\");");*/
n->tp->dcl_print(n);

}
}

}

£print£ (out_file, "\n/-.'r the end * /\n");

}

bit warn = 1; /# printout warning messages -.'r /
bit debug= O; /* code generation for debugger*/
char* afile = "default";

int no_of_undcl;
Pname undcll, undcl2;

main(int argc, char* argv[])
/"''r

*/
{

read options, initialize, and run

extern char* mktemp();
register char* cp;
short i;

/*(void) signal(SIGINT,&sig_exit);
(void) signal(SIGTERM,sig_exit);
(void) signal(SIGQUIT,sig_exit);

error_init();

for (i=l; i<argc; ++i) {
switch (*(cp=argv[i])) {

)

C

C

C

Feb 8 12:49 1985 main.c Page 7

case '+':

xx:

while (1,++cp) {
switch(i·cp) {
case 't':

}

fprintf(stderr,"type check only\n");
Ssimpl = O;
break;

case 's':

case 'w'

fprintf(stderr,"syntax check only\n");
Styp = Ssimpl = O;
break;

warn= O;
break;

case 'd':
debug = 1;
break;

case 'f':
src_file_name = cp+l;
goto xx;

case 'x' : J-;'r read in table for cross compilat
if (read_align(afile = cp+l)) {

fprintf(stderr,"bad size-table (opt
exit(ll);

}
goto xx;

case 'C': /* preserve comments*/
error('s' ,"cannot preserve comments");
break;

case 'V': /;'. C with classes compatability */
fct_void = 1;
/;'. no break -1, I

case 'E':
scope_default = EXTERN;
break;

case 'S 1
:

Nspy++;
break;

case 'L':
line_format = "\n#line %d \ "%s\ "\n";
break;

case 'I':
st_init = 1;
break;

default:
fprintf(stderr,"%s: unexpected option: -%c

break;

break;
default:

}

fprintf(stderr,"%s: bad argument \"%s\"\n",prog_name,cp);
exit (11);

Feb 8 12:49 1985 main.c Page 8

}

fprintf(out_file, ''\n/-1, %s -;'r/\n" ,prog_name);
if (src_file_name) fprintf(out_file, "/* < %s -;',/\n" ,src_file_name);

if (Nspy) {
start_time = time(O);
print_align(afile);

}
fflush(stderr);
if (Ssimpl) print_mode = SIMPL;
otbLinit();
lex_init();
syn_ini t O ;
typ_init();
simpLinit();
scan_started = 1;
curloc.putline();
run();
if (Nspy) {

}

stop_time = time(O);
spy(src_file_name);

return (O<=error_count && error_count<127)? error_count 127;
}

extern int strcat(char*, char*);
char* st_name(int iord) {

static char *name= O;
static char -;',pref ix = "_ST_"; /* first character must be valid in a

}

if (

if (

}

iord != 'I' &&
error('i',

!name) {

C identifier -;'::/
iord != 'D')
"bad ST_ type %d\n", iord);

int stilen = strlen(prefix)+ 1 +
(src_file_name)? strlen(src_file_name)

name= new char[stilen];
strcpy(name, prefix);
if (src_file_name) strcat(name, src_file_name);
char *p = name;
while (*++p) {

if ('a'<= *p && *o <= 'z' I I
' A t <= -lrp && ;',p <= 1 Z r I I

}

'o' <= ,'.-p && ;'.-p <= '9') continue;
;':p = ' - ';

name[strlen(prefix) - 1] = iord;
return name;

O·
'

)

Feb 8 12:49 1985 misc.c Page 1

/'1~ %Z% %M% %I% %H% %T% ·k /
/-;tr empty -;'ft/

Feb 8 12:49 1985 norm.c Page 1

/* @(#) norm.c 1.1 1/2/85 17:58:42 */
/ ~•(~':-l:,':,'r,'r·l:-l:-l:1':,'c,':,':"'lc"'#'r·l:·lc;'c--,':-."c,'c,':·l:,'~,•c,~-;~7:,'r·lc**,'(,':-;',,'r·lc,~-1:-,"··lc,':,',"rc;'c"'J'r-1:,'c-J(-/c,',,',-ic,'ri'r,'ri'r·lc,':·lr;'r*ir-J:,'\1'c,'t*i~·-l~,'-(*

norm.c:

C++ source for cfront, the G++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

"normalization" handles problems which could have been handled
by the syntax analyser; but has not been done. The idea is
to simplify the grammar and the actions accociated with it,
and to get a more robust error handling

#include "cfront.h"
#include "size.h"

extern void syn_init();
void syn_init()
{

}

any_type = new basetype(ANY,O);
PERM(any_type);
dummy= new expr(DUMMY,0,0);
PERM(dummy);
dummy->tp = any_type;
zero= new expr(ZER0,0,0);
PERM(zero);

char* make_name(TOK c)
{

static stcount;

char* s = new char[8]; /* as it happens: fits in two words*/

if (99999 <= ++stcount) error('i' ,"too many generated names");

s[O] = '-';
s[l] = c;
int count= stcount;
inti= 2;
if (10000 <= count) {

}

s[i++] = 'o' + count/10000;
count%= 10000;

if (1000 <= count) {
s[i++] = 'o' + count/1000;
count%= 1000;

Feb 8 12:49 1985 norm.c Page 2

}
else if (2<i) s[i++] = t O';

if (100 <= count) {
s[i++] = 'o' + count/100;
count %= 100;

}
else if (2<i) s[i++] = IQ t;

if (10 <= count) {
s[i++] = 'o' + count/10;
count%= 10;

}
else if (2<i) s [i++] = IQ I;

s[i++] = 'o' + count;
s [iJ = O;

returns;
}

Phase basetype.type_adj(TOK t)
{

switch (base) {
case COBJ:
case EOBJ:
{ Phase bt = new basetype(O,O);

1:bt = 1:this ;

}
}

DEL(this);
this= bt;

if (b_xname) {

}

if (base)
error("badBT:%n%k",b_xname,t);

else {

}

base= TYPE;
b_name = b_xname;

b_xname = O;

switch (t) {
case TYPEDEF: b_typedef = 1; break;
case INLINE: b_inline = 1 • '

break;
case VIRTUAL: b_virtual = 1; break;
case CONST: b_const = 1 • , break;
case UNSIGNED: b_unsigned = 1 • '

break;
case SHORT: b_short = 1; break;
case LONG: b_long = 1; break;
case FRIEND:
case OVERLOAD:
case EXTERN:
case STATIC:
case AUTO:

Feb 8 12:49 1985 norm.c Page 3

}

case REGISTER:
if (b_sto)

error("badBT:%k%k",b_sto,t);
else

break;
case VOID:
case CHAR:
case INT:
case FLOAT:
case DOUBLE:

b_sto = t;

if (base)
error("badBT:%k%k",base,t);

else

break;
default:

base= t;

error('i' ,"basetype.type_adj(%k)",t);
}
return this;

Phase basetype.name_adj(Pname n)
{

}

if (b_xname) {
if (base)

error("badBT:%n%n",b_xname,n);
else {

}

base= TYPE;
b_name = b_xname;

b_xname = O;
}
b_xname = n;
return this;

Phase basetype.base_adj(Pbase b)
{

Pname bn = b->b_name;

switch (base) {
case COBJ:
case EOBJ:

}

error("NX after%k%n",base,b_name);
return this;

if (base) {

}
else {

if (b_name)
error("badBT:%k%n%k%n",base,b_name,b->base,bn);

else
error("badBT:%k%k%n",base,b->base,bn);

base= b->base;

_j

Feb 8 12:49 1985 norm.c Page 4

b_name = bn;
b_table = b->b_table;

}
return this;

}

Phase basetype.check(Pname n)
/*

"n" is the first name to be declared using "this"
check the consistency of "this"
and use "b_xname" for "n->string" if possible and needed

b_in line = 0 ;
b_virtual = O;

/ 1.-fprintf(stderr,"check n: %d %s b: %d %d %s\n",n,(n)?n->string:'"',this,base,(b_name
if (b_xname && (n->tp I I n->string)) {

}

if (base)

else {

}

error("badBT:%k%n",base,b_xname);

base= TYPE;
b_name = b_xname;

b_xname = O;

if (b_xname) {

}

if (n->string)
error("twoNs inD:%n%n",b_xname,n);

else {

}

n->string = b_xname->string;
b_xname->hide();

b_xname = O;

switch (base) {
case 0:

base= INT;
break;

case EOBJ:
case COBJ:

if (b_name-?base == TNAME)
error('i' ,"TN%n inCO %d",b_name,this);

}

if (b_long I I b_short) {
TOK sl = (b_short)? SHORT: LONG;
if (b_long && b_short) error("badBT:long short%k%n",base,n);
if (base!= INT)

error("badBT:%k%k%n",sl,base,n);
else

base = sl;
b_short = b_long = O;

Feb 8 12:49 1985 norm.c Page 5

*/

if (b_typedef && b_sto) error("badBT:typedef%k%n",b_sto,n);
b_typedef = b_sto = O;

if (Pfctvec_type == 0) return this;

if (b_cons t) {

}

return this;

switch (base) {
case INT:

else if (b_unsigned) {
switch (base) {
case LONG:

}
else {

/''r error(' s', "unsigned long") ;''r/
delete this;
return ulong_type;

case SHORT:
delete this;
return ushort_type;

case INT:
delete this;
return uint_type;

case CHAR:

default:

}

delete this;
return uchar_type;

error ("badBT: uns igned%ko/oI1" , base, n) ;
b_unsigned = O;
return this;

switch (base) {
case LONG:

delete this;
return long_type;

case SHORT:
delete this;
return short_type;

case INT:
if (this != int_type) delete this;
return int_type;

case CHAR:
delete this;
return char_type;

case VOID:
delete this;
return void_type;

case TYPE:
;,•: use a single base saved in the keyword */

/~'rfprintf (stderr, "type %d bn %d %s q %d\n", this, b_name, b_name->string, b_name->n_qual
if (b_name->n_qualifier) {

Feb 8 12:49 1985 norm.c Page 6

default:

}
}

}

}
else {

}

delete this;
return (Pbase)b_name->n_qualifier;

PERM(this);
b_name->n_qualifier = (Pname)this;
return this;

return this;

Pname basetype.aggr()
;-1,

"type SM" seen e.g. struct s {};
class x;

convert

into

Pname n;

union { ... } ;

enum e;
int tname;
friend cname;
friend class x;
int;

union name { ... } name

if (b_xname) {

}

if (base) {

}
else {

}

Pname n = new name(b_xname->string);
b_xname->hide();
b_xname = O;
return n->normalize(this,0,0);

base= TYPE;
b_name = b_xname;
b_xname = O;

switch (base) {
case COBJ:
{ Pclass cl= (Pclass)b_name->tp;

char* s = cl->string;
j-1,fprintf(stderr,"COBJ (%d %s) -> (%d %d) ->(%d %d)\n",this,b_name->string,b_name,b_

if (b_name ->base == TNAME) error (' i ' , "TNo/on in CO 11
, b_name) ;

if (b_const) error("const%k%n",cl->csu,b_name);

if (cl->c_body = 2) { /"1• body seen ·# /

Feb 8 12:49 1985 norm.c Page 7

}
else {

}
}

case EOBJ:

if (s[O]=='-' && s[l]='C') {
char* ss = new char[S];
Pname obj= new name(ss);
if (cl->csu = UNION) {

}

strcpy(ss,s);
ss[l] = 'o';
cl->csu = ANON;
return obj->normalize(this,0,0);

error('w' ,"un-usable%k ignored",cl->csu);
}
cl->c_body = 1;
return b_name;

/* really a typedef for cfront only: class x; */
if (b_sto == FRIEND) goto frr;
return O;

{ Penum en= (Penum)b_name->tp;
/'•'•fprintf (stderr, "EOBJ (%d %s) -> (%d %d) ->(%d %d)\n", this, b_name->string, b_name, b_

if (b_name->base = TNAME) error('i' ,"TN%n in enumO",b_name);
if (b_const) error("const enum%n",b_name);

}

default:

}
}

if (en->e_body = 2) {

}
else {

}

en->e_body = 1;
return b_name;

if (b_sto = FRIEND) goto frr;
return O;

if (b_typedef) error('w' ,"illegal typedef ignored");

if (b_sto = FRIEND) {
frr:

}
else {

}

Pname fr= ktbl->look(b_name->string,O);
if (fr= 0) error('i' ,"cannot find friend%n",b_name);
n = new name(b_name->string);
n->n_sto = FRIEND;
n->tp = fr->tp;
return n;

n = new name(make_name('D'));
n->tp = an7._type;
error ('w', 'NX inDLn);
return n;

Feb 8 12:49 1985 norm.c Page 8

void name.hide()
,. / -··

hide "this": that is, "this" should not be a keyword in this scope
-;', I
{

if (base!= TNAME) return;
if (n_key == 0) {

/-;':error ('d' , "hide%n 11
, this);,•,/

}
void
I*
,,, I
{

}

}

if (lex_level == bl_level) error('w' ,"%n redefined",this);
modified_tn = new name_list(this,modified_tn);
n_key = HIDDEN;

set_scope(Pname tn)

enter the scope of class tn after seeing "tn.f"

Phase h;
Pclass cl;
Plist 1;
if (tn->base != TNAME) error('i' ,"set_scope: not aTN %d %d",tn,tn->hase);
h = (Phase)tn->tp;
if (h->b_name->tp->hase != CLASS) error(' i', 11T of%n not aC (%k) '', tn, h->b_na
cl= (Pclass)b->h_name->tp;
for (l=cl->tn_list; 1; 1=1->l) {

Pname n = 1->f;

}

n->n_key = (n->lex_level)? 0: HIDDEN;
modified_tn = new name_list(n,modified_tn);

void restore()
;,•:
*I
{

}

Plist 1;

for (l=modified_tn; 1; 1=1->1) {
Pname n = 1->f;

}

if (n->lex_level <= hl_level) {
n->n_key = O;

}
else {

n->n_key = HIDDEN;
}

Phase start_cl(TOK t, Pname c, Pname b)
{

if (c == 0) c = new name(make_name('C'));
Pname n = c->tname(t); /* t ignored 1• I
n->where = curloc;
Pbase bt = (Phase)n->tp;
if (ht->base != COBJ) {

/* COBJ 7' /

Feb 8 12:49 1985 norm.c Page 9

}

}

error("twoDs of%n:%t andC",n,bt);
exit(88);

Pclass occl = eel;
eel= (Pclass)bt->b_name->tp;
ccl->in_class = oecl;
ccl->tn_list = modified_tn;
modified_tn = O;
ccl->string = n->string;
ccl->csu = t;
if (b) ccl->clbase = b->tname(t);
return bt;

void end_cl ()
{

}

Pclass occl = ccl->in_class;
Plist ol = ccl->tn_list;
ccl->c_body = 2;
ccl->tn_list = modified_tn;
if (modified_tn) restore();
modified_tn = ol;
eel= occl;

Phase end_enum(Pname n, Pname b)
{

}

if (n == 0) n = new name(make_name('E'));
n = n->tname(ENUM);
Phase bt = (Pbase)n->tp;
if (bt->base != EOBJ) {

}

error("twoDs of%n:%t and enum",n,bt);
exit(88);

Penum en= (Penum)bt->b_name->tp;
en->e_body = 2;
en->mem = name_unlist((class nlist *)b);
if (en->defined) error("enum%n defined twice",n);
return bt;

Pname name.tdef()

typedef "this"

}

Pname n = ktbl->insert(this,O);
if (tp == 0) error('i' , 11typedef%n tp==O",this);
n->base =base= TNAME;
PERM(n);
PERM(tp);
modified_tn = new name_list(n,modified_tn);
return n;

Pname name.tname(TOK csu)

Feb 8 12:49 1985 norm.c Page 10

"csu" "this" seen, return typedef'd name for "this"
return (TNAME,x)
x: (COBJ,y)
y: (NAME,z)
z: (CLASS,ae);

switch (base) {
case TNAME:

return this;
case NAME:
{ Pname tn = ktbl->insert(this,O);

Pname on= new name;
tn->base = TNAME;
modified_tn = new name_list(tn,modified_tn);
tn->n_list = n_list = O;
string= tn->string;
*on = 1cthis;
switch (csu) {
case ENUM:

default:

}

tn->tp = new basetype(EOBJ,on);
on->tp = new enumdef(O);
break;

on->tp = new classdef(csu,O);
((Pclass)on->tp)->string = tn->string;
tn->tp = new basetype(COBJ,on);
((Pbase)tn->tp)->b_table = ((Pclass)on->tp)->memtbl;

PERM(tn);
PERM(tn->tp);
PERM(on);
PERM(on->tp);

J-kfprintf(stderr,"tname %s -> n (%d %d) n->tp (%d %d)\n",string,tn,tn->base,tn->tp,t
return tn;

}
default:

error(' i' , "tname (%s %d %k)", string, this, base);
}

}

Pname name.normalize(Pbase b, Pblock bl, bit cast)
;•;',:

if (bl) : a function definition (check that it really is a type

if (cast) no name string

for each name on the name list
invert the declarator list(s) and attatch basetype
watch out for class object initializers

convert
struct s { int a; } a;

into

Feb 8 12:49 1985 norm.c Page 11

struct s { int a; }; struct s a;

Pname n;
Pname nn;
TOK stc = b->b_sto;
bit tpdf = b->b_typedef;
bit inli = b->b_inline;
bit virt = b->b_virtual;
Pfct f;
Pname nx;

if (b == 0) error('i' /'%d->N.normalize(O)",this);
if (this= 0) error(i' ,"O->N.normalize(%k)",base);

if (inli && stc==EXTERN) {

}

error(''both extern and inline");
inli = O;

/*fprintf(stderr,"name.norm(%d %s) tp (%d %d)\n",this,string,tp,tp->base);*/

if (stc==FRIEND && tp==O) {
/* friend x;

must be handled during syntax analysis to cope with
class x { friend y; y* p; };

"y" is not local to "x":
class x { friend y; ... }; y* p;

is legal
*/

if (b->base) error(O,"T specified for friend");
if (n_list) {

error("L of friends");
n_list = 0;

}
Pname nx = tname(CLASS);
modified_tn = modified_tn->1;
n_sto = FRIEND;
tp = nx->tp;
return this;

if (cast) string="";
b = b->check(this);

/ 1: global * /

switch (b->base) { separate class definitions
from object and function type declarations

case COBJ:
nn = b->b_name;

/-1:fprintf(stderr, "COBJ (%d %s) -> (%d %d body=%d)\n" ,nn,nn->string,nn->tp,nn->tp->ba
if (((Pclass)nn->tp)->c_body=2) { /* first occurrence*/

if (tp && tp->base==FCT) {
error('s' ,"C%n defined as returnT for%n (did you fo
nn = this;
break;

}

.)

Feb 8 12:49 1985 norm.c Page 12

}
else

break;
case EOBJ:

nn->n_list = this;
((Pclass)nn->tp)->c_body = 1;

nn = this;

nn = b->b_name;
if (((Penum)nn->tp)->e_body==2) {

/* other occurences */

if (tp && tp->base==FCT) {
error('s' ,"enum%n defined as returnT for%n (did you
nn = this;

default:

}

}
else

break;

break;
}
nn->n_list = this;
((Penum)nn->tp)->e_body = 1;

nn = this;

nn = this;

for (n=this; n; n=nx) {
Ptype t = n->tp;
nx = n->n_list;
n->n_sto = stc;

if (t
&& n_oper=TNAME
&& t->base--FCT) { /* HORRIBLE FUDGE: fix the bad grammar*/

Pfct f = (Pfct)t;
Pfct f2 = (Pfct)f->returns;
if (f2 && £2->base FCT) {

Pexpr e = f2->argtype;
;-.•~error(' d 1 , "%s: mis-analyzedP toF" ,n->string) ;--~/

if (e->base -- ELIST) {
/* get the real name,

fix its type
-.•~ I
if (e->e2 I I e->el->base!=DEREF) goto zse;
Pname rn = (Pnarne)e->el->el;

/*error ('d' , "realN %n b==%t", rn, b) ;-Jr/
if (rn->base!=NAME) goto zse;

zse:

}
}

}

£->returns= new ptr(PTR,O);
b = new basetype(TYPE,ktbl->look(n->string,
n->n_oper = O;
n->string = rn->string;
n->base = NAME;

if (n->base -- TNAME) error('i' ,"redefinition ofTN%n",n);

Feb 8 12:49 1985 norm.c Page 13

if (t == 0) {
if (bl== 0)

n->tp = t = b;
else {

error("body of nonF%n",n);
t = new fct(defa_type,0,0);

}
}

switch (t->base) {
case PTR:
case RPTR:

n->tp = ((Pptr)t)->normalize(b);
break;

case VEC:
n->tp = ((Pvec)t)->normalize(b);
break;

case FCT:
n->tp = ((Pfct)t)->normalize(b);
break;

case FIELD:

flatten:

}

if (n->string == 0) n->string = make_name('F');
n->tp = t;
Phase th= b;

switch (tb->base) {
case TYPE: j"l;-: chase typedefs -,•;-: /

th= (Pbase)tb->b_name->tp;
goto flatten;

case INT:

default:

}
break;

((Pbase)t)->b_unsigned = b->b_unsigned;
((Pbase)t)->b_const = b->b_const;
break;

error("non-int field");
n->tp = defa_type;

f = (Pfct) n->tp;

if (£->base!= FCT) {
if (bl) {

}

error("body for nonF%n",n);
n->tp = f = new fct(defa_type,0,0);
continue;

if (inli) error("inline nonF %n" ,n);
if (virt) error("virtual nonF %n",n);

if (tpdf) {
if (n->n_initializer) {

}

error(uir for typedefN%n",n);
n->n_initializer = O;

)

Feb 8 12:49 1985 norm.c Page 14

n->tdef ();

continue;
}

f->f_inline = inli;
f->f_virtual = virt;

if (tpdf) error("typedef%n",n);

if (f->body = bl) continue;

Check function declarations.
Look for class object instansiations
The real ambiguity: ; class x fo();

is interpreted as an extern function
declaration NOT a class object with an
empty initializer

/..,\-error(' d', "%n: fr%t

Pname en= f->returns->is_cl_obj();
bit clob = (en I I cl_obj_vec);

cn%n" ,n, £->returns, en); ,'c /
if (f->argtype) {/*check argument/initializer

Pname nn;

for (nn=f->argtype; nn; nn=nn->n_list) {
if (nn->base != NAME) {

if (!clob) {

list -Ir/

error("ATX for%n",n);
goto zzz;

}

goto is_obj;
}

if (nn->string/i {
error('AN%n inD ofo/on" ,nn,n);
nn->string = O;

}

if (nn->tp) goto ok;

if (!clob) {
error("FALX");
goto zzz;

}
is_obj:

/..,\-fprintf(stderr,"is_obj: %d %s tp = %d %d\n",this,string,f->returns,f->returns->bas
/* it was an initializer: expand to constructor*/
n->tp = £->returns;

zzz:

if (f->argtype->base != ELIST) f->argtype = (Pname)
n->n_initializer = new texpr(VALUE,cn->tp,(Pexpr)f­
goto ok;

if (f->argtype) {
DEL(f->argtype);

Feb 8 12:49 1985 norm.c Page 15

}

ok:

}
}
return nn;

}
}

f->argtype = O;
f->nargs = O;
f->nargs_known = !fct_void;

else { /*Ta();=> function declaration*/

}

if (clob) {
DEL(n->tp);
n->tp = £->returns;

}

Ptype vec.normalize(Ptype vecof)
;,tc
,tc I
{

xx:

}

Ptype t = typ;
if (this = 0) error(' i', "0->vec.normalize()");
typ = vecof;

if (t == 0) return this;

switch (t->base) {
case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
case PTR:
case RPTR:
case VEG:
case FCT:
default:

return ((Pptr)t)->normalize(this);
return ((Pvec)t)->normalize(this);
return ((Pfct)t)->normalize(this);
error('i' ,"bad vectorT(%d)",t->base);

}

Ptype ptr.normalize(Ptype ptrto)
{

Ptype t = typ;
if (this == 0) error(' i', "O->ptr .normalize()");
typ = ptrto;

if (t == 0) {
Phase b = (Phase) ptrto;
if (Pfctvec_type
&& rdo==O
&& b->b_unsigned==O
&& b->b_const==O
&& base==PTR) {

switch (b->base) {
case INT:

j

Feb 8 12:49 1985 norm.c Page 16

xx:

}

delete this;
return Pint_type;

case CHAR:
delete this;
return Pchar_type;

case VOID:
delete this;
return Pvoid_type;

case TYPE:
break;

}
}
if (base==RPTR && b->base=VOID) error("void& is not a validT");
return this;

}

switch (t->base) {
case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
case PTR:
case RPTR:
case VEC:
case FCT:
default:
}

return ((Pptr)t)->normalize(this);
return ((Pvec)t)->normalize(this);
return ((Pfct)t)->normalize(this);
error('i' , 11badPT(%d) 11,t->base);

Ptype fct.normalize(Ptype ret)
t·,•~

normalize return type

register Ptype t = returns;

if (this==O I I ret=O) error('i' , 11%d->fct.normalize(%d) 11,this,ret);

returns= ret;
if (t = 0) return this;

if (argtype) {
if (argtype->base != NAME) {

error('i' ,"syntax: ANX");
argtype = O;

}

else {

}

nargs = O;
nargs_known = O;

Pname n;
for (n=argtype; n; n=n->n_list) {

if (n->string) {
error("N inATL");
n->string = O;

}
}

Feb 8 12:49 1985 norm.c Page 17

xx:

}

}

switch (t->base) {
case PTR:
case RPTR:
case VEC:
case FCT:
case TYPE:
default:
}

return ((Pptr)t)->normalize(this);
return ((Pvec)t)->normalize(this);
return ((Pfct)t)->normalize(this);
t = ((Pbase)t)->b_name->tp; goto
error('i' ,"badFT:%k",t->base);

xx;

void fct.argdcl(Pname dcl)
j"k

sort out the argument types for old syntax:
f(a,b) int a; char b; { ... }

beware of
f(a) struct s { int a; }; struct s a;

Pname n;
j,'.fprintf (stderr, "%d argtype %d %d dcl %d %d\n",this, argtype, argtype?argtype->base

switch (base) {
case FCT:
case ANY:
default:
}

if (argtype) {

break;
return;
error('i' ,"argdcl(%d)",base);

switch (argtype->base) {
case NAME:

if (dcl) error("badF definition syntax");
for (n=argtype; n; n=n->n_list) {

if (n->string = O?, {
j,'. error('w', 'AN missing inF definition");,'(/

n->string = make_name('A');
}

}
return;

case ELIST: /* expression list: f(a ...) */
{ Pexpr e;

Pname nn;
Pname tail = 0;
n = O·

' It " if (old_fct_accepted == 0) error(old styleF definition);
for (e=(Pexpr)argtype; e; e=e->e2) {

j,'. scan the elist and build a NAME list ,'(/
Pexpr id= e->el;
if (id->base != NAME) {

error(uNX inAL");
argtype = O;

.J

Feb 8 12:49 1985 norm.c Page 18

}
else {

}

xxx:

}
default:

}

}

}

dcl = O;
goto xxx;

nn = new name(id->string);
if (n)

tail= tail->n_list = nn;
else

tail= n = nn;

argtype = n;
break;

error("ALX(%d)",argtype->base);
argtype = O;
dcl = O;

nargs_known = 1;
nargs = O;
if (dcl) error("ADL forF withoutAs");
return;

nargs_known = O;

if (dcl) {
Pname d;
Pname dx;
/* for each argument name see if its type is specified

in the declaration list otherwise give it the default type
*/

for (n=argtype; n; n=n->n_list) {
char* s = n->string;
if (s == 0) {

}

error("AN missing inF definition");
n->string = s = make_name('A');

else if (n->tp) error("twoTs forA %s",n->string);

for (d=dcl; d; d=d->n_list) {

}

if (strcmp(s,d->string) = 0) {

}

if (d->tp->base = VOID) {
error("voidA%n",d);
d->tp = any_type;

}
n->tp = d->tp;
n->n_sto = d->n_sto;
d->tp = O; /* now merged into argtype
goto xx;

n->tp = defa_type;

Feb 8 12:49 1985 norm.c Page 19

}

}

xx:;
if (n->tp == 0) error('i' ,"noT for %s",n->string);

}

/* now scan the declaration list for "unused declarations"
and delete it

-.'t/
for (d=dcl; d; d=dx) {

dx = d->n....list;

}

if (d->tp) { /* not merged with argtype list*/

}

/*if (d->base = TNAME) ??? */
switch (d->tp->base) {
case CLASS:
case ENUM:

default:

}

/* WARNING: this will reverse the order of
class and enum declarations

*/
d->n....list = argtype;
argtype = d;
break;

error("%n inADL not inAL",d);

/-Ir add default argument types if necessary -Jr/

for (n=argtype; n; n=n->n_list) {

}

if (n->tp = 0) n->tp = defa_type;
nargs++;

Pname cl_obj_vec;
Pname eobj;

/* set if is_cl_obj() found a vector of class objects*/
;-.•: set if is_cl_obj () found an enum -.': /

Pname type.is_cl_obj()
{

xx:

bit v = O;
register Ptype t = this;

eobj = O;
cLobj_vec = O;

switch (t->base) {
case TYPE:

t = ((Pbase)t)->b_name->tp;
goto xx;

case COBJ:
if (v) {

}
else

cl_obj_vec = ((Pbase)t)->b_name;
return O;

C

C.

C

C

C

Feb 8 12:49 1985 norm.c Page 20

}

return ((Pbase)t)->b_name;

case VEC:
t = ((Pvec)t)->typ;
v=l;
goto xx;

case EOBJ:
eobj = ((Pbase)t)->b_name;

default:
return O;

}

Feb 8 12:49 1985 norm2.c Page 1

/* %Z% %M% %I% %H% %T% */
/ ·lc--/(;'r·l(7:,',,'c7:,'(-;',,'~,~,'(,'\;'r~•c,':·l:,':,'c,'\,'r*,':,':·l:"'lc,'c-l:,~***'':,'c~':,':,'r*,'r,':;'r-/:,':-;'(;~;"(,1(*''~,~,,:'7:.,'t,':,':,~,•\7c,'c,':,'c,':,'c*,'t-lr,',·l:Y~-lt'i't

norm2.c:

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc.
All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

"normalization" handles problems which could have been handled
by the syntax analyser; but has not been done. The idea is
to simplify the grammar and the actions accociated with it,
and to get a more robust error handling

#include "cfront.h"
#include "size.h"
extern char* malloc(int);

fct.fct(Ptype t, Pname arg, TOK known)
{

Nt++;
base= FCT; J
nargs_known = known; •
returns= t;
argtype = arg;

/''-'fprintf(stderr,"fct t %d %d arg %d %d -> %d\n",t, t?t->base:O, arg, arg?arg->base:

if (arg=O I I arg->base=ELIST) return;

register Pname n;
for (n=arg; n; n=n->n_list) {

switch (n->tp->base) {
case VOID:

argtype = O;
nargs = O;
nar gs_known = 1 ;
if (n->string)

error("voidFA%n",n);
else if (nargs I I n->n_list) {

error("voidFA");
nargs_known = O;

}
break;

case CLASS:
case ENUM:

break;
default:

nargs++;
}

J

Feb 8 12:49 1985 norm2.c Page 2

}
}

Pexpr expr_free;
#define EBITE 250

expr.expr(TOK ba, Pexpr a, Pexpr b)
{

register Pexpr p;

if (this) goto ret;

if ((p=expr_free) = 0) {
register Pexpr q = (Pexpr) malloc(EBITE*sizeof(class expr));
for (p=expr_free=&q[EBITE-1]; q<p; p--) p->el = p-1;
(p+l)->el = O;

;-.':fprintf (stderr, "malloc %d expr_free=%d p+1=%d\n", EBITE7:sizeof (class expr), expr_
}
else

expr_free = p->el;

/* beware of alignment differences*/
if (sizeof(expr)&l) {

}

register char* pp= (char*)(p+l);
while ((char*)p<pp) *--pp= O;

else if (sizeof(expr)&2) {

}
else {

register short* pp= (short*)(p+l);
while ((short*)p<pp) *--pp= O;

register int* pp= (int*)(p+l);
while ((int*)p<pp) *--pp= O;

this= p;
;-.'.-fprintf (stderr, "expr. ctor(%d, %d, %d)->%d\n", ba, a, b, this); fflush(stderr) ;-.•, /

ret:

}

Ne++;
base= ba;
el= a;
e2 = b;

expr.~expr()
{

NFe++;
;-.':fprintf(stderr, "%d->expr.dtor(%d %d %d)\n" ,this,base,el,e2); ,'r/

el= expr_free;
expr_free = this;
this= O;

}

Pstmt stmt_free;
#define SBITE 250

Feb 8 12:49 1985 norm2.c Page 3

stmt.stmt(TOK ba, loc 11, Pstmt a)
{

}

register Pstmt p;

if ((p=stmt_free) = 0) {

}
else

register Pstmt q = (Pstmt) malloc(SBITE*sizeof(class stmt));
for (p=stmt_free=&q[SBITE-1]; q<p; p--) p->s_list = p-1;
(p+l)->s_list = O;

stmt_free = p->s_list;

/* beware of alignment differences*/
if (sizeof(stmt)&l) {

}

register char* pp= (char*)(p+l);
while ((char*)p<pp) -;':--pp = 0;

else if (sizeof(stmt)&2) {

}
else {

}

register short* pp= (short*)(p+l);
while ((short''.-)p<pp) -1-:--pp = 0;

register int* pp= (int*)(p+l);
while ((int*)p<pp) *--pp= O;

this= p;

Ns++;
base=ba;
where = 11;
s=a;

stmt. ~stmt ()
{

}

NFs++;
s_list = stmt_free;
stmt_free = this;
this= O;

classdef.classdef(TOK b, Pname n)
{

}

base= CLASS;
CSU= b;
pubmem = n;
memtbl = new table(CTBLSIZE,0,0);

basetype.basetype(TOK b, Pname n)
{
/*fprintf(stderr,"%d->basetype.basetype(%d %d)\n",this,b,n);*/

Nbt++;
switch (b) {

.J

Feb 8 12:49 1985 norm2.c Page 4

}

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

0:
TYPEDEF:
INLINE:
VIRTUAL:
CONST:
UNSIGNED:
FRIEND:
OVERLOAD:
EXTERN:
STATIC:
AUTO:
REGISTER:
SHORT:
LONG:
ANY:
ZTYPE:
VOID:
CHAR:
INT:
FLOAT:
DOUBLE:
TYPE:
COBJ:
EOBJ:
FIELD:
ASM:

b_typedef = 1;
b_inline = 1;
b_virtual = 1;
b_const = 1;
b_unsigned = 1;

b_sto = b;
b_short = 1;
b_long = 1;

base= b;

base= b;
b_name = n;
break;

default:
error('i' ,"badBT:%k 11,b);

}

break;
break;
break;
break;
break;
break;

break;
break;
break;

break;

#define NBITE 250
Pname name_free;

name.name(char'ic- s) : (NAME, (Pexpr)s,O)
{

register Pname p;

if ((p=name_free) = 0) {
register Pname q = (Pname) malloc(NBITE*sizeof(class name));
for (p=name_free=&q[NBITE-1]; q<p; p--) p->n_tbl_list = p-1;
(p+l)->n_tbl_list = O;

/*fprintf (stderr, "malloc %d name_free=%d p+1=%d\n", NBITE-;'c-sizeof(class name), name_
}
else

name_free = p->n_tbl_list;

/..,~ beware of alignment differences ·k /

if (sizeof(name)&l) {

}

register char..,•r pp = (char·k) (p+l);
while ((char*)p<pp) *--pp= O;

else if (sizeof(name)&2) {

Feb 8 12:49 1985 norm2.c Page 5

}
else {

}

register short* pp= (short*)(p+l);
while ((short*)p<pp) *--pp= O;

register int* pp= (int*)(p+l);
while ((int*)p<pp) *--pp= O;

this= p;
;,' .. fprintf(stderr,"%d: new name %s %d\n",this,s,base); fflush(stderr);-;'::/

}

Nn++;
where= curloc;
lex_level = bl_level;

name.~name()
{

NFn++;
/'i'rfprintf (stderr, "delete %d: %s %d\n", this, string, base);*/

n_tbl_list = name_free;
name_free = this;
this= O;

}

nlist.nlist(Pname n)
{

}

Pname nn;

if (n=O) error('i',"nlist.nlist(O)");

head= n;
for (nn=n; nn->n_list; nn=nn->n_list);
tail= nn;
Nl++;

void nlist.add_list(Pname n)
{

}

int NFl;

Pname nn;

tail->n_list = n;
for (nn=n; nn->n_list; nn=nn->n_list);
tail= nn;

Pname name_unlist (class nlist -;•~ 1)
{

Pname n;
if (1 = 0) return 0;
n = 1->head;
NFl++;

Feb 8 12:49 1985 norm2.c Page 6

delete l;
return n·

' }

Pstmt stmt_unlist(class slist "I: 1)
{

Pstmt s;
if (1 = 0) return O·

' s = 1->head;
NFl++;
delete 1 • ' return s· ,

}

Pexpr expr_unlist(class elist 1, 1)
{

Pexpr e;
if (1 == 0) return O· ,
e = 1->head;
NFl++;
delete 1 • ' return e;

}

(_

C

Feb 8 12:49 1985 print.c Page 1

/* %Z% %M% %I% %H% %T% */
/ ,t: .. lr,'c;~,tc,tr,'.,'r-iri':-J,,~*'''*·lr,'r,'r;'r-Jc,"''(*-,~·lr·lrf'(-;'r;'r·lr"/\4'('1'::*--;'(*-,~''''~'''·-lr-/;:*7c~':,':,'•7r,'::·l:t'~-Jr'i':,':-;':,':'i'r-;'r1:,':-;':,'r":J'c·l:,'r,'t,~,tc'i'(7:,'r-lr-;'r*

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

print.c:

print the output of simpl, typ, or syn in a form suitable for cc input

#include "cfront.h"

extern FILE-;': out_f ile;

print the declaration tree

bit print_mode = O;
extern int ntok;
int ntok = O;
int forced_sm = O;
bit Cast= O;
Pin curr_icall;

void puttok(TOK t)
/-;':

}

print the output representation of "t"

char -1.- s·
' " " if (t<=O I I MAXTOK<=t) error(illegal token %d ,t);

s = keys[t];
if (s = 0) error("V representation token %d",t);
putst(s);
if (12<ntok++) {

f orced_sm = 1;
ntok = O;

/* putch('\n 1);*/
last_line.putline();

}
else if (t = SM) {

forced_sm = 1;
ntok = O;

}

putch('\n');
last_line.line++;

J

Feb 8 12:49 1985 print.c Page 2

#define MX 20
#define NTBUF 10
class dcLbuf {

public:

/*
buffer for assembling declaration (or cast)
left contains CONST_PTR => *CONST

CONST_RPTR => &CONST
PTR => ,;~
RPTR => &
LP => (

right contains RP =>)

,1:: I
Phase b;
Pname n;
TOK left[MX], right[MX];
Pnode rnode[MX];
int li, ri;

void init(Pname nn)
void base(Pbase bb)
void front(TOK t)

VEC => [rnode]
FCT => (rnode)
FIELD => rnode

{ b=O; n=nn; li=ri=O; };
{ b = bb; } ;
{ left[++li] = t; };

void back(TOK t, Pnode nod) { right[++riJ = t; rnode[ri] = nod; };
{ front(LP); back(RP,O); }; void par an()

void put O;
} *tbufvec[NTBUF], *tbuf;

int freetbuf = O;

void dcl_buf.put()
{

inti;

if (MX<=li 11 MX<=ri) error(' i 1
, "T buffer overflow");

if (b = 0) error('i' ,"noBT%sn,Cast?" in cast":"");

if (n) {

}

if (n->n_sto)
puttok(n->n_sto);

else if (n->n_scope=STATIC && scope_default=STATIC)
puttok(STATIC);

b->dcLprint ();

for(; li; li--)
switch (left[li]) {
case LP:

puttok(LP);
break;

case CONST_PTR:
puttok(MUL);
if (print_mode != SIMPL) puttok(CONST);
break;

Feb 8 12:49 1985 print.c Page 3

case CONST_RPTR:
if (print_mode == SIMPL)

puttok(MUL);
else

puttok(ADDROF);
if (print_mode != SIMPL) puttok(CONST);
break;

case PTR:
puttok(MUL);
break;

case RPTR:

}

if (print_mode = SIMPL)
puttok(MUL);

else
puttok(ADDROF);

if (n) n->print();

for(i=l; i<=ri; i++)
switch (right[i]) {
case RP:

puttok(RP);
break;

case VEC:
puttok(LB);
{ Pvec v = (Pvec) rnode[i];

Pexpr d = v->dim;
int s = v->size;
if (d) d->print();
if (s) fprintf(out_file,"%d",s);

}
puttok(RB);
break;

case FCT:
{ Pfct f = (Pfct) rnode[i];

f->dcLprint ();
}
break;

case FIELD:
{

}
break;

Phase f = (Phase) rnode[i];
Pexpr d = (Pexpr)f->b_name;
int s = f->b_bits;
puttok(COLON);
if (d) d->print();
if (s) fprintf(out_file,n%d",s);

}
}

#define eprint(e) if (e) Eprint(e)

void Eprint(Pexpr e)
{

switch (e->base) {

Feb

}

void
J-lr

8 12:49 1985 print.c Page 4

case DUMMY:
break;

case NAME:
case ID:
case ZERO:
case ICON:
case CCON:
case FCON:
case STRING:
case IVAL:
case TEXT:
case CM:
case ELIST:
case COLON:
case ILIST:
case DOT:
case REF:
case THIS:
case CALL:
case G_CALL:
case ICALL:
case ANAME:

e->print();
break;

default:
puttok(LP);
e->print ();
puttok(RP);
break;

}

name.dcl_print(TOK list)

Print the declaration for a name (list=O) or a name list (list!=O):
For each name
(1) print storage class
(2) print base type
(3) print the name with its declarators

Avoid (illegal) repetition of basetypes which are class or enum declaration
(A name list may contain names with different base types)
list -- SM terminator SM
list - 0: single declaration with terminator SM
list - CM separator CM

Pname n;

if (this = 0) error("O->name.dcl_print()");

for (n=this; n; n=n->n_list) {
Ptype t = n->tp;
int sm = O;

if (t == 0) error('i' ,"name.dcl_print(%n)T missing 0 ,n);
if (print_mode==SIMPL && n->n_stclass=ENUM) continue;

Feb 8 12:49 1985 print.c Page 5

if (n->n_stclass -- STATIC) n->where.putline();

switch (t->base) {
case CLASS:
{ Pclass cl= (Pclass)t;

if (n->base == TNAME) break;
/* if (n->n_sto) puttok(n->n_sto); */

cl->dcl_print(n);
sm = 1;
break;

}

case ENUM:
((Penum)t)->dcl_print(n);
sm = 1;
break;

case FCT:
{ Pfct f = (Pfct) t;

}

if (n->base = TNAME) puttok(TYPEDEF);
if (debug==O && f->f_inline) {

}
else

break;

if (print_mode==SIMPL) {

}
else {

}

if (f->f_virtual I I n->n_addr_taken) {
TOK st= n->n_sto;
Pblock b = f->body;
f->body = O;

/* n->n_sto = O; */
t->dcLprint (n);
n->n_sto = st;
£->body= b;

}

if (print_mode != SIMPL)
puttok(INLINE);

else
putst("/ 1: inline -;':/");

t->dcl_print(n);

t->dcLprint(n);

case OVERLOAD:
{ Pgen g = (Pgen) t;

Plist gl;
fprintf (out_f ile, "\ t/-i': overload %s: ·k /\n", g->string);
for (gl=g->fct_list; gl; gl=gl->l) {

}
break;

Pname nn = gl->f;
nn->dcl_print(O);
sm = 1;

.J

C.

Feb 8 12:49 1985 print.c Page 6

}

case ASM:
fprintf (out_file, "asm(\ "%s\ ")\n", (char;',) ((Pbase)t)->b_name)
break;

case INT:
case CHAR:
case LONG:
case SHORT:

default:

if (print_mode==SIMPL
&& ((Pbase)t)->b_const
&& (n->n_scope=STATIC I I n->n_scope=FCT)) {

}

/* do not allocate space for constants unless neces
if (n->n_evaluated) {

}

sm = 1; /*no;*/
break;

{ Pexpr i = n->n_initializer;
if (n->base == TNAME) puttok(TYPEDEF);

/*fprintf(stderr,"%s: init %d %d tbl %d %d sto %d sc %d scope %d\n",n->string?n->str
if (i && n->n_sto==EXTERN && n->n_stclass==STATIC) {

n->n_initializer = O;
t->dcLprint (n);
puttok(SM);
n->n_initializer = i;
n->n_sto = O;
t->dcLprint(n);
n->n_sto = EXTERN;

}
else

t->dcLprint (n);

if (n->n_scope!=ARG) {
if (i) {

puttok(ASSIGN);
if (t!=i->tp && i->base!=ZERO && i->base!=I

Ptype tl = n->tp;
cmp:

switch (tl->base) {
default:

i->print ();
break;

case TYPE:
tl = ((Pbase)tl)->b_name->t
goto cmp;

case VEG:
if (((Pvec)tl)->typ->base=

i->print();
break;

}
case PTR:

puttok(LP);

Feb 8 12:49 1985 print.c Page 7

}
}

}
}
}

switch (list) {
case SM:

}
else

}

}

{ bit oc = Cast;
Cast = 1;
t->print();
Cast= oc;

}
puttok(RP);
eprint(i);

i->print ();

else if (n->n_evaluated) {
puttok(ASSIGN);

}

if (n->tp->base != INT) {
puttok(LP);
puttok(LP);

}
else

{ bit oc = Cast;
Cast= 1;
n->tp->print ();
Cast= oc;

}
fprintf(out_file,")%d)",n->n_val);

fprintf(out_file,"%d",n->n_val);

if (sm==O) puttok(SM);
break;

case 0:
if (sm==O) puttok(SM);
return;

case CM:

}

if (n->n_list) puttok(CM);
break;

void name.print()
j"k

*I
{

print just the name itself

if (this == 0) error(' i', "O->name.print() ");

if (string= 0) {
if (print_mode == ERROR) putst(" ?");
return;

}

Feb 8 12:49 1985 print.c Page 8

switch (base) {
default:

error(' i', "%d->name .print() base=%d", this ,base);
case TNAME:

putst(string);
return;

case NAME:
case ANAME:

break;
}

switch (print_mode) {
case SIMPL:
{ Ptable tbl;

inti= n_union;
if (tp) {

switch (tp->base) {
default:

}
break;

}
case ERROR:

if (tbl=n_table) {
Pname tn;

}

if (tbl == gtbl) break;
if (tn=tbl->t_name) {

}

if (i)
fprintf(out_file,"_%s_O%d.

else
fprintf(out_file, "_%s_", tn-

break;

switch (n_stclass) {
case STATIC:
case EXTERN:

default:

}

if (i) fprintf(out_file,"_O%d._C%d_",i,i);
break;

if (i)
fprintf(out_file,"_auto_O%d._C%d_

else
fprintf(out_file,"_auto_");

break;
case CLASS:
case ENUM:

break;
}

{ Ptable tbl;
char~•r cs;
bit f = O;
if (tp) {

switch (tp->base) {
case OVERLOAD:

Feb 8 12:49 1985 print.c Page 9

}
default:

}

}
else

return;

case FCT:
f = l;

default:
if (tbl=n_table) {

if (tbl -- gtbl) {
if (f == 0) putstring("::");

}
else {

if (tbl->t_name) {

}
}
if (n_sto==REGISTER
&& n....scope==ARG

cs= tbl->t_name->string;
fprintf(out_file,"%s::",cs)

&& strcmp(string,"this")=O) {

}

Ptype tt = ((Pptr)tp)->typ;
Pname en= ((Pbase)tt)->b_name;
fprintf(out_file,"%s::",cn->string);

break;
case CLASS:
case ENUM:
case TYPE:

break;
}

switch (n_oper) {
case 0:
case TYPE:

putstring(string);
break;

case DTOR:
puttok(COMPL);

case CTOR:

default:

}

putstring(cs);
break;

putstring("operator");
putstring(keys[n_oper]);
break;

if (f) putstring (" () ");

putstring(string);

if (n_qualifier) {
n....qualifier->print();
puttok(DOT);

}

(_

Feb 8 12:49 1985 print.c Page 10

putst(string);
}

void type.print()
{
/i.-fprintf (stderr, "type %d %d\n", this, base); fflush(stderr) ;'i.-/

switch (base) {
case PTR:
case RPTR:

((Pptr)this)->dcl_print(0);
break;

case FCT:
((Pfct)this)->dcl_print();
break;

case VEG:
((Pvec)this)->dcl_print(0);
break;

case CLASS:
case ENUM:

if (print_mode = ERROR)
fprintf(out_file,"%s",base=CLASS?"class":"enum");

else

}

error(1 i 1 ,"%d->T.print(%k) 11,this,base);
break;

case TYPE:

default:

}

if (Cast) {
((Pbase)this)->b_name->tp->print();
break;

}

((Pbase)this)->dcl_print();

char* type.signature(register char* p)

,tr/
{

take a signature suitable for argument types for overloaded
function names

#define SDEL I I

xx:

Ptype t = this;
int pp= 0;

switch (t->base)
case TYPE:
case PTR:
case RPTR:
case VEG:
case FCT:

{
t = ((Pbase)t)->b_name->tp; goto
i.-p++ = 'p'. t = ((Pptr)t)->typ;

I I) i.-p++ = R . t = ((Pptr)t)->typ;
' ';~p++ = 'V'; t = ((Pvec)t)->typ;

{ Pfct f = (Pfct)this;
Pname n;

xx;
pp=l;
pp=l;
pp=l;

goto
goto
goto

xx;
xx· ,
xx;

Feb 8 12:49 1985 print.c Page 11

*/

}

}
}

t = (f->s_returns)? f->s_returns
,'.-p++ = 'F';

if (t) p = t->signature(p);
,·.-p++ = SDEL;

for (n=f->argtype; n; n=n->n_list) {
p = n->tp->signature(p);
,'.-p++ = SDEL;

}
*p++ = SDEL;
,,_.p =O;
return p;

if (((Pbase)t)->b_unsigned) *p++ = 'U';

switch (t->base) {
case ANY: -;'rp++ =
case ZTYPE: *p++ =
case VOID: ,'.-p++ =

'A'; break;
'Z'; break;
'V'; break;

£->returns;

case CHAR: *p++ =
case SHORT: *p++ =

(pp) ? ' C ' : I I I ;

(pp) ? ' S ' : ' I ' ;
break;
break;

case EOBJ:
case INT:
case LONG:
case FLOAT:
case DOUBLE:
case COBJ:

case FIELD:
default:

*p++ = 'I';
;'rp++ = 'L' ;
i.-p++ = 'F';

break;
break;
break;
break; -rrp++ = 'D';

;'rp++ = 'c';
strcpy(p,((Pbase)t)->b_narne->string);
while (,'.-p++) ;
;'r(p-1) = SDEL;
break;

error('i' ,"signature of %k",t->base);
}

*p = O;
return p;

void basetype.dcl_print()
{

Pnarne nn;
Pclass cl;

if (print_mode != SIMPL) {

}

if (b_virtual) puttok(VIRTUAL);
if (b_inline) puttok(INLINE);
if (b_const) puttok(CONST);

if (b_unsigned) puttok(UNSIGNED);

switch (base) {

Feb 8 12:49 1985 print.c Page 12

case ANY:
putst("any");
break;

case ZTYPE:
putst("zero");
break;

case VOID:
if (print_mode = SIMPL) {

puttok(INT);
break;

}
case CHAR:
case SHORT:
case INT:
case LONG:
case FLOAT:
case DOUBLE:

puttok(base);
break;

case EOBJ:
nn = b_name;

eob:
if (print_mode == SIMPL)

puttok(INT);
else {

}
break;

puttok(ENUM);
nn->print();

case COBJ:

cob:
nn = b_name;

cl= (Pclass)nn->tp;
switch (cl->csu) {
case UNION:
case ANON:
default:

puttok(UNION); break;
puttok(STRUCT);

}
putst(cl->string);
break;

case TYPE:
if (print_mode == SIMPL) {

}

switch (b_name->tp->base) {
case COBJ:

nn = ((Pbase)b_name->tp)->b_name;
goto cob;

case EOBJ:

}

nn = ((Pbase)b_name->tp)->b_name;
goto eob;

Feb 8 12:49 1985 print.c Page 13

default:

}

b_name->print();
break;

if (print_mode == ERROR) {

}
else

if (O<base && base<MAXTOK && keys[base))
fprintf(out_file," %s",keys[base]);

else
fprintf(out_file,"?");

error('i' ,"%d->basetype.print(%d)",this,base);

void type.dcl_print(Pname n)

"this" type is the type of "n". Print the declaration
-;': I
{

Ptype t = this;
Pfct f;
Pvec v;
Pptr p;
TOK pre= O;

if (t == 0) error (' i', 11O->dcl_print () ");
if (n && n->tp!=t) error('i' ,"not %n'sT (%d)",n,t);

if (base== OVERLOAD) {

}

if (print_mode = ERROR) {
puttok(OVERLOAD);
return;

}
Pgen g = (Pgen) this;
Plist gl;
fprintf (out_file, "\ t/-;'. overload %s: 'i: /\n", g->string);
for (gl=g->fct_list; gl; gl=gl->l) {

}
return;

Pname nn = gl->f;
nn->tp->dcl_print(nn);
if (gl->l) puttok(SM);

tbuf = tbufvec[freetbuf];
if (tbuf = 0) {

if (freetbuf = NTBUF-1) error('i' ,"AT nesting overflow");
tbufvec[freetbuf] = tbuf = new class dcl_buf;

}
freetbuf++;
tbuf->init(n);

while (t) {
TOK k;

C.

Feb 8 12:49 1985 print.c Page 14

}

}

switch (t->base) {
case PTR:

p = (Pptr)t;
k = (p->rdo)? CONST_PTR PTR;
goto ppp;

case RPTR:
p = (Pptr)t;
k = (p->rdo)? CONST_RPTR RPTR;

ppp:
tbuf->front (k);
pre= PTR;
t = p->typ;
break;

case VEG:
v = (Pvec)t;
if (Cast) {

tbuf->front(PTR);
pre= PTR;

}
else {

if (pre= PTR) tbuf->paran();
tbuf->back(VEC,v);
pre= VEC;

}
t = v->typ;
break;

case FCT:
f = (Pfct)t;
if (pre= PTR) tbuf->paran();
tbuf->back(FCT,f);
pre= FCT;
t = (f->s_returns)? f->s_returns
break;

case FIELD:
tbuf->back(FIELD,t);
tbuf->base(defa_type);
t = O;
break;

case 0:

£->returns;

error('i' ,"noBT(B=O)%s",Cast?" in cast":"");
case TYPE:

default:

}

if (Cast) {/*unravel type in case it contains vectors*/
t = ((Pbase)t)->b_name->tp;
break;

}

/* the base has been reached*/
tbuf->base((Pbase)t);
t = O;
break;

tbuf->put ();
freetbuf--;

Feb 8 12:49 1985 print.c Page 15

void fct.dcl_print()
{

if (0)

Pname nn;

if (print_mode == ERROR) {
puttok(LP);

}

for (nn=argtype; nn;) {
nn->tp->dcl_print(O);
if (nn=nn->n_list) puttok(CM); else break;

}
switch (nargs_known) {
case ELLIPSIS: puttok(ELLIPSIS); break;
case 0: putst("?"); break;
}
puttok(RP);
return;

Pname at= (f_this)? f_this : argtype;
puttok(LP);
if (body && Cast==O) {

}

Ptable tbl = body->memtbl;

for (nn=at; nn;) {
nn->print ();
if (nn=nn->n_list) puttok(CM); else break;

}
puttok(RP);

inti;
if (tbl)

for (nn=tbl->get_mem(i=l); nn; nn=tbl->get_mem(++i))
if (nn->n....scope=ARGT && nn->n_union==O) nn->dcl_pr

if (at) at->dcl_print(SM);

if (f_init && print_mode!=SIMPL) {
puttok(COLON);
puttok(LP);
Linit->print();
puttok(RP);

switch (nargs_known) {
case 0:

putst("j'# ? ,tr/");
break;

case ELLIPSIS:
putst("/,tr ... */");

}
body->print();

else {
if (0) {

if (print_mode -- SIMPL) putst("/,tr");

Feb 8 12:49 1985 print.c Page 16

}

}
}

if (at) at->dcl_print(CM);
switch (nargs_known) {
case 0:

puttok(QUEST);
break;

case ELLIPSIS:
puttok(ELLIPSIS);

}
if (print_mode == SIMPL) putst("-;~/");

puttok(RP);

void classdef.print_members()
{

}

int i;
Pname nn;

if (clbase) {

}

Pclass bcl = (Pclass)clbase->tp;
bcl->print_members();
/* fprintf (out_file," int : 0; \n"); force word alignment -;': /

for (nn=memtbl->get_mem(i=l); nn; nn=memtbl->get_mem(++i)) {
if (nn->base==NAME

}

&& nn->n_union==O
&& nn->tp->base!=FCT
&& nn->tp->base!=OVERLOAD
&& nn->tp->base!=CLASS
&& nn->tp->base!=ENUM
&& nn->n_stclass != STATIC) {

}

Pexpr i = nn->n_initializer;
nn->n_initializer = O;
nn->dcl_print(O);
nn->n_initializer = i;

void classdef.dcl_print(Pname)
{

Plist 1;
TOK c = csu;
if (c==CLASS && print_mode=SIMPL) c = STRUCT;

if (print_mode = SIMPL) {
inti;
Pname nn;

/* cope with nested classes*/

for (nn=memtbl->get_mem(i=l); nn; nn=memtbl->get_mem(++i)) {
/-1:fprintf(stderr, "mem %d %s %d union %d tp %d %d\n", nn, nn->string, nn->base, nn->

if (nn->base=NAME && nn->n_union==O) {
if (nn->tp->base == CLASS) ((Pclass)nn->tp)->dcl_pr

Feb 8 12:49 1985 print.c Page 17

}
}

puttok(c);
putst(string);

if (c_body == 0) return;
c_body = 0;

if (print_mode = SIMPL) {
int i;
int sm = 0;
Pname nn;
int sz = tsizeof();

puttok(LC);
fprintf(out_file, ";-.•.-sizeof = %d -.'r:/\n" ,sz);
print_members();
puttok(RC);
puttok(SM);

if (virt_count) { /* print initialized jump-table*/

for (nn=memtbl->get_mem(i=l); nn; nn=memtbl->get_mem(++i))

}

if (nn->base--NAME && nn->n_union==0) {/*declare
Ptype t = nn->tp;

}

switch (t->base) {
case FCT:
{ Pfct f =(Pfct) t;

}

if (f->f_virtual == 0) break;
f->returns->print();
nn->print ();
putst("O");
puttok(SM);
break;

case OVERLOAD:
{ Pgen g = (Pgen)t;

Plist gl;

}
}

for (gl=g->fct_list; gl; gl=gl->l)
Pfct f = (Pfct) gl->f->tp;
if (f->f_virtual == 0) brea
f->returns->print();
gl->f->print();
putst("()");
puttok(SM);

}

fprintf(out_file, "static int (-,'.-%s_vtbl [}) () =",string);
puttok(LC);
for (i=0; i<virt_count; i++) {

C

Feb 8 12:49 1985 print.c Page 18

}

fprintf(out_file," (int(-lc) ()) ");
virt_init[i]->print();
puttok(CM);

}
puttok(ZERO);
puttok(RC);
puttok(SM);

for (nn=memtbl->get_mem(i=l); nn; nn=memtbl->get_mem(++i)) {

}

if (nn->base==NAME && nn->n_union=O) {
Ptype t = nn->tp;

}

switch (t->base) {
case FCT:
case OVERLOAD:

break;
default:

}

if (nn->n_stclass = STATIC) {
nn->n_sto = O;
nn->dcl_print(O);

}

for (nn=memtbl->get_mem(i=l); nn; nn=memtbl->get_mem(++i)) {

}

if (nn->base==NAME && nn->n_union=O) {
Pfct f = (Pfct)nn->tp;

}

switch (f->base) {
case FCT:

/* suppress duplicate or spurious declarati
if (debug=O && f->f_virtual) break;
if (debug=O && f->f_inline) break;
nn->dcl_print(O);
break;

case OVERLOAD:
nn->dcl_print(O);
break;

}

for (l=friend_list; l; 1=1->1) {
Pname nn = 1->f;

f'l.-fprintf(stderr, "friend %s %d\n" ,nn->string,nn->tp->base) ;1'-/

switch (nn->tp->base) {
case FCT:

put st (";1.- friend .,._. / ");
nn->dcl_print(O);
break;

case OVERLOAD: /* first fct */

}

1->f = nn = ((Pgen)nn->tp)->fct_list->f;
putst("/1.- friend ·k/");
nn->dcl_print(O);
break;

Feb 8 12:49 1985 print.c Page 19

}

}
return;

}

if (clbase) {
puttok(COLON);
if (pubbase) puttok(PUBLIC);
clbase->print();

}
puttok(LC);

for (l=friend_list; l; 1=1->l) {
Pname fr = 1->f;
puttok(FRIEND);
switch (fr->tp->base) {
case FCT:
default:

}
}

fr->print ();
puttok(SM);

if (privmem) privmem->dcl_print(SM);
if (memtbl) memtbl->dcl_print(NE,PUBLIC);
puttok(PUBLIC);
puttok(COLON);
if (pubmem) pubmem->dcl_print(SM);
if (memtbl) memtbl->dcl_print(EQ,PUBLIC);

if (pubdef) {

}

puttok(PUBLIC);
puttok(COLON);
pubdef->print ();
puttok(SM);

puttok(RC);

void enumdef.dcl_print(Pname n)
{

if (print_mode = SIMPL) {
if (mem) {

}
else {

}

}

fprintf (out_file, "/* enum %s 'i"t /\n" ,n->string);
mem->dcl_print(SM);

puttok(ENUM);
if (n) n->print();
puttok(LC);
if (mem) mem->dcl_print(SM);
puttok(RC);

Feb 8 12:49 1985 print.c Page 20

/
_, int addroLcm;

void expr.print()
{

if (this== 0) error('i',"O->expr.J?rint()");
if (this==el 11 this==e2) error('i ,"(%d%k)->expr.print(%d %d)",this,base,e

/-;':error('d' ,"expr %d%k e1=%d e2=%d tp2=%d",this,base,el,e2,tp2);-;':/
switch (base) {
case NAME:
{ Pname n = (Pname) this;

if (n->n_evaluated) {

}
else

break;
}
case ANAME:

if (n->tp->base != INT) {
puttok(LP);
puttok(LP);

}
else

{ bit oc = Cast;
Cast = 1;
n->tp->print ();
Cast= oc;

}
fprintf(out_file,")%d)",n->n_val);

fprintf(out_file,"%d",n->n_val);

n->print ();

if (curr_icall) { /-lrin expansion: look it up -;'r/

aok:

Pname n = (Pname)this;
int argno = n->n_val;
Pin il;
for (il=curr_icall; il; il=il->i_next)

if (n->n_table = il->i_table) goto aok;
goto bok;

if (n = il->local[argno])
n->print ();

else {
Pexpr ee = il->arg[argno];
Ptype t = il->tp[argno];
if (ee==O I I ee=this) error('i' ,"%d->expr.print(A
if (t!=ee->tp && t->is_cl_obj()==O && eobj==O) {

}
else

puttok(LP);
puttok(LP);
{ bit oc = Cast;

Cast = 1;
t->print();
Cast= oc;

}
puttok(RP);
eprint(ee);
puttok(RP);

Feb 8 12:49 1985 print.c Page 21

eprint(ee);
}

}
else {
bok: ;-;•~ in body: print it: ,~;

((Pname)this)->print();
}
break;

case ICALL:
{ il->i_next = curr_icall;

curr_icall = il;
if (il == 0) error (' i', "expr. print: iline missing");
Pexpr aO = il->arg[O];
int val= QUEST;
if (il->fct_name->n__oper != CTOR) goto dumb;

find the value of "this"
if the argument is a "this" NOT assigned to
by the programmer, it was initliazed

switch (aO->base) {
case ZERO:

val= O;
break;

case ADDROF:
case G_ADDROF:

val= 1;
break;

case CAST:
if (aO->el->base == ANAME) {

Pname a= (Pname)aO->el;
if (a->n_assigned_to == FUDGElll) val= FUDGElll;

}

if (val==QUEST) goto dumb;
;,trerror('d', "%n's this = %d", il->fct_name, val);*/

;,~
now find the test: "(this==O)? _new(sizeof(X)) o"

el is a comma expression,
the test is either the first sub-expression

or the first sub-expression after the assignments
initializing temporary variables

{ Pexpr e = el;
lx:

switch (e->base) {
case CM:
/* if (val==l && e->el->base=ASSIGN) {

Pexpr ass= e->el;
Pname a= e->el->el;

Feb 8 12:49 1985 print.c Page 22

}

if (a->base=ANAME && 1) {
}

e = (e->e2->base=QUEST I I e->el->base==ASSIGN)? e->e2 e
goto lx;

case QUEST:
{ Pexpr q = e->cond;

if (q->base=EQ && q->el->base--ANAME && q->e2=zero) {
Pname a= (Pname)q->el;

}

Pexpr saved= new expr(0,0,0);
*saved= *e;
*e = (val==O)? *e->el: *e->e2;
eprint(el);
i:e = 1.-saved;
delete saved;
curr_icall = il->i_next;
return;

}
}

}
dumb:

}

eprint(el);
if (e2) ((Pstmt)e2)->print();
curr_icall = il->i_next;
break;

case REF:
case DOT:

eprint(el);
puttok(base);
mem->print();
break;

case VALUE:
tp2->print();
puttok(LP);
if (e2) {

putst("/-ir &");
e2->print ();
putst(", ,'.-/");

}
if (el) el->print();
puttok(RP);
break;

case SIZEOF:
puttok(SIZEOF);
if (el!= dummy) {

eprint(el);
}
else if (tp2) {

puttok(LP);
tp2->print ();

Feb 8 12:49 1985 print.c Page 23

puttok(RP);
}
break;

case NEW:
puttok (NEW);
tp2->print ();
if (el) {

}
break;

puttok(LP);
el->print();
puttok(RP);

case CAST:
puttok(LP);
puttok(LP);
if (tp2->base == VOID)

puttok(VOID);
else {

}

bit oc = Cast;
Cast = 1;
tp2->print ();
Cast= oc;

puttok(RP);
puttok(LP);
el->print ();
puttok(RP);
puttok(RP);
break;

case ICON:
case FCON:
case CCON:
case ID:

putst(string);
break;

case STRING:
fprintf(out_file,"\"%s\"",string);
break;

case THIS:
case ZERO:

puttok(base);
break;

case IVAL:
fprintf(out_file,"%d",(int)el);
break;

case TEXT:
if (e2)

fprintf(out_file, " %s_%su, (char 1:)el, (char,'r)e2);
else

Feb 8 12:49 1985 print.c Page 24

break;

case DUMMY:
break;

case G_CALL:
case CALL:

fprintf(out_file, "%s", (char')'-')el);

{ Pname fn = fct_name;
Pname at;
if (fn && print_mode==SIMPL) {

Pfct f = (Pfct)fn->tp;

}
else {

if (£->base==OVERLOAD) {/*overloaded after call*/
Pgen g = (Pgen)f;

}

fct_name = fn = g->fct_list->f;
f = (Pfct)fn->tp;

fn->print ();
at= (f->f_this)? f->f_this : f->argtype;

/'''error('d' ,"e1%k el->tp %d %d%t",el->base,el->tp,el->tp->base,el->tp);·k/
eprint(el);
if (el->tp) { /* pointer to fct */

at= ((Pfct)el->tp)->argtype;
}
else {

}
puttok(LP);
if (e2) {

/* virtual: argtype encoded*/
at= (Pname)el->el->tp;

if (at && print_mode=SIMPL) {
Pexpr e = e2;
while (at) {

Pexpr ex;
Ptype t = at->tp;

/ir:fprintf(stderr, "at %s tp (%d %d)\n", at->string?at->string: "?", t, t?t->base:O) ;''-'/
if (e == 0) error(' i', "A missing for %s ()",
if (e->base == ELIST) {

ex = e->el;
e = e->e2;

}
else

ex= e;

if (ex=O) error('i' ,"A ofT%t missing",t);

if (t!=ex->tp && t->is_cl_obj()=O && eobj=
puttok(LP);
{ bit oc = Cast;

Cast = 1;
t->print ();
Cast= oc;

}
puttok(RP);

Feb 8 12:49 1985 print.c Page 25

}

}
else

}
puttok(RP);
break;

I*

}
if (e) {

}

}
else

puttok(LP);
ex->print();
puttok(RP);

eprint(ex);

ex->print ();
at= at->n_list;
if (at) puttok(CM);

puttok (CM) ;
e->print O;

e2->print();

case ASSIGN:

case EQ:
case NE:
case GT:
case GE:
case LE:
case LT:
bkk:

if (el->base==ANAME && ((Pname)el)->n_assigned_to==FUDGElll) {
/i(suppress assignment to "this" that has been optimized aw
Pname n = (Pname)el;

akk:

}

int argno = n->n_val;
Pin il;
for (il=curr_icall; il; il=il->i_next)

if (il->i_table -- n->n_table) goto akk;
goto bkk;

if (il->local[argno] -- 0) {
e2->print();
break;

}

eprint(el);
puttok(base);
if (el->tp!=e2->tp && e2->base!=ZERO) {/*cast, but beware of inti

Ptype tl = el->tp;
cmp:

switch (tl->base) {
default: break;
case TYPE: tl = ((Pbase)tl)->b_name->tp; goto cmp;
case PTR:
case VEG:

puttok(LP);
{ bit oc = Cast;

Feb 8 12:49 1985 print.c Page 26

Cast = 1;
el->tp->print();
Cast= oc;

}
puttok(RP);

}
}
eprint(e2);
break;

case DEREF:
if (e2) {

}
else {

}
break;

eprint(el);
puttok(LB);
e2->print O;
puttok(RB);

puttok(MUL);
eprint(el);

case ILIST:
puttok(LC);
if (el) el->print();
puttok(RC);
break;

case ELIST:
{ Pexpr e = this;

forever {
if (e->base == ELIST) {

e->el->print();

}
else {

}
}

}
case QUEST:

eprint(cond);
puttok(QUEST);
eprint(el);
puttok(COLON);
eprint(e2);
break;

if (e = e->e2)
puttok(CM);

else
return;

e->print ();
return;

case CM: /* do &(a,b) => (a,&b) for previously checked inlines */
switch (el->base) {
case ZERO:

Feb 8 12:49 1985 print.c Page 27

case IVAL:
case ICON:
case NAME:
case DOT:
case REF:
case FCON:
case FVAL:
case STRING:

puttok (LP);
goto le2;

default:

le2:

puttok(LP);
{ int oo = addrof_cm;

addrof_cm = O;
eprint(el);
addrof_cm = oo;

}
puttok(CM);

if (addroLcm) {
switch (e2->base) {
case CAST:

switch (e2->e2->base) {
case CM:
case ICALL: goto ec;
}

case NAME:
case DOT:
case DEREF:
case REF:
case ANAME:

puttok(ADDROF);
addrof_cm--;
eprint(e2);
addrof_cm++;
break;

case ICALL:
case CM:
ec:

eprint(e2);
break;

case G_CALL:

default:

/* & (e, ctor()) with temporary optimized
if (e2->fct_name
&& e2->fct_name->n_oper==CTOR) {

addrof_cm--;
eprint(e2);
addrof_cm++;
break;

}

error('i' ,"& inlineF call (%k)",e2->base);
}

}
else {

eprint(e2);

C.

(__

C __

.. /~

~-

Feb 8 12:49 1985 print.c Page 28

}
break;

}
puttok(RP);

case UMINUS:
case NOT:
case COMPL:

puttok(base);
eprint(e2);
break;

case ADDROF:
case G_ADDROF:

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

switch (e2->base) {
case DEREF:

if (e2->e2 == 0) {
e2->el->print O;
return;

}
break;

case ICALL:
addrof_cm++;
eprint(e2);
addrof_cm--;
return;

}

switch (e2->tp->base) {
case FCT:

break; /* suppress cc warning on &f */
default:

puttok(ADDROF);
}
eprint(e2);
break;

PLUS:
MINUS:
MUL:
DIV:
MOD:
LS:
RS:
AND:
OR:
ER:
ANDAND:
OROR:
ASPLUS:
ASMINUS:
ASMUL:
ASMOD:
ASDIV:
ASLS:
ASRS:
ASOR:

Feb 8 12:49 1985 print.c Page 29

}

case ASER:
case ASAND:
case DECR:
case INCR:

default:

}

eprint(el);
puttok(base);
eprint(e2);
break;

error('i' ,"%d->expr.print%k",this,base);

Pexpr aval(Pname a)
{

aok:

int argno = a->n_val;
Pin i1;
for (il=curr_icall; il; il=il->i_next)

if (il->i_table = a->n_table) goto aok;
return O;

Pexpr aa = il->arg[argno];
/*error(' d', "aval (%n) -> %k", a, aa->base) ;.,'-' /
11:

switch (aa->base) {
case CAST: aa = aa->el; goto 11;
case ANAME: return aval((Pname)aa);
default: return aa;
}

}

#define putcond()

void stmt.print()
{

puttok(LP); e->print(); puttok(RP)

if (forced_sm) {
forced_sm = O;
where.putline();

}
/.,'-'error('d' ,&where,"stmt.print %d:%k s %d s_list %d",this,base,s,s_list);.,'-'/

if (memtbl && base!=BLOCK) {/*also print declarations of temporaries*/
puttok(LC);
Ptable tbl = memtbl;
memtbl = O;
Pname n;
inti;
int bl = 1;
for (n=tbl->get_mem(i=l); n; n=tbl->get_mem(++i)){

/* avoid double declarartion of temporaries from inlines */
char* s = n->string;
if (s[O] !='_' 11 s[l] !='X') {

n->dcl_print(O);
bl= O;

}

.)

Feb 8 12:49 1985 print.c Page 30

Pname en;

}
if (bl && (cn=n->tp->is __ cl_obj()) && Pclass(cn->tp)->has_dt

/''-error ('d' , "%d (tbl=%d) list %d", this, tbl, s_list); -;'. /
if (bl) {

Pstmt s1 = s_list;
s_list = 0;
print();
memtbl = tbl;
puttok(RC);
if (s1) {

}
else {

s_list = sl;
s1->print();

print();
memtbl = tbl;
puttok(RC);

}
return;

}

switch (base) {
default:

error('i' ,"stmt.print(base=%k)",base);
case ASM:

fprintf (out_f ile, "asm (\ 11%s \ ") ; \n", (char'':) e);
break;

case DCL:
d->dcl_print(SM);
break;

case BREAK:
case CONTINUE:

puttok(base);
puttok(SM);
break;

case DEFAULT:
puttok(base);
puttok(COLON);
s->print();
break;

case SM:
;,'::if (e->base=CALL 11 e->base=G_CALL) error(' d', "%n", (Pname)e->el) ;-;':/

if (e) {
e->print O;
if (e->base==ICALL && e->e2) break; /* a block: no SM*

}
puttok(SM);
break;

case WHILE:
puttok(WHILE);
putcond();
s->print O ;
break;

case DO:

Feb 8 12:49 1985 print.c Page 31

puttok(DO);
s->print O;
puttok(WHILE);
putcond();
puttok(SM);
break;

case SWITCH:
puttok(SWITCH);
putcond();
s->print ();
break;

case RETURN:
puttok (RETURN);
if (e) e->print();
puttok(SM);
break;

case DELETE:
puttok(DELETE);
e->print ();
puttok(SM);
break;

case CASE:
puttok(CASE);
eprint(e);
puttok(COLON);
s->print O;
break;

case GOTO:
puttok(GOTO);
d->print ();
puttok(SM);
break;

case LABEL:

case IF:

d->print();
puttok(COLON);
s->print ();
break;

{ int val= QUEST;
/-;'(error ('d' , "if (%k%k%k)", e->el->base, e->base, e->e2->base); -;'t: /

if (e->base == ANAME) {
Pname a= (Pname)e;
Pexpr arg = aval(a);

//error('d' ,"arg %d%k",arg,arg->base);

}

if (arg == 0)

' else if (arg == zero)
val= O;

else if (arg->base--ADDROF I I arg->base=G_ADDROF)
val = 1;

else if (e->base = ANDAND
&& e->el->base==ANAME
&& e->e2->base==ANAME) {

/* suppress spurious tests: if (this&&O) */
Pname al= (Pname)e->el;

Feb 8 12:49 1985 print.c Page 32

Pname a2 = (Pname)e->e2;
/-;'~error('d', "aname%n %d %d%n %d %d", al, al->n_val, al->n_table, a2, a2->n_val, a2->n_tabl

Pexpr arg2 = aval(a2);
if (arg2==zero) val= O; /* unsafe, sideeffects */

}
/*error(' d' , "val %d", val) ; -;'" /

switch (val) {
case 1:

case 0:

default:

}
break;

}

s ->print() ;
break;

if (else_stmt)
else_stmt->print();

else
puttok(SM);

break;

puttok(IF);
putcond();
if (s ->s_list) {

puttok(LC);
s->print ();
puttok(RC);

}
else

s->print ();
if (else_stmt) {

puttok(ELSE);

/* null statement*/

if (else_stmt->s_list) {
puttok(LC);
else_stmt->print();
puttok(RC);

}
else

else_stmt->print();

case FOR:
{ int fi = for_init && for_init->base!=SM;

if (fi) {
puttok(LC);
for_init->print();

}
puttok(FOR);
puttok(LP);
if (fi=O && for_init) for_init->e->print();
putch(';'); /* to avoid newline: not puttok(SM) */
eprint(e);
putch('; ');
eprint(e2);
puttok(RP);
s->print ();
if (for_ini t) {
* if (s_list) s_list->print();

Feb 8 12:49 1985 print.c Page 33

}

}

}·k I

puttok(RC);
return;,'r
puttok(RC);

if (fi) puttok(RC);
break;

case PAIR:
if (s&&s2) {

puttok(LC);
s->print ();
s2->print O;
puttok(RC);

}
else {

if (s) s->print();
if (s2) s2->print();

}
break;

case BLOCK:

}

puttok(LC);
where.putline();
if (d) d->dcl_print(SM);
if (memtbl && own.....tbl) {

Pname n;
inti;
for (n=memtbl->get_mem(i=l); n; n=memtbl->get_mem(++i)) {

}
}

if (n->tp && n->n.....union=O)
switch (n->n.....scope) {
case ARGT:
case ARG:

break;
default:

n->dcLprint(O);

if (s) s->print();
puttok(RC);

if (s_list) s_list->print();

void table.dcl_print(TOK s, TOK pub)
j'k

print the declarations of the entries in the order they were inserted
ignore labels (tp==O)

register Pname* np;
register inti;

if (this== 0) return;

np = entries;
for (i=l; i<free_slot; i++) {

Feb 8 12:49 1985 print.c Page 34

}
}

register Pname n = np[i];
switch (s) {
case 0:

case EQ:

case NE:

}

n->dcLprint (0);
break;

if (n->tp && n->n_scope == pub) n->dcl_print(0);
break;

if (n->tp && n->n_scope != pub) n->dcl_print(0);
break;

Feb 8 12:49 1985 repr.c Page 1

/* %Z% %M% %I% %H% %T% -;~ /
/ 1':,'c1'\'·lc·l:·l:,':"i:**'':·l:-;'c·-l\-;'r1':··l:,':1'*"'':-;':,~-l(-;~,,:,':-;'ri':·l:i't·l:,':,':·l:*-;':-i:--,':,':,'c**i':i':·l:·l:,~,•,,•r*,':,':*i':*4':i'ri':i':,'r-1:,',;'t·lr-lc,':,':·lc'i':,~;•:*;'r

repr.c: stage main (views: main err)

#include "cfront.h"

char-;'.-oper_name (TOK op)
/-;':

return the string representation of operator "op"

switch (op) {
default:
case CM:
case NEW:
case DELETE:
case MUL:
case DIV:
case MOD:
case PLUS:
case MINUS:
case UMINUS:
case LS:
case RS:
case EQ:
case NE:
case LT:
case GT:
case LE:
case GE:
case AND:
case ADDROF:
case OR:
case ER:
case ANDAND:
case OROR:
case NOT:
case COMPL:
case INCR:
case DECR:
case CALL:
case DEREF:
case ASSIGN:
case ASPLUS:
case ASMINUS:
case ASMUL:
case ASDIV:
case ASMOD:
case ASLS:
case ASRS:
case ASAND:
case ASOR:
case ASER:
case SIZEOF:

error('i' ,"oper_name(%k)",op);
return "_comma";
return "_new";
return "_delete";
return "_mul";
return "_div";
return "_mod";
return "_plus";

return
return
return
return
return
return
return
return
return

return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return

"_minus";
"_lshift";
"_rshift";
II ti _eq;
II n ti - e ;
"_lt";
"_gt II;

"_le";
"_ge";

"_and";
"_or";
II II _er;
"_andand";
II 11 _oror;
"_not";
"_compl";
" • " _1ncr;
"_deer";
"_call";
" " _vec;
II • fl

11
_ass1gn";
_asplus ;

" • If _asm1nus ;
"_asmul";
"_asdiv";
"_asmod";
"_as ls";
"_asrs 11

;

"_asand";
II II _asor;
"_aser";
"sizeof";

(_

C

Feb 8 12:49 1985 repr.c Page 2

}
}

#define new_op(ss,v) keys[v]=ss

void otbl_init()
/*

*/
{

operator representation table

new_op(''-> 11 ,REF);
new_op (11

• " , DOT) ;
new_op("!" ,NOT);
new_op("~" ,COMPL);
new_op("++",INCR);
new_op("-- 11 ,DECR);
new_op(",';-" ,MUL);
new_op ("&" , AND) ;
new_op("&" ,ADDROF);
new_op("&" ,G_ADDROF);
new_op("/" ,DIV);
new_op("%" ,MOD);
new_op("+" ,PLUS);
new_op("-" ,MINUS);
new_op("-" ,UMINUS);
new_op("<<",LS);
new_op(11>>11 ,RS);
new_op("<" ,LT);
new_op (">" , GT) ;
new_op("<=",LE);
new_op(">=",GE);
new_op("==",EQ);
new_op("!=",NE);
new_op("A" ,ER);
new_op("I" ,OR);
new_op("&&",ANDAND);
new_op ('' 11 ", OROR) ;
new_op("?" ,QUEST);
new_op(":" ,COLON);
new_op("=" ,ASSIGN);
new_op("," ,CM);

new_op (11
;

11
, SM) ;

new_op (11
{

11
, LC) ;

new_op("}" ,RC);
new_op("('' ,LP);
new_op(")" ,RP);
new_op (" [" , LB) ;
new_op("] 11 ,RB);

new_op(' 1+=" ,ASPLUS);
new_op("-=",ASMINUS);
new_op ("~•:=", ASMUL) ;
new_op("/= 11 ,ASDIV);
new_op(11%=11 ,ASMOD);
new_op("&=",ASAND);

Feb 8 12:49 1985 repr.c Page 3

}

new_op C' I=", ASOR) ;
new_op('' A=" ,ASER);
new_op(">>=",ASRS);
new_op("<<=",ASLS);

new_op("sizeof",SIZEOF);

new_op("O" ,ZERO);
new_op("," ,ELIST);
new_op (" [] " , DE REF) ;
new_op("expression list", ELIST);
new_op("function call", CALL);
new_op("generated function call",G_CALL);
new_op("inline function call" ,ICALL);
new_op("cast",CAST);
new_op (" inline argument" ,ANAME);

new_op("class", COBJ);
new_op("enum" 1 EOBJ);
new_op (0 union ', ANON) ;

new_op(0 function",FCT);
new_op (''pointer", PTR);
new_op("reference",RPTR);
new_op("vector",VEC);
new_op("identifier",ID);
new_op("name 0 ,NAME);
new_op(" ... ",ELLIPSIS);
new_op("::",MEM);

(" " TYPE) new_op tyr,e name, ;
new_op (" {} ',BLOCK);
new_op("pair 0 ,PAIR);
new_op("declaration",DGL);
new_op("character constant",CCON);
new_op("integer constant",IGON);
new_op(11float constant 0 ,FCON);
new_op("string",STRING);

Feb 8 12:49 1985 simpl.c Page 1

/* %Z% %M% %I% %H% %T% */
/ *-;':1r-;'r··l:,'c-;t:-,':-,':-;~*-;':,'c,':7:-;':~':i'c-;'.-;"(•l:-;':-;':"lr,'(,':'i'r*,'r-;'r***,':,'r,t:*,'c,'r,':·l~;':-Jr,':,'r,'c~'r**''c,'c,'ci':,',,~,•r,',,'c*'lr**,1t,'c,'c,~**

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

simpl. c:

simplify the typechecked function
remove: classes:

class fct-calls
operators
value constructors and destructors

new and delete operators (replace with function calls)
initializers (turn them into statements)
constant expressions (evaluate them)
inline functions (expand the calls)
enums (make canst ints)
unreachable code (delete it)

make implicit coersions explicit

in general you cannot simplify something twice

#include "cfront.h"
#include "size.h"
#include <ctype.h>

Pname new_fct;
Pname del_fct;
Pname vec_new_fct;
Pname vec_del_fct;
Pstmt deLlist;
Pstmt block_del_list;
Pname ret_var;
bit not_inl; /-;', is the current function an inline? ..,., /
Pname curr_fct; /* current function*/
Pexpr init_list;
Pexpr one;

extern void simpl_init();
void simpl_init()
{

Pname a·
' Pname al;

Pname nw = new name(oper_name(NEW));
Pname dl = new name(oper_name(DELETE));
Pname vn = new name("_vec_new");
Pname vd = new name("_vec_delete");

Feb 8 12:49 1985 simpl.c Page 2

new_fct = gtbl->insert(nw,O);
delete nw;
a= new name;

/* void* operator new(long); */

a->tp = uint_type; /# !!!!! ·1:;
new_fct->tp = new fct(Pvoid_type,a,1);
new_fct->n_scope = EXTERN;
PERM(new_fct);
PERM(new_fct->tp);
new_fct->dcl_print(O);

del_fct = gtbl->insert(dl,O);
delete dl;

/* void operator delete(void-;'r); -;~ /

a= new name;
a->tp = Pvoid_type;
del_fct->tp = new fct(void_type,a,1);
del_fct->n_scope = EXTERN;
PERM(deLfct);
PERM(del_fct->tp);
del_fct->dcl_print(O);

a= new name;
a->tp = Pvoid_type;
al= a;
a= new name;
a->tp = int_type;
a->n_list = al;
al= a;
a= new name;
a->tp = int_type;
a->n_list = al;
al = a;
a= new name;
a->tp = Pvoid_type;
a->n_list = al;
al= a; /* (Pvoid, int, int, Pvoid) */

vec_new_fct = gtbl->insert(vn,O);
delete vn;
vec_new_fct->tp = new fct(Pvoid_type,al,1);
vec_new_fct->n_scope = EXTERN;
PERM(vec_new_fct);
PERM(vec_new_fct->tp);
vec_new_fct->dcl_print(O);

vec_del_fct = gtbl->insert(vd,O);
delete vd;
vec_del_fct->tp = new fct(void_type,al,1);
vec_del_fct->n_scope = EXTERN;
PERM(vec_del_fct);
PERM(vec_del_fct->tp);
vec_del_fct->dcl_print(O);

one= new expr(IVAL,(Pexpr)l,O);
one->tp = int_type;
PERM(one);

(_

/

Feb 8 12:49 1985 simpl.c Page 3

}

Ptable scope= O; ;-.•.-current scope for simpl() "~/
Pname expand_fn = O;
Ptable expand_tbl = O;

/* name of function being expanded or O */
/* scope for inline function variables*/

Pname classdef.has_oper(TOK op)
{

}

char._•.-s = oper_name (op) ;
Pname n;
if (this= 0) error('i' ,"O->has_oper(%s)",s);
n = memtbl->lookc(s,O);
if (n = 0) return O;
switch (n->n_scope) {
case 0:
case PUBLIC:
default:
}

return n;
return O;

int no_of_returns;

void name.simpl()
{
/*fprintf(stderr, "%s. simp1(%d %d)\n" ,string, tp, tp?tp->base: 0); fflush(stderr) ;i:/

if (base= PUBLIC) return;

if (tp == 0) error('i' ,"%n->name.simple(tp==O)",this);

switch (tp->base) {
case 0:

error('i' ,"%n->name.simpl(tp->base==O)",this);

case OVERLOAD:
{ Plist gl;

}

for (gl = ((Pgen)tp)->fct_list; gl; gl=gl->l) gl->f->simpl();
break;

(_. case FCT:
{ Pfct f = (Pfct)tp;

Pname n;
Pname th= f->f_this;

/*error('d' ,"simp1%n tp=%t defined=%d th=%d n_oper%k",this,tp,tp->defined,th,n_oper)
if (th) {

th->n_list = f->argtype;
if (n_oper == CTOR) f->s_returns = th->tp;

}

if (tp->defined != 1) return;
tp->defined = 2;

Feb 8 12:49 1985 simpl.c Page 4

}

}

for (n=(th)?th:f->argtype; n; n=n->n_list) n->simpl();

if (f->body) {

}
break;

Ptable oscope = scope;
scope= f->body->memtbl;
if (scope== 0) error('i' ,"%n merntbl missing",this);
curr_fct = this;
f->simpl O;
if (f->f_inline && debug==O) {

}

if (MIA<=f->nargs) {
error('w' ,"too many arguments for inline%n
f->Linline = 0;
scope= oscope;
break;

}
inti= O;
for (n=(th)?th:f->argtype; n; n=n->n_list) {

n->base = ANAME;
n->n_val = i++;
if (n->n_table != scope) error('i' ,"%s %cl%

}
expand_tbl = (f->returns->base!=VOID I I n_oper==CTO
expand_fn = this;
if (expand_tbl) {

}
else {

}

f->f_expr = (Pexpr)f->body->expand();
/* the body still holds the memtbl */

f->f_expr = O;
f->body = (Pblock)f->body->expand();

expand_fn = O;
expand_tbl = O;

scope= oscope;

case CLASS:
((Pclass)tp)->simpl();
break;

case EOBJ:

default:

}

tp->base = INT;
break;

break;

if (n_initializer) n_initializer->simpl();

void fct. simpl 0
/*

C

Feb 8 12:49 1985 simpl.c Page 5

call only for the function definition (body!= 0)

simplify argument initializers, and base class initializer, if any
then simplify the body, if any

for constructor:call allocator if this=0 and this not assigned to
(auto and static objects call constructor with this!=0,
the new operator generates calls with this==0)
call base & member constructors

for destructor: call deallocator (no effect if this=0)
case base & member destructors

for arguments and function return values look for class objects
that must be passed by constructor "operator X(X&)".

Allocate temporaries for class object expressions, and see if
class object return values can be passed as pointers.

call constructor and destructor for local class variables.

Pexpr th= f_this;
Ptable tbl = body->memtbl;
Pstmt ss = 0;
Pstmt tail;
Pname cln;
Pclass cl;
Pstmt dtail = 0;

not_inl = debug I I f_inline==0;
ret_var = tbl->look("_result",0);
if (ret_var && not_inl=0) ;,•: "_result" not used in inlines ,':/

ret_var->n_used = ret_var->n_assigned_to = ret_var->n_addr_taken =
deLlist = 0;
block_del_list = O;
scope= tbl;
if (scope == 0) error (' i', "£ct. simpl O ");

if (th) {

J

Pptr p = (Pptr)th->tp;
cln = ((Pbase)p->typ)->b_name;
cl= (Pclass)cln->tp;

if (curr_fct->n_oper == DTOR) {
Pexpr ee;
Pexpr cc;
Pestmt es;
class ifstmt * ifs;
Pname bcln = cl->clbase;
Pclass bcl;
Pname d;

/* initialize del_list */

Pname fa = new name("_free"); /* fake argument for dtor ,':/
fa->tp = int_type;
Pname free_arg = fa->dcl(body->memtbl,ARG);

Feb 8 12:49 1985 simpl.c Page 6

delete fa;
f_this->n_list = free_arg;

Ptable tbl = cl->memtbl;
inti;
Pname m;

/* generate calls to destructors for all members of class cl*/
for (m=tbl->get_mem(i=l); m; m=tbl->get_mem(++i)) {

}

Ptype t = m->tp;
Pname en;
Pclass cl;
Pname dtor;
if (m->n_stclass == STATIC) continue;

if (en= t->is_cl_obj()) {
cl= (Pclass)cn->tp;
if (dtor = cl->has_dtor()) {

}
}

/* dtor(this,0); */
Pexpr aa = new expr(ELIST,zero,0);
ee = new ref(REF,th,m);
ee = new ref(DOT,ee,dtor);
ee = new call(ee,aa);
ee->fct_name = dtor;
ee->base = G_CALL;
es= new estmt(SM,curloc,ee,0);
if (dtail)

dtail->s_list = es;
else

del_list = es;
dtail = es;

else if (cl_obj_vec) {
cl= (Pclass)cl_obj_vec->tp;
if (dtor = cl->has_dtor()) {

}
}

int esz = cl->tsizeof();
Pexpr nae= new expr(IVAL,(Pexpr)(t->tsizeo
Pexpr sz = new expr(IVAL,(Pexpr)esz,0);
Pexpr mm= new ref(REF,th,m);
Pexpr arg = new expr(ELIST,dtor,0);
/*dtor->take_addr (); -1, /

dtor->lval(ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,mm,arg);
ee = new call(vec_del_fct,arg);
ee->base = G_CALL;
if (dtail)

dtail->s_list = es;
else

del_list = es;
dtail = es;

c:

C

Feb 8 12:49 1985 simpl.c Page 7

}

int ass_count;

/-1: generate: if (this) base.dtor(this,_free); or
if (this && _free) _delete(this);

"1(I
if (bcln
&& (bcl=(Pclass)bcln->tp)
&& (d=bcl->has_dtor())) {

}
else {

}

Pexpr aa = new expr(ELIST,free_arg,O);
cc= th;
ee = new ref(REF,th,d);
ee = new call(ee,aa);
/i~ee->fct_name = d; NO suppress virtual -Ir/

Pexpr aa = new expr(ELIST,th,O);
cc= new expr(ANDAND,th,free_arg);
ee = new call(del_fct,aa);
ee->fct_name = del_fct;

free_arg->use();
((Pname)th)->use();
ee->base = G_CALL;
es= new estmt(SM,curloc,ee.,O);
ifs= new ifstmt(curloc,cc,es,0);
if (dtail)

dtail->s_list = ifs;
else

deLlist = ifs;
dtail = ifs;

if (del_list) del_list->simpl();

if (curr_fct->n_oper == CTOR) {
Pexpr ee;
Ptable tbl = cl->memtbl;
Pname m;
inti;

if (f_init) { /* generate: this=base.ctor(this,args) */

}
else {

}

Pcall cc= (Pcall)f_init;
Pname bn = cc->fct_name;
Pname tt = ((Pfct)bn->tp)->f_this;
ass_count = tt->n_assigned_to;
Linit->simpl ();
init_list = new expr(ASSIGN,th,f_init);

ass_count = 0;
init_list = 0;

if (cl->virt_count) { /* generate: this->_vptr=virt_init; */
Pname vp = cl->memtbl->look("_vptr",O);
Pexpr vtbl = new expr(TEXT.,(Pexpr)cl->string,(Pexpr)"_vtbl"

Feb 8 12:49 1985 simpl.c Page 8

ee = new ref(REF,th,vp);
ee = new expr(ASSIGN,ee,vtbl);
init_list = (init_list)? new expr(CM,init_list,ee) ee;

}

/* generate cl.new(0) for all members of cl*/
for (m=tbl->get_mem(i=l); m; m=tbl->get_mem(++i)) {

Ptype t = m->tp;
Pname en;
Pclass cl;
Pname ctor;
if (m->n_stclass = STATIC) continue;

if (cn=t->is_cl_obj()) {

}

cl= (Pclass)cn->tp;
if (ctor = cl->has_ictor()) {

}

ee = new ref(REF,th,m);
ee = new ref(DOT,ee,ctor);
ee = new call(ee,0);
ee->fct_name = ctor;
ee->base = G_CALL;
ee = ee->typ(tbl); /* look for default
ee->simpl ();
if (init_list)

init_list = new expr(CM,init_list,e
else

init_list = ee;

else if (cl->has_ctor()) {
error("%s%n, no default constructor",cl->st

}

else if (cl_obj_vec) {
cl= (Pclass)cLobj_vec->tp;
if (ctor = cl-> has_ictor ()) { /''t: _new_ vec (vec, no

int esz = cl->tsizeof();
Pexpr nae= new expr(IVAL,(Pexpr)(t->tsizeo
Pexpr sz = new expr(IVAL,(Pexpr)esz,0);
Pexpr mm= new ref(REF,th,m);
Pexpr arg = new expr(ELIST,ctor,0);
/*ctor->take_addr();*/
ctor->lval(ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,mm,arg);
ee = new call(vec_new_fct,arg);
ee->fct_name = vec_new_fct;
ee->base = G_CALL;

/* ee = ee->typ(tbl); look for default a
ee->simpl();

}

if (init_list)
init_list = new expr(CM,init_list,e

else
ini t_lis t = ee;

else if (cl->has_ctor()) {

.)

Feb 8 12:49 1985 simpl.c Page 9

error("%s%n[], no default constructor",cl->
}

}
}

}

no_of_returns = 0;

tail= body->simpl();

if (returns->base != VOID) { /* return must have been seen*/
if (no_of_returns) {

switch (tail->base) {
case SM:

switch (tail->e->base) {
case !CALL:
case G_CALL: /* not good enough*/

} ;
default:

goto dontknow;

/*fprintf(stderr,"t %d %d\n", tail->base, tail->e->base) ;-icj
if (strcmp(curr_fct->string,"main"))

}
else if
zaq:

}

}
else {

error ('w' , "maybe no value returned

if (del_list) goto zaq;
break;

case RETURN:
case IF:
case SWITCH:
case DO:
case FOR:
case LABEL:
case BLOCK:
case PAIR:
case GOTO:
dontknow:

break;
}

if

from%n",

if

(strcmp(curr_fct->string,"main"))
error('w' ,"no value returned from%n",curr_fct);

(del_list) goto zaq;
}

(deLlist) { j'"k return may not have been seen -1: /

if (tail)
tail->s_list = del_list;

else
body->s = del_list;

tail = dtail;

if (curr_fct->n_oper -- CTOR) {

Feb 8 12:49 1985 simpl.c Page 10

}
}

if (((Pname)th)->n_assigned_to == 0) {
/* generate: if (this==O) this=_new(sizeof(class cl));

init_list ;

}

((Pname)th)->n_assigned __ to = ass_count ? ass_count FUDGEl
Pexpr sz = new expr(IVAL,(Pexpr)cl->tsizeof(),O);
Pexpr ee = new expr(ELIST,sz,O);
ee = new call(new_fct,ee);
ee->fct_name = new_fct;
ee->base = G_CALL;
ee->simpl ();
ee = new expr(ASSIGN,th,ee);
Pstmt es= new estmt(SM,curloc,ee,O);
ee = new expr(EQ,th,zero);
ifstmt* ifs= new ifstmt(curloc,ee,es,O);
/'.'"ifs->simpl ();
do not simplify or "this=" will cause an extra call of ha
if (init_list) {

}

es= new estmt(SM,curloc,init_list,O);
es->s_list = body->s;
body->s = es;
if (tail= 0) tail= es;

ifs->s_list = body->s;
body->s = ifs;
if (tail== 0) tail= ifs;

Pstmt st= new estmt(RETURN,curloc,th,O);
if (tail)

tail->s_list = st;
else

body->s = st;
tail = st;

Pstmt block.simpl()
{

int i;
Pname n;
Pstmt ss=O, sst;
Pstmt dd=O, ddt;
Pstmt stail;
Ptable old_scope = scope;

if (own_tbl == 0) {

}

Pstmt obd = block_del_list;
block_del_list = O;
ss = (s)? s->simpl() : O;
block_del_list = obd;
return ss;

scope = memtbl;
if(scope->init_stat -- 0) scope->init_stat = 1; /* table is simplified.*/

)

Feb 8 12:49 1985 simpl.c Page 11

for (n=scope->get_mem(i=l); n; n=scope->get_mem(++i)) {
Pstmt st= O;
Pname cln;
Pexpr in= n->n_initializer;

if (in) scope->init_stat = 2; /* initializer in this scope*/

switch (n->n_scope) {
case ARG:
case 0:
case PUBLIC:

continue;
}

if (n->n_stclass == STATIC) continue;

if (in->base = ILIST)
error('s', "initialization of automatic aggregates");

if (n->tp = 0) continue; /* label -Ir/

if (n->n_evaluated) continue;

/* construction and destruction of temporaries is handled locally*
{ char* s = n->string;

register char c3 = s[3];
if (s[O)=='_' && s[l)=='D' && isdigit(c3)) continue;

}

if (cln=n->tp->is_cl_obj()) {
Pclass cl= (Pclass)cln->tp;
Pname d = cl->has_dtor();

if (d) { /* n->cl.delete(O); */

}

Pref r = new ref(DOT,n,d);
Pexpr ee = new expr(ELIST,zero,O);
Pcall dl = new call(r,ee);
Pstmt dls = new estmt(SM,n->where,dl,O);
dl->base = G_CALL;
dl->fct_name = d;
if (dd)

ddt->s_list = dls;
else

dd = dls;
ddt = dls;

if (in) {
if (in->base == G_CALL) { /*constructor?*/

}
else

Pname fn = in->fct_name;
if (fn=O I I fn->n_oper!=CTOR) goto ddd;
st= new estmt(SM,n->where,in,O);
n->n_initializer = O;

Feb 8 12:49 1985 simpl.c Page 12

goto ddd;
}

}
else if (cl_obj_vec) { /* never "new x" is a pointer ;~/

Pclass cl= (Pclass)cl_obj_vec->tp;

}

Pname d = cl->has_dtor();
Pname c = cl->has_ictor();

if (in) {

}

if (c) { /"~ _vec_new(vec,noe,sz,ctor); 1:/

}
else

int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL,(Pexpr)(n->tp->ts
Pexpr sz = new expr(IVAL,(Pexpr)esz,O);
Pexpr arg = new expr(ELIST,c,0);
/*c->take_addr();*/
c->lval(ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,n,arg);
arg = new call(vec_new_fct,arg);
arg->base = G_CALL;
arg->fct_name = vec_new_fct;
st= new estmt(SM,n->where,arg,O);
n->n_initializer = O; ,

goto ddd;

if (d) { /-;~ _vec_delete(vec,noe,sz,dtor); */

}

Pstmt dls;
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (Pexpr)(n->tp->tsizeof()
Pexpr sz = new expr(IVAL,(Pexpr)esz,O);
Pexpr arg = new expr(ELIST,c,O);
/-;':c->take_addr ();-;':I
c-> 1 val (ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,n,arg);
arg = new call(vec_del_fct,arg);
arg->base = G_CALL;
arg->fct_name = vec_del_fct;
dls = new estmt(SM,n->where,arg,O);
if (dd)

ddt->s_list = dls;
else

dd = dls;
ddt = dls;

else if (in / 7:&& n->n_scope FCT~'.-/) {
switch (in->base) {
case ILIST:

switch (n->n_scope) {
case FCT:
case ARG:

C.

C

Feb 8 12:49 1985 simpl.c Page 13

}

}
error('s' ,"Ir list for localV%n",n);

break;
case STRING:

if (n->tp->base==VEC)
default:

break;/* BUG char vec only*

ddd:
{ Pexpr ee = new expr(ASSIGN,n,in);

st= new estmt(SM,n->where,ee,O);
n->n_initializer = O;

}
}

}

if (st) {
if (ss)

else
sst->s_list = st;

ss = st;
sst = st;

}

if (dd) {

}
else

Pstmt od = del_list;
Pstmt obd = block_del_list;

dd->simpl ();
/ 1--PERM(dd);

if (od)
del_list = new pair(curloc,dd,od);

else
deLlist = dd;

block_del_list = dd;

stail = (s)? s->simpl() : O;

Pfct f = (Pfct)curr_fct->tp;
if (this!=f->body
I I f->returns->base=VOID
I I strcmp(curr_fct->string,"main")==O) {
/* not dropping through the bottom of a value returning function*/

if (stail)
stail->s_list = dd;

else
s = dd;

stail = ddt;
}

deLlist = od;
block_deLlist = obd;

stail = (s) ? s->simpl () O·
'

Feb 8 12:49 1985 simpl.c Page 14

}

if (ss) { /* place constructor calls*/
ss->simpl O;
sst->s_list = s;
s = ss;
if (stail == 0) stail = sst;

}

scope= old_scope;

return stail;

void classdef.simpl()
{

inti;
Pname m;
Pclass oc = in_class;
int ct= has_ctor()==0;
int dt = has_dtor()=0;
int un = csu==UNION;

in_class = this;

for (m=memtbl->get_mem(i=l); m; m=memtbl->get_mem(++i)) {
/* should really be checked in classdef.dcl() */
Ptype t = m->tp;
Pexpr i = m->n_initializer;
Pname en;

if C C ct 11 dt 11 un)
&& ((cn=t->is_cl_obj()) I I (cn=cl_obj_vec))) {

Pclass cl= (Pclass)cn->tp;
Pname ctor = cl->has_ctor();
Pname dtor = cl->has_dtor();

if (ctor) {

}

if (m->n_stclass==STATIC)
error(' s', "staticM%n ofCo/on with constructor

else if (un)
error("M%n ofC%n with constructor in union"

else if (ct)
error('s' ,"M%n ofC%n with constructor inC %

if (dtor) {

}
}

if (m->n_stclass=STATIC)
error('s' ,"staticM%n ofC%n with destructor"

else if (un)
error("M%n ofC%n with destructor in union",

else if (dt)
error('s' ,"M%n ofC%n with destructor inC %s

m->n_initializer = 0;
m->s impl ();
m->n_initializer = i;

C

C

C

Feb 8 12:49 1985 simpl.c Page 15

}

}
in_class = oc;

Plist fl;
for (fl=friend_list; fl; fl=fl->l) {

Pname p = fl ->f;

}

switch (p->tp->base) {
case FCT:
case OVERLOAD:

p->simpl ();
}

/* simplify friends*/

void expr.simpl()
{

if (this==O I I permanent=2) return;
f'kfprintf(stderr,"expr.simpl %d %d el=°/4id e2=%d tp2=%d cf %d\n",this,base,el,e2,tp2,c

switch (base) {
case BLOCK:
case SM:
case IF:
case FOR:
case WHILE:
case SWITCH:

error (' i' , "%k inE", base);

case VALUE:
error (' i' , "expr. simpl(value) ");

case G_ADDROF:
case ADDROF:

e 2 - > s imp 1 () ;
switch (e2->base) {
case DOT:
case REF:
{ Pref r = (Pref)e2;

Pname m = r->mem;
if (m->n_stclass - STATIC) {

Pexpr x;
delp:

}

X = e2;
e2 = m;
r->mem = O;
DEL(x);

/* & static member*/

else if (m->tp->base == FCT) { /-ic & member £ct -1: /

Pfct f = (Pfct)m->tp;
if (f->f_virtual) {

/* &p->f => p->vtbl[fi] */
int index= f->f_virtual;
Pexpr ie = (l<index)? new expr(IVAL, (Pexp
Pname vp = m->n_table->look("_vptr",O);
r->mem = vp;
base= DEREF;
el= e2;

Feb 8 12:49 1985 simpl.c Page 16

}
}
}
break;

}
else {

}

default:

case
case
case
case
case
case
case
case
case
case
case

if (el) el->simpl();
if (e2) e2->simpl();
break;

NAME:
DUMMY:
ICON:
FCON:
CCON:
IVAL:
FVAL:
LVAL:
STRING:
ZERO:
ILIST:

return;

case SIZEOF:
base= IVAL;

e2 = ie;

goto delp;

el= (Pexpr)tp2->tsizeof();
DEL(tp2);
tp2 = O;
break;

case G_CALL:
case CALL:

((Pcall)this)->simpl();
break;

case QUEST:
cond->simpl();
el->simpl ();
e2->simpl ();
break;

case NEW: /* change NEW node to CALL node*/
{ Pname cln;

Pname ctor;
int sz = 1;
int esz;
Pexpr var_expr = O;
Pexpr const_expr;
Ptype tt = tp2;
Pexpr arg;

C

C

C.

C

Feb 8 12:49 1985 simpl.c Page 17

xxx:

if (cln=tt->is_cl_obj()) {

}

Pclass cl= (Pclass)cln->tp;
if (ctor=cl->has_ctor()) { /* 0->cl_ctor(args) */

}

Pexpr p = zero;
if (ctor->n_table != cl->memtbl) {
/* no derived constructor: pre-allocate*/

int dsz = cl->tsizeof();

}

Pexpr ce = new expr(IVAL,(Pexpr)dsz,O);
ce = new expr(ELIST,ce,O);
p = new expr(G_CALL,new_fct,ce);
p->fct_name = new_fct;

Pcall c = (Pcall)el;
c->el = new ref(REF,p,(Pname)c->el);
c->set_fct_name(ctor) ;·k/
c->simpl O;
,._.this = ,'.-((Pexpr)c);
return;

else if (cl_obj_vec) {

}

Pclass cl= (Pclass)cl_obj_vec->tp;
ctor = cl->has_ictor();
if (ctor == 0) {

}

if (cl->has_ctor ()) error ("new %s [] , no default con
cLobj_vec = O;

switch (tt->base) {
case TYPE:

default:

tt = ((Pbase)tt)->b_name->tp;
goto xxx;

esz = tt->tsizeof();
break;

case VEC:
{ Pvec v = (Pvec)tt;

if (v->size)

}
}

sz ,•~= v->size;
else if (v->dim) {

}
else {

}

if (var_expr)
var_expr = new expr(MUL,var_expr,v->dim);

else
var_expr = v->dim;

sz = SZ_WPTR;
break;

tt = v->typ;
goto xxx;

Feb 8 12:49 1985 simpl.c Page 18

if (cl_obj_vec) { J

}

/* call _vec_new(O,no_of_elements,element_size,ctor) */
const_expr = new expr(IVAL,(Pexpr)sz,O);
Pexpr noe = (var_expr)? (sz!=l)? new expr(MUL,const_expr,
const_expr = new expr(IVAL,(Pexpr)esz,O);
base= CALL;
arg = new expr(ELIST,ctor,O);
/*ctor->take_addr();*/
ctor->lval(ADDROF);
arg = new expr(ELIST,const_expr,arg);
arg = new expr(ELIST,noe,arg);
e2 = new expr(ELIST,zero,arg);
el= vec_new_fct;
fct_name = vec_new_fct;
break;

/-Ir call _new(element_size*no_of_elements) ,'r/
sz '"lr= esz;
const_expr = new expr(IVAL,(Pexpr)sz,O);
arg = (var_expr)? (sz!=l)? new expr(MUL,const_expr,var_expr) :var

/* arg->simpl();*/

}

base= G_CALL;
e2 = new expr(ELIST,arg,O);
el= new_fct;
fct_name = new_fct;
simpl ();
break;

case CAST:
el->simpl();
break;

case REF:
el->simpl ();
break;

case DOT:
el->s impl ();
if (el->base = CM) { /* &(, name).=> (... , &name)->*/

Pexpr ex = el;

}
break;

case ASSIGN:

cfr:
switch (ex->e2->base) {
case NAME:

case CM:

}

base= REF;
ex->e2 = ex->e2->address();
break;

ex= ex->e2;
goto cfr;

{ Pfct f = (Pfct)curr_fct->tp;
Pexpr th= f->f_this;

Feb 8 12:49 1985 simpl.c Page 19

}

if (el) el->simpl();
if (e2) e2->simpl();

if (th && th==el) {
if (curr_fct->n_oper = CTOR) {

if (init_list) {

}
}

}
break;

if (tp && tp->base==INT) {
Neval = O;

}

int i = ev a 1 () ;
if (Neval = 0) {

base= IVAL;
el= (Pexpr)i;

}

/* this=e2 => (this=e2,init_list) */
base= CM;
el= new expr(ASSIGN,el,e2);
e2 = init_list;

void call.simpl()
/''r

fix member function calls:
p->f(x) becomes f(p,x)
o.f(x) becomes f(&o,x)

or if f is virtual:
p->f(x) becomes (*p->_vptr[type_of(p).index(f)-1])(p,x)

replace calls to inline functions by the expanded code

Pname fn = fct_name;
Pfct f = (fn)? (Pfct)fn->tp O·

'
if (£) {

}

switch(f->base) {
case ANY:

return;
case FCT:

break;
case OVERLOAD:
{ Pgen g = (Pgen)f;

}
}

fct_name = fn = g->fct_list->f;
f = (Pfct)fn->tp;

Feb 8 12:49 1985 simpl.c Page 20

if (f && curr_expr==this) { /-;': check for class object retuening fct -;':/ __)
Pname cln = f->returns->is_cl_obj();
if (cln && Pclass (cln->tp)->has __ dtor()) error(' s', "%n returned by%n

}

switch (el->base) {
case DOT:
case REF:
{ Pref r = (Pref)el;

Pexpr al= r->el;
/-;':fprintf(stderr,"fn %sf %d fv %d\n",fn?fn->string:"?",f,f?f->f_virtual:O);-;~/

if (f && £->f_virtual) {
Pexpr all = 0;

switch(al->base) {

/* case ASPLUS:
case ASMINUS:
case ASMUL:
case ASDIV:
case ASMOD:
case ASAND:
case ASOR:
case ASER:
case ASLS:
case ASRS:
case ASSIGN:

all = al->el;
break;''-'/

case NAME:
all = al;
break;

case ADDROF:
case G_ADDROF:

/* see if temporary might be
needed/avoided

if (al->e2->base -- NAME) all= al;
break;

/' 1-' case CM:
{ Pexpr ee = al;
cml:

}-ir /

}

switch (ee->e2->base) {
case NAME:

all= ee->e2;
break;

case ADDROF:
case G_ADDROF:

case CM:

}

if (ee->e2->e2->base -- NAME) all= ee->e2;
break;

ee = ee->e2;
goto cml;

/-;':error('d', "expression(%k)%k%n: %d", r->el->base, el->base, fct_name, all) ;-ir /

if (el->base = DOT) {

C

C

Feb 8 12:49 1985 simpl.c Page 21

}
else {

}

}

if (all) all= all->address();
al= al->address();

if (all -- 0) {
/* temporary (maybe) needed

e->f() => (t=e,t->f(t))
*/
char* s = make_name('K');
Pname n = new name(s);
n->tp = al->tp;
n = n->dcl(scope,ARG); /* no init! */
n->n_scope = FCT;

}

n->assign();
all = n;
al= new expr(ASSIGN,n,al);
al->tp = n->tp;
al->s impl ();
Pcall cc= new call(O,O);
'~cc = -;'rthis ;
base= CM;
el= al;
e2 = cc;
this= cc;

e2 = new expr(ELIST,all,e2);
int index= f->f_virtual;
Pexpr ie = (l<index)? new exfrr(IVAL,(Pexpr)(index-1),0)
Pname vp = fn->n_table->look('_vptr",O);
Pexpr vptr = new ref(REF,all,vp); /* p->vptr */
Pexpr ee = new expr(DEREF,vptr,ie); /* p->vptr[i] */
Ptype pft = new ptr(PTR,f);
ee = new texpr(CAST,pft,ee);
ee->tp = (Ptype)f->f_this;
el= new expr(DEREF,ee,O);

/* (T)p->vptr[i] */
/-;~ encode argtype -;':
/* *(T)p->vptr[i] *
/* el->tp must be 0

fct_name = O;
fn = O;
e2->simpl();
return; /* (*(T)p->vptr[i])(e2) */

if (el->base = DOT) al= al->address();
e2 = new expr(ELIST,al,e2);
el= r->mem;

e2->simpl();
if (el->base=NAME && el->tp->base==FCT) {

/-;~ reconstitute fn destroyed to suppress "virtual" ,., /
fct_name = fn = (Pname)el;
f = (Pfct)fn->tp;

}

Feb 8 12:49 1985 simpl.c Page 22

}

if (fn && f->f_inline && debug==O) {

}

Pexpr ee = f->expand(fn,scope,e2);
if (ee) *((Pexpr)this) = *ee;

Pexpr curr_expr; /* to protect against an inline being expanded twice
in a simple expression keep track of expressions
being simplified

Pstmt stmt.simpl()

return a pointer to the last statement in the list, or 0
*/
{

if (this = 0) error(' i', "O->stmt. simpl () ");
/'''error('d' ,"stmt.simpl %d%k e %d%k s %d%k sl %d%k\n",this,base,e,e?e->base:O,s,s?s-

curr_expr = e;

switch (base) {
default:

error('i' ,"stmt.simp1(%k)",base);

case ASM:
break;

case BREAK:
case CONTINUE:

if (block_del_list) {
j"lr break =>

=>
{ _dtor()s; break; }

*/

}
break;

continue { _dtor()s; continue; }

Pstmt bs = new stmt(base,where,O);
Pstmt dl = block_del_list->copy();
base= BLOCK;
s = new pair(where,dl,bs);
break;

case DEFAULT:

case SM:

s - > s imp 1 () ;
break;

if (e) e->simpl();
break;

case RETURN:
{ /* return x; =>

{ _ret_var = x; _dtor()s; return _ret_var; }
return ctor(x); =>

{ ctor(&_result,x); _dtor()s; return _ret_var; }

C

C

C

Feb 8 12:49 1985 simpl.c Page 23

return; =>
{ _dtor()s; return; } OR (in constructors)
{ _dtor()s; return _this; }

no_of_returns++;

if (not_inl) {
Pstmt as;

}
else {

}
break;

if (e && e!=dummy) {
Pexpr ee;

}
else

if (e->base=G_CALL
&& e->fct_name
&& e->fct_name->n_oper=CTOR
&& e->el->base DOT) {

}
else {

}

Pref r = (Pref)e->el;
r->el = ret_var;
ee = e;

ee = new expr(ASSIGN,ret_var,e);

ee->simpl ();
as= new estmt(SM,where,ee,O);

as= O;

base= BLOCK;
s = O;
d = O;
own_tbl = (memtbl)? 1: O;
((Pblock)this)->simpl();

Pstmt dl = (del_list)? del_list->copy() : O;
if (s) dl = (dl)? new pair(where,s,dl) : s;

Pstmt rs= new estmt(RETURN,where,(ret_var)?(Pexpr)ret_var:
if (as) {

}
else {

}

if (dl) as= new pair(where,as,dl);
s = new pair(where,as,rs);

if (curr_fct->n_oper = CTOR) {
rs->e = ((Pfct)(curr_fct->tp))->f_this;

}
s = (dl)? new pair(where,dl,rs) : rs;

if (e->base - VALUE) error('s' ,"inlineF returns constructo
e -> s imp 1 () ;

Feb 8 12:49 1985 simpl.c Page 24

case WHILE:
case DO:

e->simpl ();
s->simpl ();
break;

case SWITCH:
e->simpl O;
s->s impl ();
switch (s->base) {
case DEFAULT:
case LABEL:
case CASE:

break;
case BLOCK:

switch (s->s->base) {
case BREAK: /-I(to cope with the "break; case" macro -;'(/
case CASE:
case LABEL:
case DEFAULT:

break;
default:

goto df;
}
break;

default:
df:

error('w' ,&s->where,"statement not reached: case label miss
}
break;

case DELETE: /* change DELETE node to SM node
delete p; => _delete(p);

or cl.delete(p,1);
-;': I

{ Pname cln;
Pclass cl;
Pname n;
Pexpr ee;
Ptype tt = e->tp;

ttloop:
switch (tt->base) {
case TYPE: tt = ((Pbase)tt)_->b_name->tp; goto ttloop;
case VEC:
case PTR: tt = ((Pptr)tt)->typ; break;
}

base= SM;
cln = tt->is_cl_obj();
if (cln) cl= (Pclass)cln->tp;
if (cln && (n=cl->has_dtor())) { /* e->cl.dtor() */

Pexpr aa = new expr(ELIST,one,O);
ee = new ref(REF,e,n);
e = new call(ee,aa);
e->fct_name = n;
e->base = G_CALL;

}
else if (cl_obj_vec) {

)

C

Feb 8 12:49 1985 simpl.c Page 25

xyzzy:

}

}
error('w' ,"delete vector ofC %n with destructor",cl_obj_vec

else {
n = deLfct;
ee = new expr(ELIST,e,O);
e = new call(n,ee);
e->fct_name = n;
e->base = G_CALL;

}
((Pcall)e)->simpl();
break;

/* _delete(e) */

case CASE:
e->simpl O;
s->simpl O;
break;

case LABEL:
if (del_list) error('s',"label in block with destructors");
s->simpl O;
break;

case GOTO:
if (del_list) error('s' ,"goto in block with destructors");
break;

case GOTO:
/* If the goto is going to a different (effective) scope,
* then it is necessary to activate all relevant destructors
* on the way out of nested scopes, and issue errors if there
* are any constructors on the way into the target.*/

/* Only bother if the goto and label have different effective
* scopes. (If mem table of goto= mem table of label, then
* they're in the same scope for all practical purposes.*/

{
Pname n = scope->look(d->string, LABEL);
if (n == 0) error('i' ,&where,"label%n missing",d);
if(n->n_realscope !=scope) {

/* Find the root of the smallest subtree containing
* the path of the goto. This algorithm is quadratic
* only if the goto is to an inner or unrelated scope.*/

Ptable r = O;

for(Ptable q=n->n_realscope; q!=gtbl; q=q->next) {

}

for(Ptable p = scope; p != gtbl; p = p->next) {
if(p=q) {

}
}

r = p; /* found root of subtree!*/
goto xyzzy;

if(r==O) error('i' ,&where,"finding root of subtree");

Feb 8 12:49 1985 simpl.c Page 26

plugh:

/* At this point, r = root of subtree, n->ILrealscope
* = mem table of label, and scope= mem table of goto.*/

/-;': Climb the tree from the label mem table to the table
* preceding the root of the subtree, looking for
,i: initializers and ctors. If the mem table "belongs"
* to an unsimplified block(s), the ILinitializer field
* indicates presence of initializer, otherwise initializer
* information is recorded in the init_stat field of
,i: mem table. ,i: I

for(Ptable p=n->n_realscope; p!=r; p=p->next)
if(p->init_stat = 2) {

error(&where,"goto%n pastD withir",d);
goto plugh; /* avoid multiple error msgs */

}
else if(p->init_stat == 0) {

inti;

}

for(Pname nn=p·>get_mem(i=l);nn;nn=p->get_m
if(nn->n_initializerl lnn->n_evaluat

error(&nn->where,"goto%n pa
goto plugh;

}

/* Proceed in a similar manner from the point of the goto,
* generating the code to activate dtors before the goto.*

/* There is a bug in this code. If there are class objects
* of the same name and type in (of course) different mem
* tables on the path to the root of the subtree from the
* goto, then the innermost object's dtor will be activated
* more than once.*/

{
Pstmt dd = O, ddt;

for(Ptable p=scope; p!=r; p=p->next) {
int i;
for(Pname n=p->get_mem(i=l);n;n=p->get_mem(++i)) {

Pname cln;
if (n->tp == 0) continue;/* label*/

if (cln=n->tp->is_cl_obj()) {
Pclass cl= (Pclass)cln->tp;
Pname d = cl->has_dtor();

if (d) { /* n->cl.delete(O); */
Pref r = new ref(DOT,n,d);
Pexpr ee = new Hxpr(ELIST,zero,O);
Pcall dl = new call(r,ee);
Pstmt dls = new estmt(SM,n->where,dl,O);
dl->base = G_CALL;
dl->fct_name = d;
if (dd)

ddt->s_list = dls;

C

C.

Feb 8 12:49 1985 simpl.c Page 27

case IF:

}

}

else
dd = dls;

ddt = dls;

else if (cl_ob j_ vec) { /-;': never "new x" is a pointer ,': /
Pclass cl= (Pclass)cl_obj_vec->tp;

}

Pname c = cl->has_ictor ();
Pname d = cl->has_dtor();

if (d) { /* _vec_delete(vec,noe,sz,dtor); */

}

Pstmt dls;
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (Pexpr)(n->tp->tsizeof()
Pexpr sz = new expr(IVAL,(Pexpr)esz,O);
Pexpr arg = new expr(ELIST,c,O);
/*c->take_addr();*/
c->lval (ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,n,arg);
arg = new call(vec_del_fct,arg);
arg->base = G_CALL;
arg->fct_name = vec_del_fct;
dls = new estmt(SM,n->where,arg,O);
if (dd)

ddt->s_list = dls;
else

dd = dls;
ddt = dls;

} /* end mem table scan*/
} /* end dtor loop*/

/-;': "activate" the list of dtors obtained. ,'c /

if(dd) {

}
}

dd->simpl ();
Pstmt bs = new stmt(base, where, 0);
-;':bs = -;'~this;
base= PAIR;
s = dd;
s2 = bs;

} /* end special case for non-local goto*/
}
break;

e->simpl ();
s->simpl O;
if (else_stmt) else_stmt->simpl();
break;

Feb 8 12:49 1985 simpl.c Page 28

case FOR:
J-;'r: "for (s;e;e2) s2; => s; whilE~(e) {s2;e3}" -Ir:/

if (for_init) for_init->simpl();
if (e) e->simpl();
if (e2) {

}

curr_expr = e2;
e2->simpl();
if (e2->base==ICALL && e2->tp==void_type)

error('s' ,"call of inline voidF in for-expression");

s->s impl ();
break;

case BLOCK:
((Pblock)this)->simpl();
break;

case PAIR:
break;

/*if (s) s->simpl();*/
if (base!=BLOCK && memtbl) {

int i;
Pstmt tl = (s_list)? s_list->si.mpl() : O;
Pstmt ss = O;
Pname cln;
for (Pname tn = memtbl->get_mem(i=l); tn; tn=memtbl->get_mem(++i))

/-;'C'fprintf (stderr, "tmp %s tbl %d\n11
, tn->string,memtbl) ;-;'C' /

if (cln=tn->tp->is_cl_obj()) {
Pclass cl= (Pclass)cln->tp;
Pname d = cl->has_dtor();
if (d) { /* n->cl.delete(O); */

Pref r =: new ref(DOT,tn,d);
Pexpr ee = new expr(ELIST,zero,O);
Pcall dl = new call(r,ee);
Pstmt dls = new estmt(SM,tn->where,dl,O);
dl->base = G_CALL;
dl->fct_,name = d;
dls->s_list = ss;
ss = dls;

/,'r:error ('d' , "%d (tbl=%d): %n. %n %d->%d", this, memtbl, tn, d, ss, ss->s_list) ;,'C' /

}

}
}

if (ss) {
Pstmt t2 = ss->simpl();
switch (base) {
case IF:

Pstmt es= ss->copy();
if (else_stmt) {

}

for (Pstmt t=es; t->s_list; t=t->s_list);
t->s_list = else_stmt;

else_stmt = es;
t2->s_list = s;
s = ss;
break;

C

C

C

Feb 8 12:49 1985 simpl.c Page 29

}

}

}

case RETURN:
case WHILE:
case FOR:
case DO:
case SWITCH:
case DELETE:

error('s' ,"E in%kS needs temporary ofC%n with destr
break;

default:

}

if (tl) {

}

t2->s_list = s_list;
s_list = ss;
return tl;

s_list = ss;
return t2;

return (tl)? tl: this;

return (s_list)? s_list->simpl() this;

Pstmt stmt.copy()
// now handles dtors in the expression of an IF stmt
// not general!
{

}

Pstmt ns = new stmt(O,curloc,O);

*ns = 1rthis ;
if (s) ns->s = s->copy();
if (s_list) ns->s_list = s_list->copy();

switch (base) {
case PAIR:

}

ns->s2 = s2->copy();
break;

return ns;

Feb 8 14:33 1985 size.c Page 1

/* @(#) size.c 1.2 2/8/85 14:33:46 */
/ 'i~-J~,':*1',*·lr,'c,',*•'c··lr,'rt':,'r·t'r1:-J:t't,'tt'rt':;'c*,':-;'\"lt·l:,~;':t'r,':,'c-;':,':-;':-Jt,'t**'''''t:,':'1:-;':"t'r""J'ttft1r'1:-;':-;':·-lr**-;':;':1:-:;':*-l~,~~•:·lt,':t't*,':*

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc.
All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF
AT&T TECHNOLOGIES, INC.

If you ignore the above notice the gost of Ma Bell will haunt you forever.

size.c:

initialize alignment and sizeof "constants"

#include <stdio.h>
#include "size.h"
extern int strcmp(char*,char*);
extern int strcpy(char*,char*);
extern int strlen(char*);

int BI_IN_WORD = 32;
int BI_IN_BYTE = 8;

int SZ_CHAR = 1. ,
int AL_CHAR = 1 • ,

int SZ_SHORT = 2·
' int AL_SHORT = 2· ,

int SZ_INT = 4·
' int AL_INT = 4;

int SZ_LONG = 4;
int AL_LONG = 4·

'
int SZ_FLOAT = 4·

' int AL_FLOAT = 4·
'

int SZ_DOUBLE = 8·
' int AL_DOUBLE = 4·
'

int SZ_STRUCT = 4· 1~·· minimum ,
int AL_STRUCT = 4·

'
int SZ_FRAME = 4·

' int AL_FRAME = 4· ,

int S2_WORD = 4·
'

int SZ_WPTR = 4·
' int AL_WPTR = 4·
'

struct size -,''(/

Feb 8 14:33 1985 size.c Page 2

int SZ_BPTR = 4;
int AL_BPTR = 4;

int SZ_TOP = O;

j"k space at top and bottom of stack frame
(for registers, return ptr, etc.)

int SZ_BOTTOM = O;

char~·.-LARGEST_INT = "2147483647";

int argl;
int arg2;

int get_line(FILE* fp) {
char s[32];

if (fscanf(fp," %s %d %d",s,&argl,&arg2) - EOF) return 0;

if (strcmp("char",s) == 0) {

}

SZ_CHAR = argl;
AL_CHAR = arg2;
return 1;

if (strcmp("short",s) == 0) {
SZ_SHORT = argl;
AL_SHORT = arg2;
return 1;

}
if (strcmp("int",s) = 0) {

SZ_INT = argl;
AL_INT = arg2;
if (fscanf(fp, 0 %s",s) = EOF) return O;
int 11 = strlen(s);

}

LARGEST_INT = new char[ll+l];
strcpy(LARGEST_INT,s);
return l;

if (strcmp("long",s) == 0) {
SZ_LONG = argl;
AL_LONG = arg2;
return 1;

}
if (strcmp("float",s) = 0) {

SZ_FLOAT = argl;
AL_FLOAT = arg2;
return 1;

}
if (strcmp("double",s) = 0) {

SZ_DOUBLE = argl;
AL_DOUBLE = arg2;
return 1;

}
if (strcmp("bit",s) == 0) {

BI_IN_BYTE = argl;

Feb 8 14:33 1985 size.c Page 3

BI_IN_WORD = arg2;)
return 1;

}

}
if (strcmp("struct",s) = 0) {

SZ_STRUCT = argl;
AL_STRUCT = arg2;
return 1;

}
if (strcmp("frame",s) == 0) {

SZ_FRAME = argl;
AL....FRAME = arg2;
return 1;

}
if (strcmp("word",s) = 0) {

SZ_WORD = argl;
return 1;

}
if (strcmp("wptr",s) = 0) {

SZ_WPTR = argl;
AL_WPTR = arg2;
return 1;

}
if (strcmp("bptr",s) = 0) {

SZ_BPTR = argl;
AL....BPTR = arg2;
return 1;

}
if (strcmp("top",s) = 0) {

SZ_TOP = argl;
SZ_BOTTOM = arg2;
return 1;

}
return O;

extern int read_align(char* f)
{

}

FILE·._. fp = fopen(f, "r");
if (fp = 0) return 1;
while (get_line(fp))
return O;

extern print_align(char* s)
{

fprintf(stderr,"%s sizes and alignments\n\n",s);

fprintf(stderr,"
fprintf(stderr,"char
fprintf(stderr,"short
fprintf(stderr,nint
fprintf(stderr,"long
fprintf(stderr,"float
fprintf(stderr,"double
fprintf(stderr,"bptr
fprintf(stderr,"wptr

size
%d
%d
%d
%d
%d
%d
%d
%d

align\n");
%d\n",SZ_CHAR,AL_CHAR);
%d\n",SZ_SHORT,AL....SHORT);
%d\n",SZ_INT,AL....INT);
%d\n11,SZ_LONG,AL_LONG);
%d\n", SZ_FLOAT ,AL_FLOAT);
%d\n",SZ_DOUBLE,AL_DOUBLE);
%d\n",SZ_BPTR,AL....BPTR);
%d\n",S2-WPTR,AL....WPTR);

Feb 8 14:33 1985 size.c Page 4

}

fprintf(stderr,"struct
fprintf(stderr,"frame
fprintf(stderr,"large

%d %d\n",SZ_STRUCT,AL_STRUCT);
%d %d\n",SZ_FRAME,AL_FRAME);
%s\n\n",LARGEST_INT);

fprintf(stderr,"%d bits in a byte, %d bits in a word, %d bytes in a word\n"
BI_IN_BYTE, BI_IN_WORD, SZ_WORD);

return 1;

Feb 8 12:47 1985 size.h Page 1

/* %Z% %M% %I% %H% %T% */
/* used in typ.c type.sizeof() for implementing sizeof */

extern BI_IN_WORD;
extern BI_IN_BYTE;

extern sz_cHAR;
extern AL_CHAR;

extern SZ_SHORT;
extern AL_SHORT;

extern sz_rNT;
extern AL_INT;

extern SZ_LONG;
extern AL..._LONG;

extern SZ_FLOAT;
extern AL_FLOAT;

extern SZ_DOUBLE;
extern AL_DOUBLE;

extern SZ_STRUCT;
extern AL..._STRUCT;

extern SZ_FRAME;
extern AL..._FRAME;

extern sz_woRD;

extern SZ_WPTR;
extern AL_WPTR;

extern sz_BPTR;
extern AL_BPTR;

extern SZ_TOP;
extern SZ_BOTTOM;

/* byte sizes*/

/* minimum struct size*/

space at top and bottom of stack frame
(for registers, return ptr, etc.)

extern char* LARGEST_INT;
#if 0

/* byte sizes *I
#define SZ_CHAR 1
#define sz_sHORT 2
#define sz_INT 4
#define SZ_LONG 4
#define SZ_FLOAT 4
#define SZ_DOUBLE 8

#define sz_woRD 4
#define sz_wPTR 4
#define SZ_BPTR 4

1-1~ bit sizes -;'r/

J

)

Feb 8 12:47 1985 size.h Page 2

#define BI_IN_WORD 32
#define BI_IN_BYTE 8

#define AL_CHAR 1
#define AL_SHORT 2
#define AL_INT 4
#define AL_LONG 4
#define AL_FLOAT 4
#define AL_DOUBLE 4
#define AL_PTR 4
#define AL_STRUCT 4
#define AL_FRAME 4

#define SZ_TOP
#define SZ_BOTTOM
#endif

0
0

/''' alignment requirements -1: /

space at top and bottom of stack frame
(for registers, return ptr, etc.)

/* table sizes*/
#define KTBLSIZE 123
#define GTBLSIZE 257

/* initial class table size*/
#define CTBLSIZE 12

/* initial block table size*/
20 #define TBLSIZE

#define BLMAX
#define TBUFSZ
#define MAXFILE

50 /'"
24-;•:1024 /-;',

max block nesting*/
(lex) input buffer size*/
max include file nesting*/ 30 /-1:

#define MAXERR 20 /-;', maximum number of errors before terminating -;': /

Feb 8 12:49 1985 table.c Page 1

/* %Z% %M% %I% %H% %T% */
#include "cfront.h"

char* keys(MAXTOK];
/*

/*

keys[] holds the external form for tokens with fixed representation
illegal tokens and those with variable representation have O entries

the class table functions assume that new initializes store to 0

table.table(short sz, Ptable nx, Pname n)
/*

create a symbol table with "size" entries
the scope of table is enclosed in the scope of "nx"

both the vector of class name pointers and the hash table
are initialized containing all zeroes

to simplify hashed lookup entrieshO] is never used
so the size of "entries" must be size+l" to hold "size" entries

base= TABLE;
t_name = n;
size= sz = (sz<=O)? 2 : sz+l;
entries= new Pname[sz];
hashsize = sz = (sz*3)/2;
hashtbl = new short[sz];
next= nx;
free_s lot = 1;

/* fprintf(stderr,"table.table %d %s %d\n", this, (n)?n->string:"?", size); fflush(s
}

Pname table. look (char';'.- s, TOK k)
;-1.-

look for "s" in table, ignore entries which are not of "k" type
look and insert MUST be the same lookup algorithm

Ptable t;
register char* p;
register char* q;
register inti;
Pname n;
int rr;

if (s = 0) error('i' /%d->look(O)",this);
if (this - 0) error(i' ,"O->look(%s)",s);
if (base != TABLE) error('i'' ,"(%d,%d)->look(%s)",this,base,s);

/-;'.-use simple hashing with linear search for overflow -;~/

Feb 8 12:49 1985 table.c Page 2

}

p = s;
i = O;
while (-;'rp) i += (i + *p++); /* i«l " -;'.-p++ better?-;'"/
rr = (O<=i)? i: -i;

for (t=this; t; t=t->next) {

found:

/-Jr in this and all enclosing scopes look for name "s" */
Pname* np = t->entries;
int mx = t->hashsize;
short* hash= t->hashtbl;
int firsti = i = rr%mx;

do {

nxt:

if (hash[i] = 0) goto not_found;
n = np[hash[i]];
if (n = 0) error('i' .,"hashed lookup");
p = n->string; /* strcmp(n->n_string,s) */
q s;
while (i:p && ;,..q)

if (*p++ != *q++) goto nxt;
if (''"p = ,._.q) goto found;

if (mx <= ++i) i = O;
} while (i != firsti);

/-;'.-wrap around */

for (; n; n=n->n_tbl_list){ /* for all name "s "s look for a ke
if (n->n_key = k) return n;

}

not_f ound: ;
}

return O; /-l: not found && no enclosing scope ,':/

bit Nold; /* non-zero if last insert() failed*/

Pname table.insert(Pname nx, TOK k)
/-1:

*/
{

the lookup algorithm MUST be the same as look
if nx is found return the older entry otherwise a copy of nx;
Nold= (nx found)? 1 : O;

register char* p;
register inti;
Pname n;
Pname* np = entries;
Pname;': link;
int firsti;
int mx = hashsize;
short* hash= hashtbl;
char* s = nx->string;

if (s=O) error('i' ,"%d->insert(O,%d)",this,k);

Feb 8 12:49 1985 table.c Page 3

*/

found:

add_np:

nx->n_key = k;
if (nx->n_tbl_list 11 nx->n_table) error (' i', "%n in two tables 11 ,nx);
;,\- use simple hashing with linear search for overflow -;'.-/

P = s;
i = O;
while (*p) i += (i + *p++);
if (i<O) i = -i;
firsti = i = i%mx;

do { /-Ir look for name "'s tt * /

if (hash[i] == 0) {
hash[i] = free_slot;
goto add_np;

nxt:

}
n = np[hash[i]];
if (n == O) error('i' ,"hashed lookup");
if (strcmp(n->string,s) == 0) goto found;

p = n->string;
q = s;
while (-;i-p && -;'.-q) if (7"p++ != -i.-q++) goto nxt;
if (*p == *q) goto found;

if (mx <= ++i) i = O;
} while (i != firsti);

/-Ir wrap around ·k /

error("N table full");

forever {

}

if (n->n_key = k) {Nold= 1; return n; }

if (n->n_tbl_list)
n = n->n_tbl_list;

else {
link= &(n->n_tbl_list);
goto re_allocate;

if (size<= free_slot) {
grow(2-i"size);
return insert(nx,k);

}

link= &(np[free_slot++]);

re_allocate:
{

Pname nw = new class name(O);
'i"nw = ,'.-nx;

Feb 8 12:49 1985 table.c Page 4

int 11 = strlen(s)+l;
char *ps = new char~ll];

/*fprintf(stderr,"tbl.cpy %s sz=%d %d->%d\n', s, 11, s, ps); fflush(stderr);*/

}

strcpy(ps,s); /* copy string to safer store*/
Nstr++;
nw->string = ps;

}

nw->n_table = this;
-!:link = nw;
Nold= O;
Nname++;
return nw;

void table.grow(int g)
{

short,'.- hash;
register int j;
int mx;
register Pname* np;
Pname n;

if (g <= free_slot) error('i' ,"table.grow(%d,%d)",g,free_slot);
if (g <= size) return;

/-le fprintf(stderr,"tbl.grow %d %s %d->%d\n", this, (t_name)?t_name->string:"?", size
size = mx = g+l;

np = new Pname[mx];
for (j=O; j<free_slot; j++) np[j] = entries[j];
delete entries;
entries= np;

delete hashtbl;
hashsize = mx = (g*3)/2;;
hash= hashtbl = new short[mx];

for (j=l; j<free_slot; j++) { /* rehash(np[j]); */
char* s = np[j]->string;
register char* p;
char* q;
register inti;
int firsti;

P = s;
i = O;
while (*p) i += (i + *p++);
if (i<O) i = -i;
firsti = i = i%mx;

do { /-i: look for name "s" -;tr/

if (hash[i] == 0) {
hash[i] = j;

Feb 8 12:49 1985 table.c Page 5

found:

add_np:;
}

}

nxt:

goto add_np;
}
n = np[hash[i]];
if (n = 0) error('i' ,"hashed lookup");
p = n->string; ;-1, strcmp(n->n_string,s) -;'r/

q = s;
while (*p && *q) if (*p++ != *q++) goto nxt;
if (*p == *q) goto found;

if (mx <= ++i) i = O;
} while (i != firsti);

error('i' ,"rehash??");

error('i' ,"rehash failed");

Pclass Ebase;
Pclass Epriv; /* extra return values from lookc() */

Pname table.lookc(char* s, TOK)
j"k

like look() .

look and insert MUST be the same lookup algorithm

Ptable t;
register char* p;
register char* q;
register inti;
Pname n;
int rr;

if (s = 0) error('i' ,"%d->look(O)",this);
if (this -- 0) error('i' ,"O->look(%s)",s);
if (base!= TABLE) error('i',"(%d,%d)->look(%s)",this,base,s);

Ebase = O;
Epriv = O;

/* use simple hashing with linear search for overflow*/

p = s;
i = O;
while (,'.-p) i += (i + -1.-p++);
rr = (O<=i)? i: -i;

for (t=this; t; t=t->next) {
p-.t: in this and all enclosing scopes look for name "s" */
Pname-1: np = t->entries;

C

(_

(_

Feb 8 12:49 1985 table.c Page 6

}

Pname
/.., ...

...... /
{

}

found:

int mx = t->hashsize;
short* hash= t->hashtbl;
int firsti = i = rr%mx;
Pname tname = t->t_name;

do {
if (hash[i] == 0) goto not_found;
n = np[hash[i]];
if (n == 0) error('i' ,"hashed lookup");

nxt:

p = n->string; /* strcmp(n->n_string,s) */
q = s;
while (-1.-p && i.-q)

if (*p++ != *q++) goto nxt;
if C'''°P = irq) goto found;

if (mx <= ++i) i = O;
} while (i != firsti);

/*wraparound*/

if (tname) {

}

if (n->base = PUBLIC)
n = n->n_qualifier;

else if (n->n_scope = 0)
Epriv = (Pclass)tname->tp;

return n;

not_found:
if (tname) {

}
}

Ebase = Epriv =
return O;

Pclass cl= (Pclass)tname->tp;
if (cl && cl->clbase && cl->pubbase=O) Ebase = (Pclass)cl-

O;
/i.- not found && no enclosing scope -1.-;

table.get_mem(int i)

return a pointer to the i'th entry, or O if it does not exist

return (i<=O I I free_slot<=i)? 0: entries[i];

void new_key(char 7.- s, TOK toknum, TOK yyclass)
/.., ...

make "s" a new keyword with the representation (token) "toknum"
"yyclass" is the yacc token (for example new_key("int",INT,TYPE);)
"yyclass=O" means yyclass=toknum;

Pname n = new class name(s);
Pname nn = ktbl->insert(n,O);

Feb 8 12:49 1985 table.c Page 7

}

if (Nold) error("keyword %sD twice",s);
nn->base = toknum;
nn->syn_class = (yyclass)? yyclass : toknum;
keys[(toknum==LOC)?yyclass:toknum] = s;
delete n;

Feb 8 12:47 1985 token.h Page 1

/* %Z% %M% %I% %H% %T% */
#include <stdio.h>
extern void lex_clear();
extern void ktbl_init();
extern void otbl_init();

#define yylex() lex()

#define putstring(s)
#define putst(ss)
#define putch(c)

#define MAXTOK 256

fputs(s,out_file)
fprintf(out_file,"%s ",ss)
putc(c,out_file)

/* token numbers for C parser */

extern char-;'.-keys [MAXTOK];

#define EOFTOK 0

#define ASM
#define AUTO
#define BREAK
#define CASE
#define CHAR
#define CLASS
#define CONTINUE
#define DEFAULT
#define DELETE
#define DO
#define DOUBLE
#define ELSE
#define ENUM
#define EXTERN
#define FLOAT
#define FOR
#define FORTRAN
#define FRIEND
#define GOTO
#define IF
#define INT
#define LONG
#define NEW
#define OPERATOR
#define PUBLIC
#define CONST
#define REGISTER
#define RETURN
#define SHORT
#define SIZEOF
#define STATIC
#define STRUCT
#define SWITCH
#define THIS
#define TYPEDEF
#define UNION
#define UNSIGNED

/';~ EDF
/-;~ keywords
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

,,. /
in alphabetical order*/

Feb 8 12:47 1985 token.h Page 2

#define VOID 38)
#define WHILE 39

/·lr operators in priority order (sort of)*/
#define LP 40

.~) #define RP 41
#define LB 42
#define RB 43
#define REF 44
#define DOT 45
#define NOT 46
#define COMPL 47
#define INCR 48
#define DECR 49
#define MUL 50
#define DIV 51
#define AND 52
#define MOD 53
#define PLUS 54
#define MINUS 55
#define LS 56
#define RS 57
#define LT 58
#define LE 59
#define GT 60
#define GE 61
#define EQ 62
#define NE 63
#define ER 64 ',

\

)
#define OR 65 ___ /

#define ANDAND 66
#define OROR 67
#define QUEST 68
#define COLON 69
#define ASSIGN 70
#define CM 71
#define SM 72
#define LC 73
#define RC 74

#define INLINE 75
#define OVERLOAD 76
#define VIRTUAL 77
#define COERCE 78

/';~ constants etc.*/
#define ID 80
#define STRING 81
#define ICON 82
#define FCON 83
#define CCON 84
#define NAME 85
#define ZERO 86

/-1: groups of tokens -;': I
#define ASOP 90 /-;': op= * /

Feb 8 12:47 1985 token.h Page 3

#define RELOP
#define EQUOP
#define DIVOP
#define SHIFTOP
#define ICOP
#define UNOP
#define TYPE

91
92
93
94
95
96
97

/*LEGE LT GT*/
/'': EQ NE -;': I
/* DIV MOD -;': /
/-,': LS RS -;': /
/* INCR DECR -J: /
/-1: NOT COMPL -.i: /

/-;': TYPE = INT FLOAT CHAR DOUBLE REGISTER STATIC EXTERN AUTO
LONG SHORT UNSIGNED INLINE FRIEND VIRTUAL ·k /

#define UMINUS
#define FCT
#define CALL
#define VEC
#define DEREF
#define ADDROF
#define CAST
#define FIELD
#define LABEL
#define BLOCK
#define QUA
#define DCL
#define COBJ
#define EOBJ
#define TNAME
#define ILIST
#define PTR

/* new tokens generated by syn()*/
107
108
109
110
111
112
113
114
115
116
117
118
119
121
123
124
125

#define ASPLUS 126
#define ASMINUS 127
#define ASMUL 128
#define ASDIV 129
#define ASMOD 130
#define ASAND 131
#define ASOR 132
#define ASER 133
#define ASLS 134
#define ASRS 135

#define ARG 136
#define KNOWN 137
#define ZTYPE 138
#define ARGT 139
#define ELIST 140
#define ANY 141
#define TABLE 142
#define LOC 143
#define DUMMY 144
#define G_ADDROF 145
#define G_CALL 146
#define IVAL 150
#define FVAL 151
#define LVAL 152
#define ELLIPSIS 155
#define AGGR 156

Feb 8 12:47 1985 token.h Page 4

#define VALUE 157
#define RPTR 158
#define HIDDEN 159
#define MEM 160
#define CTOR 161
#define DTOR 162
#define CONST_PTR 163
#define CONST_RPTR 164
#define TEXT 165
#define PAIR 166
#define ANON 167
#define ICALL 168
#define ANAME 169

#define A 'A'
#define I 'I'
#define Z 'Z'
#define F 'F'
#define P 'P'
#define C 'c'
#define N 'N'
#define U 'U'
#define S 's'

#define SYN 1
#define TYP 2
#define SIMPL 3
#define ERROR 4

Feb 8 12:49 1985 typ.c Page 1

j,'c %Z% %M% %I% %H% %T% * /
I -.':"'l:-l,,~,':-l:-ir,':·lc,':--;':;'r--J:,'\t'c-i:-J:,':·lr,':·;':-.Jr?'(·lt,':;':;'~-,•c,':-l,1':i'\"rC**"':*,'\')'\i'r'1:,~,'r~'r-l,,':·l:t't,'t-i:·l:,',1~1:-,',*;~1',,r****'r'~**'':,'r;':1':--lc*i'

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE GODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

typ.c:

#include "cfront.h"
#include "size.h"

Phase short_type;
Phase int_type;
Phase char_type;
Phase long_type;

Phase uchar_type;
Phase ushort_type;
Phase uint_type;
Phase ulong_type;

Phase zero_type;
Phase float_type;
Phase douhle_type;
Phase void_type;
Phase any_type;

Ptype Pint_type;
Ptype Pchar_type;
Ptype Pvoid_type;
Ptype Pfctvec_type;

Ptype char2_type;
Ptype char3_type;
Ptype char4_type;

Ptable gtbl;
Ptah le any_tbl;

Pname Cdcl = 0;
Pstmt Cstmt = O;

bit new_type = O;

extern Ptype np_promote(TOK, TOK, TOK, Ptype, Ptype, TOK);
Ptype np_promote(TOK oper, TOK rl, TOK r2, Ptype tl, Ptype t2, TOK p)
J'·k

an arithmetic operator "oper" is applied to "tl" and "t2",

Feb 8 12:49 1985 typ.c Page 2

types tl and t2 has been checked and belongs to catagories
"rl" and "r2", respectively:

A ANY
Z ZERO
I CHAR, SHORT, INT, LONG, FIELD, or EOBJ
F FLOAT DOUBLE
P PTR (to something) or VEG (of something)

test for compatability of the operands,
if (p) return the promoted result type

if (r2 == A) return tl;

switch (rl) {
case A: return t2;
case Z:

case I:

switch (r2) {
case Z:
case I:
case F:
case P:
default:
}

switch (r2) {
case Z: t2 = O;

return int_type;

return (p)? ((Pbase)t2)->arit_conv(O)
return t2;
error('i' , 11zero(%d) 11,r2);

case I:
case F:
case P:

return (p)? ((Pbase)tl)->arit_conv((Pbase)t2)
switch (aper) {

break;

O·
'

O·
'

case PLUS:
case ASPLUS:
default: error("int%kPu,oper); return any_type;

case F:

case P:

}
return t2i

default: error('i ,"int(%d)",r2);
}

switch (r2) {
case Z: t2 = O;
case I:
case F: return (p)? ((Pbase)tl)->arit_conv((Pbase)t2)
case P: error("float%kP",oper); return any_type;
default: error('i' ,ufloat(%d)",r2);
}

switch (r2) {
case Z: return tl;
case I:

switch (aper) {
case PLUS:
case MINUS:
case ASPLUS:
case ASMINUS: break;
default: error("P%k int",oper); return any_type;
}
return tl;

O·
'

J

C

(_.

Feb 8 12:49 1985 typ.c Page 3

case F: error("P%k float",oper); return any_type;
case P:

if (tl->check(t2,ASSIGN)) {
switch (aper) {
case EQ:
case NE:
case LE:
case GE:
case GT:
case LT:
case QUEST:

if (t2->check(tl,ASSIGN) = 0) goto _zz;
}

}

error("T mismatch:%t %k%t",tl,oper,t2);
return any_type;

}
zz:
switch (aper) {
case MINUS:
case ASMINUS:
case PLUS:
case ASPLUS:
default:
}

return int_type;

error("P +P"); return any_type;
return tl;

case FCT:
default:

return tl;
error('i',"pointer(%d)",r2);

}
case FCT:

error("F%k%t",oper,t2);
return any_type;

default:
error('i' ,"np_promote(%d,%d)",rl,r2);

}

TOK type.kind(TOK aper, TOK v)
/* v == I integral

xx:

N numeric
P numeric or pointer

Ptype t = this;
char* s =(aper)? keys[oper] O·

'
switch (t->base) {
case ANY: return A;
case ZTYPE: return Z;
case FIELD:
case CHAR:
case SHORT:
case INT:

return I;
case LONG:
case EOBJ:
case FLOAT:
case DOUBLE:
case PTR:

if (v - I) error("float operand for %s",s);
if (v != P) error("P operand for %s",s);

return F;

Feb 8 12:49 1985 typ.c Page 4

switch (aper) {
case INCR:
case DECR:
case MINUS:
case PLUS:
case ASMINUS:
case ASPLUS:

Pptr(t)->typ->tsizeof(); /* get increment*/

}

case RPTR:

case VEC:
case TYPE:
case FCT:
default:
}

}
return P;
//if (v != P) error("P operand for %s",s);
//if (oper != ASSIGN) error("reference operand
//return P;

error("reference operand for %s",s);
return A;
if (v != P) error("V operand for %s",s);
t = ((Pbase)t)->b_name->tp;
if (v != P) error("F operand for %s",s);
error("%t operand for %s",this,s); return

void type.dcl(Ptable tbl)
J-;'(

xx:

go through the type (list) and
(1) evaluate vector dimentions
(2) evaluate field sizes
(3) lookup struct tags, etc.
(4) handle implicit tag declarations

Ptype t = this;

if (this= 0) error('i' ,"type.dcl(this==O)");
if (tbl->base != TABLE) error('i' ,"type.dcl(%d)",tbl->base);

switch (t->base) {
case PTR:
case RPTR:
{ Pptr p = (Pptr)t;

t = p->typ;
goto xx;

}

case VEC:
{ Pvec v = (Pvec)t;

Pexpr e = v->dim;
if (e) {

Ptype et;
v->dim = e = e->typ(tbl);
et= e->tp;
if (et->integral(O) == A)

error("UN in array
}
else if (!new_type) {

{
dimension");

for %s",s);

return P;
goto xx;
return FCT;

A;

Feb 8 12:49 1985 typ.c Page 5

}

}
}
t = v->typ;
goto xx;

int i;
Neval = O;
i = e->eval ();
if (Neval) error("%s",Neval);
else if (i == 0)

error('w' ,"array dimension= O");
else if (i < 0~ {

error ('negative array dimension");
i = 1;

}
v->size = i;
DEL(v->dim);
v->dim = O;

case FCT:
{ Pfct f = (Pfct)t;

Pname n;

}

for (n=f->argtype; n; n = n->n_list) n->tp->dcl(tbl);
t = £->returns;
goto xx;

case FIELD:
{ Phase f = (Pbase)t;

}

Pexpr e = (Pexpr)f->b_name;
inti;
Ptype et;
e = e->typ(tbl);
f->b_name = (Pname)e;
et= e->tp;
if (et->integral(O) = A) {

error("UN in field size");
i = 1;

}
else {

Neval = O;
i = e->eval ();
if (Neval)

error("%s".,Neval);
else if (i < 0) {

}

error("negative field size");
i = 1;

else if (SZ_INT*BI_IN_BYTE < i)
error("field size> sizeof(int)");

DEL(e);
}
f->b_bits = i;
f->b_name = O;
break;

Feb 8 12:49 1985 typ.c Page 6

}
}

bit vrp_equiv; I* vector= reference= pointer equivalence used in check()*/

bit type.check(Ptype t,TOK oper)
I*

check if "this" can be combined with "t" by the operator "aper"

used for check of
assignment types
declaration compatability
argument types
return types
overloaded function name match
overloaded function coercion

NOT for arithmetic operators

return 1 if the check failed

Ptype tl = this;
Ptype t2 = t;
TOK bl, b2;
bit first = 1;
TOK r;

(oper==ASSIGN)
(oper=O)
(oper=ARG)
(oper==RETURN)
(oper==OVERLOAD)
(oper=COERCE)

if (tl=O I I t2=O) error('i' ,"check(%d,%d,%d)",tl,t2,oper);

vrp_equiv = O;

while (tl && t2) {
top:

l''rfprintf(stderr, "top: %d %d\n", tl->base, t2->base) ;'':I
if (tl == t2) return O;
if (tl->base == ANY I I t2->base == ANY) return O;

bl= tl->base;
b2 = t2->base;
if (bl != b2) {

if (bl== TYPE) {

}

tl = ((Pbase)tl)->b_name->tp;
goto top;

if (b2 == TYPE) {

}

t2 = ((Pbase)t2)->b_name->tp;
goto top;

switch (bl) {
case PTR:

II case RPTR:
if (bl != b2) vrp_equiv = 1;
switch (b2) {

J

Feb 8 12:49 1985 typ.c Page 7

}

case PTR:
II case RPTR:

case VEG:
tl = ((Pptr)tl)->typ;
t2 = ((Pvec)t2)->typ;
first= O;
goto top;

case FCT:

}

tl = ((Pptr)tl)->typ;
if (first=O I I tl->base!=b2) return 1;
first= O;
goto top;

first= O;
break;

case VEG:
if (bl!= b2) vrp_equiv = 1;
first= O;
switch (b2) {
case PTR:

II case RPTR:

}
break;

case TYPE:

switch(oper) {
case 0:
case ARG:
case ASSIGN:
case COERCE:

break;
case OVERLOAD:
default:

return 1;
}
tl = ((Pvec)tl)->typ;
t2 = ((Pptr)t2)->typ;
goto top;

tl = ((Pbase)tl)->b_name->tp;
goto top;

}
goto base_check;

switch (bl) {
case VEG:

first= O;
{ Pvec vl = (Pvec)tl;

Pvec v2 = (Pvec)t2;
if (vl->size != v2->size)

switch (oper) {
case OVERLOAD:
case COERCE:

}
tl = vl->typ;
t2 = v2->typ;

return 1;

Feb 8 12:49 1985 typ.c Page 8

break;

case PTR:
case RPTR:

first= O;
{ Pptr pl= (Pptr)tl;

Pptr p2 = (Pptr)t2;

}

if (p2->rdo && pl->rdo=O) return 1;
tl = pl->typ;
t2 = p2->typ;

break;

case FCT:

{

;-.'(error ('d' , "k %d %d

first= O;
Pfct fl= (Pfct)tl;
Pfct f2 = (Pfct)t2;
Pname al= fl->argtype;
Pname a2 = £2->argtype;
TOK kl= fl->nargs_known;
TOK k2 = £2->nargs_known;
int nl = fl->nargs;
int n2 = £2->nargs;

n %d %d body %d %d",kl,k2,nl,n2,fl->body,f2->body);ir/
if ((kl && k2==0) I I (k2 && kl==O)){

if (f2->body == 0) return 1;
}

if (nl!=n2 && kl && k2) {
goto aaa;

}
else if (al && a2) {

inti= O;

}

while (al && a2) {
i++;

}

if (al->tp->check(a2->tp,oper?OVERLOAD:O)
al = al->n_list;
a2 = a2->n_list;

if (al I I a2) goto aaa;

else if (al I I a2) {
aaa:

if (kl= ELLIPSIS) {
switch (aper) {
case 0:

if (a2 && k2==0) break;
return 1;

case ASSIGN:
if (a2 && k2==0) break;
return 1;

case ARG:
if (al) return 1;
break;

case OVERLOAD:

Feb 8 12:49 1985 typ.c Page 9

case COERCE:
return 1.

' }
}
else if (k2 -- ELLIPSIS)

}

case

case
case
case
case

case
case

case

case

case
case

return
}
else if (kl 11

return
}

}
tl = fl->returns;
t2 = f2->returns;

break;

FIELD:
goto

CHAR:
SHORT:
INT:
LONG:

goto
FLOAT:
DOUBLE:

goto
EOBJ:

goto
COBJ:

goto
ZTYPE:
VOID:

field_check;

int_check;

float_check;

enum_check;

cla_check;

return O;

1 • ,

k2) {
1· ,

case TYPE:

default:

tl = ((Pbase)tl)->b_name->tp;
t2 = ((Pbase)t2)->b_name->tp;
break;

{

error('i' ,"type.check(o=%d %d %d)",oper,bl,b2);
}

}

if (tl I I t2) return 1;
return O;

field_check:
switch (oper) {
case 0:
case ARG:

error('i' ,"check field?");
}
return O;

Feb 8 12:49 1985 typ.c Page 10

float_check:
if (first=O) {

if (bl!=b2 && b2!=ZTYPE) return 1;
}
goto const_check;

enum_check:
int_check:
const_check:

if (first==O && t2->tconst() && tl->tconst()==O) return 1;
return O;

cla_check:
{ Phase cl= (Pbase)tl;

Phase c2 = (Pbase)t2;
Pname nl = cl->b_name;
Pname n2 = c2->b_name;

/ 7"fprintf(stderr, "cl %d c2 %d nl %d %s n2 %d %s oper %d\n11 ,cl,c2,nl,nl->string,n2,n2
if (nl == n2) goto const_check;

switch (oper) {
case 0:
case OVERLOAD:

return 1;
case ARG:
case ASSIGN:
case RETURN:
case COERCE:
{

/* is c2·derived from cl?*/
Pname b = n2;
Pclass cl;
while (b) {

cl= (Pclass) b->tp;
b = cl->clbase;

/-/•if (b)fprintf(stderr,"n2=(%d %s) b=(%d %s) n1=(%d %s) pub %d\n",n2,n2->string,b,b­
if (b && cl->pubbase==O) {

}

}
}

return 1;
}
if (b = nl) goto const_check;

}
return 1;

goto const_check;

base_check:
/''"error ('d' , "base_check tl=%t t2=%t oper=%d", t 1, t2, oper); ·l.-/

if (oper)
if (first) {

if (bl==VOID I I b2=VOID) return 1;
}
else {

if (bl=VOID I I b2==VOID) { / 7• check for void* ,•, /

Feb 8 12:49 1985 typ.c Page 11

register Ptype tx = this;
txloop:

switch (tx->base) {
default: return 1;
case VOID: break;

II
case PTR:
case RPTR:
case VEG:
case TYPE:
}

tx = ((Pptr)tx)->typ; goto txloop;
tx = ((Pvec)tx)->typ; goto txloop;
tx = ((Pbase)tx)->b_name->tp; goto txloop;

tx = bl==VOID? t2 : tl;
bloop:

switch (tx->base) {
default: return O;

II

}

case VEC:
case PTR:
case RPTR:
case FCT:
case TYPE:
}

return 1;
tx = ((Pbase)tx)->b_name->tp; goto bloop;

if (b2 != ZTYPE) return 1;
}

switch (oper) {
case 0:

return 1;
case OVERLOAD:
case COERCE:

switch (bl) {
case EOBJ:
case ZTYPE:
case CHAR:
case SHORT:
case INT:

switch (b2) {
case EOBJ:
case ZTYPE:
case CHAR:
case SHORT:
case INT:
case FIELD:

goto const_check;
}
return 1;

case LONG: /* char, short, and int promotes to long*/
switch (b2) {
case ZTYPE:
case EOBJ:
case CHAR:
case SHORT:
case INT:
case FIELD:

goto const_check;
}

Feb 8 12:49 1985 typ.c Page 12

return 1;
case FLOAT:

switch (b2) {
case FLOAT:
case DOUBLE:
case ZTYPE:

goto const_check;
}
return 1;

case DOUBLE: 1--~ char, short, int,
switch (b2) {
case FLOAT:
case DOUBLE:
case ZTYPE:
case EOBJ:
case CHAR:
case SHORT:
case INT:

goto const_check;
}
return 1;

case PTR:

case
case
case
case

}
case ARG:
case ASSIGN:
case RETURN:

switch (b2) {
case ZTYPE:

goto const_check;
}

RPTR:
VEC:
COBJ:
FCT:

return 1;

switch (bl) {
case COBJ:

return 1;
case EOBJ:
case ZTYPE:
case CHAR:
case SHORT:
case INT:
case LONG:

r = t2->num_ptr(ASSIGN);
switch (r) {
case A: return 1;
case Z:
case I: break;

and float promotes to double

case F: error('w' ,"double assigned to int"); break;
case P: return 1;
}
break;

case FLOAT:
case DOUBLE:

r = t2->numeric(ASSIGN);

_)

,'r

.J

Feb 8 12:49 1985 typ.c Page 13

break;
case VEC:

return 1;
case PTR:

r = t2->num_ptr(ASSIGN);
switch (r) {
case A: return 1;
case Z:
case P: break;
case I:
case F: return 1;
case FCT:
{ Pptr p = (Pptr)tl;

if (p->typ->base != FCT) return 1;

}

}

case
II
II
II
II
II
II
II
II
II
II
II
II
II
case

}

}
}
break;

RPTR:
r = t2->num_ptr(ASSIGN);
switch (r) {
case A: break;
case Z: return 1;
case P:
case I:
case F: break;
case FCT:
{ Pptr p = (Pptr)tl;

}
}

if (p->typ->base !=

break;
return 1;

FCT:
switch (oper) {
case ARG:
case ASSIGN:

return 1;
}

break;

goto const_check;

FCT) return 1;

Feb 8 12:49 1985 typ2.c Page 1

/* %Z% %M% %I% %H% %T% */

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

typ2.c:

#include "cfront.h"
#include "size.h"

extern void typ_init();
void typ_init ()
{

defa_type = int_type = new class basetype(INT,O);
PERM(int_type);

moe_type = new class basetype(INT,O);
PERM(moe_type);
moe_type->b_const = 1;
moe_type->check(O);

uint_type = new class basetype(INT,O);
PERM(uint_type);
uint_type->type_adj(UNSIGNED);
uint_type->check(O);

long_type = new class basetype(LONG,O);
PERM(long_type);
long_type->check(O);

ulong_type = new class basetype(LONG,O);
PERM(ulong_type);
ulong_type->type_adj(UNSIGNED);
ulong_type->check(O);

short_type = new class basetype(SHORT,O);
PERM(short_type);
short_type->check(O);

ushort_type = new class basetype(SHORT,O);
PERM(ushort_type);
ushort_type->type_adj(UNSIGNED);
ushort_type->check(O);

float_type = new class basetype(FLOAT,O);
PERM(float_type);

Feb 8 12:49 1985 typ2.c Page 2

double_type = new class basetype(DOUBLE,O);
PERM(double_type);

zero_type = new class basetype(ZTYPE,O);
PERM(zero_type);
zero->tp = zero_type;

void_type = new class basetype(VOID,O);
PERM(void_type);

char_type = new class basetype(CHAR,O);
PERM(char_type);

uchar_type = new class basetype(CHAR,O);
PERM(uchar_type);
uchar_type->type_adj(UNSIGNED);
uchar_type->check(O);

Pchar_type = new class ptr(PTR,char_type,O);
PERM(Pchar_type);

Pint_type = new class ptr(PTR,int_type,O);
PERM(Pint_type);

Pvoid_type = new class ptr(PTR,void_type,0);
PERM(Pvoid_type);

Pfctvec_type = new class fct(int_type,0,0);
Pfctvec_type = new class ptr(PTR,Pfctvec_type,0);
Pfctvec_type = new class ptr(PTR,Pfctvec_type,O);
PERM(Pfctvec_type);

any_tbl = new class table(TBLSIZE,O,O);
gtbl = new class table(GTBLSIZE,0,0);
gtbl->t_name = new class name("global");

if (SZ_SHORT == 2)

else {

}

char2_type = short_type;

char2_type = new vec(char_type,O);
PERM(char2_type);
Pvec(char2_type)->size = 2;

char3_type = new vec(char_type,O);
PERM(char3_type);
Pvec(char3_type)->size = 3;
if (SZ_INT = 4)

char4_type = int_type;
else if (SZ_LONG == 4)

char4_type = long_type;
else {

}

char4_type = new vec(char_type,0);
PERM(char4_type);
Pvec(char4_type)->size = 4;

/* must be last, se

Feb 8 12:49 1985 typ2.c Page 3

Phase basetype.arit_conv(Pbase t)

}

perform the "usual arithmetic conversions" C ref Manual 6.6
on "this" orr "t"
"this" and 't" are integral or floating
"t" may be 0

bit 1;
bit u;
bit f;
bit 11 =(base== LONG);
bit ul = b_unsigned;
bit fl= (base==FLOAT I I base==DOUBLE);
if (t) {

bit
bit
bit
1 =
u =
f =

}
else {

1 =
u =
f =

}

if (f)
if (1 & u)
if (1 & !u)
if (u)

12 =
u2 =
f2 =
11
ul
fl

11;
ul;
fl;

(t->base == LONG);
t->b_unsigned;
(t->base=FLOAT 11
12;
u2;
£2;

return double_type;
return ulong_type;
return long_type;
return uint_type;
return int_type;

t->base=DOUBLE);

bit vec_const = O;

bit type.tconst()
/*

is this type a constant
*I
{

Ptype t = this;
vec_const = O;

xxx:
switch (t->base) {
case TYPE: if (((Pbase)t)->b_const) return 1;

t = ((Pbase)t)->b_name->tp;

case VEG:
case PTR:
case RPTR:
case ANY:
default:
}

goto xxx;
vec_const = 1; return 1; / 7~t = ((Pvec)t)->typ; goto xxx;*/

return ((Pptr)t)->rdo;
return O;
return ((Pbase)t)->b_const;

C

Feb 8 12:49 1985 typ2.c Page 4

int type.align()
{

Ptype t = this;
xx:
/-;'.-fprintf (stderr, "align %d %d\n", t, t->base); 'i't: /

switch (t->base) {

}

case TYPE:
case COBJ:
case VEC:
case ANY:
case CHAR:
case SHORT:
case INT:
case LONG:
case FLOAT:
case DOUBLE:
case PTR:
case RPTR:
case CLASS:
case ENUM:
case EOBJ:
case VOID:
default:
}

t = ((Pbase)t)->b_name->tp; goto xx;
t = ((Pbase)t)->b_name->tp; goto xx;
t = ((Pvec)t)->typ; goto xx;
return 1;
return AL_CHAR;
return AL_SHORT;
return AL_INT;
return AL_LONG;
return AL_FLOAT;
return AL_DOUBLE;

return AL_WPTR;
return ((Pclass)t)->obj_align;

return AL_INT;
error("illegal use of void"); return AL_INT;
error('i' ,"(%d,%k)->type.align",t,t->base);

int type.tsizeof()
/*

zx:

the sizeof type operator
return the size in bytes of the types representation

Ptype t = this;

if (t = 0) error('i' ,"typ.tsizeof(t==O)");
switch (t->base) {
case TYPE:
case COBJ:

/1:fprintf (stderr, "tsizeof %d %d %s%s\n", t, t->base, ((Pbase)t)->b_name->string, (t->per
t = ((Pbase)t)->b_name->tp; goto zx;

case ANY: return 1;
case VOID: return O;
case ZTYPE: return SZ_WPTR; /* assume pointer*/
case CHAR: return SZ_CHAR;
case SHORT: return SZ_SHORT;
case INT: return SZ_INT;
case LONG: return SZ_LONG;
case FLOAT: return SZ_FLOAT;
case DOUBLE: return SZ_DOUBLE;
case VEC:

{ Pvec v = (Pvec) t;
if (v->size = 0) return SZ_WPTR;
return v->size * v->typ->tsizeof();

Feb 8 12:49 1985 typ2.c Page 5

}

case PTR:
case RPTR:

t = ((Pptr)t)->typ;
xxx:

switch (t->base) {
default: return SZ_WPTR;
case CHAR: return SZ_BPTR;
case TYPE: t = ((Pbase)t)->b_name->tp; goto xxx;
}

case FIELD:
{ Phase b = (Pbase)t;

return b->b_bits/BI_IN_BYTE+l;
}
case CLASS:
{ Pclass cl= (Pclass)t;

int sz = cl->obj_size;
if (cl->defined = 0) {

}

error("%sU, size not known",cl->string);
return SZ_INT;

return sz;
}
case EOBJ:
case ENUM:
default:
}

return SZ_INT;
error('i' ,"sizeof(%d)",t->base);

bit type.fct_type()
{

return O;
}

bit type.vec_type()
{

Ptype t = this;
xx:

switch (t->base) {
case ANY:

}

case VEG:
case PTR:
case RPTR:
case TYPE:
default:
}

Ptype type.deref()
{

Ptype t = this;
xx:

switch (t->base)
case PTR:
case RPTR:
case VEC:
case ANY:

return O;
t = ((Pbase)t)->b_name->tp; goto xx;
error("not a vector(%k)",base); return 1;

{

return ((Pptr)t)->typ;
return t· ,

J

'··
_ _)

Feb 8 12:49 1985 typ2.c Page 6

case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
default: error("nonP dereferenced"); return any_type;
}

}

(__ Pptr type. addrof ()
{

return new class ptr(PTR,this,O);
}

C

Feb 8 12:47 1985 typedef.h Page 1

/* %Z% %M% %I% %H% %T% -.': /
typedef short TOK;
typedef class node -,'(PP;
typedef char bit;
typedef int (*PF!)();
typedef void (-;':PFV) () ;
typedef class node* Pnode;
typedef struct key* Pkey;
typedef class name* Pname;
typedef class basetype * Phase;
typedef class type* Ptype;
typedef class fct * Pfct;
typedef class field* Pfield;
typedef class expr * Pexpr;
typedef class qexpr * Pqexpr;
typedef class texpr * Ptexpr;
typedef class classdef * Pclass;
typedef class enumdef * Penum;
typedef class stmt * Pstmt;
typedef class estmt * Pestmt;
typedef class tstmt * Ptstmt;
typedef class vec ·l: Pvec;
typedef class ptr * Pptr;
typedef class block* Pblock;
typedef class table* Ptable;
typedef class loc Loe;
typedef class call* Pcall;
typedef class gen* Pgen;
typedef class ref* Pref;
typedef class name_list * Plist;
typedef class iline * Pin;

#define forever for(;;)

J

Feb 8 12:50 1985 size_align Page 1

/-1: %Z% %M% %I% %H% %T% -;'(/

char 1 1
short 2 2

l, int 2 2 32767
long 4 4
double 8 4
bit 8 32
ptr 4 4
struct 1 1
frame 4 0
top 0 0
word 4 0

(,
wptr 4 4
bptr 4 4

	makefile
	alloc.c
	cfront.h
	dcl.c
	dcl2.c
	del.c
	error.c
	expand.c
	expr.c
	expr2.c
	gram.y
	lex.c
	main.c
	misc.c
	norm.c
	norm2.c
	print.c
	repr.c
	simpl.c
	size.c
	size.h
	table.c
	token.h
	typ.c
	typ2.c
	typedef.h
	size_align

