eb—

Ry 7

(M)

).9.99:9.0.99.0:9.9.9.:0.:6.0.0.9:0.0.9.010.0.0.0.0:0.:6.0.6.0.0:0.0:0.0.010.0.0.0.0.9:0.0.0.9.9.:0.0.0.0.0.0.0.0.9.0.0.0.9.0.6.0.0.0.9.9.0.:0.0.0.0.0.9.9.0.0.9.9.9.9.9.9.{
).9:0.010.0.0.0.0.0.0.9:0.0.0.0:0.0.:0.0.0.0.0.0.0.0.0.0.9:9.9.9.0.0.9.0.9.9.0.0.0.0.:0.0:0.0.0.9.0.0.9.0.0.:0.0.:0.0.0.9.0.0.0.0.0.9.0.9.0.0.0.0.0.9.0.0.9.0.0.0.0.9.0.9.0.4
):9.0.0,9,0.0.0.:9.6.0.9.9.:0.0.9.9:0.9.0.0.9.9.9.0.0.9.9.:0.0.0.0.0.9.0.0.0:0:0.0.9.010.0.0.0.0.0.0.0.0.90.0.0.0.0:9:0.0.0.9.0.0.0.0.0.0.0.0.0.0:0.0.0.0.0.0.0.6.0.0.0.0.4
).9.9,0.9.9.0.0.0.9.0.9.0.9.0.9.0.9.9.0.9.0.0.9.0.010.0.0.:0,0.0.0.0.0.0.0.0.0.0.0.0.0.0.6.0.0.0.0.0.:0.0.0.0.0.0.0.:0.0.0.0.0.0.0.0.0.9,0.0.9.0.0.9.0.0.0.0.0.0.0.9.0.9.9.4
797 - laserl

Tt it i
it it
fHHEHE A
#
i# i it #
ikt
Request id: laser-9680 Printer: laserl From: sfbe (laser=-9004) Via: nsc

Transit time: 1 minutes Sat Feb 9 19:35:33 EST 1985

-

P

T

5

Feb 8 12:47 1985 makefile Page 1

%Z% IM% %I% %H% %T%
#

cfront makefile

#

CC=CC

- CFLAGS=-c¢

YACC=yacc

YFLAGS=

OSUF=.0

HDRS=cfront.h \
size.h
token.h
typedef.h
yystype.h

 OBJS=alloc$ (OSUF)

dc1$ (OSUF)
dc12$ (OSUF)
del$ (OSUF)
error$ (OSUF)
expand$ (OSUF)
expr$ (OSUF)
expr2$ (0OSUF)
lex$ (OSUF)
main$ (OSUF)
norm$ (OSUF)
norm2$ (OSUF)
print$ (OSUF)
repr$ (OSUF)
simpl$ (OSUF)
size$ (OSUF)
table$ (OSUF)
typ$ (OSUF)
typ2$ (OSUF)

all : cfront

Pt

T i i i

cfront

y.tab.c :

y.tab$ (0SUF)

alloc$ (OSUF)

dc1$ (OSUF)

dc12% (OSUF)

del$ (OSUF)

$(0OBJS) y.tab$(0OSUF)
$(CC) $(OBJS) yv.tab$ (0OSUF) -o cfront

gram.y
$(YACC) $(YFLAGS) gram.y

y.tab.c §(HDRS)
$(CC) $ (CFLAGS) +E y.tab.c

alloc.c
$(CC) $(CFLAGS) alloc.c

decl.c
$(CC) $ (CFLAGS) dcl.c

dcl2.c
$(CC) $(CFLAGS) dcl2.c

del.c
$(CC) $(CFLAGS) del.c

Feb 8 12:47 1985 makefile Page 2

error$ (OSUF)

expand$ (OSUF)

expr$ (OSUF)

expr2$ (OSUF)

lex$§ (OSUF)

main$ (OSUF)

norm$ (OSUF)

norm2$ (OSUF)

print$ (OSUF)

repr$ (OSUF)

simp1l$ (OSUF)

size$ (OSUF)

table$ (OSUF)

typ$ (OSUF)

typ2$ (OSUF)

$(0BJS) :

clean

clobber :

: error.c
$(CC) $(CFLAGS) error.c

: expand.c
$(CC) $(CFLAGS) expand.c

: expr.c ‘
$(CC) $(CFLAGS) expr.c

: expr2.c
$(CC) $(CFLAGS) expr2.c

: lex.c
$(CC) S$(CFLAGS) lex.c

: main.c
$(CC) S$(CFLAGS) main.c

: norm.c
$(CC) $(CFLAGS) norm.c

: norm2.c
$(CC) $(CFLAGS) norm2.c

: print.c
$(CC) $(CFLAGS) print.c

: repr.c
$(CC) $(CFLAGS) repr.c

: simpl.c
$(CC) $(CFLAGS) simpl.c

: size.c
$(CC) $(CFLAGS) size.c

: table.c
$(CC) $(CFLAGS) table.c

: typ.c
§(CC) S$(CFLAGS) typ.c

: typ2.c
$(CC) $(CFLAGS) typ2.c

$ (HDRS)

rm -f $(OBJS) y.tab.c y.tab$(OSUF) *.i *..c

clean
rm -f cfront

U

Feb 8 12:48 1985 alloc.c Page 1
(/% %Z% %M% %1% %H% %1% */

#include "cfront.h"

extern void free(char®); -
e extern char *malloc(unsigned);
(w,' extern void print_free();

typedef class header HEADER;

static HEADER *morecore(unsigned);

class header { /* free block header */

public:
- HEADER “*next; /¥ next free block %/
KM : unsigned size; /% size of this free block */
S
HEADER base; /* empty list to get started ¥*/

HEADER *allocp = NULL; /#* last allocated block ¥/

void print_free()

{
register HEADER* p, *q = 0;
register int amount = 0;
register int number = 0;

B for (p=allocp; ql!=allocp; g=p=p->next) f{
(\ number++;
- amount += p->size;

fprintf(stderr,'free: %d %d\n",number,amount*sizeof (HEADER));
}

char *malloc(unsigned nbytes) /* general-purpose storage allocator */

register HEADER *p, *q;
register int nunits;

Nalloct+;
nunits = 1+(nbytes+sizeof (HEADER)-1)/sizeof (HEADER);
if ((q = allocp) == NULL) { /* no free list yet ¥/
o base.next = allocp = q = &base;
k\« ; base.size = 0;
for (p=q->next; ; q=p, p=p->mext) {
if (p->size >= nunits) { * big enough */
if (p->size == nunits) /% exactly */
q->next = p->next;
else { /% allocate tail end %/
p->size -= nunits;
o p += (int)p->size;
. p->size = nunits;
allocp = q;

Feb 8 12:48 1985 alloc.c Page 2

/*fprintf(stderr,"malloc(%d %d)->%d %d\n",nbytes,nunits*sizeof (HEADER),p+1,p+nunits)

register int* x = (int¥*) (p+l);
register int* y = (int¥*)(p+nunits);
while (x < y) *--y = 03

return (char®) x;

if (p == allocp) /* wrapped around free list */
if ((p = morecore(nunits)) == NULL)
return(NULL); /% none left %/

3
3
fidefine NALLOC 1024 /* {funits to allocate at once %/
static HEADER *morecore(unsigned nu) /* ask system for memory */
{

char *sbrk(int);
register char ¥cp;
register HEADER *up;
register int rnu;
register int rnu2;

rnu = NALLOC * ((nu+NALLOC-1) / NALLOC);

cp = sbrk(rnu2 = rnu*sizeof (HEADER));

Nfree_store += rnu2;
/*fprintf(stderr,"morecore %d %d -> %d Nf=%d\n", nu, rnu2, cp, Nfree_store); fflush(
:’c/

if ((int)cp == =1) /* no space at all */

error("free store exhausted");

up = (HEADER #)cp;

up->size = rnu;

free((char *)(up+l));

return(allocp);

3

int NFn, NFtn, NFbt, NFpv, NFf, NFe, NFs, NFc;

void free(char* ap) /* put block on free list %/
{

register HEADER *p, *q;
if (ap == 0) return;

p = (HEADER®)ap - 1; /* point to header */
Nfreett;

if (Nspy) {
Pname pp = (Pname) ap;
TOK t = pp->base;
char® s = 0;

switch (t) {

case TNAME: case NAME:

7N

Feb 8 12:48 1985 alloc.c Page 3

NFn++;
fprintf(stderr,"??name %d %d sz=%d\n",pp,t,p->size); fflush(stderr)
break;
*/
case INT: case CHAR: case TYPE: case VOID: case SHORT: case LONG:
case FLOAT: case DOUBLE: case COBJ: case EOBJ: case FIELD:
NFbt++; break;
case PTR: case VEC:
NFpv++; break;
case FCT: NFf++; break;
/%
case INCR: case DECR: case ASSIGN: case CALL: case PLUS: case MINUS:
case DEREF: case MUL: case DIV: case ASPLUS: case MOD: case UMINUS:
case DOT: case REF: case CAST: case NEW: case NOT: case COMPL: case ER:
case EQ: case NE: case GT: case LT: case LE: case GE:
case ANDAND: case AND: case OR: case OROR: case SIZEOF:
case ILIST: case ELIST: case CM: case QUEST: case RS: case LS:
case TEXT: case IVAL: case FVAL:
NFe++;
fprintf(stderr,"??expr %d %d sz=%d\n'",pp,t,p->size); fflush(stderr)
break;
%/
case ICON: case CCON: case STRING: case FCON: case THIS:
NFc++; break;
/*
case IF: case SM: case FOR: case WHILE: case DO: case BLOCK:
case BREAK: case CONTINUE: case DEFAULT: case SWITCH: case CASE:
case PAIR: case LABEL: case GOTO: case RETURN: case DELETE: case ASM:
NFs++; break;
*/
/*default: if (0<t && t<140) fprintf(stderr,”delete tok %d\n",t);
%/
3

3
/*fprintf(stderr,' ' free(%d)\n",ap);¥*/
for (g=allocp; !(p > q & p < g->next); g=qg->next)
if (q >= q->next & (p > q || p < g->next))
break; /% at one end or other */

if (pt+p->size == g->next) { /¥ join to upper nbr */
p->size += q->next->size;
p->next = g->next->next;

} else
p~>next = q->next;

if (g+tq->size == p) { /% join to lower nbr */
q->size += p->size;
g->next = p->next;

} else
g->next = p;

allocp = q;

Feb 8 12:47 1985 cfront.h Page 1

/% %Z% TM% %1% %H% %WTh *

wla S aleotonte! fes ot mts wtet m s mler mls il mfon sttt e e Fet b o lie s ater oor T T o P T N g D e o rutenleate sl nluolontentss!
/“*h**kn%k***nun%“kﬂhiA*kkkﬁﬁikAﬁA**AA**%%AAL***AAA%****A*Akkk*kAAAAA*Aa

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOQURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

cfront.h:

Here is all the class definitions for cfront, and most of the externs

dededededededodededelededsdlofdeedelededdediodliiallodededeivieotelodeleodeodololeioloiidedededededeldedededededededededededededededededede
/* WARNING:
This program relies on non-initialized class members being ZERO.
s . : " "
This will be true as long as they are allocated using the 'new operator

ta /
(&3

#include "token.h"
##include "typedef.h"

extern char®* prog name; /* compiler name and version ¥/
extern bit old_fct_accepted; /% if set:
old style function definitions are legal,
implicit declarations are legal
*/
extern bit fct_void; /% if set:
f() means f of no arguments
f() means £(...)
if not:
f() illegal
f() means f of no arguments

%/
extern TOK scope_default; /% default scope of externals
STATIC or EXTERN
*/
extern bit st_init; /% static objects can be initialized by ctor */
extern int inline_restr; /* inline expansion restrictions %/

/% free lists */

extern Pname name_free;
extern Pexpr expr_free;
extern Pstmt stmt_free;

extern int Nspy, Nn, Nbt, Nt, Ne, Ns, Nstr, Nc, NI;

extern TOK lex();
extern Pname syn();
extern bit print_mode;

/* stage initializers: ¥/
extern void init_print();

Feb 8 12:47 1985 cfront.h Page 2

extern void init_lex();

extern void int_syn();

extern void ext(int);

extern char® make_name (TOK) ;

class loc /* a source file location */
public:

short file; /% index into file name[], or zero */
short line;

void put (FILE*);
void putline();

33

extern Loc curloc;

overload error;

extern int error(int, loc*, char
extern int error(int, char I
extern int error(loc*, char® ...);
extern int error(char* ...);
extern int error_count;

extern bit debug;

%

23

e

extern FILE*®* in_file;

extern FILE* out_file;

extern char scan_started;

extern bit warn;

extern int br_level;

extern int bl _level;

extern Ptable ktbl; /* keywords and typedef names */
extern char® oper_name (TOK) ;

extern Ptable gtbl; /* global names */
extern Pclass ccl;

extern Pbase defa type;

extern Pbase moe_type;

extern Pstmt Cstmt; /* current statement, or 0 *
extern Pname Cdcl; /% name currently being declared, or 0 */
extern void put_dcl_context();

extern Ptable any_tbl; /% table of undefined struct members %/
extern Pbase any_type;
extern Pbase int_type;
extern Pbase char_type;
extern Pbase short_type;
extern Pbase long type;
extern Pbase uchar_type;
extern Pbase ushort_type;
extern Pbase uint_type;
extern Pbase ulong type;
extern Ptype Pchar_type;
extern Ptype Pint_type;

Feb 8 12:47 1985 cfront.h Page 3

extern Ptype Pfctvec_type;
extern Pbase float_type;
extern Pbase double_type;
extern Pbase void_type;
extern Ptype Pvoid_type;
extern Pbase zero_type;
extern Ptype char2_type;
extern Ptype char3_type;
extern Ptype charé4 type;

extern int byte_offset;
extern int bit_offset;
extern int max_align;
extern int stack_size;
extern int enum_count;
extern int const_save;

extern Pname class_name(Ptable,char®,bit);
extern Pname gen_ find(Pname,Pfct);
extern char* gen name(char®,char);

extern Pexpr dummy; /* the empty expression */
extern Pexpr zero;

extern Pexpr one;

extern Pname sta _name; /¥* qualifier for unary :: %/

#define DEL(p) if (p && (p->permanent==0)) p->del()
f#define PERM(p) p->permanent=1
#idefine UNPERM(p) p->permanent=0

struct node {

TOK base;
TOK n_key; /% for names in table: class %/
bit permanent;

HH

extern Pclass Ebase, Epriv; /* lookc return values */

class table : public node {
/* a table is a node only to give it a "base" for debugging */
short size;
short hashsize;
Pname* entries;
short® hashtbl;
short free_slot; /% next free slot in entries %/
public:
short init_stat; /% ==0 if block(s) of table not simplified,
==] if simplified but had no initializers,
==2 if simplified and had initializers.
:’:/
Pstmt real_block; /* the last block the user wrote,
not one of the ones cfront created
table(short, Ptable, Pname);
Ptable next; /% table for enclosing scope */
Pname t_name; /% name of the table ¥/

_

S’ i

—-«.\

Feb 8 12:47 1985 cfront.h Page &4

Pname look (char¥*, TOK);
Pname insert(Pname, TOK);

void grow(int);
void set_scope(Ptable t) { next = t; };
void set_name(Pname n) { t_name = n; };
Pname get_mem(int);
int max () { return free_slot-1; };

void dcl_print (TOK,TOK);

Pname lookc(char®*, TOK);

Pexpr find_name(Pname, bit, Pexpr);
} void del();

extern bit Nold;

extern bit vec_const;

extern void restore();

extern void set_scope(Pname);

extern Plist modified_tn;

extern Pbase start_cl(TOK, Pname, Pname);
extern void end_cl();

extern Pbase end_enum(Pname, Pname);

/ wls afumtante st nle afantontanteatents
EEE A IR I ey

*#%% types : basic types, aggregates, declarators #¥F#F¥¥iidiiis/
extern bit new_type;

extern Pname cl_obj_vec;
extern Pname eobj;

struct type : public node {

bit defined; /= 0 if only declared
1 if only defined
2 if simplified
not used systematically yet

'.‘r/

void print();

void dcl_print (Pname);

void base_print();

void del();

Pname is_cl_obji(); /* sets cl_obj_vec */

void dcl(Ptable);

int tsizeof();

bit tconst();

int align();

TOK kind (TOK,TOK);

TOK integral (TOK oo) { return kind(oco,1); };

TOK numeric(TOK oo) { return kind(oo,N); };

TOK num_ptr(TOK oo) { return kind(oo,P); };

bit fet_type();

bit vec_type();

bit check(Ptype, TOK);

Ptype deref();
Pptr addrof();
char® signature(char¥®);

Feb 8 12:47 1985

extern bit vrp_equiv;

cfront.h Page 5

public type { /*

class enumdef : * ENUM *
public:
Pname mem;
bit e_body;
int no_of_enumerators;
enumdef (Pname n) { base=ENUM; mem=n; };
void print();
void decl_print(Pname);
void dcl(Pname, Ptable);
void simpl();
33
class classdef : public type { /* CLASS */
public:
Pname clbase;
bit pubbase;
bit c_body; /* print definition only once ¥/
TOK csu; /* CLASS, STRUCT, UNION, or ANON */
char* string; /* name of class %/
Pname pubmem;
Ptable memtbl;
short obj_size;
char obj_align;
Ptable _m; short _o; char _a;
classdef (TOK, Pname);
void print();
void dcl_print(Pname);
void simpl();
Pname privmem;
Plist friend list;
Pname pubdef;
Plist tn_list; /% list of member names hiding type names a
Pclass in_class; /* enclosing class, or 0 */
Ptype this_type;
char virt_count; /% number of virtual functions
incl. virtuals in base classes
';’:/
Pname* virt_init; /* vector of jump table initializers */
Pname itor; /* constructor X(X&) */
Pname conv; /* operator T() chain */
void print_members();
void dcl(Pname, Ptable);
bit has_friend(Pname);
TOK is_simple() { return (csu==CLASS)?0:csu; };
Pname has_oper(TOK);
Pname has_ctor() { return memtbl->look('_ctor",0); }
Pname has_dtor() { return memtbl->look("_dtor",0); }
Pname has_itor() { return itor; }
Pname has_ictor();

U

‘\J

N

Feb 8 12:47 1985 cfront.h Page 6

1

class basetype :

public:

3;

struct fct

{

/.l..
FD

*/
*

/

ki /

bit
bit

bit
bit
bit
bit
bit

char
TOK
Pname
Pexpr
char
Ptable
Pname

Pbase
Pbase
Pbase
Pbase
Pname
void

void

Pbase

Ptype
Pname
Ptype
Pname
Pblock
Pexpr
short
TOK
TOK
char

public type

ZTYPE CHAR SHORT INT LONG FLOAT DOUBLE
FIELD EOBJ COBJ TYPE ANY

used for gathering

all the attributes

for a list of declarators

ZTYPE is the (generic) type of ZERO

ANY is the generic

b_unsigned;
b_const;

b_typedef;
b_inline;
b_virtual;
b_short;
b_long;

b_offset;

b_sto; /%
b_name; *
b_field; /%
b_bits; /%
b_table; /¥
b_xname; /%

type of an undeclared name

AUTO STATIC EXTERN REGISTER 0 */
name of non-basic type %/

field size expression for a field */
number of bits in field */

memtbl for b_name, or 0 */

extra name %/

basetype (TOK, Pname);

type_adj (TOK);
base_adj(Pbase);
name_adj (Pname);
check(Pname) ;
aggr();
normalize();
del_print();
arit_conv(Pbase);

: public type

returns;

argtype;
s_returns;

f_this;

body;

f_init;
frame_size;

nargs;
nargs_known; />
f_virtual; /¥

/% FCT */

KNOWN, ELLIPSIS, or 0 */
1+index in virtual table, or 0 %/

Feb 8 12:47 1985 cfront.h Page 7

char f_inline; /* 1 if inline, 2 if being expanded, else 0 */
Pexpr f_expr; /* body expanded into an expression ¥/
Pexpr last_expanded;

fct(Ptype, Pname, TOK);

void argdcl(Pname);
Ptype normalize(Ptype);
void del_print();
void dcl(Pname);
bit declared() { return (nargs_known); };
void simpl();
; Pexpr expand(Pname,Ptable,Pexpr);

struct name_list {§

Pname f;

Plist 1;
name_list(Pname ff, Plist 11) { f=ff; 1=11; };

HH
struct gen: public type /* OVERLOAD */
{
Plist fct_list;
char® string;
gen(char¥);
Pname add(Pname, int);
Pname find(Pfct);
3
struct vec : public type /% VEC */
{ /* typ [dim | */
Ptype typ;
Pexpr dim;
int size;
vec(Ptype t, Pexpr e) { Nt++; base=VEC; typ=t; dim=e; };
Ptype normalize(Ptype);
void print();
s
struct ptr : public type /* PTR RPTR¥*/
Ptype typ;
bit rdo; /* *CONST */

ptr(TOK b, Ptype t, bit r = 0) { Nt++; base=b; typ=t; rdo=r; };
Ptype normalize(Ptype);
HE

(N

Feb 8 12:47 1985

cfront.h Page 8

[EEERETETdRIRTRRSRERRIRIRN RS R constants

FAa

extern
extern
extern
extern
extern
extern

wedededekveded

/* STRING ZERO ICON FCON CCON ID *
/* IVAL FVAL LVAL */

Pexpr next_elem();
void new_list(Pexpr);

void list_check(Pname, Ptype, Pexpr);

Pexpr ref_init(Pptr,Pexpr,Ptable);
Pexpr class_init(Pexpr,Ptype,Pexpr,Ptable)};

Pexpr check_cond(Pexpr, TOK, Ptable);

class expr :

public:

public node

Yeveedededededededededrle de e Tl e e de de e e

I

o expressions ****k*k*************************/

/* PLUS, MINUS, etc. */

=>

=>

all expressions are of sizeof(expr) */

*el (e2==0) OR el[e2]

-e2
++e2
el++

el , e2
LC el RC

a Pexpr may denote a name

expr (TOK, Pexpr, Pexpr);

/% IMPORTANT:
/* DEREF
UMINUS
INCR (el==0)
INCR (e2==0)
CM
ILIST
*/
union {
Ptype tp;
int syn_class;
}s
union §
Pexpr el;
char® string;
¥
union §
Pexpr e2;
Pexpr n_initializer;
3
union {
Ptype tp2;
Pname fct_name;
Pexpr cond;
Pname mem;
Ptype as_type;
Ptable n_table;
Pin il;
3
~expr();
void del();
void print();
Pexpr typ(Ptable);
int eval();

(an initializer list)

/% used by the derived classes */

Feb 8 12:47 1985

}.

b

extern

struct

3

5

{
3

3

truct

3

struct

i

} .

3

int
Ptype
Pexpr
Pexpr
void
Pexpr
bit

cfront.h Page 9

1lval(TOK);
fct_call(Ptable);
address();
contents();
simpl();
expand();
not_simple();

char® Neval;

typed_obj : public expr §
typed_obj(TOK t, char#* s)

texpr :

public expr /%

(t,(Pexpr)s,0) { this=0; }

NEW CAST VALUE #*/

texpr(TOK bb, Ptype tt, Pexpr ee) : (bb,ee,0) { this=0; tp2=tt; }

call : public expr /%

call(Pexpr aa, Pexpr bb)

void
Pexpr

struct gexpr

struct ref :

}.

3

simpl();
expand (Ptable);

: public expr /*
/* cond 7 el :

e2 %/

gexpr(Pexpr ee, Pexpr eel,

public expr

~
F

/* el->mem OR el.mem %/

W

/ Wanterlontsutantualeutenlentontenle ntenle sleste nle alewlanlentlentente nfe ate
TR TR IWWIWIRHWH R HWRWRW W

class name :

p

/..

}.

3

ublic:

ref(TOK ba, Pexpr a, Pname

public expr {

CALL #*/
(CALL,aa,bb) { this=0; }

QUEST */

Pexpr ee2) : (QUEST,eel,ee2) { this=0; c

REF DOT */

b) : (ba,a,0) { this=0; mem=b; }

names (are expressions) Fdkdelebddeieh ol bdlolddeloldoldd

/* NAME TNAME and the keywords in the ktbl */

Pexpr
int
TOK
TOK
TOK
TOK
short
Prname

n_initializer; %/

n_val; /%
n_oper; /*
n_sto; /%
n_stclass; /=
n_scope; /%
n_offset; /*
n_list;

the value of n_initializer */

name of operator or 0 ¥/

STO keyword: EXTERN, STATIC, AUTO, REGIS
STATIC AUTO REGISTER 0 */

EXTERN STATIC FCT ARG PUBLIC 0 */

byte offset in frame or struct *

5

Feb 8 12:47 1985 cfront.h Page 10

Pname n_tbl_list;

/¥ Ptable n_table; *f
short n_used;
short n_addr_taken;
short n_assigned_to;

char n_union; /* 0 or union index *

bit n_evaluated; /* 0 or n_val holds the value %/
short lex_level;

Loc where;

union {

Pname n_qualifier;

Ptable mn_realscope; /* for labels (always entered in

function table) the table for the actual
scope in which label occurred.
*/
¥

name (char® =0);
~name();

void del();

void print();

void decl_print(TOK);

Pname normalize(Pbase, Pblock, bit);
Pname tdef();

Pname tname(TOK);

Pname dcl(Ptable,TOK);

int no_of_names();

void hide();

void unhide() { n_key=0; n_list=0; };

void use() { n_used++; };

void assign();

void call() { n_used++; };

void take_addr () { n_addr_taken++; };

void check_oper(Pname);

void simpl();
35

/ Fedeldedede el dede bl e NNl NN gtatements FENRERRENSRdId b S A ddede bbb ddideloddeledodeidek /

class stmt : public node § /% BREAK CONTINUE DEFAULT */
/= IMPORTANT: all statement nodes have sizeof(stmt) */
public:

Pstmt s}

Pstmt s_list;

Loc where;

union §

Pname d;

Pexpr el;

Pstmt has_default;

int case_value;

¥s

union {

Pexpr e,

Feb 8 12:47 1985 cfront.h Page 11

bit own_tbl;
Pstmt s2;

}s

Ptable memtbl;
union §

Pstmt for_init;
Pstmt else_stmt;
Pstmt case_list;

33

stmt (TOK, loc, Pstmt);
~stmt();

void del();
void print();
void dcl();
void reached();
Pstmt simpl();
Pstmt expand();
Pstmt copy();

}s

extern Pname dcl_temp(Ptable, Pname);
extern char® temp{char®*, char®*, char¥);
extern Ptable scope;

extern Ptable expand_tbl;

extern Pname expand_ fn;

struct estmt : public stmt /* SM WHILE DO SWITCH RETURN DELETE CASE #*/
/* SM (e!=0) => e;
in particular assignments and function calls
SM (e==0) => R (the null statement)
CASE => case e : s
{ :’:/
estmt(TOK t, loc 11, Pexpr ee, Pstmt ss) : (t,ll,ss) { this=0; e=ee
33
struct ifstmt : public stmt /% IF */
/% else_stme==0 => if (e) s
else_stmt!=0 => if (e) s else else_stmt
{ Y
ifstmt(loc 11, Pexpr ee, Pstmt ssl, Pstmt ss2)
: (IF,11,ss1) { this=0; e=ee; else_stmt=ss2; };
}s
struct lstmt : public stmt /* LABEL GOTO */
/%
d : s
goto d
i
{

lstmt (TOK bb, loc 11, Pname nn, Pstmt ss) : (bb,l1l,ss) { this=0; d=

N

Feb 8 12:47 1985 cfront.h Page 12

C
~ struct forstmt : public stmt /* FOR */
forstmt(loc 11, Pstmt fss, Pexpr eel, Pexpr ee2, Pstmt ss)
o : (FOR,11,ss) { this=0; for_init=fss; e=eel; e2=ee2; }
. 33
struct block : public stmt /* BLOCK */
[k {ds)%/
{

block(loc 11, Pname nn, Pstmt ss) : (BLOCK,1l,ss) { this=0; d=nn; }
void dcl(Ptable);
Pstmt simpl();

. s
&W struct pair : public stmt /% PAIR %/
{
pair(loc 11, Pstmt a, Pstmt b) : (PAIR,1l,a) { this=0; s2 = b; }
¥s
class nlist {

public:
Pname head;
Pname tail;
nlist(Pname);
void add(Pname n) { tail->n_list = n; tail = n; };
void add_list(Pname);

s

(ﬁ
- extern Pname name_unlist(nlist#®);
class slist §
public:
Pstmt head;
Pstmt tail;
slist(Pstmt s) { Nl++; head = tail = s; };
void add(Pstmt s) { tail->s_list = s; tail = s; };
};
extern Pstmt stmt_unlist(slist®);
class elist §
7. public:
(%.’ Pexpr head;
Pexpr tail;
elist(Pexpr e) { Nl++; head = tail = e; };
void add(Pexpr e) { tail->e2 = e; tail = e; };
};
extern Pexpr expr_unlist(elist¥®);
~ extern class dcl_context * cc;
\

class dcl_context {
public: . "
Pname c_this; /% current fct's "this" ¥/

Feb 8

i

12:47 1985 cfront.h Page 13

Ptype tot; /* type of "this" or 0 */

Pname not; /* name of "this'"'s class or 0 %/
Pclass cot; /* the definition of "this"'s class */
Ptable ftbl; /* current fct's symbol table */

Pname nof; /* current fct's name */

void stack() { cct+; *Fcc = ¥(ce-1); 3;

void unstack() { cc--; };

f#idefine MAXCONT 20

extern

extern
extern
extern

extern
extern
extern
extern

extern
extern
exXtern

extern
extern

extern
extern
extern
extern
extern

dcl_context ccvec[MAXCONT];

bit can_coerce(Ptype, Ptype);
void yyerror(char®);
TOK back;
/* "spy" counters: */
int Nspy; :
int Nfile, Nline, Ntoken, Nname, Nfree_store, Nalloc, Nfree;
int NFn, NFtn, NFpv, NFbt, NFf, NFs, NFc, NFe, NF1;
char* line_ format;
Plist isf _list;
Pstmt st_ilist;
Pstmt st_dlist;
Ptype np_promote(TOK, TOK, TOK, Ptype, Ptype, TOK);

void new_key(char®*, TOK, TOK);

Pname dcl_list;

int over_call(Pname, Pexpr);
Pname Nover;

Pname Ncoerce;

Nover_coerce;

const MIA = 8;

struct

33

extern
extern

iline {

Pname fct_name; /% fct called %/

Pin i_next;

Ptable i_table;

Pname local[MIA]; /* local variable for arguments */
Pexpr arg[MIA]; /% actual arguments for call */
Ptype tp[MIA]; /% type of formal arguments */

Pexpr curr_expr;
Pin curr_icall;

fidefine FUDGE11l1l 111

extern Pstmt curr_loop;

extern

Pblock curr_block;

extern Pstmt curr_switch;
extern bit arg err_suppress;
extern loc last_line;

L

g

o

~

N

M

Feb 8

extern
extern

extern
extern
extern
extern

extern
extern
/% end

12:47 1985 cfront.h Page

no_of_undcl;
Pname undcll, undcl2;

int strlen(char®); -
int strepy(char®,char¥®);
int strcmp(char®,char®);
int str_to_int(char¥);

Pname vec_new_fct;
Pname vec_del_fct;

wta
Fy

/% testing edget ¥/

14

Feb 8 12:48 1985 dcl.c Page 1

wle O 720 / N o/ T O o/1TY/ O
/% %L% %Mh %1% %H% %T% */
JFFddedddivlolfdileddodeiiolelelolfidvlilelelelviiioleloiddnloleloiniodeledeleloiiiode dolololeoioloidodolodniilolclolrivinloh dok

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.
dcl.c:

““declare'' all names, that is insert them in the appropriate symbol tables

Calculate the size for all objects (incl. stack frames),

and find store the offsets for all members (incl. auto variables).

"size.h" holds the constants needed for calculating sizes.

Note that (due to errors) functions may nest

ol o mtes s e, oo ot ot nfo el s mfs mlt s st fos s wte s ot fon mten o - e o e ot P ¥ el et e ot et s P Yoo ! fom wotes sl ot nten s ! atont ntr wlnnfor
%AkkkkA*LAA**L%%*%**Ak*n*kkkkkA*n%*%%ik*k*%"%mkﬁunkn*k%*nk*%“*ﬂ%k“**kkk*un%ku/

)

#include "cfront.h"
#include "size.h"

class dcl_context ccvec[MAXCONT], * cc = ccvec;
int byte_offset;

int bit_offset;

int max_align;

int stack_size;

int enum_count;

int friend_in_class;

void name.check_oper(Pname cn)
{
switch (n_oper) {
case CALL:
if (cn == 0) error("operator() must be aM");
break;
case DEREF:
if (cn == 0) error("operator[] must be aM");
break;

case O:
case TNAME: /* may be a constructor ¥/
if (cn && strcmp(cn->string,string)==0) {
if (tp->base == FCT) {
Pfct £ = (Pfct)tp;
if (f->returnsl!=defa_type && fct_void==0)
error("%s::%s() with returnT",string,string

f->returns = void_type;
string = "_ctor";
n_oper = CTOR;

else

~

Feb 8 12:48 1985 dcl.c Page 2

error('s’,"struct%cnM%n",cn,cn);

3
else
n_oper = 0;
break;
case DTOR: * must be a destructor ¥/

if (en == 0) {
n_oper = 0;
error(’ destructor ~%s() not inC",string);

else if (stremp(en->string,string) == 0) §
Pfct £ = (Pfct)tp,
string = "_dtor";

if (tp->base != FCT) {
error("%s::~%s notF",cn->string,cn->string);
tp = new fct(void_type,0,1);

else if (f- >returns'—defa _type && fct v01d =0)
error ("%s::~%s() with returnT",cn->string,cn->strin
if (f->argtype) {
if (fct_void==0) error("%s::~%s() withAs",cn->strin
f->nargs = 0;
f->nargs_known = 1;
f->argtype = 0;

3
f->returns = void_type;

else §
error("~%s in%s",string,cn->string);
n_oper = 0;

}

break;

case TYPE:

if (cn = 0) {
error("operator%t() not aM",(Ptype)n_initializer);
n_oper = 0;
n_initializer = 0;

else {
Pfct £ = (Pfct)tp;
Ptype tx = (Ptype)n_initializer;

/*error('d',"operator%t ()", tx);¥*/

n_lnltlallzer = 0;
if (f->base != FCT) error("badT for%n::operator%t()",cn,tx)
if (f->returns != defa_type) {
if (f->returns->check(tx,0)) error("bad resultT for
DEL(f->returns);

}
if (£- >argtype) {
error ("%n: :operator%t() withAs",cn,tx);
f->argtype = 0;
3
f->returns = tx;
Pname nx = tx=->is_cl_obj();
if (nx &% can_coerce(tx,cn->tp)) error("both %n::%n(%n) and
char buf[128];

Feb 8 12:48 1985 dcl.c Page 3

char®* bb = tx->signature(buf);
int 12 = bb-buf-1;
char* p = new char[12+1];

strcepy(p,buf);
string = p;
3
break;
H
H
Pname name.dcl(Ptable tbl, TOK scope)
/%
enter a copy of this name into symbol table "tbl";
- create local symbol tables as needed
"scope" gives the scope in which the declaration was found
- EXTERN, FCT, ARG, PUBLIC, or O
Compare "scope" with the specified storage class "n_sto"
- AUTO, STATIC, REGISTER, EXTERN, OVERLOAD, FRIEND, or O
After name.dcl()
n_stclass == 0 class or enum member
REGISTER auto variables declared register
AUTO auto variables not registers
STATIC statically allocated object
n_scope == 0 private class member
PUBLIC public class member
EXTERN name valid in this and other files
STATIC _ name valid for this file only
FCT name local to a function
ARG name of a function argument
ARGT name of a type defined in an argument list
typecheck function bodies;
typecheck initializers;
note that functions (error recovery) and classes (legal) nest
The return value is used to chain symbol table entries, but cannot
be used for printout because it denotes the sum of all type information
for the name
names of typenames are marked with n_oper==TNAME
WARNING: The handling of scope and storage class is cursed!
%/
{

Pname nnj;
Ptype nnt = 0;
Pname odcl = Cdcl;

if (this == 0) error('i',"0->name.dcl()");

if (tbl == 0) error('i',"%n->name.dcl(tbl=0,%k)",this,scope);

if (tbl->base != TABLE) error('i',"%n->name.dcl(tbl=%d,%k)",this,tbl->base,

if (tp == 0) error('i',"name.dcl(%n,%k)T missing",this?scope);
#fprintf(stderr," (%d %s)->dcl(tbl=%d,scope=%d) tp = (%d %d)\n',this,string,tbl,scop

o

Feb 8 12:48 1985 dcl.c Page 4

Cdcl = this;
switch (base)
case TNAME:
tp->dcl(tbl);
PERM(tp);
nn = new name(string);
nn->base = TNAME;
nn->tp = tp;
tbl->insert(nn,0);
delete nn;
Cdel = odel;
return this;
case NAME:
switch (n_oper) {
case TNAME:
if (tp->base != F(CT) n_oper = 0;
break;
case COMPL:
if (tp->base != FCT) {
error("~%s notF",string);
n_oper = 0;

3
break;
}
break;
default:
error('i',"NX in name.dcl()");
H
if (n_qualifier) { /% class function: c.f(); *

if (tp->base != FCT) {
error("QdN%n inD of nonF",this);
Cdcl = odcl;
return 0;

}

Pname cn = n_qualifier;
switch (cn->base) {
case TNAME:
break;
case NAME:
cn = gtbl->look(cn->string,0);
if (cn && cn->base==TNAME) break;
default:
error("badQr%n for%n",n_qualifier,this);
Cdcl = odcl; .
return 0;

cn = ((Pbase)cn->tp)->b_name;
if (n_oper) check_oper(cn);

Pclass ¢l = (Pclass)en->tp;

if (cl == cc=>cot)
n_qualifier = 0;
goto xdr;

3

Feb 8 12:48 1985 dcl.c Page 5

xdr:

else if (cl->defined == 0) {
error("C%nU",cn);
Cdel = odcel;
return 0O;

3

Ptable etbl = cl->memtbl;

Pname x = etbl->look(string,0);

if(x==0 || x->n_table!=etbl) {
error("%n is not aM of%n",this,cn);
Cdel = odel;
return O;

2

if (n_oper && tp->base!=FCT && n_sto!=0VERLOAD)
error(''operator%k not aF",n_oper);

/* if a storage class was specified
check that it is legal in the scope
else
provide default storage class

some details must be left until the type of the object is known

7'.-/
n_stclass = n_sto;
n_scope = scope; /* default scope & storage class */

if (n_sto==0 && scope==EXTERN) {
if (scope_default==STATIC) {
switch (tp->base) {
case FCT:
§
Pfct £ = (Pfct)tp;
if (strcmp(string,'main"))

n_scope = (f->body) ? STATIC :

break;
3
case CLASS:
case ENUM:
default:
n_scope = STATIC;
}
3
3
switch (n_sto) {
default:

error('i',"unX %k",n_sto);
case FRIEND:
{

Pclass ¢l = cc->cot;

switch (scope) {
case 0:

EXTERN;

W,

W

-

N

Feb 8 12:48 1985 dcl.c Page 6

case PUBLIC:

break;
default:
error("friend%n not in classD(%k)",this,scope);
base = 0;
Cdecl = odcl;
return 0O;
}
switch (n_oper) {
case 0O:
case NEW:
case DELETE:
case CTOR:
case DTOR:
n_sto = 0;
break;
default:
n_sto = OVERLOAD;
H
switch (tp->base) {

/% case INT: undefined: implicitly define as class
nn = tname(CLASS);
nn->tp->dcl(gtbl);
break;

* /

case COBJ:
nn = ((Pbase)tp)->b_name;
break;
case CLASS:
nn = this;
break;
case FCT:
cc=>stack();
cc->not = 0;
cc->tot = 0;

cc->cot = 0;

friend_in class++;

nn = dcl(gtbl,EXTERN);

friend_in class--;
/*fprintf(stderr,"ff %s %d\n",nn->string,nn->tp->base);*/

cc->unstack();

if (nn->tp->base == OVERLOAD) {

Pgen g = (Pgen)nn->tp;
} nn = g->find((Pfct)tp);
break;
default:
error("badT%t of friend%n",tp,this);

H

PERM(nn);

cl->friend_list = new name_list(nn,cl->friend_list);
Cdcl = odcl;

return nn;

Feb 8 12:48 1985 dcl.c Page 7

case OVERLOAD: i)
n_sto = 0; -
switch (scope) {
case O: -
case PUBLIC:

error('w',"overload inCD (ignored)"); ‘u)
switch (tp->base) {
case INT:
base = 0;
Cdcl = odcl;
return this;
case FCT:
; return dcl(tbl,scope);

)
if (n_oper && tp->base==FCT) break; -
nn = tbl->insert(this,0);
if (Nold) {

if (nn->tp->base != OVERLOAD) {
error{"%n redefined as overloaded",this);
} nn->tp = new gen(string);
else {
} nn->tp = new gen(string);
switch (tp->base) {)
case INT: -
base = 0;
Cdcl = odcl;
return nn;
case FCT:
break;
default:
error ("N%n ofT%k cannot be overloaded",this,tp->base);
Cdcl = odcl;
return nn;
3
break;
case REGISTER: N
if (tp->base == FCT) { 3
error('w',"%n: register (ignored)",this); -
goto ddd;
1
case AUTO:
switch (scope) {
case 0:
case PUBLIC:
case EXTERN:
error("%k not inF",n_sto); = N
| goto ddd; A
break;
case EXTERN:

M

(o

.

Feb 8 12:48 1985 dcl.c Page 8

switch (scope) {
case ARG:
error("externA");
goto ddd;
case 0:
case PUBLIC:
/% extern is provided as a default for functions without bo
if (tp->base != FCT) error("externM%n",this);
} goto ddd; '
n_stclass = STATIC; :
n_scope = EXTERN; /% avoid FCT scoped externs to allow better
break;

case STATIC:

case 0:
ddd:

switch (scope) {
case ARG:
error("static used forA%n'",this);
goto ddd;
case 0:
case PUBLIC:
n_stclass = STATIC;
n_scope = scope;

break;
default:
n_scope = STATIC;
}
break;
switch (scope) § v /% default storage classes %/
case EXTERN:
switch (tp->base) {
case FCT: /* anomaly: f(int); => extern f(int); *
break;
default:
n_scope = scope_default;
3
n_stclass = STATIC;
break;
case FCT:
if (tp->base == FCT) {
n_stclass = STATIC;
n_scope = EXTERN;
3
else
n_stclass = AUTO;
break;
case ARG:
if (tp->base == FCT) error("%n asA",this);
n_stclass = AUTO;
break;
case O:

case PﬁBLIC:
n_stclass = 0;
break;

Feb 8 12:48 1985 dcl.c Page 9

3
/%
now insert the name into the appropriate symbol table,
and compare types with previous declarations of that name
do type dependent adjustments of the scope
*/
switch (tp->base) {
case ASM:
{ Pbase b = (Pbase)tp;
Pname n = tbl->insert(this,0);
n->assign();
n->use();
return this;
}
case CLASS:
{ Pclass cl;

Pbase bt;
Pname bn;
Pclass nest;
Pname nx = ktbl->look(string,0); /% TNAME */
/*fprintf(stderr,”%s: nx %d\n",string,nx);*/
if (nx == 0) {
/% search for hidden name for
(1) nested class declaration
(2) local class declaration
for (nx=ktbl->look(string,HIDDEN); nx; nx=nx->n_tbl_list) {
if (nx->n_key !{= HIDDEN) continue;
if (nx->tp->base != COBJ) continue;

bt = (Pbase)nx->tp;

bn = bt->b_name;

cl = (Pclass)bn->tp;

if (cl == 0) continue;

if ((nest=cl->in_class) && nest==cc->cot)
goto bbb;

else if (cc->nof /% fudge %/
&& cc->nof->where.line<nx->where.line)
goto bbb;

error("i',"%n is not aTN",this);

else §
bt = (Pbase)nx->tp; /% COBJ */
bn = bt->b_name;
nest = 0;

3

bbb:

/*fprintf(stderr,”bbb: bt %d %d\n",bt,bt->base); fflush(stderr);*/
bn->where = nx->where;
Pname bnn = tbl->insert(bn,CLASS); /*copy for member lookup */
cl = (Pclass)bn->tp;

\w/""

3\»/7};

-

(D

Feb 8 12:48 1985 dcl.c Page 10

/% CLASS */

/*fprintf(stderr,”cl %d %d\n",cl,cl->base); fflush(stderr);*/

3

if (cl->defined)

error(""C%n defined twice",this);

else {

if (bn->n_scope == ARG) bn->n_scope = ARGT;
cl->dcl(bn,tbl);
if (nest) {

/'k

H
3
tp = cl;
Cdcl = odcl;
return bnn;

case ENUM:
Pname nx = ktbl->look(string,0); /%

{

H

if (nx == 0) ¢

int 11 = strlen(cl->string);

int 12 = strlen(nest->string);
char* s = new char[11+12+2];
strcpy(s;nest->string);

s[12] = '_";
strepy(s+12+1,cl->string);
cl->string = s;
cl->memtbl->t_name->string = s;¥/

nx = ktbl->look(string,HIDDEN); /%

3
Pbase bt

(Pbase)nx->tp; /%

Pname bn = bt->b_name;
Pname bnn = tbl->insert(bn,CLASS);
Penum en = (Penum)bn->tp; /=

if (en->defined)

error("enum%n defined twice",this);

else §

if (bn->n_scope == ARG) bn->n_scope = ARGT;
en->dcl(bn,tbl);

3

tp = en;
Cdcl = odcl;
return bnn;

case FCT:
Pfct £ = (Pfet)tp;
Pname class_name;

{

Ptable ethbl;

int can_overload;
int in_class_dcl = (int)cc->not;

int just_made =

0;

if (f->f_inline) n_sto = STATIC;

if (f->argtype)
Pname a;

{

int oo = const_save;

TNAME */

hidden TNAME */

EOBJ */

ENUM */

Feb 8 12:48 1985 dcl.c Page 11

const_save = 1;
for (a=f->argtype; a; a=a->n_list) {
Pexpr init;
if (init = a->n_initializer) {
int i = 0;
init = init->typ(tbl);
if (a->tp->check(init->tp,ARG)==
|| (i=can_coerce(a->tp,init->tp))) {
if (1 < i) error("%d possible conve
if (Ncoerce) {
Pname cn = init->tp=->is_cl_
Pclass ¢l = (Pclass)cn->tp;
Pref r = new ref(DOT,init,N
init = new expr(G_CALL,r,0)
init->fct_name = Ncoerce;
init->tp = a->tp;

init->simpl();
init->permanent = 2;
a->n_initializer = init;

else §
error("badIrT%t forA%n",init->tp,a)
DEL(init);
a~>n_initializer = 0;
}
}
flattenl:
switch (a->tp->base) {
case TYPE:
a->tp = ((Pbase)a->tp)->b_name~>tp;
goto flattenl;
case CHAR:
case SHORT:
/% error('w',"A ofT%k (becomes int)",a->tp->ba
a->tp = int_type;
break;
case FLOAT:
/* error('w',"A ofT float (becomes double)");
a->tp = double_type;
} break;

3

const_save = 00;

H
tp->dcl(tbl); /* must be done before the type check */

if (n_qualifier) { /* qualified name: c.f() checked above */
if (in_class_dcl) {
error ("unXQN%n",this);
Cdcl = odcl;
return 0;
3

class_name = ((Pbase)n_qualifier->tp)->b_name;

/
p—

Feb 8 12:48 1985 dcl.c Page 12

etbl = ((Pclass)class_name->tp)->memtbl;

else §
class_name = cc->not;
/* beware of local function declarations in member function
if (class_name && tbll=cc->cot->memtbl) {
class_name = 0;
in_class_dcl = 0;
if (n_oper) check oper(class_name);
; etbl = tbl;

if (etbl==0 || etbl->base!=TABLE) error('i','N.dcl: etbl=%d",etbl);

switch (n_oper) {
case NEW:
case DELETE:
switch (scope) {
case 0:
case PUBLIC:
error ("%nMF",this);

3
case 0:
can_overload = in_class_dcl;
break;
case CTOR:
if (f->f_virtual) ¢
error("virtual constructor");
} f=->f virtual = 0;
case DTOR:
if (fct_void) n_scope = PUBLIC;
can_overload = in_class_dcl;
break;
default:
can_overload = 1; /* all operators are overloaded ¥/
3
switch (scope) {
case FCT:
case ARG:
{ Pname nx = gtbl->insert(this,0);
n_table = 0;
n_tbl _list = 0;
/* no break */
default:
nn = etbl->insert(this,0);
nn->assign();
n_table = etbl;
break;
}
if (Nold) ¢

Feb 8 12:48 1985 dcl.c Page 13

Pfct nf = (Pfct)nn->tp;
/*error('d',"%n: tp%t nf%t",nn,tp,nf);%*/
if (nf->base==ANY || f->base==ANY)

else if

3

else if

3

else if

(nf->base == OVERLOAD) ¢{
Pgen g = (Pgen) nf;
nn = g->add(this,0);
string = nn->string;
if (Nold == 0) {
if (£->body) {
if (n_qualifier) {
error(0,"badAL for overload
Cdcl = cdcl;
return 0;

else if (£->f_inline==0 && n_oper==
error('w',"overloaded %n de

goto thth;
else {

3

nf = (Pfct)nn-~>tp;

if (£->body==0 && friend in_class==0) error

if (f->body && nf->body) {
error("two definitions of overloaded%n',nn)
Cdcl = odcl;
return 0;

H
if (f->body) goto bdbd;
goto stst;

(nf->base != FCT) {
error ("%n declared both as%t and asF",this,nf);
f->body = 0;

(can_overload) {
if (nf->check(f,0VERLOAD) || vrp_equiv) {
if (£->body && n_qualifier) {
error('"badAT for%n',nn);
Cdel = odcl;
return 0;
}
Pgen g = new gen(string);
Pname nl = g->add(nn,in_class_dcl);
Pname n2 = g->add(this,0);

/*error('d',"n1%n n2%n\n",nl,n2);%*/

nn->tp = (Ptype)g;
nn->string = g->string;
nn = n2;

goto thth;

-

Feb 8 12:48 1985 dcl.c Page 14

else if

else if

else if

bdbd:

/*fprintf(stderr,'bdbd %s: f %d

if (in_class_dcl) {
error(''two declarations of%n",this);
f->body = 0;
Cdcl = odel;
return 0;

}

if (nf->body && f->body) {
error("two definitions of%n",this);
f->body = 0;
Cdcl = odcl;
return O;

}
if (f£->body) goto bdbd;
goto stst;

(nf->check(f,0)) §
switch (n_oper) {
case CTOR:
case DTOR:
f->s_returns = nf->s_returns;

error ("%nT mismatch:%t and%t",this,nf,f);
f->body = 0;

(nf->body && f->body) {
error(''two definitions of%n",this);
f->body = 0;

(f->body) {
Pname al, a2;

if (f->nargs_known && nf->nargs_known)
for (al=f->argtype, a2=nf->argtype; al; al=al->n_1li

int i1 = al->n_initializer || al->n_evaluat
int i2 = a2->n_initializer || a2->n_evaluat
if (41) §

if (42

&& (al->n_evaluated==0

| |a2->n_evaluated==0
|| al->n_valt=a2->n_val)

error("twolrs for%nA%n",nn,

H
else if (i2) {
al->n_initializer = a2->n_initializ
al->n_evaluated = a2->n_evaluated;
al->n_val = a2->n_val;
}
3
f->f virtual = nf->f virtual;
f->f_this = nf->f_this;
inl %d nf %d inl %d\n",string,f,f->f_inline,nf,nf->f

Feb 8 12:48 1985 dcl.c Page 15

/ +*

}

else {
thth:

nn->tp = f;
if (f->f_inline) {
if (nf->f_inline==0 && nn->n_used) error("%
nf->f_inline = 1;
} nn->n_sto = STATIC;
else if (nf->f_inline) {
 /%error("%h defined as inline but not decla
| f->f_inline = 1;

goto stst2;

else { /* two declarations */
Pname al, a2;
f->f_this = nf~>f_ this;

stst:
if (f->nargs_known && nf->nargs_known)
for (al=f->argtype, a2=nf->argtype; al; al=al->n_li
int i1 = al->n_initializer || al->n_evaluat
int i2 = a2->n_initializer || a2->n_evaluat
if (i1) §
if (i2) §
if (al->n_evaluated==0
|| a2->n_evaluated==0
|| al=>n_val!=a2->n_val)
error("twolrs for%n
else if (class_name)
error("defaultA for%n",nn);
3
else if (i2)
al->n_initializer = a2->n_initializ
al->n_evaluated = a2->n_evaluated;
al->n_val = a2->n_val;
}
}
stst2:
if (£f->f_inline) n_sto = STATIC;
if (n_sto) §
if (nn->n_scope!=n_sto && f->f_inline==0)
error("%n both%k and%k",this,n_sto,
else {
if (nn->n_scope==STATIC && n_scope==EXTERN)
}
n_scope = nn->n_scope; /* first specifier wins */
/* n_sto = nn->n_sto;¥*/

ot

((Pfct)nn->tp)=->nargs_known = nf->nargs_known; ¥/
/* new function: make f_this for member functions %/

just_made = 1;
if (£->f_inline) nn->n_sto = STATIC;

/*fprintf(stderr,”thth %s: f %d nn->tp %d inl %d\n",string,f,nn->tp,f->f_inline);*/

J

__/

{ j
AN

VR
(.

-~

Y

{/‘\

Feb 8 12:48 1985 dcl.c Page 16

if (class_name && etbl!=gtbl) { /* beware of implicit decla

3

Pname cn = nn->n_table->t_name;

Pname tt = new name(''this");

tt->n_scope = ARG;

tt->n_sto = REGISTER;

tt->tp = ((Pclass)class_name->tp)->this_type;
PERM(tt);

((Pfet)nn->tp)->f_this = £->f_this = tt;
tt->n_list = f->argtype;

if (f->f_virtual) {

switch (nn->n_scope) {

default:
error("nonC virtual%n",this);
break;

case 0:

case PUBLIC:
cc=>cot->virt_count = 1;
((Pfct)nn->tp)->f_virtual = 1;

break;
3
3
H
/* an operator must take at least one class object or
reference to class object argument
z’c/

switch (n_oper) ¢

case CTOR:

if (f->nargs == 1) {

clll:

H

break;
case TYPE:

/* check for X(X) and X(X&) */
Ptype t = f->argtype->tp;

switch (t->base) {

case TYPE:
t = ((Pbase)t)~->b_name->tp;
goto clll;
case RPTR: /% X(X&) 7 */
t = ((Pptr)t)->typ;
cxll:
switch (t->base) {
case TYPE:
t = ((Pbase)t)->b_name->tp;
goto cx1l;
case COBJ:
if (class_name == ((Pbase)t)->b_nam
((Pclass)class_name->tp)->i
3
break;
case COBJ: /% X(X) 7 %/
if (class_name == ((Pbase)t)~>b_name)
error("impossible constructor: %s(%
3

Feb 8 12:48 1985 dcl.c Page 17

/*error('d',"just_made %d %n",just_made,this);*/
if (just_made) {
nn->n_list = ((Pclass)class_name->tp)=->conv;
((Pclass)class_name->tp)-~>conv = nn;

break;
case DTOR:
case NEW:
case DELETE:
case CALL:
case 0:
break;
default:
if (f->nargs_known != 1) {
error ("ATs must be fully specified for%n",nn);
else if (class_name == 0) {
Pname a;
switch (f->nargs) {
case 1:
case 2:
for (a=f->argtype; a; a=a->n_list) {
Ptype tx = a->tp;
if (tx->base == RPTR) tx = ((Pptr)t
if (tx->is_cl_obj()) goto cok;
error (""%n must take at least oneCTA",nn);
break;
default:
} error ("%n must take 1 or 2As",nn);
else {
switch (f->nargs) {
case O:
case 1:
break;
default:
} error("%n must take 0 or 1As",nn);
3
cok:;
e

the body cannot be checked until the name
has been checked and entered into its table

ola
W

if (£->body) f->dcl(nn);

break;

3

case FIELD:

{ Pbase fld = (Pbase)tp;
char x;

/

i\'/,

)

Feb 8 12:48 1985 dcl.c Page 18

(M_ if (cec->not==0 || cc->cot->csu==UNION) {
if (cc->not)
error("field in union');

else
- error("field not inC");
C PERM(tp);
- Cdcl = odel;

return this;

3

if (string)

nn = tbl->insert(this,0);

n_table = nn->n_table;

if (Nold) error("twoDs of field%n',this);

C }

tp->dcl(tbl);
if (£ld->b_bits == 0) { /* force word alignment %/
int b;
if (bit_offset)
fld->b_bits = BI_IN_WORD - bit_offset;
else if (b = byte_offset%SZ_WORD)
fld->b_bits = b % BI_IN_BYTE;

x = bit_offset += fld->b_bits;
if (BI_IN_WORD < x) {
fld->b_offset = 0;
. byte_offset += SZ_WORD;
(. : bit_offset = fld->b_bits;

else §
fld->b_offset = bit_offset;
if (BI_IN_WORD == x) {
bit_offset = 0;
byte_offset += SZ_WORD;

else

} bit_offset = Xx;

n_offset = byte_offset;

break;

_ 3
CW. case COBJ:
{ Pclass ¢l = (Pclass) ((Pbase)tp)->b_name->tp;
/*fprintf(stderr,"COBJ %d %s -> (%d %d)\n",tp, ((Pbase)tp)->b_name->string,cl,cl->bas

if (cl->csu == ANON) { /% export member names to enclosing scope *
Pname nn;
int 1i;

int uindex;
Ptable mtbl = cl->memtbl;
char®* p = cl->string;

if (tbl == gtbl) error('s',"global anonomous union');
while (¥p++ != 'C'); /% UGH!!I! */
uindex = str_to_int(p);

Feb 8 12:48 1985 dcl.c Page 19

for (nn=mtbl->get_mem(i=1); nn; nn=mtbl->get_mem(++i)) {
Ptable tb = nn-~>n_table;
nn->n_table = 0;
- Pname n = tbl->insert(nn,0);
n->n_union = uindex;
nn->n_table = tb;

}
3
goto cde;
}
case VEC:
case PTR:
case RPTR:
tp->dcl(tbhl);
default:
cde:

nn = tbl->insert(this,0);

n_table = nn->n_table;
/*error('d',"Nold %d tbl %d nn %d%n tp%t",Nold,tbl,nn,nn,nn->tp);%*/
if (Nold) {
if (nan->tp->base == ANY) goto zzz;
if (tp->check(nn->tp,0)) {
error("twoDs of%n;Ts:%t and%t",this,nn->tp,tp);
Cdcl = odcl;
return 0;

}

if (n_sto && n_sto!=nn->n_scope)

error("%n both%k and%k",this,n_sto,nn->n_scope);
else if (nn->n_scope==STATIC && n_scope==EXTERN)

error("%n both%k and%k",this,n_sto,nn->n_scope);
else if (nn->n_scope == STATIC)

error("static%n declared twice',this);

/= n_sto = nn->n_sto; first scope specifier wins */
n_scope = nn->n_scope;

switch (scope) {
case FCT:
if (nn->n_stclass==STATIC && n_stclass==STATIC) bre
error(""twoDs of%n",this);
Cdcl = odel;
return 0;
case ARG:
error("two arguments%n',this);
Cdcl = odcl;
return 0;
case 0:
case PUBLIC:
error(''twoDs ofM%n'",this);
Cdcl = odel;
return 0;

W

k/

(o

Feb 8 12:48 1985 dcl.c Page 20

/* n_val */

if (n_initializer) {

}
3
ZZZ:
if (base != TNAME) {
Ptype t = nn->tp;
/*fprintf(stderr,'"tp %d %d nn->tp %d %d\n",tp,tp->base,nn->tp,nn->tp?nn->tp->base:0)
switch (nn->n_stclass) {
default:
switch (t->base) {
case FCT:
case OVERLOAD:
break;
default:
{ int x = t->align();
int y = t->tsizeof();
if (max_align < x) max_align = x;
while (0 < bit_offset) {
byte_offset++;
bit_offset ~= BI_IN_BYTE;
bit_offset = 0;
if (byte_offset && 1<x) byte_offset = ((byt
nn->n_offset = byte_offset;
byte_offset += y;
3
3
break;
case STATIC:
switch (t->base) {
case FCT:
case OVERLOAD:
break;
default:
t->tsizeof(); /% check that size is known
3
break;
3
3
{ Ptype t = nn->tp;

int const_old =
bit vec_seen = 0

if (nn->n_initializer) error("twolrs for%n",this);
nn->n_initializer = n_initializer;

const_.save;

.
3

Pexpr init = n_initializer;

if (init) {
switch (
case O:

n_scope) {

case PUBLIC:

Feb 8 12:48 1985 dcl.c Page 21

if (n_stclass!=STATIC) error("Ir forM%n'",this);

break;
3
3
/% if (n_scope == EXTERN) break; */
111:
switch (t->base) {
case RPTR:
/*fprintf(stderr,"RPTR init=%d\n",init);%*/
if (init) {
init = init->typ(tbl);
nn->n_initializer = n_initializer = ref_init((Pptr)
nn->assign();
else {
switch (nn->n_scope) {
default:
error ("unId reference%n",this);
break;
case ARG:
case PUBLIC:
case 0:
break;
3
3
break;
case COBJ:
/*fprintf(stderr,"COBJ %s init=%d scope %d n_scope %d\n",string,init,scope,nn->n_sco
/* TEMPORARY fudge
to allow initialization of
global objects
7':/

if (init && st_init==0)
switch (nn->n_scope) {
case EXTERN:
case STATIC:
if (init->base == ILIST) goto str;

{ Pname cn = ((Pbase)t)=->b_name;
Pclass ¢l = (Pclass)cn->tp;
Pname ctor = cl->has_ctor();
Pname dtor = cl->has_dtor();
if (dtor) {
Pstmt dls;
switch (nn->n_scope) {
case EXTERN:
if (n_sto==EXTERN) break;
case STATIC:
if (st_init==0) {
if (ctor==0) error('s',"staticO %n
break;

if (vec_seen) { /* _vec_delete(vec,noe,sz,
int esz = cl->tsizeof();

/

J

5

&

Feb 8 12:48 1985 dcl.c Page 22

if (ctor

/*error('d',"ctor init=%d n_scop

Pexpr noe = new expr(IVAL, (Pexpr)(
Pexpr sz = new expr(IVAL, (Pexpr)esz
Pexpr arg = new expr(ELIST,dtor,0);
dtor->1val(ADDROF);

arg = new expr{(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,nn,arg);
arg = new call(vec_del_fct,arg);

arg->base = G_CALL;
arg->fct_name = vec_del_fct;
dls = new estmt(SM,nn->where,arg,0)

else { /% nn->cl.~cl(0); */
Pref r = new ref(DOT,nn,dtor);
Pexpr ee = new expr(ELIST,zero,0);
Pcall dl = new call(r,ee);
dls = new estmt(SM,nn->where,dl1,0);
dl->base = G_CALL;
dl->fct_name = dtor;

if (st_dlist) dls->s_list = st_dlist;
st_dlist = dls;
3

) {
Pexpr oo = (vec_seen) ? nn->contents() : nn;
e=%d",init,nn->n_scope);¥*/
switch (nn->n_scope) {
case EXTERN:
if (init==0 && n_sto==EXTERN) goto ggg;
case STATIC:
if (st_init==0) {
error('s',"staticO%n ofC%n that has
nn->n_initializer = n_initializer =
goto ggg;

default:
if (vec_seen &% init) error("Ir forCO%n\[\]
break;

case ARG:
if (init == 0) goto ggg;

case PUBLIC:

case 0:

init = new texpr(VALUE,cl,0);

init->e2 = oo;

nn->n_initializer = n_initializer = init =
) goto ggg;

const_save = 1;
nn->assign();
if (init) {
if (init->base==VALUE && init->tp2==cl) {
init->e2 = o0o0;
init = init->typ(tbl);

else {

Feb 8 12:48 1985 dcl.c Page 23

else §
init

init = init->typ(tbl);
init = class_init(on,nn->tp,init,tb

new texpr(VALUE,cl,0);

init->e2 = oco;

init

init->typ(tbl);

if (init && st_init) {
switch (nn->n_scope) {
case EXTERN:
case STATIC:

3
3
3

if (vec_seen) { /* _vec_new(vec,no
Pname c = cl->has_ictor();
if (¢ == 0) error("vector o
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (
Pexpr sz = new expr{(IVAL, (P
Pexpr arg = new expr(ELIST,
c->1val (ADDROF);

arg = new expr(ELIST,sz,arg
arg = new expr(ELIST,noe,ar
arg = new expr(ELIST,nn,arg

init = new call(vec_new_fct
init->base = G_CALL;
} init->fct_name = vec_new_fc
Pstmt ist = new estmt(SM,nn->where,
static Pstmt itail = 0;
if (st_ilist == 0)
st_ilist = ist;
else
itail->s_list = ist;
itail = ist;
init = 0;

nn->n_initializer = n_initializer = init;

const_save =

const_old;

else if (init == 0) /% no initializer */
goto str;

else if (cl->is_simple()) /¥ struct */
goto str;

else § /% bitwise copy ok? */

init = init->typ(tbl);
if (nn->tp->check(init->tp,ASSIGN)==0)
goto str;

else

error ("cannotI%n:C %s has privateMs but no

3

break;

case VEC:

v

i
k___/

Feb 8 12:48 1985 dcl.c Page 24

. t = ((Pvec)t)->typ;
- vec_seen = 1;
goto 111;
case TYPE: -
- t = ((Pbase)t)->b_name->tp;
(goto 111;
- default:
str: _
if (init == 0) {
switch (n_scope) {
case ARG:
case 0:
case PUBLIC:
- break;
<‘ default:

- if (n_sto!=EXTERN && t~->tconst())
} error('w',"unId const%n'',this);
break;

}
const_save = const_save || n_scope==ARG || (t->tconst() &&
nn->n_initializer = n_initializer = init = init->typ(tbl);
if (const_save) PERM(init);
nn~->assign();
const_save = const_old;

(switch (init->base) {

— case ILIST:
new_list(init);
list_check(nn,nn->tp,0);
if (next_elem()) error("IrL too long");
break;

case STRING:
if (nn->tp->base == VEC) {

Pvec v = (Pvec)nn->tp;

if (v->typ->base == CHAR) {

/* error('w',"\"char[] = string\"");¥*/
v->size = Pvec(init->tp)->size;
break;

3

e }

Qwﬂ default:
{ Ptype nt = nn->tp;
if (vec_seen) {

error("badIr for vector%n'",nn);

break;

3
tlx:
- switch (nt->base) {
(QJ case TYPE:

B nt = ((Pbase)nt)->b_name->tp;

goto tlx;

case INT:

Feb 8 12:48 1985 dcl.c Page 25

case CHAR:
case SHORT:
if (init->base==ICON && init->tp==long type
error('w',"longlr constant for%k%n'"
case LONG:
if (((Pbase)nt)->b_unsigned
&& init~>base==UMINUS
&& init->e2->base==ICON)
error('w',"negativelr for unsigned%
if (((Pbase)nt)->b_const) {
int i;
Neval = 0;
i = init->eval();
if (Neval == 0) {
DEL(init);
nn->n_evaluated = n_evaluat
nn->n_val = n_val = i;
nn->n_initializer = n_initi
/* if (i) §
nn->n_initializer =
nn->n_val = 1i;
n_initializer = 0;
n_val = i;
else {
nn->n_initializer =
n_initializer = zer
*/ ;
3
}
goto cvev;
case PTR:
{ Pfct ef = (Pfct)((Pptr)nt)->typ;

if (ef->base == FCT) {

Pfet £}

Pname n = 0;
switch (init->base) {
case NAME:
f = (Pfct)init->tp;
n = Pname(init);
switch (f->base) {
case FCT:
case OVERLOAD:
init = new expr(G_ADDROF,0,init);
y init->tp = f;
goto ad;
case DOT:
case REF:
f = (Pfct) init->mem->tp;
switch (f->base) {
case FCT:
case OVERLOAD:
n = Pname(init->mem);
init = new expr(G_ADDROF,0,init);

U

Feb 8 12:48 1985 dcl.c Page 26

CVCVv:

} init = init->typ(tbl);
goto ad;
case ADDROF:
case G_ADDROF:
f = (Pfet)init->e2->tp;
ad:
if (f->base == QVERLOAD) {
Pgen g = (Pgen)f;
n = g->find(ef);
if (n == 0) {
} error("cannot deduceT for &
init->e2 = n;
n_initializer = init;
n->1val (ADDROF) ;
goto stgg;

$
if (n) n->1val(ADDROF);

3

{ Pname cn;

int i;

if ((en=init->tp->is_cl _obj())
&& (i=can_coerce(nt,init->tp))
&& Ncoerce) §

if (1 < i) error("%d possible conversions forIr");

/*error('d',"dcl %t<-%t",nt,init->tp);*/

else §
stgg:

Pclass cl = (Pclass)cn->tp;

Pref r = new ref(DOT,init,Ncoerce);
Pexpr ¢ = new expr(G_CALL,r,0);
c->fct_name = Ncoerce;

c->tp = nt;

n_initializer = c;

goto stgg;

if (nt->check(init->tp,ASSIGN))
error ("badIrT%t for%n (%tX)",init->tp,this,

if (init && n_stclass== STATIC) {

/* check if non-static variables are used #*

/% INCOMPLETE +*/

switch (init->base) {

case NAME:
if (init->tp->tconst()==0) error('v
break;

case DEREF:

case DOT:

case REF:

case CALL:

case G_CALL:

Feb 8 12:48 1985 dcl.c Page 27

888

}

int inline_restr;

error("%k inIr of static%n",init->b

3
}
3
} /% switch */
} /% block */
} /% default */
} /% switch *
PERM(nn);
switch (n_scope) {
case FCT:
nn->n_initializer = n_initializer;
break;
default:
{/* Pexpr 1i = nn- >n_initia1izer;*/
Ptype t = nn->tp
/* if (11) PERM(ll) %/
px:
PERM(t);
switch (t->base) {
case PTR:
case RPTR: t = ((Pptr)t)->typ; goto px;
case VEC: t = ((Pvec)t)->typ; goto px;
case TYPE: t = ((Pbase)t)->b_name->tp; goto px;
§ase FCT: t = ((Pfct)t)->returns; goto px; /* args? */
}
}
Cdcl = odcl;

return nn;

handle here
%/

void fct.dcl(Pname n)

{

int nmem = TBLSIZE;
Pname a;

Pname 11;

Ptable ftbl;

Pptr cct = 0;
int const_old = const_save;

int bit_old = bit_offset;
int byte_old = byte_offset;
int max_old = max_align;
int stack_old = stack_size;

if (base != FCT) error('i',"fct. dcl(?d)" base);

if (body==0 || body->memtbl) error('i ,"fct dcl(body=%d)",body);

/% report use of constructs that the inline expanded cannot

W

(M

Feb 8 12:48 1985 dcl.c Page 28

if (n==0 || n->base!=NAME) error('i',"fct.dcl(name=%d %d)",n, (n)7n->base:0)

body->memtbl = ftbl = new table(nmem+3,n->n_table,0);
body->own_tbl = 1; -

max_align = AL_FRAME;
stack_size = byte_offset = SZ_BOTTOM;
bit_offset = 0;

cc->stack();

cc->nof = n;

cc->ftbl = ftbl;

switch (n->n_scope) {

case 0:

case PUBLIC:
cc->not = n->n_table->t_name;
cc=>cot = (Pclass)cc->not->tp;
cc->tot = cc->cot->this_type;
if (f_this==0 || cc->tot==0) error('i',"fct.dcl(%n): f_this=%d cc-~>
f_this->n_table = ftbl; /* fake for inline printout */
cc->c_this = f_this;

}

Pname ax;

for (a=argtype, 11=0; a; a=ax) {

ax = a->n_list;

Pname nn = a->dcl(ftbl,ARG);

nan->n_assigned_to = nn->n_used = nn->n_addr_taken = 0;

nn->n_list = 0;

switch (a->tp->base) {

case CLASS:

case ENUM: /* unlink types declared in arg list */
a->n_list = dcl_list;
dcl_list = a;

break;
default:
if (11)
11->n_list = nn;
else {
argtype = nn;
if (f_this) f_this->n_list = argtype;
}
11 = nn;
delete a;

/* handle initializer for base class constructor %/
if (n->n_oper == CTOR) {
Pname bn = cc->cot->clbase;

if (bn) {
Pclass bcl = (Pclass)bn->tp;

Feb 8 12:48 1985 dcl.c Page 29

Pname bnw = bcl->has_ctor();

if (bnw) {
Ptype bnwt = bnw->tp;
Pfct bnwf = (Pfct) ((bnwt->base==FCT) ? bnwt : ((Pg
Ptype ty = bnwf->f_this->tp;
Pexpr v = new texpr(VALUE,bcl,f_init);
Pexpr th = new texpr(CAST,ty,f _this);
v->e2 = new expr(DEREF,th,0);
const_save = 1;
f_init = v->typ(ftbl);

} const_save = const_old;

else if (f_init)
error (0, "unXAL: noBC constructor');

else if (f_initg
error("unXAL: noBC");

else if (f_init)
error(0,"unXAL: not a constructor");

PERM(returns);

if (returns->base != VOID) {
Pname rv = new name('_result");
rv->tp = returns;
ftbl->insert(rv,0);
delete rv;

3

const_save = f_inline?1:0;
inline_restr = 0;
body->dcl(ftbl);
if(f_inline && inline_restr) {
f_inline = 0;
error('w', "\"inline\" ignored, %n”congﬁins%s%s%s%s",n,

(inline_restr & 8) ? " loop FER

(inline_restr & 4) ? " switch" : "",
(inline_restr & 2) ? " goto" : "",
(inline_restr & 1) ? " label" : "");

3

const_save = const_old;

if (f_inline) ¢
isf_list = new name_list{(n,isf_list);
3

defined = 1;

frame_size = stack_size + SZ_TOP;

frame_size = ((frame_size-1)/AL_FRAME)*AL_FRAME+AL_FRAME;
bit_offset = bit_old;

byte_offset = byte_old;

max_align = max_old;

stack_size = stack_old;

e’

Feb 8 12:48 1985 dcl.c Page 30

cc->unstack();

Feb 8 12:48 1985 dcl2.c Page 1

/% %2% %WM% %1% %H% %T%h */

B T T e SO R, JO0 T IO, SO T, Jp Jov T8 P TN N L Lo wa? ool e, Yunlawt s ¥t -] ot ~ 2 P T T M ST L N ST PO L,
/ Kol felofe ookl fefedodedodededededodedededede de oS el teiede Yot de dedede e dede Fede Fe e e e et e e dede Sedededete Todede oo ot

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

Sdedededsdededelededofodededeldeded e dededededeo i deRdede etk /

#include "cfront.h"
#include "size.h"

Pname classdef.has_ictor()

/ %

7’:/
{

does this class have a constructor taking no arguments?

Pname ¢ = has_ctor();
Pfct f£;
Plist 1;

if (¢ == 0) return 0;
f = (Pfct)e->tp;

switch (f->base) {
default:
error('i',"%s: bad constructor (%k)",string,c->tp->base);

case FCT:
switch (f->nargs) {
case 0: return c;
default: if (f->argtype->n_initializer) return c;
3

return 0O

case OVERLOAD:
for (1=((Pgen)f)->fct_list; 1; 1=1->1) {
Pname n = 1->f;
f = (Pfct)n->tp;
switch (f->nargs) {
case 0: return n;

default: if (f->argtype->n_initializer) return n;

3
3
return 0;

3

gen.gen(char®* s)

Feb 8 12:48 1985 dcl2.c Page 2

}

char #
base =

p = new char[strlen(s)+l];
OVERLOAD;

strcpy(p,s); -

string

= Ps

fet_list = 0;

Pname gen.add(Pname n,int sig)

/'7‘:'

add "n" to the tail of "fct_list"
{overloaded names are searched in declaration order)

detect: multiple identical declarations
declaration after use
multiple definitions

Pfct £ = (Pfect)n->tp;

Pname nx;

if (f->base != FCT) error(0,"%n: overloaded non-F",n);

if (fet_list && (nx=find(£f))) {

else §

Pfct nf = (Pfct)nx~>tp;

if (nf->body) {
if (f->body) error('two definitions for overloaded%n',n);

else §
if (f->body) nf->body = f->body;

Nold = 1;

ata — : .
char* s = string;

if (fet_list || sig) §
char buf([128];
char® bb = n->tp->signature(buf);
int 11 = strlen(s);
int 12 = bb-buf-1;
char®* p = new char[11+12+1];

strepy(p,s);
strepy(ptll,buf);
n->string = p;

3

else

n->string = s;

nx = new name;

Tnux = ‘.‘:n;
PERM(nx);
Nold = 0;

Feb 8 12:48 1985 dcl2.c Page 3

if (fet_list)

Plist gl;

for (gl=fct_list; gl->1; gl=gl->1) ;
} gl->1 = new name_list(nx,0);
else

fct_list = new name_list(nx,0);
nx->n_list = 0;

3

return nx;
3
Pname gen.find(Pfct f)
{

Plist gl;

for (gl=fct_list; gl; gl=gl->1) {
Pname nx = gl->f;
Pfct fx = (Pfct)nx->tp;
Pname a, ax;
/*fprintf(stderr,”"find %s\n",nx->string); fflush(stderr);%/

if (fx->nargs_known != f->nargs_known) continue;

for (ax=fx->argtype, a=f->argtype; a&fax; ax=ax->n_list, a=a->n_lis
/*fprintf(stderr,”ax %d %d a %d %d\n'",ax->tp,ax->tp->base,a->tp,a->tp->base); fflush
Ptype -at = ax->tp;
if (at->check(a->tp,0) || vrp_equiv) goto xx;
switch (at->base) {
case CHAR:
case SHORT:
case INT:
case LONG:
if (((Pbase)at)->b_unsigned ~ ((Pbase)a~>tp)->b_uns

if (ax) §
if (ax->n_initializer)
error("Ir makes overloaded %s() ambiguous",string);
continue;

}
if (a) {

if (a->n_initializer)
error ("Ir makes overloaded %s() ambiguous",string);
continue;

3

if (fx->returns->check(f->returns,0))
error("two different return valueTs for overloaded %s: %t a

return nx;

_/

C

™

Feb 8 12:48 1985 dcl2.c Page 4

return 0O;

3

void classdef.dcl(Pname cname, Ptable tbl)

int

nmem;

Pname p;

Ppt

r cct;

Pbase bt;

Pna

me px;

Ptable btbl;

int
Pcl
int

int
int
int
int

int
int

/%
if
if
if
if
if
if

bvirt;
ass bcl;
i;

byte_old = byte_offset;
bit_old = bit_offset;
max_old = max_align;
boff;

in_union;

usz;
this is the place for Paranoia */

(this == 0) error('i',"0->Cdef.dcl(%d)"
(base != CLASS) error('i',"Cdef.dcl(%d)
(cname.== 0) error('i',"uﬁNdC"); ’
(cname->tp != this) error('i',"badCdef");

(tbl == 0) error('i',"Cdef.dcl(%n,0)",cname);

(tbl->base != TABLE) error('i',"Cdef.dcl(%n,tbl=%d)",cname,tbl->base);

tbl);

&,base);

nmem = pubmem->no_of_names () + privmem->no_of_names() + pubdef->no_of_names
in_union = (csu==UNION || csu==ANON);

if

els

(clbase) {
if (clbase->base != TNAME) error("BC%nU",clbase);
clbase = {(Pbase)clbase->tp)->b_name;
bcl = (Pclass)clbase->tp;
if (bcl->defined == 0) error("BC%nU",clbase);
tbl = bcl->memtbl;
if (tbl->base != TABLE) error('i',"badBC table %d",tbl);
btbl = tbl;
bvirt = becl->virt_count;
if (becl->csu == UNION) error('s',"C derived from union');
if (in_union)
error("derived union");
else
csu = (pubbase) ? bcl->csu : CLASS;
boff = bcl->tsizeof();
max_align = bel->align();
e {
btbl = 03
bvirt = 0;
boff = 0;

if (Yin_union) csu = (virt_count) ? CLASS : STRUCT;

Feb 8 12:48 1985 dcl2.

while (tbl!=gtbl && tbl->t_name) tbl = tbl->next; /* nested classes

c Page 5

max_align = AL_STRUCT;

}

memtbl->set_scope(tbl);
memtbl->set_name(cname);
if (nmem) memtbl->grow((nmem<=2)?3:nmem);

ce->stack();
cc=>not = cname;
cc->cot this;

I

byte_offset = usz = boff;

bit_offset = 0;

bt = new basetype(COBJ,cname);
bt->b_table = memtbl;
this_type = cc->tot = cct = new ptr(PTR,bt,0);

PERM(cct);
PERM(bt);

for (p=privmem;
Pname m;

p; p=px) {

px = p->n_list;

if (p->tp->base==FCT) {

else {

Pfct £ = (Pfet)p->tp;
Pblock b = f->body;

f->body = 0;

switch(p->n_sto) {

case AUTO:
case STATIC:
case REGISTER:
case EXTERN:

error("M%n cannot be%k",p,p->n_sto);
p->n_sto = 0;

m= p->dc1(memtb1,0);

if (b) {

if (m->tp->defined)

error("two definitions of%n'",m);

else if (p->where.line!=m->where.line)

else

error('s’,"previously declared%n cannot be

((Pfct)m->tp)->body = b;

m = p->dcl(memtbl,0);

if (m) §

if (m->n_stclass==STATIC
&& m->n_initializer)

error('s',"staticM%n withIr',m);

if (din_union) {

if (usz < byte_offset) usz = byte_offset;
byte_offset = 0;

N

Feb 8 12:48 1985 dcl2.c Page 6

}
if (privmem && csu==STRUCT) csu = CLASS;

for (p=pubmem; p; p=px) {
Pname m;
px = p->n_list;
if (p->tp->base == FCT) {
Pfct £ = (Pfect)p->tp;
Pblock b = f->body;

f->body = 0;
switch(p->n_sto) {
case AUTO:

case STATIC:

case REGISTER:

case EXTERN:
error("M%n cannot be%k'",p,p->n_sto);
p->n_sto = 0;

m = p->dcl(memtbl,PUBLIC);

if (b) {
if (m->tp->defined)
error("two definitions of%n'",m);
else if (p->where.line!=m->where.line)
error('s',"previously declared%n cannot be
else
} ((Pfct)m->tp)->body = b;

else §
m = p->dcl(memtbl,PUBLIC);

if (m) §
if (m->n_stclass==STATIC
&& m->n_initializer)
error('s',"staticM%n withIr",m);
if (in_union) {
if (usz < byte_offset) usz = byte_offset;
byte_offset = 0;

3

3
/*delete p;¥*/
3

pubmem = 0;
if (in_union) byte_offset = usz;

if (virt_count || bvirt) { /% assign virtual indices %/
Pname vp[100];
Pname nn;

nn = has_ctor();
if (np==0 || nn->n_table!=memtbl)

0

error('s',"C%n with virtual but no constructor",cname);

Feb 8 12:48 1985 dcl2.c Page 7

{ /* FUDGE vtbl
so that the name can be used in initializers
*/

char* s = new char[20];
sprintf(s,"%s__vtbl",string);
Pname n = new name(s);

n->tp = Pfctvec_type;

Pname nn = gtbl->insert(n,0);
nn->use();

3

if (virt_count = bvirt)
for (i=0; i<bvirt; i++) vp[i] = bel->virt_init[i];

for (nn=memtbl->get_mem(i=1); nn; nn=memtbl->get_mem(++i)) {
switch (nn->tp->base) §
case FCT:
{ Pfct £ = (Pfct)nn->tp;
if (bvirt)
Pname vn = btbl->look(nn->string,0);
if (vn) { /* match up with base class */
if (vn->n_table==gtbl) goto vvv;
Pfct vnf;
switch (vn->tp->base) {
case FCT:
vnf = (Pfct)vn->tp;
if (vnf->f_virtual) {
if (vnf->check(f,0)) error('virtual
f->f virtual = vnf->f_virtual;
vp[f~->f_virtual-1l] = nn;

H
else
goto vvv;
break;
case OVERLOAD:
{ Pgen g = (Pgen)vn->tp;

if (f->f_virtual
|| ((Pfct)g->fct_list->f->tp)->f virtual)
error('s',"virtual%n overloaded inB

break;
}
default:
goto vvv;
}
3
else
goto vvv;
else §
vVv:

/*error('d',"vvv: %n f_virtual %d virt_count %d",nn,f->f_virtual,virt_count);%*/

if (f=->f_virtual) ¢
f->f_virtual = ++virt_count;
switch (f->f_virtual) {
case 1:
{ Pname vpn = new name("_vptr");

N

N

.

Feb 8 12:48 1985 dcl2.c Page 8

vpn->tp = Pfctvec_type;
(void) vpn->dcl(memtbl;PUBLIC);
delete vpn;

3
default:
vp[f->f_virtual-1] = nn;
}
3
3
break;
3
case OVERLOAD:
Plist gl;
Pgen g = (Pgen)nn->tp;

/*error('d’, overload%n bvirt=%d",nn,bvirt);¥*/
if (bvirt) {
Pname vn = btbl->look(nn->string,0);
Pgen g2;
Pfct £2;
if (vn) {
/*error('d',"vn%n tp%k',vn,vn->tp->base);*/
if (vn->n_table == gtbl) goto ovvv;
switch (vn->tp->base) {
default:
goto ovvv;
case FCT:
£f2 = (Pfct)vn->tp;
if (f2->f_virtual
Il ((Pfet)g- >fct list->f->tp)~->f_virtual)
error('s',"virtual%n overloaded in
break;
case OVERLOAD:
= (Pgen)vn->tp;

for (gl=g->fct_list; gl; gl=gl->1) ¢
Pname fn = gl->f;
Pfct £ = (Pfct)fn->tp;
Pname vn2 = g2->find(f);

if (vn2 == 0) {
if (£f->f_virtual) error('s'

else {
Pfct vn2f = (Pfct)vn2->tp;
if (vn2f->f_virtual) {
f->f _virtual = vn2f
vp[f->f_virtual-1]
}
H
break;
3
}
else

goto ovvv;

Feb 8 12:48 1985 dcl2.c Page 9

else §
ovvVV: ,
for. (gl=g->fct_list; gl; gl=gl->1) {
Pname fn = gl->f;
Pfct f = (Pfct)fn->tp;

/*fprintf(stderr,"fn %s f %d %d %d count %d\n",fn->string,f,f->base,f->f_virtual,vir
if (f->f_virtual) {
f->f virtual = ++virt_count;
switch (f->f_virtual) {

case 1:
{ Pname vpn = new name('_vptr");
vpn->tp = Pfctvec_type;
(void) vpn->dcl(memtbl,0);
y delete vpn;
default:
} vp[f->f_virtual-1] = fn;
}
}
3
break;
H
3
}
virt_init = new Pname[virt_count];
for (i=0; i<virt_count; i++) virt_init[i] = vp[i];
}

for (p=pubdef, pubdef=0; p; p=p->n_list) {
char®* qs = p->n_qualifier->string;

i1

char® ms p->string;
Pname cx;

Ptable ctbl;

Pname mx;

"_ctor";

if (stremp(ms,qs)==0) ms

for (cx = clbase; cx; cx ((Pclass)cx->tp)->clbase)
if (stremp(cx->string,qs) == 0) goto ok;

error("publicQr %s not aBC",qs);
continue;

ok:
ctbl = ((Pclass)cx->tp)->memtbl;
mx = ctbl->lookc(ms,0);

if (Ebase) {
if (!Ebase->has_friend(cc->nof)) error("QdMN%n is in privat

3
else if (Epriv) {
if (!Epriv->has_friend(cc->nof)) error("QdMN%n is private",

3
if (mx == 0) {

J

\\(,/‘3

Feb 8 12:48 1985 dcl2.c Page 10

error("C%n does not have aM %s",cx,p->string);
p->tp = any_type;

else { .
if (mx->t9->base==OVERLOAD)
error('s',"public specification of overloaded%n",mx);
} p->base = PUBLIC;

p->n_qualifier = mx;

(void) memtbl->insert(p,0);

if (Nold) error('twoDs of CM%n",p);
}

if (bit_offset) byte_offset += SZ_WORD;
if (byte_offset < SZ_STRUCT) ¢
Pname n = new name(' _dummy');
switch (SZ_STRUCT-obj_size) {

case 1: n->tp = char_type; break;

case 2: n->tp = char2_type; break;

case 3: n->tp = char3_type; break;

case &4: n->tp = char4_type; break;

default: n->tp = new vec(char_type,0);
Pvec(n->tp)->size = SZ_STRUCT-obj_size;

H

(void) n->dcl(memtbl,0);

delete n;

/*error('d',"dummy bo=%d",byte_offset);*/
3

int waste = byte_offset¥%max _align;
if (waste) { * fudge, ensure derived class get right sizeof %/
waste = max_align-waste;
error('d',"%s: waste %d tbl=%d",string,waste,memtbl);%/
Pname n = new name(''_waste");
switch (waste) {

case 1: n->tp = char_type; break;
case 2: n->tp = char2_type; break;
case 3: n->tp = char3_type; break;
case 4: n->tp = char4_type; break;
default: n~>tp = new vec(char_type,0);

Pvec(n->tp)->size = waste;

3

(void) n->dcl(memthl,0);

delete n;

if (byte_offset%max_align) error('i',"failed to align %s",string);

J*error('d',"sz=%d al=%d",byte_offset,max_align);*/
obj_size = byte_offset;
obj_align = max_align;

if (has_dtor() && has_ctor()==0)
error('w',"%s has destructor but no constructor",string);

if (itor==0 && has_oper(ASSIGN))
error('w',"%s has assignment defined but not initialization (no %s(

Feb 8 12:48 1985 dcl2.c Page 11

defined = 1;

for (p=memtbl->get_mem(i=1); p; p=memtbl->get_mem(++i)) {
/* define members defined inline */
switch (p->tp->base) {
case FCT:
{ Pfct £ = (Pfct)p->tp;
if (f->body) {
f->f_dinline = 1;
p->n_sto = STATIC;

f->dcl(p);
3
break;
}
case OVERLOAD:
{ Pgen g = (Pgen)p->tp;
Plist gl;

for (gl=g->fct_list; gl; gl=gl->1) {
Pname n = gl->f;
Pfct £ = (Pfct)n->tp;
if (f->body) {
f->f_dinline = 1;
n->n_sto = STATIC;
f->dcl(n);

[PV Tvow)

3

Plist f1; /* define friends
for (fl=friend_list; fl; fl=fl1->1) {
Pname p = f1->f;
switch (p->tp->base) {
case FCT:
{ Pfct £ = (Pfet)p->tp;
if (f->body && f->defined==0) {
f->f_inline = 1;
p->n_sto = STATIC;

f->decl(p);
3
break;
3
case OVERLOAD:
{ Pgen g = (Pgen)p->tp;
Plist gl;

for (gl=g->fct_list; gl; gl=gl->1) {
Pname n = gl->f;
Pfct £ = (Pfct)n->tp;
if (f->body && f->defined==0) {
£f->f inline = 1;
n->n_sto = STATIC;
f->decl(n);

defined inline %/

-

%

7N
(

7,

N
{ !

Feb 8 12:48 1985 dcl2.c Page 12

}

byte_offset = byte_old;
bit_offset = bit_old;
max_align = max_old;

cc->unstack();

3
void enumdef.dcl(Pname, Ptable tbl)

{

#define FIRST_ENUM 0O
int nmem = mem->no_of _names();
Pname p;
Pname ns = 0;
Pname nl;
int enum_old = enum_count;
no_of_ enumerators = nmem;

enum_count = FIRST_ENUM;
if (this == 0) error('i',"0->enumdef.dcl(%d)",tbl);

for (p=mem, mem=0; p; p=p->n_list) {

Pname nn;

if (p->n_initializer) {
Pexpr i = p~>n_initializer->typ(tbl);
Neval = 0;
enum_count = i->eval();
if (Neval) error("%s",Neval);
DEL(i);

y p->n_initializer = 0;

p->n_evaluated = 1;

p->n_val = enum_count++;

nn = tbl->insert(p,0); /* 727 %/

if (Nold) §
if (nn->n_stclass == ENUM) {
if (p->n_val != nn->n_val) error('twoDs of enum con
}
else
error("incompatibleDs of%n',nn);
else {

nn->n_stclass = ENUM; /* no store will be allocated ¥/
if (ns)
nl->n_list = nn;
else
ns = nn;
nl = nn;
3

delete p;
}

mem = ns;

Feb 8 12:48 1985 dcl2.c Page 13

}

la
W

void fct.dcl(Ptable tbl)

enum_count = enum_old;
defined = 1;

The argument names are placed in the memtable of the body.

This makes
f(int a) { int a; };
illegal

The argument names/types remain linked even after they are entered

into the symbol table,
but class and enum declarations are unlinked

int nmem = TBLSIZE;

Pname a;

Pname 11;

int bit_old = bit_offset;
int byte_old = byte_offset;
int max_old = max_align;
int stack_old = stack_size;

if (base != FCT) error('i',"fct.dcl(%d)",base);

if (body==0 || body->memtbl) error('i',"fct.dcl(%d)",body);
if (tbl->base != TABLE) error('i',"fct.dcl(tbl=%d)",tbl->base);

body->memtbl = new table(nmem,tbl,0);
body~>own_tbl = 1;

max_align = AL_FRAME;
stack_size = byte_offset = S5Z_BOTTOM;
bit_offset = 0;

for (a=argtype, 11=0; a; a=a->n_list) {
Pname n = a->dcl(body->memtbl,ARG);
n->n_list = 0;
switch (a->tp->base) {
case CLASS:
case ENUM:
break;
default:
if (11)
11->n_list = n;
else
argtype = n;
11 = n;

}

frame_size = stack_size + SZ_TOP;

frame_size = ((frame_size-1)/AL_FRAME)*AL_FRAME+AL_FRAME;
bit_offset = bit_old;

byte_offset = byte_old;

max_align = max_old;

k_J

iw/

\

™,

o,
f

Y

Feb 8 12:48 1985 dcl2.c Page 14

stack_size = stack_old;

pe/

Pstmt curr_loop;
Pstmt curr_switch;
Pblock curr_block;

void stmt.reached()

{

register Pstmt ss = s_list;

if (ss == 0) return;

switch (ss->base) {

case LABEL:
case CASE:
case DEFAULT:
break;
default:

error('w',"statement not reached");
/% delete unreacheable code */
for (; ss; ss=ss->s_list) {

3

bit arg err_suppress;

switch (ss->base) {

case LABEL:

case CASE:

case DEFAULT: /% reachable */
s_list = ss;
return;

case IF:

case DO:

case WHILE:

case SWITCH:

case FOR:

case BLOCK: /* may hide a label ¥/
s_list = ss;
return;

Pexpr check_cond(Pexpr e, TOK b, Ptable)
{

Pname cn;

if (en = e->tp->is_cl_obj()) §
Pclass cl = (Pclass)cn->tp;
int 1 = 03
Pname found = 0;
for (Pname on = cl->conv; on; on=on->n_list) {

Pfet £ = (Pfct)on->tp;
Ptype t = f->returns;

switch (t->base) {

Feb 8 12:48 1985 dcl2.c Page 15

case TYPE:
t = ((Pbase)t)->b_name->tp;
goto xx;
case CHAR:
case SHORT:
case INT:
case LONG:
case EOBJ:
case FLOAT:
case DOUBLE:
case PTR:
it
found = on;

}

switch (i) {

case 0:
error ("%n0 in%k expression",cn,b);
return e;

case 1:

t n

/*error('d',"cond%t<-%t", ((Pfct)found->tp)->returns,e->tp);*/

}

Pclass ¢l = (Pclass)cn->tp;

Pref r = new ref(DOT,e,found);
Pexpr ¢ = new expr(G_CALL,r,0);
c->fct_name = found;

c->tp = ((Pfct)found->tp)->returns;
return c;

default: .
error("%d possible conversions for%nO in%k expression",i,cn
return e;

}
e->tp->num_ptr(b);
return e;

void stmt.dcl()

/ k)

kS /
{

typecheck statement "this" in scope "curr_block->tbl"

Pstmt ss;

Pname n;

Pname nn;

Pstmt ostmt = Cstmt;

for (ss=this; ss; ss=ss->s_list) {
Pstmt old_loop, old_switch;
Cstmt = ss;
Ptable tbl = curr_block~>memtbl;

J*error('d',"ss %d%k tbl %d e %d%k s %d%k sl %d%k'", ss, ss->base, tbl, ss->e, (ss->e

switch (ss->base) {
case BREAK:

N
{

Feb 8 12:48 1985 dcl2.

¢ Page 16

if (curr_loop==0 && curr_switch==0)

error("%k not in loop or switch",BREAK);
ss->reached();
break;

case CONTINUE:

if (curr_loop == 0) error("%k not in loop",CONTINUE);
ss->reached();

case DEFAULT:

case SM:

break;

if (curr_switch == 0) {
error("default not in switch");
break;

if (curr_switch->has_default) error('two defaults in switch
curr_switch->has_default = ss;

ss->s->s_list = ss->s_list;

ss->s_list = 0;

ss~>s->dcl();

break;

ss->e = (ss->e != dummy) ? ss->e->typ(tbl) : 0;
break;

case DELETE:

int i;

ss->e = ss->e->typ(tbl);

i = ss->e->tp~->num_ptr(DELETE);

if (i != P) error("nonP deleted");

break;
3
case RETURN:
{ Pname fn = cc=->nof;

Ptype rt = ((Pfct)fn->tp)->returns;
Pexpr v = ss~>e;
if (v = dummy) {
if (rt->base == VOID)
error('w',"unX return value'');

else §

v = v->typ(tbl);

1x:

switch (rt->base) {

case TYPE:
rt = ((Pbase)rt)->b_name->tp;
goto 1x;

case RPTR:
ss->e = ref_init((Pptr)rt,v,tbl);
break;

case (COBJ:

{ Pname rv = tbl->look("_result",0);
ss->e = class_init(rv,rt,v,tbl);
break;

3

Feb 8 12:48 1985 dcl2.c Page 17

case ANY:
break;
case INT:
case CHAR:
case LONG:
case SHORT:
if (((Pbase)rt)->b_unsigned
&& v->base==UMINUS
&& v->e2->base==]CON)
error('w', "negative retured
default:
ss=>e = V;
if (rt->check(v->tp,ASSIGN))
error(''bad return valueT fo

else {
if (rt->base != VOID) error('w',"return valueX");

ss->reached();
break;

3

case DO: /% in DO the stmt is before the test */
old_loop = curr_loop;
curr_loop = ss;
if (ss->s->base == DCL) error('s',"D as onlyS in do-loop");
ss=>s~>dcl();
/% tbl = curr_block->memtbl;*/
ss->e = ss->e->typ(tbl);
ss->e = check_cond(ss->e,D0,tbl);
curr_loop = old_loop;
break;

case WHILE:
inline_restr |= 8;
old_loop = curr_loop;
curr_loop = ss;
ss->e = ss->e->typ(tbl);
/*ss=>e~>tp~>num_ptr(ss->base);¥*/
ss->e = check_cond(ss->e,WHILE,tbl
if (ss~->s->base == DCL) error('s',
ss->s~->dcl();
curr_loop = old_loop;
break;

Aﬁ as onlyS in while-loop

case SWITCH:

{ int ne = 0;
inline_restr |= &4;
old_switch = curr_switch;
curr_switch = ss;
ss->e = ss->e->typ(tbl);

/* ss=>e~>tp->num_ptr (SWITCH) ;%*/
ss->e = check_cond(ss->e,SWITCH,tbl);
{ Ptype tt = ss->e->tp;

.4'/ d

;
k -
R

Feb 8 12:48 1985 dcl2.c Page 18

sii:
switch (tt->base) {
case TYPE:
- tt = ((Pbase)tt)->b_name->tp; goto sii;
case EOBJ:
ne = Penum(Pbase(tt)->b_name->tp)->no_of_en
case ZTYPE:
case ANY:
case CHAR:
case SHORT:
case INT:
case LONG:
break;
default:
| error('s',"%t switch expression",ss->e->tp)
ss->s->decl();
if (ne) { /* see if the number of cases is "'close to"
but not equal to the number of enumerato
%/
int i = 0;
Pstmt cs;
for (cs=ss->case_list; cs; cs=cs~->case_list) i++;
if (i & il=ne) {
if (ne < i) §
ee: error('w',"switch (%t) with %d case
else {
switch (ne-i) {
case 1: if (3<ne) goto ee;
case 2: if (7<ne) goto ee;
case 3: if (23<ne) goto ee;
case 4: if (60<ne) goto ece;
case 5: if (99<ne) goto ee;
}
}
}
}
curr_switch = old_switch;
break;
3
case CASE:

if (curr_switch == 0) {
error(''case not in switch");
break;
3
ss=>e = ss->e->typ(tbl);
ss->e->tp->num_ptr(CASE);

{ Ptype tt = ss->e->tp;
iii:
switch (tt->base) {
case TYPE:
tt = ((Pbase)tt)->b_name->tp; goto iii;
case ZTYPE:
case ANY:

Feb 8 12:48 1985 dcl2.c Page 19

case CHAR:
case SHORT:
case INT:
case LONG:
break;
default:
} error('s',"%t case expression",ss->e->tp);

3

if (1) §
Neval = 0;
int i = ss->e->eval();
if (Neval == 0) {

Pstmt cs;
for (cs=curr_switch->case_list; cs; cs=cs->
if (cs->case_value == i) error("cas

ss->case_value = ij;
ss->case_list = curr_switch->case_list;
y curr_switch->case_list = ss;

3
if (ss->s->s_list) error('i',"case%k",ss->s->s_list->base);
ss->s->s_list = ss->s_list;
ss->s_list = 0;
ss->s->dcl();
break;

case GOTO:

inline_restr |= 2;
ss->reached();

case LABEL:

/* Insert label in function mem table;
labels have function scope.

%/

n = ss->d;

nn = cc->ftbl->insert(n,LABEL);

/% Set a ptr to the mem table corresponding to the scope
in which the label actually occurred. This allows the
processing of goto's in the presence of ctors and dtors

wle
W

if(ss->base == LABEL) {
nn->n_realscope = curr_block->memtbl;

inline_restr |= 1;
}
if (Nold) {
if (ss->base == LABEL) {
if (nn->n_initializer) error(''twoDs of labe
nn->n_initializer = (Pexpr)l;
if (n !'= nn) ss->d = nn;
else §
if (ss->base == LABEL) nn->n_initializer = (Pexpr)l

_/

J

Y,

5

/’ ™

—

Feb 8 12:48 1985 dcl2.

case IF:

{

c Page 20

nn->where = ss->where;

3

if (ss->base == GOTO)
nn->use();

else {

if (ss->s->s_list) error('i',"label%k",ss->s->s_lis

ss->s->s_list = ss->s_list;
ss->s_list = 0;
nn->assign();

if (ss->s) ss->s->dcl();
break;

Pexpr ee = ss->e->typ(tbl);

if (ee->base == ASSIGN) {
Neval = 0;
(void)ee~>e2->eval();

if (Neval == 0) error('w',"constant assignment in c

}
ss->e = ee = check_cond(ee,IF,tbl);
switch (ee->tp->base) {
case INT:
case ZTYPE:
{ int i;
Neval = 0;
i = ee->eval();
if (Neval == 0) {

/*fprintf(stderr,"if (%d) %d %d\n",i,ss->e,ss->e->base);*/

Pstmt sl = ss->s_list;

if (i) §
DEL(ss->else_stmt);
ss->s->dcl();
*ss = *ss->§;

TN

else §
DEL(ss=>s);
if (ss->else_stmt) {
ss~>else_stmt->dcl();
*ss = *gs->else_stmt;
else {
ss->base = SM;
ss->e = dummy;
ss->s = 0;
H
H
ss~->s_list = sl;
continue;

3

ss=>s->dcl();
if (ss->else_stmt) ss->else_stmt->dcl();
break;

Feb 8 12:48 1985 dcl2.c Page 21

case FOR:

inline_restr |=

8;

old_loop = curr_loop;

curr_loop = ss;

if (ss->for_init) {
Pstmt fi = ss->for_init;
switch (fi->base) {

/*error('d',"dc1=>%k",fi->base);*/

if (0)

curr_loop = old_
break;

case DCL:

{ Pname n;

case SM:
if (fi->e == dummy) {
ss->for_init = 0;
break;
default:
fi->del();
break;
case DCL:
fi->dcl();
switch (fi->base) {
case BLOCK:
{
/¥ ... for({ a}b;cyd; e}
=>
y { ... {afor (;b;c)d; e}}
Pstmt tmp = new stmt (SM,curloc,0);
Ftmp = ¥ss} * tmp = for */
tonp->for_init = 0;
%*gg = 7\'fi; /3'# ss = { } */

if (ss->s)
ss=>s=->s_list

tmp;
else

Ss->s = tmp;
curr_block = (Pblock)ss;
tbl = curr_block->memtbl;

ss = tmp; /* rest of for and
break;
3
3
3
if (ss->e == dummy
ss->e = 0;
else { ‘
ss->e = ss->e->typ(tbl);
ss->e = check_cond(ss->e,FOR,tbl);
3

if (ss~->s->base
ss=->s->dcl();

== DCL) error('s',"D as onlyS in for-loop™)

ss->e2 = (ss->e2 == dummy) ? 0 : ss->e2->typ(tbl);

loop;

/% declaration after statement */

&“;

-

Feb 8 12:48 1985 dcl2.c Page 22

Pexpr in;
if (curr_block->own_tbl==0) {
curr_block->memtbl = tbl = new table(8,tbl,0);
} - curr_block->own_tbl = 1;
Pname dd = ss->d;
if (dd->n_list) error('s',"list ofDs not at head of block')
n = dd->del(tbl,FCT);
in = n->n_initializer;
ss->base = SM;
if (n->n_stclass == STATIC && in) {
error('s',"Id static not at head of block");
goto dum;
3
Pname cln = n->tp->is_cl_obj();
if (cln && ((Pclass)cln->tp)->has_dtor())
error('s',"%n ofC%n with destructor not at head of
if (in) {
n->n_initializer = 0;
switch (in->base) {
c?se G_CALL: /* constructor? *
Pname fn = in->fct_name;
if (fn==0 || fn->n_oper!=CTOR) goto ass;
break;

}

case ILIST:
error('s',"Ir list not at head of block");
goto dum;

case STRING:
n->n_initializer = in; /% constant */

goto dum;
default:
ass:
in = new expr(ASSIGN,n,in);
3
ss->e = in;
else §
dum:
ss->e = dummy;
H
break;
3
{
/¥ collect all the contiguous DCL nodes from the
head of the s_list. find the next statement
7':/

int non_trivial = 0;
int count = 0;
Pname tail = ss->d;
for (Pname nn=tail; nn; nn=nn->n_list) {
/% find tail;
detect non-trivial declarations
J

Feb 8 12:48 1985 dcl2.c Page 23

count++;
if (nn->n_list) tail = nn->n_list;
Pname n = tbl->look(nn->string,0);
if (n && n->n_table==tbl) non_trivial = 2;
if (non_trivial) continue;
Pexpr in = nn->n_initializer;
/*error('d',"in %d",in);*/
if (in == 0) continue;
if (non_trivial == 0) non_trivial = 1;
if (nn->n_stclass==STATIC)
non_trivial = 2;
continue;

switch (in->base) {
case ILIST:
case STRING:
non_trivial = 2;

continue;
H
Pname cln = nn->tp->is_cl_obj();
if (cln == 0) continue;

if (((Pclass)cln->tp)->has_dtor()) non_trivial = 2;

/*error('d',"non_trivial %d",non_trivial);¥*/
while(ss->s_list && ss->s_list->base==DCL) {
Pstmt sx = ss->s_list;

tail = tail->n_list = sx->d; /% add to tail */
for (nn=sx->d; nn; nn=nn->n_list) {
* find tail;
detect non-trivial declarations
*/
count++;

if (nn->n_list) tail = nn->n_list;
Pname n = tbl->look(nn->string,0);
if (n && n->n_table==tbl) non_trivial = 2;
if (non_trivial) continue;
Pexpr in = nn->n_initializer;
if (in == 0) continue;
if (non_trivial == 0) non_trivial = 1;
if (nn->n_stclass==8TATIC) {
non_trivial = 2;
continue;
$
switch (in->base) {
case ILIST:
case STRING:
non_trivial = 2;

continue;
3
Pname cln = nn->tp->is_cl_obj();
if (cln == 0) continue;

if (((Pclass)cln->tp)->has_dtor()) non_triv

ss->s_list = sx->s_list;
/% delete sx; */

U

&“J

-

N

p—

Feb 8 12:48 1985 dcl2.c Page 24

o Pstmt next_st = ss->s_list;
/*error('d’,"non_trivial %d curr_block->own_tbl %d inline_restr %d",non_trivial,curr

if (non_trivial== /% must *

|| (non_trivial==1 /* might */
&& (curr_block->own_tbl==0 /* just as well %/
|| inline_restr&3 /* label seen */)
)

)
/% Create a new block,

else §

put all the declarations at the head,
and the remainder of the slist as the
statement list of the block.

*/

ss->base = BLOCK;

/% check that there are no redefinitions since
"real" (user-written, non-generated) block
for(nn=ss->d; nn; nn=nn->n_list) {
Pname n;
if(curr_block->own_tbl
&& (n=curr_block->memtbl->look(nn->string,
&& n->n_table->real_block==curr_block->mem
error("twoDs of%n',n);

H

/% attach the remainder of the s_list
as the statement part of the block.

*/

§8->s = next_st;
ss~->s_list = 0;

/% create the table in advance, in order to se
real_block ptr to that of the enclosing tab

*/

ss~>memtbl = new table(count+4,tbl,0);

ss~>memtbl->real_block = curr_block->memtbl->real b

({Pblock)ss)->dcl(ss=>memtbl);

/% to reduce the number of symbol tables,
do not make a new block,
instead insert names in enclosing block,
and make the initializers into expression
statements.

*

Pstmt sss = ss;
for(nn=ss->d; nn; nn=nn->n_list) {
Pname n = nn->dcl(tbl,FCT);

/*error('d',"%n->dc1(%d) -> %d init %d sss=%d",nn,tbl,n,n->n_initializer,sss);%*/

if (n == 0) continue;
Pexpr in = n->n_initializer;
n->n_initializer = 0;

if (ss) §
sss~>base = SM;
ss = 0;

Feb 8 12:48 1985 dcl2.c Page 25

3

3
else
sss = sss->s_list = new estmt(SM,ss
if (in) §
switch (in->base) {
Ease G_CALL: /* constructor? */
Pname fn = in->fct_name;
if (fn && fn->n_oper==CTOR)
default:
} in = new expr(ASSIGN,n,in);
} sss=>e = in->typ(tbl);
else

sss->e = dummy;

Ss = SSS§;
ss=>s_list = next_st;

H
break;
3
case BLOCK:
((Pblock)ss)->decl(tbl);
break;
case ASM:
/¥ save string */
break;
default:
error('i',"badS(%d %d)",ss,ss->base);
}

}

Cstmt = ostmt;

void block.dcl(Ptable tbl)

/ wtu
iy

7’:/
{

Note: for a block without declarations memtbl denotes the table
for the enclosing scope.
A function body has its memtbl created by fct.dcl().

int bit_old = bit_offset;

int byte_old = byte_offset;
int max_old = max_align;
Pblock block_old = curr_block;

if (base != BLOCK) error('i',"block.dcl(%d)",base);

curr_block = this;

W

Feb 8 12:48 1985 dcl2.c Page 26

if (d) §

3

else

if (s) §

Pname n;
own_tbl

:1;

if (memtbl == 0) {

int nmem = d->no_of_names()+4;

memtbl = new table(nmem,tbl,0);

memtbl->real block = this;

/* this is a "real" block from the
source text, and not one created by DCL's
inside a block. *

3
else

if (memtbl != tbl) error('i',"block.dc1(?)");
Pname nx;

for (n=d; n; n=nx) {

nx = n->n_list;
n->dcl(memtbl ,FCT);
switch (n->tp->base) {
case CLASS:
case ANON:
case ENUM:

break;
default:

}

delete n;

memtbl = tbl;

Pname odcl = Cdcl;

Pname m;
int i,

s=>dcl()

.
b

if (own_tbl)
for (m=memtbl->get_mem(i=1); m; m=memtbl->get_mem(++i)) {

11:

Ptype t = m->tp;

if (£ == 0) {
if (m->n_assigned to == 0) error('w',"undefined lab
if (m->n_used == 0) error('w',"label %s not used",
continue;

3

switch (t->base) {

case TYPE: t=((Pbase)t)->b_name->tp; goto 11;
case CLASS:

case ENUM:

case FCT:

case VEC: continue;

3

Feb 8 12:48 1985 dcl2.c Page 27

3

if (m->n_addr_taken == 0) {
if (m->n_used) {
if (m->n_assigned_to) {

else {
switch (m->n_scope) {
case FCT:
Cdcl = m;
} error('w',"%n used but not
}
else {
if (m->n_assigned_to) {
else §
switch (m~->n_scope) {
case ARG:
if (m->string[0]=='_" && m-
case FCT:
Cdcl = m;
} error('w',"%n not used",m);
3
3
3
3
Cdcl = odcl;
3
d = 0;

if (bit_offset) byte_offset += SZ_WORD;

if (stack_size < byte offset) stack_size = byte_offset;
bit_offset = bit_old;

byte_offset = byte_old;

curr_block = block_old;

int name.no_of_names ()

{

3

register int i = 0;

register Pname n;

for (n=this; n; n=n->n_list) i++;
return ij;

static Pexpr lvec[20], *111;
static Pexpr list_back = 0;
j#define list_put_back(x) list_back = x;

void new_list(Pexpr 1x)

{

if (lx->base != ILIST) error('i',"IrlX");
111 = lvec;

o

Feb 8 12:48 1985 dcl2.c Page 28

(\wt 111++;
*#111 = 1x->el;
3
~ Pexpr next_elem()
R
Pexpr e;
Pexpr 1x;

if (111 == lvec) return 0;
1x = #111;

- if (list_back) {
LW_ e = list_back;
’ list_back = 0;
return e;

3
if (Ix == 0) §
111--;
return 0;
3
switch (1x->base) {
case ELIST:
e = 1lx->el;
B *]111 = 1x->e2;
(w switch (e->base) {
. case ILIST:
11144
*111 = e->el;
return (Pexpr)l;
case ELIST:
error("nestedEL");
return 0;
default:
return e;
default:
} error('i',"IxrL");

C

void list_check(Pname nn, Ptype t, Pexpr il)

/* end of list %/

/* start of new ILIST */

/%
see if the list 111 can be assigned to something of type t
nn is the name of the variable for which the assignment is taking place.
il is the last list element returned by next_elem()
7':/
{
- Pexpr e;
(w; bit 1st = 0;

int i;
Pclass cl;

Feb 8 12:48 1985 dcl2.c Page 29

switch ((int)il) {

case 0: break;

case 1: 1st = 1; break;

?efault: list_put_back(il);

zzz:

switch (t->base) {

case TYPE:
t = ((Pbase)t)->b_name->tp;
goto zzz;

case VEC:

{ Pvec v = (Pvec)t;

Ptype vt = v->typ;

if (v->size) { /* get at most v->size initializers %/
for (i=0; i<v->size; i++) { /* check next list element type
ee:
e = next_elem();

/* "too few'" initializers are legal */
if (e == 0) goto xsw;
vtz:
switch (vt->base) §
case TYPE:
vt = ((Pbase)vt)~>b_name->tp;
goto vtz;
case VEC:
case COBJ:
list_check(an,vt,e);
break;
default:
if (e == (Pexpr)l) {
error ("unXIrL™);
goto ee;

if (vt->check(e~>tp,ASSIGN))
error ("badIrT for%n:%t (%tX)",nn,e-

3
if (lst && (e = next_elem())) error("end of IrLX after ve
XSW: ;
else { % determine v->size %/
i=0;
XX
while (e=next_elem()) { /* get another initializer
i+t
vtzz:

switch (vt->base) {

case TYPE:
vt = ((Pbase)vt)->b_name->tp;
goto vtzz;

case VEC:

case COBJ:

/

Feb 8 12:48 1985 dcl2.c Page 30

list_check(nn,vt,e);

break;
default:
- if (e == (Pexpr)l) ¢
error ("unXIrL");
goto xX;
- if (vt->check(e->tp,ASSIGN))
error ("badIrT for%n:%t (%tX)",nn,e-
3
H
v->size = ij;
3
break;
3
case CLASS:
cl = (Pclass)t;
goto ccc;
case COBJ: /* initialize members ¥/
cl = (Pclass)((Pbase)t)->b_name->tp;
cece:
{ Ptable tbl = cl->memtbl;

Pname m;

if (cl->clbase) {
list_check{nn,cl->clbase->tp,0);

for (m=tbl->get_mem(i=1); m; m=tbl->get_mem(++i)) {
Ptype mt = m->tp;
switch (mt->base) {
case FCT:
case OVERLOAD:
case CLASS:
case ENUM:
y continue;

if (m->n_stclass == STATIC) continue;
/* check assignment to next member */
dd:
e = next_elem();
if (e == 0) break;
mtz: ,
switch (mt->base) {
case TYPE:
mt = ((Pbase)mt)->b_name->tp;
goto mtz;
case CLASS:
case ENUM:
break;
case VEC:
case COBJ:
list_check(nn,m->tp,e);
break;
default:

Feb 8 12:48 1985 dcl2.c Page 31

if (e == (Pexpr)l) {
error ("unXIrL");
goto dd;

if (mt->check(e->tp,ASSIGN))
error("badIrT for %s .%n:%t (%tX)",cl->stri

}
if (1st & (e = next_elem())) error("end of IrLX after0");
break;
3
default:
e = next_elem();
if (e = 0) {
error("nolr forQ");
break;
3
if (e == (Pexpr)l) {
error ("unXIrL");
break;
}
if (t->check(e->tp,ASSIGN))
error("badIrT for¥%n:%t (%tX)",nn,e->tp,t);
if (1st & (e = next_elem())) error("end of IrLX after0");
break;
}

N

‘I\u.../'f

()

Feb 8 12:48 1985 del.c Page 1

/% %% %M% %1% %H% 7T% */

o bt TR N, R AN ntemt. Lo TR WL UL oo . et ot .
/J- dedeledededededelododedododededododelededidedededviodededodeivdedvde ool ol fodedeiviede oo ke e

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc.
All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

del.c:

walk the trees to reclaim storage

dededeledededeldeldolodelideideiviiodolelololelededodeledelelelelodededelolebdododedelodviaiodededededodededeieodede dode </
. 11 "

{##include “cfront.h

void name.del()

/*fprintf(stderr,"%d->name.del: %s %d\n",this,(string)?string:"?",base);fflush(stder
Pexpr i = n_initializer;

NFn++;

DEL(tp);

if(i && i!=(Pexpr)l) DEL(i);
n_tbl_list = name_free;
name_free = this;

3
void type.del()
{

/*fprintf(stderr,"DEL(type=%d %d)\n'",this,base);*
permanent = 3; /¥ do not delete twice 7’=/
switch (base) {

case TNAME:

case NAME:
error('i',"%d->T.del():N %s %d",this, ((Pname)this)->string,base);

case TYPE:

{ Pbase b = (Pbase)this;
break;

}

case FCT:

{ Pfet £ = (Pfct) this;
DEL(f->returns);
/*DEL(f->argtype);

7’:/
break;

}

case VEC:

{ Pvec v = (Pvec) this;

DEL(v->dim);
DEL(v->typ);
break;

Feb 8 12:48 1985 del.c Page 2

3

case PTR:

case RPTR:

{ Pptr p = (Pptr) this;
DEL(p->typ);

) break;

/= case CLASS:

{ Pclass cl = (Pclass)this;
memtbl.del();
break;

}

case ENUM:

case OVERLOAD:
break;*/

3

delete this;

$
void expr.del()
{

/*fprintf(stderr,"DEL(expr=%d: %d %d %d)\n",this,base,el,e2); fflush(stderr);*/
permanent = 3;
switch (base) {
case IVAL:

if (this == one) return;
case ICON:
case FCON:
case CCON:
case THIS:
case STRING:
case TEXT:
case FVAL:
goto dd;
case DUMMY:
case ZERO:
case NAME:
return;
case CAST:
case SIZEOF:
case NEW:
case VALUE:
DEL(tp2);
break;
case REF:
case DOT:
DEL(el);
DEL(mem) ;
goto dd;
case QUEST:
DEL(cond);
break;
case ICALL:
delete il;
goto dd;

Y

-

N\

L

{”\

-

C

Feb 8 12:48 1985 del.c Page 3

3

DEL(el);
DEL(e2);
/¥ DEL(tp);%/

el = expr_free;
expr_free = this;
NFe++;

void stmt.del()
{

/*fprintf(stderr,"DEL(stmt %d %s)\n",this,keys[base]); fflush(stderr);¥/
permanent = 3;
switch (base) {
case SM:
case WHILE:
case DO:
case DELETE:
case RETURN:
case CASE:
case SWITCH:
DEL(e);
break;
case PAIR:
DEL(s2);
break;
case BLOCK:
DEL(d);
DEL(s);
if (own_tbl) DEL(memtbl};
DEL(s_list);
goto dd;
case FOR:
DEL(e);
DEL(e2);
DEL(for_init);
break;
case IF:
DEL(e);
DEL(else_stmt);
break;

3

DEL(s);
' DEL(s_list);
dd:
s_list = stmt_free;
stmt_free = this;
NFs++;
}

void table.del()
{

register ij;

Feb 8 12:48 1985 del.c Page 4

/*fprintf(stderr,”tbl.del %s %d size=%d used=%d)\n", (t_name)?t_name->string:"?",

for (i=l; i<free slot, i++)
Pname n = entrles[]f
if (n==0) error('i',"
switch (n->n_scope)
case ARG:
case ARGT:
break;
default:
{ char® s = n->str1n$,
if (s && (s[0]t='
/% delete n; ¥/
n->del();

table.del(0)");

[] s[1]!="'X")) delete s;

}
3
3
delete entries;

delete hashtbl;
delete this;

th

N

(M

Feb 8 12:48 1985 error.c Page 1

* %L% %Mk %1% %H% %T% */

anta antantonteatontontaslortontastantonts slantonta ot atuntantantotstontoate otontantaelontantuntantants alontestantetesto sl alo oo shanta slootastestoataatastustaste ste oo slactoals antentonte
/ WRNANNNTNN TS Rd NN loldedeRRodede R dodedode o dodedodedo ik R odododode R ldede dodedede dodedededeo Nl de de dede ke dedededede e e ds

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.
error.c .

write error messages

Until scan_started != 0 no context can be assumed
Fededededededodedodedededodededededoldedededode de el dnio e de Nl e delode ol ok dede o dededededededededelede dedededede Tl lede e dede e dolede e de /

#include "size.h"
##include "cfront.h"

int error_count;

static int no_of_warnings;

char scan_started;

j##define ERRTRACE 20

static char * abbrev_tbl['Z'+1];

extern void error_init();
void error_init()

static char errbuf[BUFSIZ];
setbuf(stderr,errbuf);

abbrev_tb1['A'] = " argument";
abbrev_tb1l['B'] = " base"é
abbrev_tbl['C'] = " class";
abbrev_tbl[:D:] = : declaratio&";
abbrev_tbl[' E'] = = expression ;
abbrev_tbl['F'] = " function";
abbrev_tbl[:I:] = : iﬂitialize";
abbrev“tbl['J'] = Jﬁg
abbrev_tbl[K'] = 7 K"
abbrev_tbl1['L'] = " 1list";
abbrev_tbl['M'] = " member";
abbrev_tbl['N'] = " name";
abbrev_tb1['0'] = " object";
abbrev_tbl['P'] = " pointer";
abbrev_tbl['Q'] = " qualifie";
abbrev_tbl1['R'] = " R";
abbrev_tbl['S'] = " statement";
abbrev_tb1['T'] = " type';
abbrev_tbl['U'] = " undefined";
abbrev_tbl['V'] = " variable";

Feb 8 12:48 1985 error.c Page 2

1

abbrev_tbl1['W'] = " W";
abbrev_tbl['X'] = " expected";
abbrev_tb1['Y'] = " Y";
abbrev_tbl['Z'] =" z";

3
#idefine INTERNAL 127

void ext(int n)

0;

/%
remove temp_file and exit
?/
/¥ if (n==INTERNAL) abort();%*
exit(n);
3
static void print_loc()
{
class loc * sl = (Cstmt) ? &Cstmt->where :
class loc * dl = (Cdcl) ? &Cdcl->where :
if (sl && dl && sl->file==dl->file) {
if (sl->line<=dl->1line)
dl->put(out_file);
else
sl->put(out_file);
return;
3
if (s1) §
if (sl->file == curloc.file) {
sl->put(out_file);
return;
}
3
if (d1l) §
if (dl->file == curloc.file) {
dl->put(out_file);
return;
3
3
curloc.put(out_file);
3
static void print_context()
{

putc('\n',out_file);

static char in_error = 0;
loc dummy_loc;

L,z’)

Feb 8 12:48 1985 error.c Page 3

. goid yyerror(char® s)

error(0,&dummy_loc,s);

}
(M;; int error(char® s ...)
{
register® a = (int*)&s;
) return error(0,&dummy_loc, s, a[l], a[2], a[3], a[4], a[5], a[6], a[7], a[8
int error(int t, char® s ...)
{
— register® a = (int¥*)&s;
(W’ } return error(t,&dummy_loc, s, a[l], a[2], a[3], al4], a[5], a[6], a[7], a8
int error(loc* 1, char* s ...)
{
register®* a = (int*)&s;
) return error(0, 1, s, a[l], a[2], a[3], a[&], a[5], a[6], a[7], a[8]);
int error(int t, loc* le, char® s ...)
/%
"int" not "void" because of "pch" in lex.c
subsequent arguments fill in %mumble fields
(:‘ legal error types are:
g 'w! warning (not counted in error count)
! debug
's' "not implemented" message
0 error
i’ internal error (causes abort)
"t! error while printing error message
*/
{
FILE * of = out_file;
int c;
char format[3]; /* used for "% mumble" sequences */
int * a = &t;
int argn = 3;
<l,~ /* check variable argument passing mechanism */
int si = sizeof(int);
int scp = sizeof(char¥);
int ssp = sizeof(Pname);
if (si!=ssp || sil=scp || sspl=scp || &a[2]!=(int*)&s) {
fprintf(stderr,
"\n%s: this ¢ can't handle varargs (%d,%d,%d -- %d %d)\n",
- prog name, si, scp, ssp, &a[l], &s);
(V(ext(12);
3
if (t = 'w' & warn==0) return O;

Feb 8 12:48 1985 error.c Page 4

if (in_error++)

if (t!='t' || 4<in_error) {
fprintf(stderr,"\nUPS!, error while handling error\n");
ext(13);
3
else if (t == :t')
t="1i";

out_file = stderr;
if (!scan_started)
/*fprintf(out_file,"error during %s initializing: ",prog name);*/
putch('\n");
else if (t=="t')
putch('\n");
else if (lc !'= &dummy_loc)
le->put(out_file);
else
print_loc();

switch (t) §

case O:
fprintf(out_file,"error: ");
break;
case 'w':
no_of_warnings++;
fprintf(out_file,'"warning: ");
: 'break;
case 's
fprintf(out_file,"sorry, not implemented: ");
'-'break;
case 'i':
if (error_count) {
fprintf(out_file,"sorry, %s cannot recover from earlier err
} ext (INTERNAL);
else
fprintf(out_file,"internal %s error: ",prog name);
break;
}

while (¢ = %s++) {
if ('A'<=c && c<='Z' && abbrev_tbl['A'])
putstring(abbrev_tbl[c]);
)

else if (c == '9
switch (c = ¥*s++) {
case 'k':

TOK x = afargn];
if (0<x && x<MAXTOK && keys[xJ)
fprintf(out_file," %s",keys[x]);

else
fprintf(out_file," token(%d)",x);
argnt+;
break;
3
case 't': /* Ptype */

(L

Feb 8 12:48 1985 error.c Page 5

s
L { Ptype tt = (Ptype)a[argn];
’ if (tt) §
TOK pm = print_mode;
extern int ntok;
e int nt = ntok;
L print_mode = ERROR;
' fprintf(out_file," ");
tt->dcl_print(0);
print_mode = pm;

ntok = nt;
} argntt;
break;
- H
{H case 'n': /* Pname */
g { Pname nn = (Pname)afargn];
if (nn) §
TOK pm = print_mode;
print_mode = ERROR;
fprintf(out_file," ");
nn->print();
} print_mode = pm;
else
fprintf(out_file," ?");
argnt+t;
} break;
s default:
- format[0] = '%’';
format[l] = c;
format[2] = '"\0';
fprintf(out_file,format,a[argn++]);
break;
3
else
putch(c);
3
if (!scan_started) ext(4);
switch (t)
. case 'd':
N case 't':
case 'w':
putch('\n");
break;
default:
print_context();
}
fflush(stderr);
o /¥ now we may want to carry on ¥/

out_file = of;

switch (t)

Feb 8 12:48 1985 error.c Page 6

if (--in_error) return 0;
t'

ext (INTERNAL) ;

if (MAXERR<++error_count) §

case 't':

t .
case i
case 0:
case 's':
in_error = 0;
return O;

fprintf(stderr,"Sorry, too many errors\n');
ext(7);

Ny

g

Mo

Feb 8 12:48 1985 expand.c Page 1

O 0 0, L 0 7 0y (o)
C 7% %a% s %1% %H% %% *
- /7%:‘:: Fedededelee e de o el B R R bR N R BN NN R dode dedededoiededededede

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

=
~ Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.
If you ignore this notice the ghost of Ma Bell will haunt you forever.
expand.c:
expand inline functions
& T el ioioininleiin et el in el il i e e il i /
#include “cfront.h"
char®* temp(char* vn, char®* fn, char® cn)
/%
make the name of the temporary: _X vn_fn_cn
= /
{ if (vn[O0]!="_" || vn[1]!="'X") {
int vnl = strlen(vn);
int fnl = strlen(fn);.
int cnl = (cn)?strlen(cn):0;
. char®* s = new char[vnl+fnl+cnl+6];
C ol =
s[1] = 'X';
strcpy(s+2 vn),
s[vnl+2] = 5
strcpy(s+vn1+3,fn);
if (enl) §
s[vnl+fnl+3] = '_';
strepy(stvnl+fnl+d,cn);
3
return s;
H
else

return vn;
C

Pname dcl_local(Ptable scope, Pname an, Pname fn)

{
if (scope == 0) {
' error('s',"cannot expand inlineF needing temporary variable in nonF
return an;
s if (an->n_stclass == STATIC) error('s',"static%n in inlineF",an);
(:(, Pname cn = fn->n_table->t_name;

char* s = temp(an->string,fn->string, (cn)?cn->string:0);
Pname nx = new name(s);
/*error('d',"%n: %d->dcl_local(%s)'",fn,scope,s); */

Feb 8 12:48 1985 expand.c Page 2

nx->tp = an->tp;

PERM(nx->tp);

nx->n_used = an->n_used;
nx->n_assigned_to = an->n_assigned_to;
nx->n_addr_taken = an->n_addr_taken;
Pname r = scope->insert(nx,0);

delete nx;

return r;

3

Pstmt stmt.expand()

/7'.-
copy the statements with the formal arguments replaced by ANAMES
called once only per inline function
expand_tbl!{=0 if the function should be transformed into an expression
and expand_tbl is the table for local variables

* /

{

if (this == 0) error('i',"0->stmt.expand() for%n",expand_fn);
/#error('d',"stmt %d:%k s=%d e=%d 1=%d",this,base,s,e,s_list);*/

if (memtbl) { /* check for static variables */
register Ptable t = memtbl;
register int i;
for (register Pname n = t->get_mem(i=1); n; n=t->get_mem(++i))
if (n->n_stclass == STATIC) {
error('s',"static%n in inlineF",n);
n->n_stclass = AUTO;

3

if (expand_tbl) { /% make expression %/
Pexpr ee;

if (memtbl && base!=BLOCK) { /* temporaries ¥/

int i;

Pname n;

Ptable tbl = memtbl;

for (n = tbl->get_mem(i=1); n; n=tbl->get_mem(++i)) {

/*error('d',"%n: %n",expand_fn,n);*/

Pname nn = dcl_local(scope,n,expand_fn);
nn->base = NAME;
n->string = nn->string;

3

3

switch (base) {

default:
error('s',"%kS in inline%n'",base,expand_fn);
return (Pstmt)dummy;

case BLOCK:

if (s_list) {
ee = (Pexpr) s_list->expand()};

if (s) {

Feb 8 12:48 1985 expand.c Page 3
ee = new expr{CM, (Pexpr)s->expand(), ee);
PERM(ee);

return (Pstmt) ee;

}
if (s) return s->expand();

return (Pstmt) zero;

case PAIR:
ee = 52 ? (Pexpr)s2->expand() : 0;
ee = new expr(CM, s?(Pexpr)s->expand():0, ee);

if (s_.list) ee = new expr(CM, ee, (Pexpr)s_list->expand());
PERM(ee);
return (Pstmt) ee;

case RETURN:
s_list = 0;
return {(Pstmt) e->expand();

case SM:
ee = (e==0 || e->base==DUMMY) ? zero : e->expand();
if (s_list) {
ee = new expr(CM, ee, (Pexpr)s_list->expand());
PERM(ee);

return (Pstmt)ee;

case IF:
Pexpr qq = new expr(QUEST, (Pexpr)s->expand(),0);
qq->cond = e->expand();
qq->e2 = else_stmt ? (Pexpr)else_stmt->expand() : zero;
if (s_list) qq = new expr(CM,qq, (Pexpr)s_list->expand());
PERM(qq);
return (Pstmt)qq;

3
3

}

switch (base) {

default:
if (e) e = e->expand();
break;

case PAIR:
if (s2) s2 = s2->expand();
break;

case BLOCK:
break;

case FOR:
if (for_init) for_init = for_init->expand();
if (e2) e2 = e2->expand();
break;

case LABEL:

case GOTO:

case RETURN:

Feb 8 12:48 1985 expand.c Page 4

case BREAK:
case CONTINUE:
} error('s',"%kS in inline%n'",base,expand_fn);

if (s) s = s->expand();

if (s_list) s_list = s_list->expand();
PERM(this);

return this;

}

Pexpr expr.expand()

if (this == 0) error('i',"expr.expand(0)");
/*fprintf(stderr,"%s(): expr %d: b=%d el=%d e2=%d\n'",expand_fn->string,this,base,el,
switch (base) {
case NAME:
if (expand_tbl && ((Pname)this)->n_scope==FCT) {
Pname n = (Pname)this;
char®* s = n->string;
if (s[0]="_" && s[1]=="X") break;
Pname cn = expand_fn->n_table->t_name;
n->string = temp(s,expand_fn->string, (cn)?cn->string:0);

it

3
case DUMMY:

case ICON:
case FCON:
case CCON:
case IVAL:
case FVAL:
case LVAL:
case STRING:
case ZERO:
case SIZEOF:
case TEXT:
case ANAME:
break;
case ICALL:
if (expand_tbl && el==0) {
Pname fn = il->fct_name;
Pfet £ = (Pfct)fn->tp;
if (f->returns==void_type && fn->n_oper!=CTOR)
error('s',"non-value-returning inline%n called in v

else
error("inline%n called before defined",fn);
}
break;
case QUEST:
cond = cond->expand();
default:
if (e2) e2 = e2~>expand();
case REF:
case DOT:
if(el) el = el->expand();
break;
case CAST:

e

Feb 8 12:48 1985 expand.c Page 5

PERM(tp2);
el = el->expand();
break;
}
PERM(this);
return this;
3
bit expr.not_simple()
/ %
is a temporary variable needed to hold the value of this expression
as an argument for an inline expansion?
return 1; if side effect
return 2; if modifies expression
*/
{

int s;
/*error('d',"not_simple%k',base);*/
switch (base) {
default:
return 2;
case ZERO:
case IVAL:
case FVAL:
case ICON:
case CCON:
case FCON:
case STRING:
case NAME: /% unsafe (alias) */
case SIZEQF:
case G_ADDROF:
case ADDROF:
return O;
case CAST:
case DOT:
case REF:
return el->not_simple();
case UMINUS:
case NOT:
case COMPL:
return e2->not_simple();
case DEREF:
s = el->not_simple();
if (1<s) return 2;
if (e2==0) return s;
s |= e2->not_simple();
return s;
case MUL:
case DIV:
case MOD:
case PLUS:
case MINUS:
case LS:
case RS:
case AND:

Feb 8 12:48

case
case
case
case
case
case
case
case
case
case
case

case

case

bok:

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

1985 expand.c Page 6

NE:
ANDAND:
OROR:
CM:
s = el->not_simple();
if (1<s) return 2;
s |= e2->not_simple();
return s;
QUEST:
s = cond->not_simple();
if (1<s) return 2;
s |= el->not_simple();
if (1<s) return 2;
s |= e2->not_simple();
return s;
ANAME :
if (curr_icall) {
Pname n = (Pname)this;
int argno = n->n_val;
Pin il;
for (il=curr_icall; il; il=il->i_next)
if (n->n_table == il->i_table) goto aok;
goto bok;
aok:

}

error('i',"expand aname%n",this);
VALUE:
NEW:
CALL:
G_CALL:
ICALL:
ASSIGN:
INCR:
DECR:
ASPLUS:
ASMINUS:
ASMUL:
ASDIV:
ASMOD:
ASAND:
ASOR:
ASER:
ASLS:
ASRS:

return 2;

return (il->local[argno]) ? 0 : il->arg[argno]->not_simple(

KM/£

Y

(M

(N

Feb 8 12:48 1985 expand.c Page 7

Pexpr fct.expand(Pname fn, Ptable scope, Pexpr 11)

/ %
expand call to (previously defined) inline function in "scope"
with the argument list "11"

(1) declare variables in "'scope"
(2) initialize argument variables
(3) 1link to body

?/

/*error('d',"expand%n inline=%d last_exp=%d curr_expr=%d",fn,f_inline,last_expanded,
if ((body==0 && f_expr==0) /% called before defined */
|| (((Pfct)£fn~->tp)->body->memtbl==scope) /* called while defining */

(f_inline==2) * recursive call %/

N
|| (last_expanded && last_expanded==curr_expr)
/* twice in an expression ¥

)
fn->take_addr(); /* so don't expand */
if (fn->n_addr_taken = 1) {
Pname nn = new name; /% but declare it %/
fnn = frfn;
nn->n_list = dcl_list;
nn->n_sto = STATIC;
; dcl_list = nn;
return 0;
3

f_inline = 2;

Pin il = new iline;

Pexpr ic = new texpr(ICALL,0,0);

il->fct_name = fn;

ic->il = il;

ic->tp = returns;

Pname n;

Pname at = (f_this) ? f_this : argtype;

if (at) il->i_table = at->n_table;

int i = 0;

int not_simple = 0; /* is a temporary argument needed? */

for (n=at; n; n=n->n_list, i++) {
* check formal/actual argument pairs
and generate temporaries as necessary
':‘c/
if (11 == 0) error('i',"simpl.call:AX for %n",fn);
Pexpr ee;

if (1ll->base == ELIST) {
ee = 11->el;

11 = 11->e2;
else {

ee = 11;

11 = 0;
3

Feb 8 12:48 1985 expand.c Page 8

int s; /% could be avoided when expanding into a block */

if (n->n_assigned_to == FUDGE11l1l) { /% constructor's this %/
if (ee != zero) { *

automatic or static
then we can use the
actual variable

wta /
iy

/

il->local{i] = 0;

goto zxc

}

.
3

/#error('d',"n=%n addr %d ass %d used %d s %d",n,n->n_addr_taken,n->n_assigned_to,n-

if (n->n_addr_taken
|| n->n_assigned_to) {

Pname nn = dcl_local(scope,n,fn);

nn->base = NAME;

il->local[i] = nn;

++not_simple;

3

else if (n->n_used

&& (s=ee->not_simple())
& (1<s || 1<n->n_used)) { /* not safe ¥/
Pname nn = decl_local(scope,n,fn);

nn->base = NAME;

il->local[i] = nn;

++not_simple;

3
else
il->local[i] = 0;
zxc:
il->arg[i] = ee;
; il->tp[i] = n->tp;

3

if (f_expr) { /* generate comma expression */

char loc_var = 0;

/% look for local variables needing declaratiomn: */

Ptable tbl = body->memtb

1;

for (n=tbl->get_mem(i=1); n; n=tbl->get_mem(++i)) {
if (n->base==NAME
&& (n->n_used||n->n_assigned_to||n->n_addr_taken)) {

Pname nn
nn->base

dcl_local(scope,n,fn);
NAME ;

n->string = nn->string;
loc_var++;

3
/*error('d',"not_simple=%d loc_var=%d last_expanded=%d curr_expr=%d",not_simple, loc_
if (not_simple || loc_var) last_expanded = curr_expr;
Pexpr ex;

if (not_simple) {
Pexpr etail = ex

new expr(CM,0,0);

for (i=0; i<MIA; i++) {

Pniame n

il->local[i];

o

e

Feb 8 12:48 1985 expand.c Page 9

if (n==0) continue;
Pexpr e = il->arg[i];

etail->el = new expr(ASSIGN,n,e);

/*error('d',"%n = %k",n,e->base);*/

if (--not_simple)

etail = etail->e2 = new expr(CM,0,0);

else ,
break;

etail->e2 = f_expr;
else §

}

ic->el = ex;

ex = f_expr;

else { /* generate block */
Pstmt ss;
if (not_simple) {
last_expanded = curr_expr;
Pstmt st = new estmt(SM,curloc,0,0);
Pstmt stail = st;
for (i=0; i<MIA; i++) {
Pname n = il->local[i];
if (n == 0) continue;
Pexpr e = il->arg[i];

stail->e = new expr(ASSIGN,n,e);

if (--not_simple)

stail = stail->s_list
else

break;

stail->s_list = body;
ss = new block(curloc,0,st);

else {
ss = body;

ic->e2 = (Pexpr)ss;

3

f_inline = 1;
return ic;

= new estmt(SM,curloc

Feb 8 12:48 1985 expr.c Page 1
/% %Z% WMb %1% %H% WT%h *
/:’:s’c‘.’:‘.’::’n‘r R NN TN Te NN N fe Ne NN deNAe K NVeTeT T T dedededede e dedoldedodoTolodedodededededelododedoledede doldededede de dede dedede e de e

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

expr.c:

type check expressions

tet b Vot ¥t mmon mFot b Yo it o ! Yoo wlin e ! e oee it Yo wtet el T R e e T e e A AL A ft e ot wle st otantentonts wle e wlents
dedededededodedededeiodododededolodododediidodededolodedolode e dededodoliiofelodeledodeldodedo ldodede e do e dedeTele e doledededoloddeodo ik /

##include "cfront.h"
#include "size.h"

int const_save;
Pexpr expr.address()

if (base==DEREF && e2==0) return el; J% &% %)
if (base == CM) {

e2 = e2->address();

return this;

register Pexpr ee = new expr(G_ADDROF,0,this);
ee->tp = new ptr(PIR,tp,0);

if (base == NAME) ((Pname)this)->take_addr();
return ee;

3

Pexpr expr.contents()
if (base==ADDROF || base==G_ADDROF) return e2; /% w& %/
register Pexpr ee = new expr(DEREF,this,0);
if (tp) ee->tp = ((Pptr)tp)->typ; /* tp==0 777 */

return ee;

}

Pexpr table.find_name(register Pname n, bit £, Pexpr args)

/7’:
find the true name for "n'", implicitly define if undefined
if "n" was called f==1 and "args" were its argument list

if n was qualified r->n or o.n f==2

=/
{

Pname g = n->n_qualifier;

register Pname qn = 0;

register Pname nn;

Pclass cl; /% class specified by q %/
/*if (q)

error('d',"%d->find_name%s::%s f=%d args=%d ntbl=%d cc->tot=%d\n",this, (q!=sta_name

_J

Feb 8 12:48 1985 expr.c Page 2

(:; else

error('d',"%d->find_name %s f=%d args=%d ntbl=%d cc->tot=%d\n",this,n->string,f,arg
if (n->n_table) {

nn = n;
n = 0;
(;; goto xx;
}
if (q) {
Ptable tbl;
if (q == sta_name)
thl = gtbl;
o else {
(;f; Ptype t = (Pclass)g->tP;
if (t == 0) error('i',"Qr%n'sT missing",q);
if (gq->base == TNAME) {
if (t->base != COBJ) {
error ("badT%k forQr%n",t->base,q);
goto nq;
}
t = ((Pbase)t)->b_name->tp;
if (t->base != CLASS) ¢
error ("badQr%n(%k)",q,t->base);
goto ng;
: 3
(:;; cl = (Pclass)t;
’ tbl = cl->memtbl;
}
gqn = tbl->look(n->string,0);
if (gqn == 0) {
n->n_qualifier = 0;
nn = 0;
goto def;
3
if (q == sta_name) { /% explicitly global ¥/
gn->use();
delete n;
<:g return qn;
}
/* else check visibility */
}

nq:
if (cec~>tot) {
{ for (Ptable tbl = this;;) {
nn = lookc(n->string,0);
- J*error('d',"cc->tot:%n nn=%n sto%k sco%k',n,nn,nn->n_stclass,nn->n_scope);¥*/
C;“ if (nn == 0) goto qq; /* try for friend ¥/

switch (an->n_scope) {
case O:

C

Feb 8 12:48 1985 expr.c Page 3

case PUBLIC:
if (nn->n_stclass == ENUM) break;

if (an->tp->base == OVERLOAD) break;

if (Ebase
&& Ebase!=cc->cot->clbase->tp
&& !Ebase->has_friend(cc->nof))
error("%n is from a privateBC",n);

if (Epriv

&& Epriv!=cc->cot

&& !Epriv->has_friend(cc->nof))
error("%n is private',n);

3
if (gqn==0 || gn==nn) break;

if ((tbl=tbl->next) == 0) { /% qn/cl test necessary? */
if ((gn->n_stclass==STATIC
|| gn->tp->base==FCT
|| gqn->tp->base==0VERLOAD)
&& (qun->n_scope==PUBLIC
|| el->has_friend(cc->nof))) {
/*gn->use();
delete nj;
return qn;
% /
nn = qnj
break;

else §
error("QdN%n not in scope',n);
goto def;

3

XX:
/*error('d',"

,"xx: nn=%n qn=%n n=%n f=%d",nn,qn,n,f);%/
if (nn == 0) goto def;
nn->use();
if (f == 2) {
if (gqn && nn->n_stclass==0)
switch (nn->n_scope) {

case 0:
case PUBLIC: /* suppress virtual */
switch (qn->tp->base) {
case FCT:
case OVERLOAD:
*n o= ‘:':qn;
n->n_qualifier = q;
return n;
H

if (n) delete n;

o

AR
{ S

(A\

Feb 8 12:48 1985 expr.

}

c Page &4

return nn;

switch (nn->n_scope) §

case 0:

case PUBLIC:

default:

3

if (nn->n_stclass == 0) {
if (gn) § /* suppress virtual ¥/

switch (gn->tp->base) {

case FCT:

case OVERLOAD:
n = *qn;
n~->n_qualifier = q;
/*return n; ¥/
nn = n;
n = 0;

3

if (cc->c_this == 0) {

switch (nn->n_oper) {

case CTOR:

case DTOR:
break;

default:
/* in static member initializer %/
error("%n cannot be used here",nn);
return nn;

3

Pref r = new ref(REF,cc->c_this,nn);
cc->c_this->use();

r->tp = nn->tp;

if (n) delete n;

return r;

if (n) delete n;
return nn;

» : t ot
/*error('d',"qq: n%n nn%n qn%n',n,nn,qn);*/

if (gn) {

/% static member? ¥*/

if (gqn->n_scope==0 && !cl->has_friend(cc->nof)) {

3

error("%n is private',qn);
if (n) delete n;
return qn;

switch (qn->n_stclass) {
case STATIC:

default:

break;

switch (qn->tp->base) {

Feb 8 12:48 1985 expr.c Page 5

3
if (nn
3
if (nn)
3
def: /
/*error ('

case FCT:
case OVERLOAD: /* suppress virtual */
if (f == 1) error("0 missing for%n",qn);
‘s'fn ot *qn;
n->n_qualifier = q;
return n;
default:
} if (f 1= 2) error("O missing for%n'",qn);

3

if (n) delete n;
return gn;

= lookc(n=->string,0)) {
switch (nn->n_scope) {
case 0:
case PUBLIC:
if (nn->n_stclass == ENUM) break;

if (nn->tp->base == OVERLOAD) break;
if (Ebase && !Ebase->has_friend(cc->nof))
error("%n is from privateBC'",n);

if (Epriv && !Epriv->has_friend(cc->nof))
error ("%n is private',n);

{

nn->use();
if (n) delete n;
return nn;

* implicit declaration */
"Wimplicit £ %d",f);¥/

n->n_qualifier = 0;
if (£ ==1) { /% function %/

if (n->tp) error('i',"find_name(fct_type?)");

if (fet_void) {
n->tp = new fct(defa_type,0,0);

else {
Pexpr e;
Pname at = 0;
Pname att;

for (e=args; e; e=e->e2) {
Pname ar = new name;

if (e->base != ELIST) error('i',"badA %k",e->base);

e->el = e->el->typ(this);

ar->tp = e->el->base==STRING ? Pchar_type :

switch (ar->tp->base) {
case ZTYPE:

iw/

(”“\

C

O

Feb 8 12:48 1985 expr.c Page 6

ar->tp = defa_type;
break;
case FIELD:
ar->tp = int_type;
break;
case ANY:
default:
PERM(ar->tp);
if (at)
att->n_list = ar;
else
at = ar;
att = ar;
3
n->tp = new fct(defa type,at,1);
}
3
else {
n->tp = any._type;
if (this != any_tbl)
if (cc->not && ce->cot->defined==0)
error("C%n isU",cc->not);
else
} error("%n isU",n);

nn = n~->dcl(gtbl,EXTERN);

nn->n_list = 0;

nn->use();

nn->use(); /% twice to cope with "undef = 1;" *%/
if (n) delete n;

if (f==1)
switch (no_of_undcl++) §
case 0: undcll = nn; break;
default: undcl2 = nn; break;
3
return nn;
3
Pexpr expr.typ(Ptable tbl)
/%
find the type of "this" and place it in tp;
return the typechecked version of the expression:
"tbl" provides the scope for the names in "this"
*/
{ t T n "
if (this == 0) error(i, O->expr.typ);
Pname n;
Ptype t = 0;

Ptype tl1, t2;
TOK b = base;
TOK rl, r2;

Feb 8 12:48 1985 expr.c Page 7

#define nppromote(b) t=np_promote(b,rl,r2,t1,t2,1)

f#idefine npcheck(b) (void)np_promote(b

rl,r2,t1,t2,0)

if (tbl->base != TABLE) error('i', expr.typ(%d)",tbl->base);

//if (b == NAME) error('d',"name %d %d %s",this,string,string?string:"?");
if (tp) {

/*¥error('d',"expr.typ %d (checked) tbl=%d",this,tbl);*/

3
//error('d',"expr.typ %d%k el %d%k e2 %d%k tbl %d\n",this,base,el,el?el->base:0,e2,e

if (b == NAME) ((Pname)this)->use();
return this;

switch (b) ¢ /* is it a basic type */
case DUMMY:

error('emptyE");
tp = any_type;
return this;

case ZERO:

tp = zero_type;
return this;

case IVAL:

tp = int_type;
return this;

case FVAL:

tp = float_type;
return this;

case ICON:
/% is it long?
explicit long?
decimal larger than largest signed int
octal or hexadecimal larger than largest unsigned int
s’c/
{ int 11 = strlen(string);

switch (string[l1l-1]) {
case '1':
case 'L':
Ing:
tp = long type;
goto save;
H
if (string[0] = '0") { /* assume 8 bits in byte */
switcb (string[1]) {
case 'X ' :
case 'X':
if (SZ_INT+SZ_INT < 11-2) goto lng;
goto nrm;
default:
if (BI_IN_BYTE*SZ_INT < (11-1)*3) goto lng;
goto nrm;
}
else {
if (11</*sizeof (LARGEST_INT)-1%/10) {
nrm:

tp = int_type;
goto save;

J

R

"

&

C

Feb 8 12:48 1985 expr.c Page 8

3
if (11>10) goto 1lng;
char®* p = string;
char®* q = LARGEST_INT;
} do if (*p++>¥*q++) goto lng; while (*p);

goto nrm;

case CCON:
tp = char_type;
goto save;
case FCON:
tp = float_type;
goto save;
case STRING:
{ int 11 =
Pvec v = new vec(char_type,0);
v->size = 11+1;
tp = v,
} goto save;
save:
/*error('d',"%s const_save %d",string,const_save);*/
if (const_save) ¢
int 11 = strlen(string);
char® p = new char[1l1+1];
strepy(p,string);
) string = p;

return this;

case THIS:
delete this;
if (cec->tot)
cc->c_this->use();
return cc->c_this;
3
error("this used in nonC context™);
n = new name(''this");
n->tp = any_type;
return tbl->insert(n,0);

case NAME:
/*error('d’,"name %s",string);¥*/
{ Pexpr ee = tbl->find name((Pname)this,0,0);
if (ee->tp->base == RPTR) return ee->contents();

return ee;

H
case SIZEQF:
t = tp2;
if () {
t->del(tbl);
if (el && el!=dummy) {
el = el->typ(tbl);
DEL(el);

strlen(string); /* type of "asdf" is char[5] */

Feb 8 12:48 1985 expr.c Page 9

el = dummy;

3

else {
el = el->typ(tbl);
tp2 = el->tp;

3

tp = int_type;
return this;

case CAST:

{

za
/*error('d

(}2
]

3

tt

Ptype tt = t = tp2;
tt->dcl(tbl);
/* is the cast legal? */
%d %d",tt,tt?7tt->base:0);%/
switch (tt->base) §
case TYPE:
tt {(Pbase)tt)->b_name->tp; goto zaq;
case RPTR: // necessary?
case PTR:
if ((Pptr)tt)->rdo) error("*const in cast');
tt = ((Pptr)tt)->typ;
goto zaq;
case VEC:
tt ((Pvec)tt)->typ;
goto zaq;
case FCT:
tt ((Pfect)tt)->returns;
goto zaqg;
default:
} if (((Pbase)tt)->b_const) error(''const in cast');

/* now check cast against value, INCOMPLETE */

] I~ tl

/*error('d"',"cast el %d %d",el,el->base);*/

tt = t;

if (el == dummy) {
error('expression missing for cast");

tp = any_type;
return this;

el = el->typ(tbl);
Ptype etp = el->tp;
while (etp->base == TYPE) etp = ((Pbase)etp)->b_name->tp;

if (etp->base == COBJ) {
int 1 = can_coerce(tt,etp);

J*error('d',"cast%t->%t -- %d%n",tt,etp,i,Ncoerce);*/

if (i==1 && Ncoerce) {
Pname cn = ((Pbase)etp)->b_name;
Pclass cl = (Pclass)cn->tp;
Pref r = new ref(DOT,el,Ncoerce);
Pexpr ¢ = new expr(G_CALL,r,0);

\\,//J

Feb 8 12:48 1985 expr.c Page 10

c->fct_name = Ncoerce;
c->tp = tt;

*this = *(Pexpr)c;
delete c¢;

return this;

3

switch (etp->base) {
case VOID:

if (tt->base == VOID) {

tp = t;

} return this;

error(''cast of void value');
case ANY:

tp = any.type;

return this;

legloop:
switch (tt->base) §
case TYPE:
tt = ((Pbase)tt)->b_name->tp; goto legloop;
case VOID:
switch (etp->base) {
case COBJ:
switch (el->base) {
case VALUE:
case CALL:
case G_CALL:
H Pname cln = etp->is_cl_obj();
Pclass cl (Pclass)cln->tp;
if (cl->has_dtor()) error('s',"cannot castC

3
3
; break;
break;
case PTR:
switch (etp->base) {
case COBJ:
error("cannot castCO toP");
break;
3
break;
case RPTR: // can be simplified?
{ Ptype tl1 = etp;
refl:
switch (tl->base) {
case TYPE:
tl = ((Pbase)tl)->b_name->tp;
goto refl;
case PTR:
case RPTR:
case VEC:

e s
N

Feb 8 12:48 1985 expr.c Page 11

// break;
case COBJ:
el = el->address();
break;
default:
} error(0,'"cannot cast%t to reference',el->tp);
} break;
case COBJ:
if (el->1val(0)) { /¥ (x)a => *(x%*)&a */
Ptype pt = new ptr(PTR,t);
el = el->address();
el = new texpr(CAST,pt,el);
el = el->contents();
*this = %*el;
}
else
error('s',"cannot cast toCO");
break;
case CHAR:
case INT:
case SHORT:
case LONG:
case FLOAT:

case DOUBLE:
switch (etp->base) {

case COBJ:
error(''cannot castCO to%k",tt->base);
break;
}
break;
}
tp = t;
return this;
}
case VALUE:
{ Ptype tt = tp2;
Pclass cl;
Pname cn;

/*error('d',"value %d %d (%d %d)",tt,tt?tt->base:0,el,el?el->base:0);%*/
tt->dcl(tbl);

vV
/*error('d’,"vv %d %d",tt,tt?tt->base:0);%/
switch (tt->base) {

case TYPE:
tt = ((Pbase)tt)->b_name->tp;
goto vv;

case EOBJ:

default:

if (el == 0) {
error("value missing in conversion to%t",tt);
tp = any_type;

N’

N

Feb 8 12:48 1985 expr.c Page 12

<:;; } return this;
base = CAST;
return typ(tbl);
- case CLASS:
(:; ¢l = (Pclass)tt;
goto nn;
case COBJ:
cn = ((Pbase)tt)->b_name;
cl = (Pclass)cn->tp;
nn: ;
if (el && el->e2==0) { /* single argument */

el->el = el->el->typ(tbl);
- Pname acn=el->el->tp->is_cl_obj();
(:’ /*error('d',"acn%n itor%n",acn,cl->itor);¥*/

if (acn && acn->tp==cl) { /* x(x_obj) */
if (cl->has_itor() == 0) return el->el;
H
{ /% x(a) => obj.ctor(a); where el==obj */
Pexpr ee;

Pexpr a = el;

Pname ctor = cl->has_ctor();

if (ctor == 0) ¢
error("cannot make a%n'",cn);
base = SM;
el = dummy;

C e2 = 0;
return this;

/*error('d',"value %n.%n",e2,ctor);*/
if (e2 == 0) { /* x(a) = x temp; (temp.x(a),temp) */
Ptable otbl = tbl;
if (Cstmt) { /* make Cstmt into a block #/
if (Cstmt->memtbl == Q) Cstmt->memtbl = new
tbl = Cstmt->memtbl;

char* s = make_name('V');
/*error('d',"%s: %d %d",s,otbl,tbl);%*/
Pname n = new name(s);
n->tp = tp2;
(::* n = n->dcl(tbl,ARG); /¥ no init! */
a n->n_scope = FCT;
n->assign();

e2 = n;
ee = new expr(CM,this,n);
tbl = otbl;

}

else
ee = this;

<;g base = G_CALL;
el = new ref(DOT,e2,ctor);
e2 = a;

return ee->typ(tbl);

Feb 8 12:48 1985 expr.c Page 13

3
3

}

case NEW:

{ Ptype tt = tp2;
Ptype tx = tt;
bit v = 0;

bit old = new_type;
new_type = 1;

/*error('d’,"new¥%t el %d %d",tt,el,el?el->base:0);%*/

tt->dcl(tbl);
new_type = old;

if (el) el = el->typ(tbl);

11:

/¥error('d',"tt %d %d",tt,tt?tt->base:0);%/

switch (tt->base) {

default:
if (el) error('i',"Ir for new non-C");
break;
case VEC:
v =1;
tt = ((Pvec)tt)->typ;
goto 11;
case TYPE:
tt = ((Pbase)tt)->b_name->tp;
goto 11;
case COBJ:
{ Pname cn = ((Pbase)tt)->b_name;

Pclass cl = (Pclass)cn->tp;
if (cl->defined == 0) {
error('"new%n;%n isU",cn,cn);

else §

Pname ctor = cl->has_ctor();

TOK su;

t gt " if (ctor) {
/*error('d , cobj%n tp%t",ctor,ctor->tp);¥*/

el = new call(ctor,el);
el = el->typ(tbl);
/*(void) el->fct_call(tbl);*/

else if (suxcl->is_simple()) {

/*error('d',"simple cobj%k',su);*/

else {

if (el) error("new¥%n withIr",cn);

/*error('d',"not simple and no constructor?");¥*/

3
H
3

[*error('d","v==%d",v);*/
tp = (v) ? (Ptype)tx :
return this;

(Ptype)new ptr(PTR,tx,0);

N

/’h-\
]

Feb 8 12:48 1985 expr.c Page 14

if (el==0 && e2==0) error('i',"no operands for%k",b);

switch(b) {

case ILIST: /% an ILIST is pointer to an ELIST %/
el = el->typ(tbl);

tp = any_type;

return this;

case ELIST:
Pexpr e;
Pexpr ex;

if (el == dummy && e2==0) {
error('emptyIrL");
tp = any_type;
return this;

}

for (e=this; e; e=ex) {
Pexpr ee = e->el;

/*error('d',"e %d %d ee %d %d",e,e?e->base:0,ee,ee?ee->base:0);*

if (e->base != ELIST) error('i',"elist%k",e->base);
if (ex = e->e2) { /* look ahead for end of 1i
if (ee == dummy) error("EX in EL");
if (ex->el == dummy && ex->e2 == 0) {
IR B
DEL(ex);
e->e2 = ex = 0;

H

3
e->el = ee->typ(tbl);
t = e->el->tp;

3
tp = t;
return this;

3

case DOT:
case REF:

Pbase b;
Ptable atbl;
Pname nn;
char* s;
Pclass cl;

el = el->typ(tbl);
t = el->tp;

if (base == REF) {
XXX:
switch (t->base) {

Feb 8 12:48 1985 expr.c Page 15

else {
qqq:

case TYPE: t = ((Pbase)t)->b_name->tp; goto xxx;
default: error("nonP ->%n",mem);

case ANY: atbl = any_tbl; goto mm;
case PTR:

§ase VEC: b = (Pbase)((Pptr)t)->typ; break;

switch (t->base) {

case TYPE: t = ((Pbase)t)->b_name->tp; goto qqq;
default: error("non0 .%n'",mem);
case ANY: atbl = any_tbl; goto mm;
case COBJ: break; ;
H
switch (el->base) { /% FUDGE, but cannot use lval (cons
case CM:
J C ..., x). = (..., &)-> %/
{ Pexpr ex = el;
cfr: switch (ex->e2->base) {
case NAME:
base = REF;
ex->e2 = ex->e2->address();
goto xde;
case CM:
ex = ex->el;
goto cfr;
}
H
case CALL:
case G_CALL:

if (el->fct_name==0
|| ((Pfct)el->fct_name~>tp)->f inline==0) {
/¥ £0). => (tmp=£(),&tmp)-> */
Ptable otbl = tbl;
if (Cstmt) { /% make Cstmt into a block */
if (Cstmt->memtbl == 0) Cstmt->memt
tbl = Cstmt->memthbl;

char* s = make_name('T');

Pname tmp = new name(s);

tnp->tp = el->tp;

tmp = tmp->dcl(tbl,ARG); /¥* no init! */
tmp->n_scope = FCT;

el = new expr(ASSIGN,tmp,el);

el->tp = tmp->tp;

Pexpr aa = tmp->address();

el = new expr(CM,el,aa);

el->tp = aa->tp;

base = REF;
tbl = otbl;
H
break;
case QUEST:

t
error("non-1lvalue .%n'",mem);

/*error('d

Feb 8 12:48 1985 expr.c Page 16

break;
case NAME:

((Pname)el)->take_addr();

xde:
= (Pbase)t;
XXXX:

switch (b->base) {
case TYPE: (Pbase) b->b name—>tp, goto xxxX;
default: error('badT before %k%n',base,mem);
case ANY: atbl = any_tbl; goto mm;
case COBJ: |

if (atbl = b->b_table) goto mm;

= b->b_name- >str1n$, /* lookup the class name ¥/
1f (s == 0) error('i',"%kN missing",CLASS);
nn = tbl->look(s, CLASS)
if (an == 0) error(1',"7k %sU",CLASS ,s);

if (nn != b~>b_name) b->b_name = nn;
¢l = (Pclass) nn~>tp;
PERM(cl);

if (cl == 0) error('i',"%k %s'sT missing",CLASS,s);
b->b_table = atbl = cl->memtbl;
mm:
if (atbl->base != TABLE) error('i',"atbl(%d)",atbl->base);
nn = (Pname)atbl->find_name(mem,2,0);
,"'nn%n %d %d",nn,nn->n_stclass,nn->n_scope);*/
switch (nn->n_stclass) {
case 0:
mem = nn;
tp = nn->tp;
return this;
case STATIC:
return nn;

t n

}
}
}
case CALL: /* handle undefined function names ¥/
if (el->base==NAME && el->tp==0) el = tbl->find_name((Pname)el,l,e2
break;
case QUEST:
cond = cond->typ(tbl);
3
if (el) f
el = el->typ(tbl);
if (el->tp->base == RPTR) el = el->contents();
tl = el->tp;
H
else

tl = 0;

Feb 8 12:48 198

if (e2)

5 expr.c Page 17

{
e2 = e2->typ(tbl);
if (e2->tp->base == RPTR) e2 = e2->contents();

t2 = e2->tp;
}
else
t2 = 0;
TOK bb;
switch (b) { /* filter non-overloadable operators out %/
default: bb = b; break;
case DEREF: bb = (e2) ? DEREF : MUL; break;
case CM:
case QUEST:
case G_ADDROF:
case G_CALL: goto not_overloaded;
}
Pname nl;
if (el) {
Ptype tx = t1;
while (tx->base == TYPE) tx = ((Pbase)tx)->b_name->tp;
nl = tx->is_cl obj();
3
else
nl = 0;
Pname n2;
if (e2) {
Ptype tx = t2;
while (tx->base == TYPE) tx = ({Pbase)tx)->b_name->tp;
n2 = tx->is_cl _obj();
3
else

n2 = 0;
/*error('d',"overload %k: %s %s\n'", bb, nl?nl->string:"1", n2?n2->string:"2");%*/
if (nl1==0 && n2==0) goto not_overloaded;

t o1

{
/% first
Pexpr oe
Pexpr ee
Pexpr ee

char®* obb

Pname gn
int go =
int nc =

if (ﬁo)

/*error('d'," "glo

if (nl)

try for non-member function: op(el,e2) or op(e2) or op(el) */
e2;

(e2 && e2->base!=ELIST) ? e2 = new expr(ELIST,e2,0) : 0;
(el) ? new expr(ELIST,el,e2) : ee2;

oper_name(bb);

ame = gtbl->look(obb,0};

gname ? over_call(gname,eel) : 0;

Nover_coerce; /% first look at member functions

/
gname = Nover;
bal%n go=%d nc=%d",gname,go,nc);fflush(stderr);*/

2
2
1

wnnu

{ /* look for member of nl */
Ptable ctbl ((Pclass)nl->tp)->memtbl;

Pname mname ctbl->1look(obb,0);

if (mname == 0) goto glob;

i

Feb 8 12:48 1985 expr.c Page 18

C
C

switch (mname->n_scope) {

default: goto glob;

case 0:

case PUBLIC: break; /* try el.op(?) */
3

int mo = over_call(mname,e2);

/*error('d',"n1%n %d",mname,mo);%/

}

switch (mo)

case 0:
if (1 < Nover_coerce) goto aml;
goto glob;

case 1: if (go == 2) goto glob;
if (go == 1) {

aml:
error("ambiguous operandTs%n%t for%k'",nl,t2,b);
tp = any_type;
return this;
else §
Pclass ¢l = (Pclass)nl->tp;
if (cl->conv) error('w',"overloaded%k may be ambigu
}
}
if (bb==ASSIGN && mname->n_table!=ctbl) { /* inherited = */
error("assignment not defined for class%n',nl);
tp = any.type;
return this;
}
base = G_CALL; /* el.op(e2) or el.op() */

el = new ref(DOT,el,Nover);
if (eel) delete eel;
return typ(tbl);

if (n2 && el==0) { /* look for unary operator */

Ptable ctbl ((Pclass)n2->tp)->memtbl;
Pname mname = ctbl->look(obb,0);

if (mname == 0) goto glob;

switch (mname->n_scope) {

it n

default: goto glob;

case 0:

case PUBLIC: break; /* try e2.op() */
}

int mo = over_call(mname,0);

/*error('d',"n2%n %d",mname,mo);%*/

switch (mo) {
case 0:
if (1 < Nover_coerce) goto am2;
goto glob;
case 1: if (go == 2) goto glob;
if (go == 1) {
am2:

Feb 8 12:48 1985 expr.c Page 19

error("ambiguous operandT%n for%k',n2,b);

tp = any_type;
return this;

H
3
base = G_CALL; /% e2.op() */
el = new ref(DOT,ce2,Nover);
e2 = 0;

if (ee2) delete eel;
if (eel && eell=ee2) delete eel;
return typ(tbl);

}

glob: if (1 < nc) {
error("'ambiguous operandTs%t%t for%k'",tl,t2,b);
tp = any_type;
return this;

3
if (go) {
if (go == 1) { /* conversion necessary => binary %/
if (n1) {
Pclass cl = (Pclass)nl->tp;
} if (cl->conv) error('w',"overloaded%k may be ambigu
else if (n2) {
Pclass cl = (Pclass)n2->tp;
if (cl->conv) error('w',"overloaded%k may be ambigu
| }
base = G_CALL; /* op(el,e2) or op(el) or op(e2) */
el = gname;
e2 = eel;

return typ(tbl);

3

if (ee2) delete ee2;

if (eel && eel!=ee2) delete eel;

e2 = oe2;
/*error('d',"bb%k",bb);¥*/

switch(bb) §

case ASSIGN:

case ADDROF:

case CALL:
case DEREF:
break;
default: /% look for conversions to basic types %/
{ int found = 0;
if (nl) {

int val = 0;
Pclass ¢l = (Pclass)nl->tp;
for (Pname on = cl->conv; on; on=on~->n_list) {
/*error('d',"oper_coerce nl%n %t',on, (on)?Pfct(on->tp)->returns:0);%*/
Pfct £ = (Pfct)on->tp;
if (bb==ANDAND || bb==0ROR) {

Feb 8 12:48 1985

/*error('d

T n

3
if (n2)

expr.c Page 20

el = check_cond(el,bb,0);
goto not_overloaded;

}
if (n2
|| f£->returns->check(t2,ASSIGN)==0
|| t2->check(f->returns,ASSIGN)==0) {
Ncoerce = on;
val+t;
3
switch (val) {
case O:
break;
case 1:
{ Pref r = new ref(DOT,el,Ncoerce);
el = new expr(G_CALL,r,0);
found = 1;
; break;
default:
} error('s',"ambiguous coercion of%n to basicT",nl);
{

int val = 0;
Pclass cl = (Pclass)n2->tp;
for (Pname on = cl->conv; on; on=on->n_list) {

,"oper_coerce n2%n %t",on, (on)?on->tp:0);*/

Pfct f = (Pfct)on->tp;

if (bb==ANDAND || bb==0ROR) {
e2 = check _cond(e2,bb,0);
goto not_overloaded;

3

if (nl

|| £->returns->check(tl,ASSIGN)==0

|| tl->check(f->returns,ASSIGN)==0) {
Ncoerce = on;

val+t;
}
//if (nl || tl->check(f->returns,COERCE)==0) {
// Ncoerce = on;
// valtt;

// 3

}

switch (val) {

case 0:
break;

case 1:

{ Pref r = new ref(DOT,e2,Ncoerce);
e2 = new expr(G_CALL,r,0);
found++;

} break;

default:

error('s',"ambiguous coercion of%n to basicT",n2);

Feb 8 12:48 1985 expr.c Page 21

3
if (found) {

/% if (found == 2) error('w',"coercions of operands of%k may b

return typ(tbl);

3
if (tl & t2)

error("bad operandTs%t%t for%k'",tl,t2,b);
else

error("bad operandT%t for%k",t1?t1:t2,b);
tp = any.type;
return this;

3
3
3
not_overloaded:
t = (tl==0) ? t2 : (t2==0) ? t1 : 0

/*fprintf(stderr,"%s: el %d %d e2 %d %d\n",oper_name(b),el,el?el->base:0,e2,e2?e2->b

switch (b) { /% are the operands of legal types */
case G_CALL:
case CALL:
tp = fet_call(tbl); /* two calls of use() for el's names */

if (tp->base == RPTR) return contents();
return this;

case DEREF:
if (el == dummy) error("O missing before []\n");
if (t) { /% *t */
t->vec_type();
tp = t->deref();
else § /% t1[t2] */

tl->vec_type();
t2->integral(b);
tp = tl->deref();

if (tp->base == RPTR) return contents();
return this;

case G_ADDROF:
case ADDROF:
if (e2->1lval(b) == 0) {
tp = any_type;
return this;
3
tp = t->addrof();
/* look for &p->member_function */
switch (e2->base) {
case DOT:
case REF:
{ Pname m = e2->mem;
Pfct £ = (Pfct)m->tp;

if (f->base==FCT && (f->f_virtual==0 || m->n_qualifier)) {

DEL(e2);
e2 = m;

7

Feb 8 12:48

case

case

case

case
case

H

if (el==dummy || e2==dummy || el==0 || e2==0) error("operand missing for%k"
switch (b)

198

UMI

5 expr.c Page 22

3

return this;

NUS:
t->numeric(b);
tp = t;

return this;

NOT:

COM

e2 = check_cond(e2,NOT,tbl);
tp = int_type;

return this;

PL:

t->integral(b);

tp =t

return this;

INCR:
DECR:

if (el) el->1lval(b);
if (e2) e2->1lval(b);
rl = t->num_ptr(b);
tp = t;

return this;

~-

case MUL:
case DIV:

case

case

case

case
case
case
case
case

rl
r2

tl->numeric(b);
t2->numeric(b);

nppromote(b);
break;
MOD:

£1 = tl->integral(b);
r2 = t2->integral(b);

nppromote(b);
break;

PLU

MIN

LS:

S:

rl = tl->num_ptr(b);

r2 = t2->num_ptr(b);

if (r1==P && r2==P) error("P +P");
nppromote(b);

break;

Us:

rl = tl->num_ptr(b);

r2 = t2->num_ptr(b);

if (r2==P && rl!=P && rl1!=A) error("P - nonP");
nppromote(b);

break;

Feb 8 12:48 1985 expr.c Page 23

case LT:
case LE:
case GT:
case GE:
case EQ:
case NE:

r2 = t2->num_ptr(b);
npcheck(b);
t = int_type;
break;

case ANDAND:

case OROR:

/% tl->num_ptr(b);
t2->num_ptr(b);

'k/
el = check_cond(el,b,tbl);
e2 = check_cond(e2,b,tbl);
t = int_type;
break;

case QUEST:

rl = tl->integral(b);
r2 = t2->integral(b);
nppromote(b);

break;

I

rl = tl->num_ptr(b);

cond = check_cond(cond,b,tbl);

if (t1 == t2) {
t = tl;

else {

rl

/* not general enough */

t1->num_ptr(b);

r2 = t2->num_ptr(b);

nppromote(b);

if (t = tl) el

if (t = t2) e2
}

break;

case ASPLUS:

rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);

new texpr(CAST,t,el);
new texpr(CAST,t,e2);

if (r1==P && r2==P) error("P +=P");

nppromote(b);
goto ass;

case ASMINUS:

rl = tl->num_ptr(b);
r2 = t2->num_ptr(b);

if (r2==P && ri!=P && r1!=A) error("P -= nonP");

nppromote(b);
goto ass;

case ASMUL:
case ASDIV:

rl = tl->numeric(b);
r2 = tl->numeric(b);
nppromote(b);

goto ass;

case ASMOD:

N\

N

y
R

Feb 8 12:48 1985 expr.c Page 24

rl = tl->integral(b);
r2 = t2->integral(b);
nppromote(b);
goto ass;

case ASAND:

case ASOR:

case ASER:

case ASLS:

case ASRS:

ass:

case

1kj:

rl tl->integral(b);
r2 t2->integral(b);
npcheck(b);

t = int_type;

goto ass;

as_type = t;
t2 = t;

/* the type of the rhs */

ASSIGN:

if (el->1val(b) == 0) {

tp = any_type;
return this;

}
switch (tl->base) {
case INT:
case CHAR:
case SHORT:
if (e2->base==ICON && e2->tp==long type)
error('w',"long constant assigned to%k',tl->base);
case LONG:
if (b==ASSIGN
&& ((Pbase)tl)->b_unsigned
&& e2->base==UMINUS
&& e2->e2->base==ICON)
error('w',"'negative assigned to unsigned");
break;
case TYPE:
tl = ((Pbase)tl)~->b_name->tp;
goto lkj;
case COBJ:
{ Pname cl = tl->is_cl obj();
if (cl1) §

Pname c2 = t2->is_cl_obj();

/*error('d',"%t=%t %d %d",tl,t2,cl,c2);%*/

if (cl1 '= ¢2) {
e2 = new expr(ELIST,e2,0);
e2 = new texpr(VALUE,tl,e2);
e2->e2 = el;
e2 = e2->typ(tbl);
*this = ¥*e2;
tp = tl;
return this;

break;

Feb 8 12:48 1985 expr.c Page 25

}
case PTR:
/¥error('d',"ptr %d %d",t1,t1?7tl1->base:0);%/
Pfct ef = (Pfct)((Pptr)tl)->typ;
if (ef->base == FCT) {
Pfct f;
Pname n = 0;
switch (e2->base) {

case NAME:
f = (Pfct)e2->tp;
n = Pname(e2);

switch (f->base)
case FCT:
case OVERLOAD:
e2 = new expr(G_ADDROF,0,e2);
e2->tp = f;
3
goto ad;
case DOT:
i C o e o case REF: .
error('d , dot %d %d ,e2->mem->tp,e2->mem->tp?e2->mem->tp->base:0);%/
f = (Pfct)e2->mem->tp;
switch (f->base) {
case FCT:
case OVERLOAD:
n = Pname(e2->mem);
e2 = new expr(G_ADDROF,0,e2);
e2 = e2->typ(tbl);
goto ad;
case ADDROF:
case G_ADDROF:
f = (Pfct)e2->e2->tp;
ad:
if (f->base == QVERLOAD) {
Pgen g = (Pgen)f;
n = g->find(ef);
if (n == 0) {
error{'cannot deduceT for &
tp = any_type;

else

tp = tl;
e2->e2 = n;
n->1val (ADDROF) ;
return this;

3
if (n) n->1val(ADDROF);
3

break;

AN S

Pname cn;
int i
if ((en=t2->is_cl obj())

Feb 8 12:48 1985 expr.c Page 26

(:} && (di=can_coerce(tl,t2))
&& Ncoerce) {

/*error('d',"%t =%t",tl,t2);%/

C

3

if (1 < i) error("%d possible conversions for assig

Pclass ¢l = (Pclass)cn->tp;

Pref r = new ref(DOT,e2,Ncoerce);
Pexpr ¢ = new expr(G_CALL,r,0);
c->fct_name = Ncoerce;

c->tp = tl;
e2 = ¢;
tp = tl;

return this;

. 3
(:) /*error('d',"check(%t,%t)",el->tp,t2);%/
' if (el->tp->check(t2,ASSIGN)) error(''bad assignmentT:%t =%t",el->tp

t = el->tp;
break;
case CM:
t = t2;
break;
default:

/* the type of the lhs */

error('i',"unknown operator%k',b);

3

tp = t;
return this;

Feb 8 12:48 1985 expr2.c Page 1

/% %Z% %WM% %1% %H% %T% */

JOROBONORRORONCRCRE I SORORN ot atantantastastetantoctenluatuctantestaslaatastantntoatuntorts stontantantastuntoatastant OROR)
/nA*Jnnﬂ*ankﬂk*%****ﬁk*&**k*k*kd*ﬂ%%aAkﬂdﬂ*uﬂﬁn*k? ke T e S S

%

ateutae! N AT)
Yededededededededed

-

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.
expr2.c:

type check expressions
Fddekdeleldodeledcloledoidciididvioliolviohivloidodellofdolidvledeloedfciodloivioloioleivioldolelvlodelodidohfdediolivldcdsk |

#include "cfront.h"
#include "size.h"

void name.assign()

{
if (n_assigned_tot++ == 0) {
switch (n_scope) {
case FCT:
if (n_used && n_addr_taken==0) {
Ptype t = tp;
11:
switch (t->base) {
case TYPE:
t=((Pbase)t)->b_name->tp; goto 1l1;
case VEC:
break;
default:
if (curr_loop)
error('w',"%n may have been used be
else
error('w',"%n used before set'',this
}
3
}
H
}

int expr.lval(TOK oper)
{

register Pexpr ee = this;
register Pname n;

int deref = 0;

char® es;

if (this==0 || tp==0) error('i',"%d->1val(0)",this);
switch (oper)

case ADDROF:
case G_ADDROF:

<

W

Feb 8 12:48 1985

expr2.c Page 2

es = "address of'';
break;
case INCR:
case DECR:
es = "increment of";
goto def;
case DEREF:
es = "dereference of";
break;
default:
es = "assignment to";
def:

3

forever

if (tp->tconst()) {

if (oper) error("%s constant',es);

return 0;
}
{
switch (ee->base) §
default:
if (deref==0) {
if (oper) error("%s %k",es,ee->base);
) return O;
return 1;
case ZERO:
case CCON:
case ICON:
case FCON:
if (oper) error("%s numeric constant",es);
return 0;
case STRING:
if (oper) error('w',"%s string constant',es);
return 1;
case DEREF:
{ Pexpr eel = ee->el;
if (eel->base == ADDROF) /* *& vanishes #*/
ee = eel->el;
else §
ee = eel;
deref = 1;
3
: break;
case INCR:
case DECR:
ee = (ee->el) ? ee->el : ee->e2;
break;
case DOT:

n = ee->mem;
if (deref==0 && ee->el->tp->tconst()) {

if (oper) error("%sM%n of%t',es,n,ee->el->tp);

return 0;

Feb 8 12:48 1985

expr2.c Page 3

}

goto xx;

case REF:

n = ee->mem;
if (deref==0) {
Ptype p = ee->el->tp;

ZXC!
switch (p->base) {
case TYPE: p = ((Pbase)p)->b_name->tp; goto =zx
case PTR: break;
?efault: error('i',"%t->%n",p,n);
if (((Pptr)p)->typ->tconst()) {
if (oper) error("%sM%n of%t",es,n, ((Pptr)p)
return 0;
3
3
goto xx;
case NAME:
n = (Pname)ee;
XX
if (deref || oper==0) return 1;

switch (oper) {
case ADDROF:
case G_ADDROF:
{ Pfct £ = (Pfct)n->tp;
if (n->n_sto == REGISTER) {
if (oper) error(''& register%n',n);
return 0;

3

if (F==0) {
if (oper) error("& label%n',n);
return 0;

}
/% if (f->base == QVERLOAD) ¢
if (oper) error("& overloaded%n',n);
return 0;

3

if (n->n_stclass == ENUM) {
if (oper) error('& enumerator%n'',n);
} return 0;
n->n_used--;
n->take_addr();
if (n->n_evaluated
|| (f->base==FCT && f->f_inline)) {
/* address of const or inline: allocate it
Pname nn = new name;
if (n->n_evaluated) {
n->n_evaluated = 0; /* use allo
n->n_initializer = new expr(IVAL, (P
3
nn = -!rn;
nn->n_sto = STATIC;
nn->n_list = dcl_list;

Feb 8 12:48 1985 expr2.c Page 4

(::‘ dcl_list = nn;

}
break;
3
— case ASSIGN:
) n->n_used-~;
— n->assign();
break;
default: /* incr ops, and asops */

if (cc->tot && n==cc->c_this) {
error ("%n%k",n,oper);
return 0;

o n->assign();

C }

return 1;

Pexpr Ninit;

bit gen_match(Pname n, Pexpr arg)

/ %
look for an exact match between '"n'" and the argument list "arg"
b /
{
~ Pfct £ = (Pfct) n->tp;
<; register Pexpr e;
- register Pname nn;
for (e=arg, nn=f->argtype; e; e=e->e2, nn=nn->n_list) {
Pexpr a = e->el;
Ptype at = a->tp;
if (at->base == ANY) return 0;
if (nn == 0) return f->nargs_known==ELLIPSIS;
Ptype nt = nn->tp;
switch (nt->base) {
case RPTR:
if (nt->check(at,COERCE)) {
(:g if (((Pptr)nt)->typ->check(at,0)) return 0;
J }
break;
default:
if (nt->check(at,COERCE)) return O;
}
H
if (on) {
o Ninit = nn->n_initializer;
O return Ninit!=0;
3
return 1;
H

Feb 8 12:48 1985 expr2.c Page 5

Pname Ncoerce;

bit can_coerce(Ptype tl, Ptype t2)
/% return number of possible coercions of t2 into tl,
Ncoerce holds a coercion function (not constructor), if found

7’:/
tn

/*error('d',"can_coerce
Ncoerce = 0}
if (t2->base ==

case RPTR:
rloop:

%t">%t"’

t1,t2);%

ANY) return 0;
switch (tl->base) {

switch (t2->base) {
case TYPE:
t2 = ((Pbase)t2)->b_name->tp;
goto rloop;

// case VEC:
// case PTR:
// case RPTR:
// if (tl->check(t2,COERCE) == 0) return 1;
default:
{ Ptype tt2 = t2->addrof();
if (t1->check(tt2,COERCE) == 0) return 1;
Ptype ttl = ((Pptr)tl)->typ;
int i = can_coerce(ttl,t2);
return i;
}
}
H

Pname cl = tl->is_cl_obj();

Pname c2
int val = 0;

if (c1) {§

t2->is_cl _obj();

Pclass cl = (Pclass)cl->tp;
if (c2 && c2->tp==cl) return 1;

/:’c

*/

Pname ctor = cl-

look for constructor

with one argument

or with default for second argument

of acceptable type

>has_ctor();

if (ctor == 0) goto oper_coerce;
register Pfct £ = (Pfct)ctor->tp;

switch (f->base) {
case FCT:
switch (f->nargs) {

case 1:
one:

default:

if (f->argtype->tp->check(t2,COERCE)==0) val = 1;
goto oper_coerce;

ij}

e

Feb 8 12:48 1985 expr2.c Page 6

case 0:

}
case OVERLOAD:

if (f->argtype->n_list->n_initializer) goto one;

goto oper_coerce;

{ register Plist gl;

for (gl=Pgen(f)->fct_list; gl; gl=gl->1) { /* look for

Pname nn = gl->f;
Pfct ff = (Pfct)nn->tp;
switch (ff->nargs) {

case 0:
break;
case 1:
over_one:
if (ff->argtype->tp->check(t2,COERCE)==0) v
if (ff->argtype->tp->base == RPTR
&& ((Pptr)ff->argtype->tp)->typ->check(t2,C
val = 1;
) goto oper_coerce;
break;
default:
y if (ff->argtype->n_list->n_initializer) got

goto oper_coerce;

error('i',"cannot_coerce(%k)\n",f->base);

3
default:
3
3
oper_coerce:
if (c2) §

Pclass cl = (Pclass)c2->tp;
for (register Pname on=cl->conv; on; on=on~>n_list) {
/*error('d'," oper_coerce%n %t %d",on,(on)?on->tp:0,on);*/
Pfct £ = (Pfct)on->tp;
if (tl->check(f->returns,COERCE) == 0) {

T n

H

if (val) return val;

Ncoerce = on;
val++;

if (tl->check(t2,COERCE)) return 0;

look to see if the argument list "arg" can be coerced into a call of "n

n_

return 1;
3
int gen_coerce(Pname n, Pexpr arg)
/ w*
1: it can
0: it cannot or it can be done in more than one way
e
%/

Feb 8 12:48 1985 expr2.c Page 7

Pfct £ = (Pfct) n->tp;
register Pexpr e;
re 1ster Pname nn,

/*error('d',"gen_coerce%n %d",n,arg);%/

for (e=arg, nn=f->argtype; e; e=e->e2, nn=nn->n_list) {
if (nn = 0) return f->nargs_known==ELLIPSIS;
Pexpr a = e->e1;
Ptype at = a->tp;
int 1 = can_coerce(nn->tp,at);

/*error('d',"al %k at%t argt%t -> %d",a->base,at,nn->tp,i);*/

if (i '= 1) return 0;

if (nn & nn->n_initializer==0) return 0;
return 1;

Pname Nover;
int Nover_coerce;

int over_call(Pname n, Pexpr arg)

/-'4
w

:’c/
{

return 2 if n(arg) can be performed without user defined coercion of arg
return 1 if n(arg) can be performed only with user defined coercion of arg
return 0 if n(arg) is an error

register Plist gl;
Pgen g = (Pgen) n->tp;
if (arg & arg->base!= ELIST) error('i',"ALX");

/*error('d',"over_call%n base%k arg%d%k", n, g->base, arg, arglarg->tp->base:0);%/

/*error('d',"over_call: gen_match(%n,%k) %d",Nover,arg->el->base,gen match(Nover,arg

/*error('d',"over_call: genucoerce(%n %k) %d",nn,arg->el->base,gen_coerce(nn,arg));¥

Nover_coerce = 0;
switch (g->base) {

default: error('i',"over_call(%t)\n",g);
case OVERLOAD: break;
case FCT:

Nover = nj;

Ninit = 0;

if (gen_ match(n arg) &% Ninit==0) return 2;
if (gen_coerce(n arg)) return 1;

return 0;

3

for (gl=g->fct_list; gl; gl=gl->1) { /% look for match */
Nover = gl->f;
Ninit = 0;

if (gen_match(Nover,arg) && Ninit==0) return 2;

3
Nover = 0;
for (gl=g->fct_list; gl; gl=gl->1) { /% look for coercion */

Pname nn = gl->f;

if (gen_coerce(nn,arg)) {

e

5

Feb 8 12:48 1985 expr2.c Page 8

if (Nover) {

Nover_coerce = 23

return 0; /¥ ambiguous */
3

Nover = nn;
}

return Nover 7 1 : 0;

Ptype expr.fct_call(Ptable tbl)
/%

check "this" call:

el(e2)

y el->typ() and e2->typ() has been done
{

Pfct f;

Pname fn;

int x;

int k;

Pname nn;

Pexpr e;

Ptype t;

Pexpr arg = e2;

Ptype tl;

int argno;

Pexpr etail = 0;

Pname no_virt; * set if explicit qualifier was used: c::f() */
/*error('d',"fct_call’);*/
switch (base) {

case CALL:
case G_CALL:
break;
default:
} error('i',"fct_call(%k)",base);
if (el==0 || (tl=el->tp)==0) error('i',"fct_call(el=%d,el->tp=%t)",el,tl);

if (arg &% arg->base!=ELIST) error('i',"badAL%d%k",arg,arg->base);

switch (el->base) §
case NAME:
fn = (Pname)el;
no_virt = fn->n_qualifier;
break;
case REF:
case DOT:
fn = el->mem;
no_virt = fn->n_qualifier;
break;
default:
fn = 0;
no_virt = 0;

Feb 8 12:48 1985 expr2.c Page 9

b
error('d',"fn%n t1%k",fn,tl->base);/
switch (tl->base) {
default:
error("call of%n;%n is a%t)",fn,fn,el->tp);

case ANY:
return any_type;

case OVERLOAD:

{ register Plist gl;
Pgen g = (Pgen) tl;
Pname found = 0;

for (gl=g->fct_list; gl; gl=gl->1) { /* look for match #*/
register Pname nn = gl->f;
/*fprintf(stderr,'gen_match %s %d\n",nn->string?nn->string:"?",arg->base);*/
if (gen_match(nn,arg)) {
found = nn;
goto fnd;

}

for (gl=g->fct_list; gl; gl=gl->1) { /% look for coercion */
register Pname nn = gl->f;
/*fprintf(stderr,'gen_coerce %s %d\n",nn->string?nn->string:"?",arg->base);*/
if (gen_coerce(nn,arg)) f{
if (found) {
error("ambiguousA for overloaded%n",fn);
goto fnd;

o

3

found = nn;

fnd:
//error('d',"found%n", found);
if (found) {
Pbase b;
Ptable tblx;

f = (Pfct)found->tp;
fct_name = found;

/* is fct_name visible? */
//error('d',"el %d%k'",el,el?el->base:0);

switch (el->base) {

case REF:

if (el->el == 0) break; /% constructor: this==0 */

b = (Pbase) ((Pptr)el->el->tp)->typ; goto XxxX;
case DOT:
b = (Pbase)el->el->tp;

XXXX:
switch (b->base) {
case TYPE: b = (Pbase) b->b_name->tp; goto xxx
case ANY: break;

\/

N

N

S

-

Feb 8 12:48 1985 expr2.c Page 10
case COBJ: tblx = b->b_table;
3

if (tblx->lookc(g->string,0) == 0)
error('i',"fct_call overload check™);
//error('d',"scope %d epriv %d ebase %d cc %d",found->n_scope,Epriv,Ebase,cc);
switch (found->n_scope) {
case 0:
if (Epriv
&& Epriv!i=cc->cot
&& !Epriv->has_friend(cc->nof)) {
error("%n is private",found);
break;

/* no break */
case PUBLIC:
if (Ebase
&& (cc->cot==0
|| (Ebase!=cc~>cot->clbase->tp
&& !Ebase~->has_friend(cc~>nof)))

§
error("%n is from a privateBC",found);
3
3
else §
error ("badAL for overloaded%n",fn);
return any_type;
}
break;
case FCT:

f = (Pfct)tl;
if (fn) fct_name = fn;
break;

H
if (no_virt) fct_name = 0;

f->returns;

f->nargs;

f->nargs_known;
/*error('d’,"fct_name%n",fct_name);¥/

t
X

I

if (k == 0) return t;

/ e
if (arg == 0) {
switch (x) {
default: error ("AX for%n'",fn);
case 0: return t;
}
3
= /

for (e=arg, nn=f->argtype, argno=l; e||nn; nn=nn->n_list, e=etail->e2, argn

Feb 8 12:48 1985 expr2.c Page 11

Pexpr a;

if (e) {
a = e->el;

/*error('d',"e %d%k a %d%k e2 %d",e,e->base,a,a->base,e->e2);%/
etail = e;

if (nn) § /% type check */
Ptype tl = nn->tp;
1x:
/¥error('d',"1x: t1%t a->tp%t",tl,a->tp);*/
switch (t1->base)
case TYPE:
tl = ((Pbase)tl)->b_name~>tp;
goto 1x;
case RPTR:
e->el = ref_init(Pptr(tl),a,tbl);
break;
case COBJ:
e->el = class_init(0,tl,a,tbl);
break;
case ANY:
return t;
case PTR:
{ Pfct ef = (Pfct)((Pptr)tl)->typ;
if (ef->base == FCT) {
Pfct £;
Pname n = 0;
switch (a->base) {
case NAME:
f = (Pfct)a->tp;
switch (f->base) {
case FCT:
case OVERLOAD:
e->el = new expr(G_ADDROF,0,a);
e~>el->tp = £;

n = Pname(a);
goto ad;
case DOT:
case REF:
f = (Pfct)a->mem->tp;
switch (f->base) {
case FCT:
case OVERLOAD:
n = Pname(a->mem);
a = new expr(G_ADDROF,0,a);
e->el = a->typ(tbl);
3
goto ad;
case ADDROF:
case G_ADDROF:
f = (Pfct)a->e2->tp;
ad:
if (f->base == QVERLOAD) {
Pgen g = (Pgen)f;

L

AN

s

~\

'

'

Feb 8 12:48 1985 expr2.c Page 12

n = g->find(ef);

if (n == 0) {
error(""cannot deduceT for &
return any_type;
3
y e->el->e2 = n;
) if (n) n->1val(ADDROF);
break;
}
} goto def;
case CHAR:
case SHORT:
case INT:
if (a->base==ICON && a->tp==long type)
error('w',"long constantA for%n,%kX
case LONG:
if (((Pbase)tl)->b_unsigned
&& a->base==UMINUS
&& a->e2->base==ICON)
error('w’,"'negativeA for%n, unsigne
default:
def:
{ Pname cn;
int 1i;

if ((cn=a->tp->is_cl_obj())
&& (i=can_coerce(tl,a->tp))
&& Ncoerce) §

[*error('d',"%t<-%t",tl,a->tp);*/

}

if (1 < i) error("%d possib

Pclass cl = (Pclass)cn->tp;
Pref r = new ref(DOT,a,Ncoe
Pexpr ¢ = new expr(G_CALL,r
c->fct_name = Ncoerce;
c->tp = tl;

e->el = c;

return tl;

3

if (tl->check(a->tp,ARG)) {
if (arg_err_suppress==0) error('bad
return any_type;

if (arg_err_suppress==0) error("unX %dA for

3
3
else §
if (k t= ELLIPSIS) {
return any..type;
3
return t;
}

Feb 8 12:48 1985 expr2.c Page 13

else { /* default argument? */
a = nn->n_initializer;

if (a == 0) {
if (arg err_suppress==0) error("A %d ofT%tX for%n",
return any._type;

}
e = new expr(ELIST,a,0);
if (etail)
etail->e2 = e;
else
e2 = e;
etail = e;
}
3
return t;
}
int refd;

Pexpr ref _init(Pptr p, Pexpr init, Ptable tbl)

initialize the "p" with the "init"

*/
{
register Ptype it = init->tp;
Ptype pl;
Pname cl;
Pexpr a;
rloop:

/*error('d',"rloop: %d%k",it,it->base);¥*/
switch (it->base) {

case TYPE:
it = ((Pbase)it)->b_name->tp; goto rloop;
// case VEC:
// case PTR:
// if (p->check(it,ASSIGN) == 0) return init;
// break;
default:
{ Ptype tt = it->addrof();
if (p->check(tt,ASSIGN) == 0) {
if (init->1val(0)) return init->address();
if (init->base==G_CALL /% &inline function call? *
&& init->fct_name
&& ((Pfct)init->fct_name->tp)->f_inline)
return init->address();
pl = p->typ;
goto xxXx;
H
3
3
pl = p->typ;
cl = pl->is_cl obj();

,
/
-

1\‘_/ J

o

!/.'\

N

Feb 8 12:48 1985 expr2.c Page 14

if (cl) §
refd = 1; /* disable itor */
a = class_init(0,pl,init,tbl);
refd = 0;
if (a == init) goto xxx;
switch (a->base) {
case G_CALL:
case CM:
init = aj;
) goto xxx;

return a->address();

3

if (pl->check(it,ASSIGN)) {
error ("badIrT:%t (%tX)",it,p);
init->tp = any_type;
return init;

XXX :
/*error('d',"xxx: %k",init->base);¥*/
switch (init->base) {
case NAME:
case DEREF:
case REF:
case DOT: /* init => &init */
init->1val (ADDROF);
return init->address();
case CM:
/*error('d',"cm%k",init->e2->base) ;*/
switch (init->e2->base) { /* (a, b) => (a, &) */
case NAME:
case DEREF:
return init->address();

default: /* init = > (temp=init, &temp) %/
{ Ptable otbl = tbl;
if (Cstmt) § /% make Cstmt into a block */
if (Cstmt->memtbl == 0) Cstmt->memtbl = new table(4,tbl,0);
tbl = Cstmt->memtbl;

char® s
Pname n

= make_name('I');

= new class name(s);

/*error('d',"ref_init tmp %s n=%d tbl %d init=%d%k",s,n,tbl,init,init->base);¥/
if (tbl == gtbl) error('s',"Ir for global reference not an lvaue');
n->tp = pl;

n = n->dcl(tbl,ARG); /* no initialization! */
n->n_scope = FCT;

n->assign();

a = n->address();

Pexpr as = new class expr(ASSIGN,n,init);

a = new class expr(CM,as,a);

a->tp = a->el->tp;

Feb 8 12:48 1985 expr2.c Page 15

tbl = otbl;
return a;
3
3
}
Pexpr class_init(Pexpr nn, Ptype tt, Pexpr init, Ptable tbl)
/ %
initialize "nn" of type "tt" with "init"
if nn==0 make a temporary,
nn may not be a name
v /
{ Pname cl = tt->is_cl_obj();

Pname c2

T n

init->tp->is_cl_obj();

/*error('d',"class_init%n%n%n refd=%d",nn,cl,c2,refd);*/

if (el) §
if (cll=c2
|| (refd==0 && Pclass(cl->tp)->has_itor())) {
/% really ouht to make a temp if refd,
but ref_init can do that

3’:/

int i = can_coerce(tt,init~->tp);

if (Ncoerce) §
if (1 <

i) §
error ("%d possible ways of making a%n from
return init;

/*error('d',"coerce%n=(%d%k).%n" ,nn, init, init->base,Ncoerce);*/
switch (init->base) {

case CALL:

case G_CALL:

case CM:

case NAME: /% init.coerce() */

{ Pref r = new ref(DOT,init,Ncoerce);

3
default:

Pexpr ¢ = new expr(G_CALL,r,0);
c->fct_name = Ncoerce;

init = c;

break;

/* (temp=init,temp.coerce()) */

Ptable otbl = tbl;

if (Cstmt) { /* make Cstmt into a block ¥/
if (Cstmt->memtbl == 0) Cstmt->memt
tbl = Cstmt->memtbl;

}

char* s = make_name('U');

Pname tmp = new name(s);

tmp->tp = init->tp;

tmp = tmp->dcl(tbl,ARG); /¥ no init! */

tmp->n_scope = FCT;

Pexpr ass = new expr(ASSIGN,tmp,init);

ass->tp = tt;

Pref r = new ref(DOT,tmp,Ncoerce);

Pexpr ¢ = new expr(G_CALL,r,0);

c->fct_name = Ncoerce;

\’\,_,/;

.

Feb 8 12:48 1985 expr2.c Page 16

. init = new expr(CM,ass,c);
tbl = otbl;
3
: 3
(“ ; return init->typ(tbl);

Pexpr a = new class expr(ELIST,init,0);
a = new class texpr(VALUE,tt,a);
a->e2 = nnj;
i o o oa‘=oa->txp(tb1)3 N
error('d’, class_init%n: %k %t ,nn,a->base,tt);*/
return a;

- J*error('d',"class_init%n: init%t",nn,init->base,init->tp);*
<\ return init;

if (tt->check(init->tp,ASSIGN) && refd==0) {
error ("badIrT:%t (%tX)",init->tp,tt);
init->tp = any_type;

3
return init;
3
int char_to_int(char® s)
/% assume s'p?ints to a string:
c
or "\¢'
<A or "\ o'
— or '\ddd'
or multi-character versions of the above
*/
{
register int i = O;
register char ¢, d, e;
switch (%*s) {
default:
error('i',"char constant store corrupted");
case
error('s',"bcd constant');
return O;
<; case '"\'':
- break;
3
forever /* also handle multi-character constants ¥/
switch (c = ¥++s) {
case '"\'':
return ij;
case '\\': /* special character */
oy switch (c = #*++s) {
(_ case '0': case '1': case '2': case '3': case '4':
case '5': case :6': case '7': /* octal representation */
c = 0
switch (d = *++s) { /* try for 2 */

Feb 8 12:48 1985 expr2.c Page

case '0':
case '5':

default:
$

break;
case 'b':

c="\b';

break;
case 'f':
c = "\f'
break;
case 'n':
c = l\nr
break;
case 'r':
¢ = "\r'
break;
case 't':
c = l\tf
Preak;

c'= "\

'?reak;

case '\\

case '\

c = l\!l‘

break;

/* no break */

17

case :6': case '7':
d -="0;

switch (e = *++s) { /% try for 3 */

case '0': case '1': case '2': case
case '5': case '6": case '7':
c = c*64+d*8+e-"'0";

break;
default:
c = c*8+d;
53
}
break;
5==3

3

.
]

3

3

3

b

b

default:
if (i) i <<= BI_IN_BYTE;
i+= c;
3
3
const Al10 = 'A'-10;
const al0 = 'a'-10;

int str_to_int(register char® p)

/.‘.
"

*/
{

read decimal, octal, or

hexadecimal integer

case '1': case '2': case '3': case '4':

N’

o

e

Feb 8 12:48 1985 expr2.c Page 18

p
U register c;
register i = 0;

if ((e=tpH+) == '0") {

s switch (¢ = *p++) {
KM‘ case O:
i return 0;
case '1':
case 'L': /* long zero */
return 0;
case 'x':
. case 'X': /* hexadecimal */
(\ while (c=%p+t)
- switch (¢)
case '1":
case 'L':
return i;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
i = 4i%16 + c-Al10;
break;
_ case 'a':
(‘ case :b::
- case 'c':
case 'd':
case 'e':
case 'f':
i = i%16 + ¢=-al0;
break;
default:
i =1i%16 + c-'0';
}
return i;
default: /% octal */
do
C: switch (c¢) {
B, case '1':
case 'L':
return 1i;
default:

i=1i*8 + c-'0";

while (c=%ptt+);
return ij;

- }

C }
i=c-'0";
while (c=%p++)

/* decimal */

Feb 8 12:48 1985 expr2.c Page 19

switch (¢) {
case '1':
case 'L':
return 1i;
default:
} i = i%10 + c¢-'0";
return i;

3
char* Neval;
int expr.eval()
if (Neval) return 1;

switch (base) {

case ZERO: return 0;
case IVAL: return {(int)el;
case ICON: return str_to_int(string);
case CCON: return char_to_int(string);
case FCON: Neval = "float in constant expression"; return 1;
case STRING: Neval = "string in constant expression''; return 1;
case EOBJ: return ((Pname)this)->n_val;
case SIZEOF: return tp2->tsizeof();
case NAME:
{ Pname n = (Pname)this;
if (n->n_evaluated) return n->n_val;
Neval = "cannot evaluate constant";
) return 1;
case ICALL:
if (el) §

il1->i_next = curr_icall;
curr_icall = il;
int 1 = el->eval();
curr_icall = il~>i_next;
) return ij;
Neval = "void inlineF";
return 1;
case ANAME:
{ Pname n = (Pname)this;
int argno = n->n_val;
Pin il;
for (dil=curr_icall; il; il=il->i_next)
if (il->i_table == n->n_table) goto aok;
goto bok;
aok:
if (il->localf[argno]) {
bok:
Neval = "inlineF call too complicated for constant expressi
return 1;

e’

i
v

-
™

1

i

Feb 8 12:48

case

3

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

1985 expr2.c Page 20

Pexpr aa = il->argl[argno];

return aa->eval();

CAST:
int i

return i;

UMINUS:
NOT:
COMPL:
PLUS:
MINUS:
MUL:

OR:

ER:

DIV:

MOD:
QUEST:
EQ:
ANDAND :
OROR:

break;

default:

3

Neval = "bad operator in constant

return 1;

= el->eval();
Neval = "cast in constant expression';

int i1 = (el) ? el->eval() : 0;

int i2

switch (base) §

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

UMINUS: return
NOT': return
COMPL: return
CAST: return
PLUS: return
MINUS: return
MUL: return
LS: return
RS: return
NE: return
EQ: return
LT: return
LE: return
GT: return
GE: return
AND: return

(e2) ? e2->eval() : 0;

-i2;
112,
~i2;
il;
i1+i2;
i1-12;
i1%12;
11<<i2;
i1>>12;
ill=1i2;
il==12;
il<iz;
i1<=1i2;
i1>i2;
i1>=i2;
1i1&i2;

expression"';

Feb 8 12:48 1985 expr2.c Page 21

case OR: return i1]i2;
case OROR: return il||i2;
case ER: return il i2;
case MOD: return (i2==0) ? 1 : i1%iZ2;
case QUEST: return (cond->eval()) ? il : i2;
case DIV: if (i2==0) {
Neval = "divide by zero";

return 1;

return i1/4i2;

}
3
b}t classdef.has_friend(Pname f)
{‘ does this class have function "f" as its friend?
{/

Plist 1;
Ptable ctbl = f->n_table;
/*fprintf(stderr,"(%d %s)->has_friend(%d %s)\n",this,string,f,(f)?f->string:""); ffl
for (l=friend_list; 1; 1=1->1) {
Pname fr = 1->f;
/*fprintf(stderr,"fr %d %d %d\n",fr,fr->tp,fr->tp->base); fflush(stderr);*/
switch (fr->tp->base) {

case CLASS:
if (((Pclass)fr->tp)->memtbl == ctbl) return 1;
break;
case COBJ:
if (((Pbase)fr->tp)->b_table == ctbl) return 1;
break;
case FCT:
if (fr == f) return 1;
break;
case OVERLOAD:
{/* Pgen g = (Pgen)fr->tp;
Plist 11;

for (ll=g->fct_list; 11; 11=11->1) {
if (11->f == f) return 1;
3%/

1->f = fr = ((Pgen)fr->tp)~>fet_list->f; /* first fct */
if (fr == f) return 1;

break;
3
default:

error('i',"bad friend %k",fr->tp->base);
3

return 0;

(

e
£

I

o

VN

Feb 8 12:50 1985 gram.y Page 1

/% %Z% WM% %1% %H% %T% */

Aot ol ot et sl AT T P S T AT V D o L O o WP, e nte ol olonlents wlenta le wl ! T D T O PPN AT et it nfe wle ol nle,]
/ dededededededodedededododedodedodele o ledode ol tedededede Ndede e e Nodede N dde do RS de de o dede Ao de W de oot de KN S KR e deokke R

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.
gram.y:

This is the syntax analyser.

01d € features not recognized:

(1) "+ =" as the operator "+="

(2) any construct using one of the new keywords as an identifier
(3) initializers without "=" operator

(4) structure tags used as identifier names

Additions:

(1) Classes (keywords: CLASS THIS PUBLIC FRIEND and VIRTUAL)
(classes incorporate STRUCT and UNION)

(2) the new and delete operators (keywords: NEW DELETE)

(3) inline functions (keyword INLINE)

(4) overloaded function names (keyword OVERLOAD)

(5) overloaded operators (keyword OPERATOR)

(6) constructors and destructors

(7) constant types (keyword: CONST)

(8) argument types part of function function type (token: ...)

(9) new argument syntax (e.g. char £(int a, char b) { ... })

(10) names can be left out of argument lists

Syntax extensions for error handling:

(1) nested functions

(2) any expression can be empty

(3) any expression can be a constant_expression

note that a call to error() does not change the parser's state

*/

%§
#include "size.h"
f#tinclude "cfront.h"

f#define YYMAXDEPTH 300

Pbase defa_type;
Pbase moe_type;
Pexpr dummy;
Pexpr zero;

Pclass ccl;
int cdi = 0;
Pname cd = 0, cd_vec[BLMAX];

Feb 8 12:50 1985 gram.y Page 2
char stmt_seen = 0, stmt_vec[BLMAX];
Plist modified_tn = 0, tn_vec[BLMAX];
Pname sta_name = (Pname)&sta_name;
bit cm_warn;

extern TOK back;

TOK back;
f#idefine lex_unget(x) back = x

j##define Ndata(a,b) ((Pname)b)->normalize((Pbase)a,0,0)
#define Ncast(a,b) ((Pname)b)~->normalize((Pbase)a,0,1)
j#define Nfct(a,b,c) ((Pname)b)->normalize((Pbase)a, (Pblock)e,0)
f##fdefine Ntype(p) ((Pname)p)->tp

#define Nstclass(p) ((Pname)p)->n_stclass

f##idefine Nlist(p) ((Pname)p)->n_list

j#define Ncopy(n) ((((Pname)n)->base==TNAME) ? new name(((Pname)n)->string)
(Pname)

#define Nhide(n) ((Pname)n)->hide()

/% f#fdefine Ntname(t,n) ((Pname)n)->tname(t) */
fidefine fieldN(e) new basetype(FIELD, (Pname)e)
j#fdefine enumdefN(m) new enumdef(m)

##define Fargtype(p) ((Pfct)p)->argtype

#define Finit(p) ((Pfct)p)->f_init

f#idefine Finline(p) ((Pfct)p)->f_inline = 1

ffdefine Fargdcl(p,q) ((Pfct)p)->argdcl(q)

f#fdefine Freturns(p) ((Pfct)p)->returns

#define fctN(t,a,k) new fct(t,a,k)

jidefine vecN(e) new vec(0,e)

f#idefine Vtype(v) ((Pvec)v)->typ

fidefine Ptyp(p) ((Pptr)p)->typ

#define conN(t,v) new expr(t, (Pexpr)v,0)

{##define nlistN(n) (PP)new nlist((Pname)n)

f#fdefine Nadd(1l,n) ((class nlist *)1)->add((Pname)n)
ffdefine Nadd_list(1l,n) ((class nlist #)1)->add_list((Pname)n)
##define Nunlist (1) name_unlist((nlist*)1)

##define slistN(s) (PP)new slist((Pstmt)s)

ffdefine Sadd(1l,s) ((slist*)1)->add((Pstmt)s)

jidefine Sunlist(l) stmt_unlist((slist*)1)

j#idefine Eadd(1,e) ((elist*)1)->add((Pexpr)e)

#define Eunlist (1) expr_unlist((elist*)1)

/% avoid redefinitions
ffundef EOFTOK
#undef ASM
#undef BREAK
#undef CASE
j#fundef CONTINUE
#fundef DEFAULT
jfundef DELETE
f#fundef DO
jundef ELSE
#undef ENUM

wle /
[y

ij

Feb 8 12:50 1985 gram.y Page 3

(_ #undef FOR
jfjundef FORTRAN
#undef GOTO
#undef IF

»»»»» ffundef NEW

(ffundef OPERATOR
#undef PUBLIC
#fundef RETURN
jundef SIZEOF
#undef SWITCH
ffundef THIS
#undef WHILE
fundef LP

e {undef RP

{_ fundef LB

" jundef RB
jundef REF
fundef DOT
ffundef NOT
ffundef COMPL
#undef MUL
ffundef AND
ffundef PLUS
#fundef MINUS
#fundef ER
#undef OR
ffundef ANDAND

_ {fundef OROR

(_ ffundef QUEST

- f#fundef COLON

jundef ASSIGN
ffundef CM
ffundef SM
fundef LC

#undef RC

#undef ID

ffundef STRING

#undef ICON

ffundef FCON

ffundef CCON

#undef ZERO

#fundef ASOP

#fundef RELOP

jfundef EQUOP

#undef DIVOP

jfundef SHIFTOP

ffundef ICOP
jfundef TYPE

#undef TNAME

#fundef EMPTY

#undef NO_ID

- #fundef NO_EXPR

(w, fundef ELLIPSIS

jfundef AGGR

#fundef MEM

#fundef CAST

I
{ H

Feb 8 12:50 1985 gram.y Page &4

Pname syn()

}
%}

%union

3

%{
extern
%3

/:’:

e /
Eiy

%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token

%token

return (Pname) yyparse();

{
char®
TOK
int
loc
Pname
Ptype
Pexpr
Pstmt
Pbase
PP

YYSTYPE yylval;

/* fudge: pointer to all class node objects
neccessary only because unions of class
pointers are not implemented by cpre

7":/

the token definitions are copied from token.h,
and all %token replaced by %token

EOFTOK
ASM
BREAK
CASE
CONTINUE
DEFAULT
DELETE
DO

ELSE
ENUM
FOR
FORTRAN
GOTO

IF

NEW
OPERATOR
PUBLIC
RETURN
SIZEQOF
SWITCH
THIS
WHILE

Lp

/* keywords in alphabetical order %/

/* operators in priority order (sort of) %/
40

N

s

-~

N
{ !

Feb 8

%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token
%token

%token
%token
%token
%token
%token

%token

%token
%token
%token
%token
%token
%token

%token

%token
%token
%token
%token
%token
%token
%token

12:50 1985 gram.y Page 5

RP
LB
RB
REF
DOT

ASOP
RELOP
EQUOP
DIVOP
SHI¥TOP
ICOP

TYPE

TNAME
EMPTY
NO_ID
NO_EXPR
ELLIPSIS
AGGR
MEM

%type <p>

80

86

/% groups of tokens %/

90

123
124
125
126
155
156
160

/7‘:
/7':
/:‘:
/*
/v’:
/-}:

ate
/ W

ar,

Qp: % /

LE GE LT GT */
EQ NE */

DIV MOD */

LS RS */

INCR DECR */

INT FLOAT CHAR DOUBLE
REGISTER STATIC EXTERN AUTO
CONST INLINE VIRTUAL FRIEND
LONG SHORT UNSIGNED

TYPEDEF */

ale
w

© CLASS STRUCT UNION */
woe ‘:':/

external_def fct_dcl fct_def att_fct_def arg dcl_list

Feb 8 12:50 1985 gram.y Page 6

%type <1>

%type <t>

%type <s>

%left EMPTY
%left NO_ID

base_init

data_dcl ext_def vec ptr

type tp enum_dcl moe_list

moe

tag class_head class_dcl mem_list cl_mem_list
cl_mem dl decl_list

fname decl initializer stmt_list

block statement simple ex list elist e term prim
cast_decl cast_type c_decl c_type c_tp

arg decl at arg type arg list arg type_list
new_decl new_type

condition

TNAME tn_list

LC RC SWITCH CASE DEFAULT FOR IF DO WHILE GOTO RETURN DELETE
BREAK CONTINUE

oper

EQUOP DIVOP SHIFTOP ICOP RELOP ASOP

ANDAND OROR PLUS MINUS MUL ASSIGN OR ER AND
LP LB NOT COMPL AGGR

TYPE

ID CCON ZERO ICON FCON STRING

%left RC LC ID BREAK CONTINUE RETURN GOTO DELETE DO IF WHILE FOR CASE DEFAULT
AGGR ENUM TYPE

%left NO_EXPR
%left CM

%right ASOP ASSIGN
%right QUEST COLON

%left OROR
%left ANDAND
%left OR
%left ER
%left AND
%left EQUOP
%left RELOP
%left SHIFTOP

%left PLUS MINUS

%left MUL DIVOP

%right NOT COMPL NEW
%right CAST ICOP SIZEOF
%left LB LP DOT REF MEM

%start ext_def

%%
/%

this parser handles declarations one by one,
NOT a complete .c file

mla /
W

Vs

.

Feb 8 12:50 1985 gram.y Page 7

[FFFddeiekddedeioid DECLARATIONS in the outermost scope: returns Pname ###dd/
ext_def : external _def
{ { return $<i>1; }
it | sM
{ return 1; 3}
| EOFTOK
{ return 0; 3}
5
external_def : data_dcl
- { modified_tn = 0; if ($<pn>1==0) $<i>$ = 1;
_ | att_fct_def
) { goto mod; }
| fect_def
{ goto mod; }
| fect_del
{ mod: if (modified_tn) {
restore();
modified_tn = 0;
; H
| ASM LP STRING RP SM
{ Pname n = new name(make_name('A'));
n->tp = new basetype(ASM,$<pn>3);
$$ = n;
}
fet_del : decl SM
{ Pname n = $<pn>1;
switch (n->tp->base) {
case FCT:
$§$ = Nfct(defa _type,n,0);
break;
default:
error ("TX for%n',n);
} $$ = Ndata(defa_type,$1);
H
att_fct_def : type decl arg del _list base_init block
{ $$ = Nfct($1,$2,$5);
Fargdcl(Ntype($$),Nunlist($3));
} Finit(Ntype($$)) = §$<pe>4;
& fct_def : decl arg dcl_list base_init block
B { $$ = Nfct(defa_type,$1,$4);

Fargdcl(Ntype($$),Nunlist($2));
Finit(Ntype($$)) = $<pe>3;

Feb 8 12:50 1985

base_init

gram.y Page 8

3
COLON LP elist RP

{ $ = $3; %
%prec EMPTY

{ $$ =05 }

/ Fddeledeldoldhdeliihd declarations: returns Pname #idddedededefdedofedefodedofdont /

arg dcl_list

dl

decl_list

arg dcl_list data_dcl
{ if (§<pn>2 == 0)
error("badAD");
else if ($<pn>2->tp->base == F(CT)
error ("FD inAL (%n)",$<pn>2);
else if ($1)
Nadd_list($1,$2);

else
$$ = nlistN($2);
}
%prec EMPTY
{ $$ = 0; 3}
decl
ID COLON e %prec CM
{ $$ = new name($<s>1);
Ntype($$) = fieldN($<pe>3);
3
COLON e %prec CM
{ $$ = new name;

Ntype($$) = fieldN($<pe>2);

3
decl ASSIGN initializer
{ $<pn>1->n_initializer = $<pe>3; }

dl
{ if ($1) $$ = nlistN($1); }
decl_list CM dl
if ($1)
if (83
Nadd($1,83);
else
error ("DL syntax");
else §
if ($3) $$ = nlistN($3);
error ("DL syntax');
}

N\

N

N

N}

g

(L

N,

S

Feb 8 12:50 1985

data_dcl

tp

type

gram.y Page 9

type decl _list SM
$§§ = Ndata($1,Nunlist($2)); }

{
type SM
{

TYPE
{
TNAME

class_dcl
enum_dcl
AGGR tag

¢

}
ENUM tag
{

type TYPE

{
type TNAME

¢

$§ = §<pb>1-

$$
$3

L]

>aggr(); }

new basetype($§<t>1,0); }

new basetype(TYPE,S$<pn>1); }

Pname n = $<pn>2;
TOK t = §<t>1;

if (n->base
n:

== NAME) {
n->tname(t);

modified_tn = modified_tn->1;
n->lex_level = 0;

}
$$ = n->tp;

Pname n = $<pn>2;

if (n->base

== NAME) {
n~>tname (ENUM) ;

modified_tn = modified_tn->1;
n->lex_level = 0;

type class_dcl

¢

type enum_dcl

{

§$ = n->tp;

$$ = §<pb>1-
$§ = §<pb>1-
$§ = $<pb>1-
$$ = §<pb>1-

type AGGR tag

¢

3

type ENUM tag
{

>type_adj($<t>2); }
>name_adj ($<pn>2); }
>base_adj($<pb>2); }
>base_adj($<pb>2); }

Pname n = $<pn>3;
TOK t = $§<t>2;

if (n->base
n:

== NAME) {
n->tname(t);

modified_tn = modified tn->1;
n->lex_level = 0;

3
$$ = $<pb>1-

if (n->base
n:

>base_adj((Pbase)n->tp);

Pname n = $<pn>3;

== NAME) {
n->tname (ENUM) ;

/% dimplicit decl */

/* not loca

/¥ implicit decl %/

/% implicit dcl */

/% implicit del */

Feb 8 12:50 1985 gram.y Page 10
modified_tn = modified_tn->1;
n->lex_level = 0;

3
$§$ = $<pb>1->base_adj((Pbase)n->tp);

Y A e e e L ggregate: returns Pname dedededeledeloddededdedededek /

enum_dcl : ENUM LC moe_list RC
{ $$ = end_enum(0,$<pn>3); }
| ENUM tag LC moe_list RC
{ $$ = end_enum(§<pn>2,$<pn>4); }
5
moe_list : moe
{ if ($1) $$ = nlistN($1); }
| moe_list CM moe
{ if(§3) if (81) Nadd($1,$3); else $$ = nlistN($3);
3
moe : ID

$$

$$ = new name($<s>1);

Ntype($$) = moe_type;
$<pn>$->n_initializer = $<pe>3;

new name($<s>1); Ntype($$8) = moe_type; }

{
| ID ASSIGN e
{

| /* empty */
{ $$ = 0; }

class_dcl : class_head mem_list RC
end_cl(); }
| class_head mem_list RC TYPE
{ end_cl();
error("* ;' or declaratorX afterCD");
lex_unget ($4);
/* lex_unget($4); but only one unget, sorry ¥/

}
class_head . AGGR LC
{ $$ = start_cl($<t>1,0,0); 1}
| AGGR tag LC
$$ = start_cl($<t>1,$<pn>2,0); }

| AGGR tag COLON tag LC
{ $$ = start_cl($<t>1,$<pn>2,$<pn>4); }
| AGGR tag COLON PUBLIC tag LC
{ $$ = start_cl($<t>1,$<pn>2,$<pn>5);
ccl->pubbase = 1;

N

KHJ

Feb 8 12:50 1985 gram.y Page 11

H
H
tag : ID
{ $$ = new name($<s>1); }
| TNAME
5
mem_list ¢ cl_mem_list
Pname n = Nunlist($1);
if (ccl->is_simple())
ccl->pubmem = n;
else
ccl->privmem = n;
$$ = 03
| cl_mem_list PUBLIC cl_mem list
{ error(" ":'' missing after ““public''");

ccl->pubmem = Nunlist($3);
goto priv;

| c¢l_mem_list PUBLIC COLON cl_mem_list
TOK t;
ccl->pubmem = Nunlist($4);

priv:
t = cel->is_simple();
if (t) error("public in%k",t);
ccl->privmem = Nunlist($1);
$$ = 03
}
3
cl_mem_list : cl_mem_list cl_mem
{ if ($2) if (81) Nadd 1ist($1,$2); else $$ = nlistN(
| %prec EMPTY
{ $$ =0; 3}
cl_mem ¢ data_dcl
| att_fet_def SM
| att_fct_def
| fct_def SM
| fct_def
| fet_dcl
| tn_list tag SM /* public declaration */
Pname n = Ncopy($2);
n->n_qualifier = (Pname)$1;
n->n_list = ccl->pubdef;
ccl->pubdef = n;
$$ = 03
$

[EFRddeRddkddih declarators: returns Pname ##dddddfdddddiddidndts/

Feb 8 12:50 1985 gram.y Page 12

/% a ““decl'' is used for function and data declarations,

and for member declarations
(it has a name)

an ““arg decl'' is used for argument declarations
(it may or may not have a name)

an ““cast_decl'' is used for casts
(it does not have a name)

a ~"new_decl'' is used for type specifiers for the NEW operator
(it does not have a name, and PtoF and PtoV cannot be expressed)

7’:/
fname : ID
{ $$ = new name($§<s>1); 3}
| COMPL TNAME
{ $$ = Ncopy($2); $<pn>$->n_oper = DTIOR; }
| DELETE
{ if (fct_void==0) error(''deleteF (use destructor)™);
$$ = new name("_dtor");
$<pn>$->n_oper = DTOR;
3
| NEW
{ if (fct_void==0) error("newF (use constructor)");
$$ = new name('"_ctor");
$<pn>$->n_oper = CTOR;
3
| OPERATOR oper
$$ = new name(oper_name($2));
$<pn>$§->n_oper = §<t>2;
| OPERATOR c_type
{ Pname n = $<pn>2;
n->string = '_type'"’;
n->n_oper = TYPE;
n->n_initializer = (Pexpr)n->tp;
n->tp = 0;
$$ = n;
3
oper : PLUS
MINUS
MUL
AND
OR
ER
SHIFTOP
EQUOP
DIVOP
RELOP
ANDAND
OROR
LP RP { $$ = CALL; }
LB RB § $§ = DEREF; }
NOT
COMPL

_

S

«
~

%

Feb 8 12:50 1985

tn _list

decl

[——

gram.y Page 13

ICOP

ASOP

ASSIGN

NEW {
DELETE {

NEW; }

rr
Uy
i

TNAME DOT
tn_list TNAME DOT

{
tn_list ID DOT

DELETE; }

error('s',"MF of nestedC"); }

{ error('s',"MF of nestedC'"); }

decl arg list

{ Freturns($2) = Ntype($1);

Ntype($1) = (Ptype)$2;

TNAME arg list
{ Pname n = (Pname)$1;
$$ = Ncopy(n);

if (ccl && stremp(n->string,ccl->string)) Nhide(n);

$<pn>$->n_oper = TNAME;
Freturns($2) = Ntype($$);

Ntype($$) = (Ptype)$2;

3
decl LP elist RP

/% may be class object initializer,
class object vector initializer,
if not elist will be a CM or an ID

*/
{ TOK k = 1;
Pname 1 = §<pn>3;

if (fct_void && 1==0) k = 0;
Ntype($1) = fctN(Ntype($1),1,k);

$
TNAME LP elist RP
{ TOK k = 1;
Pname 1 = $<pn>3;

if (fct_void && 1==0) k = 0;

$$ = Ncopy($1);

$<pn>$->n_oper = TNAME;
Ntype($$) = £ctN(0,1,k);

3

fname
ID DOT fname

{ $$ = Ncopy($3);
$<pn>$§->n_qualifier

tn_list fname

{ $$ = 8§23
set_scope($<pn>1);
$<pn>$->n_qualifier

tn_list TNAME

new name($<s>1);

$<pn>1;

Feb 8 12:50 1985

arg _decl

gram.y Page 14

3
ptr decl

{

3
ptr TNAME
{

3
TNAME vec
{

3

decl vec

{

$§ = Neopy($2) ; D)
set_scope($<pn>1);

$<pn>$§->n_oper = TNAME;

$<pn>$->n_qualifier = $<pn>1;

%prec MUL _w)
Ptyp(§1) = Ntype($2);

Ntype($2) = (Ptype)$1;

$$ = §2;

%prec MUL

$$ = Ncopy($2);
$<pn>$->n_oper = TNAME;

Nhide($2); =~
Ntype($$) = (Ptype)$l;)
%prec LB

$$ = Neopy($1);
$<pn>$->n_oper = TNAME;

Nhide($1);

Ntype($$) = (Ptype)$2;
%prec LB

Vtype($2) = Ntype($1);
Ntype($1) = (Ptype)$2;

3
LP decl RP arg list /% xxxxx need a CAST here? */

{

Freturns($4) = Ntype($2);

LP decl RP vec /¥ xxx *

{

ID

{
%prec NO_ID
{

Ntype($2) = (Ptype)$4; "j
$$ = $2; -
Vtype($4) = Ntype($2);

Ntype($2) = (Ptype)$4;

$$ = $2;

$$ = new name($<s>1); }

$$ = new name; })
ptr arg decl %prec MUL j
{ Ptyp($1) = Ntype($2); —
Ntype($2) = (Ptype)$l;
} $$ = §2;
arg decl vec %prec LB
{ Vtype(§2) = Ntype($1);
Ntype($1) = (Ptype)$2;
LP arg decl RP arg list R
{ Freturns($4) = Ntype($2); L
Ntype($2) = (Ptype)$s;
} $$ = $23

!/-f\\
i

N

5

Feb 8 12:50 1985

new_decl

cast_decl

c_decl

/ wlantonts nlunle slemboets wle ntentoolenls et nte nte ale
WP TN W WRWW

gram.y Page

LP arg decl
{

: %prec NO_ID

15

RP vec
Vtype($4)
Ntype($2)
$$ = $2;

Ntype($2);
(Ptype)$4;

{ $$ = new name; }
ptr new_decl %prec MUL
{ Ptyp($1) = Ntype($2);
Ntype($2) = (Ptype)$1;
} $§ = $2;
new_decl vec %»prec LB
{ Vtype($2) = Ntype(§1);
Ntype($1) = (Ptype)$2;
%prec NO_ID
{ $$ = new name; }
ptr cast_decl %prec MUL
{ Ptyp($1) = Ntype($2);
Ntype($2) = (Ptype)$l;
} §$ = $2;
cast_decl vec %prec LB
{ Vtype($2) = Ntype(§1);
Ntype($1) = (Ptype)$2;
LP cast_decl RP arg list
{ Freturns ($4) = Ntype($2);
Ntype($2) = $<pt>4;
$§ = 825
LP cast_decl RP vec
{ Vtype($4) = Ntype($2);
Ntype($2) = §<pt>4;
} $% = §2;

%prec NO_ID
{

ptr c_decl
{

statements:

$$ = new name; }

Ptyp($1) = N
Ntype($2) =
$$ = $2;

returns Pstmt

%prec MUL
type($2);
(Ptype)$1;

Sededehlde e dededede et d /

Feb 8 12:50 1985 gram.y Page 16

stmt_list : stmt_list statement
{ if ($2)
if ($1)
Sadd($§1,$2);
else {
$§ = slistN(582);
stmt_seen = 1;
}
}
| statement
if ($1) ¢

$8 = slistN($1);
stmt_seen = 1;

}
}
5
condition : LP e RP
{ $$ = §2;
if ($<pe>$ == dummy) error("empty condition");
stmt_seen = 1;
3
5
block : LG
{ cd_vec[cdi] = cd;
stmt_vec[cdi] = stmt_seen;
tn_vec[cdit++] = modified_tn;
cd = 03
stmt_seen = 0;
) modified_tn = 0;
stmt_list RC
{ Pname n = Nunlist(cd);
Pstmt ss = Sunlist($3);
$$ = new block($<1>1,n,ss);
if (modified_tn) restore();
cd = cd_vec[--cdi];
stmt_seen = stmt_vec[edi];
modified_tn = tn_vec[cdil;
if (cdi < 0) error('i',"block level(%d)",cdi);
| LC RC
{ $$ = new block($<1>1,0,0); }
| LC error RC
{ $$ = new block(%<1>1,0,0); 3
5
simple 1 e
$$ = new estmt(SM,curloc,$<pe>1,0); 3
| BREAK
{ $$ = new stmt(BREAK,$<1>1,0); }
| CONTINUE
{ $$ = new stmt(CONTINUE,$<1>1,0); 3}
| RETURN e
{ $$ = new estmt(RETURN,$<1>1,$<pe>2,0); 3}

L/

N’

Feb 8 12:50 1985

(™

statement

/J4
-~

/¥l

gram.y Page 17

GOTO 1D
{ Pname n = new name($<s>2);
$$ = new 1lstmt(GOTO,$<1>1,n,0);
DELETE e

$$ = new estmt(DELETE, $<1>1,$<pe>2,0); }
DO { stmt_seen=1; } statement WHILE condition
$$ = new estmt(D0,$<1>1,$<pe>5,5<ps>3); }

simple SM
ASM LP STRING RP SM
{
if (stmt_seen)
$$ = new estmt(ASM,curloc, (Pexpr)$<s>3,0);
else {
Pname n = new name(make_name('A’'));
n->tp = new basetype(ASM, (Pname)$<s>3);
if (ed) Nadd_list(cd,n); else cd=(Pname)nli
$$ = 0; '
3
3
simple
{ error("';' missing after simpleS"); 3%/
data_?cl
if ($<pn>1)
if (stmt_seen) ¢
Pname n = $<pn>1;
$§$ = new block(n->where,n,0);
} $§<ps>§->base = DCL;
else
goto dddd;
att_fitwdef
lex_unget(RC);
error(nestedFD (did you forget a “~}''?7)");
dddd:
if (cd) Nadd_list(ecd,$1); else cd = (Pname)nlistN($
$$ = 0;
3
block

IF condition statement
$8 = new ifstmt($<1>1,$<pe>2,5$<ps>3,0); }
IF condition statement ELSE statement
$$ = new ifstmt($<1>1,$<pe>2,5<ps>3,5$<ps>5); }
WHILE condition statement
{ $$ = new estmt(WHILE,$<1>1,8<pe>2,8<ps>3); }
FOR LP { stmt_seen=1; cm_warn++; } e SM e SM e RP statement
{ $$ = new forstmt($<1>1,$<pe>4,$<pe>6,$<pe>8,$<ps>10
cm_warn--;
i/

FOR LP { stmt_seen=1; cm_warn++; } statement e SM e RP statement
$$ = new forstmt($<1>1,8<ps>4,$<pe>5,$<pe>7,$<ps>9)

Feb 8 12:50 1985 gram.y Page 18

cm_warn--;

| FOR CAST { stmt_seen=1; cm_warn++; } statement e SM e RP stateme
{ $8 = new forstmt($<1>1,S$<ps>4,$<pe>5,$<pe>7,5$<ps>9)
cm_warn--;

| SWITCH condition statement
$ = new estmt(SWITCH,$<1>1,8<pe>2,5<ps>3); }
| ID COLON { $$ = new name($<s>1); stmt_seen=1; } statement
{ Pname n = $<pn>3;
§$ = new lstmt(LABEL,n->where,n,$<ps>4);

| CASE { stmt_seen=1; } e COLON statement
{ if ($<pe>3 == dummy) error('empty case label");
$$ = new estmt(CASE,$<1>1,8<pe>3,8<ps>5);

| DEFAULT COLON { stmt_seen=1; } statement
$8 = new stmt(DEFAULT,$<1>1,$<ps>4); 1}

[FFRddedededeledededviededodededek expressions: returns Pexpr Fedededededededodedeloiodok /
elist ¢ ex_list
Pexpr e = Eunlist($1);
while (e && e">e1==dummy)'{ :
if (e->e2) error("EX inEL'");
delete e;
e = e->e2;
; $$ = e;
ex_list : initializer %prec CM
{ Pexpr e = new expr(ELIST,$<pe>1,0);

$§ = (PP)new elist(e);

ex_list CM initializer
{ Pexpr e = new expr(ELIST,$<pe>3,0);
Eadd($1,e);

}
5
initializer e %prec CM
| LC elist RC
{ Pexpr e;
if ($2)
e = §<pe>Z;
else
e = new expr{(ELIST,dummy,0);
$$ = new expr(ILIST,e,0);
3

L

U

{ i
\\w/ :

("\

-5

Feb 8 12:50 1985 gram.y Page 19

ASSIGN e

e}
[

{ . binop: $$ = new expr($§<t>2,$<pe>1,$<pe>3); }
e PLUS e { goto binop; }
e MINUS e { goto binop; }
e MUL e { goto binop; }
e AND e { goto binop; }
e OR e { goto binop; }
e ER e { goto binop; }
e SHIFTOP e { goto binop; }
e EQUOP e { goto binop; 3}
e DIVOP e { goto binop; }
e RELOP e { goto binop; }
e ANDAND e { goto binop; }
e OROR e { goto binop; }
e ASOP e { goto binop; }
e CM e
{ if (cm_warn==0) error('w',"comma not in parentheses
goto binop;
3
| e QUEST e COLON e
{ $$ = new qexpr(§<pe>1,$<pe>3,$<pe>5); }
| term
term : TYPE LP elist RP
{ TOK b = §$<t>1;
Ptype t;
switch (b) {
case CHAR: t = char_type; break;
case SHORT: t = short_type; break;
case INT: t = int_type; break;
case LONG: t = long type; break;
case UNSIGNED: t = uint_type; break;
case FLOAT: t = float_type; break;
case DOUBLE: t = double_type; break;
case VOID: t = void_type; break;
default:

error("illegal constructor:%k",b);
t = int_type;

3

$$ = new texpr(VALUE,t,$<pe>3);

}
| TNAME LP elist RP
{ Ptype t = Ntype($1);
$$ = new texpr(VALUE,t,$<pe>3);

| NEW new_type

{ Ptype t = Ntype($2); $$ = new texpr(NEW,t,0); 3}
| NEW LP new_type RP
{ Ptype t = Ntype($3); $$ = new texpr(NEW,t,0); 3}
/% | NEW new_type LP elist RP
{ Ptype t = Ntype($2); $$ = new texpr(NEW,t,S$<pe>4);

| NEW LP new_type LP elist RP RP
{ Ptype t = Ntype(§3); $$

il

new texpr(NEW,t,$<pe>5);

Feb 8 12:50 1985 gram.y Page 20

*/ | term ICOP
{ $$ = new expr($<t>2,$<pe>1,0); }
| CAST cast_type RP term /* lex() returns CAST instead of LP %
{ Ptype t = Ntype($2);
$8 = new texpr(CAST,t,$<pe>4);

| MUL term

§ $$ = new expr(DEREF,$<pe>2,0); }
| AND term

$§ = new expr(ADDROF,0,S$<pe>2); }

| MINUS term

{ §$ = new expr(UMINUS,O0,$<pe>2); }
| NOT term

§ $$ = new expr(NOT,0,$<pe>2); }
| COMPL term

{ $$ = new expr(COMPL,0,$<pe>2); }
| ICOP term

{ $$ = new expr($<t>1,0,$<pe>2); 1}
| SIZEOF term
{ Pexpr e = $<pe>2;
if (e->base == CAST) {
Pexpr ee = e->el;
TOK k = ee->base;
switch (k) {
case UMINUS:
ee = new expr(MINUS,e,ee->e2);
goto kk;
case DEREF:
if (ee->e2) goto dd;
ee = new expr(MUL,e,ee->el);
goto kk;
case ADDROF:
ee = new expr(AND,e,ee->e2);

kk:
e->base = SIZEOF;
e->el = 0;
$$ = ee;
break;
default:
dd:
e->base = SIZEOF;
$$ = $23
3
3
else

} $$ = new texpr(SIZEOF,0,e);
| term LB e RB
$$ = new expr(DEREF,$<pe>1,$<pe>3); }
| term LP elist RP
{ Pexpr ee = $<pe>3;
Pexpr e = §<pe>1;
if (e->base == NEW)
e->el = ee;
else
$$ = new call(e,ee);

“\\/’

\/

W,

7N

N
{

Feb 8 12:50 1985 gram.y Page 21

3
| term REF prim
{ $$ = new ref(REF,$<pe>1,$<pn>3); }
| term REF TNAME
{ Pname n = Ncopy($3); $$ = new ref(REF,$<pe>1,n); 1}
| term DOT prim
{ $$ = new ref(DOT,$<pe>1,$<pn>3); }
| term DOT TNAME

{ Pname n = Ncopy($3); $$ = new ref(DOT,$<pe>1,n); }
| MEM tag
{ $$ = Ncopy($2); $<pn>$->n_qualifier = sta_name; }

| prim
| LP { cm_warnt++; } e RP
{ $§ = §3; cm_warn--; 3}

| ZERO
$$ = zero; }
| ICON
$$ = conN(ICON,$1); 3}
| FCON
A $8 = conN(FCON,$1); }
| STRING
{ $$ = conN(STRING,S$1); }
| CCON
{ $$ = conN(CCON,$1); }
| THIS
{ = conN(THIS,0); 3}

$
| %prec NO_EXPR
{ $$

dummy; }

prim : ID
$$ = new name($<s>1); }

$$ = Ncopy($3);
$<pn>$->n_qualifier = $<pn>1;

{
| TNAME MEM tag

]

3
| OPERATOR oper
{ $$ = new name(oper_name($2));
$<pn>$->n_oper = $<t>2;

| TNAME MEM OPERATOR oper
{ $$ = new name(oper_name($4));

$<pn>$->n_oper = §<t>4;
$<pn>$->n_qualifier = $<pn>1;

/*****************ﬁ abstract types {(return type Pname) *************/

cast_type : type cast_decl
$$ = Ncast($1,$2); }

c_tp : TYPE

Feb 8 12:50 1985

c_type

new_type

arg type

arg list

gram.y Page 22

{ $$ = new basetype($<t>1,0); }
TNAME
$§ = new basetype(TYPE,$<pn>1); }
c_tp c_decl
$$ = Neast($1,$2); }
type new_decl
{ $$ = Ncast($1,$2); }
type arg decl
{ $$ = Ndata($1,$2); }
type arg decl ASSIGN initializer
{ $$ = Ndata($1,$2);

$<pn>§->n_initializer = §<pe>4;

CAST arg type_list RP
{ TOK k = 1;
Pname 1 = $<pn>2;
if (fct_void && 1==0) k = 0;
$8 = fctN(0,Nunlist(1l),k);

3
CAST arg type_list ELLIPSIS RP
{ TOK k = ELLIPSIS;
Pname 1 = $<pn>2;
if (fet_void && 1==0) k = 0;
} $$ = fctN(O,Nunlist(1l),k);

CAST arg type_list CM ELLIPSIS RP
{ TOK k = ELLIPSIS;
Pname 1 = $<pn>2;
if (fct_void && 1==0) k = 0;
error('w',"syntax error: comma before
$$ = fctN(O,Nunlist(1l),k);

H
LP arg type_list RP
{ TOK k = 1;
Pname 1 = $<pn>2;
if (fect_void && 1==0) k = 0;
$8 = fctN(O0,Nunlist(1l),k);

LP arg type_list ELLIPSIS RP
{ TOK k = ELLIPSIS;
Pname 1 = $<pn>2;
if (fct_void && 1==0) k = 0;
$$ = fctN(0,Nunlist(1l),k);

LP arg type._list CM ELLIPSIS RP
{ TOK k = ELLIPSIS;
Pname 1 = $<pn>2;
if (fct_void && 1==0) k = 0;

ellipsis');

e

P

~

Feb 8 12:50 1985 gram.y Page 23

arg type_list

at

ptr

vec

%%

error('w',"syntax error: comma before ellipsis');

$§ = fctN(O,Nunlist(1l),k);

arg type list CM at

if ($3)
if (31
Nadd($1,$3);
else
error("AD syntax'");
$$ = nlistN($3);
else

error ("AD syntax");

if ($1) $$ = nlistN($1); 3}

$$ = 0; }
$$ = new ptr(PTR,0); }
$$ = new ptr(RPTR,0); }

TOK ¢ = §<t>2;
if (c == CONST)
$$ = new ptr(PTR,0,1);
else §
$$ = new ptr(PTR,0);
error ("syntax error: *%k",c);

TOK ¢ = $<t>2;

if (¢ == CONST)
$$ = new ptr(RPIR,0,1);

else {
$$ = new ptr(RPTR,0);
error(syntax error: &%k',c);

Pexpr d = §<pe>2;
$$ = vecN((d!=dummy)?d:0);

{
3
at %prec CM
{
arg type
%prec EMPTY
{
MUL
{
AND
{
MUL TYPE
{
3
AND TYPE
{
3
LB e RB
{
3

Feb 8 12:49 1985 1lex.c Page 1

/% %% WM% %1% %H% %T% *

\ PTG DR R, JPC TN SEE U PR T SR R N J. wfrmls als: Yo mlaatentonfsale O L funtantentonlentoutantentententeatententantentantonta T, PR TP e T R o B . \
/hn"nnn"”uwk%n*w*k"“**m*uwwu*%xhk*%nk“nnk"wukakia*ka**kknkkn*uk** Fedededelod

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

lex.c:
lexical analyser based on pcc's and cpre's scanners
modified to handle classes:
new keywords: class
public
call
etc.
names are not entered in the symbol table by lex()
names can be of arbitrary length
error() is used to report errors
{} and () must match
numeric constants are not converted into internal representation
but stored as strings

aslontuntontontontactonteatastuntonteclontontentantanto sfuata ol sluntentoutestealoute tuate stastoatuate st olante Jautan Jante
el edefdedede R e dede e e e el e e e e e R e e e e e e oo de e de e dede S dekedende

e

e o anti when il s Vo e, T T D T, o e
.‘uknk*kkkknxﬁiﬂ%aagnkkmgﬂ/

#include "cfront.h"
#include xyystyp%.h"
##include “'size.h

{## define CCTRANS(x) x

/* lexical actions */

{#fdefine A_ERR 0 /% illegal character */
##define A_LET 1 * saw a letter *

f##define A_DIG 2 /* saw a digit */

j#define A_1C 3 * return a single character */
jidefine A_STR 4 /* string ¥/

#fdefine A_CC 5 /* character constant */
jfdefine A_BCD 6 * GCOS BCD constant */
ffdefine A_SL 7 /% saw a / *

j#fdefine A_DOT 8 * saw a . */

f##define A_2C 9 /* possible two character symbol */
f##define A_WS 10 /* whitespace (not \n) */
fidefine A_NL 11 /% \n */

f##define A_LC 12 /% { */

fidefine A_RC 13 /* 3 %

jtdefine A_L 14 /% (*/

j#define A_R 15 /%) %/

f##define A_EOF 16

A_
{#{define A_ASS 17
{#fdefine A_LT 18
{#fdefine A_GT 19 /% > %/
f}define A_ER 20

o~

e

e

Feb 8 12:49 1985 lex.c Page 2

jtdefine A_OR 21
f#fdefine A_AND 22
ffdefine A_MOD 23
j#define A_NOT 24
#fdefine A_MIN 25
#fdefine A_MUL 26
{#fdefine A_PL 27
jffdefine A_COL 28 /% 1 %/

/* character classes %/

define LEXLET 01
{## define LEXDIG 02
/% no LEXOCT because 8 and 9 used to be octal digits ¥/
define LEXHEX 010
define LEXWS 020
define LEXDOT 040

/% text buffer ¥/
char inbuf[TBUFSZ];
char®* txtmax = &inbuf[TBUFSZ-1];
char® txtstart;
char®* txtfree;
##define pch(c) ((txtmax<stxtfree)?error('i',"input buffer overflow"): (*txtfree++=c))

#fdefine start_txt() txtstart = txtfree

#fdefine del_txt() txtfree = txtstart

char* file_name[MAXFILE]; /% stack of source file names ¥/
/% file_name[0] == 0 means stdin #*

class loc curloc;

FILE * out_file = stdout;
FILE #* in_file = stdin;
Ptable ktbl;
int br_level
int bl_level

03 /% number of unmatched ~“(''s ¥/
0; /* number of unmatched ““{''s ¥/

ifdef ibm

define CSMASK 0377
define CSSZ 256

else

define CSMASK 0177
define CSSZ 128

endif

short lxmask[CSSZ+1];

int saved; /* putback character, avoid ungetchar */
int lastseen; /* last token returned ¥/

extern int lxtitle();

jidefine get(c) {c=getc(in_file))
jtdefine unget(c) ungetc{c,in _file)

Feb 8 12:49 1985 1lex.c Page 3

jfdefine
jfdefine
ffdefine
j#define

reti(a,b) { yylval.t =
retn(a,b) { yylval.p =
rets(a,b) { yylval.s =
retl(a) { yylval.l =

void ktbl_init()

/-.L
W

7’:/
{

/".’:

enter keywords into keyword table for
and into keyword representation table

ktbl = new table(KTBLSIZE,0,0);

new_key("asm'",ASM,0);
new_key('auto" ,AUTO,TYPE);
new_key("break",LOC,BREAK) ;
new_key(''case',LOC,CASE);
new_key("continue",LOC,CONTINUE);
new_key("char",CHAR,TYPE);
new_key("do",L0OC,D0);
new_key("double" ,DOUBLE,TYPE);
new_key("default",LOC,DEFAULT);
new:key("enum",ENﬁM,Oi; ’
new_key (" fortran" ,FORTRAN) ; */
new_key("else",LOC,ELSE);
new_key("extern" ,EXTERN,TYPE) ;
new_key (" float" ,FLOAT,TYPE);
new:key("for",Léc,FORS; ’
new_key("fortran" ,FORTRAN,0);
new_key("goto",LOC,GOTO);
new_key("if",10C,IF);
new_key("int",INT,TYPE);
new_key("long",LONG,TYPE);
new_key("return",LOC,RETURN) ;
new_key(:registgr",REGISTER,TYPE);
new_key(static ,STATIC,TYPE);
new_key("struct",STRUCT,AGGR) ;
new_key(''sizeof",SIZEOF,0);
new_key("short",SHORT,TYPE);
new_key("switch",LOC,SWITCH);
new_key("typedef", TYPEDEF, TYPE) ;
new_ieyéxungigge%;ig§8£g§§?,TYPE);
new_key("union", , R
new_key(''void",VOID,TYPE);
new_key("while",LOC,WHILE);

new_key("class"fCLASS,AGGR);
new_key(''delete' ,LOC,DELETE);
new_key("friend" ,FRIEND,TYPE);
new_key("operator',0PERATOR,0);
new_key("new" ,NEW,0);
new_key(''public",PUBLIC,0);
new_key("const",CONST,TYPE);
new_key("this",THIS,0);
new_key("inline"aINLINE,TYPE);
new_key("virtual”,VIRTUAL,TYPE);

b; return lastseen=a; }
(Pnode)b; return lastseen=a; }
b; return lastseen=a; }
curloc; return lastseen=a; }

use by lex()
used for output

i\w /1

_/

N

~

Feb 8 12:49 1985 1lex.c Page 4

new_key("overload",OVERLOAD,TYPE);
}

extern char® src_file_name;
extern char* line_ format;
loc last_line;

void loc.putline()

{
if (file==0 && line==0) return;
if (0<=file && file<MAXFILE) {
char®* f = file name[file];
if (f==0) f = (src_file_name) ? src_file_name : "";
fprintf(out_file,line_format,line,f);
last_line = *this;
3
3

void loc.put(FILE* p)
{

if (0<=file && file<MAXFILE) {
char®* f = file_name[file];
if (f==0) f = (src_file_name? ? src_file_name :
fprintf(p,"\"%s\", line %d: ",f,line);

e

3

void lxenter(s, m) register char *s; register short m;
/* enter a mask into lxmask */

{
register c;
while(c= *s++) lxmask[c+l] |= m;
3
void lxget(c,m) register c, m;
/:%
put 'c' back then scan for members of character class 'm'
terminate the string read with \0
txtfree points to the character position after that \0
fc/
{
pch(c);
while ((get(c), lxmask[c+1]&m)) pch(c);
unget(c);
pch('\0");
}
struct LXDOPE {
short 1lxch; /% the character */
short lxact; /% the action to be performed */
TOK 1xtok; /* the token number to be returned */
3 1xdope[] = {
$', A_ERR, O, /* illegal characters go here... ¥/

Feb 8 12:49 1985 1lex.c Page 5

:,:, A_LET, o0,
N

3 e s 3
‘\n', ANL, O,
:::, A_STR, O,

', ACC, o0,
:;:, ﬁ_gCD, g,

s _L, P,
', AR, RP,
do Ak ke
"', A_1C, 1B,
1, A_1C, RB,
:iz, A_MUL, MUL,

?', A_1C, QUEST,
:::, A_COL, COLON,
+ A_PL, PLUS,

-1, A_MIN, MINUS,
"7, A_SL, DIV,
"%, A_MOD, MOD,
&', A_AND, AND,
1, A_OR, OR,
ey A_ER, ER,
"1t A_NOT, NOT,
Nt A_1C, COMPL,
Yy A_1C, CM,
Y.t A_1C, SM,
L A_DOT, DOT,
'<', A_LT, LT,
:>:, A_GT, GT

= A_ASS, ASSIGN,
EOF, A_EOF, EOFTOK
35

/*
/ %
/ %
/ %

/.!-
3

letters point here ¥/
digits point here #*/
whitespace goes here */

character string %/

* ASCII character constant %/

'foreign' character constant, e.g. BCD *

/* note: EOF is used as sentinel, so must be <=0 and last entry in table %/

struct LXDOPE *1xcp[CSSZ+1];

extern void lex_init();
void lex_init()

register struct LXDOPE #*p;

register i;
register char *cp;

/% set up character classes */

/% first clear lexmask */

for(i=0; i<=CSSZ; i++) lxmask[i]

lxenter("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_ ", LEXLET);

0;

1xenter("0123456789", LEXDIG);
1xenter("0123456789abcdefABCDEF", LEXHEX);

/% \013 should become \v someday; \013 is OK for ASCII and EBCDIC *

1xenter(" \t\r\b\f\013", LEXWS);

1xmask['.'+1] |= LEXDOT;

/* make lxcp point to appropriate lxdope entry for each character */

g

k.« /

‘N

&

Feb 8 12:49 1985 1lex.c Page 6

/* initialize error entries %/
for(i= 0; i<=CSSZ; ++i) lxcp[i] = lxdope;
/* make unique entries */

for(p=lxdope; ; ++p) {
lxcp[p ->1xch+1] =
if(p->1xch < 0) b eak
3

/* handle letters, digits, and whitespace %/
/* by convention, first, second, and third places */

cp = "abcdefgh13klmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
while(*cp) lxcp[*cp++ + 1] = &lxdope[l];

cp = "123456789";

while(%cp) 1xcp[*cp++ + 1]
cp = "\t\b\r\f\013";

while(*cp) lxcp[*cp++ + 1]

&lxdope[2];

&lxdope[3];
file_name[0] = src_file_name;

curloc.file 0;
curloc.line 1

ktbl_init();
lex_clear();

saved = lxtitle();

H
void lex_clear()

txtstart = txtfree = inbuf;

3
char # chconst()
/7':
read a character constant into inbuf
*/
{

register c;
int nch = 0

pch("\'");

forever §
if (SZ_INT < nch++) {
error(''char constant too long');
goto ex;

3
switch (get(c)) {

Feb 8 12:49 1985 lex.c Page 7

error ("eof in char constant");

error("newline in char constant™);

case '\'':
goto ex;
case EOQOF:
goto ex;
case '\n':
goto ex;
case "\\':
pch(c);
switch (get(c)){
case '\n':
default:
pch(c);
break;
case '0':
case '5': case
pch(c);
get(c);
; break;
break;
default:
pch(c);
3
3
ex:
pch('\"'");
pch('\0");
return txtstart;
3

void lxcom()
/* process a "block comment' */

register c;
forever

switch (get(c)) {
case EOF:

error("eof in comment');

return;

case '\n':
curloc. linet+;
Nline++;
break;

Tt

case

++curloc.line;

: case '1': case '2': case '3': case :
1 t 1 1 t
6': case '7': case '8': case '9':

'4"

/* try for 2 */

if(lxmask[c+1] & LEXDIG){

pch(c);

get(c); /* try for 3 */

if (lxmask[c+l] & LEXDIG) pch(c);
else unget(c);

else unget(c);

if (get(c) == '/') return;

L/

L/

M

Feb 8 12:49 1985 lex.c Page 8

unget(c);
break;
case '/':

unget(c);
break;

void linecom()
/* process a ''line comment */

register c;

forever
switch (get(c)) §
case EOF:
error("eof in comment');
return;
case '"\n':
curloc.linet++;
Nlinet++;
saved = lxtitle();
return;
}
}
struct xyzzy §
TOK t;
: int y; /% fake for yystype %/
3
xyzzy bck;
?OK lex()
TOK ret;
Pname n;

if(bek.t) §
xyzzy tmp = bck;
bck.t = 0;

if (get(c) == "*') error('w

LI § RN
b

if(tmp.t==LC || tmp.t==RC)

retl(tmp.t)
else

rets(tmp.t, (char *)tmp.y)

3

Ntoken++;

forever {
register lxchar;

register struct LXDOPE ¥p;

start_txt();

/7’:"

in comment");

Feb 8 12:49 1985 1lex.c Page 9

if (saved) f{
lxchar = saved;
saved = 0;

H

else
get(lxchar);

switch((p=lxcp[lxchar+l])->1lxact){
case A_1C:

/* eat up a single character, and return an opcode */
reti(p->lxtok,p->1xtok);

case A_EOQOF:
if (br_level || bl_level)

error("'%s' missing at end of input",(bl_level) ? "
reti{EOFTO0K,0);

case A_ERR:

error('illegal character (0%o)",lxchar);
break;

case A_LET:

/% collect an identifier, check for reserved word, and retu
1xget(lxchar, LEXLET|LEXDIG);

if (n = ktbl->look(txtstart,0)) {

TOK x;

del_txt();

switch (x=n->base) {

case TNAME:
retn(TNAME,n);
break;

case LOC:
retl{n->syn_class);

default:
reti(n->syn_class,x);

H

else §

}
case A_DIG:

rets(ID,txtstart);

ret = ICON;

if (lxchar=='0') { /% octal or hexadecimal number ¥/
pch('0");
switch (get(lxchar))
case '1':
case 'L':
pch('L');
pch(0);
rets (ICON,txtstart);
case 'x':

Feb 8 12:49 1985

lex.c Page 10

case 'X':
1xget ('X',LEXHEX);
switch (get(lxchar)) {
case '1':
case 'L':
txtfree--;
pch('L");
pch(0);
break;
default:
saved = lxchar;
rets (ICON,txtstart);
case '8':
case '9':
error ("8 or 9 used as octal digit');
case '0':
case '1':
case '2'
case '3':
case '4':
case '5':
case '6':
case '7':
pch(lxchar);
ox:
switch (get(lxchar))
case '8':
case '9':
'error("s or 9 used as octal
case :
case '1':
case '2':
case '3’
case '4':
case '5':
case '6':
case '7':
' pch(lxchar);
goto ox;
case '1':
case 'L':
pch('L");
pch(0);
break;
default:
pch(0);
saved = lxchar;
' rets (ICON,txtstart);
case :
1xget('.',LEXDIG);
goto getfp;
default:

saved = lxchar;
reti(ZERO,0);

digit")

Feb 8 12:49 1985 1lex.c Page 11

3
else

1xget (1xchar ,LEXDIG);
if (get(lxchar) == '.") §

txtfree--;
1xget('.', LEXDIG);

getfp:
ret = FCON;
get(lxchar);
HH
switch (lxchar) {
case 'e':
case 'E':
txtfree--;
switc? gget(lxchar)) {
case -':
case '+':
pch('e');
break;
default:
unget (1xchar);
| lxchar = 'e';
b
lxget(lxchar, LEXDIG);
ret = FCON;
break;
case '1':
case 'L':
txtfree--;
pch('L");
break;
default:
saved = lxchar;
}s
pch(0);
rets(ret,txtstart);
case A_DOT:
if (get(lxchar) == '.") { /* look for ellipsis */
if (get(lxchar) i= '.'
error(token .. ?");

saved = lxchar;
3
reti(ELLIPSIS,0);

3

if(lxmask[lxchar+1] & LEXDIG){/* look for floating consta
unget (lxchar);
1xget('.', LEXDIG);
goto getfp;

saved = lxchar;
reti(DOT,0);

s

(ﬁ\

(”\

Feb 8 12:49 1985 lex.c Page 12

case A_STR:
/* save string constant in buffer */
forever
switch (get(lxchar)) {
case "\\':
pch('\\");
get(lxchar);
pch(lxchar);
break;
case '"":
pch(0);
rets (STRING, txtstart);
case '\n':
error("newline in string");
pch(0);
rets (STRING,txtstart);
case EOF:
error("eof in string');
pch(0);
rets (STRING, txtstart);
default:
pch(lxchar);
case A_CC:

/% character constant #/

rets (CCO
case A_BCD:
{

}

case A_SL:
switch (

e

1
case “

1

case '/':

N,chconst());

register 1i;
int j;

pch('~");

for (i=0; i<7; ++i)
pch(get(j?);
if (j == "') break;

3
pch(0);
if (6<1)
error("bed constant exceeds 6 characters')
rets (CCON, txtstart);

/* / */
get(lxchar)) ¢
1xcom();

break;

linecom();
break;

case '=':

reti(ASOP,ASDIV);

Feb 8 12:49 1985 1lex.c Page 13

case

case

case

case

case

default:
- saved = lxchar;
} reti(DIVOP,DIV);

A_WS:

continue;

A _NL:

++curloc.line;
Nline++;

saved = 1lxtitle();
continue;

A_LC:

if (BIMAX <= bl_level++) {
error('s',"blocks too deaply nested");
ext(3);

retl1(LC);

A_RC:

if (bl_level-- <= 0) {
error("unX '}'");
bl _level = 0;

}
ret1(RC);

A_L:

return CAST if the LP is the start of a cast LP otherwise
only

(type-name (
is a real problem

br_level++;

switch (lastseen) { /% £(=> all bets are off ¥/
case NAME:

case TNAME:

case TYPE:

; reti(LP,0);

if(saved) ,
lxchar = saved;

else
get(lxchar);

while((p = lxcp[lxchar+l])->lxact == A WS)
get(lxchar);

saved = lxchar;

if(p->lxact != A_LET) reti(LP, 0);

bek.t = lex();

bck.y = int(yylval.s);
switch (bek.t) {

case TYPE:

,\»._-#

7N

(0

N

Feb 8 12:49 1985 1lex.c Page 14

case TNAME:

break;

case AGGR:
case ENUM:

defaul
3

t:

reti(CAST,0);

reti(LP,0);

if(saved)

else

lxchar = saved;

get(lxchar);

while((p = lxecp[lxchar+l])->1lxact == A WS)
get(lxchar);
saved = lxchar;
sw1tch (lxchar) {
case ':': reti(LP,0); /* (classname::memname */
case '(': break;
?efault: reti(CAST,O);
/¥ here is the real problem:

wta

w

CAST: (1nt("‘)())P;

LP: (int (*p))
ignore
(int (&
and (int (|
and (int ((problems

get(lxchar);
while((p = lxc?[lxchar+l |)->lxact ==

if (lxchar =

}

{

unget(lxchar),
reti(LP,0);

get(lxchar);
while((p = lxcp[lxchar+l])->lxact ==
unget(lxchar),

unget ('*

if (lxchar == ')") reti(CAST,0);

reti(LP,0);

case A_R:

if (br_level-- <= 0) {

error("unX ')'");
br_level = 0;

3
reti(RP,0);

case A_ASS:

sw1tch (get(lxchar)) {

case

retl(EQUOP,EQ),

A WS) get(lxcha

A_WS) get(lxcha

Feb 8 12:49 1985 1lex.c Page 15

default:
saved = lxchar;
; reti(ASSIGN,ASSIGN);
case A _COL:
switcb gget(lxchar)) {
case ' :
, 'reti(MEM,O);
case '=:
error("':=' is not a c++ operator');
reti(ASSIGN,ASSIGN);
default:
saved = lxchar;
; reti(COLON,COLON);
case A_NOT:
switcp gget(lxchar)) {
case = :
reti{EQUOP,NE);
default:
saved = lxchar;
| reti(NOT,NCT);
case A_GT:
switch($et(lxchar)) §
case '>':
switcb gget(lxchar)) {
case '= :
reti(ASOP,ASRS);
break;
default:
saved = lxchar;
} reti(SHIFTOP,RS);
case '=':
reti(RELOP,GE);
default:
saved = lxchar;
reti(RELOP,GT);
3
case A_LT:
switch (get(lxchar)) {
case '<':
switch (get(lxchar)) {
case '=':
reti(ASOP,ASLS);
default:
saved = lxchar;
reti(SHIFTOP,LS);
}
case '=":
reti(RELOP,LE);
default:
saved = lxchar;
reti(RELOP,LT);
3

./

Feb 8 12:49 1985 1lex.c Page 16

case A_AND:

switch (get(lxchar)) {

case '&'

default:

3
case A_OR:

.
.

reti(ANDAND,ANDAND);
case '=':

reti(ASOP,ASAND);

saved = lxchar;

reti(AND

L,AND) ;

switch gget(lxchar)) {

case ']

default:

3
case A_ER:

’ lreti(OROR,OROR);
case = :
reti(ASOP,ASOR);

saved = lxchar;
reti(OR,0R);

switcy gget(lxchar)) {

case =

default:

3
case A_PL:

reti(ASOP,ASER);

saved = lxchar;
reti(ER,ER);

switch (get(lxchar)) {
case '=':
reti(ASOP,ASPLUS);
case '+':
reti(ICOP,INCR);

default:

3
case A_MIN:

saved = lxchar;
reti(PLUS,PLUS);

switch (get(lxchar)) {
case '=':
‘reti(ASOP,ASMINUS);
case '-': ;
reti(ICOP,DECR);
case '>':

default:

3
case A_MUL:

reti(REF

,REF);

saved = lxchar;
reti(MINUS,MINUS);

switcp gget(lxchar)) {

case =

reti(ASOP,ASMUL);
case '/':

error('w

',"¥/ not as end of

comment');

Feb 8 12:49 1985 lex.c Page 17

3

int Ixtitle()

/s'r

*/
{

/.L
W

default:
saved = lxchar;
} reti(MUL,MUL);
case A_MOD:
switc? gget(lxchar)) {
case = :
reti(ASOP,ASMOD);
default:

saved = lxchar;
reti(DIVOP,MOD);

}
default:

error('i',"lex act==%d getc()->%d",p,lxchar);

3

error('i',"lex, main switch");

called after a newline; set linenumber and file name

register c;

forever
switch (get(c)) {
default:
return c;
case EOF:
return EOF; */
case '"\n':
curloc. line++;
Nline++;
break;
11:
break;
case '#': /% # lineno "filename" */
curloc. line = 0;
forever
switc?ngget(c)) {
case :
start_txt();
forever
switc@ngget(c)) {
case :
pch('\0");

if (get(c) != "\n') error("unX eol on # line");

if (Ftxtstart) {

/% maintain stack of file names %/

int £ = curloc.file;

an

,_\\

Feb 8 12:49 1985

/ e
KR

case

case
case
case
case
case
case
case
case
case
case

lex.c Page 18

char® fn;

if (f == 0) goto push;

if ((fo=file _name[f]) && (strcmp(txtstart,
} /% same file: ignore ¥/

else if ((fn=file name[f-1]) && (strcmp(tx
/* previous file: pop */

/% delete(file_name[f]);*/
curloc.file~-;

else {
/* new file name: push %/
char * p;
push:
Nfile++;
p = new char[txtfree-txtstart+1];
if (MAXFILE<=++f) error('i',"fileN
file_name[curloc.file=f] = p;
(void) strepy(p,txtstart);
Nstr++;
3
else §
/% back to the original .c file: "' ¥/

int £ = curloc.file;
if (1<f) error('i',"fileN buffer (%d)",f);
if (£f) delete file_name[f];
curloc.file = 0;
}
del_txt();

curloc.putline();

goto 11;
case "\n':
error("unX end of line on '# line'™);
default:
pch(c);
vt
' 'break;
0!
i
31,
|4':
R
‘6’
1 1
g
1g',

curloc.line = curloc.line®*10+c-'0";
break;

Feb 8 12:49 1985 lex.c Page 19

case 'c¢'

case '\n':

default:
3

: /* ignore ffclass ¥/
if (get(c) == "1")
while (get(c) != "\n') ;
curloc. linet+;
Nlinet+;
goto 11;

curloc.putline();
goto 11;

error("unX character on '# line'');

a

Feb 8 12:49 1985 main.c Page 1

o, 0, () L Q, [} O/ 139, [wle
/% %Z% UM% %1% %H% %T%h */
afailmbamlaitanto ntententeontestentenlonlenleontoule nf uloulenls mlenfe nfonle e olonlenfonleado nlo nlonte ole nlnleoben o nlenbe ntenteontenls o
!/..“.yv‘,~.‘.‘v‘.‘,..,.s.\4.4.,».....‘,.4.4....‘,‘4.4;....,..».\...»¢‘..‘.,..\4~4..‘7.>~4.4

Fekdededededodedefodedoodeledodedodololedeohde ks
C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

main.c:

Initialize global environment
Read argument line

Start compilation

Clean up end exit

***************************ﬁ***************i++““****’*'%****i'************/
wle] .
/*#include <signal.h>

;L/
¥

#include <time.h>

char® ctime(long¥);

long time(long¥*);

long start_time, stop_time;

#include "cfront.h"
char* prog name = "<<cfront (release E) 1/30/85>>";

extern char® src_file_name;
char®* src_file_name = 0;

bit Styp = 1;
bit Ssimpl =

bit old_fct_accepted = 1;
TOK scope_default = STATIC;
bit fect_void;

bit st_init;

char® line_format = "\n# %d \"%s\"\n";

Plist isf list;
Pstmt st_ilist;
Pstmt st_dlist;

int Nspy;

int Nfile = 1 , Nline, Ntoken;

int Nfree_store, Nalloc, Nfree;

int Nname;

int Nn, Nbt, Nt, Ne, Ns, Nc¢, Nstr, NIl;

extern int NFn, NFtn, NFbt, NFpv, NFf, NFe, NFs, NFc, NF1;

Feb 8 12:49 1985 main.c Page 2

simpl_init();
typ_init();
syn_init();
lex_init();
error_init();
print_free();
read_align(char¥);
print_align{(char¥*);

void spy(char®* s)

if (s) fprintf(stderr,"%s:\n",s);

fprintf(stderr,"files=%d lines=%d tokens=%d\n",Nfile, Nline, Ntoken);

fprintf(stderr, 'Names: distinct=%d global=%d type=%d\n",
Nname, gtbl->max(), ktbl->max());

fflush(stderr);

if (start_time && stop_time) {
fprintf(stderr,'start time: %s'", ctime(&start_time));
fprintf(stderr,”stop time: %s", ctime(&stop_time));
fprintf(stderr,''real time delay %1d: %d lines per second\n",

stop_time-start_time, Nline/(stop_time-start_time));

} fflush(stderr);

fprintf(stderr,"free store=%dbytes alloc()=%d free()=%d ",
Nfree_store, Nalloc, Nfree);

print_free();

fflush(stderr);

fprintf(stderr,"sizeof: n=%d bt=%d f=%d p=%d v=%d e=%d c=%d 1=%d\n",
sizeof(name), sizeof(basetype), sizeof(fct),
sizeof(ptr), sizeof(vec),
sizeof(expr), sizeof(typed_obj), /*sizeof(elist)*/16);

fprintf(stderr,”alloc(): n=%d bt=%d t=%d e=%d s=%d c=%d str=%d 1=%d\n",
Nn, thi Nt, Ne, Ns, Nc, Nstr,N1);

fprintf(stderr,”free(): n=%d bt=%d t=%d e=%d s=%d c=%d str=? 1=%d\n",
NFn, NFbt, NFpv+NFf, NFe, NFs, NFc, NF1l);

fflush(stderr);

fprintf(stderr,"%d errors\n",error_count);

fflush(stderr);

3

Pname dcl_list; /* declarations generated while declaring something else */
char *st_name(int); /% generates names of static ctor, dtor callers ¥/

void run()

/-,‘:

:’:/
{

run the appropriate stages

Pname n;
int 1 = 13

while (n=syn()) {
Pname nn;
Pname nx;

_

‘
e

_J

7

PR

(\?

Feb 8 12:49 1985 main.c Page 3

if (n == (Pname)l) continue;

if (Styp == 0) {
n->dcl_print (SM);
lex _clear();
continue;

}

for (nn=n; nn; nn=nx) {
nx = nn->n_Jlist;
nn->n_list = 0;
if (nn->dcl(gtbl,EXTERN) == 0) continue;

if (error_count) continue;

if (Ssimpl) nn->simpl();

/% handle generated declarations */

for (Pname dx, d=dcl_list; d; d=dx) {
dx = d->n_list;
d->dcl_print(0);
delete d;

3

dcl_list = 0;

if (nn->base) nn->dcl_print(0);

switch (nn->tp->base) { /* clean up */

default:
{ Pexpr i = nn->n_initializer;
if (i && i!'=(Pexpr)l) DEL(i);
}
case FCT:
{ Pfet £ = (Pfct)nn->tp;
if (f->body && (debug || f£->f_inline==0)) {
DEL(f->body);
/¥ f->body = 0; leave to detect re-definition
3
break;
}
case CLASS:
{ Pclass ¢l = (Pclass)nn->tp;

register Pname p;
for (p=cl->pubmem; p; p=p->n_list) {
switch (p->tp->base) {
case FCT:
{ Pfct £ = (Pfct)p->tp;
if (f->body && (debug || f->f_inlin
DEL(f->body);
f->body = 0;
3

}
case CLASS:
case ENUM:

Feb 8 12:49 1985 main.c Page 4

break;
case COBJ:
case EOBJ:
DEL(p);
break;
default:

3
}

cl->pubmen = 0;

delete p;

for (p=cl->privmem; p; p=p->n_list) {
switch (p->tp->base) {
case FCT:
{ Pfct £ = (Pfct)p~->tp;
if (f->body && (debug || f->f_inlin
DEL(f->body);
f->body = 0;
3
}
case CLASS:
case ENUM:
break;
case COBJ:
case EOBJ:
DEL(p);
break;
default:
delete p;
3
3

cl->privmem = 0;
cl->permanent = 3;

break;
3
3
DEL(nn);
3
lex _clear();
3
switch (no_of_undcl) {
case 0:
break;
case 1:
error('w',"undeclaredF%n called",undcll);
break;
case 2:
error('w',"%d undeclaredFs called:%n and%n'",no_of_undcl,undcll,undc
break;
default:
error('w',"%d undeclaredFs called,%n,%n etc',no_of_undcl,undcll,und
}

N

N /

Feb 8 12:49 1985 main.c Page 5

Pname m;
if (fct_void == 0)
for (m=gtbl->get_mem(i=1); m; m=gtbl->get_mem(++i)) {
/*error('d',"global:%k n_key%k perm %d %n", m->base, m->n_key, m->permanent, m);¥*/
if (m->base==TNAME
|| m->n_scope==EXTERN
|| m->n_stclass == ENUM) continue;

Ptype t = m->tp;
if (t == 0) continue;
11:
switch (t->base) {
case TYPE: t=((Pbase)t)->b_name->tp; goto 11;
case CLASS:
case ENUM:
case COBJ:
case OVERLOAD:
case VEC: continue;
case FCT: if (((Pfet)t)->f inline) continue;

}

if (m->n_addr_taken==0 && m->n_used==0) {
Cdcl = m;
if (m->tp->tconst() ==0)
error('w',"static%n declared but not used',m);

}

if (st_ilist) { /* make an "init" function;
it calls all constructors for static objects
*/

Pname n = new name(st_name('I'));
Pfct £ = new fct(void_type,0,1);
n->tp = f;
f->body = new block(st_ilist->where,0,0);
n~->n_sto = EXTERN;
(void) n->dcl(gtbl,EXTERN);
n->simpl();
f->body->s = st_ilist;
f->simpl();
n->dcl_print(0);

}

if (st_dlist) { /* make a "done" function;
it calls all destructors for static objects
Pname n = new name(st_name('D'));
Pfct f = new fct(void_type,0,1);
n->tp = £;
f~>body = new block(st_dlist->where,0,0);
n->n_sto = EXTERN;
(void) n->dcl(gtbl,EXTERN);
n->simpl();
f->body->s = st_dlist;

Feb 8 12:49 1985 main.c Page 6

f=->simpl();
n->dcl_print(0);

3
if (debug==0) { /* print inline function definitions %/
Plist 1;
for (l=isf_list; 1; 1=1->1) {
Pname n = 1->f;
Pfct f = (Pfct)n->tp;
switch (f->base) {
case FCT: break;
default: error('i',"inline list corrupted\n');
case OVERLOAD:
n = ((Pgen)f)->fct_list->f; * first fct */
f = (Pfct)n->tp;
3
/*fprintf(stderr,"%s() tp (%d %d) %d %d\n", n->string, n->tp, n->tp?n->tp->base:0, n
if (n->n_addr_taken || f->f_virtual) {
/% if (st_init) putst("asm(\"library\'");");*
} n->tp->dcl_print(n);
3
3

fprintf(out_file,"\n/* the end */\n"");
}

bit warn = 1; /% printout warning messages */
bit debug = 0; /* code generation for debugger */
char* afile = "default'";

int no_of_undcl;
Pname undcll, undcl2;

main(int argc, char* argv[])

/.‘.
"

*/
¢

read options, initialize, and run

extern char® mktemp();
register char * cp;
short i;

/*(void) signal(SIGINT,&sig exit);

(void) signal(SIGTERM,sig exit);
(void) signal(SIGQUIT,sig exit);

error_init();

for (i=1; i<argc; ++i) {
switch (¥(cp=argv[i])) {

/

™

&

e

Feb 8 12:49 1985 main.

case '+':

XX

default:

¢ Page 7

whlle (F++ep)

switch(®cp) {
case 't':

fprintf(stderr,"type check only\n");
Ssimpl = 0;
break;
fprintf(stderr,"syntax check only\n'");
Styp = Ssimpl =
‘break;
warn = 0;
break;
debug =
break;
src_file _name = cp+l;
goto XX
/% read in table for cross compilat

case 's':
case 'w':
case 'd':
case 'f':
case 'x':

case 'C'

if (read_align(afile = cp+1)} {
fprintf(stderr,'bad size-table (opt
} exit(11);
goto xx;
: /" Jpreserve comments */
error(s’ R "cannot preserve comments'),
break;
/* C with classes compatability %/
fct _void = 1;

'/* no break */

scope_default = EXTERN;

’break;

Nspy++;
break;

case 'V':

case 'E':
case 'S':
case 'L':

line_format = "\n#line %d \"%s\"\n";
break;

st_init = 1;
break;

fprintf(stderr,'%s: unexpected option: -%c

break;

case 'I':
default:
}

}

break;

fprintf(stderr,"%s: bad argument \"%s\'"\n",prog name,cp);

exit(11);

Feb 8 12:49 1985 main.c Page 8

fprintf(out_file,"\n/* %s */\n",prog name);
if (src_file_name) fprintf(out_file,"/* < %s */\n",src_file_name);

if (Nspy) {
start_time = time(0);
print_align(afile);

3

fflush(stderr);

if (Ssimpl) print_mode = SIMPL;

otbl_init();

lex_init();

syn_init();

typ_init();

simpl_init();

scan_started = 1;

curloc.putline();

run();

if (Nspy) {
stop_time = time(0);
spy(src_file name);

return (O<=error_count && error_count<127) ? error_count : 127;

3

extern int strcat(char®*, char®);
char * st_name(int iord) {
static char *name = 0;
static char *prefix = "_ST_"; /% first character must be valid in a
C identifier */
if (iord != 'I' && iord != 'D'
error('i', "bad ST_ type %d\n'", iord);
if (!'name) {
int stilen = strlen(prefix) + 1 +
(src_file_name) ? strlen(src_file _name) : 0;
name = new char[stilen];
strepy(name, prefix);
if (src_file_name) strcat(name, src_file name);
char *p = name;
while (*++p) {
if (‘a’ <= 7'\‘p && Fp <= ol ||
’A' <= ‘A‘p && '.'rp Lo Z'
'0' <= %p && *p <= '9') continue;
:':p = '__';
}

name[strlen(prefix) - 1] = iord;
return name;

N

Feb 8 12:49 1985 misc.c Page 1

/% %% EM% %1% %H% %BTh */
/‘«'\‘ empty 7‘:/

Feb 8 12:49 1985 norm.c Page 1

b e
/% @(#) norm.c 1.1 1/2/85 17:58:42 */
/*************k*********************k*******%**%*******ﬁ*****************

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

norm.c:

"normalization" handles problems which could have been handled
by the syntax analyser; but has not been done. The idea is

to simplify the grammar and the actions accociated with it,
and to get a more robust error handling

wfaatants B e e T T T T AT AL s P70 L TE PN S N B T T T oL s . -l o A tamlawta st st mbunt,
Akﬂ**kA*k&Akk%*Aik&kAnnaamwk“kkAAnknA****“nL%*u"“A%n%ux*uk***km*w**ik&*i%kiw/

##include "cfront.h"
#include "size.h"

extern void syn_init();
void syn_init()

any_type = new basetype(ANY,0);
PERM(any_type);

dummy = new expr(DUMMY,0,0);
PERM(dummy) ;

dummy->tp = any_type;

zero = new expr(ZER0,0,0);
PERM(zero);

char®* make_name(TOK c)

{

static stcount;

char* s = new char[8]; /* as it happens: fits in two words ¥/

if (99999 <= ++stcount) error('i',"too many generated names");

s[0] = '_";

s[1l] = c;

int count = stcount;

int i = 2;

if (10000 <= count) {
s[i++] = '0' + count/10000;
count %= 10000;

3

if (1000 <= count) {
s[i++] = '0' + count/1000;
count %= 1000;

e

k_/ ;

k ;
—eg

~

Feb 8 12:49 1985 norm.c Page 2

}

H

else if (2<i) s[i++] = '0';

if (100 <= count) {
s[i++] = '0' + count/100;
count %= 100;

}

else if (2<i) s[it++]

o',
3

if (10 <= count) {
s[it++] = '0' + count/10;
count %= 10;

else if (2<i) s[i++]

s[i++]

s[i] = 0;

return s;

]

lol;

'0' + count;

Pbase basetype.type_adj(TOK t)

{

switch (base) {

case COBJ:
case EOBJ:
{ Pbase bt = new basetype(0,0);
*bt = *this;
DEL(this);
this = bt;
$
3
if (b_xname) {
if (base)
error ("badBT:%n%k",b_xname,t);
else {
base = TYPE;
; b_name = b_xname;
b_xname = 0;
}
switch (t) {
case TYPEDEF: b_typedef = 1; break;
case INLINE: b_inline = 1; break;
case VIRTUAL: b_virtual = 1; break;
case CONST: b_const = 1; break;
case UNSIGNED: b_unsigned = 1; break;
case SHORT: b_short = 1; break;
case LONG: b_long = 1; break;

case FRIEND:
case OVERLOAD:
case EXTERN:
case STATIC:
case AUTO:

Feb 8 12:49 1985 norm.c Page 3

case REGISTER:
if (b_sto)
error ("badBT:%k%k" ,b_sto,t);

else
b_sto = t;
break;
case VOID:
case CHAR:
case INT:
case FLOAT:
case DOUBLE:
if (base)
error (""badBT:%k%k' ,base,t);
else
base = t;
break;
default:
} error('i',"basetype.type_adj(%k)",t);
return this;
}
Pbase basetype.name_adj(Pname n)
{
if (b_xname) {
if (base)
error ("badBT:%n%n" ,b_xname,n);
else §
base = TYPE;
; b_name = b_xname;
} b_xname = 0;
b_xname = n;
return this;
3
?base basetype.base_adj(Pbase b)

Pname bn = b->b_name;

switch (base) {

case COBJ:

case EOBJ:
error (''"NX after%k%n',base,b_name);
return this;

3
if (base) {
if (b_name)
error ("badBT:%k%n%k%n" ,base,b_name,b->base,bn);
else
error ("badBT:%k%k%n'" ,base,b->base,bn);
else {

base = b->base;

5

'

(D

(D

Feb 8 12:49 1985 norm.c Page 4

b_name = bn;
b_table = b->b_table;

3
return this;
3
Pbase basetype.check(Pname n)
/%
"n" is the first name to be declared using "this"
check the consistency of "this"
and use "b_xname" for "n->string" if possible and needed
* /
{

b_inline = 0;
b_virtual = 0;
/*fprintf(stderr,'check n: %d %s b: %d %d %s\n",n,(n)?n->string:"",this,base, (b_name
if (b_xname && (n->tp || n->string)) {
if (base)
error ("badBT:%k%n" ,base,b_xname);
else {
base = TYPE;
b_name = b_xname;
3

b_xname = 0;

3

if (b_xname) {
if (n->string)
error ("twoNs inD:%n%n'",b_xname,n);

else §
n->string = b_xname->string;
; b_xname->hide();
b_xname = 0;
3
switch (base) {
case O:
base = INT;
break;
case EOBJ:
case COBJ:
if (b_name->base == TNAME)
error('i',"TN%n inCO %d",b_name,this);
3

if (b_long || b_short) {
TOK s1 = (b_short) ? SHORT : LONG;
if (b_long && b_short) error("badBT:long short%k%n'",base,n);
if (base != INT)
error ("badBT:%k%k%n",s1,base,n);
else
base = sl;
b_short = b_long = 0;

Feb 8 12:49 1985 norm.c Page

5

if (b_typedef && b_sto) error("badBT:typedef%k%n",b_sto,n);

b_typedef = b_sto = 0;
if (Pfctvec_type == 0)

if (b_const) {
return this;

switch (base)

case INT:
}

3

else if (b_unsigned) {

switch (base) ¢

case LONG:

/* error(’
delete
return

case SHORT:
delete
return

case INT:
delete
return

case CHAR:
delete
return

default:

return this;

s',"unsigned long'");*/
this;
ulong type;

this;
ushort_type;

this;
uint_type;
this;
uchar_type;

error(''badBT: unsigned%k%n",base,n);
b_unsigned = 0;

this;

this;
long _type;

this;
short_type;

if (this != int_type) delete this;

return
3
else {
switch (base) {
case LONG:
delete
return
case SHORT:
delete
return
case INT:
return
case CHAR:
delete
return
case VOID:
delete
return
case TYPE:
/% use

/*fprintf(stderr,”type %d bn %d %s q %d\n",this,b_name,b_name->string,b_name->n_qual

int_type;

this;
char_type;

this;
void_type;

a single base saved in the keyword */

if (b_name->n_qualifier) {

N

kv/

~

~

Feb 8 12:49 1985 norm.c Page 6

delete this;
return (Pbase)b_name->n_qualifier;

else {
PERM(this);
b_name->n_qualifier = (Pname)this;
return this;

default:
return this;
H
}
}
Pname basetype.aggr()
/ &
"type SM" seen e.g. struct s {};
class x;
enum e;
int tname;
friend cname;
friend class x;
int;
convert
union { ... };
into
union name { ... } name ;
W=/
{
Pname n;

if (b_xname) §
if (base) §
Pname n = new name(b_xname->string);
b_xname->hide();
b_xname = 0;
return n->normalize(this,0,0);

else {
base = TYPE;
b_name = b_xname;
b_xname = 0;
H
3
switch (base) {
case COBJ:
{ Pclass cl = (Pclass)b_name->tp;

char* s = cl->string;

J*fprintf(stderr,"COBJ (%d %s) -> (%d %d) ->(%d %d)\n'",this,b_name->string,b_name,b_
if (b_name->base == TNAME) error('i',"TN%n inCO",b_name);
if (b_const) error("const%k%n",cl->csu,b_name);

if (cl->c_body == 2) { /* body seen #*/

Feb 8 12:49 1985 norm.c Page 7

if (s[0]=="_" && s[1]=="C") {
char* ss = new char([5];
Pname obj = new name(ss);
if (cl->csu == UNION) ¢
strcpy(ss,s);
ss[1] = '0';
cl->csu = ANON;
} return obj->normalize(this,0,0);

error('w',"un-usable%k ignored",cl->csu);

3
cl->c_body = 1;
return b_name;

else { /* really a typedef for cfront only: class x; */
if (b_sto == FRIEND) goto frr;

return 0;
3
}
case EOBJ:
§ Penum en = (Penum)b_name->tp;
/*fprintf(stderr,"EOBJ (%d %s) =-> (%d %d) ->(%d %d)\n",this,b_name->string,b_name,b_
if (b_name->base == TNAME) error('i',"TIN%n in enum0",b_name);
if (b_const) error('const enum%n",b_name);
if (en->e_body == 2) {
en->e_body = 1;
return b_name;
else {
if (b_sto == FRIEND) goto frr;
return 0;
H
}
default:
if (b_typedef) error('w',"illegal typedef ignored");
if (b_sto == FRIEND) {
frr:
Pname fr = ktbl->loock(b_name->string,0);
if (fr == 0) error('i',"cannot find friend%n",b_name);
n = new name(b_name->string);
n->n_sto = FRIEND;
n->tp = fr->tp;
return n;
else {
n = new name(make_name('D'));
n->tp = any_type;
error('w', 'NX inDL");
return n;
3
}

U

-

e

Feb 8 12:49 1985 norm.c Page 8

void name.hide()
hide "this": that is, "this" should not be a keyword in this scope
w /
{
if (base != TNAME) return;
if (n_key == 0) {
/*error('d',"hide%n",this);*/
if (lex_level == bl_level) error('w',"%n redefined",this);
modified_tn = new name_list(this,modified tn);
n_key = HIDDEN;

3
}
void set_scope(Pname tn)
/%
enter the scope of class tn after seeing "tn.f"
* /
{
Pbase b;
Pclass cl;
Plist 1;
if (tn->base != TNAME) error('i',"set_scope: not aTN %d %d",tn,tn->base);
b = (Pbase)tn->tp;
if (b->b_name->tp->base != CLASS) error('i',"T of%n not aC (%k)",tn,b->b_na
¢l = (Pclass)b~->b_name->tp;
for (l=cl->tn_list; 1; 1=1->1) {
Pname n = 1->f;
n->n_key = (n->lex_level) ? 0 : HIDDEN;
modified_tn = new name_list(n,modified _tn);
}
}
void restore()
/-.':
%/
{
Plist 1;
for (l=modified_tn; 1; 1=1->1) {
Pname n = 1->f;
if (n->lex_level <= bl_level) {
n->n_key = 0;
else §
n->n_key = HIDDEN;
3
}
3
Pbase start_cl(TOK t, Pname ¢, Pname b)
{
if (¢ == 0) ¢ = new name(make_name('C'));
Pname n = c->tname(t); /% t ignored */
n->where = curloc;
Pbase bt = (Pbase)n->tp; /% COBJ */

if (bt->base != COBJ) {

Feb 8 12:49 1985 norm.c Page 9

3

error("twoDs of%n:%t andC",n,bt);
exit(88);
3

Pclass occl = cclj

ccl = (Pclass)bt->b_name->tp; /* CLASS *

ccl->in_class = occl;

ccl->tn_list = modified_tn;

modified_tn = 0;

ccl->string = n->string;

ccl->csu = t; /* %/
if (b) ccl->clbase = b->tname(t);

return bt;

void end_cl()
{

3

Pclass occl = ccl->in_class;
Plist ol = ccl->tn_list;
ccl->c_body = 2;
ccl->tn_list = modified_tn;
if (modified_tn) restore();
modified_tn = ol;

ccl = ocel;

Pbase end_enum(Pname n, Pname b)

¢

3

if (n == 0) n = new name(make_name('E'));

n = n->tname (ENUM) ;

Pbase bt = (Pbase)n->tp;

if (bt->base != EOBJ) {
error("twoDs of%n:%t and enum",n,bt);
exit(88);

3

Penum en = (Penum)bt->b_name->tp;

en->e_body = Z;

en->mem = name_unlist((class nlist *)b);

if (en->defined) error("enum%n defined twice",n);

return bt;

Pname name.tdef()

/ wte
Eiy

‘.‘r/
{

3

typedef "this"

Pname n = ktbl->insert(this,0);

if (tp == 0) error('i',"typedef%n tp==0",this);
n->base = base = TNAME;

PERM(n);

PERM(tp);

modified_tn = new name_list(n,modified_tn);
return n;

Pname name.tname(TOK csu)

{ i
/
\\‘/

7

A\,

Feb 8 12:49 1985 norm.c Page 10

/*fprintf(stderr,"tname %s -> n (%d %d) n->tp (%d %d)\n",string,tn,tn->base,tn->tp,t

1
1 CSU" 1"

return
X:
y:
Z:

(TNAME , x)
(COBJ,y)
(NAME, z)
(CLASS, ae);

switch (base) {

this" seen, return typedef'd name for "this"

case TNAME:
return this;
case NAME:
{ Pname tn = ktbl->insert(this,0);
Pname on = new name;
tn~>base = TNAME;
modified_tn = new name_list(tn,modified_tn);
tn->n_list = n_list = 0;
string = tn->string;
*on = *this;
switch (csu) {
case ENUM:
tn->tp = new basetype(EOBJ,on);
on->tp = new enumdef(0);
break;
default:
on->tp = new classdef(csu,0);
((Pclass)on->tp)->string = tn->string;
tn->tp = new basetype(COBJ,on);
y ((Pbase)tn->tp)->b_table = ((Pclass)on->tp)->memtbl;
PERM(tn);
PERM(tn~->tp);
PERM(on);

)
default:

}

PERM(on->tp

return tn;

error('i',"

)3

tname (%s %d %k)",string,this,base);

Pname name.normalize(Pbase b, Pblock bl, bit cast)

/ ot
“w

if (bl)

: a function definition (check that it really is a type

if (cast) : no name

string

for each name on the name list
invert the declarator list(s) and attatch basetype
watch out for class object initializers

convert

into

struct s §

int a; } a;

Feb 8 12:49 1985 norm.c Page 11

struct s { int a; }; struct s a;

*/

{
Pname n;
Pname nn;
TOK stc = b->b_sto;
bit tpdf = b->b_typedef;
bit inli = b->b_inline;
bit virt = b->b_virtual;
Pfct f;
Pname nx;

if (b == 0) error('i'g"%d->N.normalize(O)",this);

if (this == 0) error(

i',"0->N.normalize(%k)" ,base);

if (inli && stc==EXTERN) {

error ("both extern and inline");
inli = 0;

3
/*fprintf(stderr, name.norm(%d %s) tp (%d %d)\n'",this,string,tp,tp->base);*/

if (stc==FRIEND && tp==0) f{

}

if (cast) string =

/¥ friend x;
must be handled during syntax analysis to cope with

class x { friend y; y* p; };

n__u tn_n
X

y is not local to
class x { friend yv; ... }; v* p;
is legal

*

if (b->base) error(0,"T specified for friend");
if (n_list) {
error ("'l of friends');
n_list = 0;
3
Pname nx = tname(CLASS);
modified_tn = modified_tn->1; /% global *
n_sto = FRIEND;
tp = nx->tp;
return this;

e
-

b = b->check(this);

switch (b->base) { /% separate class definitions

from object and function type declarations

-L/
w

case COBJ:

nn = b->b_name;

/*fprintf(stderr,"COBJ (%d %s) -> (%d %d body=%d)\n",nn,nn->string,nn->tp,nn->tp->ba

if (((Pclass)nn->tp)->c_body==2) { /% first occurrence */
if (tp && tp->base==FCT) {
error('s',"C%n defined as returnT for%n (did you fo
nn = this;
break;

‘\,/‘E

M

&\/;

Feb 8 12:49 1985 norm.c Page 12

nn->n_list = this;
} ((Pclass)nn->tp)->c_body = 1; /* other occurences */
else

nn = this;
break;

case EOBJ:

default:

3

nn = b->b_name;
if (((Penum)nn->tp)->e_body==2) {
if (tp && tp->base==F(CT) {
error('s',"enum%n defined as returnT for%n (did you
nn = this;
break;
}
nn->n_list = this;
} ((Penum)nn->tp)->e_body = 1;
else
nn = this;
break;

nn = this;

for (n=this; n; n=nx) {

/*error('d',"%s:

/*error('d

zse:

t 1

Ptype t = n->tp;
nx = n->n_list;
n->n_sto = stc;

if (t
&& n_oper==TNAME
&& t->base==FCT) { /* HORRIBLE FUDGE: fix the bad grammar #*/

Pfct £ = (Pfct)t;
Pfet £f2 = (Pfet)f->returns;
if (f2 && f2->base==FCT) {
Pexpr e = f2->argtype;
mis-analyzedP toF",n->string);¥*/
if (e->base == ELIST) {
* get the real name,
fix its type
* /

if (e->e2 || e->el->base!=DEREF) goto zse;
Pname rn = (Pname)e->el->el;
if (rn->base!=NAME) goto zse;

J'realN %n b==%t",rn,b);*/

f->returns = new ptr(PTR,0);

b = new basetype(TYPE,ktbl->look(n->string,
n->n_oper = 0;

n->string = rn->string;

n->base = NAME;

}

if (n->base == TNAME) error('i',"redefinition ofTN%n'',n);

Feb 8 12:49 1985 norm.c Page 13

if (t == 0) {
if (bl == 0)
n->tp = t = b;

else §
error ("body of nonF%n",n);
} t = new fct(defa_type,0,0);
3
switch (t~>base) {
case PTR:
case RPTR:
n->tp = ((Pptr)t)->normalize(b);
break;
case VEC:
n->tp = ((Pvec)t)->normalize(b);
break;
case FCT:
n->tp = ((Pfct)t)~->normalize(b);
break;
case FIELD:
if (n->string == 0) n->string = make_name('F');
n->tp = t;
Pbase tb = b;
flatten:

switch (tb->base) §

case TYPE: /* chase typedefs */
tb = (Pbase)tb~>b_name->tp;
goto flatten;

case INT:
((Pbase)t)->b_unsigned = b~>b_unsigned;
((Pbase)t)~->b_const = b->b_const;
break;

default:
error("'non-int field");

| n->tp = defa_type;

break;

}
f = (Pfct) n->tp;

if (f->base != FCT) {
if (bl) {
error("body for nonF%n',n);
n->tp = f = new fct(defa_type,0,0);
continue;

if (inli) error("inline nonF %n',n);
if (virt) error('virtual nonF %n",n);

if (tpdf) {
if (n->n_initializer) {
error("Ir for typedefN%n',n);
n->n_initializer = 0;

L/

a

Feb 8 12:49 1985 norm.c Page 14

; n->tdef();

continue;

}

f->f _inline = inli;
f->f_virtual = virt;

if (tpdf) error("typedef%n',n);

if (£->body = bl) continue;

/7’:
Check function declarations.
Look for class object instansiations
The real ambiguity: ; class x fo();
is interpreted as an extern function
declaration NOT a class object with an
empty initializer
:‘:/
{ Pname cn = f->returns->is_cl _obj();

bit clob = (ecn || cl_obj_vec);
/*error('d',"%n: fr%t cn%n",n,f->returns,cn);¥*/
if (f->argtype) { /* check argument/initializer list %/
Pname nnj;

for (nn=f->argtype; nn; nn=nn->n_list) {
if (nn->base != NAME) {
if (teclob) §
error ("ATX for%n",n);
goto zzz;
3
goto is_obj;

3

if (nn->string? {
error('AN%n inD of%n'',nn,n);
nn->string = 0;

~
k

3

if (nn->tp) goto ok;

*/

}

if (tclob) ¢
error ("FALX");
goto zzz;

3
is_obj:

/*fprintf(stderr,"is_obj: %d %s tp = %d %d\n",this,string,f->returns,f->returns->bas
/* it was an initializer: expand to constructor ¥/
n->tp = f->returns;
if (f->argtype->base 1= ELIST) f->argtype = (Pname)
n->n_initializer = new texpr(VALUE,cn->tp, (Pexpr)f-
goto ok;

Z22:
if (f->argtype) {
DEL(f->argtype);

Feb 8 12:49

ate /
W

3

/

7’:/
{

XX

3

3

1985 norm.c Page 15

f->argtype = 0;
f->nargs = 0;
f->nargs_known = !fct_void;

}

else { /* T a(); => function declaration */
if (clob) {

DEL(n->tp);
n->tp = f->returns;

ok:
3

return nn;

Ptype vec.normalize(Ptype vecof)

Ptype t = typ;
if (this == 0) error('i',"0->vec.normalize()");
typ = vecof;

if (t == 0) return this;

switch (t->base) {

case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
case PTR:

case RPTR: return ((Pptr)t)->normalize(this);

case VEC: return ((Pvec)t)->normalize(this);

case FCT: return ((Pfct)t)->normalize(this);
default: error('i',"bad vectorT(%d)",t->base);

3

Ptype ptr.normalize(Ptype ptrto)
{

Ptype t = typ;
if (this == 0) error('i',"0->ptr.normalize()");
typ = ptrto;

if (£t == 0) {

Pbase b = (Pbase) ptrto;

if (Pfctvec_type

&& rdo==

&& b->b_unsigned==

&& b->b_const==0

&& base==PTR) {
switch (b->base) {
case INT:

\z

Feb 8 12:49 1985 norm.c Page 16

delete this;

return Pint_type;
case CHAR:

delete this;

return Pchar_type;
case VOID:

delete this;

return Pvoid_type;
case TYPE:

break;
H

}
if (base==RPTR && b->base==VOID) error('void& is not a validT");
return this;

3
XX:
switch (t->base) {
case TYPE: t = ((Pbase)t)->b_name->tp; goto Xx;
case PTR:
case RPTR: return ((Pptr)t)->normalize(this);
case VEC: return ((Pvec)t)->normalize(this);
case FCT: return ((Pfct)t)->normalize(this);
default: error('i',"badPT(%d)",t->base);
}
Ptype fct.normalize(Ptype ret)
/7':
normalize return type
:‘:/
{
register Ptype t = returns;
if (this==0 || ret==0) error('i',"%d->fct.normalize(%d)",this,ret);
returns = ret;
if (t == 0) return this;
if (argtype) {
if (argtype->base != NAME) {
error('i',"syntax: ANX");
argtype = 0;
nargs = 0;
nargs_known = 0;
' 3
/7:
else {

Pname n;
for (n=argtype; n; n=n->n_list) {
if (n->string) {
error ("N inATL");
n->string = 0;

Feb 8 12:49 1985 norm.c Page 17

% /
}
XX:
switch (t->base) {
case PTR: ,
case RPTR: return ((Pptr)t)->normalize(this);
case VEC: return ((Pvec)t)->normalize(this);
case FCT: return ((Pfct)t)->normalize(this);
case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
default: error('i',"badFT:%k",t->base);
3
void fct.argdcl(Pname dcl)
/7‘:
sort out the argument types for old syntax:
f(a,b) int a; char b; { ... }
beware of
f(a) struct s { int a; }; struct s a;
{

Pname n;
/*fprintf(stder;,"%d argtype %d %d dcl %d %d\n",this, argtype, argtype?argtype->base
switch (base) {

case FCT: break;
case ANY: return;
default: error('i',"argdcl(%d)" ,base);

if (argtype) {
switch (argtype->base) {
case NAME:
if (decl) error("badF definition syntax');
for (n=argtype; n; n=n->n_list) {
if (n->string == 0) {
/* error('w',"AN missing inF definition");%*/
n->string = make_name('A');
}

3

return;
case ELIST: /* expression list: fa ...) %/
{ Pexpr e;
Pname nn;
Pname tail = 0;
n = 0;
if (old_fct_accepted == 0) error('old styleF definition');
for (e=(Pexpr)argtype; e; e=e->e2) {
/* scan the elist and build a NAME list */
Pexpr id = e->el;
if (id->base != NAME) f{
error ("NX inAL");
argtype = 0;

N

Feb 8 12:49 1985 norm.c Page 18

del = 03
} goto xxx;
nn = new name(id->string);
if (n)
tail = tail->n_list = nn;
else
- tail = n = nn;
3
XXX
argtype = n;
; break;
default:
error ("ALX(%d)",argtype->base);
argtype = 0;
dcl = 0;
3
else {
nargs_known = 1;
nargs = 0;
if (dcl) error("ADL forF withoutAs');
return;
3
nargs_known = 0;
if (del) §
Pname d;
Pname dx;
/¥ for each argument name see if its type is specified
in the declaration list otherwise give it the default type
*/

for (n=argtype; n; n=n->n_list) {
char* s = n~->string;
if (s == 0) {
error (AN missing inF definition");
n->string = s = make_name('A');

else if (n->tp) error('twoTs forA %s",n->string);

for (d=dcl; d; d=d->n_list) {
if (stremp(s,d->string) == 0) {
if (d->tp->base == VOID) {
error("voidA%n",d);
d->tp = any_type;
3
n->tp = d->tp;
n->n_sto = d->n_sto;
d->tp = 0 /* now merged into argtype
goto xx;
}
3
n->tp = defa_type;

Feb 8 12:49 1985 norm.c Page 19

XX:;

} if (n->tp == 0) error('i',"noT for %s",n->string);

/% now scan the declaration list for "unused declarations"
and delete it

'z‘c/

for (d=dcl; d; d=dx) {
dx = d->n_list;
if (d->tp) { /* not merged with argtype list #
/%if (d->base == TNAME) ??? %/
switch (d->tp->base)
case CLASS:
case ENUM:
* WARNING: this will reverse the order of
class and enum declarations

%

d->n_1list = argtype;

argtype = d;
break;
default:
| error("%n inADL not inAL",d);

3

/* add default argument types if necessary ¥/
for (n=argtype; n; n=n->n_list) {
if (n->tp == 0) n->tp = defa_type;

nargs++;
3
3
Pname cl_obj_vec; * set if is_cl_obj() found a vector of class objects ¥/
Pname eobj; /% set if is_cl_obj() found an enum ¥/

Pname type.is_cl_obj()

bit v = 0;
register Ptype t = this;
eobj = 0;
cl_obj_vec = 0;
XX:
switch (t->base) {
case TYPE:
t = ((Pbase)t)->b_name->tp;
goto xXx;
case COBJ:
if (v) {
cl_obj_vec = ((Pbase)t)->b_name;
return 0O;
}

else

{]
L
Ry

—

N

~

Feb 8 12:49 1985 norm.c Page 20

return {((Pbase)t)->b_name;

case VEC:
t = ((Pvec)t)->typ;
v=1;
goto xx;

case EOBJ:

eobj = ((Pbase)t)->b_name;
default:
) return 0;

Feb 8 12:49 1985 norm2.c Page 1

/% %Z% WMh %1% %BH% BTh */

/****%**ﬁ**

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc.
All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, ING.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

norm2.c:

"normalization" handles problems which could have been handled
by the syntax analyser; but has not been done. The idea is

to simplify the grammar and the actions accociated with it,
and to get a more robust error handling

ot Tt sot s ot o e AT, ot B N A ml o s Vet b o vt Yo P TN AT AT L L L TN AT R T . e e, Lo T, T o oo LT,
*A***A*k***ﬁk*%*&%kk*k*kkkk&Akk*kkﬁkuﬂnnﬁﬁkn"n%%*k*mnkA*k*kukkkinmnu%%nnnknk/

#include "cfront.h"
#finclude "size.h"
extern char® malloc(int);

fct.fct(Ptype t, Pname arg, TOK known)
Nt++;
base = FCT;
nargs_known = known;
returns = t;
argtype = arg;

&5
/*fprintf(stderr,”fct t %d %d arg %d %d -> %d\n",t, t?t->base:0, arg, arg?arg->base:

if (arg==0 || arg->base==ELIST) return;

register Pname n;
for (n=arg; n; n=n->n_list) {
switch (n->tp->base) {
case VOID:
argtype = 0;
nargs = 0;
nargs_known = 1;
if (n->string)
error ("voidFA%n'" ,n);
else if (margs || n->n_list) {
error("voidFA");
nargs_known = 0;
3
break;
case CLASS:
case ENUM:
break;
default:
nargs++;
) :

~

Feb 8 12:49 1985 norm2.c Page 2

3

Pexpr expr_free;
fidefine EBITE 250

?xpr.expr(TOK ba, Pexpr a, Pexpr b)
register Pexpr p;
if (this) goto ret;

if ((p=expr_free) == 0) {
register Pexpr q = (Pexpr) malloc(EBITE*sizeof(class expr));
for (p=expr_free=&q[EBITE-1]; q<p; p--) p->el = p-1;
(p+1)->el = 0;
/*fprintf(stderr, "malloc %d expr_free=%d p+1=%d\n", EBITE*sizeof(class expr), expr_

else
expr_free = p->el;

/* beware of alignment differences %/

if (sizeof(expr)&l) §
register char® pp = (char®)(p+l);
while ((char*)p<pp) *--pp = 0;

H

else if (sizeof(expr)&2)
register short® pp = (short¥*)(p+l);
while ((short*)p<pp) *--pp = 0;

else {
register int* pp = (int*)(p+l);

} while ((int*)p<pp) *--pp = O;

this = p;
/*fprintf(stderr,expr.ctor(%d,%d,%d)->%d\n" ,ba,a,b,this); fflush(stderr);#*/
ret:

Ne++;

base = ba;

el = a;

e2 = b;
3

expr.~expr()

NFe++;
/*fprintf(stderr,"%d->expr.dtor(%d %d %d)\n",this,base,el,e2); */
el = expr_free;
expr_free = this;
this = 0;

}

Pstmt stmt_free;
#define SBITE 250

Feb 8 12:49 1985 norm2.c Page 3

stmt.stmt (TOK ba, loc 11, Pstmt a)

{

register Pstmt p;

if ((p=stmt_free) == 0) {
register Pstmt q = (Pstmt) malloc(SBITE*sizeof(class stmt));
for (p=stmt_free=&q[SBITE-1]; q<p; p--) p->s_list = p-1;
(p+1l)~->s_list = 0;

else
stmt_free = p->s_list;

/* beware of alignment differences %/

if (sizeof(stmt)&l) {
register char®* pp = (char®)(p+l);
while ((char*)p<pp) *--pp = 0;

3

else if (sizeof(stmt)&2) {
register short* pp = (short*)(p+1);
while ((short*)p<pp) *--pp = 0;

else {
register int* pp = (int¥*)(p+l1);
while ((int*)p<pp) *--pp = 0;

3

this = p;

Ns++;

base=ba;

where = 11;

s=a;

3

stmt.~stmt ()

NFs++;
s_list = stmt_free;
stmt_free = this;

this = 0;
3
classdef.classdef(TOK b, Pname n)
{
base = CLASS;
csu = b;
pubmem = n;
memtbl = new table(CTBLSIZE,0,0);
3

basetype.basetype(TOK b, Pname n)
{

/*fprintf(stderr,"%d->basetype.basetype(%d %d)\n",this,b,n);*/
Nbt++;
switch (b) {

vvvvv

\-n_./

P
1

~

Feb 8 12:49 1985 norm2.c Page 4

case 0: break;
case TYPEDEF: b_typedef = 1; break;
case INLINE: b_inline = 1; break;
case VIRTUAL: b_virtual = 1; break;
case CONST: b_const = 1; break;

case UNSIGNED: b_unsigned = 1; break;
case FRIEND:
case OVERLOAD:
case EXTERN:
case STATIC:
case AUTO:
case REGISTER: b_sto = b; break;
case SHORT: b_short = 1; break;
case LONG: b_long = 1; break;
case ANY:
case ZTYPE:
case VOID:
case CHAR:
case INT:
case FLOAT:
case DOUBLE: base = b; break;
case TYPE:
case COBJ:
case EOBJ:
case FIELD:
case ASM:
base = b;
b_name = n;
break;
default:
} error('i',"badBT:%k",b);

}

f#idefine NBITE 250
Pname name_free;

name .name (char®* s) : (NAME, (Pexpr)s,0)
register Pname p;

if ((p=name_free) == 0) {
register Pname q = (Pname) malloc(NBITE*sizeof(class name));
for (p=name_free=&q[NBITE~-1]; q<p; p--) p->n_tbl_list = p-1;
(p+1)->n_tbl_list = 0;
/*fprintf(stderr, "malloc %d name_free=%d p+1=%d\n'", NBITE*sizeof(class name), name_

else
name_free = p->n_tbl_list;

/% beware of alignment differences ¥/
if (sizeof(name)&l) §
register char® pp = (char®)(p+1);

te

while ((char®*)p<pp) *--pp = 0;

else if (sizeof(name)&2)

Feb 8 12:49 1985 norm2.c Page 5

register short®* pp = (short*)(p+l);
while ((short*)p<pp) *--pp = 0;

else §
register int* pp = (int*)(p+l);
while ((int*)p<pp) *--pp = 0;
3
this = p

fprintf(stderr,"%d: new name %s %d\n",this,s,base); fflush(stderr);%/

Nn++;
where = curloc;
lex_level = bl_level;

name.~name ()

NFn++;
/*fprintf(stderr,”delete %d: %s %d\n",this,string,base);*/
n_tbl _list = name_free;
name_free = this;
this = 0;

nlist.nlist(Pname n)
Pname nn;
if (n==0) error('i',"nlist.nlist(0)");
head = n;

for (nn=n; nn->n_list; nn=nn->n_list);
tail = nn;

N1++;
3
void nlist.add_list(Pname n)
{
Pname nn;
tail->n_list = n;
for (nn=n; nn->n_list; nn=nn->n_list);
tail = nn;
3
int NF1;
Pname name_unlist(class nlist * 1)
{
Pname n;
if (1 == 0) return O;
n = l1->head;
NF 1++;

Feb 8 12:49 1985 norm2.c Page 6

C) delete 1;
- return n;
H

Pstmt stmt_unlist(class slist % 1)

a

Pstmt s;

if (1 == 0) return 0;
s = l->head;

NF1++;

delete 1;

return s;

3

&;7 Pexpr expr_unlist(class elist * 1)

Pexpr e;

if (1 == 0) return 0;
e = l->head;

NF1++;

delete 1;

return e;

Feb 8 12:49 1985 print.c Page 1

* %L% WM% %1% %H% %WT% */

/*************ﬁ**“J“#**

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c¢) 1984 AT&T Technologies, Inc. All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

print.c:

print the output of simpl, typ, or syn in a form suitable for cc input

**/

#include "cfront.h"
extern FILE* out_file;
/*

*/

bit print_mode = 0;
extern int ntok;

int ntok = 0;

int forced_sm = 0;

bit Cast = 0;
Pin curr_icall;

print the declaration tree

void puttok(TOK t)

/*
print the output representation of "t"
*/
{
char * sj
if (t<=0 || MAXTOK<=t) error("illegal token %d",t);
s = keys[t];
if (s == 0) error("V representation token %d",t);
putst(s);
if (12<ntok++) {
forced_sm = 1;
ntok = 0;
/* putch('\n');*/
last_line.putline();
}
else if (t == SM) {
forced_sm = 1;
ntok = 0;
putch('\n');
last_line.line++;
}
}

\wj

N

Feb 8 12:49 1985 print.c Page 2

(;‘ ftidefine MX 20
" {fdefine NTBUF 10
class dcl_buf {

/7
o buffer for assembling declaration (or cast)
L left contains CONST_PTR => *CONST
‘ CONST_RPTR => &CONST
PTR => %
RPTR => &
LP => (
right contains RP =>)
VEC => [rnode]
FCT => (rnode)

(j FIELD => : rnode
7‘:/

” Pbase b;
Pname n;
TOK left[MX], right[MX];
Pnode rnode[MX];
int 1i, ri;

public:
void init (Pname nn)
void base(Pbase bb)
void front (TOK t)
void back(TOK t, Pnode nod)
void paran()
void put();

} *tbufvec[NTBUF], *tbuf;

b=0; n=nn; li=ri=0; };

b = bb; };

left{++1i] = t; };

right[++ri] = t; rnode[ri] = nod; };
front(LP); back(RP,0); };

A, I, O A, N,

(\“ int freetbuf = 0;
void del_buf.put()
{
int i;

if (MX<=1i || MX<=ri) error('i',"T buffer overflow");
if (b == 0) error('i',"noBT%s",Cast?" in cast":"");

if (n) {
if (n->n_sto)
puttok(n->n_sto);
else if (n->n_scope==STATIC && scope_default==STATIC)
(: } puttok (STATIC);

b->dcl_print();

for(; 1li; 1li--)

switch (left[1li]) {

case LP:
puttok(LP);
break;

case CONST_PTR:
puttok (MUL);
if (print_mode != SIMPL) puttok(CONST);
break;

™~
e

Feb 8 12:49 1985 print.c Page 3

case CONST_RPTR:
if (print_mode == SIMPL)

puttok (MUL);
else
puttok (ADDROF) ;
if (print_mode != SIMPL) puttok(CONST);
break;
case PTR:
puttok (MUL);
break;
case RPTR:

if (print_mode == SIMPL)
puttok (MUL) ;
else
puttok (ADDROF) ;
3

if (n) n->print();

for(i=1; i<=ri; i++)
switch (right[i]) {

case RP:
puttok (RP);
break;
case VEC:
puttok(LB);
§ Pvec v = (Pvec) rnode[i];
Pexpr d = v->dim;
int s = v->size;
if (d) d->print();
if (s) fprintf(out_file,"%d",s);
puttok(RB);
break;
case FCT:
{ Pfct £ = (Pfct) rnode[i];
f->dcl_print();
3
break;
case FIELD:
{ Pbase f = (Pbase) rnode[i];
Pexpr d = (Pexpr)f->b_name;
int s = f->b_bits;
puttok (COLON);
if (d) d~>print();
if (s) fprintf(out_file,"%d",s);
}
break;
3

}
j#idefine eprint(e) if (e) Eprint(e)
void Eprint(Pexpr e)

switch (e~>base) {

R

[//\
{ \

Feb 8 12:49 1985 print.c Page 4

case DUMMY:
break;

case NAME:

case ID:

case ZERO:

case ICON:

case CCON:

case FCON:

case STRING:

case IVAL:

case TEXT:

case CM:

case ELIST:

case COLON:

case ILIST:

case DOT:

case REF:

case THIS:

case CALL:

case G_CALL:

case ICALL:

case ANAME:
e->print();
break;

default:
puttok(LP);
e->print();

puttok(RP);
break;
3
H
void name.dcl_print(TOK list)
/ o
Print the declaration for a name (list==0) or a name list (list!=0):
For each name
(1) print storage class
(2) print base type
(3) print the name with its declarators
Avoid (illegal) repetition of basetypes which are class or enum declaration
(A name list may contain names with different base types)
list == SM : terminator SM
list == 0: single declaration with terminator SM
list == CM : separator CM
* /
{
Pname n;
if (this == 0) error("0->name.dcl_print()");

for (n=this; n; n=n->n_list) {
Ptype t = n->tp;
int sm = 0;
if (¢t == 0) error('i',"name.dcl_print(%n)T missing",n);
if (print_mode==SIMPL && n->n_stclass==ENUM) continue;

Feb 8 12:49 1985 print.c Page 5

if (n->n_stclass == STATIC) n->where.putline();

switch (

t->base) {

case CLASS:

/% if (n->n_sto) puttok(n->n_sto); */
cl->dcl_print(n);
sm = 1;
break;
3
case ENUM:
((Penum)t)->dcl_print(n);
sm = 1;
break;
case FCT:
{ Pfct £ = (Pfet) t;
if (n->base == TNAME) puttok(TYPEDEF);
if (debug==0 && f->f inline) {
if {(print_mode==SIMPL) {

if (£->f_virtual || n->n_addr_taken) {
TOK st = n->n_sto;
Pblock b = £~ >body,
f->body = 0;

/= n->n_sto = 0; */
t->dcl_print(n);
n->n_sto = st;
f->body = b;

}

else {

if (print_mode != SIMPL)
puttok (INLINE);

else
putst(''/* inline */");

t->dcl_print(n);
3
3
else
t->del_print(n);
break;
3
case OVERLOAD:
{ Pgen g = (Pgen) t;
Plist gl;

Pclass ¢l = (Pclass)t;
if (n->base == TNAME) break;

fprlntf(out file,"\t/* overload %s:
for (gl=g->fct_list; gl; gl=gl->1) {
Pname nn = gl->f;
nn- >dc1_pr1nt(0),
sm = 1;

break;

#/\n",g->string);

N’ /

.

TN

N

Feb 8 12:49 1985 print.c Page 6

3
case ASM:
fprintf(out_file,"asm(\"%s\")\n", (char*) ((Pbase)t)->b_name)
break;
case INT:
case CHAR:
case LONG:
case SHORT:
if (print_mode==SIMPL
&& ((Pbase)t)->b_const
&& (n->n_scope==STATIC || n->n_scope==FCT)) {
/% do not allocate space for constants unless neces
if (n->n_evaluated) {
sm =]_; /‘4"»‘ no ; ‘3'»‘/
break;
}
3
default:
{ Pexpr i = n->n_initializer;

if (n->base == TNAME) puttok(TYPEDEF);
/*fprintf(stderr,"%s: init %d %d tbl %d %d sto %d sc %d scope %d\n",n->string?n->str
if (i && n->n_sto==EXTERN && n->n_stclass==STATIC) {
n->n_initializer = 0;
t->dcl_print(n);
puttok(SM);
n->n_initializer = i;
n->n_sto = 0;
t->dcl_print(n);
n->n_sto = EXTERN;
3
else
t->dcl_print(n);

if (n->n_scope!=ARG) {
if (i) §
puttok (ASSIGN);
if (t!=i->tp && i->base!=ZERO && i->base!=I
Ptype tl = n->tp;
cmp:
switch (tl->base) {
default:
i->print()});
break;
case TYPE:
tl = ((Pbase)tl)~->b_name->t
goto cmp;
case VEC:
if (((Pvec)tl)~>typ->base==
i->print();
break;
3
case PTR:
puttok(LP);

Feb 8 12:49 1985 print.c Page 7

3

else

{ bit oc = Cast;
Cast = 1;
t->print();

y Cast = oc;

puttok(RP);

eprint(i);

i=->print();

else if (n->n_evaluated) {

puttok (ASSIGN);
if (n->tp->base != INT) {
puttok(LP);
puttok(LP);
{ bit oc = Cast;
Cast = 1;
n->tp->print();
; Cast = oc;
} fprintf(out_file,")%d)",n->n_val);
else
} fprintf(out_file,"%d",n->n_val);
}
3
}
switch (list) {
case SM:
if (sm==0) puttok(SM);
break;
case 0:
if (sm==0) puttok(SM);
return;
case CM:
if (n->n_list) puttok(CM);
break;
3
}
}
void name.print()
Al
print just the name itself
& /
{

if (this == 0) error('i',"0->name.print()");

if (string == 0) {
if (print_mode == ERROR) putst(" ?');
return;

E\'_/'{

i

N

[

M

N

Feb 8 12:49 1985 print.c Page 8

switch (base) {

default:
error('i',"%d->name.print() base=%d",this,base);
case TNAME:
putst(string);
return;
case NAME:
case ANAME:
break;
}
switch (print_mode) {
case SIMPL:
{ Ptable tbl;
int i = n_union;
if (tp) {
switch (tp->base) {
default:
if (tbl=n_table) {
Pname tn;
if (tbl == gtbl) break;
if (tn=tbl->t_name) {
if (i)
fprintf(out_file," %s__0%d.
else
fprintf(out_file," %s_",tn-
break;
}
switch (n_stclass) {
case STATIC:
case EXTERN:
if (i) fprintf(out_file," 0%d._C%d_",i,1i);
break;
default:
if (i)
fprintf(out_file,"_auto__0%d._ C%d_
else
} fprintf(out_file," auto_");
break;
case CLASS:
case ENUM:
break;
3
}
break;

}

case ERROR:

Ptable tbl;
char® cs;
bit £ = 0;

{

if (tp) {

switch (tp->base) {
case OVERLOAD:

Feb 8 12:49 1985 print.c Page

9

case FCT:

default:

f=1;

if (tbl=n_table) {
if (tbl == gtbl) {
if (f == 0) putstring(™::");

else {
if (tbl->t_name) §
cs = tbl->t_name->string;
fprintf(out_file,"%s::",cs)
3
3

3
if (n_sto==REGISTER

&& n_scope==ARG
&& strcmp(string,''this")==0) {
Ptype tt = ((Pptr)tp)->typ;
Pname cn = ((Pbase)tt)->b_name;
} fprintf(out_file,"%s::",cn->string);

break;

case CLASS:
case ENUM:
case TYPE:

3

break;

switch (n_oper) {

case 0:

case TYPE:

putstring(string);
break;

case DTOR:

puttok (COMPL);

case CTOR:

default:

putstring(cs);
break;

putstring('operator");
putstring(keys[n_oper]);

}
if (f) putstring("()");

n_qualifier->print();

break;
3
else
putstring(string);
return;
3
default:
if (n_qualifier) {
puttok(DOT);
3
}

i

~

7N
{

Feb 8 12:49 1985 print.c Page 10

putst(string);

void type.print()
{

/*fprintf(stderr,'type %d %d\n",this,base); fflush(stderr);¥*/
switch (base)
case PTR:
case RPTR:
((Pptr)this)->dcl _print(0);
break;
case FCT:
((Pfet)this)~->dcl_print();
break;
case VEC:
((Pvec)this)->dcl_print(0};
break;
case CLASS:
case ENUM:
if (print_mode == ERROR)

fprintf(out_file,"%s" ,base==CLASS?"class":"enum");

else
error('i',"%d->T.print(%k)",this,base);
break;
case TYPE:
if (Cast) §
((Pbase)this)=->b_name->tp->print();
break;
default:
((Pbase)this)->dcl_print();
H
char® type.signature(register char® p)
/ &
take a signature suitable for argument types for overloaded
function names
7’:’/

{
{##define SDEL 't

Ptype t = this;

int pp = 0;
XX
switch (t->base) {
case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
case PTR: spt+ = 'P'; t = ((Pptr)t)->typ; pp=1;
case RPTR: *pt+ = 'R'; t = ((Pptr)t)->typ; pp=1;
case VEC: *pr+ = 'V, t = ((Pvec)t)->typ; pp=1;
case FCT:
{ Pfct £ = (Pfct)this;
Pname n;

goto Xxx;
goto xx;
goto xx;

Feb 8 12:49 1985 print.c Page 11

3

t = (£->s_returns) ? £->s_returns : f->returns;
*pt+ = 'F'y
if (t) p = t->signature(p);
*p++ = SDEL;

for (n=f->argtype; n; n=n->n_list) {
p = n->tp->signature(p);

} *p++ = SDEL;
*p++ = SDEL;
*p :O;
return p;
3
3

if (((Pbase)t)->b_11nsigned) "’P++ - 'U‘;

switch (t->base) {

case ANY: pH = 'A'; break;

case ZTYPE: fp++ = "2, break;

case VOID: spH = 'V, break;

case CHAR: *pH = (pp)?'C':'I'; break;
case SHORT: *p++ = (pp)?'S':'I'; break;
case EOBJ:

case INT: spH+ = "I, break;

case LONG: *pt+ = 'L break;

case FLOAT: *p+ = 'F', break;

case DOUBLE: *p++ = 'D'; break;

case COBJ: *p++ = 'C';

strcpy(p,(szase)t)~>b_name~>string);
while (¥p++) ;
*(p-1) = SDEL;

break;
case FIELD:
default:
} error('i',"signature of %k",t->base);
7':p = 0;
return p;

void basetype.dcl_print()

¢

Pname nn;
Pclass cl;

if (print_mode != SIMPL) {
if (b_virtual) puttok(VIRTUAL);
if (b_inline) puttok(INLINE);
if (b_const) puttok(CONST);

}

if (b_unsigned) puttok(UNSIGNED);

switch (base) {

j\\.g//‘

‘‘‘‘‘

a

Feb 8 12:49 1985 print.c Page 12

case ANY:
putst("any");
break;
case ZTYPE:
putst("zero");
break;
case VOID:
if (print_mode == SIMPL) ¢
puttok (INT);
; break;
case CHAR:
case SHORT:
case INT:
case LONG:
case FLOAT:
case DOUBLE:
puttok(base);
break;
case EOBJ:
nn = b_name;
eob:
if (print_mode == SIMPL)
puttok (INT);
else §
puttok (ENUM) ;
nn->print();
3
break;
case COBJ:
nn = b_name;
cob:
cl = (Pclass)nn->tp;
switch (cl->csu) §
case UNION:
case ANON: puttok (UNION); break;
default: puttok (STRUCT) ;
putst(cl->string);
break;
case TYPE:

if (print_mode == SIMPL) {
switch (b_name->tp->base) {
case COBJ:

nn = ((Pbase)b_name->tp)=->b_name;
goto cob;

case EOBJ:

nn = ((Pbase)b_name->tp)->b_name;
goto eob;

Feb 8 12:49 1985 print.c Page 13

b_name->print();
break;

default:
if (print_mode == ERROR) {
if (O<base && base<MAXTOK && keys[base])
fprintf(out_file," %s",keys[base]);

else
fprintf(out_file,"?");
3
else
error('i',"%d->basetype.print(%d)",this,base);
}
}
void type.dcl_print(Pname n)
/:'r
"this" type is the type of "n". Print the declaration
:':/
{
Ptype t = this;
Pfct f;
Pvec v;
Pptr p;
TOK pre = 0;

if (t == 0) error('i',"0- >dc1 prlnt() s
if (n && n->tp!=t) error('i',"not %n'sT (%d)",n,t);

if (base == QVERLOAD) {
if (print_mode == ERROR) {

puttok (OVERLOAD) ;
return;
3
Pgen g = (Pgen) this;
Plist gl;

fprintf(out_file,"\t/* overload %s: */\n",g->string);
for (gl=g~->fct_list; gl; gl=gl->1) {
Pname nn = g1->f;
nn->tp~>dcl_print(nn);
if (gl->1) puttok(SM);
}
return;

3

tbuf = tbufvec[freetbuf];

if (tbuf == 0) {
if (freetbuf == NTBUF-1) error('i',"AT nesting overflow');
tbufvec|[freetbuf] = tbuf = new class decl_buf;

3

freetbuf++;

tbuf->init(n);

while (t) §
TOK k;

5

-

/‘\
N
1

Feb 8 12:49 1985 print.c Page 14

H

switch (t->base) {

case PTR:
p = (Pptr)t;
k = (p->rdo) ? CONST_PIR :
goto ppp;
case RPTR:
p = (Pptr)t;
k = (p->rdo) ? CONST_RPTR :
PpPP:
tbuf->front(k);
pre = PTR;
t = p->typ;
break;
case VEC:
v = (Pvec)t;
if (Cast) {
tbuf->front (PTR);
pre = PTR;
else §

PTR;

RPTR;

if (pre == PTR) tbuf->paran();

tbuf->back (VEC,v);

pre = VEC;
3
t = v->typ;
break;
case FCT:
f = (Pfet)t;

if (pre == PTR) tbuf->paran();

tbuf->back(FCT,£);

if (Cast) { /% unravel type in case it contains vectors %/

: f->returns;

n.nn)

.

3

pre = FCT;
t = (f->s_returns) ? f->s_returns
break;
case FIELD:
tbuf->back(FIELD,t);
tbuf->base(defa_type);
t = 0;
break;
case 0:
error('i',"noBT(B=0)%s",Cast?" in cast":
case TYPE:
t = ((Pbase)t)->b_name->tp;
break;
default:
/% the base has been reached ¥/
tbuf->base((Pbase)t);
t = 0;
} break;

tbuf->put();
freetbuf--;

Feb 8 12:49 1985 print.c Page 15

void fet.dcl_print()
Pname nn;

if (print_mode == ERROR) {
puttok(LP);
for (nn=argtype; nn;) §
nn->tp->dcl_print(0);
if (nn=nn->n_list) puttok(CM); else break;

switch (nargs_known) {
case ELLIPSIS: puttok(ELLIPSIS); break;
case 0: putst("?"); break;

H
puttok (RP);
return;

}

Pname at = (f_this) ? f_this : argtype;
puttok(LP);
if (body && Cast==0) {

Ptable tbl = body->memtbl;

for (nn=at; nn;) {
nan->print();
if (nn=nn->n_list) puttok(CM); else break;

H
puttok(RP);

int i;
if (tbl)
for (nn=tbl->get_mem(i=1); nn; nn=tbl->get_mem(++i))
if (nn->n_scope==ARGT && nn->n_union==0) nn->dcl_pr
v':/
if (at) at->dcl_print(SM);

if (f_init && print_mode!=SIMPL) {
puttok (COLON);
puttok (LP);
f_init->print();
puttok (RP);

3

switch (nargs_known) {

case 0:
putst("/® 7 #/");
break;

case ELLIPSIS:
putst("/* ... */");

if (0)

3
body->print();

else {
if (O) { 1" "
if (print_mode == SIMPL) putst("/*");

f/\ \‘,
{ :

Feb 8 12:49 1985 print.c Page 16

if (at) at->dcl_print(CM);
switch (nargs_known) {

case 0:
puttok (QUEST) ;
break;
case ELLIPSIS:
puttok (ELLIPSIS);
}
if (print_mode == SIMPL) putst('*/");
H
puttok(RP);
}
3
void classdef.print_members()
int i;
Pname nn;

if (clbase) §
Pclass bcl = (Pclass)clbase->tp;
bel->print_members();
} VAl fprintf(out_file," int :0;\n"); force word alignment */
for (nn=memtbl->get_mem(i=1); nn; nn=memtbl->get_mem(++i)) {
if (nn->base==NAME
&& nn->n_union==
&& nn->tp->base!=FCT
&& nn->tp->base!=0VERLOAD
&& nn->tp->base!=CLASS
&& nn->tp->base!=ENUM
&& nn->n_stclass != STATIC) {
Pexpr i = nn->n_initializer;
nn->n_initializer = 0;
nn->dcl_print(0);
nn->n_initializer = 1i;

}
3
3
void classdef.dcl_print(Pname)
{
Plist 1;
TOK ¢ = csu;
if (c==CLASS && print_mode==SIMPL) c¢ = STRUCT;
if (print_mode == SIMPL) { /% cope with nested classes */
int 1ij
Pname nn;

for (nn=memtbl->get_mem(i=1); nn; nn=memtbl->get_mem(++i)) {
/*fprintf(stderr, "mem %d %s %d union %d tp %d %d\n", nn, nn->string, nn->base, nn->
if (nn->base==NAME && nn->n_union==0) {
if (nn->tp->base == CLASS) ((Pclass)nn->tp)=->dcl_pr
}

Feb 8 12:49 1985 print.c Page 17

3

puttok(c);
putst(string);

if (c_body == 0) return;

c_body = 0;

if (print_mode == SIMPL) {
int i;
int sm = 0;
Pname nn;

int sz = tsizeof();

puttok(LC);

fprintf(out_file,"/* sizeof = %d */\n",sz);
print_members();

puttok(RC);

puttok(SM);

if (virt_count) ¢ /% print initialized jump-table ¥/

for (nn=memtbl->get_mem(i=1); nn; nn=memtbl->get_mem(++i))
if (nn->base==NAME && nn->n_union==0) { /* declare
Ptype t = nn->tp;
switch (t->base) {
case FCT:
{ Pfet £ =(Pfct) t;
if (f->f_virtual == 0) break;
f->returns->print();
nn->print();
putst("()");
puttok(SM);
break;

3
case OVERLOAD:
{ Pgen g = (Pgen)t;
Plist gl;
for (gl=g->fct_list; gl; gl=gl->1)
Pfet f = (Pfct) gl->f->tp;
if (f->f_virtual == 0) brea
f->returns->print();
gl->f->print();
putst("()");
puttok(SM);

3
3
3
3
}
fprintf(out_file,"static int (*%s_vtbl[])() =",string);
puttok(LC);

for (i=0; i<virt_count; i++) {

N

Feb 8 12:49 1985 print.c Page 18

fprintf(out_£file," (int(*)()) ");
virt_init[i]->print();
puttok(CM);

3
puttok(ZERO);
puttok(RGC);
puttok(SM);

}

for (nn=memtbl->get_mem(i=1); nn; nn=memtbl->get_mem(++i)) {
if (nn->base==NAME && nn->n_union==0) {
Ptype t = nn->tp;
switch (t->base)
case FCT:
case OVERLOAD:
break;
default:
if (nn->n_stclass == STATIC) {
nn->n_sto = 0
nn->dcl_print(0);

3

for (nn=memtbl->get_mem(i=1); nn; nn=memtbl->get_mem(++i)) {
if (nn->base==NAME && nn->n_union==0) {

Pfct £ = (Pfet)nn->tp;

switch (f->base)

case FCT:
/* suppress duplicate or spurious declarati
if (debug==0 && f->f virtual) break;
if (debug==0 && f->f_inline) break;
nn->dcl_print(0);
break;

case OVERLOAD:
nn~->dcl_print(0);
break;

3

for (l=friend_list; 1; 1=1->1) {
Pname nn = 1->f;
/*fprintf(stderr,"friend %s %d\n",nn->string,nn->tp->base);¥*/

switch (nn->tp->base) {

case FCT:
putst("/* friend */");
nn->dcl_print(0);
break;

case OVERLOAD: /* first fct ¥/
1->f = nn = ((Pgen)nn->tp)->fct_list->f;
putst("/* friend */");
nn->dcl_print(0);
break;

Feb 8 12:49 1985 print.c Page 19

3

return;

H

if (clbase)
puttok (COLON) ;
if {(pubbase) puttok(PUBLIC);
clbase->print();

3
puttok(LC);

for (l=friend_list; 1; 1l=1->1) {
Pname fr = 1->f;
puttok (FRIEND);
switch (fr->tp->base) {
case FCT:
default:
fr->print();
puttok(SM);

3

if (privmem) privmem->dcl_print(SM);

if (memtbl) memtbl->dcl_print(NE,PUBLIC);
puttok (PUBLIC);

puttok (COLON) ;

if (pubmem) pubmem->dcl_print(SM);

if (memtbl) memtbl->dcl_print(EQ,PUBLIC);

if (pubdef) {

puttok (PUBLIC);
puttok (COLON);
pubdef->print();
puttok (SM);
3
puttok(RC);
}
void enumdef.dcl _print(Pname n)
{
if (print_mode == SIMPL) {
if (mem) §
fprintf(out_file,"/* enum %s */\n',n->string);
; mem->dcl_print(SM);
else §
puttok (ENUM) ;
if (n) n->print();
puttok(LC);
if (mem) mem->dcl_print(SM);
puttok(RC);
3
}

AN

L

Feb 8 12:49 1985 print.c Page 20

int addrof_cm;
void expr.print()

if (this == 0) error('i',"0—>expr.9rint()");
if (this==el || this==e2) error('i',"(%d%k)->expr.print(%d %d)",this,base,e
/*error('d',"expr %d%k el=%d e2=%d tp2=%d",this,base,el,e2,tp2);%*/
switch (base) §
case NAME:
{ Pname n = (Pname) this;
if (n->n_evaluated) {
if (n->tp->base != INT) {
puttok(LP);

puttok(LP);
{ bit oc = Cast;
Cast = 1;

n->tp->print();
Cast = oc;

}
} fprintf(out_file,")%d)",n->n_val);
else
; fprintf(out_file,"%d",n->n_val);
else
n->print();
break;
H
case ANAME:
if (curr_icall) /*in expansion: look it up */
Pname n = (Pname)this;
int argno = n->n_val;
Pin 4i1l;
for (il=curr_icall; il; il=il->i_next)
if (n->n_table == il->i_table) goto aok;
goto bok;
aok:

if (n = il->local[argno])
n->print();
else {
Pexpr ee = il->arglargnol];
Ptype t = il->tp[argno];
if (ee==0 || ee==this) error('i',"%d->expr.print(A
if (t!=ee->tp && t->is_cl _obj()==0 && eobj==0) {
puttok(LP);
puttok (LP);
{ bit oc = Cast;
Cast = 1;
t=>print();
Cast = oc;

3

puttok (RP);
eprint(ee);
puttok(RP);

else

Feb 8 12:49 1985 print.c Page 21

eprint(ee);

}
else {
bok: /% in body: print it: */
((Pname)this)->print();
}
break;
case ICALL:
{ il->i_next = curr_icall;
curr_icall = il;
if (il == 0) error('i',"expr.print: iline missing™);
Pexpr a0 = il->arg[0]; ;
int val = QUEST;
if (il->fct_name->n_oper != CTOR) goto dumb;
/%
find the value of 'this"
if the argument is a "this" NOT assigned to
by the programmer, it was initliazed
% /'
switch (a0->base) {
case ZERO:
val = 0;
break;
case ADDROF:
case G_ADDROF:
val = 1;
break;
case CAST:
if (a0->el->base == ANAME) {
Pname a = (Pname)aO->el;
if (a->n_assigned_to == FUDGE11l1l) val = FUDGE11l1l;
3
}
if (val==QUEST) goto dumb;
/*error('d',"%n's this == %d",il->fct_name,val);*/
/ *
now find the test: '"(this==0) ? _new(sizeof(X)) : 0"
el is a comma expression,
the test is either the first sub-expression
or the first sub-expression after the assignments
initializing temporary variables
% /’
{ Pexpr e = el;
1x

switch (e->base) {

case CM:

/% if (val==1 && e->el->base==ASSIGN) {
Pexpr ass = e->el;
Pname a = e->el->el;

_/

L

~

N
A}

/ M%'"z,

Feb 8 12:49 1985 print.c Page 22

if (a->base==ANAME && 1) §

}
}
7’:/
e = (e->e2->base==QUEST || e->el->base==ASSIGN) ? e->e2 :
goto 1x;
case QUEST:
{ Pexpr q = e->cond;
if (g->base==EQ && q->el->base==ANAME && q->e2==zero) {
Pname a = (Pname)q->el;
Pexpr saved = new expr(0,0,0);
*saved = *e;
*e = (val==0) ? ®e->el : *e->e2;
eprint(el);
*e = *saved;
delete saved;
curr_icall = il->i_next;
return;
3
3
}
}
dumb:
eprint(el);
if (e2) ((Pstmt)e2)->print();
curr_icall = il->i_next;
; break;
case REF:
case DOT:
eprint(el);
puttok(base);
mem->print();
break;
case VALUE:
tp2->print();
puttok (LP);
if (e2) {

putst("/* &");
e2->print();
putst (", */");

}

if (el) el->print();
puttok(RP);

break;

case SIZEOF:
puttok (SIZEOF);
if (el != dummy) {
eprint(el);

else if (tp2) {
puttok(LP);
tp2->print();

Feb 8 12:49

case

case

case
case
case
case

case

case
case

case

case

1985 print.c Page 23

} puttok(RP);

break;

NEW:
puttok (NEW);
tp2->print();
if (el) ¢
puttok(LP);
el->print();
; puttok(RP);

break;

CAST:

puttok(LP);

puttok(LP);

if (tp2->base == VOID)
puttok (VOID);

else §
bit oc = Cast;
Cast = 1;
tp2->print();
Cast = oc;

}
puttok(RP);
puttok(LP);
el->print();
puttok(RP);
puttok (RP);
break;

ICON:

FCON:

CCON:

ID:
putst(string);
break;

STRING:
gpriitf(out_file,"\"%S\"",string);
reak;

THIS:

ZERO:
puttok(base);
break;

IVAL:
fprintf(out_file,"%d", (int)el);
break;

TEXT:
if (e2)
fprintf(out_file, " %s_%s", (char*)el,
else

(char®)e2);

S’

N

N

N

Feb 8 12:49 1985 print.c Page 24

fprintf(out_file, " %s", (char*)el);

break;

case DUMMY:
break;

case G_CALL:

case CALL:

{ Pname fn = fct_name;
Pname at;

if (fn && print_mode==SIMPL) {

Pfct £ = (Pfct)fn->tp;

if (f->base==0VERLOAD) { /* overloaded after call ¥/
Pgen g = (Pgen)f;
fct_name = fn = g->fct_list->f;
f = (Pfct)fn->tp;

3

fn->print();

at = (f->f_this) ? f->f_this : f->argtype;

}
e tit o oelse { Py " e
/*error('d’,"el%k el->tp %d %d%t',el->base,el->tp,el->tp->base,el->tp);%*/
eprint(el);
if (el->tp) { /* pointer to fct */
at = ((Pfct)el->tp)->argtype;
else { /% virtual: argtype encoded */
at = (Pname)el->el->tp;
H
puttok (LP);
if (e2) §

if (at && print_mode==SIMPL) {
Pexpr e = e2;
while (at) {
Pexpr ex;
Ptype t = at->tp;

/*fprintf(stderr,”at %s tp (%d %d)\n'", at->string?at->string:"?", t, t?t->base:0);%/
if (e == 0) error('i',"A missing for %s()",
if (e->base == ELIST) {

ex = e->el;
e = e->el;
3
else
ex = e;

if (ex==0) error('i',"A ofT%t missing",t);

if (t!=ex->tp && t->is_cl_obj()==0 && eobj=

puttok(LP);

H bit oc = Cast;
Cast = 1;
t->print();
Cast = oc;

}

puttok(RP);

Feb 8 12:49 1985 print.c Page 25

/% puttok(LP);
ex->print();
puttok(RP);

7’:/
eprint(ex);
}
else
ex->print();
at = at->n_list;
if (at) puttok(CM);
3
if (e) §
puttok (CM);
e->print();
3
}
else
e2->print();
3
puttok(RP);

break;

3
case ASSIGN:
if (el->base==ANAME && ((Pname)el)->n_assigned_to==FUDGE111l) {

case
case
case
case
case
case
bkk:

/* suppress

11

assignment to '"'this" that has been optimized aw

Pname n = (Pname)el;

int argno =
Pin il;

n->n_val;

for (il=curr_icall; il; il=il->i_next)
if (il->i_table == n->n_table) goto akk;

if (il->local[argno] == 0) {
e2->print();
break;

goto bkk;
akk:
}
3
EQ:
NE:
GT:
GE:
LE:
LT:
eprint(el);
puttok(base);

if (el->tp!=e2->tp && e2->base!=ZERO) { /* cast, but beware of int!
Ptype tl = el->tp;

cmp:

switch (tl->base) {

default: break;
case TYPE: tl = ((Pbase)tl)->b_name->tp; goto cmp;
case PTR:
case VEC:
puttok(LP);
{ bit oc = Cast;

./

/

Feb 8 12:49 1985 print.c Page 26

Cast = 1;
el->tp->print();
Cast = oc;

}
puttok(RP);
}
}
eprint(e2);
break;
case DEREF:
if (e2) §
eprint(el);
puttok(LB);
e2->print();
puttok(RB);
else §
puttok (MUL);
} eprint(el);
break;
case ILIST:
puttok(LC);
if (el) el->print();
puttok (RC);
break;
case ELIST:
{ Pexpr e = this;
forever {
if (e->base == ELIST) ¢
e->el->print();
if (e = e->e2)
puttok (CM);
else
return;
else {
e->print();
return;
3
}
case QUEST:
eprint(cond);
puttok (QUEST) ;
eprint(el);
puttok (COLON) ;
eprint(e2);
break;
case CM: /% do &(a,b) => (a,&b) for previously
switch (el->base) §
case ZERO:

checked inlines %/

Feb 8 12:49 1985 print.c Page 27

case IVAL:

case ICON:

case NAME:

case DOT:

case REF:

case FCON:

case FVAL:

case STRING:
puttok(LP);
goto le2;

default:

puttok(LP);

H int oo = addrof_cm;
addrof_cm = 0;
eprint(el);
addrof_cm = 00;

$

puttok(CM);

le2:

if (addrof_cm) {

else {

switch (e2->base) {

case CAST:
switch (e2->e2->base) {
case CM:
§ase ICALL: goto ec;

case NAME:

case DOT:

case DEREF:

case REF:

case ANAME:
puttok (ADDROF) ;
addrof_cm--;
eprint(e2);
addrof_cmt+;

break;
case ICALL:
case CM:
ec:
eprint(e2);
break;
case G_CALL:
/* & (e, ctor()) with temporary optimized
if (e2->fct_name
&& e2->fct_name->n_oper==CTOR) {
addrof_cm--;
eprint(e2);
addrof_cmt+;
break;
3
default:
error('i',"& inlineF call (%k)",e2->base);
3

eprint(e2);

e;\../"

A

Feb 8 12:49

case
case
case

case
case

case
case
case
cdse
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

1985 print.c Page 28

3
; puttok(RP);
break;
UMINUS:
NOT:
COMPL:
puttok(base);
eprint(e2);
break;
ADDROF:
G_ADDROF:
switch (e2->base) {
case DEREF:
if (e2->e2 == 0) {
e2->el->print();
return;
3
break;
case ICALL:
addrof_cmt++;
eprint(e2);
addrof_cm--;
return;
}
switch (e2->tp->base) {
case FCT:
break; /* suppress cc warning on &f */
default:
puttok (ADDROF) ;
eprint(e2);
break;
PLUS:
MINUS:
MUL:
DIV:
MOD:
LS:
RS:
AND:
OR:
ER:
ANDAND
OROR:
ASPLUS
ASMINUS
ASMUL
ASMOD
ASDIV
ASLS:
ASRS
ASOR:

Feb 8 12:49 1985 print.c Page 29

case ASER:

case ASAND:

case DECR:

case INCR:
eprint(el);
puttok(base);
eprint(e2);
break;

default:
} error('i',"%d->expr.print%k",this,base);

3
Pexpr aval(Pname a)

int argno = a->n_val;
Pin il;
for (il=curr_icall; il; il=il->i_next)
if (i1->i_table == a->n_table) goto aok;
return 0;
aok:
Pexpr aa = il->arg[argno];
/*error('d',"aval(%n) -> %k",a,aa->base);*/

11:
switch (aa->base) {
case CAST: aa = aa->el; goto 11;
case ANAME: return aval((Pname)aa);
default: return aa;
3
}
#define putcond() puttok(LP); e->print(); puttok(RP)

void stmt.print()
{
if (forced_sm) {
forced_sm = 0;
where.putline();

}
/*error('d',&where,"stmt.print %d:%k s %d s_list %d",this,base,s,s_list);%/
if (memtbl && base!=BLOCK) { /% also print declarations of temporaries *

puttok(LC);
Ptable tbl = memtbl;

memtbl = 0;
Pname n;
int i;

int bl = 1;

for (n=tbl->get_mem(i=1); n; n=tbl->get_mem(++i)){
/% avoid double declarartion of temporaries from inlines ¥/
char® s = n->string;
if (s[o]!="_" || s[1]!="X") {
n->dcl_print(0);
bl = 0;

/

Feb 8 12:49 1985 print.c Page 30

Pname cn;

(Y

if (bl && (cn=n->tp->is_cl_obj()) && Pclass(cn->tp)->has_dt

}
/*error('d',"%d (tbl=%d) list %d",this,tbl,s_list);%/

if (bl) {
Pstmt sl = s_list;
s_list = 0;
print();
memtbl = tbl;
puttok(RC);
if (s1) §
s_list = sl;
sl->print();
3
else §
print();
memtbl = tbl;
puttok(RC);
}
return;
3
switch (base) {
default:
error('i',"stmt.print(base=%k)",base);
case ASM:
fprintf(out_file,"asm(\"%s\");\n", (char¥)e);
break;
case DCL:
d->dcl_print(SM);
break;
case BREAK:

case CONTINUE:
puttok(base);
puttok(SM);
break;
case DEFAULT:
puttok(base);
puttok (COLON) ;
s=>print();
break;
case SM:
/%if (e->base==CALL || e->base==G_CALL) error('d',"%n", (Pname)e->el);*/
if (e) {
e->print();
if (e=->base==ICALL && e->e2) break; /% a block: no SM *

H
puttok(SM);
break;

case WHILE:
puttok (WHILE) ;
putcond();
s->print();
break;

case DO:

Feb 8 12:49 1985 print.c Page 31

puttok(DO);
s->print();
puttok (WHILE);
putcond();
puttok(SM);
break;
case SWITCH:
puttok (SWITCH) ;
putcond();
s=>print();
break;
case RETURN:
puttok (RETURN);
if (e) e->print();
puttok(SM);
break;
case DELETE:
puttok (DELETE);
e->print();
puttok(SM);
break;
case CASE:
puttok (CASE);
eprint(e);
puttok (COLON);
s=->print();
break;
case GOTO:
puttok(GOTO) ;
d->print();
puttok(SM);
break;
case LABEL:
d->print();
puttok (COLON);
s->print();
break;
case IF:
int val = QUEST;
/*error('d',"if (%k%k%k)",e->el->base,e->base,e->e2->base);*/
if (e->base == ANAME) {
Pname a = (Pname)e;
Pexpr arg = aval(a);
//error('d',"arg %d%k",arg,arg->base);
if (arg == 0)

else if Earg == Zero)
val = 0;

else if (arg->base==ADDROF || arg->base==G_ADDROF)
val = 1;

3

else if (e->base == ANDAND

&& e->el->base==ANAME

&& e->e2->base==ANAME) {
/% suppress spurious tests: if (this&&0) */
Pname al = (Pname)e->el;

Feb 8 12:49 1985 print.c Page 32

Pname a2 = (Pname)e->e2;

/*error('d',"aname%n %d %d%n %d %d",al,al->n_val,al->n_table,a2,a2->n_val,a2->n_tabl
Pexpr arg2 = aval(a2);
if (arg2==zero) val = 0; /% unsafe, sideeffects */

C /*error('d',"val %d",val);*/
) switch (val) {
case 1:
s->print();
break;
case 0:
if (else_stmt)
else_stmt->print();
, else
{ puttok(SM); /% null statement %/
s break;
default:
puttok (IF);
putcond();
if (s->s_list) §
puttok (LC);
s->print();
puttok(RC);
}
else
s=->print();
if (else_stmt) {
, puttok (ELSE) ;
4 if (else_stmt->s_list) {
- puttok(LC);
else_stmt->print();
puttok(RC);

else
else_stmt->print();

3

break;

}
case FOR:
{ int fi = for_init && for_init->base!=SM;
if (£i) §
; puttok(LC);
N for_init->print();

3
puttok(FOR);
puttok(LP);
if (fi==0 && for_init) for_init->e->print();
putch(';"); /* to avoid newline: not puttok(SM) */
eprint(e);
putch(';');
- eprint(e2);

. puttok(RP);

- s=>print();

/= if (for_init) ¢

* if (s_list) s_list->print();

Feb 8 12:49 1985 print.c Page 33

puttok(RC);
return;®
puttok(RC);
e/
if (fi) puttok(RC);
) break;
case PAIR:

if (s&&s2) {
puttok(LC);
s->print();
s2->print();
puttok(RC);

else {
if (s) s->print();
if (s2) s2->print();
}
break;
case BLOCK:
puttok(LC);

where.putline();
if (d) d->decl_print(SM);
if (memtbl && own_tbl) {

Pname n;

int i

for (n=memtbl->get_mem(i=1); n; n=memtbl->get_mem(++i)}) {

if (n->tp && n->n_union==0)
switch (n->n_scope) {

case ARGT:
case ARG:
break;
default:
n->dcl_print(0);
3
3
if (s) s->print();
puttok(RC);
if (s_list) s_list->print();
3
void table.dcl_print(TOK s, TOK pub)
/ *
print the declarations of the entries in the order they were inserted
ignore labels (tp==0)
% /
{

register Pname® np;
register int i;

if (this == 0) return;

np = entries;
for (i=1; i<free_slot; i++) {

M

Feb 8 12:49 1985 print.c Page 34

register Pname n = np[i];
switch (s) {

case O:
n->dcl_print(0);
break;

case EQ:
if (n->tp && n->n_scope == pub) n->dcl_print(0);
break;

case NE:
if (n->tp && n->n_scope != pub) n->dcl_print(0);
break;

}

Feb 8 12:49 1985

/.
/d

-t
T

¥
o

/

%% %M% %1% %H% %T% */

alontantantontentents lantunlanteetontontentontantontonte
Todedededodedededeledeods dedele ik

TR e N

T PR JPPR PR R TN OO RO R R L3
Sl dededode e

repr.c Page 1

repr.c: stage main (views: main err)

#include "cfront.h"

char®* oper_name(TOK op)

/

wle
Ky

¢

wla
£y

/

return the string representation of operator

switch (op)

default:

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

CM:
NEW:
DELETE:
MUL:
DIV:
MOD:
PLUS:
MINUS:
UMINUS:
LS:

RS:

EQ:

NE:

LT:

GT:

LE:

GE:
AND:
ADDROF :
OR:

ER:
ANDAND :
OROR:
NOT:
COMPL:
INCR:
DECR:
CALL:
DEREF:
ASSIGN:
ASPLUS:
ASMINUS:
ASMUL:
ASDIV:
ASMOD:
ASLS:
ASRS:
ASAND:
ASOR:
ASER:
SIZEOF:

error
return
return
return
return
return
return
return

return
return
return
return
return
return
return
return
return

return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return
return

return '

return

t .t

"_comma";

" 1"
_new ;
1t

"sizeof

.
3

Hop

1 ,"opeﬁ_name(%k)",op);

1

N

R

./

Feb 8 12:49 1985 repr.c Page 2

3

fidefine new_op(ss,v) keys[v]=ss

void otbl_init()
/%

*/
{

operator representation table

new_op(x~i",REF);
hen o (" NOTS
new_op("~" ,COMPL);
new—op("++"’INCR)"
new_op("--".DECR) ;
new_op('*" MUL);
new_op ("&" ,AND);
new:op(:&: :ADDRéF);
e oRCE) G ADnRoh
nesi_op (%" ,MOD) ;
e op (=" ININU
OB
new:op(x>i";RS};
neop(1)
new—op("<="’LE)f
new:op(:>=:iGE);
el
ecor(s
newﬂop("&&",ANDéND)'
new:op(xll":OROR); ’
9 .
henop(":" COLON)
new_op("=" ,ASS?GN);
new_op(, ,CM);

new_op(';" ,SM);

newﬁop("i" ,LC);
newmop(:}: ,RC);
new_op("(” ,LP);
new_op(")" ,RP);
new_op("[" ,LB):
new_op(] ,RB);

new_op ("+=" ASPLUS);
new_op('-=" ASMINUS);
new_op ("*="" ASMUL);
new_op('/=",ASDIV);
new_op ("'%=",ASMOD);
new_op ("&=" ,ASAND) ;

Feb 8 12:49 1985 repr.c Page 3

new_op(:L=:,ASOR);
oo ("= ASRY)
new_op(''<<=" ASLS);

new_op(''sizeof",SIZEQF);

new_op("0" ,ZERO);

newgop(:,"",ELIST);

new_op("[] ,DEREF) ; "

new_op(expression list , ELIST);
new_op (" function call, CALL);
new_op(''generated function call",G_CALL);
new_op("inline function call',ICALL);
new_op("cast",CAST);

new_op("inline argument',ANAME);

new_op(''class", COBJ);
new_op("enum"e EOBJ);
new_op('union", ANON);

new_op ("'function" ,FCT);
new_op(''pointer",PTR);
new_op(''reference" ,RPTR);
new_op(''vector",VEC);
new_op("identifier",ID);

new_op ("'name" ,NAME) ;
new_op("..." ,ELLIPSIS);
new_op('::",MEM);

new_op("type name" ,TYPE) ;
new_op("{}",BLOCK);
new_op(''pair",PAIR);
new_op(''declaration”,DCL);
new_op ("character constant',CCON);
new_op("integer constant",ICON);
new_op("'float constant',FCON);
new_op(''string",STRING);

N

Feb 8 12:49 1985 simpl.c Page 1

/% %Z% TMb %1% %H% %T% */
/************************%***%

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.
simpl.c:

simplify the typechecked function
remove: classes:
class fct-calls
operators
value constructors and destructors
new and delete operators (replace with function calls)

initializers (turn them into statements)
constant expressions (evaluate them)
inline functions (expand the calls)
enums (make const ints)
unreachable code (delete it)

make implicit coersions explicit

in general you cannot simplify something twice

te sla sl nlantenlonts sluutanlantantaotnatantonlaatontantastontontast ettt oot chaatanta ot sl ctuctuntaslosfostastaste stustaolantantootastantonts santontantunt: y
R e e D L R e S S S S S e T A A R R S R i S o ey "7’{/

#include “cfront.h"
#include "size.h"
#include <ctype.h>

Pname new_fct;

Pname del_fct;

Pname vec_new _fct;

Pname vec_del_fct;

Pstmt del_list;

Pstmt block_del_list;

Pname ret_var;

bit not_inlj; /% is the current function an inline? *
Pname curr_fct; /% current function ¥/
Pexpr init_list;

Pexpr one;

extern void simpl_init();
void simpl_init()

Pname a;

Pname al;

Pname nw = new name(oper_name(NEW));
Pname dl = new name{oper_name(DELETE));
Pname vn = new name(''_vec_new");

Pname vd = new name("_vec_delete");

Feb 8 12:49 1985 simpl.c Page 2

new_fct = gtbl->insert(aw,0); /* void* operator new(long); */

delete nw;
a = new name;
a->tp = uint_type; /¥

.....

new_fct~>tp = new fct(Pvoid_ type,a,l1);

new_fct->n_scope = EXTERN;
PERM(new_fct);

PERM (new_fct->tp);
new_fet->del_print(0);

del _fet = gtbl->insert(dl,0); /¥ void operator delete(void®); */

delete dl;
a = new name;
a->tp = Pvoid_type;

del_fct->tp = new fct(void_type,a,l);

del_fct->n_scope = EXTERN;
PERM(del_fct);
PERM(del_fct->tp);
del_fct->dcl_print(0);

4 = new name;

a->tp = Pvoid_type;
al = a;

a = new name;

a->tp = int_type;

a = new name;

a->tp = int_type;
a->n_list = al;

al = a;

a = new name;

a->tp = Pvoid_type;
a->n_list = al;

al = a; /% (Pvoid, int, int, Pvoid) %/

vec_new_fct = gtbl->insert(vn,0);
delete vn;

vec_new_fct~>tp = new fct(Pvoid_type,al,l);

vec_new_fct->n_scope = EXTERN;
PERM(vec_new_fct);
PERM(vec_new_fct->tp);
vec_new_fct->del_print(0);

vec_del_fct = gtbl->insert(vd,0);
delete vd;

vec_del_fct->tp = new fct(void_type,al,l);

vec_del_£fct->n_scope = EXTERN;
PERM(vec_del_fct);
PERM(vec_del_fct->tp);
vec_del_fct->dcl_print(0);

one = new expr(IVAL, (Pexpr)l,0);
one->tp = int_type;
PERM(one) ;

\\.,.x K

&

™

s

(-

Feb 8 12:49 1985 simpl.c Page 3

}

Ptable scope = 0; /* current scope for simpl() */
Pname expand_fn = 0; /* name of function being expanded or 0 */
Ptable expand_tbl = 0; /¥ scope for inline function variables %/

Pname classdef.has_oper(TOK op)

{
char® s = oper_name(op);
Pname n;
if (this == 0) error('i',"0->has_oper(%s)",s);
n = memtbl->lookec(s,0);
if (n == 0) return 0;
switch (n->n_scope) {
case 0:
case PUBLIC: return n;
?efault: return 0;
3

int no_of_returns;
void name.simpl()

{
/*fprintf(stderr,"%s.simpl(%d %d)\n',string,tp,tp?tp->base:0); fflush(stderr);*/
if (base == PUBLIC) return;

if (tp == 0) error('i',"%n->name.simple(tp==0)",this);
switch (tp->base) {
case O:

error('i',"%n->name.simpl(tp->base==0)",this);

case OVERLOAD:

{ Plist gl;
for (gl = ((Pgen)tp)->fct_list; gl; gl=gl->1) gl->f->simpl();
break;

}

case FCT:

{ Pfct £ = (Pfct)tp;
Pname n;

Pname th = f->f this;
/*error('d',"simpl%n tp=%t defined=%d th=%d n_oper%k",this,tp,tp->defined,th,n_oper)
if (th) {
th->n_list = f->argtype;
if (n_oper == CTOR) f->s_returns = th->tp;

3

if (tp->defined != 1) return;
tp->defined = 2;

Feb 8 12:49 1985 simpl.c Page

4

for (n=(th)?th:f->argtype; n; n=n->n_list) n->simpl();

if (f->body) {

Ptable oscope = scope;

scope =

f~->body~>memtbl;

if (scope == 0) error('i',"%n memtbl missing",this);
curr_fct = this;

f->simpl();

if (f->f_inline && debug==0) {

scope =
}

break;

3
case CLASS:

if (MIA<=f->nargs) f{
error('w',"too many arguments for inline%n
f->f inline = 0;
scope = oscope;
break;
3
int i = 0;
for (n=(th)?th:f->argtype; n; n=n->n_list) {
n->base = ANAME;
n->n_val = i++;
if (n->n_table != scope) error('i',"%s %d %

expand_tbl = (f->returns->base!=VOID || n_oper==CTO
expand_fn = this;
if (expand_tbl) {

f->f expr = (Pexpr)f->body->expand();

/% the body still holds the memtbl */

else {
f->f_expr = 0;
f->body = (Pblock)f~>body->expand();
3
expand_fn = 0;
expand_tbl = 0;

oscope;

((Pclass)tp)->simpl();

break;
/ kS
case EOBJ:
tp->base = INT;
break;
W/
default:
break;
3

if (n_initializer) n_initializer->simpl();

}

void fet.simpl()
/%

k,/?

N

N

w

~

N
{ !

Feb 8 12:49 1985 simpl.c Page 5.

call only for the function definition (body != 0)

simplify argument initializers, and base class initializer, if any
then simplify the body, if any

for constructor:call allocator if this==0 and this not assigned to
(auto and static objects call constructor with this!=0,
the new operator generates calls with this==0)
call base & member constructors

for destructor: call deallocator (no effect if this==0)
case base & member destructors

for arguments and function return values look for class objects
that must be passed by constructor "operator X(X&)".

Allocate temporaries for class object expressions, and see if
class object return values can be passed as pointers.

call constructor and destructor for local class variables.

Pexpr th = f_this;

Ptable tbl = body->memtbl;
Pstmt ss = 0;

Pstmt tail;

Pname cln;

Pclass cl;

Pstmt dtail = 0;

not_inl = debug || f_inline==0;
ret_var = tbl->look("_result",0);
if (ret_var && not_inl==0) /* "_result' not used in inlines */

ret_var->n_used = ret_var->n_assigned_to = ret_var->n_addr_taken =
del_list = 0;
block_del_list = 0;
scope = tbl;
if (scope == 0) error('i',"fct.simpl()");

if (th) {
Pptr p = (Pptr)th->tp;
cln = ((Pbase)p->typ)->b_name;
¢l = (Pclass)cln->tp;

3

if (curr_fct->n_oper == DTOR) { /* initialize del_list */
Pexpr ee;
Pexpr cc;

Pestmt es;

class ifstmt ifs;
Pname bcln = cl->clbase;
Pclass bcl;

Pname d;

le
(S

Pname fa = new name('_free'); /* fake argument for dtor ¥/
fa->tp = int_type;
Pname free_arg = fa->dcl(body->memtbl,ARG);

Feb 8 12:49 1985

delete fa;
f_this->n_list

Ptable tbl
int 1i;
Pname m;

simpl.c Page 6

= free_arg;

cl->memtbl;

/™ generate calls to destructors for all members of class cl %/
for (m=tbl->get_mem(i=1); m; m=tbl->get_mem{(++i)) {

= m->tp;

Pname cn;

Pclass cl;

Pname dtor;

if (m->n_stclass == STATIC) continue;

= t->is_cl_obj()) {
cl = (Pclass)cn->tp;
if (dtor = cl->has_dtor()) {
/¥ dtor(this,0); */
Pexpr aa = new expr(ELIST,zero,0);
ee = new ref(REF,th,m);
ee = new ref(DOT,ee,dtor);
ee = new call(ee,aa);
ee->fct_name = dtor;
ee->base = G_CALL;
es = new estmt(SM,curloc,ee,0);
if (dtail)
dtail->s_list = es;
else
del_list = es;
y dtail = es;

3
else if (cl_obj_vec) §

¢l = (Pclass)cl_obj_vec->tp;

if (dtor = cl->has_dtor()) {
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (Pexpr) (t->tsizeo
Pexpr sz = new expr(IVAL, (Pexpr)esz,0);
Pexpr mm = new ref(REF,th,m);
Pexpr arg = new expr(ELIST,dtor,0);
/*dtor->take_addr();%*/
dtor->1val (ADDROF);

arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,mm,arg);

ee = new call(vec_del_fct,arg);
ee->base = G_CALL;
if (dtail)

dtail->s_list = es;
else

del_list = es;
dtail = es;

L

{ .
N
/

e

()

-

Feb 8 12:49 1985 simpl.c Page 7

/* generate: if (this) base.dtor(this,_free); or
if (this && _free) _delete(this);

:’:/

if (beln

&& (bcl=(Pclass)bcln->tp)
&& (d=bcl->has_dtor()))

else §

3

Pexpr aa = new expr(ELIST,free_arg,0);

cc = th;
ee = new ref(REF,th,d);
ee = new call(ee,aa);

*ee->fct_name = d; NO suppress virtual %/

Pexpr aa = new expr(ELIST,th,0);
cc = new expr(ANDAND,th, free_arg);
ee = new call(del_fct,aa);
ee~->fct_name = del_fct;

free_arg->use();
((Pname)th)->use();

ee->base = G_CALL;

es = new estmt(SM,curloc,ee,0);
ifs = new ifstmt(curloc,cc,es,0);
if (dtail)

else

dtail =

dtail->s_list = ifs;

del_list = ifs;
ifs;

if (del_list) del_list->simpl();

}

int ass_count;

if (curr_fct->n_oper == CTOR) {
Pexpr ee;
Ptable tbl = cl->memtbl;

Pname m;

int i

if (f_init) { /% generate: this=base.ctor(this,args) *
Pcall cc = (Pcall)f_init;
Pname bn = cc->fct_name;
Pname tt = ((Pfct)bn->tp)->f_this;

else §

}

ass_count = tt~>n_assigned_to;
f_init->simpl();
init_list = new expr(ASSIGN,th,f init);

ass_count
init_list

n

0;
03

if (cl->virt_count) { /% generate: this->_vptr=virt_init; ¥/

Pname vp = cl->memtbl->look("_vptr",0);
Pexpr vtbl = new expr(TEXT, (Pexpr)cl->string, (Pexpr)" vtbl"

Feb 8 12:49 1985 simpl.c Page 8

ee = new ref(REF,th,vp);
ee = new expr (ASSIGN,ee,vtbl);
init_list = (dnit_list) ? new expr(CM,init list,ee) : ee;

}

/% generate cl.new(0) for all members of cl %/
for (m=tbl->get_mem(i=1); m; m=tbl->get_mem(++i)) {

Ptype t = m->tp;

Pname cn;
Pclass cl;
Pname ctor;

if (m->n_stclass

== STATIC) continue;

if (en=t->is_cl_obj()) {
cl = (Pclass)cn->tp;
if (ctor = cl->has_ictor()) {

3

else if

3

3
else if (cl_obj_

ee = new ref(REF,th,m);
ee = new ref(DOT,ee,ctor);
ee = new call(ee,0);

ee->fct_name = ctor;
ee~->base = G_CALL;
ee = ee->typ(tbl); /% look for default
ee->simpl();
if (init_list)
init_list = new expr(CM,init_list,e

af

else

init_list ee;

(cl->has_ctor()) {
error("%s%n, no default constructor",cl->st

vec) {

cl = (Pclass)cl_obj_vec->tp;

if (ctor

~
%

= cl->has_ictor()) { /% _new_vec(vec,no
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (Pexpr)(t->tsizeo
Pexpr sz = new expr(IVAL, (Pexpr)esz,0);
Pexpr mm = new ref(REF,th,m);
Pexpr arg = new expr(ELIST,ctor,0);
/#ctor->take_addr();*/
ctor->1val (ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,mm,arg);
ee = new call(vec_new_fct,arg);
ee->fct_name = vec_new_fct;
ee->base = G_CALL;
ee = ee->typ(tbl); look for default a
ee->simpl(); '
if (init_list)

init_list = new expr(CM,init_list,e

else

init_list ee;

else if (cl->has_ctor()) {

Feb 8 12:49 1985 simpl.c Page 9

(:” error("%s%n[], no default constructor",cl->

- }

no_of_returns = 0;

.

tail = Body~>simpl();

if (returns->base != VOID) { /* return must have been seen */
if (no_of_returns)
switch (tail->base) {
— case SM:
(v switch (tail->e->base) {
. case ICALL:
case G_CALL: /* not good enough */
goto dontknow;
33

default:
/*fprintf(stderr,"t %d %d\n",tail->base,tail->e->base);*/
if (stremp(curr_fet->string,''main"))
error('w',"maybe no value returned from%n'",

if (del_list) goto zaq;
break;
case RETURN:
) case IF:
(;/' case SWITCH:
g case DO:
case FOR:
case LABEL:
case BLOCK:
case PAIR:
case GOTO:
dontknow:
; break;

else §
if (stremp(curr_fct->string, 'main'))
error('w',"no value returned from%n",curr_fct);
- if (del_list) goto zaq;

- }

else if (del_list) ¢ /% return may not have been seen %/
zaq:
if (tail)
tail->s_list = del_list;
else
body->s = del_list;
C } tail = dtail;

if (curr_fct->n_oper == CTOR) {

Feb 8 12:49 1985 simpl.c Page 10

if (((Pname)th)->n_assigned_to == 0) {

/* generate: if (this==0) this= new(sizeof(class cl));
init_list ;

-.'r/

((Pname)th)->n_assigned_to = ass_count ? ass_count : FUDGE1l
Pexpr sz = new expr(IVAL, (Pexpr)cl->tsizeof(),0);
Pexpr ee = new expr(ELIST,sz,0);
ee = new call(new_fct,ee);
ee->fct_name = new_fct;
ee->base = G_CALL;
ee->simpl();
ee = new expr(ASSIGN,th,ee);
Pstmt es = new estmt(SM,curloc,ee,0);
ee = new expr(EQ,th,zero);
ifstmt* ifs = new ifstmt(curloc,ee,es,0);
/*ifs->simpl();
do not simplify or 'this = " will cause an extra call of ba
if (init_list) {
es = new estmt(SM,curloc,init_list,0);
es->s_list = body->s;
body->s = es;
if (tail == 0) tail = es;

ifg->s_list = body->s;
body->s = ifs;
if (tail == 0) tail = ifs;

3
Pstmt st = new estmt(RETURN,curloc,th,0);
if (tail)
tail->s_list = st;
else
body->s = st;
tail = st;
3
3
Pstmt block.simpl()
{
int 1i;
Pname n;

Pstmt ss=0, sst;

Pstmt dd=0, ddt;

Pstmt stail;

Ptable old_scope = scope;

if (own_tbl == 0) {
Pstmt obd = block_del list;
block_del _list = 0;
ss = (s) ? s->simpl() : 0O;
block_del_list = obd;
return ss;

3

scope = memtbl;
if(scope->init_stat == 0) scope->init_stat = 1; /* table is simplified. */

A

L

\/

(™
i
K N

-

.

Feb 8 12:49 1985 simpl.c Page 11

for (n=scope->get_mem(i=1); n; n=scope->get_mem(++i)) {
Pstmt st = 0;
Pname cln;
Pexpr in = n->n_initializer;
if (in) scope->init_stat = 2; /* initializer in this scope */
switch (n->n_scope) {
case ARG:
case 0:

case PUBLIC:
continue;
3

if (n->n_stclass == STATIC) continue;

if (in->base == ILIST)
error('s', "initialization of automatic aggregates');

if (n->tp == 0) continue; /% label */

if (n->n_evaluated) continue;

/% construction and destruction of temporaries is handled locally *

{ char® s = n->string;

register char ¢3 = s[3];

if (s[0]=="_" && s[1]=='D' && isdigit(c3)) continue;
H

if (cln=n->tp->is_cl _obj()) {
Pclass cl = (Pclass)cln~>tp;
Pname d = cl->has_dtor();

if (d) § /* n->cl.delete(0); */
Pref r = new ref(DOT,n,d);
Pexpr ee = new expr(ELIST,zero,0);
Pcall dl = new call(r,ee);
Pstmt dls = new estmt(SM,n->where,dl,0);
dl->base = G_CALL;
dl->fct_name = d;

o

if (dd)
ddt->s_list = dls;
else
dd = dls;
ddt = dls;
H
if (in) {
if (in->base == G_CALL) { /* constructor? */
Pname fn = in->fct_name;
if (fn==0 || fn->n_oper!=CTOR) goto ddd;
st = new estmt(SM,n->where,in,0);
n->n_initializer = 0;
}
else

Feb 8 12:49 1985

}

3
else if {(cl_obj_vec) {

simpl.c Page 12

goto ddd;

"o , .
/* never "new x" is a pointer */

Pclass cl = (Pclass)cl_obj_vec->tp;

Pname d
Pname c

if (in)

3
if (d) {

3

= cl->has_dtor();
cl->has_ictor();

{

if (¢) § /* _vec_new(vec,noe,sz,ctor); */
int esz = cl~->tsizeof();
Pexpr noe = new expr{IVAL, (Pexpr)(n->tp->ts
Pexpr sz = new expr(IVAL, (Pexpr)esz,0);
Pexpr arg = new expr(ELIST,c,0);
/Fc->take_addr();¥/
c->1val (ADDROF);
arg = new expr(ELIST,sz,arg);

arg = new expr(ELIST,noe,arg);

arg = new expr(ELIST,n,arg);

arg = new call(vec_new_£fct,arg);

arg->base = G_CALL;

arg->fct_name = vec_new_fct;

st = new estmt(SM,n->where,arg,0);

n->n_initializer = 0;

else
goto ddd;
* _vec_delete(vec,noe,sz,dtor); */
Pstmt dls;
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (Pexpr)(n->tp->tsizeof()
Pexpr sz = new expr(IVAL, (Pexpr)esz,0);
Pexpr arg = new expr(ELIST,c,0);
/*c->take_addr();*/
c->1val (ADDROF);

arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,n,arg);

arg = new call(vec_del _fct,arg);

arg->base = G_CALL;
arg->fct_name = vec_del fct;
dls = new estmt(SM,n->where,arg,0);
if (dd)
ddt->s_list = dls;
else
dd = dls;
ddt = dls;

3

else if (in /*&& n->n_scope==FCT*/) {
switch (in->base) {
case ILIST:

switch (n->n_scope) {
case FCT:
case ARG:

N’

\.../.

e ™

P

Feb 8 12:49 1985 simpl.c Page 13

(;ﬁ. } error('s',"Ir list for localV%n",n);
break;
, case STRING:
- if (n->tp->base==VEC) break; /* BUG char vec only *
C default:
ddd:
{ Pexpr ee = new expr(ASSIGN,n,in);

st = new estmt(SM,n->where,ee,0);
n->n_initializer = 0;

[POTVV)

& if (st) {
i if (ss)
sst->s_list = st;
else
ss = st;
sst = st;

if (dd) {
Pstmt od = del_list;
Pstmt obd = block_del_list;

dd->simpl();
/*PERM(dd);

M

~.'r/
if (od)
del_list = new pair(curloc,dd,od);

!

else
del_list
block_del_list =

dd;
d;

[o P

stail = (s) ? s->simpl() : 0;

Pfct £ = (Pfct)curr_fct->tp;
if (this!=f->body
|| f£->returns->base==VOID
|| stremp(curr_fct->string, 'main")==0) {
<:, /* not dropping through the bottom of a value returning function */
if (stail)
stail->s_list = dd;
else
s = dd;
stail = ddt;
3

del_list = od;
o block_del_list = obd;

else
stail = (s) ? s->simpl() : 0;

Feb 8 12:49 1985 simpl.c Page 14

if (ss) { /% place constructor calls */
ss->simpl();
sst->s_list = s;
S = 883
if (stail == 0) stail = sst;

3
scope = old_scope;

return stail;

}
void classdef.simpl()
{

int i;

Pname m;

Pclass oc = in_class;
int ct = has_ctor()==0;
int dt = has_dtor()==0;
int un = csu==UNION;

!

in_class = this;

for (m=memtbl->get_mem(i=1); m; m=memtbl->get_mem(++i)) {
/* should really be checked in classdef.dcl() */
Ptype t = m~->tp;
Pexpr i = m->n_initializer;
Pname cn;

if ((et || dt || un)
&& ((cn=t->is_cl_obj()) || (cn=cl_obj_vec))) {
Pclass cl = (Pclass)cn->tp;
Pname ctor = cl->has_ctor();
Pname dtor = cl->has_dtor();
if (ctor) {
if (m->n_stclass==STATIC)
error('s',"staticM%n ofC%n with constructor
else if (un)
error("M%n ofC%n with constructor in union"
else if (ct)
error('s',"M%n ofC%n with constructor inC %

3
if (dtor) {
if (m->n_stclass==STATIC)
error('s',"staticM%n ofC%n with destructor"
else if (un)
error ("M%n ofC%n with destructor in union",
else if (dt)
error('s',"M%n ofC%n with destructor inC %s

m->n_initializer = 0;
m->simpl();
m->n_initializer = i;

K\,/

W

s

Feb 8 12:49 1985 simpl.c Page 15

C }

in_class = oc;

Plist f1; /* simplify friends */
= for (fl=friend_list; fl; fl=f1->1) {
<; Pname p = fl->f;
switch (p->tp->base) {
case FCT:
case OVERLOAD:
p->simpl();
}
3
3
(;« void expr.simpl()
{
if (this==0 || permanent==2) return;

/*fprintf(stderr,"expr.simpl %d %d el=%d e2=%d tp2=%d cf %d\n",this,base,el,e2,tp2,c

switch (base) {

case BLOCK:

case SM:

case IF:

case FOR:

case WHILE:

case SWITCH:

error('i',"%k inE",base);

case VALUE:
(: error('i',"expr.simpl(value)™);

case G_ADDROF:
case ADDROF:
e2->simpl();
switch (e2->base) {
case DOT:
case REF:
Pref r = (Pref)e2;
Pname m = r->mem;
if (m->n_stclass == STATIC) { /% & static member %/

Pexpr x;
delp:
X = e2;
- e2 = m;
(w, r->mem = 0;
DEL(x);
3

else if (m->tp->base == FCT) { /* & member fct */
Pfct £ = (Pfct)m->tp;
if (f->f_virtual) {
/% &p->f ==> p->vtbl[fi] */
int index = f->f_virtual;
—. Pexpr ie = (l<index) ? new expr(IVAL, (Pexp
(w, Pname vp = m->n_table->look("_vptr",0);
' r->mem = vp;
base = DEREF;
el = e2;

Feb 8 12:49 1985 simpl.c Page 16

3
}

break;

default:

else {

3

if (el) el->simpl();
if (e2) e2->simpl();

break;

case NAME:
case DUMMY:
case ICON:
case FCON:
case CCON:
case IVAL:
case FVAL:
case LVAL:
case STRING:
case ZERO:
case ILIST:
return;

case SIZEOF:

base = IVAL;
el = (Pexpr)tp2->tsizeof();

DEL(tp2);
tp2 = 0;
break;

case G_CALL:
case CALL:

((Pcall)this)->simpl();

break;

case QUEST:

cond->simpl();

el->simpl()
e2->simpl()
break;

case NEW: /* change NEW node to CALL node */

{ Pname cln;
Pname ctor;
int sz = 1;
int esz;

.
3

.
3

Pexpr var_expr = 0;
Pexpr const_expr;

Ptype tt =
Pexpr arg;

tp2;

e2 = ie;

goto delp;

N

e

Feb 8 12:49 1985 simpl.c Page 17

if (cln=tt-~>is_cl_obj()) {
Pclass cl = (Pclass)cln->tp;
if (ctor=cl->has_ctor()) { /* 0->cl_ctor(args) */
Pexpr p = zero;
if (ctor->n_table != cl->memtbl) {
/% no derived constructor: pre-allocate %/
int dsz = cl->tsizeof();
Pexpr ce = new expr(IVAL, (Pexpr)dsz,0);
ce = new expr(ELIST,ce,0);
p = new expr(G_CALL,new_fct,ce);
p->fct_name = new_fct;

3

Pcall ¢ = (Pcall)el;

c->el = new ref(REF,p, (Pname)c->el);
/% c->set_fct_name(ctor);%/

c->simpl();

*this = *((Pexpr)c);

return;

3

3
else if (cl_obj_vec) {
Pclass cl = (Pclass)cl_obj_vec~>tp;
ctor = cl->has_ictor();
if (ctor == 0) {
if (cl->has_ctor()) error('new %s[], no default con
cl_obj_vec = 0;

3

3

XXX:

switch (tt->base) {

case TYPE:
tt = ((Pbase)tt)->b_name->tp;
goto xXxx;

default:
esz = tt->tsizeof();
break;

case VEC:

{ Pvec v = (Pvec)tt;

if (v->size)
sz %= y~>size;
else if (v->dim) {
if (var_expr)
var_expr = new expr(MUL,var_expr,v->dim);

else
var_expr = v->dim;
else {
sz = SZ_WPTR;
break;
}
tt = v->typ;

goto XxX;

Feb 8 12:49 1985 simpl.c Page 18

if (cl_obj_vec) {

/* call _vec_new(0,no_of_elements,element_size,ctor) %/

const_expr = new expr(IVAL, (Pexpr)sz,0);

Pexpr noe = (var_expr) ? (sz!=1) ? new expr(MUL,const_expr,

const_expr = new expr(IVAL, (Pexpr)esz,0);
base = CALL;
arg = new expr(ELIST,ctor,0);
/*ctor->take_addr();*/
ctor->1val (ADDROF);
arg = new expr(ELIST,const_expr,arg);
arg = new expr(ELIST,noe,arg);
e2 = new expr(ELIST,zero,arg);
el = vec_new_fct;
fct_name = vec_new_fct;
break;
3
/% call _new(element_size*no_of_elements) */
sz *= esz;
const_expr = new expr(IVAL, (Pexpr)sz,0);
arg = (var_expr) ? (sz!=1) ? new expr(MUL,const_expr,var_expr)

/* arg->simpl();*/
base = G_CALL;
e2 = new expr(ELIST,arg,0);
el = new_£fct;
fct_name = new_fct;
simpl();
break;
}
case CAST:
el->simpl();
break;
case REF:
el->simpl();
break;
case DOT:
el->simpl();
if (el->base == CM) { /* &(, name), => (... , &name)-> %/
Pexpr ex = el;
cfr:
switch (ex->e2->base) {
case NAME:
base = REF;
ex->e2 = ex->e2->address();
break;
case CM:
ex = ex->el;
goto cfr;
3
}
break;

case ASSIGN:

{

Pfct £ = (Pfct)curr_fect->tp;
Pexpr th = f->f_this;

.var

(M

N

Feb 8 12:49 1985

/

simpl.c Page 19

if (el) el->simpl();
if (e2) e2->simpl();

if (th & th==el) {

if (curr_fct->n_oper == CTOR) {
if (init_list) §

}
}
3
break;
}
3
if (tp && tp->base==INT) {
Neval = 0;
int 1 = eval();
if (Neval == 0) {
base = IVAL;
el = (Pexpr)i;
}
}

void call.simpl()

fix member function calls:
p->f(x) becomes f(p,x)
o.f(x) becomes f(&o,x)
or if £ is virtual:

p->f(x) becomes (*p->_vptr[type_of(p).index(£f)-1])(p,x)

/* this=e2 => (this=e2,init_list) */

base = CM;
el = new expr(ASSIGN,el,e2);
e2 = init_list;

replace calls to inline functions by the expanded code

Pname fn = fct_name;

Pfct £ = (fn) ? (Pfct)fn->tp :
if (£) {
switch(f->base) {
case ANY:
return;
case FCT:
break;
case OVERLOAD:
{ Pgen g = (Pgen)
fct_name = fn =
f = (Pfet)fn->t
3
}
}

0;

£3
g->fct_list->f;
P;

Feb 8 12:49 1985

if (f && curr_expr==this) {
Pname cln = f->returns->is_cl obj();
if (cln && Pclass(cln->tp)->has_dtor()) error('s',"%n returned by%n

simpl.c Page 20

3

switch (el->base) {

case DOT:

case REF:

{ Pref r = (Pref)el;

Pexpr al = r->el;

/*fprintf(stderr,"fn %s f %d fv %d\n",fn?fn->string:"?",f,f?2f->f_virtual:0);%*/

if

/:’:

/ %

/*error('d',"expression(%k)%k%n: %d",r->el->base,el->base,fct_name,all);*/

(f && f->f_virtual) {
Pexpr all = 0;

switch{al->base) { /* see if temporary might be
needed/avoided

;'f/
case ASPLUS:
case ASMINUS:
case ASMUL:
case ASDIV:
case ASMOD:
case ASAND:
case ASOR:
case ASER:
case ASLS:
case ASRS:
case ASSIGN:
all = al->el;
break;*/
case NAME:
all = al;
break;
case ADDROF:
case G_ADDROF:

if (al->e2->base == NAME) all = al;

break;
case CM:
{ Pexpr ee = al;
cml:

switch (ee->e2->base)

case NAME:

all = ee->e2;

break;
case ADDROF:
case G_ADDROF:

if (ee->e2->e2->base == NAME) all = ee->e2;

break;

case CM:
ee = ee->el;
goto cml;

3%/
}

if (el->base == DOT) ¢

/* check for class object retuening fct ¥/

N

(M

e

Feb 8 12:49 1985 simpl.c Page 21

if (all) all = all->address();
al = al->address();

if (all == 0) {

/* temporary (maybe) needed
e->f() => (t=e,t->f(t))

*/
char* s = make_name('K');
Pname n = new name(s);
n->tp = al->tp;
n = n->dcl(scope,ARG); /* no init! */
n->n_scope = FCT;
n->assign();
all = n;
al = new expr(ASSIGN,n,al);
al->tp = n->tp;
al->simpl();
Pcall cc = new call(0,0);
*cc = *this;

base = CM;
el = al;
e2 = cc;

this = cc;
3
e2 = new expr(ELIST,all,e2);
int index = f->f_virtual;
Pexpr ie = (l<index) ? new exPr(IVAL,(Pexpr)(index-l),O)
Pname vp = fn->n_table->look(''_vptr",0);

Pexpr vptr = new ref(REF,all,vp); /% p->vptr */

Pexpr ee = new expr(DEREF,vptr,ie); /* p->vptr[i] */
Ptype pft = new ptr(PTR,f);

ee = new texpr(CAST,pft,ee); /* (T)p->vptr[i] */
ee->tp = (Ptype)f->f_this; /* encode argtype *
el = new expr{DEREF,ee,0); /* *(T)p->vptr[i] *

/* el->tp must be
fct_name = 0;
fan = 03
e2->simpl();

return; /* (*(T)p->vptr([i])(e2) */
else §

if (el->base == DOT) al = al->address();

e2 = new expr(ELIST,al,e2);

el = r->mem;
}

}
}

e2->simpl();

if (el->base==NAME && el->tp->base==FCT) {
/* reconstitute fn destroyed to suppress ''virtual" ¥/
fct_name = fn = (Pname)el;
f = (Pfct)fn->tp;

0

Feb 8 12:49 1985 simpl.c Page 22

if (fn && f->f_inline && debug==0) {
Pexpr ee = f->expand(fn,scope,e2);
if (ee) *((Pexpr)this) = %*ee;

3

Pexpr curr_expr; /* to protect against an inline being expanded twice
in a simple expression keep track of expressions
being simplified

%/
Pstmt stmt.simpl()
/-,’e
return a pointer to the last statement in the list, or O
%/
{

1f (thls == 0) error('i',"0->stmt.simpl()")
/*error('d',"stmt.simpl %d%k e %d%k s %d%k sl 7d/k\n" this,base,e,e?e->base:0,s,s?s~

Curr_expr = ej

switch (base) {
default:
error('i',"stmt.simpl(%k)",base);

case ASM:
break;

case BREAK:
case CONTINUE:
if (block_del list) {
/% break => { _dtor()s; break; }
continue => { _dtor()s; continue; }
*/

Pstmt bs = new stmt(base,where,0);
Pstmt dl = block_del_list->copy();
base = BLOCK;
s = new pair(where,dl,bs);

y break;

break;

case DEFAULT:
s=>simpl();
break;

case SM:
if (e) e->simpl();
break;

case RETURN:
{ /% return x; =>
{ _ret_var = x; _dtor()s; return _ret_var; }
return ctor(x); =>
{ ctor(& _result,x); _dtor()s; return _ret_var; }

;
o’

N

W,

Feb 8 12:49 1985 simpl.c Page 23

\
*/

return; =>
{ _dtor()s; return; } OR (in constructors)
{ _dtor()s; return _this; }

no_of_returns++;

if (not_inl) {

else §

break;

Pstmt as;
if (e && e!=dummy) {
Pexpr ee;
if (e->base==G_CALL
&& e->fct_name
&& e->fct_name->n_oper==CTOR
&& e->el->base==DOT) {
Pref r = (Pref)e->el;
r->el = ret_var;
ee = e;

else {
ee = new expr(ASSIGN,ret_var,e);

ee->simpl();
as = new estmt(SM,where,ee,0);

3

else

base = BLOCK;

s = 0;

d = 03

own_tbl = (memtbl) ? 1 : 0;
((Pblock)this)->simpl();

Pstmt dl = (del_list) ? del_list->copy() : 0;
if (s) dl = (d1) ? new pair(where,s,dl) : s;

Pstmt rs = new estmt (RETURN,where, (ret_var)?(Pexpr)ret_var:
if (as) {

if (dl) as = new pair(where,as,dl);

s = new pair{where,as,rs);

else {
if (curr_fct->n_oper == CTOR) {
rs=>e = ((Pfct)(curr_fect->tp))->£f_ this;
s = (dl) ? new pair(where,dl,rs) : rs;
}
if (e->base == VALUE) error('s',"inlineF returns constructo
e->simpl();

Feb 8 12:49 1985 simpl.c Page 24

case WHILE:

case DO:

e->simpl();
s=>simpl();
break;

case SWITCH:

case LABEL:
case CASE:
break;
case BLOCK:
switch (s->s->base)
case BREAK: /* to cope with the "break; case' macro */
case CASE:
case LABEL:
case DEFAULT:
break;
default:
; goto df;
break;
default:
df:
} error('w',&s->where, "statement not reached: case label miss
break;
case DELETE: /* change DELETE node to SM node

ttloop:

e->simpl();
s~>simpl();

switch (s->base) {
case DEFAULT:

delete p; => _delete(p);
or cl.delete(p,1l);
-k/

Pname cln;

Pclass cl;

Pname n;

Pexpr ee;

Ptype tt = e->tp;

switch (tt->base) {

case TYPE: tt = ((Pbase)tt)->b_name->tp; goto ttloop;
case VEC:

case PTR: tt = ((Pptr)tt)->typ; break;

3

base = SM;

cln = tt->is_cl _obj();
if (cln) ¢l = (Peclass)cln->tp;
if (c¢ln && (n=cl->has_dtor())) { /% e->cl.dtor() */
Pexpr aa = new expr(ELIST,one,0);
ee = new ref(REF,e,n);
e = new call(ee,aa);
e~->fct_name = nj;
e~->base = G_CALL;

}
else if (cl_obj_vec) {

{_J

,/

W

Feb 8 12:49 1985 simpl.c Page 25

ot /
«w

XyZZy:

case

case

case

case

error('w',"delete vector ofC %n with destructor",cl_obj_vec

else { /% _delete(e) */
n = del_fct;
ee = new expr(ELIST,e,0);
e = new call(n,ee);
e->fct_name = n;
e->base = G_CALL;

3
((Pcall)e)->simpl();
break;

CASE:

e->simpl();
s=>simpl();
break;

LABEL:

if (del_list) error('s',"label in block with destructors');
s=>simpl();
break;

GOTO:

if (del_list) error('s','goto in block with destructors");
break;

/% If the goto is going to a different (effective) scope,
then it is necessary to activate all relevant destructors

on the way out of nested scopes, and issue errors if there

%
* are any constructors on the way into the target. ¥/

/% Only bother if the goto and label have different effective
* scopes. (If mem table of goto == mem table of label, then
* they're in the same scope for all practical purposes. */

{

Pname n = scope->look(d->string, LABEL);
if (n == 0) error('i',&where,"label%n missing',d);
if(n->n_realscope != scope) {

/.

Find the root of the smallest subtree containing

Ptable r = 03

for(Ptable g=n->n_realscope; q!=gtbl; g=q->next) {

’L
* the path of the goto. This algorithm is quadratic
% only if the goto is to an inner or unrelated scope.

*/

for(Ptable p = scope; p != gtbl; p = p->next) {

if(p==q)

r = p; /* found root of subtree! */

goto xyzzy;

}

if(r==0) error('i',&where,"finding root of subtree");

Feb 8 12:49 1985

plugh:

simpl.c Page 26

/* At this point, r = root of subtree, n->n_realscope
* = mem table of label, and scope = mem table of goto. ¥/

/% Climb the tree from the label mem table to the table

* preceding the root of the subtree, looking for
initializers and ctors. If the mem table "belongs"

to an unsimplified block(s), the n_initializer field

* indicates presence of initializer, otherwise initializer
* information is recorded in the init_stat field of

* mem table. %/

for(Ptable p=n->n_realscope; p!=r; p=p->next)
if(p->init_stat == 2)
error (&where, "goto%n pastD withIr',d);
goto plugh; /¥* avoid multiple error msgs %/

else if(p->init_stat == 0) {
int 1i;
for(Pname nn=p->get_mem(i=1);nn;nn=p->get_m
if(nn->n_initializer||nn->n_evaluat
error (&nn->where, "goto%n pa
goto plugh;

/* Proceed in a similar manner from the point of the goto,
generating the code to activate dtors before the goto. *

/% There is a bug in this code. If there are class objects

* of the same name and type in (of course) different mem

* tables on the path to the root of the subtree from the

* goto, then the innermost object's dtor will be activated

* more than once. */

{
Pstmt dd = 0, ddt;

for(Ptable p=scope; p!=r; p=p->next) {
int i;
for (Pname n=p->get_mem(i=1);n;n=p->get_mem(++i)) {

Pname cln;
if (n->tp == 0) continue; /* label ¥/

if (clo=n->tp->is_cl obj()) {
Pclass cl = (Pclass)cln->tp;
Pname d = cl->has_dtor();

if (d) § /% n->cl.delete(0); */
Pref r = new ref(DOT,n,d);
Pexpr ee = new expr(ELIST,zero,0);
Pcall dl1 = new call(r,ee);
Pstmt dls = new estmt(SM,n->where,dl,0);
dl->base = G_CALL;
dl->fct_name = d;
if (dd)

ddt->s_list = dls;

o

;
N

.

Feb 8 12:49 1985 simpl.c Page 27

else
dd = dls;
ddt = dls;

else if (cl_obj_vec) { /* never "new x" is a pointer ¥/
Pclass cl = (Pclass)cl_obj_vec->tp;
Pname ¢ = cl->has_ictor();
Pname d = cl->has_dtor();

if (d) { /* _vec_delete(vec,noe,sz,dtor); ¥/
Pstmt dls;
int esz = cl->tsizeof();
Pexpr noe = new expr(IVAL, (Pexpr)(n->tp->tsizeof()
Pexpr sz = new expr(IVAL, (Pexpr)esz,0);
Pexpr arg = new expr(ELIST,c,0);
/*c~->take_addr () ;*/
c->1val (ADDROF);
arg = new expr(ELIST,sz,arg);
arg = new expr(ELIST,noe,arg);
arg = new expr(ELIST,n,arg);
arg = new call(vec_del _fct,arg);
arg->base = G_CALL;
arg->fct_name = vec_del_fct;
dls = new estmt(SM,n->where,arg,0);
if (dd)
ddt->s_list = dls;

nwn

else
dd = dls;
ddt = dls;

} /* end mem table scan */
} /% end dtor loop */
/* "activate" the list of dtors obtained. ¥/
if(dd) {

dd->simpl();
Pstmt bs = new stmt(base, where, 0);

*bs = *this;
base = PAIR;
s = dd;
s2 = bs;
}
}
} /* end special case for non-local goto */
break;
case IF:

e->simpl();

s~>simpl();

if (else_stmt) else_stmt->simpl();
break;

Feb 8 12:49 1985 simpl.c Page 28

case FOR:
/* "for (s;e;e2) s2; => s; while(e) {s2;e3}" %/
if (for_init) for_init->simpl();
if (e) e->simpl();
if (e2) §
curr_expr = e2;
e2->simpl();
if (e2->base==ICALL && e2->tp==void_type)
error('s',"call of inline voidF in for-expression");

s->simpl();
break;

case BLOCK:
((Pblock)this)~>simpl();
break;

case PAIR:
break;

3

/*if (s) s->simpl();*/
if (base!=BLOCK && memtbl) §
int i;
Pstmt tl1 = (s_list) ? s_list->simpl() : 0;
Pstmt ss = 0;
Pname cln;
for (Pname tn = memtbl->get_mem(i=1); tn; tn=memtbl->get_mem(++i))
/*fprintf(stderr,”"tmp %s tbl %d\n",tn->string,memtbl);%*/
if (cln=tn->tp->is_cl_obj()) {
Pclass ¢l = (Pclass)cln->tp;
Pname d = cl->has_dtor();
if (d) § /% n->cl.delete(0); */
Pref r = new ref(DOT,tn,d);
Pexpr ee = new expr(ELIST,zero,0);
Pcall dl = new call(r,ee);
Pstmt dls = new estmt(SM,tn->where,dl,0);
dl->base = G_CALL;
dl->fct_name = d;
dls->s_list = ss;
ss = dls;
/*error('d"',"%d (tbl=%d): %n.%n %d->%d",this,memtbl,tn,d,ss,ss->s_list);%/

H

3
if (ss) §
Pstmt t2 = ss->simpl();
switch (base) {
case IF:
Pstmt es = ss->copy();
if (else_stmt) §
for (Pstmt t=es; t=->s_list; t=t->s_list);
t->s_list = else_stmt;

i

3

else_stmt = es;
t2->s_list = s;
s = ss5;

break;

N

a_/_,,,

&

(M

Feb 8 12:49 1985 simpl.c Page 29

}

case RETURN:
case WHILE:
case FOR:
case DO:
case SWITCH:
case DELETE:

L 1

error('s',"E in%kS needs temporary ofC%n with

break;
default:
if (t1) §
t2~>s_list = s_list;
s_list = ss;
return tl;
3

s_list = ss;
return t2;

3

return (tl) ? tl : this;

3

return (s_list) ? s_list->simpl() : this;

Pstmt stmt.copy()

// now handles dtors in the expression of an IF stmt
// not generall

Pstmt ns = new stmt(0,curloc,0);

*ns = *this;

if (s) ns->s = s->copy();

if (s_list) ns->s_list = s_list->copy();

switch (base) {

case PAIR:
ns->s2 = s2->copy();
break;

}

return ns;

destr

Feb 8 14:33 1985 size.c Page 1

/% @(#) size.c 1.2 2/8/85 14:33:46 %/
/ sedeicdedeldolodolodededoldododiiohdelododndododoiodilde el ot lviedeodolodlaloldeleododedediledodededodeoledelededededede el dedededs
C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs
Copyright (c¢) 1984 AT&T Technologies, Inc.
All rigths Reserved ‘
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF
AT&T TECHNOLOGIES, INC.
If you ignore the above notice the gost of Ma Bell will haunt you forever.
size.c:
initialize alignment and sizeof "constants"
Fidedrkdehddoieiollololeloidvleloiolilolidodekioleloideleloliiiloloidvldcdelodedviilodeleicdolofioleldolodeliololiilodon |

#include <stdio.h>

#include "size.h"

extern int strcmp(char®,char®);
extern int strcpy(char®,char®);
extern int strlen(char®);

int
int

int
int

int
int

int
int

int
int

int
int

int
int

int
int

int
int

int

int
int

BI_IN_WORD = 32;
BI_IN_BYTE = 8;
SZ_CHAR = 1;
AL_CHAR = 1;
SZ_SHORT = 2;
AL_SHORT = 2;
SZ_INT = 4;
AL_INT = 4;
SZ_LONG = 4;
AL_IONG = 4;
SZ_FLOAT = 4;
AL_FLOAT = 4;
SZ_DOUBLE = 8;
AL _DOUBLE = 4;
SZ_STRUCT = 4&; /* minimum struct size */
AL_STRUCT = 4;
SZ_FRAME = 4;
AL_FRAME = 4;
SZ_WORD = &;
SZ_WPTIR = 4;
AL_WPTR = 4;

()

N

Feb 8 14:33 1985 size.c Page 2

int SZ_BPIR = 4;
int AL_BPTR = 4;
/* space at top and bottom of stack frame
(for registers, return ptr, etc.)
7’:/
int SZ_TOP = 0;
int SZ_BOTTOM = 0;
char®* LARGEST_INT = "2147483647"; /% 2%%31 - 1 %/
int argl;
int arg?;

int get_line(FILE* £fp) {
char s[32];

if (fscanf(fp," %s %d %d",s,&argl,&arg2) == EOF) return 0;

if (strcmp(''char",s) == 0) {

SZ_CHAR = argl;
AL_CHAR = arg2;
return 1;

3

if (stremp("short",s) == 0) {
SZ_SHORT = argl;
AL_SHORT = arg2;
return 1;

if (strcmp("int",s) == 0) {
SZ_INT = argl;
AL_INT = arg2;
if (fscanf(fp," %s'",s) == EOF) return O;
int 11 = strlen(s);
LARGEST_INT = new char[11+1];
strcpy (LARGEST_INT,s);

return 1;

}

if (strcmp('long",s) == 0) {
SZ_LONG = argl;
AL_LONG = arg2;
return 1;

if (strcmp('float',s) == 0) {
SZ_FLOAT = argl;
AL_FLOAT = arg2;
return 1;

}
if (strcmp(''double",s) == 0) {

SZ_DOUBLE = argl;
AL_DOUBLE = arg2;
return 1;

}
if (stremp("bit",s) == 0) {
BI_IN_BYTE = argl;

Feb 8 14:33 1985 size.c Page 3

BI_IN_WORD = arg2;

return 1;
3
}
if (stremp("struct",s) == 0) {
SZ_STRUCT = argl;
AL_STRUCT = arg2;
return 1;
3
if (stremp("frame",s) == 0) {
SZ_FRAME = argl;
AL_FRAME = arg?2;
return 1;
H
if (strcmp("word",s) == 0) {
SZEWORD1= argl;
return 1;
$
if (strcgg(≫r",s) T= 0) §
_ = argl;
AL_WPTR = arg2;
return 1;
3
if (strcgg(gg¥§r",s) ?= 0) {
- = argl;
AL_BPTR = arg?2;
return 1;
3

if (stremp('top',s) == 0) {

SZ_TOP = argl;

SZ_BOTTOM = arg2;

return 1;

}

return 0O;

}

extern int read_align(char® f)

FILE* fp = fopen(f,"r");
if (fp == 0) return 1;
while (get_line(fp)) ;
return 0;

}

extern print_align(char* s)

fprintf(stderr,”"%s sizes and alignments\n\n",s);

fprintf(stderr,"
fprintf(stderr,''char
fprintf(stderr, 'short
fprintf(stderr,'int
fprintf(stderr,'long
fprintf(stderr,'float
fprintf(stderr, "double
fprintf(stderr, 'bptr
fprintf(stderr, "wptr

size

align\n'");

%d\n'",SZ_CHAR,AL_CHAR);
%d\n'",SZ_SHORT,AL_SHORT);
%d\n",SZ_INT,AL_INT);
%d\n",SZ_LONG,AL_LONG);
%d\n",SZ_FLOAT,AL_FLOAT);
%d\n",SZ_DOUBLE,AL_DOUBLE);
%d\n",SZ_BPTR,AL_BPTR);
%d\n",SZ_WPTR,AL_WPTR);

o/

(

'

Feb 8 14:33 1985 size.c Page 4

fprintf(stderr,"struct %d %d\n',SZ_STRUCT,AL_STRUCT);
fprintf(stderr,'frame %d %d\n'",SZ_FRAME,AL_FRAME);
fprintf(stderr,"large %s\n\n",LARGEST_INT);

fprintf(stderr,”"%d bits in a byte, %d bits in a word, %d bytes in a word\n"
BI_IN_BYTE, BI_IN_WORD, SZ_WORD);
return 1;

Feb 8
/* %L%
/ k]

extern
extern

extern
extern

extern
extern

extern
extern

extern
extern

extern
extern

extern
extern

extern
extern

extern
extern

extern

extern
extern

extern
extern
extern

extern

extern
f#if O

##define SZ_CHAR
#define SZ_SHORT
##define SZ_INT
ffdefine SZ_LONG
#define SZ_FLOAT
#define SZ_DOUBLE

#define SZ_WORD
#define SZ_WPTR
fidefine SZ_BPTR

12:47 1985 size.h Page 1

%WMe %1% %H% BTh *
used in typ.c type.sizeof()

BI_IN_WORD;
BI_IN_BYTE;
/:':
SZ_CHAR;
AL_CHAR;

SZ_SHORT;
AIL_SHORT;

SZ_INT;
AL_INT;

SZ_LONG;
AL_LONG;

SZ_FLOAT;
AL_FLOAT;

SZ_DOUBLE;
AL_DOUBLE;

byte sizes *

SZ_STRUCT; /% minimum struct size */

AL_STRUCT;

SZ_FRAME;
AL_FRAME;

SZ_WORD;

SZ_WPTR;
AL_WPTR;

SZ_BPTR;
AL_BPTR; /%

*k/
SZ_TOP;
SZ_BOTTOM;
char® LARGEST_INT;

/%

N N N - S S

byte sizes

bit sizes */

for implementing sizeof */

/

space at top and bottom of stack frame
(for registers, return ptr, etc.)

*/
2

-

N’

N

N
(>

f\t

-~
/ b
{ §

Feb 8 12:47 1985

f#fdefine
#define

#define
#define
##define
#fdefine
#fdefine
##define
#fdefine
#define
f#define

#fdefine
jffdefine
ffendif

##define
#define

ffdefine
#define
#fdefine
f#fdefine
j##define

#fdefine

BI_IN_WORD
BI_.IN_BYTE

AL_CHAR
AL_SHORT
AL_INT
AL_LONG
AL_FLOAT
AL_DOUBLE
AL_PTR
AL_STRUCT
AL_FRAME

SZ_TOP
SZ_BOTTOM

KTBLSIZE
GTBLSIZE
CTBLSIZE
TBLSIZE
BLMAX
TBUFSZ
MAXFILE

MAXERR

size.h Page 2

Qo W

JE SN S S S S

ate
tiy

123
257

12
20
50
24%1024
30

20

/¥ alignment requirements %/

/% space at top and bottom of stack frame
(for registers, return ptr, etc.)
*/

table sizes ¥/

/% initial class table size ¥/
/¥ initial block table size ¥/
/% max block nesting */

/% (lex) input buffer size %/
/% max include file nesting */

/* maximum number of errors before terminating */

Feb 8 12:49 1985 table.c Page 1
* %2% WM%b %1% %H% %T% */
#include "cfront.h'"

char * keys[MAXTOK];

*

keys[] holds the external form for tokens with fixed representation
illegal tokens and those with variable representation have 0 entries

% /
/%
the class table functions assume that new initializes store to 0
*/
table.table(short sz, Ptable nx, Pname n)
/ %
create a symbol table with "size" entries
the scope of table is enclosed in the scope of "nx"
both the vector of class name pointers and the hash table
are initialized containing all zeroes
to simplify hashed lookup entrieSLO] is never used
so the size of "entries" must be "size+1" to hold "size" entries
% /
{

base = TABLE;
t_name = n;
size = sz = (82<=0) ? 2 : sz+l;
entries = new Pname[sz];
hashsize = sz = (s2%3)/2;
hashtbl = new short[sz];
next = nx;
free_slot = 1;
/* fprintf(stderr,”table.table %d %s %d\n", this, (n)?n->string:"?", size); fflush(s

Pname table.look(char®* s, TOK k)

/ =
look for "s" in table, ignore entries which are not of "k" type
look and insert MUST be the same lookup algorithm

Ptable t;

register char * p;
register char * q;
register int ij;
Pname n;

int rr;

if (s == 0) error('i',"%d->loock(0)",this);
if (this == 0) error('i',"0->look(%s)",s);
if (base != TABLE) error('i',"(%d,%d)->look(%s)",this,base,s);

wle

/% use simple hashing with linear search for overflow *

\

)

a

Feb 8 12:49 1985 table.c Page 2

P = 8;

i=0;

while (¥*p) i += (i + ¥*p++); /% i<<l " *p++ better?*
rr = (0<=1i) ? 1 : -i;

for (t=this; t; t=t->next) {
/* in this and all enclosing scopes look for name "s" */
Pname* np = t->entries;
int mx = t->hashsize;
short* hash = t->hashtbl;
int firsti = i = rr%mx;

do {
if (hash[i] == 0) goto not_found;
n = nplhash[i]];
if (n == 0) error('i',"hashed lookup');
p = n->string; /* stremp(n->n_string,s) */
q = 83
while (*p && *q)
if (¥p++ 1= *q++) goto nxt;
if (*p == *q) goto found;
nxt:
if (mx <= ++i) i = 0; /% wrap around */
} while (i != firsti);
found:
for (; n; n=n->n_tbl_list){ /* for all name "s'"s look for a ke
if (n~->n_key == k) return n;
}
not_found:;
}
return 0; /% not found && no enclosing scope */
3
bit Nold; /% non-zero if last insert() failed #*/
Pname table.insert(Pname nx, TOK k)
/:’:
the lookup algorithm MUST be the same as look
if nx is found return the older entry otherwise a copy of nx;
Nold = (nx found) ? 1 : 0;
%/
{

register char * p;
register int i;

Pname n;

Pname® np = entries;
Pname® link;

int firsti;

int mx = hashsize;
short® hash = hashtbl;
char* s = nx->string;

if (s==0) error('i',"%d->insert(0,%d)",this,k);

Feb 8 12:49 1985 table.c Page 3

/.l.
r

ta
™~

found:

add_np:

nx->n_key = k;

if (nx->n_tbl_list || nx->n_table) error('i',"%n in two tables",nx);

/* use simple hashing with linear search for overflow */

p = s;

i=0;

while (¥p) 1 += (i + *p++);

if (i<0) i = -i;

firsti = i = i%mx;

do { /% look for name "s" */

if (hash[i] == 0) {
hash[i] = free_slot;
goto add_np;

n = np[hash[i]];
if (n == 0) error('i',"hashed lookup");
if (stremp(n->string,s) == 0) goto found;

p = n->string;

q = s;
while (¥p && *q) if (¥p++ != #qg++) goto nxt;
if (*p == ¥*q) goto found;

nxt:

if (mx <= ++i) i = 0; /% wrap around */
} while (i != firsti);

error ("N table full');

forever §
if (n->n_key == k) { Nold = 1; return n; }

if (n->n_tbl_list)
n = n->pn_tbl_list;

else §
link = &(n->n_tbl_list);
goto re_allocate;

if (size <= free_slot) {
grow(2%size);
return insert(nx,k);

3

link = &(np[free_slot++]);

re_allocate:

Pname nw = new class name(0);
‘i’?nw = *nx;

K 3
N

(M

(”\

Feb 8 12:49 1985 table.c Page 4

int 11 = strlen(s)+1;
, " char *ps = new char[11];
/*fprintf(stderr, tbl.cpy %s sz=%d %d->%d\n", s, 11, s, ps); fflush(stderr);*/
strcepy(ps,s); /¥ copy string to safer store */
Nstr++;
nw->string = ps;

3

nw->n_table = this;
*#1link = nw;

Nold = 0;
Nname++;
return nw;
3
}
¥oid table.grow(int g)

short® hash;
register int j;

int mx;
register Pname® np;
Pname n;

« 1t

if (g <= free_slot) error('i',"table.grow(%d,%d)",g,free_slot);
if (g <= size) return;

/* fprintf(stderr,”tbl.grow %d %s %d->%d\n", this, (t_name)?t_name->string:"?", size
size = mx = gt+l;

np = new Pname[mx];

for (j=0; j<free_slot; j++) np[j] = entries[]j];
delete entries;

entries = np;

delete hashtbl;
hashsize = mx = (g%3)/2;;
hash = hashtbl = new short[mx];

for (j=1; j<free_slot; j++) { /% rehash(np[j]); */
char * s = np[j]->string;
register char * p;
char * q;
register int i;
int firsti;

p = 8;
i = 0;
while (¥p) += (i + *p++);

i
if (i<0) i = -i;

firsti = i i%mx;
do { /% look for name '"s" ¥/
if (hash[i] == 0) ¢
hash[i] = i3

Feb 8 12:49 1985 table.c Page 5

3

goto add_np;

hoad

n = nplhash[i]];
if (n == 0) error('i',"hashed lookup™);
p = n->string; /% strcmp(n->n_string,s) */

q = s8;
while (¥*p && *q) if (¥p++ != *qg++) goto nxt;
if (*p == *q) goto found;
nxt:
if (mx <= ++1i) i = 0; /* wrap around %/
} while (i != firsti);

error('i',"rehash??");

found:
error('i',"rehash failed");

add_np:;
3

Pclass Ebase;
Pclass Epriv; /* extra return values from lookc() #*/

Pname table.lookc(char® s, TOK)

/J.
"

like look().

look and insert MUST be the same lookup algorithm

Ptable t;

register char * p;
register char * q;
register int i;
Pname n;

int rr;

if (s == 0) error('i',"%d->1look(0)",this);
if (this == 0) error('i',"0->look(%s)",s);
if (base != TABLE) error('i',"(%d,%d)->look(%s)",this,base,s);

Ebase
Epriv

03
0;

/* use simple hashing with linear search for overflow */

P = s;

i = 0;

while (¥p) i += (i + *p+t);
rr = (0<=i) ? i : -1i;

for (t=this; t; t=t->next) {
/% in this and all enclosing scopes look for name "s" */
Pname* np = t->entries;

~

~

N

Feb 8 12:49 1985 table.c Page 6

int mx = t->hashsize;
short®* hash = t->hashtbl;
int firsti = i = rr¥%mx;
Pname tname = t->t_name;

do §
if (hash[i] == 0) goto not_found;
n = nplhash[i]];
if (n == 0) error('i',"hashed lookup™);
p = n->string; /* stremp(n->n_string,s) */
q = s;
while (¥p && *q)
if (¥*pt++ = *g++) goto nxt;
if (*p == *q) goto found;
nxt:
if (ox <= ++i) 1 = 0; /* wrap around ¥/
} while (i != firsti);
found:
if (tname) {
if (n->base == PUBLIC)
n = n->n_qualifier;
else if (n->n_scope == 0)
Epriv = (Pclass)tname->tp;
3
return n;
not_found:
if (tname) {
Pclass cl = (Pclass)tname->tp;
if (cl && cl->clbase && cl->pubbase==0) Ebase = (Pclass)cl-
3
H
Ebase = Epriv = 0;
return O; /% not found && no enclosing scope */
3
Pname table.get_mem(int i)
/7':
return a pointer to the i'th entry, or 0 if it does not exist
=‘f/
{
return (i<=0 || free_slot<=i) ? 0 : entries[i];
3
void new_key(char* s, TOK toknum, TOK yyclass)
/:’:
make "s" a new keyword with the representation (token) "toknum"
"yyclass" is the yacc token (for example new_key('int",INT,TYPE);)
"yyclass==0" means yyclass=toknum;
{

Pname n = new class name(s);
Pname nn = ktbl->insert(n,0);

Feb 8 12:49 1985 table.c Page 7

if (Nold) error("keyword %sD twice',s);
nn~>base = toknum;

nn->syn_class = (yyclass) ? yyclass : toknum;
keys [(toknum==L0C)?yyclass:toknum] = s;
delete n;

ﬁ h

Feb 8 12:47 1985 token.h Page 1

/% %L% WM% %1% %H% BT% */
#include <stdio.h>
extern void lex_clear();
extern void ktbl_init();
extern void otbl_init();

jidefine yylex() lex()

f#idefine putstring(s) fputs(s,out_file)

f#define putst(ss) fprintf(out_file,"%s ",ss)
fidefine putch(c) putc(c,out_file)
/* token numbers for C parser ¥/

f#idefine MAXTOK 256
extern char* keys[MAXTOK];

#define EOFTOK 0 /% EOF %/
/* keywords in alphabetical order */

##define ASM 1
f#define AUTO 2
##define BREAK 3
ffdefine CASE 4
##define CHAR 5
f#define CLASS 6
#define CONTINUE 7
jfdefine DEFAULT 8
ff{define DELETE 9
jfdefine DO 10
jf#define DOUBLE 11
{##define ELSE 12
#define ENUM 13
##define EXTERN 14
#define FLOAT 15
#define FOR 16
j{fdefine FORTRAN 17
{fdefine FRIEND 18
##define GOTO 19
{fdefine IF 20
##define INT 21
{#{define LONG 22
#fdefine NEW 23
##define OPERATOR 24
##define PUBLIC 25
{fdefine CONST 26
##define REGISTER 27
jfdefine RETURN 28
{fdefine SHORT 29
jtdefine SIZEOF 30
jfdefine STATIC 31
{#fdefine STRUCT 32
j#tdefine SWITCH 33
jidefine THIS 34
{{define TYPEDEF 35
f##define UNION 36
#fdefine UNSIGNED 37

Feb 8 12:47 1985 token.h Page 2

#fdefine
#fdefine

{#fdefine
jidefine
ffdefine
jidefine
##define
jfdefine
j#fdefine
jfdefine
#define
#define
##define
#fdefine
jtdefine
#fdefine
j##define
{fdefine
f#fdefine
jffdefine
#define
#define
jf{define
ffdefine
#fdefine
f#define
jfdefine
ffdefine
#fdefine
#fdefine
jfdefine
#define
jffdefine
j#fdefine
jffdefine
#define
#fdefine

ffdefine
#fdefine
#fdefine
jfdefine

##define
jfdefine
jfdefine
#define
f#fdefine
jfdefine
ffdefine

{fdefine

VOID
WHILE

ANDAND
OROR
QUEST
COLON
ASSIGN
cM

SM

IC

RC

INLINE
OVERLOAD
VIRTUAL
COERCE

ID
STRING
ICON
FCON
CCON
NAME
ZERO

ASOP

38
39

/*
40
41

operators in priority order (sort of) %/

constants etc. */

groups of tokens */
/* op= */

e

"\v/"

N

Feb 8 12:47 1985 token.h Page 3

#define RELOP 91 /* LE GE LT GT %/
f#tdefine EQUOP 92 /* EQ NE */
#define DIVOP 93 /* DIV MOD */
#fdefine SHIFTOP 94 /* LS RS #/
jtdefine ICOP 95 /* INCR DECR */
#fdefine UNOP 96 /* NOT COMPL #*/
ffdefine TYPE 97
/* TYPE = INT FLOAT CHAR DOUBLE REGISTER STATIC EXTERN AUTO

LONG SHORT UNSIGNED INLINE FRIEND VIRTUAL */

/* new tokens generated by syn() */

-
':

##define UMINUS 107
##define FCT 108
j#define CALL 109
jtdefine VEC 110
##define DEREF 111
f##define ADDROF 112
##define CAST 113
{##define FIELD 114
{fdefine LABEL 115
{fdefine BLOCK 116
jidefine QUA 117
f#fdefine DCL 118
f##define COBJ 119
f#fdefine EOBJ 121
#define TNAME 123
#fdefine ILIST 124
##define PTR 125
##define ASPLUS 126
#define ASMINUS 127
##define ASMUL 128
f#idefine ASDIV 129
{#define ASMOD 130
#define ASAND 131
f#idefine ASOR 132
#define ASER 133
#define ASLS 134
ffdefine ASRS 135
ffdefine ARG 136
#fdefine KNOWN 137
j##define ZTYPE 138
#define ARGT 139
#fdefine ELIST 140
#define ANY 141
{#fdefine TABLE 142
##define LOC 143
##define DUMMY 144
##define G_ADDROF 145
##define G_CALL 146
ffdefine IVAL 150
jidefine FVAL 151
{#define LVAL 152
j#define ELLIPSIS 155
#define AGGR 156

Feb 8 12:47 1985 token.h Page 4

jffdefine
#define
#define
##define
ffdefine
{fdefine
#fdefine
#fdefine
#define
#define
ffdefine
#define
{#fdefine

tdefine
jfdefine
jtdefine
#define
#fdefine
#define
ffdefine
#define
#define

#define
#define
#define
jffdefine

VALUE
RPTR
HIDDEN
MEM
CTOR
DTOR

CONST_PTR
CONST_RPTR

TEXT
PAIR
ANON
ICALL
ANAME

nCZAOYIEI NP>

SYN
TYP
SIMPL
ERROR

ﬂ_,*_~_‘_
O N e
. AL LT AT

nczZa

157
158
159
160
161
162
163
164
165
166
167
168
169

L/

-

(D

Feb 8 12:49 1985 typ.c Page 1

/% %Z% WMk %1% %H% %T%h */

oo B T e e T, T o O, A AT JUOW, OO0, JROL O, T A T, Jogs v, TN Yor. ™ B o L DL N O, Faun! A JaTe are e 2
/ edededede el dededede e fe N dededededede N e dedede Ao dede de e e dedo Aok dodede et dededele o e de de Tl e e Tk de dede Tl e do e de de e kot %

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c) 1984 AT&T Technologies, Inc. All rigths Reserved
THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

Yoo mten wtanta Faads st ml et mtmlo mlnafo afe mher mar mlurmnlis sl o] u T
sedededeiidiniiniinioinnineiiininininoioio ik |

#include "cfront.h"
#include "size.h"

Pbase short_type;
Pbase int_type;

Pbase char_type;
Pbase long type;

Pbase uchar_type;
Pbase ushort_type;
Pbase uint_type;

Pbase ulong type;

Pbase zero_type;
Pbase float_type;
Pbase double_type;
Pbase void_type;
Pbase any_type;

Ptype Pint_type;
Ptype Pchar_type;
Ptype Pvoid_type;
Ptype Pfctvec_type;

Ptype char2_type;
Ptype char3_type;
Ptype char4 type;

Ptable gtbl;
Ptable any_tbl;

Pname Cdcl = 0;
Pstmt Cstmt = 0;

bit new_type = 0;

extern Ptype np_promote(TOK, TOK, TOK, Ptype, Ptype, TOK);
Ptype np_promote(TOK oper, TOK rl TOK r2, Ptype tl, Ptype t2, TOK p)
/*

an arithmetic operator "oper" is applied to "t1" and "t2",

Feb 8 12:49 1985 typ.c Page 2

ot

types tl and t2 has been checked and belongs to catagories
"r1" and "r2", respectively:

A ANY

Z ZERO

I CHAR, SHORT, INT, LONG, FIELD, or EOBJ
F FLOAT DOUBLE

p PTR (to something) or VEC (of something)

test for compatability of the operands,
if (p) return the promoted result type
if (r2 == A) return tl;

switch (rl1) {
case A: return t2;

case Z:
switch (r2) {
case Z: return int_type;
case I:
case F: return (p) ? ((Pbase)t2)->arit_conv(0) : 0;
case P: return t2;
?efault: error('i',"zero(%d)",r2);
case I:
switch (r2) {
case 4: t2 = 0;
case I:
case F: return (p) ? ((Pbase)tl)->arit_conv{(Pbase)t2) : 0;
case P: switch (oper) {
case PLUS:
case ASPLUS: break;
default: error("int%kP",oper); return any_type;
}
return t2;
default: error('i',"int(%d)",r2);
case F:
switch (r2)
case Z: t2 = 0;
case I:
case F: return (p) ? ((Pbase)tl)->arit_conv((Pbase)t2) : 0;
case P: error("float%kP",oper?; return any_type;
default: error('i',"float(%d)",r2);
3
case P:

switch (r2) {
case Z: return tl;
case I:
switch (oper) {
case PLUS:
case MINUS:
case ASPLUS:
case ASMINUS: break;

default: error('"P%k int",oper); return any_type;

3

return tl;

Nt

(™

Feb 8 12:49 1985 typ.c Page 3

return ¥;

case F: error("P%k float",oper); return any_type;
case P:
if (tl->check(t2,ASSIGN}) {
switch (oper) {
case EQ:
case NE:
case LE:
case GE:
case GT:
case LT:
case QUEST:
} if (t2->check(t1,ASSIGN) == 0) goto zz;
error ("T mismatch:%t %k%t",tl,oper,t2);
) return any_type;
ZZ:
switch (oper) §
case MINUS:
case ASMINUS: return int_type;
case PLUS:
case ASPLUS: error ("P +P"); return any_type;
default: return tl;
3
case FCT: return tl;
?efault: error('i',"pointer(%d)",r2);
case FCT:
error ("F%k%t" ,oper,t2);
return any_type;
default:
| error('i',"np_promote(%d,%d)",rl,r2);
}
TOK type.kind(TCK oper, TOK v)
/¥ v == I integral
N numeric
P numeric or pointer
7’:/’
{
Ptype t = this;
char* s = (oper) ? keys[oper] : 0;
XX:
switch (t->base) {
case ANY: return A;
case ZTYPE: return Z;
case FIELD:
case CHAR:
case SHORT:
case INT:
case LONG:
case EOBJ: return I;
case FLOAT:
case DOUBLE: if (v == I) error(''float operand for %s'",s);
case PTR: if (v != P) error("P operand for %s',s);

Feb 8 12:49 1985 typ.c Page &

}

switch (oper) {
case INCR:

case DECR:

case MINUS:
case PLUS:

case ASMINUS:
case ASPLUS:

Pptr(t)->typ->tsizeof(); /* get increment %/
return P;
case RPTR: //if (v != P) error("P operand for %s",s);
//if (oper != ASSIGN) error(''reference operand for %s",s);

//return P;
1
error ('reference operand for %s'",s);

return A;
case VEC: if (v != P) error("V operand for %s',s); return P;
case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
case FCT: if (v != P) error("F operand for %s",s); return FCT;
default: error ("%t operand for %s",this,s); return A;

3

void type.dcl(Ptable tbl)
/%

XX

go through the type (list) and

(1) evaluate vector dimentions

(2) evaluate field sizes

(3) lookup struct tags, etc.

(4) handle implicit tag declarations

Ptype t = this;
if (this == 0) error('i',"type.dcl(this==0)");

if (tbl->base != TABLE) error('i',"type.dcl(%d)",tbl->base);

switch (t->base) {

case PTR:

case RPTR:

{ Pptr p = (Pptr)t;

t = p->typ;
goto xx;

3

case VEC:

{ Pvec v = (Pvec)t;
Pexpr e = v->dim;
if (e) {

Ptype et;
v->dim = e = e~>typ(tbl);
et = e->tp;

if (et->integral(0) == A) {
error ("UN in array dimension');

else if (!new_type) {

Feb 8 12:49 1985 typ.c Page 5

int i,
Neval = 0;
i = e->eval();
if (Neval) error("%s",Neval);
else if (i == 0)
error('w',"array dimension == 0");
else if (i < 0) {
_ error(' 'negative array dimension");
i=1;
3
v->size = 1i;
DEL(v=->dim);
v->dim = 0;

H
3
t = v=->typ;
goto xx;
3
case FCT:
{ Pfct £ = (Pfet)t;
Pname n;
for (n=f->argtype; n; n = n->n_list) n->tp->dcl(tbl);
t = f->returns;
goto xX;
3
case FIELD:
{ Pbase f = (Pbase)t;
Pexpr e = (Pexpr)f->b_name;
int i;
Ptype et;

e = e->typ(tbl);

f->b_name = (Pname)e;

et = e->tp;

if (et->integral(0) == A) {
error("UN in field size");

i=1;
else {
Neval = 0;
i = e->eval();
if (Neval)
error("%s" ,Neval);
else if (i < 0) §
error(''negative field size");
i=1;
}
else if (SZ_INT#*BI_IN_BYTE < i)
error("field size > sizeof(int)'");
} DEL(e);
£f->b_bits = 1i;
f->b_name = 0;
break;

Feb 8 12:49 1985 typ.c Page 6

H
bit vrp_equiv; /* vector == reference == pointer equivalence used in check() #*/

bit type.check(Ptype t,TOK oper)

/
check if "this" can be combined with "t" by the operator "oper"
used for check of
assignment types (oper==ASSIGN)
declaration compatability (oper==0)
argument types (oper==ARG)
return types (oper==RETURN)
overloaded function name match (oper==0VERLOAD)
overloaded function coercion (oper==COERCE)
NOT for arithmetic operators
return 1 if the check failed
':‘:/
{
Ptype tl = this;
Ptype t2 = t;
TOK bl, b2;
bit first = 1;
TOK r;

if (t1==0 || t2==0) error('i','check(%d,%d,%d)",tl,t2,oper);
vrp_equiv = 0;

while (tl1 && t2) {
top:
/*fprintf(stderr,'top: %d %d\n'",tl->base,t2->base);*/
if (tl1 == t2) return 0;
if (tl->base == ANY || t2->base == ANY) return 0;

bl = tl->base;
b2 = t2->base;
if (bl = b2) {
if (bl == TYPE) {
tl = ((Pbase)tl)->b_name->tp;
goto top;
$
if (b2 == TYPE) {
t2 = ((Pbase)t2)->b_name->tp;
goto top;
}
switch (b1l) {
case PTR:
// case RPTR:

if (bl != b2) vrp_equiv = 1;
switch (b2) {

./

k‘/:‘

;

N

o

Feb 8 12:49 1985 typ.c Page 7

H

switch (bl) {

case PTR:
// case RPTR:
case VEC:
tl = ((Pptr)tl)->typ;
t2 = ((Pvec)t2)->typ;
first = 0;
goto top;
case FCT:
tl = ((Pptr)tl)->typ;
if (first==0 || tl->base!=b2) return 1;
first = 0;
goto top;
3
first = 0;
break;
case VEC:
if (bl != b2) vrp_equiv = 1;
first = 0;
switch (b2) {
case PTR:
// case RPTR:
switch(oper) {
case 0O:
case ARG:
case ASSIGN:
case COERCE:
break; ¥
case OVERLOAD:
default:
return 1;
}
tl = ((Pvec)tl)->typ;
t2 = ((Pptr)t2)->typ;
goto top;
}
break;
case TYPE:
tl = ((Pbase)tl)->b_name->tp;
goto top;
3

goto base_check;

case VEC:
first = 0;
Pvec vl = (Pvec)tl;

Pvec v2 = (Pvec)t2;

if (vl->size != v2->size)
switch (oper) ¢
case OVERLOAD:
case COERCE:

{

tl
t2

$
v1l->typ;
v2->typ;

return 1;

Feb 8 12:49 1985 typ.c Page 8

break; o
case PTR:
case RPTR: —
first = 0; P
{ Pptr pl = (Pptr)tl; b
Pptr p2 = (Pptr)t2;
if (p2->rdo && pl->rdo==0) return 1;
tl = pl->typ;
} t2 = p2->typ;
break;
case FCT: }
first =0; T
{ Pfct fl = (Pfct)tl;
Pfct £f2 = (Pfect)t2;
Pname al = fl->argtype;
Pname a2 = f2->argtype;
TOK k1l = fl->nargs_known;
TOK k2 = f2->nargs_known;
int nl = fl->nargs;
int n2 = f2->nargs;
/*error('d',"k %d %d n %d %d body %d %d",kl,k2,nl,n2,fl->body,f2->body);*/
if ((k1 && k2==0) || (k2 && kl==0)){
if (f2->body == 0) return 1;
H ~
if (nl!t=n2 && k1 && k2) { *J
goto aaa;
else if (al && a2) ¢
int i = 0;
while (al && a2) {
i++;
if (al->tp->check(a2->tp,oper?0OVERLOAD:0)
al = al->n_list;
a2 = a2->n_list;
3
if (al || a2) goto aaa;
else if (al || a2) { Y
aaa: w)
if (k1 == ELLIPSIS) {
switch (oper) {
case 0:
if (a2 && k2==0) break;
return 1;
case ASSIGN:
if (a2 && k2==0) break;
return 1; N
case ARG: L/
if (al) return 1;
break;

case OVERLOAD:

o

TN

Feb 8 12:49 1985 typ.c Page 9

return 1;
3
H
tl = fl->returns;
t2 = f2->returns;
3
break;
case FIELD:
goto field check;
case CHAR:
case SHORT:
case INT:
case LONG:
goto int_check;
case FLOAT:
case DOUBLE:
goto float_check;
case EOBJ:
goto enum_check;
case COBJ:
goto cla_check;
case ZTYPE:
case VOID:
return 0;
case TYPE:
tl = ((Pbase)tl)->b_name->tp;
t2 = ((Pbase)t2)->b_name->tp;
break;
default:
} error('i',"type.check(o=%d %d %d)",oper,bl,b2);

}

case COERCE:

return 1;
3
3
else if (k2 == ELLIPSIS) {
return 1;

3
else if (k1 || k2) {

if (t1 || t2) return 1;

return 0;

field_check:

switch (oper) {

case 0:
case ARG:

error('i',"check field?");

}

return 0;

Feb 8 12:49 1985 typ.c Page 10

float_check:
if (first==0) {
if (bl!=b2 && b2!=ZTYPE) return 1;
3

goto const_check;

enum_check:
int_check:
const_check:
if (first==0 && t2->tconst() && tl->tconst()==0) return 1;

return O;
cla_check:
{ Pbase cl = (Pbase)tl;
Pbase ¢2 = (Pbase)t2;
Pname nl = cl->b_name;
Pname n2 = c2->b_name;

/*fprintf(stderr,”cl %d c2 %d nl %d %s n2 %d %s oper %d\n",cl,c2,nl,nl->string,n2,n2
if (nl == n2) goto comnst_check;

switch (oper) {
case 0:
case OVERLOAD:
return 1;
case ARG:
case ASSIGN:
case RETURN:
case COERCE:
{
/¥ is c2 derived from cl ? */
Pname b = n2;
Pclass cl;
while (b) {
cl = (Pclass) b->tp;
b = cl->clbase;
/%*if (b)fprintf(stderr,"n2=(%d %s) b=(%d %s) nl=(%d %s) pub %d\n",n2,n2->string,b,b-
if (b && cl->pubbase==0) {
return 1;

if (b == nl) goto const_check;

return 1;
}
}
3
goto const_check;

base_check:
/*error('d',"base_check tl1=%t t2=%t oper=%d",tl,t2,oper);¥/
if (oper)
if (first) {
if (b1==VOID || b2==VOID) return 1;

else {
if (b1==VOID || b2==VOID) { /* check for void*® ¥/

{ '
_,/‘

L/

N

Feb 8 12:49 1985 typ.c Page 11

txloop:

/1

bloop:

//

register Ptype tx = this;

switch (tx->base) {

default: return 1;

case VOID: break;

case PTR:

case RPTR: tx = ((Pptr)tx)->typ; goto txloop;

case VEG: tx = ((Pvec)tx)->typ; goto txloop;

case TYPE: tx = ((Pbase)tx)->b_name->tp; goto txloop;

tx = bl==VOID ? t2 : tl;

switch (tx->base) {

default: return 0;

case VEC:

case PTR:

case RPTR:

case FCT: return 1;

case TYPE: tx = ((Pbase)tx)->b_name->tp; goto bloop;

if (b2 t= ZTYPE) return 1;

}

switch (oper) f{
case O:

return 1;

case OVERLOAD:
case COERCE:

switch (b1l)
case EOBJ:
case ZTYPE:
case CHAR:
case SHORT:
case INT:

switch (b2) {
case EOBJ:
case ZTYPE:
case CHAR:
case SHORT:
case INT:
case FIELD:
goto const_check;
3

return 1;

case LONG: /* char, short, and int promotes to long *

switch (b2) {
case ZTYPE:
case EOBJ:
case CHAR:
case SHORT:
case INT:
case FIELD:
goto const_check;
3

Feb 8 12:49 1985 typ.c Page 12

return 1;
case FLOAT:
switch (b2) {
case FLOAT:
case DOUBLE:
case ZTYPE:
; goto const_check;
return 1;
case DOUBLE: /* char, short, int, and float promotes to doubl
switch (b2) {
case FLOAT:
case DOUBLE:
case ZTYPE:
case EOBJ:
case CHAR:
case SHORT:
case INT:
goto const_check;
return 1;
case PTR:
switch (b2) {
case ZTYPE:
; goto const_check;
case RPTR:
case VEC:
case COBJ:
case FCT:
} return 1;
case ARG:
case ASSIGN:
case RETURN:
switch (b1l) {
case COBJ:
return 1;
case EOBJ:
case ZTYPE:
case CHAR:
case SHORT:
case INT:
case LONG:
r = t2->num_ptr (ASSIGN);
switch (r) {
case A: return 1;
case Z:
case I: break;
case F: error('w',"double assigned to int"); break;
case P: return 1;
3
break;
case FLOAT:
case DOUBLE:

r = t2->numeric(ASSIGN);

e

e o

L

_

N

:’/‘ '\‘f

VS

Feb 8 12:49 1985 typ.c Page 13

break;

case VEC:

return 1;

case PTR:

r = t2->num_ptr(ASSIGN);
switch (r) {
case A: return 1;

case Z:
case P: break;
case I:
case F: return 1;
case FCT:
{ Pptr p = (Pptr)tl;
; if (p->typ->base != FCT) return
3
break;
case RPTR:
// r = t2->num_ptr(ASSIGN);
/7 switch (r) {
// case A: break;
// case Z: return 1;
// case P:
// case I:
// case F: break;
7/ case FCT:
// { Pptr p = (Pptr)tl;
// if (p->typ->base != FCT) return
/! }
// 3
// break;
return 1;
case FCT:
switch (oper) {
case ARG:
case ASSIGN:
return 1;
}
3
break;

}

goto const_check;

Feb 8 12:49 1985 typ2.c Page 1

/% %2% "M% %1% %H% %T% */

alonatentuntantsnte PR SRS o 28 [T S X IR, W% 0N
/ RNRFNNNSdehhddododolokdododedeliohd

T
b
Al
-y
%
5
or
-y
s
)
I,
H
3
!,
by
P A
-5
.
f
*
3k
af,
"
-t
b
P
)
s
R4
s
B
ar,
”
3

Sededededeledededodedeloiedoielodedelededolede ol e dede

C++ source for cfront, the C++ compiler front-end
written in the computer science research center of Bell Labs

Copyright (c¢) 1984 AT&T Technologies, Inc. All rigths Reserved

THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF AT&T TECHNOLOGIES, INC.

If you ignore this notice the ghost of Ma Bell will haunt you forever.

typ2.c:

ORCRCRE ORI o tostastastontartaslontantasts sl st atastoatantantealontouteste stanfuslotontestontonto slustunte sta st olosta clontste slaate steatante lantontastlantentaatenteslonfante slontontoata sloateato st
Sodedodedriodedededededododedodoiolodediiofedede ededeTededodedede e dededede A dededededededodelode e dededo Rl de dedodede dedededodeiedelededede s /

#include "cfront.h"
##include "size.h"

extern void typ_init();
void typ_init()

defa_type = int_type = new class basetype(INT,0);
PERM(int_type);

moe_type = new class basetype(INT,0);
PERM(moe_type);

moe_type->b_const = 1;
moe_type~>check(0);

uint_type = new class basetype(INT,0);
PERM(uint_type);
uint_type->type_adj(UNSIGNED);
uint_type->check(0);

long type = new class basetype(LONG,0);
PERM(long type);
long type->check(0);

ulong type = new class basetype(LONG,0);
PERM(ulong type);

ulong type->type_adj(UNSIGNED);

ulong type->check(0);

short_type = new class basetype(SHORT,0);
PERM(short_type);
short_type->check(0);

ushort_type = new class basetype(SHORT,0);
PERM(ushort_type);
ushort_type->type_adj(UNSIGNED);
ushort_type->check(0);

float_type = new class basetype(FLOAT,0);
PERM(float_type);

N

U

Y

g

Ny

VN

=

~

Feb 8 12:49 1985 typ2.c Page 2

double_type = new class basetype(DOUBLE,0);
PERM(double_type);

zero_type = new class basetype(ZTYPE,0);
PERM(zero_type);
zero->tp = zero_type;

void_type = new class basetype(VOID,0);
PERM(void_type);

char_type = new class basetype(CHAR,0Q);
PERM(char_type);

uchar_type = new class basetype(CHAR,OQ);
PERM(uchar_type);
uchar_type->type_adj(UNSIGNED);
uchar_type->check(0);

Pchar_type = new class ptr(PTR,char_type,0);
PERM(Pchar_type);

Pint_type = new class ptr(PTR,int_type,0);
PERM(Pint_type);

Pvoid_type = new class ptr(PTR,void_type,0);
PERM(Pvoid_type);

Pfctvec_type = new class fect(int_type,0,0);

Pfctvec_type = new class ptr(PTR,Pfctvec_type,0);
= new class ptr(PTR,Pfctvec_type,0);

Pfctvec_type
PERM(Pfctvec_type);

any_tbl = new class table(TBLSIZE,0,0);
gtbl = new class table(GTBLSIZE,0,0);
gtbl->t_name = new class name(''global™);

if (SZ_SHORT == 2)
char2_type = short_type;

else {
char2_type = new vec(char_type,0);
PERM(char2_type);
Pvec(char2_type)->size = 2;

3

char3_type = new vec(char_type,0);
PERM(char3_type);
Pvec(char3_type)->size = 3;
if (SZ_INT == &)

char4_type = int_type;
else if (SZ_LONG == 4)

char4_type = long type;
else {
char4_type = new vec(char_type,0);
PERM(charé4_type);
Pvec(char4 _type)=->size = 4;
}

/% must be

last, se

Feb 8 12:49 1985 typ2.c Page 3

Pbase basetype.arit_conv(Pbase t)

/7'c
perform the "usual arithmetic conversions" C ref Manual 6.6
on "thiS" o Ht"
"this" and "t" are integral or floating
"t" may be 0
7‘:/
{
bit 1;
bit u;
bit f;
bit 11 = (base == LONG);
bit ul = b_unsigned;
bit f1 = (base==FLOAT || base==DOUBLE);
if (t) {
bit 12 = (t->base == LONG);
bit u2 = t->b_unsigned;
bit £2 = (t->base==FLOAT || t->base==DOUBLE);
1 =11 1] 12;
u=ul || u2;
£f=f1 || £2;
else {
1= 11;
u = ul;
f = fl;
3
if (f) return double_type;
if (1 & u) return ulong type;
if (1 & !u) return long type;
if (u) return uint_type;
return int_type;
}

bit vec_const = 0;

bit type.tconst()

/%
is this type a constant
%/
{
Ptype t = this;
vec_const = 0;
XXX
switch (t->base) {
case TYPE: if (((Pbase)t)->b_const) return 1;
t = ((Pbase)t)->b_name->tp;
goto XXxx;
case VEC: vec_const = 1; return 1; /%t = ((Pvec)t)->typ; goto xxx;¥%/
case PTR:
case RPTR: return ((Pptr)t)->rdo;
case ANY: return 0;
default: return ((Pbase)t)->b_const;

}

(\\‘./

Feb 8 12:49 1985 typ2.c Page &
3
int type.align()
{
Ptype t = this;
XX

/*fprintf(stderr,"align %d %d\n",t,t->base);%/
switch (t->base) §

case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;

case COBJ: t = ((Pbase)t)->b_name->tp; goto xx;

case VEC: t = ((Pvec)t)->typ; goto xx;

case ANY: return 1;

case CHAR: return AL_CHAR;

case SHORT: return AL_SHORT;

case INT: return AL_INT;

case LONG: return AL_LONG;

case FLOAT: return AL FLOAT;

case DOUBLE: return AL_DOUBLE;

case PTR:

case RPTR: return AL _WPTR;

case CLASS: return ({(Pclass)t)->obj_align;

case ENUM:

case EOBJ: return AL_INT;

case VOID: error("illegal use of void"); return AL_INT;
?efault: error('i',"(%d,%k)->type.align",t,t->base);

3

int type.tsizeof()
%
the sizeof type operator
return the size in bytes of the types representation
7‘:/
{

ZX:

Ptype t = this;

if (£t == 0) error('i',"typ.tsizeof(t==0)");
switch (t->base) {
case TYPE:
case COBJ:
/*fprintf(stderr,'tsizeof %d %d %s%s\n",t,t->base, ((Pbase)t)->b_name->string, (t->per
t = ((Pbase)t)~->b_name->tp; goto 2zx;

case ANY: return 1;
case VOID: return 0;
case ZTYPE: return SZ_WPTR; /* assume pointer */
case CHAR: return SZ_CHAR;
case SHORT: return SZ_SHORT;
case INT: return SZ_INT;
case LONG: return SZ_LONG;
case FLOAT: return SZ_FLOAT;
case DOUBLE: return SZ_DOUBLE;
case VEC:

{ Pvec v = (Pvec) t;

if (v->size == 0) return SZ_WPTR;

return v->size * v->typ->tsizeof();

Feb 8 12:49

1985 typ2.c Page 5

case PTR:
case RPTR:
t = ((Pptr)t)->typ;
XXX
switch (t->base) {
default: return SZ_WPTR;
case CHAR: return SZ_BPTR;
§ase TYPE: t = ((Pbase)t)->b_name->tp; goto XxXx;
case FIELD:
{ Pbase b = (Pbase)t;
return b->b_bits/BI_IN_BYTE+1;
case CLASS:
{ Pclass cl = (Pclass)t;
int sz = cl->obj_size;
if (cl->defined == 0) {
error("%sU, size not known',cl->string);
} return SZ_INT;
return sz;
case EOBJ:
case ENUM: return SZ_INT;
?efault: error('i',"sizeof(%d)",t->base);

3

bit type.fct_type()
{

return O;

}

bit type.vec_

type()

Ptype t = this;

XX

switch (t->base) {

case
case
case
case
case

ANY:

VEC:

PTR:

RPTR: return 0;

TYPE: t = ((Pbase)t)->b_name->tp; goto xx;

default: error{("not a vector(%k)",base); return 1;

3
}

Ptype type.deref()
{

Ptype t = this;

XX

switch (t->base) §

case
case
case
case

PTR:

RPTR:

VEC: return ((Pptr)t)->typ;
ANY: return t;

C

C

Feb 8 12:49 1985 typ2.c Page 6

case TYPE: t = ((Pbase)t)->b_name->tp; goto xx;
default: error("nonP dereferenced'); return any_type;

H
Pptr type.addrof()
{

return new class ptr(PTR,this,0);

Feb 8 12:47 1985

/% %Z% WM% %1% %H% %T% */
short TOK;

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

##define

class

node * PP;

char bit;
int (*PFI)();
void (*PFV)();

class

node * Pnode;

struct key * Pkey;

class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class
class

ahe

name * Pname;
basetype * Pbase;
type * Ptype;

fet * Pfcet;
field * Pfield;
expr * Pexpr;
gexpr * Pqgexpr;
texpr * Ptexpr;
classdef * Pclass;
enumdef * Penum;
stmt * Pstmt;
estmt * Pestmt;
tstmt * Ptstmt;
vec * Pvec;

ptr * Pptr;

block * Pblock;
table * Ptable;
loc Loc;

call # Pcall;
gen* Pgen;

ref % Pref;
name_list % Plist;
iline * Pin;

forever for(;;)

typedef.h Page

(J

Feb 8 12:50 1985

size_align Page 1

(/% %z% %% %1% %H% %T% %/

char
short
- int
(w long
" double
bit
ptr
struct
frame
top
word
.. wWptr
(‘ . bptr

-

RO R PO NN

FPROOCORIPWREERNND M

32767

;k”(};

	makefile
	alloc.c
	cfront.h
	dcl.c
	dcl2.c
	del.c
	error.c
	expand.c
	expr.c
	expr2.c
	gram.y
	lex.c
	main.c
	misc.c
	norm.c
	norm2.c
	print.c
	repr.c
	simpl.c
	size.c
	size.h
	table.c
	token.h
	typ.c
	typ2.c
	typedef.h
	size_align

