(-ZBS

f/m\\

1.:9:0:0:0.0:0:0.0.0.0:0:0.0:0:0.0.0:0.9.0.0:0.0.0:0:0.0.0:0.0.9.0:0.:0.0.0.0:0:0.0.0.0.0.0:0:0.9.9:0.0.0:9.0.0.0.9.9.0.0:9.0.0:0.9.0.9:0.9.0.0.0:0.0.0.0.0.0.0.0:0.0.0.¢.4
19:9:0:0.0:0.0.0.0.9:9.0.9.0.0.9.9.9.0.9:0.0:0.0.0:0.9.9:0.0.0.9.0.0.0:0.9.9:0.0.0.9.0.9.9.0.9.9.0.0.0.9:0.0.0.9:0.0.9.0.0.0.0:0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0.0.9.4
):9:0.9.0:9.0.9.9.0.9.0.:0.:0.:0.:0:0.5:6.0:0.9:0:0.0.0.0.9.0.0.9.0.0:0.0.4:6.0.0:0:9.9.0.0.0.9:4.0.:0.0.0.0.0.4:9:0:0:0:0.0:0:9.9:0.9.0.0.:0.0:0.9.9.4.0.0.0.0.0.:0.9.0.9.9.9.¢
).0.0.0.6.9.0:4.0.0.0.0.0.9.0.0.0.0.0.9.0.0:0.0.0.9.9.0.9.0.0.9:0.9.0.0.0.0.0.0.0.6.0.0.0:0:0.0.0.0.0.0.0.0.0.0.0:0:0.0:¢.0:0:0.0.0.0:4.0.9.0.0.0.0.0.0.:0.0.0.0.0.0:0.0.¢

799 - laserl Sat Feb 9 19:41:33 EST 1985
ARGS: [-C -d -fp -oorig=ct++ -otime=476843667]
NAME : [ct++]
PASSCOMM: [sfbc!lc++:D.Swartout:lpbin=ml3:home=bc]
copies: [1]
ctime: [7]
files: [/usr/spool/lp/request/laser/d0~-9681]
job: [laser-9005]
lpbin: [
mach: [sfbc (laser-9005)]
mail: [1
originator: [ct++]
printer: [laserl]
printtime: [476843932]
request: [laser-9681]
route: [nsc]
sequence: [799]
subtime: [476843667]
title: [
transit: [4]

version: [08-02-84]

Feb 8 13:31 1985 makefile Page 1

%Z% WM% %1% %H% %T%

#
Lib master makefile.
#
Ccc=CC
0SUF=.0
all:
cd complex ; make CC=$(CC) OSUF=$ (OSUF)
cd stream ; make CC=§(CC) OSUF=$(0SUF)
cd task ; make CC=$(CC) OSUF=$(0SUF)
cd new ; make CC=$(CC) OSUF=$(0SUF)
ar cr 1ibC.a %*/%*$(0OSUF)
clean:
cd complex ; make clean
cd stream ; make clean
cd task ; make clean
cd new ; make clean
clobber: clean
rm -f 1ibC.a

Y
{

Feb 8 13:37 1985 makefile Page 1

%% WM% %1% %H% %Th

CC=CC
CFLAGS=-c
OSUF=.0

0BJS=abs$ (OSUF) arg$(OSUF) cos$(OSUF) error$(OSUF) exp$(OSUF) io$(OSUF) \
log$ (OSUF) oper$ (OSUF) polar$(OSUF) pow$(OSUF) sin$(OSUF) sqrt$(OSUF)

HDRS=../../incl/complex.h const.h
: $(0BJS)

all

abs$ (OSUF)

arg$ (OSUF)

cos$ (OSUF)

error$ (OSUF)

exp$ (OSUF)

io$ (OSUF)

log$ (OSUF)

oper$ (OSUF)

polar$ (OSUF)

pow$ (OSUF)

sin$ (OSUF)

sqrt$ (OSUF)

clean

clobber :

é(CC)
é(CC)
é(CC)
é(CC)
;(CC)
s(c0)
$(00)
é(CC)
$(00)
;(CC)
;(CC)

$(CC)

rm ~-f

clean

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

5 (HDRS)
$ (CFLAGS)

$ (HDRS)
$ (CFLAGS)

$ (0BJS) *.

abs.
abs.

arg.
arg.

COSs.
COos.

erxro
erro

exp.
exp.

io.c
io.c

log.
log.

oper
oper

polar.c
pola

pow.
pow.

sin.
sin.

sqrt
sqrt

jbe
,
¥

r.c
r.c

[
o4

Cc
C

.C
.C

r.c

C
c

C
C

.C
.C

Feb 9 19:22 1985 abs.c Page 1

/% %Z% %M% %1% %H%H %T% */

#include "../../incl/complex.h"
#include "const.h"

double abs(complex z)

register double temp;

register double r = z.re;
register double i = z.im;
if (r <0) r = -r;

if (i == 0) return r;

if (i <0) i = -1

if (r == 0) return i;

if (i >zr) { temp =1r; r = 1i; i = temp; }

temp = i/r;

temp = r¥*sqrt(1.0 + temp¥*temp); /*overflow!!*/
return temp;

H

double norm(complex z)

{
register double r = z.re;
register double i = z.im;

j#idefine SAFE 6.521908912666391000e+18 /* 0.5%sqrt(GREATEST)%*/

if (r<SAFE && i<SAFE) return r¥r+i¥i;
return GREATEST;

2

H :
N

C

/

Feb 8 13:36 1985 arg.c Page 1

/% %Z% %M% %1% %H% %Th */

1t

#include "../../incl/complex.h"

double arg(complex z)

{
3

return atan2(z.im,z.re);

Feb 8 13:37 1985 cos.c Page 1

/% %Z% WM% %1% %HE %T% */

#include

1"

../../incl/complex.h"

#include "const.h"

complex cos(complex z)

/ <%

%/
{

complex

/*
%/
i

fidefine
#define

The cosine of z: cos(z)=cosh(iz).

complex y(-z.im, z.re);
return cosh(y);

cosh(complex z)

The complex hyperbolic cosine of z

double cosh_x, sinh_x, cos_y, sin_y;

COSH_GOOD le7
COSH_HUGE le38

if (z.re > MAX_EXPONENT) {
complex_error(C_COSH_RE, z.re);
cosh_x = sinh_x = COSH_HUGE;

H

else if (z.re < MIN_EXPONENT) {
complex_error(C_COSH_RE, z.re);

cosh_x = COSH_HUGE;
sinh_x = -COSH_HUGE;
else {
double pos_exp = exp(z.re);
double neg exp = 1/pos_exp;
cosh_x = (pos_exp + neg _exp)/2;
} sinh x = (pos_exp - neg _exp)/2;

if (ABS(z.im) > COSH_GOOD) {
complex_error (C_COSH_IM, z.im);
cos_y = sin_y = 0;

else {
cos(z.im);
sin(z.im);

cos_y
sin_y

3

return complex(cos_y¥*cosh _x, sin_y*sinh x);

N

o

L

Feb 8 13:37 1985 error.c Page 1
/% %2% UM% %1% %H% %T% */

#include "../../incl/complex.h"
void complex_error(int err, double)

errno = err;

Feb 8 13:37 1985 exp.c Page 1

/% %2% %WM¥% %1% %H% %T%h */

#include '

'../../incl/complex.h"

#include "const.h"

complex exp(complex z)

The complex exponentiation function: e*¥*z, e being 2.718281828...

In case
In case
In case
*/
{
complex
double

ftdefine EXPHUGE
jftdefine EXPGOOD

of overflow, return EXPHUGE with the appropriate phase.

of underflow return O.
of ridiculous input to "sin" and "cos", return 0.

answer;
radius, sin_theta, cos_theta;

le38
le7

if (z.re > MAX_EXPONENT) {

3

else if

else {

3

complex_error(C_EXP_RE_POS, z.re);
radius = EXPHUGE;

(z.re < MIN_EXPONENT) {

complex_error (C_EXP_RE_NEG, z.re);
radius = 0;

radius = exp(z.re);

if (z.im > EXPGOOD || z.im < -EXPGOOD) {

else §

}

complex_err.r(C_EXP_IM, z.im);
sin_theta = cos_theta = 0;

sin_theta = sin(z.im);
cos_theta = cos(z.im);

[

answer.re = radius * cos_theta;

answer.im

radius * sin_theta;

return answer;

L

L

J

\\-,/

Feb 8 13:37 1985 io.c Page 1
/% %Z% WM% %1% %H% %T% */
##include "../../incl/complex.h"

ostream& operator<<(ostream& s, complex a)

{
}

istream& operator>>(istream& s, complex& a)

/ *

return s<<"("<<real(a)<<", "<<imag(a)<<")";

f
C£)
(f, £f)
7’:/
{
double re = 0, im = 0;
char c = 03
s>>c;
if (¢ == "'(") {
s>>re>>c;
if (c == ",") s>>im>>c;
if (¢ 1= ")') s.clear(_bad);
else {

s.putback(c);
s>>re;

3

if (s8) a = complex(re,im);
return s;

Feb 8 13:37 1985 1log.c Page 1

/% %Z% %M% %1% %H% %T% */

#include

1"

../../incl/complex.h"

#include "const.h"

#define
#define

jtdefine PERIL(t) (t > LOGDANGER || (t < 1/LOGDANGER && t != 0))

complex
-t

/¥

z‘:/

LOGWILD -1000
LOGDANGER lel8
log(complex z)

The complex natural logarithm of "z".
If z = 0, then the answer LOGWILD + 0%i is returned.

Stu Feldman says that the peril tests for the follo.ing function

are "acceptable for now'", but certain things like
complex variables outside the over/underflow range

will cause float

complex answer;
double partial;

ing exceptions.

if (z.re == 0 && z.im == 0) {

complex_
answer.r

else {

/7‘:
% /

Check f

double x
double y

if (x>y

else if

3

else par

zZ.rev¥z.r

answer. im

answer.r

return answer;

error(C_LOG_0,0);
e = LOGWILD;

or (over/under)flow, and fixup if necessary.

= ABS(z.re);
= ABS(z.im);

&& PERIL(x)) {

z.im /=x;

z.re /= x; [/* z.re is replaced by 1 or -1 %/
partial = log(x);

(PERIL(y)) §

z.im /= y; /% roles of re, im reversed from previous */
z.re /= y;

partial = log(y);

tial = 0;

e and z.im*z.im should not cause problems now.

atan2(z.im,z.re);
log(z.re*z.re + z.im%z.im)/2 + partial;

[

e

N

Feb 8 13:37 1985 oper.c Page 1

< /% 7% UM% %1% %H% %T% %/

#include "../../incl/complex.h"
#include "const.h"

(f complex operator®*(complex al,complex a2)

return complex(al.re*a2.re-al.im*a2.im, al.re*a2.imtal.im%a2.re);

}
complex operator/(complex al, complex a2)
{
register double r = a2.re; /% (x,i) */
Q register double i = a2.im;
- register double ti; /% (tr,ti) */
register double tr;
tr = ABS(r);
ti = ABS(i);
if (tr <= ti) §
ti = r/i;
tr = 1 % (1 + ti*ti);
r = al.re;
i=al.im;
else {
;o ti = -i/r;
N\ tr = r % (1 + ti%ti);
r = -al.im;
i = al.re;
3
return complex((r*ti + i)/tr, (i*ti - r)/tr);
3
void complex.operator*=(complex a)
{
register double r = re¥a.re - im¥a.im;
register double i = re¥a.im + im¥a.re;
re = r;
. im = 1i;
.}

void complex.operator/=(complex a)

{
complex quot, templ, temp2;
if ((temp2.re = a.re) < 0) temp2.re = -temp2.re;
if ((temp2.im = a.im) < 0) temp2.im = -temp2.im;

if (temp2.re <= temp2.im) {

L temp2.im = a.re/a.im;

' temp2.re = a.im * (1 + temp2.im*temp2.im);
templ = *this;

Feb 8 13:37

else

re
im

o

1985 oper.c Page 2

{
temp2.im
temp2.re
templ.re
templ.im
(templ.re *

(templ.im *

-a.im/a.re;

a.re ¥ (1 + temp2.im*temp2.im);
-im;

re;

i un

temp2.im + templ.im) / temp2.re;
temp2.im - templ.re) / temp2.re;

N

‘\\",r

&

N

N

Feb 8 13:38 1985 polar.c Page 1

/% %Z% WM% %I% %H% %T% */

#include "../../incl/complex.h"
complex polar(double r, double theta)
{

return complex(r * cos(theta), r % sin(theta));

Feb 8 13:38 1985 pow.c Page 1

/% %2% WMb %1% %BH% %T% */

#include

"

../../inc1l/complex.h"

complex pow(double base, complex z)

ot
/ E

7\'[/
¢

complex

o S

3

real to complex power: base®¥z.

register complex y;
if (base == 0) return y;

if (0 < base) {
double 1b = log(base);
y.re = z.re * 1b;
y.im = z.im * 1b;
return exp(y);

3

return pow(complex(base), z);

pow(complex a, int n)

wtant,

complex to integer power: a*¥n.

register complex X, p = 1;

if (n == 0) return p;

if (n < 0) {
n = -n;
x = 1/a;
3
else X = a;
for(5 ;)

{
if(n & 01) {

/* even for singularity */

/* use complex power fct */

wle

register double t = p.re ¥ x.re - p.im * x.im;

p.im = p.re ¥ x.im + p.im

1

p.re t;

if(n >>= 1) {

ate

* x.re;

register double t = X.re * x.re - x.im * x.im;

X.im =
X.re = t;
else break;

}

return p;

complex pow(complex a, double b)

2 % x.re ¥ x.im;

N

Feb 8 13:38 1985 pow.c Page 2

/%
complex to real power: a*¥b,

o /

{
register double logr = log(abs(a));
register double logi = atan2(a.im, a.re);
register double x = exp(b¥*logr);
register double y = b * logi;

} return complex(x*cos(y), x*sin(y));

complex pow(complex base, complex sup)

/ w
kS /
{

atluats

complex to complex power: base*¥sup.

complex result;

register double logr, logi;
register double xx, yy;
double a = abs(base);

if (a == 0) return result;

logr = log(a);

logi = atan2(base.im, base.re);

xx = exp(logr * sup.re - logi ¥ sup.im);
yy = logr * sup.im + logi * sup.re;

result.re = xx * cos(yy);
result.im = xx * sin(yy);

return result;

Feb 8 13:38 1985 sin.c Page 1

1% %Z% %WM% %1% %H% BTh */

#include "../../incl/complex.h"
#include "const.h"

complex sin(complex z)

7':/
{

3

complex
/ K

* /

{

jfdefine
#define

sine of z: -i * sinh(i%*z)

complex y = complex(-z.im, z.re); /*
y = sinh(y); /%
return complex(y.im, -y.re); /%

sinh(complex z)

The hyperbolic sine

double cosh_x, sinh_x, cos_y, sin_y;

SINH_GOOD le?7
SINH_HUGE le38

if (z.re > MAX_EXPONENT) {
complex_error(C_SINH_RE, z.re);
cosh_x = sinh_x = SINH_HUGE;

}
else if (z.re < MIN_EXPONENT) {
complex_error(C_SINH_RE, z.re);

cosh_x = SINH_HUGE;
sinh_x = -SINH_HUGE;
else {
double pos_exp = exp(z.re);
double neg _exp = 1/pos_exp;
cosh_x = (pos_exp + neg exp)/2;
| sinh_x = (pos_exp - neg exp)/2;

if (ABS(z.im) > SINH_GOOD) {
complex_error(C_SINH_IM, z.im);
cos_y = sin y = 0;

else
cos_y
sin_y

cos(z.im);
sin(z.im);

I H

3

return complex(cos_y*sinh_x, sin_y*cosh_x);

i % g % /
csinh(y) */
- % y * /

W

\\/ /

7N

Feb 8 13:38 1985 sqrt.c Page 1

/% %L% UM% BI% %H% %T% *
include "../../incl/complex.h"

s#tdefine SQRT_DANGER lel?7
define PERIL(t) (t > SQRT_DANGER []| (t < 1/SQRT_DANGER && t f= 0))
/

Stu Feldman says that the peril tests for the following function
are "acceptable" for now, but certain things like

* sqrt(lel0 + 1e-30%i) will cause floating exceptions.

%

ul.-/
W

complex sqrt{(complex z)

*
*
* 7-25-83, note from Leonie Rose -
%
%

complex answer;
double r_old, partial;

/%
Check for possible overflow, and fixup if necessary.
% /
double x = abs(z.re);
double y = abs(z.im);
if (x > y && PERIL(x)) {
z.im /= x;
z.re /= x; /% z.re is replaced by 1 or -1 %/
partial = sqrt(x);
else if PERIL(y) {
z.im /= y; /% roles of z.re, z.im reversed from previous ¥/
z.re [=y;
partial = sqrt(y);
else partial = 1;
/ %

Main computation:

Use half angle formulas to compute angular part of the square root.

The sign of sin_old is the same as that for sin_new, which means that the
upper half plane gets mapped to the first quadrant, and

the lower half plane to the fourth quandrant.

%

if (r_old = sqrt(z.re*z.re + z.im*z.im)) {
double r_new = partial * sqrt(r_old);

double cos_old
double sin_old
double cos_new
double sin_new

z.ref/r_old;

z.im/r_old;

sqrt((1 + cos_o0ld)/2);

(cos_new == 0)?7 1 : sin_old/(2%cos_new);

Feb 8 13:38 1985 sqrt.c

answer.re
answer.im

3

return answer;

Page 2

r_new ¥ cos_new;

r.new * sin_new;

i

L/
g

Feb 8 13:46 1985 makefile Page 1

%L% WM% B1% %H% %T%

CC=CC

CFLAGS=-c

OSUF=.0

0BJS=_delete$(0OSUF) _handler$(OSUF) _new$(OSUF) _vec$(OSUF)
all : $ (OBJS)

_delete$(0OSUF) : _delete.c

$(CC) S$(CFLAGS) _delete.c
_handler$ (OSUF) : _handler.c

$(CC) $(CFLAGS) _handler.c
_new$ (OSUF) : _new.c

$(CC) $(CFLAGS) _new.c
_vec$ (0SUF) : _vec.c

$(CC) S$(CFLAGS) _vec.c
clean

rm -f $(OBJS) *.i *..c
clobber : clean

Feb 8 13:45 1985 _delete.c Page 1

/% %B2% UM% %1% %H% BT% */
free(char®);
extern void operator delete(void® p)

if (p) free((char®)p);

-

N

{/“‘

(

(™

Feb 8 13:45 1985 _handler.c Page 1

/% %Z% WM%b %1% %H% %T% */

typedef void (*PFVV)();

extern PFVV _new_handler = 0;

extern PFVV set_new_handler(PFVV handler)
{ PFVV rr = _new_handler;

_new_handler = handler;
return rr;

Feb 8 13:46 1985 _new.c Page 1

/% %Z% %WM% %1% %H% %T% */
typedef void (*PFVV)();

extern PFVV _new_handler;

extern char* malloc(unsigned);
char® p;

while ((p=malloc(size))==0) {
if(_new_handler)
(*_new_handler)();
else
return O;

3

return (void*)p;

VRN

a

Feb 8 13:46 1985 _vec.c Page 1

C/F %% WM% %l% %H% %BT% */

typedef void* PV;
typedef void (*PF)(PV);

extern PV _vec_new(PV op, int n, int sz, PV f)

/J«
-

'}:/
{

3

allocate a vector of "n'" elements of size "sz"

and initialize each by a call of "f"

register int i;

register char® p;

if (op == 0) op = PV(new char[n¥*sz]);

p = (char*) op;

for (i=0; i<n; i++) (*PF(£))(PV(p+i*sz));
return PV(p);

void _vec_delete(PV op, int n, int sz, PV f)

{

register int i; s
register char* p = (char¥*) op;
for (i=0; i<n; i++) (*(PF)Ef)((PV)(pti*sz));

e

Feb 8 13:49 1985 makefile Page 1

%L% WM%b %1% %H% %T%
CC=CC

CFLAGS=-c

OSUF=.o0

0BJS=circbuf$ (0SUF) filebuf$(OSUF) in$(OSUF) out$ (OSUF) streambuf$ (OSUF)

circbuf.c
circbuf.c

filebuf.c
filebuf.c

in.c
in.c

out.c
out.c

$ (HDRS) streambuf.c
streambuf.c

HDRS=. / ./incl/stream.h
all $(0BJS)
circbuf$ (OSUF) $ (HDRS)
$(CC) S$(CFLAGS)
filebuf$ (OSUF) : $ (HDRS)
$(CC) $(CFLAGS)
in$ (OSUF) $ (HDRS)
$(CC) $(CFLAGS)
out$ (0OSUF) $ (HDRS)
$(CC) $ (CFLAGS)
streambuf$ (OSUF) :
$(CC) S$(CFLAGS)
clean
rm -f §(0OBJS) *.i =
clobber : clean

Feb 8 13:49 1985 circbuf.c Page 1

/% %% W% %% BH% %T% */ D
#include "../../incl/stream.h" -

/ L
%

Come here on a put to a full buffer. Allocate the buffer if
it is uninitialized. '

e
£y

* Returns: EQOF on error
* the input character on success
kS /
virtual int circbuf.overflow(char c)
{
if (allocate() == EOF) return EOF;
pptr = base; -
if (¢ Y= EOF) *pptr++ = c;)
return ¢ & 0377;
3
/ %
w* Fill a buffer.
* Returns: EOF on error or end of input
* next character on success
virtual int circbuf.underflow()
{
return EOF;
}
1
S

.

o

-

.
hY

Feb 8

/% %Z%

#include

13:49 1985 filebuf.c Page 1

WM% BI% %H% %T% */
"../../incl/stream.h"

/* define some UNIX calls %/

extern
extern
extern
extern
extern
extern

/7‘:

wle
”®
W%

ala
X

wta
i

int open {char *, int);

int close (int);

long lseek (int, long, int);

int read (int, char *, unsigned);
int write (int, char #, unsigned);
int creat (char *, int);

Open a file with the given mode.
Return: NULL if failure
this if success

filebuf* filebuf.open (char *name, open_mode om)

{

N, e

E

%

[
[iy

switch (om) {
case input:
fd = ::open(name, 0);
break;
case output:
fd = ::open(name, 1);
break;
case append:
if ((fd = ::open(name, 1)) >= -1) {
if (lseek(fd, 0, 2) < 0) §
(void)::close(fd);

fd = ~1;
3
} else
fd = creat(name, 664);
break;
}
if (£d < 0)
return NULL;
else {
opened = 1;
return this;
3

Empty an output buffer.
Returns: EOF on error
0 on success

int filebuf.overflow(int ¢)

if (lopened)
return EOF;

if (allocate() == EOF)
return EOQOF;

Feb

*
%
%

wle
(i3

8 13:49 1985 filebuf.c Page 2

if (pptr > base)
if (write(fd, base, pptr-base) != pptr-base)
return EOF;

pptr = gptr = base;

if (c != EOF)
*pptr++ = ¢;

return ¢ & 0377;

Fill an input buffer.
Returns: EOF on error or end of input
next character on success

int filebuf.underflow()

{

int count;

if (lopened) return EOF;

if (allocate() == EOF) return EOF;

if ((count=read(fd, base, eptr - base)) < 1) return EOF;
gptr = base;

pptr = base + count;
return *gptr & 0377;

Feb 8 13:49 1985 in.c Page 1

/% %Z% BM% %I% %H% %T% */
/'}:

C++ stream i/o source

in.c
o’
#include <ctype.h>
/*#include <stdio.h>%*/
#include "../../incl/stream.h"
##include "../../incl/common.h"

/% the predefined streams %/
filebuf cin_file = {

/*base stuff*/0, 0, 0, 0, 0, filebuf_ vtbl, /*£fd*/0, /*opened®/1
s

istream cin = { /*bp*/(streambuf*)&cin_file, /* tied_to */&cout, /*skipws*/1, /*stat

/% predefined whitespace %/
whitespace WS;

/*inline */void eatwhite (istream& is)

if (is.tied_to) is.tied_to->flush();
register streambuf *nbp = is.bp;
register char ¢ = nbp->sgetc();
while (isspace(c)) ¢ = nbp->snextc();

H
istream& istream.operator>>(whitespace& w)
{
register char c;
register streambuf *nbp = bp;
&w
if (state) return *this;
if (tied_to) tied _to->flush();
¢ = nbp->sgetc();
while (isspace(c)) ¢ = nbp->snextc();
if (¢ == EOF) state |= _eof;
return *this;
}
istream& istream.operator>>(register char& s)
/7‘:
reads characters NOT very small integers
J
{

if (skipws) eatwhite(*this);

if (state)
state |= _fail;
return *this;

Feb 8 13:49 1985 in.c Page 2

s = bp->sgetc();

if (s == EOF) {
state |= _fail|_eof;
return *this;

}

if (bp->snextc() == EOF) state |= _eof;
return *this;

H

istream& istream.operator>>(register char® s)

{
register c¢;
register streambuf *nbp = bp;

if (skipws) eatwhite(®*this);
if (state) {

state |[= _fail;
return *this;

At

ote

* get string ¥/
c = nbp->sgetc();
if (c == EOF)

S

state |= _fail;
while (!isspace(z) && ¢ != EOF) {
'3?s++ =
¢ = nbp->snextc();
}
“tg = '\O';
if (¢ == EOF) state |= _eof;
return *this;
H
istream&
istream.operator>>(long& i)
{

register c;

register ii = 0;

register streambuf *nbp = bp;
int neg = 0;

if (skipws) eatwhite(*this);

if (state) {
state |= _fail;
return *this;

}

switc? gc = nbp->sgetc()) {
case -~
case '+':

neg = c;

L

_,,,f

\
{/" N

-

7,

Feb 8 13:49 1985 in.c Page 3

¢ = nbp->snextc();

break;
case EOF:
state |= _fail;
3
if (dsdigit(c)) {
do {
ii = 1i¥10+c-'0";
} while (isdigit(c=nbp->snextc()));
i = (neg=="-") ? -ii : ii;
} else
state |= _fail;
if (¢ == EOF) state |= _eof;
return *this;
}
istream&

istream.operator>>(int& i)
long 1;
if (skipws) eatwhite(*this);
if (state) {

state |= _fail;
return *this;

3
if (*this>>1) {
i=1;
}
return *this;
H
istream&

istream.operator>>(short& i)
long 1;
if (skipws) eav-hite(*this);
if (state) {

state |= _fail;
return *this;

3
if (*this>>1) {
i=1;
3
return *this;
3
istream&

istream.operator>>(double& d)

Feb 8 13:49 1985 in.c Page 4

/%
{+]-} d* {.} d* { e|E {+|-} d+}
except that
- a dot must be pre- or succeded by at least one digit
- an exponent must be preseded by at least one digit
:':,/
{

register ¢ = 0;

char buf[256];

register char® p = buf;
register streambuf®* nbp = bp;
extern double atof(char®);

if (skipws) eatwhite(*this);

if (state) {
state |= _fail;
return *this;

3

/* get the sign */
switch (¢ = nbp->sgetc())

case EOF:
state = _eof|_fail;
return *this;
case '-'
case "+':
*.'cp-}-—}- = c;
¢ = bp->snextc();
3

/* get integral part */
while (isdigit(c)) {
7‘:p++ = ¢}
¢ = bp->snextc();

H
/% get fraction */
if (e == "'.") {
do §
:‘:p-H- = cj
¢ = bp->snextc();
} while (isdigit(e));
}
/% get exPonent */
if (c == Te' || ¢ = "E") {
';':'p++ = ¢;
switch (c = nbp->snextc()) {
case EOF:
state = _eof|_fail;
, 'return *this;
case -
case '+':

‘z'fp-§—+ = ¢
¢ = bp~>snextc();

(_J

/

N

Feb 8 13:49 1985 in.c Page 5

3

while (isdigit(c)) {
*ptt = ¢;
¢ = bp->snextc();

H
3
‘.'?p - O;
d = atof(buf);
if (¢ == EOF) state |= _eof;
return *this;
}
istream&

istream.operator>>(float& f)

double d;
if (skipws) eatwhite(*this);
if (state) ¢

state |= _fail;
return *this;

}
if (*this>>d) {
= a;
3
return *this;
}
istream&
istream.get(
register char* s, * character array to read into */
register int len, /* size of character array */
register char term /% character that terminates input ¥/

)

register c;
register streambuf *nbp = bp;

if (state) {
state |= _fail;
return *this;

3
if ((c = bp->sgetc()) == EOF) {
state |= _fail | _eof;
return *this;
3
while (c != term && ¢ != EOF && len > 1) {
*st++ = c;
¢ = nbp->snextc();
len--;
}

Feb 8 13:49 1985 in.c Page 6

*s = "\0';
if (¢ == EOF)
state |= _eof;
return *this;
3
istream&

istream.putback(

bp->sputbacke(c);
return *this;

istream&
istream.get(

register streambuf &s, /% streambuf to input to %/

register char term /%* termination character */
)
register c;
register streambuf *nbp = bp;
if (state) {
state |= _fail;
return *this;
3
if ({c¢ = bp->sgetc()) == EOF) {
state |= _fail | _eof;
return *this;
3
while (c != term && c¢ != EQOF) {
if (s.sputec(c) == EOF)
break;
¢ = nbp->snextc();
3
if (¢ == EOF)
state |= _eof;
return *this;
H
istream&

istream.operator>>(register streambuf &s) {

register c;
register streambuf *nbp = bp;

if (state) {
state |= _fail;
return *this;

}

if ((c = bp->sgetc()) == EOF) {
state |= _fail | _eof;
return *this;

3

register char ¢ /* character to put back */) {

a

\.

Feb 8 13:49 1985 in.c Page 7

while (¢ != EOF) {
if (s.sputc(c) == EQOF)
break;
¢ = nbp->snextc();

3
if (¢ == EQOF)

state |= _eof;
return *this;

3

istream& istream.operator>>(common& p)

{
}

return p.read(*this);

Feb 8 13:49 1985 out.c Page 1

/%

* %Z% WM% %1% %H% %T% */
/s‘r

C++ stream i/o source
out.c

*

/*#tinclude <stdio.h>¥/

sprintf(char®,char®* ...);
strlen(char®);
#include "../../incl/stream.h"

1"

#finclude "../../incl/common.h"

jfdefine MAXOSTREAMS 20
/ %

* This is a monumental hack which will soon become illegal. The
* initializers depend on the number of elements in the base
* type (streambuf), the virtual pointer in the base type, and the
number of elements in the derived type (filebuf). See cio.h for
* their definitions.
filebuf cout_file = §
} 0, 0, 0, 0, 0, filebuf__vtbl, 1, 1
3

char cerr_buf[l];
filebuf cerr_file = {

cerr_buf, cerr_buf, cerr_buf, cerr_buf, 0, filebuf wvtbl, 2, 1
};

ostream cout = { (streambuf?®)/#*bp*/&cout_file, /*state®/0 };
ostream cerr = { (streambuf®)/*bp*/&cerr_file, /*state*/0 };

wte
@

const cb_size = 512;
~onst fld_size = 128;

/% a circular formating buffer ¥/
char formbuf[cb_size];

char* free=formbuf;

char® max = &formbuf[cb_size-1];

note: chr(0) is "" ¥/

b

char® chr(register i, register int w) /=

{
register char®* buf = free;
if (w<=0 || fld_size<w) w = 1;
wtt; /% space for trailing 0 */

if (max < buf+w) buf = formbuf;
free = buftw;
char * res = buf;

w o= 2; /* pad */
while (w--) *buf++ ="' "',

if (<0 || 127<i) i ="' "

*buf+t = i

*buf = 0;

o

N

pe
/

L_

Feb 8 13:49 1985 out.c Page 2

}

return res;

char®* str(char® s, register int w)

register char®* buf = free;

int 11 = strlen(s);

if (w<=0 || fld_size<w) w = 11;

if (w < 11) 11 = w;

wit; /* space for traling 0 *
if (max < buf+w) buf = formbuf;

free = buf+w;

char® res = buf;

w == (11+1); /* pad */
while (w--) *buf++ = ' ';
while (*s) *buf++ = *s++;
*buf = 0;
return res;
H
char® form(char®* format ...)
{
register® ap = (int*)&format;
register char® buf = free;
if (max < buf+fld_size) buf = formbuf;
register 11 = sprintf(buf,format,ap[l],ap[2],ap[3],ap[4],ap[5],ap(6],ap[7],
if (0<11 && 11<1024) /* length */
else if zbuf<(char*)ll && (char®)11<buf+1024) /% pointer to trailing 0 %/
11 = (char*)11 - buf;
else
11 = strlen(buf);
if (fld_size < 11) exit(10);
free += (11+1);
return buf;
}
const char al0 = 'a'-10;

char* hex(long i, register w)

{

int m = sizeof(long)*2; /% maximum hex digits for a long */
if (w<0 || fld_size<w) w = 0;

int sz = (w?w:m)+1;

register char®* buf = free;

if (max < buf+sz) buf = formbuf;

register char® p = buf+sz;

free = p+l;
p-- = 0; / trailing 0 */
if (w) {

do {

register h = i&0xf;
#p-- = (h < 10) ? h+'0' : h+al0;

Feb 8 13:49 1985 out.c Page 3

} while (w-- && (1>>—4)),

while (w--) *p-- = H
else {
do {
register h = i&0xf;
*p-- = (h < 10} ? h+'0' : ht+alO;
} while (i>>=4);
}
return p+l;
H
char®* oct(long i, int w)
int m = sizeof(long)¥*3; /% maximum oct digits for a long */
if (w<0 || fld_size<w) w = 0;

int sz = (w?w:m)+1;

register char® buf = free;

if (max < buf+sz) buf = formbuf;
register char® p = buftsz;

free = p+l;
*p-- = 03 /% trailing 0 */
if (w) {
do {
register h 1&07;
*p-- = h+'0'
} while (w-- && (1>>~3)),
while (w=--) *p-- = ;
else {
do §

register h = 1&07;
*p-- = h+'0’
} while (i>>=3);

}
return p+l;
3
char* dec(long i, int w)
{
int m = sizeof(long)*3; /% maximum dec digits for a long */
if (w<0 || fld_size<w) w = 0; :

int sz = (w?w:m)+1;

register char® buf = free;

if (max < buf+sz) buf = formbuf;
register char® p = buf+tsz;

free = pt+l1;
*p-- = 0; /% trailing 0 */
if (w) {

do §

register h = 1410;
*p-- =h + '0'
} while (w-- && (i/= 10));

\v

_

Feb 8 13:49 1985 out.c Page &

il

FEIREN

while {w--) *p--

else {
do §
e register h = i%10;
&N“ *p-- = h + '0';
' } while (i/=10);
3
return pt+l;
3
- ostream& ostream.operator<<{char¥* s)

H

register streambuf® nbp = bp;
if (state) return *this;

if (*s == 0) return *this;
do
if (nbp->sputc(*s++) == EOF) {
state |= _eof|_fail;
break;

3
while (¥s);
if (*(s-1)=="\n') flush(); /* fudge due to lack of destructors for static¥*
return *this;

3

(\ﬂ ostream& ostream.operator<<(long i)
{
register streambuf® nbp = bp;
register long j;
char buf[32];
register char *p = buf;

if (state) return *this;

if (i < 0) {
nbp->sputc('-");
j= -1

} else
j=1;

do {

*pt+ = '0' + j%10;
j = 3/10;
} while (j > 0);
do {
if (nbp->sputc(¥*--p) == EOF) {
state |= _fail | _eof;
break;

3
o } while (p != buf);
(w return *this;

3

ostream& ostream.put(char c)

=

“

Feb 8 13:49 1985 out.c Page 5

{
if (state) return *this;
if (bp->sputc(c) == EOF) state |= _eof|_fail;
return *this;

3

ostream®& ostream.operator<<{double d)
register streambuf® nbp = bp;
char buf[32];
register char #*p = buf;

if (state) return *this;

sprintf(buf,"%g",d);

while (¥p != "\0")
if (nbp->sputc(¥p++) == EOF) {
state |= _eof|_fail;
} break;

return *this;

3
ostream& ostream.operator<<(streambuf& b)

register streambuf® nbp = bp;
register int c;

if (state) return *this;
c = b.sgetc();

while (c != EOF) {
if (nkp->sputc(c) == EOF) {

state |= _eof|_fail;
break;
H
¢ = b.snextc();
3
return *this;
}
/7‘:
* empty out an output buffer
ate
%/

ostream& ostream.flush() {
bp->overflow(EOF);
return *this;

/:':
* cleanup on exit.

7':/

—

~,

M

Feb 8 13:49 1985 out.c Page 6

void _cleanup();

void _Cleanup()

{
/* flush the stream file buffers
cout. flush();
cerr.flush();
/* flush stdio */
_cleanup();

}

void _Exit(int code)

{
_Cleanup();
exit(code);

3

-L/
o

Feb 8 13:49 1985 streambuf.c Page 1

/% %Z% WM% %1% %H% %T% */

#include "../../incl/stream.h"

/'.’:

* Allocate some space for the buffer.
* Returns: EQOF on error

* 0 on success

:‘c/

int streambuf.allocate()

if (base == NULL) {

if ((base = new char[BUFSIZE]) != NULL) {
pptr = gptr = base;
eptr = base + BUFSIZE;
alloc = 1;
return 0;

} else
return EOF;

}

return O;

}

/%

* Come here on a put to a full buffer. Allocate the buffer if
* it is uninitialized.

* Returns: EOF on error

* the argument on success

*/
virtual int streambuf.overflow(int c)
{
if (allocate() == EOF) return EOF;
if (c != EQF) *pptr++ = c;
return c&0377;
}
/%
* Fill a buffer.
* Returns: EOF on error or end of imput
* next character on success
7':/

virtual int streambuf.underflow()

return EOF;

&v/

N

e

Feb 8 13:54 1985 makefile Page 1

%Z% %M% %1% %H% %T%

CC=CC
CFLAGS=-c
OSUF=.0

OBJS=0bj$ (OSUF) qhead$(0OSUF) qtail$(0OSUF) sched$ (OSUF) \
sim$ (OSUF) task$(0OSUF) timer$(OSUF) swap$(0OSUF)

HDRS=../../incl/task.h

all

obj$ (OSUF)

ghead$ (OSUF)

qtail$ (OSUF)

sched$ (OSUF)

sim$ (OSUF)

task$ (OSUF)

timer$ (OSUF)

swap$ (OSUF)

clean

clobber :

$ (0BJS)

$ (HDRS)
$(CC) $(CFLAGS)

: $ (HDRS)
$(CC) §$(CFLAGS)

: $ (HDRS)
$(CC) $(CFLAGS)

: $ (HDRS)
$(CC) $(CFLAGS)

: $ (HDRS)
$(CC) $(CFLAGS)

: $ (HDRS)
$(CC) $(CFLAGS)

: $ (HDRS)
$(CC) $(CFLAGS)

if vax; \

then $(CC) $(CFLAGS) vax_swap.s ; mv vax_swap.o swap$(0SUF) ; \

obj.c
obj.c

ghead.c
ghead.c

qtail.c
qtail.c

sched.c
sched.c

sim.c
sim.c

task.c
task.c

timer.c
timer.c

else >swap$(OSUF) ; \

fi

rm ~-f §$(OBJS) *

clean

i *.e

Feb 8 13:54 1985 obj.c Page 1
/% %Z% WG %1% BH% %T% %/ | D,
#include "../../incl/task.h"
object.~object()
if (o_link) task_error(E_OLINK,this); ,J)

if (o_next) task_error(E_ONEXT,this);
} /% delete ¥/

/* note that a task can be on a chain in several places
*/
/% object.remember() ... ¥/
void object.forget(register task® p) y)
/* remove all occurrences of task® p from this object's task list %%/ '
{
register olink®* 11;
register olink* 1;
if (o_link == 0) return;
while (o_link->1_task == p) {
11 = o_link;
o_link = 11->1_next;
delete 11;
if (o_link = 0) return;
s
}
1 = o_link; —
while (11 = 1->1_next) f{
if (11->1_task == p) {
1->1_next = 11->1_next;
delete 11;
}
else 1 = 11;
3
H

void object.alert()
/* prepare IDLE tasks on this object for sceduling */

i_,«’j

register olink¥* 1;
for (l=o_link; 1; 1=1->1_next) {

register task®* p = 1->1_task;
if (p->s_state == IDLE) p->insert(0,this);

3

void object.print(int n)

{ J

int m = n & ~CHAIN;

switch (o_type) {

/»ﬂ, \
i

Feb 8 13:54 1985 obj.c Page 2

case QHEAD:
((ghead*) this)->print(m);

break;
case QTAIL:
((qtail*) this)->print(m);
break;
case TASK:
((task®) this)->print(m);
break;
case TIMER:
((task*) this)=->print(m);
break;
default:
| printf("object (o_type==%d): ",o_type);
if (n&VERBOSE) {
olink* 1;
printf("remember_chain:\n");
} for (l=o_link; 1; 1=1->1_next) 1->1_task->print(m);

if (n&CHAIN) {
if (o_next) o_next->print(n);

3
printf("\n");

Feb 8 13:54 1985 ghead.c Page 1

/™ %Z% UM% %1% %H% %T% *
#include "../../incl/task.h"

/% a qhead's qh_queue has its pointer q_ptr pointing the last
element of a circular list, so that q_ptr->o_next is the
first element of that list.

STRUCTURE :

ghead <--> oqueue <--> qtail (qhead and qtail are independent)
oqueue --> circular queue of objects

"pen and paper is recommended when trying to understand
the list manipulations."

*/
2

/* construct ghead <--> (possible)oqueue --> 0 */
ghead.ghead(int mode, int max) : (QHEAD)
{

if (0 < max) {
gh_queue = new oqueue(max);
gh_queue->q_head = this;

¥

gh_mode = mode;

/* destroy q if not pointed to by a qtail */
ghead.~ghead()
{

oqueue* q = gqh_queue;

if (g->q_tail)
q->q.head = 0;
else
delete q;

/* remove and return cobject from head of q */
object® ghead.get()
{

register oqueue®* q = gh_queue;
11:
if (g->q_count) {
register object® oo = gq->q_ptr;
register object® p = oo->o_next;
oco->o_next = p->o_next;
p->o_next = 0;
if (g->q_count-- == g->q_max) {
qtail* t = gq->q_tail;
if (t) t->alert();
33

return p;

s

e

Feb 8 13:54 1985 ghead.c Page 2

switch (qh_mode) {

case WMODE:
remember (thistask);
thistask->sleep();
forget(thistask);
goto 11;

case EMODE:
task_error (E_GETEMPTY,this);
goto 11;

case ZMODE:

y return 0;

3

/¥ create a tail for this queue */
qtail®* ghead.tail()
{

oqueue® q = gh_queue;
register qtail* t = g->q_tail;

if (t == 0) {
t = new qtail(gh_mode,0);
q->q_tail = t;
t->qt_queue = q;

3

return t;

/% make room for a filter upstream from this ghead */

/* result: (this)ghead<-->newq (new)qghead<-->o0ldq ?<-->qtail? ¥/
ghead®* gqhead.cut()

{

oqueue* oldq = gh_queue;
ghead* h = new ghead(qh_mode,oldq->q_max);
oqueue® newqg = h->gh_queue;

oldgq->q_head = h;
h->gh_queue = oldqg;

gh_queue = newq;
newg->q_head = this;

return h;

/* this gqhead is supposed to be upstream to the gtail t
add the contents of this's queue to t's queue
destroy this, t, and this's queue
alert the spliced gqhead and qtail if a significant state change happened
*/
void ghead.splice(qtail®* t)
{

oqueue* gt = t->qt_queue;

Feb 8 13:54 1985 ghead.c Page 3

oqueue® gh = gh_queue;

int gqtcount = gt->g_count;
int ghcount = gh->q_count;
int halert = (gtcount==0 && ghcount); /* becomes non-empty */
int talert = (gh->gq_max <= ghcount && ghcount+qtcount<qt->qg_max);
/* becomes non-full */
if (ghcount) {
object* ooh = qh->q_ptr;
object* oot = qt->q _ptr;
qt->q_ptr = ooh; '
if (gtcount) { /* add the contents of gh to qt */
object® tf = oot->o_next;
oot->o_next = ooh->o_next;

ooh~->0_next tf;
}
qt->g_count = ghcount + gtcount;
gh->q_count = 0;
H
(gqh~>q_tail)->qt_queue = qt;
qt->q_tail = gh->q_tail;
gh->q_tail = 0;
delete t;

delete this;
if (halert) gqt->q_head->alert();
if (talert) qt->q_tail->alert();

b3
o

/¥ insert new object at head of queue (after queue->q_ptr)
int ghead.putback(object®* p)
{

oqueue®* q = gh_queue;

if (p->o_next) task_error(E_BACKOBJ,this);
11:
if (gq->q_count++ < gq->q_max) {
if (q->q_count == 1) {
q->q.ptr = p;
p->o_next = p;

else {
object* oo = q->q_ptr;
p->o_next = oco->o_next;
oo~->o_next = pj;

return 1;

}

switch (gh_mode) {
case WMODE:
case EMODE:
task_error (E_BACKFULL,this);

N

g

a8

(

Feb 8 13:54 1985 qhead.c Page &

goto 11;
case ZMODE:

return 0;
H

void ghead.print(int n)
oqueue® q = gh_queue;

printf("qhead (%d): mode=%d, max=%d, count=%d, tail=%d\n",
this,qh_mode,q->q_max,q->q_count,q->q_tail);

if (n&VERBOSE) {
int m = n & ~(CHAIN|VERBOSE);
if (q->qg_tail) {
printf("\ttail of queue:\n'");
} g->q_tail->print(m);

q->print(m);

void oqueue.print(int n)
object® p = q_ptr;
if (q_count == 0) return;
printf("\tobjectects on queue:\n");
do {
p->print(n);
= p~>o_next;

} while (p != q_ptr);

printf("\n");

Feb 8 13:55 1985 qtail.c Page 1

/% BL% %M¥% %1% %H% UT% */
#include "../../incl/task.h"

/* construct qtail <--> oqueue ¥/
qtail.gtail(int mode, int max) : (QTAIL)
{

if (0 < max) {
qt_queue = new class oqueue(max);
} qt_queue->q_tail = this;
5
qt_mode = mode;

}

/* destroy q if not also pointed to by a qhead */
qtail.~qtail()
¢

oqueue®* q = qt_queue;

if (g->q_head)
g->q_tail =
else
delete q;

/* insert object at rear of gq (becoming new value of oqueue->gq_ptr) *

int qtail.put(object® p)
{

11:

register oqueue®* g = qt_queue;
if (p->o_next) task_error(E_PUTOBJ,this);

if (g->q_count < g->q_max) {
if (g->q_count++) {
register object®* oo = q->q_ptr;
p->o_next = oo->o_next;
g->q_ptr = oo->o_next = p;

else {
ghead® h = g->q_head;
q->q.ptr = p->o next = p;
} if (h) h->alert();
return 1;
}
switch (gqt_mode) {
case WMODE:
remember (thistask);
thistask->sleep();
forget(thistask);
goto 11;
case EMODE:
task_error (E_PUTFULL,this);
goto 11;
case ZMODE:

_/

/

Feb 8 13:55 1985 qtail.c Page 2

return Q;

a

(W, /* create head for this q */
ghead®* qtail.head()
{

oqueue* q = qt_queue;
register ghead* h = g->q_head;

if (h == 0) {
h = new gqhead(qt_mode,0);
- q->q.head = h;
Qv‘ } h->gh_queue = q;

return h;

/* result: ?qhead<-->? oldg<-->(new)qtail newg<-->(this)qtail #*/
qtail® qtail.cut()

oqueue®* oldq = gt_queue;
qtail* t = new qtail(gt_mode,o0ldq->q_max);
oqueue® newq = t->qt_queue;

(; t->qt_queue = oldg;
oldg->qg_tail = t;

newq->q_tail = this;
gt_queue = newq;

return t;

ot
w

this gqtail is supposed to be downstream from the ghead h */
void qtail.splice(ghead®* h)

{
h->splice(this);
(H
void qtail.print(int n)
{
int m = qt_queue->q_max;
int ¢ = gqt_queue->q_count;
class ghead * h = qt_queue->q_head;
o printf("qtail (%d): mode=%d, max=%d, space=%d, head=%d\n",
(Mv this,qt_mode,m,m-c,h);

if (n&VERBOSE) {
int m = n & ~(CHAIN|VERBOSE);

Feb 8 13:55 1985 qtail.c Page 3

if (h) {
printf("head of queue:\n");
h->print{m);

}

qt_queue->print(m);

!
_//

-

(M

Feb 8 13:55 1985 sched.c Page 1

/% %Z% TM% %I% %H% %T% */
#include "../../incl/task.h"

void setclock(long t)

{
if (clock) task_error(E_SETCLOCK,0);
clock = t;

int in_error = 0;

int task_error(int n, object® oo)

{
if (in_error)
exit(in_error);
else
in_error = n;
if (error_fct) {
n = (¥error_fct)(n,o0);
if (n) exit(n);
else {
print_error(n);
exit(n);
3
in_error = 0;
return 0;
}

char® erﬁgrmname[} = {

3
"object.delete(): has chain",
"object.delete(): on chain",
"ghead.get(): empty",
"gqhead.putback(): object on other queue",
"ghead.putback(): full",
"qtail.put(): object on other gueue",
"qtail.put(): full",
"set_clock(): clock!=0",
"schedule(): clock_task not idle",
"schedule: terminated",
"schedule: running",
"schedule: clock<0",
"schedule: task or timer on other queue",
"histogram.new(): bad arguments',
"task.save(): stack overflow",
"new: free store exhausted",
"task.new(): bad mode",
"task.delete(): not terminated",
"task.preempt(): not running",
"timer.delete(): not terminated",
"schedule: bad time",
"schedule: bad object”,
"queue.delete(): not empty",
"thistask->result()",

Feb 8 13:55 1985 sched.c Page 2

"task.wait(thistask)",
3

void print_error(int n)

{
register i = (n<l || MAXERR<n) ? O : n;
printf("\n\n¥*¥%* task_error(%d) %s\n",n,error_name[i]);

if (thistask) ¢{
printf("thistask: ");
thistask->print (VERBOSE | STACK) ;

if (run_chain) {
printf("run_chain:\n");
run_chain->print (CHAIN);

} /* task_error */

sched® run_chain
task® task_chain
long clock = 0;
task® thistask = 0;
task®™ clock_task = 0;
PFIO error_fct = 0;
/*PFI0 sched_fct = 0;%/
PFV exit_fct = 0;

0;
0;

i

void sched.cancel(int res)

if (s_state==RUNNING) remove();
s_state = TERMINATED;

s_time = res;

alert();

3

int sched.result()
/% wait for termination and retrieve result %/

{
if (this == (sched*)thistask) task _error(E_RESULT,0);
while (s_state != TERMINATED) {
remember (thistask);
thistask->sleep();
forget(thistask);
3
return (int) s_time;
}

void sched.schedule()
/% schedule either clock_task or front of run_chain */

{
register sched® p;
register long tt;

{‘“‘\

Feb 8 13:55 1985 sched.c Page 3

111:

if (p = run_chain) {
run_chain = (sched?*) p->o_next;

p->o_next

else {
if (exit_fct) (Fexit_fct)();
exit(Q);

}

tt = p->s_time;
if (tt != clock)
if (tt < clock) task_error(E_SCHTIME,this);
clock = tt;
if (clock_task) {
if (clock_task->s_state = IDLE)
task_error (E_CLOCKIDLE,this);
/* clock_task preferred */
p->o_next = (object®) run_chain;
run_chain = p;
p = (sched*) clock_task;

3

switch (p->o_type) {
case TIMER: /* time is up; "delete" timer & schedule next task */
p->s_state = TERMINATED;
p->alert();
goto 111;
case TASK:
if (p != this) ¢
if (thistask && thistask->s_state != TERMINATED)
thistask->save();
thistask = (task®) p;
; thistask->restore();
break;
default:
task_error(E_SCHOBJ,this);

3
} /* schedule */

void sched.insert(int d, object® who)

e
«

v'c/
{

schedule THIS to run in ~°d'' time units
inserted by who

register sched * p;
register sched * pp;
register long tt = s_time = clock + d;

switch (s_state) {

case TERMINATED:
task_error (E_RESTERM,this);
break;

Feb 8 13:55 1985 sched.c Page &

case IDLE:
break;
case RUNNING:

3
if (d<0) task_error(E_NEGTIME,this);

if (this != (class sched *)thistask) task_error(E_RESRUN,this);

if (o_next) task_error(E_RESOBJ,this);

s_state = RUNNING;
if (o_type == TASK) ((task *) this)->t_alert = who;

/* run_chain ordered by s_time */
if (p = run_chain) {
if (tt < p->s_time) §
o_next = (object®) run_chain;
run_chain = this;

else {
while (pp = (sched *) p->o_next) f{
if (tt < pp->s_time) {
o_next = pp;
p->o_next = this;
} return;
} else p = pp;
p->o_next = this;
3
3
else

run_chain = this;

3

void sched.remove()
/* remove from run_chain and make IDLE #*/

{
register class sched * p;
register class sched * pp;
if (p = run_chain)
if (p == this)
run_chain = (sched*) o_next;
else
for (; pp = (sched¥*) p->o_next; p=pp)
if (pp == this) {
p->o_next = pp->o_next;
goto 11;
H
11:
s_state = IDLE;
o_next = 0;
}

void sched.print(int n)

7N
T

Feb 8 13:55 1985 sched.c Page 5

{
int m = n & ~CHAIN;
switch (o_type) {
case TIMER:
((timer*)this)->print(m);
break;
case TASK:
((task*)this)->print(m);
break;
3
if (n&CHAIN) {
if (o_next) ((sched®) o_next)->print(n);
3

Feb 8 13:55 1985 sim.c Page 1

/% %Z% WM% %1% %BH% %T% */
#include "../../incl/task.h"

histogram.histogram{int nb, int 11, int rr)

{

3

register int i;

if (rr<=11 || nb<l) task_error(E_HISTO,0);
if (nb%2) nb+;

while ((xrr-11)%nb) rr++;

binsize = (rr-11)/nb;

h = new int[nb];

while (h == 0) task_error(E_STORE,0);
for (i=0; i<nb; i++) h[i] = O;

1 =11

r = rr;

nbin = nb;

sum = 0;

sgsum = 0;

void histogram.add(int a)
/% add a to one of the bins, adjusting histogram, if necessary */

3

/.»

‘.’:/
{

register int i, j;

/* make 1 <= a < r, */
* possibly expanding histogram by doubling binsize and range ¥/
while (a<1) {
1 -=1r - 1;
for (i=nbin-1, j=nbin-2; 0<=j; i--, j-=2) h{i] = h[j] + h[j+1];
while(i >= 0) h[i--] = 0;
binsize += binsize;

while (r<=a) {
r4+=r - 1
for (i=0, j=0; i<nbin/2 ; i++, j+=2) h[i] = h[j] + h[j+1];
while (i < nbin) h[i++] = 0;
binsize += binsize;
H
sum += a;
sqsum += a * a;
h[(a=1)/binsize]++;

void histogram.print()

printout non-empty ranges

register int i;
register int x;
int d = binsize;

for (i=0; i<nbin; i++) {
if (x=h[i]) {
int 11 = 1+d*i;

_/

N

N

I

\x

N

Feb 8 13:55 1985 sim.c Page 2

printf("[%d:%d) : %d\n",11,11+d,x);
3
}

e
w

int erand.draw()

int k;
float a;

for (k=0;;k++) {
register float ul, u2;
a = ul = fdraw();
do {
u2 = fdraw();

if (ul < u2) return (int) k+a;
ul = fdraw();
} while (ul<u2);

Feb 8 13:55 1985 task.c Page 1

/% %Z% %M% %1% %H% %Th */
#include "../../incl/task.h"
/¥ macros giving the addresses of the stack frame pointer
and the program counter of the caller of the current function

given the first local variable

TOP points to the top of the current stack frame
given the last local variable

*/

#ifdef pdpll

jidefine FP() (&_that+4)
f#fdefine OLD_FP(fp) (*fp)
jfdefine TOP(var9) (&var9)
ffelse

/* This used to be an if vax. There should probably be a change
for the 3B's */

#define FP(p) ({(int*) (&p+1))

f#idefine OLD_AP(fp) (*(£fp+2))

fidefine OLD_FP(fp) (*(£fp+3))

#define TOP(p) top (&p)

extern int * top(...);

ffendif

f#idefine SETTRAP() t_trap = *(t_basep-t_stacksize+l)

jtdefine CHECKTRAP() if (t_trap != *(t_basep-t_stacksize+l)) task _error(E_STACK,
int _hwm;

class team

friend task;

int no_of_tasks;
task® got_stack;
int¥ stack;

team(task®*, int = 0);
~team() { delete stack; }
13
team.team(task®™ t, int stacksize) {
no_of_tasks = 1;
got_stack = t;
if (stacksize) {
stack = new int[stacksize];
while (stack == 0) task_error(E_STORE,0);

void usemainstack()

.,

—

Feb 8 13:55 1985 task.c Page 2

/* fudge to allow simple stack overflow check %/
register v[SIZE+100];

if (_hwm)
for (register i=0;i<SIZE+100;i++) v[i] = UNTOUCHED;
else
v[0] = 0;
}

void copy_stack(register® f, register c, register® t)
/%
copy ¢ words down from f to t
do NOT attempt to copy "copy_stack"'s own stackframe

'k/

{
while (c--) { *t-~ = *f--;}

3

void task.swap_stack(int* p, int® ta, int* de, int¥* pa, int* ap)
int x = pa-TOP(x)+1; /% size of active stack */
copy_stack(pa,x,p);
X = pa-p; /% distance from old stack to new */
t_framep = ta-x; /% fp on new frame */

/% now doctor the new frame */
ffifdef vax
OLD_AP(t_ framep) = int(ap-x);

ffendif

il

OLD_FP(t_riramep)
restore();

int(de-x);
}
task.task(char® name, int mode, int stacksize) : (TASK)

/v'f

executed in the task creating a new task - thistask.

1: put thistask at head of scheduler queue,
2: create new task
3: transfer execution to new task

derived::derived can never return - its return link is destroyed

if thistask==0 then we are executing on main()'s stack and
should turn it into the "main' task

7‘:/
{
int* p;
int® ta_fp = (int*)FP(p);
int* de_fp = (int*)OLD_FP(ta_fp);

#fifndef pdplil
/% xxx changed from ifdef vax %/
int* de_ap = (int*)OLD_AP(ta_fp);
f#fendif
int* pa_fp = (int*)OLD_FP(de_fp);
int x;

t_name = name;

Feb 8 13:55 1985 task.c Page 3

t_mode = (mode) ? mode : DEDICATED;
t_stacksize = (stacksize) ? stacksize : SIZE;

t_size = 0; /% avoid stack copy at initial restore %/
t_alert = 0;
s_state = RUNNING;

t_next = task_chain;
task_chain = this;
th = this; /* fudged return value -- "returned" from swap */

switch ((int)thistask) {

case O:
/* initialize task system by creating "main'" task */
thistask = (task¥®) 1;
thistask = new task("main");

break;

case 1:
/* create "main" task ¥
usemainstack(); /* ensure that store is allocated */
t_basep = (int*)OLD_FP(pa_fp); /* fudge, what if main

is already deeply nested

t_team = new team(this); /% don't allocate stack */
t_team->no_of_tasks = 2; /* never deallocate %/
return;

thistask->th = this; /* return pointer to '"child" ¥/

thistask->t_framep = de_fp;
thistask~>insert(0,this);

switch (t_mode) {
case DEDICATED:
t_team = new team(this,t_stacksize);
t_basep = t_team->stack + t_stacksize - 1;
if (_hwm) for (x=0; x<t_stacksize; x++)
t_team->stack[x] = UNTOUCHED;
thistask = this;
swap_stack(t_basep,ta_fp,de_fp,pa_fp,de_ap);
case SHARED:
thistask=->t_mode = SHARED; /¥ you cannot share on your own */
t_basep = pa_f£fp;
t_team = thistask->t_team;
t_team->no_of_tasks++;
t_framep = ta_fp;
if (mode==0 && stacksize==0)
t_stacksize = thistask->t_stacksize - (thistask->t_basep -
thistask = this;

return;
default:
task_error (E_TASKMODE,this);
3
H
void task.save()
/7‘:

~~

save task's state so that ““restore'' can resume it later
by returning from the function which called "save"

NI

N

Feb 8 13:55 1985 task.c Page &

}

- typically the scheduler

int* x;
register® p = (int*)FP(x);

t_framep = (int*)OLD_FP(p);
CHECKTRAP();

if (t_mode == SHARED) ¢
register int sz;
t_size = sz = t_basep - p + 1;
p = new int[sz];
while (p == 0) task_error(E_STORE,();
t_savearea = &p[sz-1];
copy_stack(t_basep,sz,t_savearea);

3

extern int rr2,rr3,rr4;
int rr2,rr3,rr4;

swap (task®);
sswap (task®);

void task.restore()

/.L
kY

e o
~

make "this" task run after suspension by returning from the frame
denoted by "t_framep"

the key function "swap" is written in assembly code,
it returns from the function which "save'd the task
- typically the scheduler

"sswap'" copies the stack back from the save area before "swap'ing
arguments to "sswap' are passed in rr2,rr3,rr4 to avoid overwriting them
it is equivallent to "copystack" followed by ''swap".

register sz;

SETTRAP();

if ((t_mode == SHARED) && (sz=t_size)){
register®* p = t_savearea - sz + 1;

register x = (this != t_team->got_stack);
t_team->got_stack = this;
delete p;
if (x) {
rr4 = (int) t_savearea;
rr3 = sz;
rr2 = (int) t_basep;
sswap(this);
}
else

Feb 8 13:55 1985 task.c Page 5

swap(this);

else
swap(this);

3

void task.cancel(int val)

ata
3

TERMINATE and free stack space

% /
{
sched: :cancel(val);
if (Lhwm) t_size = curr_hwm();
if (t_team->no_of_tasks-- == 1) delete t_team;
3
task.~task()
/ W
free stack space and remove task from task chain
& /
{
if (s_state != TERMINATED) task_error(E_TASKDEL,this);
if (this == task_chain)
task_chain = t_next;
else §
register task* t;
register task¥® tt;
for (t=task_chain; tt=t->t_next; t=tt)
if (tt == this) {
t->t_next = t_next;
break;
3
3
if (this == thistask) {
delete (int*) thistask; /% fudge: free(_that) %/
thistask = 0;
schedule();
}
$
void task.resultis(int wval)
{
cancel(val);
if (this == thistask) schedule();
H
void task.sleep()
{
if (s_state == RUNNING) remove();
if (this == thistask) schedule();
}
void task.delay{(int d)
{

]

N’

™
L

7

(O

Feb 8 13:55 1985 task.c Page 6

insert(d,this);
if (thistask == this) schedule();

int task.preempt()
if (s_state == RUNNING) {

remove();
return s_time-clock;

else §
task_error (E_TASKPRE,this);
return 0;
}
}
§har* state_string(int s)
switch (s) {
case IDLE: return "IDLE";
case TERMINATED: return "TERMINATED";
case RUNNING: return "RUNNING";
default: return 0;

3
char®* mode_string(int m)

switch(m) {

case SHARED: return "SHARED";
case DEDICATED: return "DEDICATED";
default: return 0;
H

}

void task.print(int n)

/%
**n'' values: CHAIN,VERBOSE,STACK

*k/

{

char®* ss = state_string(s_state)}
char* ns = (t_name) ? t_name : "'";

printf("task %s ",ns);
if (this == thistask)
. g %rigtf("(is thistask):\n");
else if (ss
. printf("(%s):\n",ss);
else

printf (" (state==%d CORRUPTED):\n'",s_state);

if (n&VERBOSE) {

int res = (s_state==TERMINATED) ? (int) s_time :

char® ms = mode_string(t_mode);
if (ms == 0) ms = "CORRUPTED";

printf("\tthis==%d mode=%s alert=%d next=%d result=%d\n",

Feb 8 13:55 1985 task.c Page 7

this,ms,t_alert,t_next,res);

3

if (n&STACK) {
printf("\tstack: ");
if (s_state == TERMINATED? {
if (_hwm) printf(hwm=%d",t_size);
printf(" deleted\n");

else {
int b = (int) t_basep;
int x = ((this==thistask) || t_mode==DEDICATED) ? b-(int)t_
printf("max=%d current=%d",t_stacksize,x);
if (_hwm) printf(" hwm=%d",curr_hwm());
} printf(" t_base=%d, t_frame=%d, t_size=%d\n",b,t_framep,t_s

3

if (n&CHAIN) §
if (t_next) t_next->print(n);

}
H
int task.curr_hwm()
{
int* b = t_basep;
int i;
for (i=t_stacksize-1l; 0<=i && *(b-i)==UNTOUCHED; i--) ;
return i;
}
int task.waitlist(object® a)
{
return waitvec(&a);
}
int task.waitvec(object® ¥ v)
/*
first determine if it is necessary to sleep(),
return hint: who caused return
%/
{

int i = 0;
int r;
object* ob;

while (ob = v[i++]) {

t_alert = ob;

switch (ob->o_type) {

case TASK:

case TIMER:
if (((sched*)ob)->s_state == TERMINATED) goto ex;
break;

case QHEAD:
if (((ghead*)ob)->rdcount()) goto ex;
break;

_

N

L

/

Feb 8 13:55 1985 task.c Page 8

< case QTAIL:
- if (((gtail*)ob)->rdspace()) goto ex;
break;
- ob->remember(this);

3
if (i==2 && v[0]==(object*)thistask) task_error(E_WAIT,0);

sleep();
ex:
i = 0;
while (ob = v[i++]) {
ob->forget(this);
if (ob == t_alert) r = i-1;
- 3
(return r;
T}

Feb 8 13:55 1985 timer.c Page 1

/% %2% *M% %1% %H% %BT% */
#include "../../incl/task.h"

timer.timer(int d) : (TIMER)

{
s_state = IDLE;
insert(d,this);
}
timer.~timer{)
{
if (s_state != TERMINATED) task_error(E_TIMERDEL,this);
3
void timer.reset(int d)
{
remove();
insert(d,this);
3

void timer.print(int n)
{ n;/*avoid warning¥®/
long tt = s_time;
printf("timer %1d == clock+%1ld\n",tt,tt-clock);

o

(™

Feb 8 13:55 1985 vax_swap.s Page 1

%% WMk %1% %H% %T%

the following constant is the displacement of t_framep in task

the following constant is the displacement of t_framep ia task

swap of SHARED
.globl _rxé4
.globl _rr3
.globl _rr2
.globl _sswap
.align 1
_sswap:
.word 0x0000
movl 4(ap),rl # this
movl _rrh,rs4
movl _rr3,r3
movl _rr2,r2
Li:
tstl 3
jeql L2
decl r3
movl (r4),(r2)
cmpl -(r4),-(r2)
ibr L1
L2:
movl 20(rl),fp #
movl 24(r1),r0 #
ret
.globl _swap
.align 1
_swap:
.word 0x0000
movl 4(ap),rl i
movl 20(rl),fp it
movl 24(r1),r0 #
ret
.globl _top
.align 1
top:

.word 0x0000
addl3 $1, (ap),x0
ashl $2,r0,r0
addl2 ap,xr0

ret

fp = this->t_framep
fudge return -- this->th

rl = this

fp = this->t_framep
fudge return -- this->th

	lib master makefile
	complex makefile
	abs.c
	arg.c
	cos.c
	error.c
	exp.c
	io.c
	log.c
	oper.c
	polar.c
	pow.c
	sin.c
	sqrt.c
	new makefile
	_delete.c
	_handler.c
	_new.c
	_vec.c
	stream makefile
	circbuf.c
	filebuf.c
	in.c
	out.c
	streambuf.c
	task makefile
	obj.c
	qhead.c
	qtail.c
	sched.c
	sim.c
	task.c
	timer.c
	vax_swap.s

