

C

(-
\,

xx
xx
xx
xx
799 - laserl Sat Feb 9 19:41:33 EST 1985

ARGS: [-C -d -fp -oorig=c++ -otime=476843667]
NAME: [c++]
PASSCOMM: [s fbc ! c++: D. Swartout:: lpbin=m13: home=bc]
copies: [1]
ctime: [7]
files: [/usr/spool/lp/request/laser/d0-9681]
job: [laser-9005]
lpbin: []
mach: [sfbc (laser-9005)]
mail: []
originator: [c++]
printer: [laserl]
printtime: [476843932]
request: [laser-9681]
route: [nsc]
sequence: [799]
subtime: [47684366 7]
title: []
transit: [4]
version: [08-02-84]

C

C

C

Feb 8 13:31 1985 makefile Page 1

%Z% %M% %I% %H% %T%

Lib master makefile.

CC=CC
OSUF=.o

all:
cd complex ; make CC=$(CC) OSUF=$(0SUF)
cd stream ; make CC=$(CC) OSUF=$(0SUF)
cd task; make CC=$(CC) OSUF=$(0SUF)
cd new; make CC=$(CC) OSUF=$(0SUF)
ar er libC.a */*$(0SUF)

clean:
cd complex; make clean
cd stream; make clean
cd task ; make clean
cd new; make clean

clobber: clean
rm -f libC. a

Feb 8 13:37 1985 makefile Page 1

%Z% %M% %I% %H% %T%
CC=CC
CFLAGS=-c
OSUF=.o
OBJS=abs$(0SUF) arg$(0SUF) cos$(0SUF) error$(0SUF) exp$(0SUF) io$(0SUF) \

r log$(0SUF) oper$(0SUF) polar$(0SUF) pow$(0SUF) sin$(0SUF) sqrt$(0SUF)
"'-- HDRS= .. / .. /incl/complex.h const.h

all $(0BJS)

abs$(0SUF) : $(HDRS) abs.c
$(CC) $(CFLAGS) abs.c

arg$(0SUF) : $(HDRS) arg.c
$(CC) $(CFLAGS) arg.c

('

__ cos$(0SUF) : $(HDRS) cos.c
$(CC) $(CFLAGS) cos.c

error$(0SUF) : $(HDRS) error.c
$(CC) $(CFLAGS) error.c

exp$(0SUF) : $(HDRS) exp.c
$(CC) $(CFLAGS) exp.c

io$(0SUF) : $(HDRS) io.c
$(CG) $(CFLAGS) io.c

log$(0SUF) : $(HDRS) log.c
$(CC) $(CFLAGS) log.c

oper$(0SUF) : $(HDRS) oper.c
$(CC) $(CFLAGS) oper.c

polar$(0SUF) $(HDRS) polar.c
$(CC) $(CFLAGS) polar.c

pow$(0SUF) : $(HDRS) pow.c
$(CC) $(CFLAGS) pow.c

sin$(0SUF) : $(HDRS) sin.c
$(CC) $(CFLAGS) sin.c

sqrt$(0SUF) : $(HDRS) sqrt.c
$(CC) $(CFLAGS) sqrt.c

clean
rm -f $(0BJS) --;'c. i -;'~ .. C

clobber clean

Feb 9 19:22 1985 abs.c Page 1

/* %Z% %M% %I% %H% %T% */

#include " .. / .. /incl/complex.h"
IJinclude "const. h"

double abs(complex z)
{

}

register double temp;
register doubler= z.re;
register double i = z.im;

if (r < 0) r = -r;
if (i - 0) return r;

if (i < 0) i = -i;
if (r - 0) return i;

if (i > r) {temp= r; r = i; i = temp; }
temp= i/r;
temp= r*sqrt(l.0 + temp*temp); /*overflow!!*/
return temp;

double norm(complex z)
{

register doubler= z.re;
register double i = z.im;

#define SAFE 6.521908912666391000e+18 /* 0.5*sqrt(GREATEST)*/

if (r<SAFE && i<SAFE) return r*r+i*i;
return GREATEST;

}

}
....,/

C.

Feb 8 13:36 1985 arg.c Page 1

/* %Z% %M°/4 %I% %H% %T% */

#include " .. / .. /incl/complex.h"

double arg(complex z)
{

return atan2(z.im,z.re);
}

Feb 8 13:37 1985 cos.c Page 1

/* %Z% %M% %I% %H% %T% */

#include 11
•• / •• /incl/complex. h"

#include "const.hu

complex cos(complex z)
/·l~

The cosine of z: cos(z)=cosh(iz).
*/
{

}

complex
I*

*/
{

#define
#define

}

complex y(-z.im, z.re);
return cosh(y);

cosh(complex z)

The complex hyperbolic

double cosh_x, sinh_x,

COSH_GOOD le7
COSILHUGE le38

cosine of z

cos_y, sin_y;

if (z.re > MAX_EXPONENT) {
complex_error(C_COSILRE, z.re);
cosh_x = sinh_x = COSILHUGE;

}
else if (z.re < MIN_EXPONENT) {

cornplex_error(C_COSH_RE, z.re);
cosh_x = COSH_HUGE;

}
else {

}

sinh_x = -COSH_HUGE;

double pos_exp = exp(z.re);
double neg_exp = 1/pos_exp;
cosh_x = (pos_exp + neg_exp)/2;
sinh_x = (pos_exp - neg_exp)/2;

if (ABS(z.irn) > COSH_GOOD) {
complex_error(C_COSH_IM, z.im);
cos_y = sin_y = O;

}
else {

}

cos_y = cos(z.irn);
sin_y = sin(z.im);

return complex(cos_y-.'rcosn...x, sin_y-;'rsinh_x);

_)

C

C

C

Feb 8 13:37 1985 error.c Page 1

/* %Z% %M% %I% %H% %T% */
#include" .. / .. /incl/complex.h"

void complex_error(int err, double)
{

errno = err;
}

Feb 8 13:37 1985 exp.c Page 1

/* %Z% %M% %I% %H% %T% */

#include" .. / .. /incl/complex.h"
#include "const.h"

complex exp(complex z)
/;'f:

The complex exponentiation function: e-;h',z, e being 2. 718281828 ...

In case of overflow, return EXPHUGE with the appropriate phase.
In case of underflow return 0.
In case of ridiculous input to "sin" and "cos", return O.

*I
{

complex answer;
double radius, sin_theta, cos_theta;

#define EXPHUGE le38
#define EXPGOOD le7

}

if (z.re > MA}{_EXPONENT) {
complex_error(C_EXP_RE_POS, z.re);
radius= EXPHUGE;

}
else if (z.re < MIN_EXPONENT) {

complex_error(C_EXP_RE_NEG, z.re);
radius= O;

}
else {

radius= exp(z.re);
}

if (z.im > EXPGOOD I I z.im < -EXPGOOD) {
complex_err ... r(C_EXP_IM, z. im);
sin_theta = cos_theta = O;

}
else {

}

sin_theta = sin(z.im);
cos_theta = cos(z.im);

answer.re= radius* cos_theta;
answer.im =radius* sin_theta;

return answer;

)

)

Feb 8 13:37 1985 io.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/complex.h"

ostream& operator<<(ostream& s, complex a)
{

returns<<"("<<real(a)<<", "<<imag(a)<<")";
}

istream& operator>>(istream& s, complex& a)
j-1:

}

f
(f)
(f ' f)

double
char

s>>c;

re= O, im = O;
C = O;

if (c == '(') {
s>>re>>c;
if (c - ', ') s>>im>>c;
if (c != ')') s.clear(_bad);

}
else {

}

s.putback(c);
s>>re;

if (s) a= complex(re,im);
returns;

Feb 8 13:37 1985 log.c Page 1

/* %Z% %M% %I% %H% %T% */

#include " .. / .. /incl/complex. h"
#include uconst.h"

#define LOGWILD -1000
#define LOGDANGER le18
#define PERIL(t) (t > LOGDANGER I I (t < 1/LOGDANGER && t != 0))

complex log(complex z)
;,-:

}

The complex natural logarithm of "z".
If z = O, then the answer LOGWILD + O*i is returned.

Stu Feldman says that the peril tests for the follo•.ing function
are "acceptable for now", but certain things like
complex variables outside the over/underflow range
will cause floating exceptions.

complex answer;
double partial;

if (z.re = 0 && z.im == 0) {
complex_error(C_LOG_O,O);
answer.re= LOGWILD;

}
else {
1 ... -:

-;':/

}

Check for (over/under)flow, and fixup if necessary.

double x = ABS(z.re);
double y = ABS(z.im);

if (x>y && PERIL(x)) {
z.im /=x;

}

z.re /= x; /* z.re is replaced by 1 or -1 */
partial= log(x);

else if (PERIL(y)) {
z.im y; /* roles of re, im reversed from previous*/
z.re y;
partial= log(y);

}
else partial= O;

z.re*z.re and z.im*z.im should not cause problems now.

answer.im = atan2(z.im,z.re);
answer.re= log(z.re*z.re + z.im*z.im)/2 + partial;

return answer;

j

Feb 8 13:37 1985 oper.c Page 1

/* %Z% %M% %I% %H% %T% */

#include " .. / .. /incl/complex.h"
#include "const.h"

complex operator-;\-(complex al,complex a2)
{

}
return complex(al.re*a2.re-al.im*a2.im, al.re*a2.im+al.im*a2.re);

complex operator/(complex al, complex a2)
{

}

register doubler= a2.re;
register double i = a2.im;
register double ti;
register double tr;

tr= ABS(r);
ti= ABS(i);

if (tr<= ti) {
ti= r/i;

}
else {

}

tr= i * (1 + ti*ti);
r = al.re;
i = al. im;

ti= -i/r;
tr= r * (1 + ti*ti);
r = -al.im;
i = al. re;

J·lt (r, i) -.'.-/

/ .. ~ (tr, ti) -1: I

return complex((r*ti + i)/tr, (i*ti - r)/tr);

void complex.operator*=(complex a)
{

}

register doubler= re*a.re - im*a.im;
register double i = re*a.im + im*a.re;
re= r;
im = i;

void complex.operator/=(complex a)
{

complex quot, templ, temp2;

if ((temp2.re = a.re) < 0) temp2.re
if ((temp2.im = a.im) < 0) temp2.im
if (temp2.re <= temp2.im) {

temp2.im = a.re/a.im;

= -temp2.re;
= -temp2.im;

temp2.re = a.im ,~ (1 + temp2. im7rtemp2. im);
templ = -;'rthis;

}

Feb 8 13:37 1985 oper.c Page 2

}

else {

}

temp2.im = -a.im/a.re;
temp2. re = a. re -;'c (1 + temp2. im-;'rtemp2. im);
templ. re = -im;
templ.im = re;

re= (templ.re * temp2.im + templ.im) / temp2.re;
im = (templ.im * temp2.im templ.re) / temp2.re;

)

Feb 8 13:38 1985 polar.c Page 1

/* %Z% %M% %I% %H% %T% */

#include " .. / .. /incl/complex. h"

complex polar(double r, double theta)
{

return complex(r * cos(theta), r * sin(theta));
}

Feb 8 13:38 1985 pow.c Page 1

/* %Z% %M% %I% %H% %T% */

#include " .. / .. /incl/cornplex.h"

complex pow(double base, complex z)
;,'r

}

real to complex power: base**z.

register complex y;

if (base== 0) return y;

if (O < base) {

}

double lb= log(base);
y.re = z.re * lb;
y.im = z.im * lb;
return exp(y);

return pow(complex(base), z);

complex pow(complex a, int n)
j'k

complex to integer power: a,'.-,'(n.
*/
{

register complex x, p = 1;

if (n - 0) return p;

if (n < 0) {
n = -n;
X = 1/a;

}
else x = a;

for(;) {
if(n & 01) {

/* even for singularity*/

/* use complex power fct */

register double t = p.re -Ir x.re - p.im ·k x.im;
p.im = p.re * x.im + p.im * x.re;

}

}

p.re = t;
}
if(n »= 1) {

}

register doublet= x.re * x.re - x.im * x.im;
x.im = 2 * x.re * x.im;
x.re = t;

else break;

return p;

complex pow(complex a, double b)

J

(_

Feb 8 13:38 1985 pow.c Page 2

}

complex to real power: a1': 1':b.

register double logr = log(abs(a));
register double logi = atan2(a.im, a.re);
register double x = exp(b*logr);
register double y = b * logi;
return complex(x*cos(y), x*sin(y));

complex pow(complex base, complex sup)
/;':

}

complex to complex power: base**sup.

complex result;
register double logr, logi;
register double xx, yy;
double a= abs(base);

if (a= 0) return result;

logr = log(a);
logi = atan2(base.im, base.re);

xx= exp(logr * sup.re - logi * sup.im);
yy = logr * sup. im + logi -;~ sup.re;

result.re= xx* cos(yy);
result.im =xx* sin(yy);

return result;

Feb 8 13:38 1985 sin.c Page 1

/* %Z% o/oM% %I% %H% %T% */

#include " .. / .. /incl/complex.h"
#include uconst.h"

complex sin(complex z)
/*

}

sine of z: -i ·k sinh(i-;'rz)

complex y = complex(-z.im, z.re);
y = sinh(y);
return complex(y.im, -y.re);

complex sinh(complex z)
/·l(

The hyperbolic sine

double cosh_x, sinh_x, cos_y, sin_y;

#define SINll...GOOD le7
#define SINH_HUGE le38

if (z.re > MAiLEXPONENT) {
complex_error(C_SINH_RE, z.re);
cosh_x = sinh_x = SINH_HUGE;

}
else if (z.re < MIN_EXPONENT) {

complex_error(C_SINH_RE, z.re);
cosh_x = SINH_HUGE;

}
else {

}

sinh_x = -SINH_HUGE;

double pos_exp = exp(z.re);
double neg_exp = 1/pos_exp;
cosh_x = (pos_exp + neg_exp)/2;
sinh_x = (pos_exp - neg_exp)/2;

if (ABS(z.im) > SINH_GOOD) {
complex_error(C_SINH_IM, z.im);
cos_y = sin_y = O;

}
else {

}

cos_y = cos(z.im);
sin_y = sin(z.im);

;-.'.- i -;'.-z -,•.-;
/..,'> csinh(y) * /
;-.•.- - i ..,•r y .,,.-I

return complex(cos_y*sinh_x, sin_y*cosh_x);
}

Feb 8 13:38 1985 sqrt.c Page 1

/* %Z% %M% %I% o/Ji% %T% */
include " .. / .. /incl/complex. h"

#define SQRT_DANGER
define PERIL(t)

le17
(t > SQRT_DANGER II (t < 1/SQRT_DANGER && t != 0))

* 7-25-83, note from Leonie Rose -
* Stu Feldman says that the peril tests for the following function
* are "acceptable" for now, but certain things like
* sqrt(lelO + le-30*i) will cause floating exceptions.
*

complex sqrt(complex z)
{

complex
double

answer;
r_old, partial;

Check for possible overflow, and fixup if necessary.

double x = abs(z.re);
double y = abs(z.im);

if (x > y && PERIL(x)) {
z.im /= x;

}

z.re /= x; /* z.re is replaced by 1 or -1 */
partial= sqrt(x);

else if PERIL(y) {

}

z.im /= y; /* roles of z.re, z.im reversed from previous*/
z.re /= y;
partial= sqrt(y);

else partial= 1;

Main computation:
Use half angle formulas to compute angular part of the square root.
The sign of sin_old is the same as that for sin_new, which means that the
upper half plane gets mapped to the first quadrant, and
the lower half plane to the fourth quandrant.

if (r_old = sqrt(z.re*z.re + z.im*z.im)) {
double r_new =partial* sqrt(r_old);

double cos_old = z.re/r_old;
double sin_old = z.im/r_old;
double cos_new = sqrt((1 + cos_old)/2);
double sin_new = (cos_new == O)? 1: sin_old/(2*cos_new);

Feb 8 13:38 1985 sqrt.c Page 2

}

}

answer.re= r_new * cos_new;
answer.im = r_new * sin_new;

return answer;

Feb 8 13:46 1985 makefile Page 1

%Z% %M% %I% %H% %T%
CC=CC
CFLAGS=-c
OSUF=.o
OBJS=_delete$(0SUF) _handler$(0SUF) _new$(0SUF) _vec$(0SUF)
all $(0BJS)

_delete$(0SUF) _delete.c
$(CC) $(CFLAGS) _delete.c

_handler$(0SUF) _handler.c
$(CC) $(CFLAGS) _handler.c

_new$(0SUF) : _new.c
$(CC) $(CFLAGS) _new.c

_vec$(0SUF) : _vec.c
$(CC) $(CFLAGS) _vec.c

clean
rm -f $(0BJS) *.i * .. c

clobber clean

Feb 8 13:45 1985 _delete.c Page 1

/* %2% %M% %I% %H% %T% */
free(char*);
extern void operator delete(void;', p)
{

if (p) free((char*)p);
}

Feb 8 13:45 1985 _handler.c Page 1

/* %Z% %M% %I% %H% %T% */

typedef void (*PFVV)();

extern PFVV _new_handler = O;

extern PFVV set_new_handler(PFVV handler)
{

}

PFVV rr = _new_handler;
_new_handler = handler;
return rr;

Feb 8 13:46 1985 _new.c Page 1

/* %Z% %M% %I% %H% %T% */

typedef void (*PFVV)();

extern PFVV _new_handler;

extern void* operator new(/* long!!!!!!*/ unsigned size)
{

}

extern char* malloc(unsigned);
char* p;

while ((p=malloc(size))==O) {
if(_new_handler)

(*_new_handler)();
else

return O;
}
return (void*)p;

)

Feb 8 13:46 1985 _vec.c Page 1

/* %Z% o/oM% %I% %H% %T% */
typedef void* PV;
typedef void ('1:PF) (PV);

extern PV _vec_new(PV op, int n, int sz, PV f)
J;' ..

}

allocate a vector of "n" elements of size "sz 11

and initialize each by a call of "f"

register inti;
register char* p;
if (op= 0) op= PV(new char[n*sz]);
p = (char;' ..) op;
for (i=O; i<n; i++) (*PF(f))(PV(p+i*sz));
return PV(p);

void _vec_delete(PV op, int n, int sz, PV f)
{

register inti;
register char* p = (char*) op;
for (i=O; i<n; i++) (·k(PF)f)((PV)(p+i 1--sz));

}

LJ

Feb 8 13:49 1985 makefile Page 1

%Z% %M% %I% %H% %T%
CC=CC
CFLAGS=-c
OSUF=.o
OBJS=circbuf$(0SUF) filebuf$(0SUF) in$(0SUF) out$(0SUF) streambuf$(0SUF)
HDRS= .. / .. /incl/stream.h
all $(0BJS)

circbuf$(0SUF) : $(HDRS) circbuf.c
$(CC) $(CFLAGS) circbuf.c

filebuf$(0SUF) : $(HDRS) filebuf.c
$(CC) $(CFLAGS) filebuf.c

in$(0SUF) : $(HDRS) in.c
$(CC) $(CFLAGS) in.c

out$(0SUF) : $(HDRS) out.c
$(CC) $(CFLAGS) out.c

streambuf$(0SUF) $(HDRS) streambuf.c

clean

clobber

$(CC) $(CFLAGS) streambuf.c

rm -f $(0BJS) *.i * .. c

clean

Feb 8 13:49 1985 circbuf.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/stream.h"

;,~
* Come here on a put to a full buffer. Allocate the buffer if
* it is uninitialized.
* Returns: EDF on error
* the input character on success
'i'r I

virtual int circbuf.overflow(char c)
{

if (allocate()== EDF) return EDF;

pptr = base;
if (c != EDF) *pptr++ = c;

return c & 0377;
}

;,~
* Fill a buffer.

Returns:

*I

EDF on error or end of input
next character on success

virtual int circbuf.underflow()
{

return EDF;
}

Feb 8 13:49 1985 filebuf.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/stream. h"

/* define some UNIX calls*/
extern int open (char*, int);
extern int close (int);
extern long lseek (int, long, int);
extern int read (int, char*, unsigned);
extern int write (int, char*, unsigned);
extern int creat (char*, int);

/·lr

* Open a file with the given mode.
* Return: NULL if failure
* this if success
-;':/

filebuf* filebuf.open (char *name, open_mode om)
{

}

*
*I

switch (om) {
case input:

fd = ::open(name, O);
break;

case output:
fd = ::open(name, 1);
break;

case append:

}

if ((fd = ::open(name, 1)) >= -1) {
if (lseek(fd, O, 2) < 0) {

(void)::close(fd);
fd = -1;

} else

break;

J

fd = creat(name, 664);

if (fd < 0)
return NULL;

else {

}

opened = 1;
return this;

Empty an output buffer.
Returns: EOF on error

0 on success

int filebuf.overflow(int c)
{

if (!opened)
return EDF;

if (allocate()= EDF)
return EOF;

Feb 8 13:49 1985 filebuf.c Page 2

*

if (pptr > base)
if (write(fd, base, pptr-base) != pptr-base)

return EOF;

pptr = gptr = base;
if (c != EOF)

*pptr++ = c;
return c & 0377;

Fill an input buffer.
Returns: EOF on error or end of input

next character on success

int filebuf.underflow()
{

}

int count;

if (!opened) return EOF;

if (allocate()== EOF) return EOF;

if ((count=read(fd, base, eptr - base))< 1) return EOF;

gptr = base;
pptr =base+ count;
return *gptr & 0377;

C

Feb 8 13:49 1985 in.c Page 1

/* %Z% %M% %I% %H% %T% */
/;':

C++ stream i/o source

in.c
-.•: I
#include <ctype.h>
/*#include <stdio.h>*/
#include " .. / .. /incl/strearn.h"
#include " .. / .. /incl/cornmon.h"

/* the predefined streams*/
filebuf cin_file = {

} ;
/;'-base stuff;':/O, O, 0, O, 0, filebuf_vtbl, /;':fd;':/o, /;':opened;'r/1

istrearn cin = { /*bp*/(streambuf*)&cin_file, /* tied_to */&cout, /*skipws*/1, /*stat

/* predefined whitespace*/
whitespace WS;

/kin line ;': /void eatwhite (istream& is)
{

}

if (is.tied_to) is.tied_to->flush();
register streambuf *nbp = is.hp;
register char c = nbp->sgetc();
while (isspace(c)) c = nbp->snextc();

istream& istream.operator>>(whitespace& w)
{

}

register char c;
register streambuf *nbp = hp;

&w;
if (state) return *this;
if (tied_to) tied_to->flush();
c = nbp->sgetc();
while (isspace(c)) c = nbp->snextc();

if (c == EOF) state I= _eof;

return 7'this ;

istrearn& istream.operator>>(register char& s)

reads characters NOT very small integers
*/

{
if (skipws) eatwhite(*this);

if (state) {

}

state I= _fail;
return *this;

Feb 8 13:49 1985 in.c Page 2

}

s = bp->sgetc();
if (s = EOF) {

}

state I= _failj_eof;
return ';',this;

if (bp->snextc() == EOF) state I= _eof;
return -;'"this;

istream& istream.operator>>(register char* s)
{

}

register c;
register streambuf ·knbp = bp;

if (skipws) eatwhite(*this);

if (state) {

}

state I= _fail;
return ';\'this;

/* get string*/
c = nbp->sgetc();
if (c == EOF)

state I= _fail;
while (!isspace(~) && c != EOF) {

*s++ = c;
c = nbp->snextc();

if (c = EOF) state I= _eof;

return i'-'this;

istream&
istream.operator>>(long& i)
{

register c;
register ii= O;
register streambuf -;',nbp = bp;
int neg= O;

if (skipws) eatwhite(,'•this);

if (state) {

}

state I= _fail;
return ,'.-this ;

switch (c = nbp->sgetc()) {
case ' - '·
case '+':

neg= c;

)

J

Feb 8 13:49 1985 in.c Page 3

}

c = nbp->snextc();
break;

case EDF:
state I= _fail;

if (isdigit(c)) {
do {

} else

11 = ii*l0+c-'0';
} while (isdigit(c=nbp->snextc()));
i =(neg=='-')? -ii: ii;

state I= _fail;

if (c == EOF) state I= _eof;
return -.'(this;

istream&
istream.operator>>(int& i)
{

}

long l;

if (skipws) eatwhite(*this);

if (state) {
state I= _fail;
return *this;

if (*this>>l) {
i = 1;

}
return -.'.:'this ;

istream&
istream.operator>>(short& i)
{

}

long l;

if (skipws) ea·•.-.:hite(-;'-'this);

if (state) {
state I= _fail;
return -;':this;

if (*this>>l) {
i = 1;

}
return -;\-this;

istream&
istream.operator>>(double& d)

Feb 8 13:49 1985 in.c Page 4

I*
{+I-} d* {.} d* { elE {+I-} d+}
except that

- a dot must be pre- or succeded by at least one digit
- an exponent must be preseded by at least one digit

register c = 0;
char buf[256];
register char* p = buf;
register streambuf* nbp = bp;
extern double atof(char*);

if (skipws) eatwhite(*this);

if (state) {

}

state I= _fail;
return -;'.-this;

/* get the sign*/
switch (c = nbp->sgetc()) {
case EOF:

case

state= _eofl_fail;
return -;':this •

I_ I , >

case '+':
-.':p++ = c;
c = bp->snextc();

}

/* get integral part*/
while (isdigit(c)) {

'i:p++ = c;
c = bp->snextc();

}

Jo;'(get fraction i': I
if (C == f. I) {

}

do {
·l.-p++ = c;
c = bp->snextc();

} while (isdigit(c));

/* get exponent*/
if (c = ie' I I c -- 'E') {

-;'rp++ = c;
switch (c = nbp->snextc()) {
case E0F:

state= _eofj_fail;
return *this;

case ' - '·
case '+':

-;>cp++ = c;
c = bp->snextc();

Feb 8 13:49 1985 in.c Page 5

}

}

.,._,p = 0;

}
while (isdigit(c)) {

1.-p++ = c;
c = bp->snextc();

}

d atof(buf);

if (c == EOF) state I= _eof;
return -,'.-this;

istream&
istream.operator>>(float& f)
{

}

doubled;

if (skipws) eatwhite(*this);

if (state) {

}

state I= _fail;
return -;'rthis;

if (*this>>d) {
f = d;

}
return -;'.-this ;

istream&
istream.get(

) {

register char* s,
register int len,
register char term

register c;

/* character array to read into*/
/* size of character array*/
/* character that terminates input*/

register streambuf *nbp = bp;

if (state) {

}

state I= _fail;
return ,'.-this ;

if ((c = bp->sgetc()) -- EOF) {
state I= _fail _eof;
return .. ~this;

}

while (c != term && c != EOF && len > 1) {
'i'rs++ = c;

}

c = nbp->snextc();
len- - ;

Feb 8 13:49 1985 in.c Page 6

}

*s = '\O';
if (c == EOF)

state I= _eof;
return ,•:this ;

istream&
istream.putback(register char c /* character to put back*/) {

bp->sputbackc(c);
return 1:this ;

}

istream&
istream.get(

){

register streambuf &s,
register char term

register c;

/* streambuf to input to*/
/* termination character*/

register streambuf ,'i-nbp = bp;

if (state) {

}

state I= _fail;
return ,':this;

if ((c = bp->sgetc()) == EOF) {
state I= _fail I _eof;
return -;'.-this;

}

while (c != term && c != EOF) {
if (s.sputc(c) == EOF)

break;
c = nbp->snextc();

}
if (c == EOF)

state I= _eof;
return -;':this ;

istream&
istream.operator>>(register streambuf &s) {

register c;
register streambuf *nbp = bp;

if (state) {

}

state I= _fail;
return ,':this;

if ((c = bp->sgetc()) - EOF) {
state I= _fail _eof;
return *this;

}

Feb 8 13:49 1985 in.c Page 7

}

while (c != EOF) {

}

if (s.sputc(c) = EOF)
break;

c = nbp->snextc();

if (c == EOF)
state I= _eof;

return ,._.this ;

istream& istream.operator>>(common& p)
{

return p.read(*this);
}

Feb 8 13:49 1985 out.c Page 1

/* %Z% %M% %I% %H% %T% */ ;,·,
C++ stream i/o source

out.c
,·,1
/*#include <stdio.h>*/
sprintf(char*,char* ...);
strlen(char;',);
#include " .. / .. /incl/stream.h"
#include " .. / .. /incl/common.h"

#define MAXOSTREAMS 20

r-
* This is a monumental hack which will soon become illegal. The
* initializers depend on the number of elements in the base
* type (streambuf), the virtual pointer in the base type, and the
* number of elements in the derived type (filebuf). See cio.h for
* their definitions.
-.', j

filebuf cout_file = {
O, O, O, 0, O, filebuf_vtbl, 1, 1

} ;
char cerr_buf[l];
filebuf cerr_file = {

cerr_buf, cerr_buf, cerr_buf, cerr_buf, O, filebuf_vtbl, 2, 1
} ;

ostream cout = { (streambufi:)/*bp-;'t/&cout_file, ;,i:state-;'::/Q } ;
ostream cerr = { (streambuf*)/*bp*/&cerr_file, /*state*/0 };

canst
1::onst

cb_size = 512;
fld_size = 128;

/* a circular formating buffer*/
char formbuf[cb_size];
char* free=formbuf;
char* max= &formbuf[cb_size-1];

char* chr(register i, register int w)
{

register char* buf = free;

if (w<=O I I fld_size<w) w = 1;

/* note: chr(O) is nu 1·/

w++; /* space for trailing O */
if (max< buf+w) buf = formbuf;
free= buf+w;
char* res= buf;

w -= 2;
while (w--) *buf++ =' ';
if (i<O I I 127<i) i =' '
;'cbuf++ = i;
*buf = O;

C

Feb 8 13:49 1985 out.c Page 2

return res;
}

char* str(char* s, register int w)
{

register char* buf = free;
int 11 = strlen(s);
if (w<=O I I fld_size<w) w = 11;
if (w < 11) 11 = w;
w++; /* space for traling O */
if (max< buf+w) buf = formbuf;
free buf+w;
char-;': res = buf;

w -= (11+1); /*pad*/
while (w--) *buf++ =' ';
while (-;':s) -;'.-buf++ = -,•.-s++;
·kbuf = O;
return res;

}

char* form(char* format ...)
{

register.,•.- ap = (int"''°)&format;
register char* buf = free;
if (max< buf+fld_size) buf = formbuf;

register 11 = sprintf(buf,format,ap[l],ap[2],ap[3],ap[4],ap[S],ap[6],ap[7],

}

if (0<11 && 11<1024) /*length*/
,

else if (buf<(char*)ll && (char*)ll<buf+1024)
11 = (char*)ll - buf;

else
11 = strlen(buf);

if (fld_size < 11) exit(lO);
free += (11+1);
return buf;

/* pointer to trailing O */

canst char alO = 'a'-10;

char* hex(long i, register w)
{

int m = sizeof(long) 7"2; /.,,.-maximum hex digits for a long */
if (w<O I I fld_size<w) w = O;
int sz = (w?w:m)+l;
register char* buf = free;
if (max< buf+sz) buf = formbuf;
register char* p = buf+sz;
free = p+l;
p-- = O; / trailing O */

if (w) {
do {

register h = i&Oxf;
*p-- = (h < 10)? h+'O' h+alO;

Feb 8 13:49 1985 out.c Page 3

}

}
else {

}

} while (w-- && (i>>=4));
while (w--) *p-- =' ';

do {
register h = i&Oxf;
*p-- = (h < 10)? h+'O'

} while (i»=4);

return p+l;

h+alO;

char* oct(long i, int w)
{

}

int m = sizeof(long)*3; /* maximum oct digits for a long*/
if (w<O I I fld_size<w) w = O;
int sz = (w?w:m)+l;
register char* buf = free;
if (max< buf+sz) buf = formbuf;
register char* p = buf+sz;
free = p+l;
p-- = O; / trailing O */

if (w) {

}
else {

}

do {
register h = i&07;
-;'.p- - = h+ ' 0 ' ;

} while (w-- && (i>>=3));
while (w--) *p-- =' ';

do {
register h = i&07;
-;'rp-- = h+'o';

} while (i>>=3);

return p+l;

char* dec(long i, int w)
{

int m = sizeof(long),"'3; /-;': maximum dee digits for a long -;'./
if (w<O I I fld_size<w) w = O;
int sz = (w?w:m)+l;
register char* buf = free;
if (max< buf+sz) buf = formbuf;
register char* p = buf+sz;
free = p+l;
p-- = O; / trailing O */

if (w) {
do {

register h = i%10;
-;':p- - = h + ' 0 ' ;

} while (w-- && (i/=10));

J

,,

(___ .

l

Feb 8 13:49 1985 out.c Page 4

while (w--) ;'rp- - = f t

}
else {

do {
register h = i%10;
1:p-- = h + f O';

} while (i/=10);
}

return p+l;
}

ostream& ostream.operator<<(char* s)
{

}

register streambuf* nbp = bp;
if (state) return *this;
if (*s = 0) return *this;
do

if (nbp->sputc(*s++) == EOF) {
state I= _eofj_fail;
break;

}
while (-;'.·s);
if (*(s-1)='\n') flush();/* fudge due to lack of destructors for static*
return ;'.-this ;

ostream& ostream.operator<<(long i)
{

}

register streambuf* nbp = bp;
register long j;
char buf[32];
register char *p = buf;

if (state) return *this;

if (i < 0) {
nbp->sputc('-');
j = -i;

} else

do {
j = i;
*p++ = 'o' + j%10;
j = j/10;

} while (j > 0);
do {

if (nbp->sputc(*--p) = EOF) {
state I= _fail I _eof;
break;

}
} while (p != buf);
return 1:this ;

ostream& ostream.put(char c)

Feb 8 13:49 1985 out.c Page 5

{

}

if (state) return *this;

if (bp->sputc(c) == EOF) state I= _eofl_fail;

return ,'.-this;

ostream& ostream.operator<<(double d)
{

}

register streambuf* nbp = bp;
char buf [32];
register char -lc-p = buf;

if (state) return *this;

sprintf(buf,"%g",d);
while (-;'.-p != '\O')

if (nbp->sputc(*p++) == EOF) {
state I= _eofl_fail;
break;

}
return ,'.-this ;

ostream& ostream.operator<<(streambuf& b)
{

}

;~tr

register streambuf* nbp = bp;
register int c;

if (state) return *this;

c = b.sgetc();
while (c != EOF) {

}

if (ntp->sputc(c) = EOF) {
state I= _eofl_fail;
break;

}
c = b. snextc();

return ,'.this;

* empty out an output buffer
*/

ostream& ostream.flush() {

}

;, ...

bp->overflow(EOF);
return ,'.-this ;

,._ cleanup on exit.
·k/

J

Feb 8 13:49 1985 out.c Page 6

void _cleanup();

void _Cleanup()
{

}

/* flush the stream file buffers*/
cout. flush();
cerr. flush();

/* flush stdio*/
_cleanup();

void _Exit(int code)
{

}

_c 1 eanup () ;
exit(code);

Feb 8 13:49 1985 streambuf.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/stream.h"

* -;'r

-;'r/

Allocate some space for the buffer.
Returns: EOF on error

0 on success

int streambuf.allocate()
{

if (base== NULL) {

}

if ((base= new char[BUFSIZE]) != NULL) {
pptr = gptr = base;
eptr =base+ BUFSIZE;
alloc = 1;
return O;

} else
return EOF;

return O;
}

/* * Come here on a put to a full buffer. Allocate the buffer if
* it is uninitialized.
* Returns : EOF on error
* the argument on success
*/

virtual int streambuf.overflow(int c)
{

}

if (allocate()= EOF) return EOF;
if (c != EOF) *pptr++ = c;
return c&0377;

;,tr
* Fill a buffer.
* Returns: EOF on error or end of input
* next character on success
-Jr I

virtual int streambuf.underflow()
{

return EOF;
}

C.

C

C.

Feb 8 13:54 1985 makefile Page 1

%Z% %M% %I% %H% %T%
CC=CG
CFLAGS=-c
OSUF=.o
OBJS=obj$(OSUF) qhead$(OSUF) qtail$(OSUF) sched$(OSUF) \

sim$(OSUF) task$(OSUF) timer$(OSUF) swap$(OSUF)
HORS= .. / .. /incl/task.h

all

obj$(OSUF)

qhead$(OSUF)

qtai1$ (OSUF)

sched$(OSUF)

sim$(OSUF)

task$(OSUF)

timer$(OSUF)

swap$(OSUF)

clean

clobber

$(OBJS)

: $(HORS) obj.c
$(CC) $(CFLAGS) obj.c

: $(HDRS) qhead.c
$(CC) $(CFLAGS) qhead.c

: $(HORS) qtail. C

$(CC) $(CFLAGS) qtail. C

: $(HORS) sched.c
$(CC) $(CFLAGS) sched.c

: $(HORS) sim.c
$(CC) $(CFLAGS) sim.c

: $(HORS) task.c
$(CC) $(CFLAGS) task.c

: $(HDRS) timer.c
$(CC) $(CFLAGS) timer.c

:
if vax; \
then $(CC) $(CFLAGS) vax_swap.s
else >swap$(OSUF) ; \
fi

rm -f $(OBJS) *.i * .. c

clean

mv vax_swap.o swap$(OSUF) \

Feb 8 13:54 1985 obj.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/task.h"

object.~object()
{

if (o_link) task_error(E_OLINK,this);
if (o_next) task_error(E_ONEXT,this);

} /·k delete ;'c /

/* note that a task can be on a chain in several places
*/

/* object.remember() ... */

void object.forget(register task* p)
/* remove all occurrences of task* p from this object's task list*/
{

}

register olink* 11;
register olink* 1;

if (o_link == 0) return;

while (o_link->l_task =9 p) {
11 = o_link;
o_link = 11->l_next;
delete 11;
if (o_link ~:. • 0) return;

} ;

1 = o_link;
while (11 = 1->l_next) {

} ;

if (11->l_task == p) {

}

1->l_next = 11->l_n~xt;
delete 11;

else 1 = 11;

void object.alert()
/;~ prepare IDLE tasks on this object for sceduling -Jr/
{

}

register olink* 1;

for (l=o_link; 1; 1=1->l_next) {
register task* p = 1->l_task;
if (p->s_state = IDLE) p->insert(O,this);

}

void object.print(int n)
{

int m = n & ~CHAIN;

switch (o_type) {

.J

J

Feb 8 13:54 1985 obj.c Page 2

}

case QHEAD:
((qhead*) this)->print(m);
break;

case QTAIL:
((qtail*) this)->print(m);
break;

case TASK:
((task*) this)->print(m);
break;

case TIMER:

default:

}

((task*) this)->print(m);
break;

printf("object (o_type=%d): ",o_type);

if (n&VERBOSE) {

}

clink-;'.' l;
printf("remember_chain:\n");
for (l=o_link; l; 1=1->l_next) 1->l_task->print(m);

if (n&CHAIN) {
if (o_next) o_next->print(n);

}
printf(11\n");

Feb 8 13:54 1985 qhead.c Page 1

/* %Z% %M% %I% o/Jf% %T% */
#include " .. / .. /incl/task. h"

/* a qhead's qh_queue has its pointer q_ptr pointing the last
element of a circular list, so that q_ptr->o_next is the
first element of that list.

STRUCTURE:
qhead <--> oqueue <--> qtail (qhead and qtail are independent)
oqueue --> circular queue of objects

"pen and paper is recommended when trying to understand
the list manipulations."

/* construct qhead <--> (possible)oqueue --> 0 */
qhead.qhead(int mode, int max) : (QHEAD)
{

}

if (O < max) {

} ;

qh_queue = new oqueue(max);
qh_queue->q_head = this;

qh_mode = mode;

/* destroy q if not pointed to by a qtail */
qhead.~qhead()
{

}

oqueue* q = qh_queue;

if (q->q_tail)
q->q_head = O;

else
delete q;

/* remove and return object from head of q */
object* qhead.get()
{

register oqueue* q = qh_queue;
11:

if (q->q_count) {

}

register object* oo = q->q_ptr;
register object* p = oo->o_next;
oo->o_next = p->o_next;
p->o_next = O;
if (q->q_count-- == q->q_max) {

qtail* t = q->q_tail;
if (t) t->alert();

} ;
return p;

Feb 8 13:54 1985 qhead.c Page 2

}

switch (qh_mode) {
case WMODE:

remember(thistask);
thistask->sleep();
forget(thistask);
goto 11;

case EMODE:
task_error(E_GETEMPTY,this);
goto 11;

case ZMODE:
return O;

}

/* create a tail for this queue*/
qtail* qhead.tail()
{

}

oqueue* q = qh_queue;
register qtail* t = q->q_tail;

if (t = 0) {

}

t = new qtail(qh_mode,O);
q->q_tail = t;
t->qt_queue = q;

return t;

/* make room for a filter upstream from this qhead */
/* result: (this)qhead<-->newq (new)qhead<-->oldq ?<-->qtail? */
qhead* qhead.cut()
{

}

oqueue* oldq = qh_queue;
qhead* h = new qhead(qh_mode,oldq->q_max);
oqueue* newq = h->qh_queue;

oldq->q_head = h;
h->qh_queue = oldq;

qh_queue = newq;
newq->q_head = this;

return h;

/* this qhead is supposed to be upstream to the qtail t
add the contents of this's queue tot's queue
destroy this, t, and this's queue
alert the spliced qhead and qtail if a significant state change happened

*/
void qhead. splice(qtail-;'r t)
{

oqueue* qt= t->qt_queue;

Feb 8 13:54 1985 qhead.c Page 3

}

oqueue* qh = qh_queue;

int qtcount = qt->q_count;
int qhcount = qh->q_count;
int halert = (qtcount==0 && qhcount); j"k becomes non-empty ,'r/
int talert = (qh->q_max <= qhcount && qhcount+qtcount<qt->q_max);

if (qhcount) {
object* ooh= qh->q_ptr;
object* oot = qt->q_ptr;
qt->q_ptr = ooh;

/* becomes non-full*/

if (qtcount) { /* add the contents of qh to qt*/
object* tf = oot->o_next;
oot->o_next = ooh->o_next;
ooh->o_next = tf;

}
qt->q_count = qhcount + qtcount;
qh->q_count = O;

}

(qh->q_tail)->qt_queue = qt;
qt->q_tail = qh->q_tail;
qh->q_tail = O;

delete t;
delete this;

if (halert) qt->q_head->alert();
if (talert) qt->q_tail->alert();

/* insert new object at head of queue (after queue->q_ptr) */
int qhead.putback(object* p)
{

11:

oqueue* q = qh_queue;

if (p->o_next) task_error(E_BACKOBJ,this);

if (q->q_count++ < q->q_max) {

}

if (q->q_count = 1) {

}
else {

}

q->q_ptr = p;
p->o_next = p;

object* oo = q->q_ptr;
p->o_next = oo->o_next;
oo->o_next = p;

return 1;

switch (qh_mode) {
case WMODE:
case EMODE:

task_error(E_BACKFULL,this);

{r

__

C

Feb

}

void
{

}

8 13:54 1985 qhead.c Page 4

goto 11;
case ZMODE:

return O;
}

qhead.print(int n)

oqueue* q = qh_queue;

printf("qhead (%d): mode=%d, max=%d., count=%d, tail=%d\n",
this,qh_mode,q->q_max.,q->q_count,q->q_tail);

if (n&VERBOSE) {

}

int m = n & ~(CHAINjVERBOSE);
if (q->q_tail) {

printf("\ttail of queue:\n");
q->q_tail->print(m);

}
q->print(m);

void oqueue.print(int n)
{

}

object* p = q_ptr;

if (q_count = 0) return;

printf("\tobjectects on queue:\n");

do {
p->print(n);
p = p->o_next;

} while (p != q_ptr);

print£ ("\n");

Feb 8 13:55 1985 qtail.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/task.h"

/* construct qtail <--> oqueue */
qtail.qtail(int mode, int max) : (QTAIL)
{

}

if (0 < max) {

} ;

qt_queue = new class oqueue(max);
qt_queue->q_tail = this;

qt_mode = mode;

/* destroy q if not also pointed to by a qhead */
qtai 1. ~qt ail()
{

}

oqueue* q = qt_queue;

if (q->q_head)
q->q_tail = 0;

else
delete q;

/* insert object at rear of q (becoming new value of oqueue->q_ptr) */
int qtail.put(object* p)
{

register oqueue* q = qt_queue;
11:

if (p->o_next) task_error(E_PUTOBJ,this);

if (q->q_count < q->q_max) {

}

if (q->q_count++) {

}
else {

}

register object* oo = q->q_ptr;
p->o_next = oo->o_next;
q->q_ptr = oo->o_next = p;

qhead* h = q->q_head;
q->q_ptr = p->o_next = p;
if (h) h->alert();

return 1;

switch (qt_mode) {
case WMODE:

remember(thistask);
thistask->sleep();
forget(thistask);
goto 11;

case EMODE:
task_error(E_PUTFULL,this);
goto 11;

case ZMODE:

Feb 8 13:55 1985 qtail.c Page 2

return O;
}

}

/* create head for this q */
qhead* qtail.head()
{

}

oqueue-;'<' q = qt_queue;
register qhead* h = q->q_head;

if (h == 0) {

} ;

h = new qhead(qt_mode,O);
q->q_head = h;
h->qh_queue = q;

return h;

/* result: ?qhead<-->? oldq<-->(new)qtail newq<-->(this)qtail */
qtail* qtail.cut()
{

}

oqueue* oldq = qt_queue;
qtail* t = new qtail(qt_mode,oldq->q_max);
oqueue* newq = t->qt_queue;

t->qt_queue = oldq;
oldq->q_tail = t;
newq->q_tail = this;
qt_queue = newq;

return t;

/* this qtail is supposed to be downstream from the qhead h */
void qtail. splice(qhead-;'c- h)
{

h->splice(this);
}

void qtail.print(int n)
{

int m = qt_queue->q_max;
int c = qt_queue->q_count;
class qhead * h = qt_queue->q_head;

printf("qtail (%d): mode=%d, max=%d, space=%d, head=%d\n",
this,qt_mode,m,m-c,h);

if (n&VERBOSE) {
int m = n & ~(CHAINIVERBOSE);

Feb 8 13:55 1985 qtail. C Page 3

' I if (h) { _/
printf("head of queue:\n");
h->print(m);

}

qt_queue->print(m); .J
}

}

j

J

(__

Feb 8 13:55 1985 sched.c Page 1

/* %Z% %M% %I% %H% %T% */
#include " .. / .. /incl/task.h"

void setclock(long t)
{

}

if (clock) task_error(E_SETCLOCK,O);
clock t;

int in_error = O;

int task_error(int n, object* oo)
{

}

if (in_error)
exit(in_error);

else
in_error = n;

if (error_fct) {

}
else {

}

n = (*error_fct)(n,oo);
if (n) exit(n);

print_error(n);
exit(n);

in_error = O;
return O;

char* error_name[] = {
II rt ,
"object .delete(): has chain",
"object. delete(): on chain",
"qhead. get(): empty",
"qhead.putback(): object on other queue",
"qhead.putback(): full",
"qtail.put(): object on other queue",
"qtail. put(): full",
"set_clock(): clock! =O",
"schedule(): clock_task not idle",
"schedule: terminated",
"schedule: running",
"schedule: clock<O",
"schedule: task or timer on other queue",
"histogram. new(): bad arguments",
"task.save(): stack overflow",
"new: free store exhausted",
"task.new(): bad mode",
"task.delete(): not terminated",
"task.preempt(): not running",
"timer. delete(): not terminated",
"schedule: bad time",
"schedule: bad object",
"queue. delete() : not emptyu,
"thistask->resul t ()",

Feb 8 13:55 1985 sched.c Page 2

"task.wait(thistask)",
} ;

void print_error(int n)
{

register i = (n<l I I MAXERR<n)? 0: n;

printf("\n\n-.b'nb'dr task_error(%d) %s\n" ,n,error_name[i]);

if (thistask) {

}

printf ("this task: ");
thistask->print(VERBOSEISTACK);

if (run__chain) {
printf("run_chain:\n 11

);

run__chain->print(CHAIN);
}

} /* task_error */

sched* run_chain = O;
task* task_chain = O;
long clock= O;
task* thistask = O;
task* clock_task = O;
PFIO error_fct = O;
f'kPFIO sched_fct = 0; -;': /
PFV exit_fct = O;

void sched.cancel(int res)
{

}

if (s_state=RUNNING) remove();
s_state = TERMINATED;
s_time = res;
alert();

int sched.result()
/* wait for termination and retrieve result*/
{

}

if (this== (sched*)thistask) task_error(E_RESULT,O);
while (s_state != TERMINATED) {

remember(thistask);
thistask->sleep();
forget(thistask);

}

return (int) s_time;

void sched.schedule()
;-.•: schedule either clock_task or front of run__chain ,r /
{

register sched* p;
register long tt;

.J

Feb 8 13:55 1985 sched.c Page 3

111:
if (p = run_chain) {

}
else {

}

run_chain = (sched''r) p->o_next;
p->o_next = O;

if (exit_fct) (*exit_fct)();
exit(O);

tt = p->s_time;
if (tt != clock) {

}

if (tt < clock) task_error(E_SCHTIME,this);
clock= tt;
if (clock_task) {

J

if (clock_task->s_state != IDLE)
task_error(E_CLOCKIDLE,this);

;,'(clock_task preferred ,'r: /

p->o_next = (object*) run_chain;
run_chain = p;
p = (sched*) clock_task;

switch (p->o_type) {
case TIMER: /''• time is up; "delete" timer & schedule next task ;'(/

p->s_state = TERMINATED;
p->alert();
goto 111;

case TASK:
if (p != this) {

J
break;

default:

if (thistask && thistask->s_state != TERMINATED)
thistask->save();

thistask = (task*) p;
thistask->restore();

task_error(E_SCHOBJ,this);
}

} /-;'.: schedule ;•~ /

void
j·l~

·l.: I
{

sched.insert(int d, object,'.- who)

schedule THIS to run in .. 'd r r time units
inserted by who

register sched ;~ p;
register sched , •• pp;
register long tt = s_time = clock+ d;

switch (s_state) {
case TERMINATED:

task_error(E_RESTERM,this);
break;

Feb 8 13:55 1985 sched.c Page 4

}

case IDLE:
break;

case RUNNING:
if (this != (class sched ~•.-)thistask) task_error(E_RESRUN,this);

}

if (d<O) task_error(E_NEGTIME,this);

if (o_next) task_error(E_RESOBJ,this);

s_state = RUNNING;
if (o_type = TASK) ((task ·l:) this) ->t_alert = who;

/* run_chain ordered by s_time */
if (p = run_chain) {

J
else

if (tt < p->s_time) {

}
else {

}

o_next = (object*) run_chain;
run_chain = this;

while (pp = (sched ,'r) p->o_next) {

}

if (tt < pp->s_time) {
o_next = pp;
p->o_next = this;
return;

}
else p = pp;

p->o_next = this;

run_chain = this;

void sched.remove()
/* remove from run_chain and make IDLE*/
{

11:

}

register class sched * p;
register class sched * pp;

if (p = run_chain)
if (p = this)

run_chain = (sched*) o_next;
else

s_state = IDLE;
o_next = O;

for (; pp = (sched,'r) p->o_next; p=pp)
if (pp== this) {

}

p->o_next = pp->o_next;
goto 11;

void sched.print(int n)

Feb 8 13:55 1985 sched.c Page 5

{

}

int m = n & ~CHAIN;

switch (o_type) {
case TIMER:

((timer*)this)->print(m);
break;

case TASK:

}

((task*)this)->print(m);
break;

if (n&CHAIN) {
if (o_next) ((sched*) o_next)->print(n);

}

Feb 8 13:55 1985 sim.c Page 1

/* %Z% %M% %I% o/JI% %T% */
#include " .. / .. /incl/task. h"

histogram.histogram(int nb, int 11, int rr)
{

register inti;
if (rr<=ll I I nb<l) task_error(E_HISTO,O);
if (nb%2) nb++;

}

while ((rr-11)%nb) rr++;
binsize = (rr-11)/nb;
h = new int[nb];
while (h = 0) task_error(E_STORE,O);
for (i=O; i<nb; i++) h[i] = O;
1 = 11;
r = rr;
nbin = nb;
sum= O;
sqsum = O;

void histogram.add(int a)
/* add a to one of the bins, adjusting histogram, if necessary*/
{

}

register inti, j;

/* make 1 <=a< r, */
/* possibly expanding histogram by doubling binsize and range*/
while (a<l) {

1 -= r - l;
for (i=nbin-1, j=nbin-2; O<=j; i--, j-=2) h[i] = h[j] + h[j+l];
while(i >= 0) h[i--] = O;

}
while

}

binsize += binsize;

(r<=a) {
r += r - l;
for (i=O, j=O; i<nbin/2
while (i < nbin) h[i++] =
binsize += binsize;

sum+= a;
sqsum +=a* a;
h[(a-1)/binsize]++;

i++,
O·)

j+=2) h[i] = h[j] + h[j+l];

void histogram.print()

printout non-empty ranges

register inti;
register int x;
int d = binsize;

for (i=O; i<nbin; i++) {
if (x=h[i]) {

int 11 = l+d 1:i;

Feb 8 13:55 1985 sim.c Page 2

printf(0 [%d:%d) %d \ n" , 11 , l l+d , x) ;
}

}
}

/-;'r

int erand.draw()
{

}
*/

int k;
float a;

for(k=O; ;k++) {
register float ul, u2;
a= ul = fdraw();
do {

u2 = fdraw();
if (ul < u2) return (int) k+a;
ul = fdraw ();

} while (ul<u2);
}

Feb 8 13:55 1985 task.c Page 1

/* %Z% %M% %I% %H% %T% */

#include " .. / .. /incl/task.h"

/* macros giving the addresses of the stack frame pointer
and the program counter of the caller of the current function
given the first local variable

TOP points to the top of the current stack frame
given the last local variable

#ifdef pdpll

#define FPO
#define 0LD_FP(fp)
#define T0P(var9)

#else

(&_that+4)
("kfp)
(&var9)

/* This used to be an if vax. There should probably be a change
for the 3B ' s .. ~ /

#define FP(p)
#define 0LD_AP(fp)
#define 0LD_FP(fp)
#define T0P(p)
extern int* top(...);

#endif

#define SETTRAP()
#define CHECKTRAP()

int _hwm;

class team
{
friend task;

((int-;'(') (&p+l))
(ic<(fp+2))
(;~ (fp+3))
top(&p)

t_trap = *(t_basep-t_stacksize+l)
if (t_trap != *(t_basep-t_stacksize+l)) task_error(E_STACK,

int no_of_tasks;

} ;

task* got_stack;
int* stack;
team(task*, int= O);
~team() { delete stack; }

team.team(task* t, int stacksize) {
no_of_tasks = 1;
got_stack = t;
if (stacksize) {

stack= new int[stacksize];
while (stack= 0) task_error(E_ST0RE,0);

}
}

void usemainstack()

Feb 8 13:55 1985 task.c Page 2

/* fudge to allow simple stack overflow check*/
{

register v[SIZE+lOO];

if (_hwm)
for (register i=O;i<SIZE+lOO;i++) v(i] = UNTOUCHED;

else
v[O] = O;

}

void copy_stack(register* f, register c, register* t)
/*

copy c words down from f tot
do NOT attempt to copy 0 copy_stackn's own stackframe

while (c--) { *t-- = *f--;}

void task.swap_stack(int-;'.- p, inv•,. ta, int''.- de, int''.- pa, int;'.- ap)
{

int x = pa-TOP(x)+l;
copy_stack(pa,x,p);
X = pa-p;
t_framep = ta-x;

/* size of active stack*/

/* distance from old stack to new*/
/;'r fp on new frame -1: /

/* now doctor the new frame*/
#ifdef vax

OLD_AP(t_framep) = int(ap-x);
#endif

}

OLD_FP(t_rramep) = int(de-x);
restore();

task.task(char* name, int mode, int stacksize) : (TASK)
I*

*/
{

executed in the task creating a new task - thistask.
1: put thistask at head of scheduler queue,
2: create new task
3: transfer execution to new task
derived::derived can never return - its return link is destroyed

if thistask==O then we are executing on main()'s stack and
should turn it into the "main" task

int''.- p;
int* ta_fp = (int*)FP(p);
int* de_fp = (int*)OLD_FP(ta_fp);

#ifndef pdpll
/* xxx changed from ifdef vax */

#endif
int* de_ap = (int*)OLD_AP(ta_fp);

int* pa_fp = (int*)OLD_FP(de_fp);
int x;

t_name = name;

Feb 8 13:55 1985 task.c Page 3

}

t_mode =(mode)? mode: DEDICATED;
t_stacksize = (stacksize)? stacksize: SIZE;
t_size = O; /-;':: avoid stack copy at initial restore -;',f
t_alert = O;
s_state = RUNNING;
t_next = task_chain;
task_chain = this;
th = this; /•'• fudged return value -- "returned" from swap * /

switch ((int)thistask) {
case 0:

case 1:

}

/* initialize task system by creating "main" task ,', /
thistask = (task*) 1~
thistask = new task('main");
break;

j,'- create "main" task ~':: /
usemainstack(); /* ensure that store is allocated*/
t_basep = (int*)OLD_FP(pa_fp); /* fudge, what if main

t_team = new team(this);
t_team->no_of_tasks = 2;
return;

is already deeply nested
-.'r:/
/* don't allocate stack*/
/* never deallocate*/

thistask->th = this; /;'r return pointer to "child" ;', /
thistask->t_fram2p = de_fp;
thistask->insert(O,this);

switch (t_mode) {
case DEDICATED:

t_team = new team(this,t_stacksize);
t_basep = t_team->stack + t_stacksize - 1;
if (_hwm) for (x=O; x<t_stacksize; x++)

t_team->stack[x] = UNTOUCHED;
thistask = this;
swap_stack(t_basep,ta_fp,de_fp,pa_fp,de_ap);

case SHARED:

default:

thistask->t_mode = SHARED; I"" you cannot share on your own ,'r /

t_basep = pa_fp;
t_team = thistask->t_team;
t_team->no_of_tasks++;
t_framep = ta_fp;
if (mode=O && stacksize==O)

t_stacksize = thistask->t_stacksize - (thistask->t_basep -
thistask = this;
return;

task_error(E_TASKMODE,this);
}

void task.save()
;-.ir

save task's state so that ~'restore'' can resume it later
by returning from the function which called "save"

Feb 8 13:55 1985 task.c Page 4

}

- typically the scheduler

int* x;
register* p = (int*)FP(x);

t_framep = (int*)OLD_FP(p);

CHECKTRAP();

if (t_mode = SHARED) {
register int sz;

} ;

t_size = sz = t_basep - p + 1;
p = new int [sz];
while (p = 0) task_error(E_STORE,0);
t_savearea = &p[sz-1];
copy_stack(t_basep,sz,t_savearea);

extern int rr2,rr3,rr4;
int rr2,rr3,rr4;

swap (task;',);
sswap(task;'-);

void task.restore()

*/
{

make "this" task run after suspension by returning from the frame
denoted by "t_framep"

the key function "swap" is written in assembly code,
it returns from the function which "save"d the task

- typically the scheduler

"sswap" copies the stack back from the save area before "swap"ing
arguments to "sswap" are passed in rr2,rr3,rr4 to avoid overwriting them
it is equivallent to "copystack" followed by "swap".

register sz;

SETTRAP();

if ((t_mode == SHARED) && (sz=t_size)){
register* p = t_savearea - sz + 1;
register x = (this != t_team->got_stack);
t_team->got_stack = this;
delete p;
if (x) {

}
else

rr4 = (int) t_savearea;
rr3 = sz;
rr2 = (int) t_basep;
sswap(this);

Feb 8 13:55 1985 task.c Page 5

swap(this);
}
else

swap(this);
}

void task.cancel(int val)
/-;':

TERMINATE and free stack space

sched::cancel(val);
if (_hwm) t_size = curr_hwm();
if (t_team->no_of_tasks-- == 1) delete t_team;

}

task.~task()
J-;':

}

free stack space and remove task from task chain

if (s_state != TERMINATED) task_error(E_TASKDEL,this);
if (this= task_chain)

else {

}

task_chain = t_next;

register task* t;
register task* tt;

for (t=task_chain; tt=t->t_next; t=tt)
if (tt == this) {

}

t->t_next = t_next;
break;

if (this= thistask) {

}

delete (int*) thistask; /* fudge: free(_that) */
thistask = O;
schedule();

void task.resultis(int val)
{

cancel(val);
if (this== thistask) schedule();

}

void task.sleep()
{

}

if (s_state == RUNNING) remove();
if (this= thistask) schedule();

void task.delay(int d)
{

.)

Feb 8 13:55 1985 task.c Page 6

insert(d,this);
if (thistask -- this) schedule();

int task.preempt()
{

}

if (s_state == RUNNING) {
remove();

}
else {

}

return s_time-clock;

task_error(E_TASKPRE,this);
return O;

char* state_string(int s)
{

switch (s) {
case IDLE:
case TERMINATED:
case RUNNING:
default:

return "IDLE";
return "TERMINATED";
return "RUNNING";
return O;

}
}

char1.- mode_s tr ing (int m)
{

}

switch(m) {
case SHARED:
case DEDICATED:
default:
}

return "SHARED";
return "DEDICATED";
return O;

void task.print(int n)
/*

''n' ' values: CHAIN,VERBOSE,STACK

char* ss = state_string(s_state);
char 7: ns = (t_name) ? t_name : "" ;

printf("task %s ",ns);
if (this== thistask)

printf(''(is thistask) :\n");
else if (ss)

printf("(%s):\n",ss);
else

printf("(state=%d CORRUPTED):\n",s_state);

if (n&VERBOSE) {
int res= (s_state=TERMINATED)? (int) s_time: O;
char* ms= mode_string(t_mode);
if (ms= 0) ms= "CORRUPTED";
printf("\tthis==%d mode=%s alert=%d next=%d result=%d\n",

Feb 8 13:55 1985 task.c Page 7

}

this,ms,t_alert,t_next,res);
}

if (n&STACK) {

}

printf("\ ts tack: ");
if (s_state == TERMINATED/, {

if (_hwm) print£ ('hwm=%d", t_size);
print£(" deleted\n");

}
else {

}

int b = (int) t_basep;
int x = ((this=thistask) I I t_mode==DEDICATED) ? b-(int)t_
printf("max=%d current=%d",t_stacksize,x);
if (_hwm) print£(" hwm=%d", curr_hwm());
print£(" t_base=%d, t_frame=%d, t_size=%d\n",b,t_framep,t_s

if (n&CHAIN) {
if (t_next) t_next->print(n);

}

int task.curr_hwm()
{

}

int* b = t_basep;
inti;
for (i=t_stacksize-1; O<=i && *(b-i)==UNTOUCHED; i--)
return i;

int task.waitlist(object* a)
{

return waitvec(&a);
}

int task.waitvec(object* * v)
;-.•r

*/
{

first determine if it is necessary to sleep(),
return hint: who caused return

inti= O;
int r;
obj ectir ob;

while (ob= v[i++]) {
t_alert = ob;
switch (ob->o_type) {
case TASK:
case TIMER:

if (((sched*)ob)->s_state - TERMINATED) goto ex;
break;

case QHEAD:
if (((qhead*)ob)->rdcount()) goto ex;
break;

(__

Feb 8 13:55 1985 task.c Page 8

ex:

}

}

case QTAIL:

}

if (((qtail*)ob)->rdspace()) goto ex;
break;

ob->remember(this);

if (i==2 && v[O]=(object*)thistask) task_error(E_WAIT,O);
sleep();

i = O;
while (ob= v[i++]) {

ob->forget(this);
if (ob= t_alert) r = i-1;

}
return r;

Feb 8 13:55 1985 timer.c Page 1

;,•r %Z% %M% %I% %H% %T% -tr/
#include " .. / .. /incl/task. h"

timer.timer(int d) : (TIMER)
{

}

s_state = IDLE;
insert(d,this);

timer .~timer()
{

if (s_state != TERMINATED) task_error(E_TIMERDEL,this);
}

void timer.reset(int d)
{

}

remove();
insert(d,this);

void ;ime:.print~in~ n)
{ n; ;-...-avoid warning,:/

long tt = s_time;
printf("timer %1d === clock+%ld\n",tt,tt-clock);

}

)

)

C.

Feb 8 13:55 1985 vax_swap.s Page 1

%Z% %M% %I% %H% %T%
swap of SHARED

.globl _rr4

.globl _rr3

.globl _rr2

.globl _sswap

. align 1
_sswap:

.word OxOOOO
movl 4(ap),rl # this
movl _rr4,r4
movl _rr3,r3
movl _rr2,r2

11:
tstl r3
jeql 12
decl r3
movl (r4),(r2)
cmpl -(r4),-(r2)
jbr 11

12:
the following constant is the displacement of t_framep in task
movl 20(rl),fp # fp = this->t_framep
movl 24(rl),r0 # fudge return -- this->th
ret

.globl _swap
. align 1

_swap:

_top:

.word
movl
the
movl
movl
ret

.globl

.align

.word
addl3
ashl
addl2
ret

OxOOOO
4(ap),rl #

following constant
20(rl),fp #
24(rl),r0 #

_top
1

OxOOOO
$1,(ap),rO
$2,rO,rO
ap,rO

rl = this
is the displacement of t_framep ia task

fp = this->t_framep
fudge return -- this->th

	lib master makefile
	complex makefile
	abs.c
	arg.c
	cos.c
	error.c
	exp.c
	io.c
	log.c
	oper.c
	polar.c
	pow.c
	sin.c
	sqrt.c
	new makefile
	_delete.c
	_handler.c
	_new.c
	_vec.c
	stream makefile
	circbuf.c
	filebuf.c
	in.c
	out.c
	streambuf.c
	task makefile
	obj.c
	qhead.c
	qtail.c
	sched.c
	sim.c
	task.c
	timer.c
	vax_swap.s

