
0

0

0

C

0

0

(~

r~
'-

c~

xx
xx
xx
xx
797 - laserl Sat Feb 9 19:35:53 EST 1985

ARGS: [-C -d -fp -oorig=c++ -otime=476843632]
NAME: [c++]
PASSCOMM: [sfbc!c++:D.Swartout:lpbin=m13:home=bc]
copies: [1]
ctime: [1]
files: [/usr/spool/lp/request/laser/d0-9680]
job: [laser-9004]
lpbin: []
mach: [sfbc (laser-9004)]
mail: []
originator:[c++]
printer: [laserl]
printtime: [476843714]
request: [laser-9680]
route: [nsc]
sequence: [797]
subtime: [476843632]
title: []
transit: [1]
version: [08-02-84]

C

Feb 8 14:05 1985 makefile Page 1

%Z% %M% %I% %H% %T%
CC=CC
CFLAGS=+f

all: sscan CCcrtO.o CCmcrtO.o

sscan: sscan.c ldfcn.h
$(CC) $(CFLAGS) -o sscan sscan.c -lld

CCmcrtO.o: CCmcrtO.s
cc -c CCmcrtO.s

CCcrtO.o: CCcrtO.s
cc -c CCcrtO.s

clean:
rm - f ;'c . i -.'c •• c

clobber: clean
rm -f sscan -;'c. o

Feb 8 14:05 1985 ldfcn.h Page 1

/* %Z% %M% %I% %H% %T% ,~ /
/* @(#)ldfcn.h 2.2 2/28/83

j·l\

* The following two declarations appear in the IH versions of
-;': "stdio. h" but do not appear in the normal 1. 2 versions.
f: I

#ifndef LDFILE
struct ldf ile {

int _fnum_;
FILE '~ioptr;
long offset;

/* so each instance of an LDFILE is unique*/
/* system I/0 pointer value*/

FILHDR header;
unsigned short type;

/* absolute offset to the start of the file*/
/* the file header of the opened file*/

/* indicator of the type of the file*/

:rrrovide a structure "type" definition, and the associated
'attributes"

#define LDFILE
#define IOPTR(x)
#define OFFSET(x)
#define TYPE(x)
#define HEADER(x)
#define LDFSZ

struct ldfile
x->ioptr
x->offset
x->type
x->header
sizeof(LDFILE)

define various values of TYPE(ldptr)

#define ARTYPE 0177545

;,~
define symbolic positioning information for FSEEK (and fseek)

#define BEGINNING
#define CURRENT
#define END

0
1
2

I*
define a structure "type" for an archive header

*I

typedef struct
{

char ar_name[16];
long ar_date;
int ar_uid;
int ar_gid;
long ar_mode;
long ar_size;

Feb 8 14:05 1985 ldfcn.h Page 2

(. } archdr;

#define ARCHDR
#define ARCHSZ

archdr
sizeof(ARCHDR)

C

C

define some useful symbolic constants

#define SYMTBL 0 /-;': section nnumber and/or section name of the Symbol Table

#define SUCCESS 1
#define CLOSED 1
#define FAILURE 0
#define NOCLOSE 0
#define BADINDEX -11

#define OKFSEEK 0

define macros to permit the direct use of LDFILE pointers with the
standard I/0 library procedures

LDFILE *ldopen(char*, LDFILE*);
LDFILE *ldaopen(char*, LDFILE*);

#define GETC(ldptr) getc(IOPTR(ldptr))
#define GETW(ldptr) getw(IOPTR(ldptr))
#define FEOF(ldptr) feof(IOPTR(ldptr))
#define FERROR(ldptr) ferror(IOPTR(ldptr))
#define FGETC(ldptr) fgetc(IOPTR(ldptr))
#define FGETS(s,n,ldptr) fgets(s,n,IOPTR(ldptr))
#define FILENO (ldptr) fileno(IOPTR(ldptr))
#define FREAD(p,s,n,ldptr) fread(p,s,n,IOPTR(ldptr))
#define FSEEK(ldptr,o,p) fseek(IOPTR(ldptr),(p==BEGINNING)?(OFFSET(ldptr)+o):o,p)
#define FTELL(ldptr) ftell(IOPTR(ldptr))
#define FWRITE(p,s,n,ljptr) fwrite(p,s,n,IOPTR(ldptr))
#define REWIND(ldptr) rewind(IOPTR(ldptr))
#define SETBUF(ldptr,b) setbuf(IOPTR(ldptr),b)
#define UNGETC(c,ldptr) ungetc(c,IOPTR(ldptr))
#define STROFFSET(ldptr) (HEADER(ldptr).f_symptr + HEADER(ldptr).f_nsyms * 18) /*
18
#endif

Feb 8 14:05 1985 sscan.c Page 1

/* %Z% %M% %I% %H% %T% */
#include <stdio.h>
#include <filehdr.h>
#include "ldfcn.h"
#include <syms.h>

char;•~ ldgetname (LDFILE;',, SYMENT;':)

typedef char''r Strptr;
Strptr copy(Strptr) ;

int err= 0;

class Strings {
Strptr-;': argv; .J
int first ;
int bound;
void check(int);

public:
int len;
Strptr& operator[] (int x) { check(x) ; return argv[first+x] }
void suffix__copy(Strptr s) {

check(first+len+l) ; argv[first+(len++)] = copy(s) ; }
Strings(int x = 32) {

} ;

argv = new Strptr[x+l] ; first= x/2; len = 0; bound= x
} ;

void Strings.check(int want) {
if (want<= 0 I I want>= bound) {

int new_bound = 3*(len+l) ;

}

int new_first = new_bound/3;
Strptr* new_argv = new Strptr[new_bound+l]
for (int x = 0; x < len; ++x) {

new_argv[new_first+x] = argv[first+x] ;
}

delete argv;
first= new_first
bound= new_bound
argv = new_argv;
}

Strptr copy (Strptr old) {
Strptr new_s = new char[strlen(old)+l]
strcpy(new_s,old)
return new_s ;
}

Strings* cons

Strings-.'r dest

void dofile(char* n) {
LDFILE* f = ldopen(n,O)

l

Feb 8 14:05 1985 sscan.c Page 2

if(f==O) {
char buffer[BUFSIZ] ;
sprintf(buffer,"sscan(%s)", n)
perror(buffer)
err= 4;
return;
}

while (f != 0) {
SYMENT sym;
ldtbseek(f) ;

}

for (int x_sym = 0; ldtbread(f,x_sym,&sym) -- SUCCESS
char';'-' str = ldgetname(f ,&sym);
if (strncmp(str,"_STI",4) = 0) {

cons->suffix_copy(str) ;
}

else if (strncmp(str,"_STD",4) == 0) {
dest->suffix_copy(str)
}

x_sym += sym.n._numaux; /* skip auxentries */
}

if (ldclose(f) !=FAILURE) f = 0;
}

main(int argc, char-;'d.-argv) {
int monitor= 0;
cons= new Strings ;
dest == new Strings ;

for (int x_arg = 1; x_arg < argc; ++ x_arg) {
int len = strlen(argv[x_arg]) ;
if (len>=3 && argv[x_arg][O] != '-'

&& argv[x_arg)[len-2] == '.'
&& strchr("oa ',argv[x_arg] [len-1]) != 0) {

defile(argv[x_arg]) ;
}

else if (strcmp(argv[x_arg],"-p") == 0) monitor=l
}

printf("void _STC_all(e) int e ; {\n") ;
for (x_arg = 0 ; x_arg < cons->len; ++x_arg) {

print£ (''%s (); \n", (;'.-cons) [x_arg]) ;
}

printf("}\n");
printf("void exit(err) {\n") ;
for (x_arg = 0 ; x_arg < dest->len; ++x_arg) {

print£ ("%s (); \n", (;'.-dest) [x_arg])
}

if (monitor) print£ ("monitor(); \n");
printf("_cleanup() ;\n");
printf("_exit(err);}\n");
return err;
}

++x_sym) {

Feb 8 14:05 1985 CCcrtO.s Page 1

.file "crtO.s"
%Z% %M% %I% %H% %T%
C runtime startup call main; call exit ,when done.
new startup procedure uses ost f'5(:)" to write
the EPSW to trap on overflow and invalid operation
this ties in to the 5.0 ucode delivery (I hope).

modified by Jerry Schwarz to call constructors and
destructors of CC

_start:

_mcount:

. set EXIT, 1

.set EPSWOST,50 # new ost for fp trapping modes

.set WREPSW,10 # 10 says write

.set DIVZER0,1 # trap on divide by zero bit

.set UNFL,2 # trap on underflow bit

.set OVFL,4 # trap on overflow bit

.set INVOP,8 # trap on invalid op bit

.set INEXACT,OxlO # trap on inexact result bit

.set TRAPBITS,DIVZERO+UNFL+OVFL+INVOP+INEXACT

.set STZERO,OxlOO # divide by zero sticky bit

.set STUFLOW,Ox200 # underflow sticky bit

.set STOFLOW,Ox400 # overflow sticky bit

. set STINVOP, Ox800 # invalid op sticky bit

.set STINEX,OxlOOO # inexact result sticky bit

.set STBITS,STZERO+STUFLOW+STOFLOW+STINVOP+STINEX

.set EMASK,TRAPBITS+STBITS # initially clear all via EMASK

.set NEWEPSW,DIVZERO+OVFL+INVOP # default startup condition

.globl main

.globl _start

. globl _mcount

.globl environ

.globl _STC_all

ost &EPSWOST
call &O,_STC_all
movaw .ostargs,%ap
movw -4(%sp), environ
call &3, main
pushw %r0
call &1, exit
pushw %r0
ost &EXIT.
good,-bye

rsb

.data

. align 4

sleazy, but it should work

dummy in case an object module has been
compiled with cc -p but not the load module

.ostargs:
.word
.word
.wo'rd

WREPSW
. EMASK

NEWEPSW
environ:

.word 0

C

C.

C

Feb 8 14:05 1985 CCmcrtO.s Page 1

.file "mcrtO.s"
%Z% %M% %I% %H% %T%
C runtime startup and exit with profiling.
see crtO. s for explanation of· EPSW stuff

_start:

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.set

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

.globl

movaw
ost
movw
movw
subw3
andw2

addw2
andw2
addw3
pushw
call
cmpw
je
pushaw
pushaw
pushw
lrsw2
pushw
pushw
call
call

CBUFS, 600
EXIT, 1
WORDSIZE, 4
EPSWOST,50
WREPSW,10
DIVZER0,1
UNFL,2
OVFL,4
INVOP,8
INEXACT,OxlO
TRAPBITS,DIVZERO+UNFL+OVFL+INVOP+INEXACT
STZERO, OxlOO
STUFLO,Ox200
STOFLO,Ox400
STINVOP,Ox800
STINEX, OxlOOO
STBITS,STZERO+STUFLO+Sq'OFLO+STINVOP+STINEx'
EMASK,TRAPBITS+STBITS. • •
NEWEPSW,DIVZERO+OVFL+INVOP
_cleanup • • •
_start
environ
etext
exit
main
monitor
write
__ Argv

.ostargs,%ap
&EPSWOST
-4(%sp), environ
-8(%sp), _Argv
&.eprol, &etext, %r8
&-WORDSIZE, %r8

&8;'.•CBUFS+12+WORDSIZE-l, %r8
&-WORDSIZE, %r8
&4,%r8,%r7
%r7
&l, sbrk
&-1, %r0
.nospace
.eprol
etext
%r0
&l, %r8
%r8
&CBUFS
&5, monitor
&3, main

'
get prog name for Ii>.r-cff ilirttt,
get text size _in bytes , ··:
fl range/#buckets ...:.= scalefactor
fails if #buckets r:ounded up"
add in entry counts" antj. heade·r an
round to word boundary

get space

start profiling

monitor wants # o'f';s.horts in buff

start user program

Feb 8 14:05 1985 CCmcrtO.s Page 2

pushw %r0
call &l, exit

.nospace:
pushw &2 # write error message and exit
pushaw .emesg
pushaw MESSL
call &3, write
pushw &-1
ost &EXIT

.eprol:
.data
.align 4

.ostargs:
.word WREPSW
.word EMASK
.word NEWEPSW

environ:
.word 0

.emesg:
"No space for monitor buffer\n"

.byte 78,lll,32,115,112,97,99,101,32~102,111,114

.byte 32,109,111,110,105,116,111,114"

.byte 32,98,117,102,102,101,114,10

.set MESSL, .-.emesg

.byte 0

	sscan makefile
	ldfcn.h
	sscan.c
	CCcrt0.s
	CCmcrt0.s

