S SNV

).9.0:0.0:0:0.0.9.9.9.6:0.0.0.0.0.0:0:0:0:0.0:0.0:0:0.0:0:0.9:9.0.0:0:6:0:0.0.0.0:0:0.0.9.0.0:0.9.0:0.0:0.0:0.0.0.0.0.0.0.0.0.9.0.9.9:0.0.0:0.9.0.9.9:9:6:9.9.0.9.9.0.0:¢
D0:0.0.0.0.0.6.9.0.0.0:0.9:0.0:0.0.0.9.9.9.9.0.0.0.9.0.0.9:0.0.9.9.0.0:0:0.9.9.0.9:9:9:0:0.9.0.0.0:0.0.9.0:0.:9.9.9.0.0.9.9.9.9.0.0.0.0:0.0.9:0.0.9.0.0.:9.0:¢.9.9.9.¢:
).9:0:0.9.0.9.9.9.0.0:0.0.0:0.9.9.0.0.0.0.9.9.0.9.0.9:0.0.9.0.0.9.0:0:0.0:0.9.9.0.0:0:0.0.9:0.0.9.9.0.9.9:0:0.9.0.9.0.0.0.9.9.0..0.0.0:0.0.0:0:0.0.0..0.0:0.4.9.9.9.9
):6:0.0:0.9.0.0:6.0.0.0:0.0.6.0:0.0:0.0.9.0.9.0.6:0.9.0.9:0.0.0.0.9:0.0.9:0.0.9:0.0:0.0:0.9.9:0.0.0.0.0.0.0:0:0.9.0:0.0.0.0.0.9:0.9.0.0.:0.0.0:0.0.0:0.0.0.0.9.9.9.0.0:0.¢

797 - laserl Sat Feb 9 19:35:53 EST 1985
ARGS: [-C -d -fp -oorig=c++ -otime=476843632]
NAME : [c++]
PASSCOMM: [sfbelcet++:D.Swartout: ipbin=ml3:home=bc]
copies: [1]
ctime: [1]
files: /usr/spool/lp/request/laser/d0-9680]
job: laser-9004]
lpbin:]
mach: sfbec (laser-9004)]
mail:
originator: [ct++]
printer: laserl]

request: laser-9680]
route: nsc]
sequence: 797]
subtime: 476843632]
title:]
transit:

-02-84]

[
(
[
[
[
i
printtime: [476843714]
[
[
[
[
[
[1
version: [08

N

,/-\

VY
(0

Feb 8 14:05 1985 makefile Page 1

U %Z% UM% %I% %HY% %UT%

CC=CC
CFLAGS=+f

all: sscan CCcrt0.o0 CCmecrtO.o

sscan: sscan.c ldfen.h
$(CC) $(CFLAGS) -o sscan sscan.c -11d

CCmcrt0.o0: CCmertO.s
cc -¢ CCmertO.s

CCcrtl.0: CCcrtl.s
cc ~¢ CCcrtO.s

clean:
rm -f *.1 %, .c

clobber: clean
rm -f sscan *.o0

Feb 8 14:05 1985 1ldfcn.h Page 1

/
/%
/

3
-«

ula
@

Yo

ki

wla /
o«

#ifndef
struct

};

7':/

#define
ffdefine
#fdefine
##define

#fdefine
#define

/%
%/
jfdefine
/%
*/
{fdefine

#define
#define

/%
*/
typedef
{

* %L% WM%b %6I% %H% %T% */

@(#)1ldfen.h 2.2 2/28/83 %/

The following two declarations appear in the IH versions of
"stdio.h" but do not appear in the normal 1.2 versions.

LDFILE

ldfile §

int _fnum_; /* so each instance of an LDFILE is unique */
FILE *ioptr; /% system I/0 pointer value */

long offset; /% absolute offset to the start of the file %/
FILHDR theader; /% the file header of the opened file */
unsigned short type; /* indicator of the type of the file */

Provide a structure "type" definition, and the associated
'attributes"

LDFILE struct 1ldfile
IOPTR(x) - x->ioptr
OFFSET(x) x~->offset
TYPE (x) x->type
HEADER (%) x~>header
LDFSZ sizeof (LDFILE)

define various values of TYPE(1ldptr)

ARTYPE (0177545

define symbolic positioning information for FSEEK (and fseek)

BEGINNING
CURRENT
END

B - O

define a structure "type" for an archive header

struct

char ar_name[16];
long ar_date;

int ar_uid;

int ar_gid;

long ar_mode;
long ar_size;

C

&WJ

™

™

Feb 8 14:05 1985 1ldfcn.h Page 2

} archdr;

#fdefine
j#idefine

/ *

% /

#fdefine
jfdefine
#fdefine
ffdefine
#define
#define

#fdefine
/%

e /
w

ARCHDR archdr
ARCHSZ sizeof (ARCHDR)

define some useful symbolic constants

SYMTBL O /* section nnumber and/or section name of the Symbol Table

SUCCESS 1
CLOSED 1
FAILURE O
NOCLOSE O
BADINDEX -1L

OKFSEEK 0

define macros to permit the direct use of LDFILE pointers with the
standard I/0 library procedures

LDFILE *1ldopen(char®, LDFILE*);
LDFILE *ldaopen{char®, LDFILE¥);

#define
##define
#define
ffdefine
#fdefine
ffdefine
#define
#define
#define
jfdefine
##define
jfdefine
jfdefine
#fdefine
#fdefine
18
ffendif

GETC(1ldptr) getc (TOPTR(1dptr))
GETW(1ldptr) getw(IOPTR(1dptr))
FEOF (1dptr) feof (IOPTR(1dptr))
FERROR(1ldptr) ferror (I0PTR(1ldptr))

FGETC (1dptr) fgetc(IOPTR(1dptr))

FGETS(s,n, ldptr) fgets(s,n,IOPTR(1ldptr))

FILENO(ldptr) fileno(IO0PTR(1dptr))

FREAD(p,s,n, ldptr) fread(p,s,n,IOPTR(1dptr))

FSEEK(ldptr,o,p) fseek (IOPTR(1dptr), (p==BEGINNING)? (OFFSET(ldptr)+o):0,p)
FTELL(1ldptr) ftell(IOPTR(1dptr))

FWRITE(p,s,n, ldptr) furite(p,s,n,IOPTR(1dptr))

REWIND (1dptr) rewind (I0PTR(1dptr))

SETBUF (1dptr,b) setbuf(IOPTR(ldptr),b)
UNGETC(c, ldptr) ungetc(c, IOPTR(1dptr))
STROFFSET(1dptr) (HEADER(1dptr).f_symptr + HEADER(ldptr).f nsyms % 18) /¥

Feb 8 14:05 1985 sscan.c Page 1

/% %Z% %M% %1% %H% BT% %/
#include <stdio.b>
#include <filehdr.h>
#include "ldfcn.h"
##include <syms.h>

char* ldgetname(LDFILE® [SYMENT%*) ;

typedef char® Strptr;
Strptr copy(Strptr) ;

int err = 0 ;

class Strings {
Strptr* argv;
int first ;
int bound ;
void check(int);

public:
int len ; F
Strptr& operator[] (int x) { check(x) ; return argv[first+x] ; } ;
void suffix copy(Strptr s) {

check(first+len+l) ; argv[first+(lent+)] = copy(s) ; } ;
Strings(int x = 32) {

argv = new Strptr{x+l] ; first = x/2 ; len = 0 ; bound = x ;

};’

void Strings.check(int want) §
if (want <= 0 || want >= bound) {
int new_bound = 3%(len+l) ;
int new_first = new_bound/3 ;
Strptr* new_argv = new Strptr[new_bound+1] ;
for (int x = 0 ; x < len ; ++x) {
new_argvinew _first+x] = argv[first+x] ;

delete argv ;

first = new_first ;
bound = new_bound ;
argv = new_argv ;

3

Strptr copy (Strptr old) {
Strptr new_s = new char[strlen(old)+1] ;
strepy(new_s,old) ;
return new_s ;

3
Strings* cons ;
Strings* dest ;

void dofile(char* n) {
LDFILE* £ = ldopen(n,0) ;

.

N

Feb 8 14:05 1985 sscan.c Page 2

if ((£==0) §
char buffer[BUFSIZ] ;
sprintf(buffer,"sscan(%s)", n) ;
perror(buffer) ;
err = &4
return ;

3
while (f =0) {
SYMENT sym;
ldtbseek(£) ;
for (int x_sym = 0 ; ldtbread(f,x_sym,&sym) == SUCCESS ; ++x_sym) §
char®* str = ldgetname(f,&sym);
if (strncmp(str,"_STI",4) == 0) {
cons->suffix_copy(str) ;

3
else if (strncmp(str,"_STD",4) == 0) {
dest->suffix_copy(str) ;

3

x_sym += sym.n _numaux ; /% skip auxentries */

if (ldclose(f) != FAILURE) f = 0 ;
3 » - -

3

main(int argc, char®¥
int monitor = 0 ;
cons = new Strings ;
dest = new Strings ;

argv) {

for (int x_arg = 1 ; x_arg < argc ; + x_arg) {
int len = strlen(argv(x_arg]) ; :
if (len>=3 && argv[x_arg][0] != '-'
&8 argv[x_arg][len-2] == v ,
&& strchr('oa",argv[x_arg][len-1]) =0) {
dofile(argv[x_arg]) ;

else if (stremp(argv[x_arg],"-p") == 0) monitor=1 ;

}

printf("void _STC_all(e) int e ; {\n") ;

for (x_arg = 0 ; x_arg < cons~>len ; ++x_arg) {
printf("%s();\n", (¥cons)[x_arg]) ;

printf("}\n");

printf("void exit(err) {\n") ;

for (x_arg = 0 ; x_arg < dest->len ; ++x_arg) {
printf("%s();\n", (¥*dest)[x_arg]) ;

if (monitor) printf("monitor();\n");
printf("_cleanup();\n");
printf("_exit(err);}\n"");

return err ;

H

Feb 8 14:05 1985 CCcrt0.s Page 1

.file Yert0.s"

%i% WM% %I% %H% %T%
C runtime startup - call main; call exit when done.
new startup procedure uses ost 50" to write
the EPSW to trap omn overflow and invalid operation
this ties in to the 5.0 ucode delivery (I hope).

_start:

##

_mcount:

modified by Jerry Schwarz to call constructors and

destructors of CC

.set EXIT, 1

.set EPSWOST, 50

.set WREPSW, 10
.set DIVZERO,1
.set UNFL,2
.set OVFL,4
.set INVOP,8

.set INEXACT,0x10

new ost for fp trapping modes
10 says write

trap on divide by zero bit

trap on underflow bit

trap on overflow bit

trap on invalid op bit

trap on inexact result bit

.set TRAPBITS ,DIVZERO+UNFLAOVFL+INVOP+INEXACT

.set STZERO,0x100

.set STUFLOW,0x200
.set STOFLOW, 0x400
.set STINVOP,0x800
.set STINEX,0x1000

divide by zero sticky bit
underflow sticky bit

overflow sticky bit

invalid op sticky bit

inexact result sticky bit

)
.set STBITS,STZERO+STUFLOW+STOFLOW+STINVOP+STINEX
.set EMASK,TRAPBITS+STBITS # initially clear all via EMASK
.set NEWEPSW ,DIVZERO+OVFL+INVOP # default startup condition

.globl main
.globl _start
.globl _mcount
.globl environ
.globl _STC_all

ost S&EPSWOST

call &0, _STC_all
movaw .ostargs,%ap
movw -4(%sp), environ
call &3, main

pushw %r0

call &1, exit
pushw %x0

ost &EXIT.
good-bye '

rsb

.data
.align 4

.ostargs:

environ:

.word WREPSW
.word EMASK
.word NEWEPSW

.word 0

sleazy, but it should work

dummy in case an object module has been
compiled with cc -p but not the load meodule

a

Feb 8 14:05 1985 C(CCmcrtO.s Page 1

get prog name for Qroflllng

get text size in bytes ’

range/f#fbuckets ~= scalefactor

fails if #fbuckets rounded up

add in entry counts' and header an
round to word boundary

get space

start profiling

monitor wants # cfjéhorts_iﬁ buff

.file "mcrt0.s"
%2% %M% %I% %H% %T%
i C runtime startup and exit with profiling.
see crt0.s for explanation of EPSW stuff
.set CBUFS, 600
.set EXIT, 1
.set WORDSIZE, 4
.set EPSWOST, 50
.set WREPSW, 10
.set DIVZERO,1
.set UNFL,2 -
.set OVFL,4
.set INVOP, 8
.set INEXACT 0x10
.set TRAPBITS DIVZERO+UNFL+OVFL+INVOP+INEXACT
.set STZERO, OxlOO
.set STUFLO,0x200
.set STOFL0,0X4OO
.set STINVCOP,0x800
.set STINEX, OxlOOO SR
.set STBITS, STZERO+STUFLO+STOFLO+STINVOP+STINEX f
.set EMASK, TRAPBITS+STBITS R o
.set NEWEPSW DIVZERO+OVFL+INVOP »
.globl cleanup -
.globl _start
.globl environ
.globl etext
.globl exit
.globl main
.globl monitor
.globl write
.globl ___ Argv
_start:
movaw .ostargs,%ap
ost &EPSWOST
movw -4 (%sp), environ
movw -8(%sp), Argv #
subw3 &.eprol, &etext, %r8 #
andw2 &-WORDSIZE, %18 #
#
addw2 &8*CBUFS+12+WORDSIZE-1, %x8 i
andw2 &-WORDSIZE, %r8 ##
addw3 &4,%r8,%x7
pushw %r7 #
call &1, sbrk '
cmpw -1, %r0
je .nospace
pushaw .eprol it
pushaw etext
pushw %r0
lrsw2 &1, %r8 #
pushw %r8
pushw &CBUFS
call &5, monitor
call &3, main #

start user program

Feb 8 14:05 1985 CCmcrt0.s Page 2

write error message and exit

pushw %0
call &1, exit
.nospace:
pushw &2
pushaw .emesg
pushaw MESSL
call &3, write
pushw &-1
ost &EXIT
.eprol:
.data
.align &
.ostargs:
.word WREPSW
.word EMASK
.word NEWEPSW
environ:
.word O
.emesg:
i "No space for monitor buffer\n"
.byte 78,111,32,115,112,97,99,101,32,102,111,114
.byte 32,109,111,110,105,116,111,114"
.byte 32,98,117,102,102,101,114,10
.set MESSL, .-.emesg
.byte 0

(4

.

U

\/

	sscan makefile
	ldfcn.h
	sscan.c
	CCcrt0.s
	CCmcrt0.s

