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The work described here was completed in late 1983 but not published at that time. It attempts to 
provide a reasonably formal and precise definition of the Cedar programming language. The then 

current version of the language was perceived as an inadequate base for a number of planned 

extensions to the language and supporting environment: on the other hand, there was already a large 

body of Cedar code that could not simply be abandoned. These problems are dealt with by defining a 

small but powerful kernel language plus a mapping of existing Cedar constructs into that kernel. The 

kernel language introduces value spaces and operations over them that go well beyond what has been 

available in any implemented version of the Cedar language: it was to provide the basis for extension 

and simplification. The mapping from existing Cedar into the kernel provides not only a migration 
path for existing code but also a definitional method. 

This report should be of interest to students of programming languages and their definitions. 

Most of the interesting ideas of the Cedar language appear in the kernel. which is described in Chapter 

2. Such readers should note that the formalism used to describe the kernel has several known 

shortcomings. Its treatment of so-called dependent types is somewhat cavalier. A subsequent report by 

Burstall and Lampson c·A Kernel Language for Modules and Abstract Data Types," Digital Systems 

Research Center, September 1984) includes a more careful treatment of such types in a language very 

similar to the kernel. The present treatment also glosses over most of the definitional problems raised 

by the possibility of concurrent evaluation. 

The report should also be of interest to Cedar programmers. Chapters 3 and 4 constitute the most 

complete, precise and accurate definition of the implemented Cedar langauge that has appeared to 

date. For a reader willing to make the effort to assimilate the concepts introduced in Chapter 2. this 

report can serve as an interim reference manual. The later chapters are painfully honest and complete; 

as the abstract notes, they say much more than anyone probably wants to know. As of March 1986. the 

only known differences between the description and implemention, other than minor bugs in each. are 

the following: 

• The improved syntax for ENTRY and INTERNAL has not been implemented: these attributes 

must still precede the type in a procedure declaration (Section 3.5). 

• Sections 3.3.4 and 4.3.4 document an improved design for opaque types that was never 

implemented. In current Cedar. opaque types behave as they do in Mesa. 

• According to Section 4.14, if Pis a procedure taking one argument, its app1ication to x using 

dot notation is written without brackets, as x.P. In current Cedar. the alternative form x . .P[] is 

also accepted. 

Both classes of readers should note that many parts of the kernel language have never been 

implemented in their full generality. Some of the current developers and users of the Cedar language 

would not even agree that the directions of evolution suggested by the kernel language are desirable or 
feasible. The claims about long-term goals and promised improvements in this report should therefore 

be taken as the personal opinions of the author. 

Ed Satterthwaite. March 1986 



Chapter 1. Introduction 

The Cedar language is a programming language derived from Mesa. which in tu_rn is derived from 
Pascal. It is meant to be used for a wide variety of programming tasks. ranging from low-level 
system software to large applications. In addition to the sequentia_l control ~onstructs. static type 
checking and structured types of Pascal. and the modules. exceptl~:m handling. an_d ~oncurrency 
control constructs of Mesa. Cedar also has garbage collection. dynamic types. and a hm1ted form of 
type parameterization. 

This manual describes the Cedar language. Except for the overview material in § 2.1 and the 
discussion of concepts in §§ 2.3-2.7. it is written strictly as a reference manual. not a tutorial. 
Furthermore. it describes the entire language, including a number of obsolete constructs and 
historical accidents. Hence it tells much more than you probably want to know. A summary of the 
safe language and comments throughout the manual, suggest which constructs should be preferred 
for new programs. 

The manual is organized into three major parts: 

Chapter 2: A description of a much simpler kernel language. in terms of which the current 
Cedar language is explained. This description includes: 

An overview or glossary, in which the major technical terms used in the kernel are 
briefly defined (§ 2.1). 
An informal explanation of the ideas of the kernel and the restrictions imposed by 
current Cedar {§§ 2.3-2.9) 
A precise definition of the kernel {§ 2.2). Most readers will probably find this rather 
hard going. 

Chapter 3: The syntax and semantics of the current Cedar language. The semantics is given 
precisely by a desugaring into the kernel. It is also given more informally by English text. 
This chapter also contains a number of examples to illustrate the syntax. 

Chapter 4: The primitive types and procedures of Cedar. For each one, its type is given as 
well as an English definition of its meaning. This chapter is organized according to the class 
hierarchy of the primitive types (§ 4.1). 

In addition, there is a one-page grammar for the full language. a shorter grammar for the safe 
language, and a two-page language summary which includes the grammar, the desugaring. and the 
examples from § 3. The tables in §§ 4.1-2 summarize the types and primitives. 

To find your way around: 

First read chapter 2, except for § 2.2. 

Then consult the table of contents. or the index. for the topics of interest to you. The full 
grammar (at the end) and the class hierarchy (Table 4-1) may also be useful as starting 
points. 

The manual is extensively cross-referenced. Section titles and numbers appear at the top of 
each page. The summaries and tables also point to the section in which each construct is 
defined. 

Acknowledgements: Rod Burstall and Ed Satterthwaite helped me greatly in clarifying the ideas 
presented in § 2. Ed was also indispensable in getting an accurate description of the current Cedar 
language. Bill McKeeman·s work on an earlier Cedar language description was the starting point for 
this manual. Will Crowther. Jim Horning and Lyle Ramshaw read part or all of the manual 
carefully. and made many helpful comments. Several other Cedar programmers have pointed out 
errors or omissions. Of course, I am responsible for the errors that remain. 



Chapter 2. The kernel language 

This document describes the Cedar language in tenns of a much smaller language. which we will 
usually call the kernel or the Cedar kernel. Cedar differs from the kernel in two ways: 

• It has a more elaborate syntax (§ 3). The meaning of each construct in Cedar is explained 
by giving an equivalent kernel program. 

Often ~he kernel program is longer or less readable: the Cedar construct can be thought of as an idiom which 
c?nvementl_y expresses a common operation. Sometimes the Cedar construct has no real advantage. and the 
difference 1s the result of backward compatibility with the ten-year history of Mesa and Cedar. 

• It has a large number of built-in or primitive types and procedures (§ 4). In the kernel 
language all of these could in principle be programmed by the user. though in fact most are 
provided by special code in the Cedar compiler. In general. you can view these built-in 
facilities much like a library. selecting the ones most useful for your work and ignoring the 
others. 

Unfortunately. the current Cedar language is not a superset of the kernel language. Many important 
objects (notably types. declarations and bindings) which are ordinary values in the kernel that can 
be freely passed as arguments or bound to variables. are subject to various restrictions in Cedar: 
they can only be written in literal fonn. cannot be arguments or results of procedures, or whatever. 
The long-tenn goal for evolution of the Cedar language is to make it a superset of the kernel 
defined here. In the meantime. however. you should view the kernel as a concise and hopefully 
clear way of describing the meaning of Cedar programs. 

To help in keeping the kernel and current Cedar separate, reserved words and primitives of the 
kernel which are not available in current Cedar are written in SANS-SERIF SMALL CAPITALS. rather 
than the SERIF SMALL CAPITALS used for those symbols in current Cedar. Operator symbols of the 
kernel which are not in current Cedar are not on the keyboard. 

The kernel is a distillation of the essential properties of the Cedar language, not an entirely separate 
invention. Most Cedar constructs have simple translations into the kernel. Those which do not (e.g .. 
some of the features of OPEN) are considered to be mistakes. and should be avoided in new 
programs. 

Roadmap 

§ 2.1 gives a brief summary of each major idea in the kernel. which may be helpful as an 
introduction and reminder. Most of the chapter (§§ 2.3-2.8) is an infonnal explanation of the 
concepts behind the kernel. Usually. tenns are defined and explained before they are used. but 
some circularity seems to be unavoidable. Both this and the explanations in §§ 2.3-2.7 are given 
under five major headings. as follows: 

Values and computations 

The type system 

Programs 

Conveniences 

Miscellaneous 

There is also a sketch of the restrictions imposed by the current Cedar language on the generality of 
the kernel: for more on this subject. see § 3. The meaning of the various built-in primitives is given 
in § 4. The incompatibilities between the kernel language and current Cedar are described in § 2.9. 
i.e .. the constructs in Cedar which would have a different meaning in a kernel program. For the 
most part. these are bits of syntax which do not have consistent meanings in current Cedar: future 
evolution of the language will replace them with their kernel equivalents. 



§ 2.2 precisely defines the syntax and semantics of the Cedar kernel language. the. fof?1er with a 
grammar. and the latter by explaining how to tak~. a program and dedu~e the function 1t computes 
and the state changes it causes. The kernel defimt1on follows t~e. ordenng of the kernel grammar. 
This section is rather difficult to read. and you may prefer to skip it. 

2.1 Overview 

This section gives a brief summary of the essential concepts on_ which the Cedar languag~ ~s based. 
The explanations are informal and incomplete. For more precise but more formal defimt1ons. see 
§ 2.2: for more explanation. see § 2.3-§ 2.8. 

2.1. I Values and computations 

Application: The basic mechanism for computing in Cedar is applying a procedure (proc for short) to 
arguments. When the proc is finished. it returns some results. which can be discarded or passed as 
arguments to other procs. The application may also change the values of some variables. In the 
program an application is denoted by {the denotation of) the proc followed by square brackets 
enclosing (the denotation of) the arguments: f [first~ 3. last~ x+ l]: here the ~ symbol binds the 
value of the expression on the right to the name on the left. There are special ways of writing many 
kinds of application: x+ L person.salary. IF xO THEN red ELSE green, x+-7. 

Value: An entity which takes part in the computation (i.e., acts as a proc. argument or result) is 
called a value. Values are immutable: they are not changed by the computation. Examples: 3. TRUE, 
"Hello". A [x: INT] IN x+ 3: actually these are all expressions which denote values in an obvious 
way. The A-expression denotes a proc value P: the name xis called a parameter. When Pis applied 
to an argument. the parameter x is bound to the argument. 

Variable: Certain values. called variables. can contain other values. The value contained by a 
variable v (usually called the value of v) is returned by v.VALUEOF. and can change when a new 
value is assigned to v. In addition to its results. a proc may have side-effects by changing the values 
of variables. Nearly every non-variable type T has a corresponding variable type VAR T: values of 
type VAR r contain values of type T. Every VAR type has a NEW proc which creates a variable of the 
type. A variable is usually represented by a single block of storage~ the bits in this block hold the 
representation of its value. A variable may be local to a proc. or it may be created by an explicit 
call of NEW. and referred to by a REF or pointer value. 

Group: A group is an ordered set of values. often denoted by a constructor like this: [3, x+ L 
"Hello"]. Like everything else. a group is itself a value. 

Binding: A binding is an ordered set of [name. value] pairs. often denoted by a constructor like this: 
[x: INT~3. y: BOOL~TRUE] (or simply [x~3. y~TRUE]. in which the types of the names are the 
syntactic types of the expressions). If bis a binding. b.n denotes the value of the name n in b. Note 
the difference between binding and assignment: one introduces a new name with a fixed value: the 
other changes the value of a variable. 

Argument: A binding constructor written explicitly after an expression (e.g .. Copy[from~ x. to~ y]) 
denotes application of the value P denoted by the expression to the value a denoted by the 
constructor. called the argument. P is usually a proc. and a is a binding, which is bound to P's 
domain declaration D to get the argument which is passed. In making this binding a is coerced. if 
necessary. to match the declaration: 

If a name in Dis missing from a, a default value is supplied. 

If a value in a doesn't have the type required by D. it is coerced (if possible) into another 
value which does. 

The constructor can also be for a group. in which case the names from D are attached to its 
elements to tum it into a binding. 



2.1.2 The type system 

!ype: A type defines a set of values by specifying certain properties of each value in the set (e.g .. 
mteger between O and 10): these properties are so simple that the compiler can make sure that proc 
arguments have the specified properties. A value may have many types: i.e .. it may be in many of 
these sets. A type also collects together some procs for computing with the value (e.g .. add and 
multiply). 

More precisely. a type is a value which is a binding with two items: 

Its predicate. a function from values to the distinguished type BOOL. A value has type T if 
Ts predicate returns TRUE when applied to the value. 

Its cluster. a binding in which each value is usually a proc taking one argument of the type. 
For any expression e. the expression e.f denotes the result of looking up fin the cluster of 
e's syntactic type v' e. and applying the resulting proc to the value of e. 

A proc·s type depends on the types of its domain and range; a proc with domain (argument type) D 
and range (result type) R has the type D--t> R. Every expression e has a syntactic type denoted Ve. 
e.g .. the range declared for its outermost proc; in general this may depend on the arguments. The 
value of e always has this type (satisfies this predicate): of course it may have other types as well. 

Mark: Every value carries a set of marks (e.g .. INT or ARRAY: think of them as little flags stuck on 
top of the value). The predicate HASMARK tests for a mark on a value: it is normally used to write 
type predicates. The set of all possible marks is partially ordered. 
The set of marks carried by a value must have a largest member m. and il must include every mark smaller than m. 
Hence all the marks on a value can be represented by the single mark m: we can say that m is the mark on the value. 
This does not imply a total ordering on the marks. 

Type-checking: The purpose of type-checking is to ensure that the arguments of a proc satisfy the 
predicate of the domain type: this is a special kind of pre-condition for executing the proc. The 
proc body can then rely on the fact that the arguments satisfy their type predicates. It must 
establish that the results satisfy the predicate of the range type: this is a special kind of post­
condition which holds after executing the proc. Finally. the caller can rely on the fact that the 
results satisfy their type predicate. In summary: 

Caller- establish pre-condition: arguments have the domain type: 
rely on post-condition: results have the range type. 

Body - rely on pre-condition: parameters have the domain type: 
establish post-condition: returns have the range type. 

Declaration: A declaration is an ordered set of [name. type] pairs. often denoted like this: 
[x: INT. y: BOOL]. If dis a declaration. a binding b has type d if it has the same set of names. and for 
each name n the value b.n has the type dn. A binding b matches d if the values of b can be coerced 
to yield a binding b' which has type d. 

A declaration can be instantiated (e.g .. on block entry) to produce a binding in which each name is 
bound to a variable of the proper type: instantiating the previous example yields 

[x: VAR INT~(VAR INT).NEW. y: VAR BOOL~(VAR BOOL).NEW]. 

Class: A class is a declaration for the cluster of a type. For instance. the class Ordered is [T: TYPE. 
LESS: PROC[T. 7]--t>[BOOL] .... ]. C is a subclass of D if {loosely) C includes at least all the [name. 
type] pairs in D. 



2.1.3 Programs 

Name: A name (sometimes called an identifier) appearing in a program denotes the value bound to 
the name in the scope that the name appears in (unless the name is in a pattern before a colon 
(declaration or binding) or tilde (binding). or after a dot or $). An atom is a value that can be used 
to refer to a name: a literal atom is written like this: $alpha. 

Expression: In a program a value is denoted by an expression. which is one of: 
a literal value- 3 or "Hello": 
a name- x or salary: 
an application of a proc value to a group or binding value- GetPropertiesf.directory. input): 
a A-expression. which yields a proc value- A [x: INT]=>[INT] IN (IF x<O THE1' -x ELSE x): 
a constructor for a declaration or binding-[x: INT~ 3. y: REAL~ 3.14)). 

If a value is given for each free name in an expression. then it can be evaluated to produce a value. 
Thus an expression is a rule for computing a value. The entire program is a single expression. made 
up of sub-expressions according to the five constructs above. 

Scope: A scope is a region of the program in which the value bound to a name does not change 
(although the value might be a variable. whose contents can change). For each scope there is a 
binding called ENV (for environment) which determines these values. A new scope is introduced (in 
the kernel) by IN (after LET or A) or by a REC [ ... ) constructor for a declaration or binding: e.g .. 

LET x~3 IN x+ 5: 
LET REC Fact~A [n: INT]=)(,: INT] IN (IF n=O THEN 1 ELSE n*Fac~n-1]) IN Fac44]. 

The first expression evaluates to 8. the second to 24. 

Constructors: Brackets delimit explicit constructors for group. declaration or binding values. They 
all have the form [x1• x2 .... ]. and are distinguished by the form of the x;: 

an expression for a group: 
n: e for a declaration: 
n~ e or n: e1 ~ e2 for a binding. 

Recursion: When names are introduced in a constructor in Cedar. this is done recursively: 

If vis bound to n in a binding constructor. then in expressions in the constructor n has the 
value v. rather than its value in the enclosing scope. Exception: argument bindings are non­
recursive. 

If n is declared in a declaration constructor. then it may not be used in the constructor. 
unless there is an ordering of the declarations in the constructor such that a name is used 
only by later dec1arations. Exception: dec1ared names may be used in the bodies of A­
expressions in the constructor (see § 3.3.4). 

In the kernel. however. constructors are non-recursive unless preceded by REC. 

Dot notation: The fonn e.n looks up n in some binding associated with e. and does something with 
the result. There are three cases: 

If e is a binding. e.n is just the value paired with n in e. 
If e is a type. e.n is e.Cluster.n. 
Otherwise. e.n is (V e.n)[e]. and e.n[more args] is usually (V e.n)[e. more args]. Recall that v7 e 
is the syntactic type of e. 

In all cases you are supposed to think of n as some property or behavior associated with e: e.n 
denotes that property or evokes that behavior. 



2.1.4 Conveniences 

Coercion: Each type cluster may contain To and From procs for converting between values of the 
type and values of other types (e.g .. Floa1: PROC[I\lT]-+[REAL]: this would be a To proc in REAL and 
a From proc in l~T). One of these procs is applied automatically if necessary to convert or coerce an 
argument value to the domain type of a proc: this application is a coercion. Each coercion has an 
associated atom called its tag (e.g .. $widen for INT-+REAL or $output for INT-+ROPE): several 
coercions ma} be composed into a single one if they have the same tag. The tags thus serve to 
prevent unexpected composition of coercions: all are NIL currently. however. 

Exception: There is a set of exception values. An expression e denotes a value which is either of 
type v e or is an exception. Whenever an exception value turns up in evaluating an expression e

1
. it 

immediately becomes the value of er unless (in the kernel) e
1 

has the form e
2 

BUT { ... }. The { ... } 
tests for exception values and can supply an ordinary value. or another exception. as the value of 
the BUT expression. An exception value may contain an ordinary value. called the argument of the 
exception. so that arbitrary information can be passed along with an exception. 

Finalization: When a variable is no longer accessible. the storage it occupies is freed (automatically 
in the safe language). Before this is done. a finalization proc in the cluster of the variable·s type is 
called to do any other appropriate resource deallocation. Finalization is done by separate processes. 
and hence must be explicitly synchronized with the rest of the program. The local variables of a 
proc or other scope may also be finalized (using U'IWIND): this is done synchronously(§ 3.4.3A). 

Safe: The safety invarianl says that all references are legal. i.e .. each REF T value is NIL or refers to 
a \ariable of type T. A proc is safe if it maintains the safety invariant whenever it is applied to 
arguments of the proper types. If a proc body (A-expression) is 

checked. the compiler guarantees that the proc value is safe: 
trusted. the programmer asserts that it is safe (the compiler makes no checks): the proc value is safe: 
unchecked. the compiler makes no checks and the proc value is unsafe. 

It is best to write checked code whenever possible. However. checked code cannot call unsafe procs 
(since the compiler then cannot guarantee safety). 

Process: Concurrency is obtained by creating a number of processes. Each process executes a single 
sequential computation. one step at a time. They all share the same address space. Shared data 
(touched by more than one process) can be protected by a monitor: only one process can execute 
within the procs of the monitor at a time. So that each process can know what to rely on. there 
must be an invariant for the monitored data which is established whenever a monitor proc returns 
or waits. A process can wait on a condition variable within a monitor: other processes can then enter 
the monitor. The waiting process runs again when the condition is notified. or after a timeout. 

2.1.5 Miscellaneous 

Allocation: Cedar has standard facilities for allocating new variables of any type (the NEW 
primitive): related variables can be allocated in the same zone. Normally. variables are deallocated 
automatically by the garbage collector when they can no longer be referenced: such variables can 
only be referred to by REFS. Variables can also be deallocated explicitly by FREE. but this is unsafe. 

Static: An expression whose value is computed without executing the program is called static. 
Literals are static. as are names bound to literals. and any expression with static operands. Proc 
bodies are never static unless they are inline. and often not then. 

Pragma: Some language constructs do not affect the meaning of the program (except possibly to 
make a legal program illegal). but only its time and space costs: these are called pragmas. Examples 
are l'\Ll'\iE for proc bodies and PACKED for arrays. 



2.2 Kernel definition 

This section gives the syntax and semantics of the Cedar kernel language. Motivation. and an 
explanation of the relation between the kernel and the current Cedar language, can be found in 
§§ 2.3-2.8. Since this section is rather formal. you are advised to read the rest of the chapter first. 
and then return here if you want a more precise definition. 

The kernel is subdivided into 

A rather austere core: anything can be desugared into this. but not very readably (§ 2.2.1). 

A set of conveniences: with these. readable programs can be written (§ 2.2.2). 

Imperative constructs: statements and loops (§ 2.2.3). 

Exception handling (§ 2.2.4). 

The format of this section interleaves grammar rules which give the syntax of the language with text 
which gives the meaning. The meaning of the core is given in English. For other parts of the 
kernel. it is given by desugaring rules which show how to rewrite each construct in tenns of others: 
if rewriting is done repeatedly. the result is a core program. which may invoke some primitives. The 
meaning of these is also given in English. There is also some English explanation of the desugaring. 
but this is only a commentary and does not have the force of law. 

See § 3.1 for the notation used in the grammar and desugaring. 

2.2. I The core 

The Cedar core is a minimal subset of the kernel. barely adequate as a base into which the rest of 
the kernal can be desugared. In the core. there is syntax only for names. literals. application. A.­
expressions. a basic and a recursive binding construction. and syntactic type: everything else is done 
with primitives. We never write anything in the core. however. except to show the desugaring of a 
kernel construct. Thus the reader need not struggle with programs_ in the ugly core syntax. 

Many readers may be happy with the kernel definition given in the other sub-sections of§ 2.2. and 
may wish to avoid the fonnalism of this section. 

Table 2- 1 gives the core syntax (in the first column). together with a comment suggesting the 
meaning of each construct (in the last column). The meaning is given in detail in § 2.2.lA-G. The 
middle column gives the syntactic type of each construct. For readability. this is written in the full 
kernel language. with a few conventions: 

a * in front of the syntactic type indicates that it gives less information that one would like. 
For instance. DDOTP has type DECL-+TYPE. which says nothing about the fact that the type 
is a cross type whose structure matches the structure of the dee!. 

A parameter to a primitive declared with :: is the type of some other argument: the 
argument for this type parameter may be omitted in an application of the primitive. in 
which case it is supplied as the syntactic type of the other argument. For instance. p: [,:: 
TYPE. x: t]-+[ ... ] can be applied with p[x~3]. which is short for p{t~INT. x~3]. 

A bold name is a reference to another parameter. e.g .. t in the previous example. 

In the kernel. a core primitive named xDOTy is in the cluster of the type of its argument under the 
name y. Thus DDOTP is in the cluster of DECL under the name P. so that d.P = DDOTP[d] if dis a decl. 



Syntax 

expression :: = 
n I 
literal I 
e1 ► e2 I 
A d 1 = > d2 IN e I 
/\ d1 = > d2 IN e I 
[(n ~e), ! .. ] 
FIX d ~ e I 
v' e 

t:i,pe :: = e 
decl :: = e 

name::= 

Syn1ac1ic type 

v'n 
v'literal 
(v' erRANGE)[e2] 

d,-+d2 
d,-+d2 
[(n: v' e), ... ] 
d 
TYPE 
v'e --=>TYPE-­
"ve --=>0ECL--

letter (letter I digit)... ("vENV).n 
literal::= 

$ n I 
primitive 

primitive :: = 

ATOM 
"vprimitive 

Meaning 

ENV.n 

-- Standard application. I 
-- Standard proc constructor. I 
-- Unchecked standard proc constructor. I 
-- Vanilla binding constructor. I 
-- Recursive binding constructor. I 
-- Syntactic type. 
-- A type is syntactically just an expression. 
-- A decl is syntactically just an expression. 

-- Appears as an e or in a pattern. 

-- .-\TO~t literal. I 

ARROW I [d: DECL. p: (d-+DECL)]-+[a: --arrow--TYPE] 
DOMAIN I RANGE I *[a: --arrow--TYPE]-+[1: TYPF] 

MKPAIR I [11:: TYPE.first: t

1

• 12:: TYPE. res1: t 2]-+[v: t

1
Xt

2

] 

GROUP I [ti: TYPE]-+[1: TYPE] --,=>TYPE 

MKCROSS I [g: GROUP[TYPE]]-+[c: --cross--TYPE] 
coorn I *[1: --cross--TYPE]-+(g: GROUP[TYPE]] 

MKBINDD I [d: DECL. v: d.T]-+[b: d] 
BDOTD I BDOTV I [b: BINDING]-+[d: DECL] I [d:: DECL. b: d]-+[v: d.T] 

MKBINDP I [p: PATTERN. 1:: TYPE. v: t]-+[b: MKDECL[p. t]] -- = MKBINDD[d~MKDECL[p. t]. v~ v] 
LOOKUP I [d:: DECL. b: d. n: A TOM]-+[ v: DTOB[d].n] 
THEN I [d1:: DECL. b1: d

1

. d2:: DECL. b2: d2]-+[v: d
1 

THEND d
2

] 

ENV I *BINDING 
MK0ECL I *[p: PATTERN. 1: TYPE]-+[d: DECL] 

D0OTP I *[d: DECL]-+[p: PATTERN] 
DDOTT I *[d: DECL]-+[1: TYPE] 

DTOB f *[d: DECL]-+[b: BINDING] -- = MKBINDP[p~d.P. v~dT.G]] 
BTOD I *[b: BINDING]-+[d: OECL] --=MKDECL[p~b.D.P. t~MKCROSS[b.V]] 
THEND I [d1: DECL. d2: DECL]-+[v: DECL] --= BTOD[DTOB[d1] THEN DTOB[d2)] 

BOOL I AT0\1 I TYPE 
TRUE I FALSE I BOOL 
TYPE I DECL I BINDING I TYPE -- DECL=>TYPE. BINDING=>TYPE 
PATTERN I TYPF. -- = GROUP[ A TOM] 
A'lY I TYPE -- T=> ANY for any type T 
HIDE I [1:: TYPE. v: t]-+[h: HEX] -- See § 2.2.4 
HEX TYP~ -- See § 2.2.4 

Table 2-1: The core language 

A name not in a literal (or pattern. in the kernel) denotes the value to which it is bound in the 
current environment ENV (A below). An ATOM literal is a value which stands for a name in the 
primitives which deal with declarations and bindings. 

A literal denotes a value according to a rule which depends on its syntax. The core has only 
numeric and ATOM literals. and the primitives enumerated above. 



An expression denotes a value according to a rule which depends on its syntax. If the expression is 
a name or literal. the value is the value of the name or literal. The remaining cases are discussed in 
the following sub-sections. Most of these cases define the value of the expression in terms of the 
value of its sub-expressions. The sub-expressions may be evaluated in any order. 

A. The current environment £NV 

The current environment ENV is a binding. The value of the expression n is ENV.n. ENV for a sub­
expression is the same as ENV for its containing expression. except that: 

For the b of a closure being applied. ENV is computed according to B below. 

For the e of a FIX. ENV is computed according to E below. 

Thus applying a closure and evaluating a FIX are the only ways to change ENV. 

B. Application 

The value of a standard application is obtained by evaluating e1 and e2 to obtain vI and v2• and 
applying v1 to v2. There are two cases for application: 

v1 is a primitive. The value of the application is a function of v2 given in the definition of 
the primitive. The core primitives are defined throughout § 2.2.1. the Cedar primitives in 
§ 4. 

vI is a closure c (C below). with domain declaration d. body b and environment £. The 
value of the application is the value of the expression b in the environment 

MKBINDD[d. v2] THEN£ 

(E below). Note that if the closure was made with A. the body must be type-checked when 
it is applied: a closure made with A was type-checked when it was made (C below). 

V e1 must be an arrow type. An application type-checks if V e2 implies V e1.DOMAIN (G below). The 
type of the application is obtained by applying V e1.RANGE to vr In simple cases. V e

1
.RANGE is a 

constant. For instance. NOT: BOOL-+BOOL has RANGE=A BOOL=)TYPE IN BOOL. However. the 
result type may depend on the argument value. Thus 

VMKBINDD.RANGE = A [d: DECL. v: d.T] = )TYPE IN [b: a] 
so that MKBINDD[[i: INT]. 3] has type [b: [i: INT]] to go with its value [b~[i~ 31]. 

C. lambda 

The value of a A-expression is a closure. which has three parts: 

A domain declaration d. equal to the value of di-

A body b. which is the expression e (not the value of e). 

An environment £. equal to the current environment ENV when the A is evaluated. 

A A-expression type-checks if 

d1 evaluates to a declaration d. 

For any x of type d.T. Ve implies d2"T in the environment MKBINDD[d. x] THEN £. 

A A-expression type-checks if d1 evaluates to a declaration: type-checking of the body is deferred 
until the closure is applied. 



D. Pairs. groups and cross types 

A pair is the basic structuring mechanism. MKPAIR[x. y] yields the pair <x. y). Bigger structures are 
made. as in Lisp. by making pairs of pairs. When we are interested in the leaves of such a structure. 
we call it a group and cal1 the leaves its elements. A group has type GR0UP[71 if all its elements 
have type Tor are NIL. A flat group is a pair in which first is not a group. and rest is a flat group or 
1\JIL. 

The type of a pair is a cross type: MKPAIR[x. y] has type TXU iff x has type T and y has type U. 
Cross types are made with MKCROSS. which turns a GROUP[TYPE] (i.e .. a group whose elements are 
types) into a cross type in the obvious way: 

MKCROSS[NIL] = NIL TYPE 

MKCROSS[71 = r if r is a type. 

MKCROSS[ MKPAIR[x. y] ] = MKCROSS[x]XMKCROSS[y] 

Note that MKCROSS of a flat group is flat. coorn goes the other way. turning a cross type into a 
GR0UP[TYPE] in which no element is a cross type. Thus MKCR0SS is the inverse of coorn. but not 
necessarily the other way around. 

£. Bindings 

A binding is either NIL. or an <atom. value> tuple. or a <binding. binding> tuple. The primitive 
MKBINDD constructs a binding from a declaration d and a matching value v, i.e. (as the type of 
MKBINDD indicates). one with the type d.T. The resulting binding has type d. and consists of the 
names from d paired with the corresponding values from v. Example: 

MKBINDD[ [x: INT, b: BO0L]. [3. TRUE]] = [x~3. b~TRUE] 
= ( ($x. 3). ( ($b. TRUE). NIL)) 

In this example. d.T is INTXBOOL. 
The declaration and group in this example is written using the syntax of § 2.2.2: in the core they would be 
MKDECL[p~[$x. $b]. /~MKCROSS[[INT. BOOL]] ] and MKPAIR[/1,s,~3. res/~MKPAIR[firs/~TRUE. ,es1~N1L]] (where we have written 
the arguments of these primitives in the kernel syntax). 

The primitives BTOD and BT0V return the arguments of the MKBINDD primitive that made the 
binding. MKBINDP is redundant: it is like MKBINDD. but takes a pattern instead of a declaration. and 
hence accepts any v with the right structure. regardless of the component types. 

LOOKUP returns the value of the name n in the binding. THEN combines two bindings. giving 
priority to the first one in case of duplicate names. It works only for flat bindings. in which the first 
element of each <binding. binding> tuple is an <atom. value> tuple. and the second element is 
another <binding. binding> tuple or NIL The value of b

1 
THEN b2 is another flat binding. obtained 

by first replacing any tuple «a. v>. b> in b2 where a is equal to an atom in b1 by b. and then using 
this binding to replace the final NIL in br 

The binding constructor [(n~e) .... ] has the value MKBINDP(p~[n .... ]. v~[e . ... ] ]. 

FIX makes a recursive binding: the value of FIX d
1 
~ e is MKBINDD[d. v]. where dis the value of d1 in 

ENV and vis the value of e in the environment (LET FIX d~e IN d~e) THEN ENV. Of course in general 
this computation may not tenninate: nonnally the names in d occur in e only in the bodies of "A.­
expressions. and in this case it does tenninate. The FIX typechecks if 'v e in the latter environment 
implies DT0T[d]. 



F. Declarations 

A declaration is either NIL. or an <atom. type> tuple. or a <declaration. declaration> tuple. The 
primitive MKDECL constructs a decl from a pattern p and a value t of type GROUP[TYPE]. A pattern is 
a GROUP[ATOM]. i.e .. either NIL. or an atom. or a pair of patterns: the ATOM elements must all be 
different. An application of MKDECL typechecks if t matches p. i.e .. if 

both p and tare NIL. or 

p is an atom and r has type TYPE. or 

p is a pair [p1• p2] and t is a cross type 11 Xt2 and p1 matches t1 and p2 matches 12. 

The resulting declaration consists of the names from p paired with matching type values from t. 

The primitives DDOTP and DDOTT return the arguments of the MKDECL primitive that made the 
declaration. Thus 

DDOTT[NIL] = NILDECL: 

DDOTT[ ($n. 7)] = T: 

DDOTT[(d
1

. d/] = DDOTT[d
1

]X DDOTT[d
2

] 

DTOB is redundant: it converts a declaration to a binding in which each name has the corresponding 
type as its value. Thus DTOB[[x: INT. y: REAL]]=[x~INT. y~REAL]. The inverse is BTOD. also 
redundant: it is defined only if all the values in the binding are types. THEND combines two 
declarations just as THEN combines two bindings: V(bl THEN b}= '\l bl THEND '\l b2 

G. Types and type-checking 

A type is a value consisting of a pair: 

the predicate. a function from values to BOOL. 

the cluster. a binding. 

A value v has type T if Ts predicate applied to v is TRUE. 

T implies U iff (\:J x) T.Predicate[x]=> U.Predicate[x]. 

Typechecking consists of ensuring that the argument of an application has the type specified by the 
domain of the proc (B above). The body of a X-expression can then be type-checked (or the 
implementation of a primitive constructed) independently. assuming that the parameter satisfies the 
domain predicate. Symmetrically. the result of an application can be assumed to have the type 
specified by the range of the proc. 

To complete the induction. it is also necessary to check that the value of the body of a X-expression 
has the range type (C above). 

The primitive types in the kernel are: 

BOOL. with two values TRUE and FALSE. 

ATOM. with values denoted by literals of the fonn $n. 

TYPE. a predicate satisfied by any type value. 

ANY. a predicate satisfied by any value. 

DECL. the type of a declaration ( F above). 

BINDING. the type of any binding. 



Arrow types. the types of procs (C above). An arrow type has a domain type and a range 
type. 

Cross types. the types of pairs (D above). 

GROUP[T]. the type of any pair in which all the elements have type T. 

Declarations. the types of bindings (E and F above). 

There are no non-trivial implications among any of these types. except as follows: 

DECL=>TYPE; BINDING=>TYPE; GROUP[I]=>TYPE. 

T=>ANY for any type T. 

T1XT 2=>U1XU2 iff T1=>U1 and T2=>U2" 

GROUP[7l=>GROUP[ U] iff T=> U. 

T1--+T2=>U1--+U2 iff U1=>T 1 and (Vx: U1) (A T1 IN T2)[x]=>(A U1 IN U}[x]. Note the 
reversal of the domains. 

d1=>d2 for declarations iff d1.P=d2.P and DTOB[dl].n=>DTOB[dJn for each n in dl.P. 

2.2.2 Conveniences 

Table 2- 2 gives the syntax and semantics for kernel expressions. Most of this is straightforward 
sugar. LET adds the binding e1 to ENV in evaluating e2. The separate case for b . ... simply allows the 
[] which normally enclose a binding constructor to be omitted in this case: see below. IF wraps e2 
and e3 in A·s so that they don't get evaluated: the IFPROC primitive chooses the one to evaluate and 
applies it. 

The dot notation has three cases. 

For a binding it just looks up n in the binding. 

For a type it looks up n in the type's cluster. 

For anything else. it looks up n in the cluster of 'v e and applies the result to e. The special 
LOOPUPC primitive does something special if it finds a proc which takes more than one 
argument: it splits the proc into one which takes the first argument and returns a proc 
taking the remaining arguments. This ensures that if 'v e.n is such a proc P. the expression 
e.n[a. b] will desugar into something equivalent to P[e. a. b]. 

The usual syntax for application is a proc e1 followed by an explicit binding constructor. The kind 
of application may depend on the type of e1, via the APPLY element of its type: for a proc applied 
by the standard apply operator ►• APPLY is the identity. If e1 is followed by an group rather than a 
binding constructor, the argument is obtained by binding the group to the declaration which is e1 ·s 

domain. 

Infix operators desugar straightforwardly into application: note that the choice of proc is determined 
by the type of the first operand only. AND and OR are not ordinary infix operators. since they 
evaluate no more than necessary: this is expressed by the desugaring into IF. 

The remaining expression syntax is various constructors. described below, and the imperative and 
exception features described in the next two sections. 



expression :: = coreExpression I 
dl ~ d2 I 
A ( I e1)( I = > e2) IN e

3 
I 

LET e
1 

IN e
2 
I 

LET b .... IN e I 
1 F e1 THEN e2 ELSE e3 I 
e.nl 

e1 [ b .... ] I e1 [ er ... ] I 
e1 infixOp e2 I 
e

1 
AND e

2 
I e

1 
OR e

2 
I 

[ ] I [ e1 ( I e2• ! .. )] I 
PATT p I 
[ b. ! .. 1 I 
REC [ (p : t ~ e) .... ] I 
[ d. ! .. ] I 
XXI 
statements I simpleLoop I 
but 

infixOp ::= 
X 
PLUS 
THEN 

literal :: = core Literal I 
digit digit ... I 

declaration : : = 
p: t I 
[(p: t) .... 1 

binding::= 

P ~ el 
d ~ e I 

pattern::= 

n I 
[pl• ... ] 

primitive::= corePrimitive I 
LOOKUP I LO0KUPC I 
PLUS I 
IFPROC I 

ARROW ► [d
1
. A d

1 
= )DECL IN d

2
] 

-- The domain defaults to [ ]. the range to Ve 3 I 
( >-.. Ve 1 IN e2 } ► e1.v -- e1 a binding I 
LET [b .... ] IN e I 
( IFPROC[Ve2, e1• >-.. tN e2. A IN e3]} [] I 
lF V e=>BINDING THEN LOOKUP ► [Ve. $n] 
ELSE IF 've=>TYPE THEN LOOKUP ► [Ve.cluster. $n] 
ELSE ( LOOKUPC ► [V e.c/uster. $n]} ► [e] I 
e

1 
. APPLY ► [b . ... ] I e1 . APPLY ► MKBINDD[Ve1.D0MAIN. [er ... ] 

e1 . infixOp[e2] I 
lF e

1 
THEN e

2 
ELSE FALSE I IF e

1 
THEN TRUE ELSE e

2 
I 

NIL I MKPAIR[e1. [ ( I er! .. )]-- Group constructor. I 
-- Pattern constructor: see the rule for p below. I 
b PLUS ... PLUS NIL I 
FIX [p, ... ] : MKCROSS[[t. ... ]]~[e, ... ] I 
d PLUS ... PLUS NIL I 
xxxxxx I --Also recursive d maps into this? 
-- See § 2.2.3 
-- See § 2.2.4. 

MKCROSS 

INT -- Numeric literal, giving the decimal representa 
-- A d is not an e: a d must be before ~ or after LET or DECL. 
MKDECL[ PATT p, t] I 
[p . ... ]: MKCRoss[[t , ... ]] -- to separate names and types 
-- Only the[ ... ] form is an e: ab must be written after LET. I 
MKBINDP[PATT p. e] I 
MKBINDD(!l. e] 
-- Note: a pattern is not an e: it can appear only before~ or:. 

or after PATT in the kernel. 
-- PATT n = $n 
-- PATT [p1 . ... ]=[PATT Pp ... ] 

-- Fill in types 

The precedence of operators in e is: (highest) []. ►. infixOps (all the same). BUT, IN (lowest). All are 
left associative. 

Table 2-2: Kernel expression syntax and semantics 



Constructors 

A bracketted sequence of expressions (e.g .. [1. 2. 3)) denotes a flat group with its elements in the 
same order (e.g .. MKPAIR[l. MKPAIR[2. MKPAIR[3. NIL]]]. Thus a group constructor is just like the 
LIST function in Lisp. A pattern is a similar construct. except that it contains names which stand 
for the corresponding ATOM literals: PATT yields the group obtained by replacing each name n by 
the literal $n. After desugaring a pattern always appears after PATT and hence is always desugared 
into an atom or a GR0UP[AT0MJ. 

Brackets are also used to delimit binding and declaration constructors. They are distinguished from 
each other. and from group constructors. by the presence of ~ in each element of a binding 
constructor. and : in each element of a declaration constructor. The elements of a binding or 
declaration constructor are sugar for applications of the MKDECL. MKBINDP and MKBINDD primitives. 
The constructor itself strings the resulting declarations into a big one using the PLUS operator. 
which is just like THEN except that it does not allow duplicate atoms: the motivation for this is to 
allow the names and corresponding types or values to be written together. instead of factored as the 
primitives require. As a result. values made from constructors are always flat. 

Note that these constructors do not nest. so they can only be used to build flat values. The only 
exception is that a d can be [(p: t) .... ]. This is intended for the d~e fonn of binding: e.g .. if DivRem 
returns two INTs. you can write [d: INT. r'. INT]~ DivRem[ ... ] instead of [d. ,]: INTX INT~ DivRem[ ... ]. 

The REC binding constructor is sugar for FIX which exactly parallels the non-recursive one. 

2.2.3 1 mperatives 

These constructs are generally used together with non-functional procs. 

statements::= { e: ... } 

simple Loop :: = SIMPLELOOP statements 

IF (ISV0ID[e]) AND ... THEN [] ELSE ERROR 
-- Ordering by non-prompt evaluation. 
LET REC [loop' ~(A IN { statements: loop'[] } ) ] IN loop'[] 
-- Only an exception (such as EXIT) will terminate the loop. 

-
Each e in the statements must evaluate to vo10. which is a distinguished null value: this is to catch 
mistakes like writing x+ 1 as a statement. The definition of AND ensures that the e's are evaluated 
left-to-right. 

The simpleLoop is the standard way to express a loop in terms of recursion. You are supposed to 
use an exception to get out of this loop: Cedar provides a number of convenient ways to do this. 
such as EXIT and RETURN. 



2.2.4 Exceptio.ns 

An exception is treated as a special value returned from an application. The exception value 
contains an exception code and an args value which may be of any type. When an application sees 
an exception value. it immediately abandons the application and returns the exception value: thus 
application is strict. There has to be some way to stop this. or the first exception would be the value 
of the program. The HIDE primitive takes any value and returns a variant record of type HEX. It 
turns: 

a normal value into the normal variant. with the value in its v field: 

an exception into the exception variant. with the code in its code field and the arguments in 
its args field. 

UNHIDE takes a HEX value and returns the original unhidden value. 

An exception code has the type EXCEPTION[T). where T is a declaration which is the type of the 
args: it is the domain of the exception. and (VEXCEPTION[7]).ooMAIN = T. An exception value is 
constructed by the primitive 

RAISE: [T:: TYPE. code: EXCEPTION[T]. args: 7] 
Thus the args always has the type demanded by the code. 

This is dressed up with the following syntax. 

but :: = e BUT { butChoice: ... } 

butChoice :: = e = > e I 1 2 

el· el.! •• = > e2 I 
ANY=) e2 

LET v' ~HIDE[e] IN ( 
IF ISTYPE[v', HEX.normal] THEN UNHIDE[v'] 
ELSE IF ISTYPE[v'. HEX.exception] THEN 

LET h' ~NARROW[v', HEX.exception] IN 
LET selector' ~h'.code IN butChoice ELSE ... ELSE UNHIDE[v'] 

ELSE ERROR l 
IF selector'= el THEN LET MKBINDD[Vel .DOMAIN, h' .args] IN e2 I 

IF (selector'= e1) OR ... THEN e2 I 
IF TRUE THEN e2 

A BUT expression evaluates e. If it is a normal value. that is the value of the BUT. If it is an 
exception. each butChoice in turn gets a look at it. If one of them likes it. then it supplies the value 
of the BUT: otherwise the exception is the value. 

The e1 in a butChoice must evaluate to an exception code. If there is just one. and it matches code 
in the exception. then args in the exception is bound to the domain of the code, and e2 is evaluated 
in that environment. If there is more than one. then e2 is just evaluated in the current environment 
An ANY butChoice matches any exception. but of course doesn't bind the arguments. 



2.3 Values and computations 

A computation in Cedar is the evaluation of an expression in some environment. This section 
describes the kinds of values which can be computed by Cedar programs. and the basic mechanisms 
for doing computations. 

2.3.1 Application 

The basic mechanism for computing in Cedar is applying a proc to argument values. A proc is a 
mapping 

from argument values and the state of the computation. 

to result values. and a new state of the computation. 

The state is the values of all the variables. 

A proc is implemented in one of two ways: 

By a primitive supplied as part of the language (whose inner workings are not open to 
inspection. but which is defined in § 4). 

By a closure, which is the value of a A-expression whose body in tum consists of an 
expression. which may contain further applications of procs to arguments. e.g .. A [x: INT] IN 
x+ 3. When a closure is applied. the parameters declared after the A are bound to the 
arguments. and then the body after IN is evaluated in the new environment thus obtained. 

In Cedar. each parameter value thus obtained is used to initialize a variable. which is the object 
named by the parameter in the body. Thus the body can assign to the parameters. Use of this 
feature is not recommended. 

Note that when a A-expression is evaluated to obtain a closure its body is not evaluated. but is 
saved in the closure, to be evaluated when the closure is applied. Some constructs (IF. SELECT. AND. 
OR) are defined (see § 2.2.2 and § 3.8) by wrapping A-expressions around some arguments. and then 
applying them only when certain conditions hold; e.g .. IF b THEN Jlx] ELSE g[y] evaluates Jlx] iff b 
is TRUE and g[y] iff bis FALSE. 

Application is denoted in programs by expressions of the form Jlarg, arg . ... ]. If the value of/ is a 
closure. this expression is evaluated by evaluating/ and all the arg·s. and then evaluating the body 
of the closure with the formal parameters bound to the arguments (unless an exception value turns 
up; see § 2.6.2). Thus to evaluate (A [x: fNT] IN x+ 3)(4]: 

evaluate the A-expression to obtain a closure: 

evaluate the argument 4 to obtain the number 4: 

evaluate x+ 3 with x bound to 4 to obtain the number 7. 

The first two evaluations can be done in either order (with different results in general. though not 
in this case). 

To evaluate a primitive application such as x+ 3. evaluate the arguments. and then invoke the 
primitive on those arguments to obtain the result and any state change. With a few exceptions (e.g .. 
assignment and dereferencing or following references). primitives are functions and can be thought 
of as tables which enumerate a result value for each possible combination of arguments. Invoking a 
primitive can therefore be viewed as a simple table lookup using the arguments as the table index. 

Actually there may be one more step in an application. If an argument doesn't have the type 
expected by the proc. the argument is coerced to the proc·s domain type if possible. If no coercion 
can be found. there is a type error. Coercion is discussed further in § 2.6.1 and § 4.13. 



Most procs take a binding as argument. in which the various parts of the argument are named. E.g .. 
OpenFile: PROC[name: ROPE. mode: Files.Mode] takes a binding with two values named name and_ m?de. 
It might be applied like this: OpenFile{name~"Budget.memo", mode~$read]. If the names are m1ssmg. 
there is a positional coercion which supplies them left-to-right. see § 2.3.6. There is also a defaulting 
coercion that supplies missing parts of the binding: see § 4.11. 

If f is neither a primitive nor a closure. the meaning of applying it is defined by the APPLY proc for 
its type: this case is discussed further in § 4.4. 

There are many ways of writing applications other than flx]. In fact. many Cedar primitives cannot 
be the values of expressions. and can only be applied by writing some other construct. The 
desugaring rules show how large parts of the Cedar syntax denote various special kinds of 
application. In each case. the meaning is defined by the standard meaning of application and the 
specific meaning of the primitives involved: see § 4.1. 

This is panl> because of history. and partly because specialized syntax makes the program more readable. Future 
evulution of the language will improve the situation. 

Functions and order of eva/ualion 

An expression is functional if 

its value does not depend on the state, but only on the values bound to its free names. and 

evaluating it does not change the state. 

As a consequence of this definition. 

Two identical functional expressions in 1he same scope will always have the same value. 

Note that a functional expression must not depend on values contained in variables bound to its 
free names. Thus. v.VALUEOF is not functional. 

A proc is a function if every application of it is functional. It doesn't matter when or how many 
times a function is applied: the order of evaluation doesn't matter for functions. Thus Cedar 
functions can be thought of as mathematical functions for many purposes. Note that a constant can 
be regarded as an application of a function of no arguments. 

Non-functional procs. on the other hand. are more complicated objects. Cedar makes no formal 
distinction. either in syntax or in the type system. between functions and procs. However. it does 
not define the order of evaluation in an expression. except that: 

all arguments are evaluated before a proc is applied: 

because of the desugaring of IF. SELECT. AND and OR into A-expression. the orde,r of 
evaluation for these expressions is determined by the first rule: 

statements separated by semi-colons are evaluated in the order they are written. 

As a consequence. two applications of non-functions should not be written in the same statement 
unless they don't affect each other: if this is done the effect of the program is unpredictable. 

An expression is guaranteed to be functional if it only applies functions: thus if f is a function, p a 
non-functional proc. and x a variable, /[3] is functional and p[3] and p(x] may not be. Furthermore. 
J[x] may not be functional. because it is sugar for /[x.VALUEOF]. and VALUEOF is not a function. The 
value of a A-expression is a function if its body is functional. There are more complicated ways of 
guaranteeing that an expression is functional. just as for any other interesting property. 

Because the values of variables constitute the state. it is only the existence of variables that allows 
non-functional procs to exist. In particular. the VALUEOF proc which returns the value of a variable 
is non-functional (because its result depends on the state). and the ASSIGN proc which changes the 
value of a variable is non-functional (because it changes the state). 



2.3.2 Values 

A Cedar program manipulates values. Anything which can be denoted by a name or expression in 
the program is a value. Thus numbers. arrays, variables. procedures. interfaces. and types are all 
values. In the kernel language, all values are treated uniformly. in the sense that each can be: 

passed as an argument. 

bound to a name. or 

returned as a result. 

These operations must work on all values so that application can be used as the basis for 
computation and A-expressions as the basis for program structure. In addition. each particular kind 
or type of value has its own primitive operations. Some of these (like assignment and equality) are 
defined for most types. Others (like addition or subscripting) exist only for certain specific types 
(numbers or arrays). None of these operations. however, is fundamental to the language. Formally. 
assignment or equality has the same status as any operation on an abstract type supplied by its 
implementor: thus INTEGER.ASSIGN has the same status as 10.Getlnt. In practice. of course. special 
syntax is usually used to invoke these operations. and the implementations are not Cedar programs 
open to inspection by the editor or debugger. A complete description of the primitives supplied by 
the language can be found in Chapter 4. organized by the type of the main operand. Table 4-5 is 
an alphabetized index of these descriptions. 

Restrictions on types. declarations. bindings and unions: In current Cedar. however. there are 
restrictions on values which are types. declarations or bindings: they can only be arguments or 
results of modules. and hence are first-class values only in the modelling language. and not within a 
module. Also. declarations and bindings cannot be constructed or bound to identifiers within a 
module. Unions are also restricted: they can only appear inside records. Nonetheless. it is simplest 
to emphasize the uniform treatment of all values. and consider separately the restrictions on types. 
declarations. bindings and unions. Future evolution will improve this situation. 

Restriction on dot notation: In current Cedar you can only use dot notation for some operations of 
built-in clusters: the procs which access record fields. and others as noted in Table 4- 5. As a 
substitute. there are various syntactic forms which are sugar for dot notation: infix. prefix and 
postfix operators. built-in functions. and funny applications. These desugarings are given in rules 
20-24 of the Cedar grammar in § 3. 

2.3.3 Variables 

Certain values. called variables. can contain other values. A variable containing a value of type T 
has type VAR T. If the variable doesn't allow the value to be changed. the type is REAOONLY r: this 
is not the same as T. because there may be a VAR r value which is the same container. The value 
contained by a variable (usually called the value of the variable) can be changed by assigning a new 
value to the variable. The set of al1 variables accessible from the process array constitutes the state 
of the computation: these are all the variables which can be reached from any process. and a 
variable which cannot be reached cannot affect the computation. Note that a variable value is a 
container. which like all values is immutable: it may help to think of it as (the address of) a block 
of storage. The contents of a variable can be changed by assignment. Thus the value of a variable 
can change. even though the value that is the variable is immutable. 

A suitable abstract representation for a VAR T is a value of type [ Ge1: □--. T. Se1: r--. □]. This 
representation is not used in Cedar. but it clarifies the way in which variables fit into the type 
system: VAR T~VAR U only if rand U have the same predicate. because the Get proc requires 
T~U and the Set proc requires U~T. READONLY T corresponds to [Get: □ --.7] and a write-only 
variable type would be [Set: r--.0]. 

There is a coercion (an automatically applied conversion: see § 2.6.1) from VAR T to T. so that a 
variable can be passed without fuss as an argument to a proc which expects a value. 



Restriction on variables: In current Cedar. variables generally cannot be passed as arguments or 
results. The only exception is that an interface can declare a variable (called an exported variable) 
for which an implementation supplies a value: this is normally written x: VAR INT in the interface. 
but for historical reasons it is also possible to write just x: INT. Certain primitives (e.g .. 
dereferencing a REF or POINTER) return variables. a variable can (indeed. must) be passed as the 
first argument to ASSIGN. and a variable can be bound to a name by a declaration in a LET or block 
(LET x~INT.NEW IN ... binds a VAR INT value to x). For the most part, however. a program which 
wants to handle variables must do so at one remove. through procs or REFS (or. unsafely. 
POINTERS). 

A variable is often represented by a block of storage: the bits in this block hold the representation 
of its value. All the built-in VAR types are represented in this way. A variable u overlaps another 
variable v if assigning to u can change the value of v. The primitive ASSIGN procs have the property 
that 

if rand s are REFS. then rt overlaps st iff r= s. 

For any variables u and v with the same VAR type. u overlaps v iff u = v. provided that no unchecked 
program has given overlapping blocks of storage to the two variables (if u and v have different 
types. one might be contained in the other). 

The role of variables in non-functional expressions is discussed in § 2.3.1. 

2.3.4 Groups 

There is a basic mechanism for making a composite value out of several simpler ones. Such a 
composite value is called a group. and the simpler values are its components or elements. Thus (3. 
x+ 1. "Hello"] denotes a group. with components 3. the value of x+ L and "Hello". The main use 
of explicit groups is for passing arguments to procs without naming them (these are sometimes 
called positional arguments). This is done by binding the group to the declaration which is the 
domain type of the proc: the result is a binding which is the argument the proc expects. Thus. with 
P: [x: INT, y: REAL]~[ ... ]. the application P[2. 3.14] is sugar for P[ [x: INT. y: REAL]~[2. 3.14] ]. 
which is equivalent to P[x~2. y~3.14]. 

A group has a type which is the cross type of its component types: if x has type T and y has type U. 
then [x. y] has type TXU. Thus for syntactic types. v'[e
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constructor is associative. and type implication (§ 2.4.2) extends to cross types elementwise. If the T. 
I 

are types. there is a coercion called MKCROSS from [T1• T2 •... ] to T1X T2X ... : because of this. the 
explicit cross type is usually not needed. 

Restriction on cross types: Current Cedar provides no way of making cross types except as domain 
and range types of a proc type (or other transfer type): e.g .. PROC [INT. REAL]~[BOOL. ATOM]. 
There are no procs taking groups except the group-to-binding coercions. Hence the only thing to do 
with a group is pass it to one of the built-in coercion procs by writing it as a proc argument or to a 
record or array constructor as described in the next section. Current Cedar does not have X. but it 
does have the MKCROSS group to cross type coercion described in the last paragraph and illustrated 
in the example. 

2.3.5 Bindings 

A binding is a group in which each component has a name. Thus, it is an ordered set of [name. 
value] pairs. There are three main uses for a binding: 

• As an argument in an application. Thus. if P is a proc with type PROC[i: INT. b: BOOL]. its 
argument must be a binding such as [i~ 3. b~TRUE]. The application then looks like this: 
P[i~3. b~TRUE]. A binding argument is sometimes called a keyword argument list. See the 
next section for details. 



• In a LET expression. to give names to values in the scope of the LET. Thus. 
LET i~3. b~TRUE IN (IF bTHEN i+5 ELSE0) 

has the value 8. Current Cedar doesn't have LET expressions. but a binding at the beginning 
of a block has the same effect. See § 2.5.4 on scopes for details. 

• As a way of collecting and naming a set of related values. A value can be extracted from 
the set using dot notation. Thus if b is the binding [i~ 3. b~TRUE]. the value of b.i is 3. In 
current Cedar this only works for interfaces: see § 3.3.4 and § 4.14 for details. 

A binding is usually denoted by a constructor. which takes the form 
[i~3. b~TRUE] 

or redundantly (if there are no coercions) 
[i: INT~3, b: BOOL~TRUE] 

in which the types are specified explicitly (but you can't write the second form as the argument of 
an application). See § 2.5.5 on constructors for details. 

2.3.6 Arguments 

When a group or binding is bound to a declaration (d~ v). there are various conversions called 
coercions which may be applied to the values. This usually happens when the arguments of a proc 
application are bound to the parameter declaration. 

First, if v is a group rather than a binding, it is coerced to a binding by attaching the names from d 
to the elements of v in order. Thus in 

[a: INT. b: REAL]~[2. 3.14] 
the group constructor is coerced to [a~2. b~3.14]. 

Next. if v is shorter than d, elements of the form n~OMITTED are appended. where n is the 
corresponding name from the declaration. Thus in 

[a: INT. b: REAL]~[2] 
the group constructor is coerced to [a~2. b~OMITTED]. 

Now the items of the binding are matched by name with the items of the declaration. There is an 
error unless the names match exactly. The remaining coercions are done on individual items. n: 1 

from the declaration and the corresponding n~ v from the binding. If v has a type implying 1. all is 
well. Otherwise, if there is a sequence of coercions from the type of v to 1. these are applied to v. If 
no such sequence exists. there is an error. In particular. there is a coercion from OMITTED to the 
default value for 1, if any. Thus in 

[a: INT+-0, b: REAL+-1.l]~[b~ 3.14] 
the group constructor is coerced to [a~0, b~ 3.14]. and in 

[a: INT+-0, b: REAL+-1.1]~0 
it is coerced to [a~0. b~ 1.1]. Coercions are discussed in § 2.6.1 and § 4.13. defaulting in § 4.14. 

An important special case is constructors for record and array values. A record type has a 
construction proc; e.g .. 

R: TYPE~RECORD[a: INT, b: REAL.-0.0] 
has a proc R.CONS of type PROC[a: INT. b: REAL+-0.]-+[R]. Thus R.CONS[a~2. b~3.1416] constructs a 
record value. There is also a coercion from BINDING to the particular declaration RB which is the 
domain type of R.CONS, so that 

rl: R+-[a~2, b~3.1416] 
is short for 

rl: R+-R.CONS[a~2. b~3.1416]. 
Composing the positional coercion from GROUP to RB with R.CONS makes 

rl: R+-[2, 3.1416] 
also short for the previous line. 

The same scheme works for arrays. but only an array indexed by an enumeration has a 
corresponding binding which can be written: the elements of an array indexed by numbers don't 
have names which can be written in a binding. However, the group constructor still works. 



2.4 The type system 

This section describes the way in which types can be used to make assertions about the program 
which the compiler can verify. It also discusses the role of types in organizing the names of the 
program. 

2.4.1 Types 

Types serve two independent but related functions in Cedar: 

• A type contains an assertion about some property of a value. e.g .. that it is a whole number 
between O and 10 represented in a single machine word. A value which has the property is 
said to be of that type. or to have that type. 

The assertion part of a type is called its predicate. It is a function which accepts a single 
value (of any type) and returns TRUE iff the value satisfies the assertion. In principle the 
predicate can be applied to any value at runtime. but in practice a lot of optimization is 
done by the compiler. 

• A type contains a collection of named procs (and perhaps other values) related in some 
useful way. Most often. the procs of type T take a value of type T as their first argument 
For example. INT has PLUS. TIMES and MINUS procs (usually written as infix or prefix 
operators) which can be applied to INTs. The dot notation (see § 2.4.4) makes it easy to 
refer to the procs in a type's collection. 

The collection part of a type is called its cluster. It is simply a binding. No rules are 
enforced about what kind of values are in the binding. However. the idea is that the cluster 
is an interface for manipulating values of the type (perhaps the main or even only 
interface). As with any interface. a tasteful choice of names and values is important. 

The predicate and the cluster serve rather different purposes: 

The predicate provides the basis for type-checking (§ 2.4.2). The most important function of 
type-checking is to guarantee the integrity of abstract data types: this is done with basic 
predicates called marks(§ 2.4.3). 

The cluster provides the basis for convenient naming of a large collection of procs and 
other values (§ 2.4.4). Clusters are organized into a hierarchy of classes(§ 2.4.5). 

Like everything else which can be named. a type is a value. Hence there is nothing special about 
binding a type value to a name. If Tis a type expression. the binding 

U: TYPE~T 
binds Ts value to U. In the scope of U. T and U are completely interchangeable (provided Tis not 
rebound). Furthermore. with two exceptions. all type expressions are functional: identical type 
expressions in the same scope denote the same type value. The exceptions are the record and 
enumeration type constructors. which make a distinct type each time they are used (by constructing 
a new mark: see § 2.4.3). 

Restriction on uses of types: Current Cedar has a number of restrictions on the use of TYPE values. 
given in § 4.8. 

2.4.2 Type predicates and type-checking 

Type predicates provide a way of making assertions in the program which can be checked 
mechanically. These assertions take the form of declarations for the formal parameters of procs. In 
general the checking must be done during execution. Thus. if the program says 

a: ARRAY (0 .. 10] OF INTf-ALL[O]: 
i: INTf-s.Readlnt: 
s.Putf{ a(i] ]: 

there must be a check that i~O and t< 10 just before the expression a[i] is evaluated. This is called 
a bounds check; if it fails there is an exception called Runtime.BoundsFault. Where did this check 



come from? Note that a[i] is short for "v a.APPLY[a. i]. and "v a.APPLY is SUBSCRIPT. the subscript 
procedure for ARRAY [0 .. 10] OF INT. The type of SUBSCRIPT is PROC[array: VAR ARRAY [0 .. 10] OF 
INT. index: [0 . .10]]-+[VAR INT]. So when i is passed as the index argument. the declaration of 
SUBSCRIPT says it must have the type [0 .. 10]. The predicate for this type is 

A [x: ANY] IN HASMARK[x. INT] AND LET y~NARROW[x. INT] IN y) = 0 AND J< = 10. 
Leaving the HASMARK term for later discussion. we see that the rest of the predicate is the same as 
the bounds check. 

The type system is designed. however. so that most assertions can be checked statically (i.e .. proved). 
by examining the text of the program without running it. Static checking has three obvious 
advantages: 

It reports any errors after a single examination of the program. leaving none (of this kind) 
to be discovered later in Peoria. 

It introduces no cost in time or space for run-time checking. 

The compiler can take advantage of the assertions to generate better code. 

Of course. there is a corresponding drawback: the assertions made by parameter declarations must 
be simple enough that the compiler can reliably prove or disprove them. 

The proofs done for type-checking have exactly the same form as program correctness proofs based 
on preconditions and postconditions. Consider a proc whose value is the )...-expression 

A [x: 1] = >[y: U] IN e. 
The domain declaration [x: 7] is a precondition for the body e. This means that any application of 
the proc must satisfy this condition. As a consequence, the body e can be analysed on the 
assumption that the precondition holds. i.e .. that x has type T. Similarly. the range declaration fy: U] 
is a postcondition for the body. This means that given the precondition. any evaluation of e must 
produce a value y which has type U. In summary. for the body we assume the precondition and 
must establish the postcondition. 

To make this hang together. each application must establish the precondition: this means that the 
argument must have the domain type. In return. the application can assume the postcondition: this 
means that the result of the application has the range type. Thus we have a linkage: 

argument~domain~range~result 
The result in tum will be the argument of another application. In this way the proof is extended to 
larger and larger expressions. and finally to the whole program. In summary: 

Application - establish pre-condition: arguments have the domain type: 
rely on post-condition: results have the range type. 

Body - rely on pre-condition: parameters have the domain type: 
establish post-condition: returns have the range type. 

These proofs require showing that an expression always has a particular type T. This is done by 
observing that every expression has a unique syntactic type U. which is the type of every evaluation 
of that expression: e.g .. an application always has the range type of its proc (see below for a more 
detailed discussion of syntactic type). If every value of type U has type T. we are done. Hence the 
usefulness of type implication. One type implies another. T~ u. iff ('v x) 7lx]~ U[x]: sometimes we 
say that T is a sub-type of U. If two types are equal. each implies the other. However. there are 
many other useful cases of implication. For instance. VAR INT implies READONL Y INT. The type 
implications in current Cedar are given in § 4.12. 

Of course. not all arguments are applications. The kernel grammar gives the other possible forms of 
argument expressions. and we enumerate the proof rules for each: 

A literal is like a zero-argument proc: it has a known range (e.g .. 3 has type INT. 'A has 
type CHAR). 

A name has the type specified in its declaration or binding. 
If there is only a declaration n: T (e.g .. x: INT). it must be the domain declaration 



of a A-expression. and we have already seen how to ensure that the n·s value has 
type T when the resulting proc is applied. 
If there is a binding n: T~e for the name (e.g .. x: INT~3). we must check that e has 
type T. 

A A-expression A [x: 7] = >Lv: U] IN e has the type [x: 7]--+[y: U]. This works for the reason 
discussed in the next paragraph. 

A binding constructor [x~e. y~J] has the type of the corresponding declaration. [x: 'v e. y: 
v'.f). 

There is one more link in the chain. An application /[x] has an arbitrary expression for /. not 
necessarily a A-expression. The requirement is that f must have a proc type. say D--+ R: D is the 
domain type and R the range type. Since the type of A D=>R IN e is D--+R. satisfying the 
precondition D for the application is the same as satisfying the precondition D for the A-expression. 
and similarly in reverse for the postcondition. The value of f may be a primitive rather than a 
closure obtained from a A-expression. In this case. the implementation of the primitive can still 
depend on the precondition and must still establish the postcondition. but since the implementation 
cannot be examined (within the framework of Cedar) we can say nothing about how this is 
accomplished. Example: INT.PLUS. which is implemented by the machine's 32-bit add instruction. 

In a proc type D--+ R. D and R may be declarations which provide names for the arguments and 
results. In general. the expression R may include names declared in D. The range type of an 
application then depends on the argument values. 

Restriction on dependent proc types: In current Cedar only a module has a type whose range 
depends on its argument values: the type returned by an interface. or the interfaces exported by an 
implementation. may depend on the interface and implementation parameters. 

As a by-product of the type-checking proof rules just given. a syntactic type is derived for every 
expression e in the program. It is denoted by 'v e. and computed as follows: 

for a name. the declared type: 

for a literal. its type: 

for an application. the range type (which may depend on the argument): 

for a A the obvious proc type: 

for a binding constructor. the declaration obtained by pairing the names with the syntactic 
types of the value expressions. 

Typechecking ensures that whenever e is evaluated, the resulting value will have type 'v e (though it 
may have other types as well, i.e .. it may satisfy other predicates). The main use of syntactic types is 
in connection with dot notation (see § 2.4.4). 

In order to carry out the proofs described above. the compiler must either compute the values of all 
types. including those denoted by complex expressions such as ARRAY [i..J] OF INT. or it must be 
able to prove the equality of unevaluated type expressions. For the most part. current Cedar 
requires the former approach: hence a type expression must have value which the compiler can 
compute. Such a value is called static: the rules for static values are given in § 3.9.1. 

2.4.3 Marks 

By this point you may have thought of asking why the assertions provided by type predicates are 
worth all this fuss. The reason is simple: they are the basis for authenticating values of an abstract 
type. so the implementation can be sure that it is working on properly formed values. Suppose you 
are the implementer of an abstraction. e.g .. Table. You provide operations to Lookup a key in the 
table. to Insert a [key. value] pair. and to Enumera1e the items in the table. A Table is implemented as 
a REF to a record containing a sorted array a of items and an INT n which gives the number of 



items. lookup is implemented by binary search. All three operations are programmed on the 
assumption that elements 0 through n-1 of a are sorted. and that n is smaller than the size of the 
array. They will not work properly if these assumptions are not satisfied, and indeed they may try 
to subscript the array with an out-of-bounds index or to violate other requirements of the 
abstractions they depend on. 

Here is a lower level. but perhaps more dramatic example. The dereferencing operation t for a REF 
REAL returns a VAR REAL. which can, for instance. be assigned to. as in the program fragment 

r: REF REAL~NEW[REAL +-1.0]: 

rt +- 3.14159 
A REF REAL is represented by the address of a four-byte block of storage which holds a REAL. and 
the assignment to rt stores the four bytes which represent 3.14159 into that block. If somehow a 
REF BOOL finds its way into r. the assignment will still store four bytes, since it doesn't know any 
better. But the REF BOOL points to a two-byte block: the other two bytes that will be modified 
belong to some unrelated variable, which will be clobbered without warning. 

The second example is scarier because the consequences of the bug seem more unpredictable. In 
both cases, however, the fundamental problem is the same: even if the implementation is correct 
the wrong thing happens because it is given an improper value to work on. Or to make the same 
point in different words. the implementation cannot be held responsible for bad results from one of 
its operations. if it has no control over the validity of the arguments it receives. 

So that the implementation of an abstraction can take responsibility for correct operation. there 
must be a way to authenticate a value of the abstract type. In Cedar this is done by placing a mark 
on the value: think of it as a little flag stuck into the value. The mark uniquely identifies the 
abstract type. and authority to affix it is under the control of the implementation. A correct 
implementation will mark only values which have the properties needed for a representation of an 
abstract value, and if no one else can affix the mark. the implementation can be sure that every 
value with the mark has the desired properties. 

A mark can be thought of as an abbreviation for an assertion or type invariant which characterizes a 
proper abstract value. such as Table or REF REAL. Such an assertion can be quite complex. In the 
Table example. it would say that the representation is a record of the proper form. that n is less than 
the array size, and that the first n array elements are sorted. In the REF REAL example. it would say 
that the address points to a block of storage such that at least the first four bytes don ·1 overlap any 
other blocks. Such assertions are not easy to write down formally. and proving them is certainly 
beyond the power of any existing program. So the abbreviations are not a mere convenience. but a 
necessity. 

A new mark can be created on demand by the primitive 
CAEATEMARK: PROC[Rep: TYPE. tag: UNIQUEID]-+[m: MARK, Affix: [Rep]-+[TYPEFROMMARK[m)]] 

The primitive HASMARK tests a value for the presence of a mark. so HASMARK[x. m] tests x for the 
presence of the mark m. Affix adds the mark to a Rep value. 

Restriction on marks: MARK. UNIQUEID. CREATEMARK, HASMARK and TYPEFROMMARK are not 
accessible in current Cedar. Record and enumeration type constructors provide some access to 
CREATEMARK. as described below. The JSTYPE primitive. also described below, is closely related to 
HASMARK. 

With these facilities. it is easy to create a new abstract type. Choose its representation type, and 
obtain a new mark m. TYPEFROMMARK[m] with an appropriate cluster added is the new abstract type. 
The implementation must use Affix to mark only values which satisfy the properties it demands. 

The type returned by TYPEFROMMARK[m] has the predicate 
A [x: ANY]= )[BOOL] IN HASMARK[x. m] 

and an empty cluster. Except for subranges and bound unions. all types in current Cedar have a 
predicate of this form. The built-in types (INT. BOOL etc.) come with such predicates. and the built-



in type constructor procs (ARRAY. RECORD etc.) obtain a mark from CREATEMARK. So that two 
invocations of ARRAY [0 . .10] OF INT will produce the same type. ARRAY and most of the other 
constructors use a canonical encoding of the constructor and its arguments for the UNIQUEID. and 
hence are functional. RECORD and ENUMERATION produce a different type each time they are 
invoked. so they obtain fresh unique identifiers. Since the program cannot invoke CREATEMARK 
directly. we need not explain how to prevent forgery of UNIQUEIDS. Fuwre versions of Cedar will address 
this problem. 

In current Cedar you make a new abstract type by declaring it as an opaque type in an interface: 
T: TYPE[ANY] 

This generates a new mark. and declares T to be a type which has that mark. You get such a type 
by explicitly painting some other type. nonnally in an implementation which exports T to the 
interface which declared it: 

T: PUBLIC TYPE~ Interface. T PAINTED RECORD[ ... ]. 
See § 4.3.4 for more details. 

The implementation actually stores a mark with each variable allocated by NEW. Such a variable can 
be referenced by a REF. and in particular by a REF ANY value. The type of a REF ANY value can be 
tested at runtime using the primitive 

ISTYPE: PROC[x: ANY. U: TYPE]-+[BOOL] 
If Ve is REF ANY and RT= REF T. then the value of ISTYPE[e. R7l is TRUE iff the predicate for T 
just tests for mark m. and rt has the mark VAR m. ISTYPE is described in detail in § 4.3.1. along with 
the WITH ... SELECT construct and the NARROW primitive. which are more powerful operations built 
up from ISTYPE. 

For other values. there is no mark actually stored; instead. types must be computable statically 
using the methods described in the last section. The AMTypes interface. however. gives a way to 
refer to any value in a unifonn way. and to test its type at runtime. 

There is only room for one mark on a variable. and this must encode all the marks that the value 
actually carries. We arrange for this by imposing a partial order on the marks. and requiring that: 

The set of marks on a value must have a maximal element 

Every mark smaller than the maximal one must be on the value. 

With these rules. a single mark stored on the value is enough to code all the others. 

In current Cedar. a value actually has only one mark. since: 

The only way to create a new mark is with the record or enumeration type constructors. or 
by declaring an opaque type. 

When you paint a type T with the mark of an opaque type. T must be a record or 
enumeration type. and the opaque type mark replaces the mark it had before. 

Note that VAR T. READONL Y T and T are different types with different marks. although VAR 
T=> REAOONL Y T. and there is a coercion VALUEOF from either one to T. 

2.4.4 Clusters and dot notation 

It is convenient to associate with a type the procs supplied by its implementor for dealing with 
values of the type. This is done by putting these procs into the type"s cluster. The cluster is simply a 
binding which is part of the type value (the predicate is the other part). There are no rules enforced 
about what goes into the cluster. However. there is a special dot notation which makes it desirable 
to populate Ts cluster with procs which take a T as their first argument. The usual effect is like 
this: t.n is sugar for V t.n[t]. and Ln[other args] is sugar for V t.n[t. other args]. 

For example. if t has type T. and a proc [T. INT]-+[BOOL] is in Ts cluster under the name P. then 



the proc can be applied by an expression like t.P[3]. which is sugar for v' 1.P[r. 3]. The name P is 
looked up only in rs cluster. not in the current scope. If Q: [7J-.[1NT] is also in the cluster. it can 
be applied with t.Q. which is sugar for v' t.Q [t]. 

The general rule that makes this work is the following: r.n is sugar for LOOKUPC[v' t. $n][t]. 
LOOKUPC[v' t. $n] is just v' t.n. except that if v' t.n is a proc that takes several arguments. it is split 
into a proc that takes the first argument and returns a proc taking the remaining ones. Thus 
LOOKUPC[v' t. $n][t] will be a proc taking the remaining arguments. and r.n[other args] = LOOKUPC[v' 1. 

$n](t](other args] will be the same as v' t.n[t. other args]. 

Dot notation can also be used to obtain values from a binding or from the cluster of a type without 
any application: T.P would be the proc named Pin the previous example. The possible cases of dot 
notation in current Cedar are described in detail in § 4.14. 

Restriction on constructing clusters: There is currently no way to explicitly construct clusters. The 
built-in types and type constructors have clusters: they are described in detail in § 4. In addition. 
there is a clumsy way to provide a cluster for an opaque or record type in an interface: every proc 
name in the interface is put into the type's cluster. For a record. the procedures supplied by the 
record constructor are also in the cluster. and they win if there are name conflicts. There is one of 
these clusters for each type in each imported interface value: if a module imports more than one 
value of the same interface. however. there are severe restrictions (see § 3.3.3). 

2.4.5 Declarations 

A declaration is the type of a binding. Thus. the binding [x~ 3. y~ 3.14] has the type [x: INT. y: 
REAL]. All the relationships among types. and between types and values. are carried over 
elementwise to decls and bindings: the elements are matched up by name rather than by position. 
A decl itself simply has the type DECL. 

A decl is made up of two parts: the names or pattern. and the types. The basic operation for 
making decls. MKDECL. takes a pattern and a type. Thus MKDECL[ PATT[x. y]. INTXREAL] = [x: INT. y: 
REAL]. In general. a pattern is one of NIL. a simple name. or a pair of patterns. just like a Lisp S­
expression. Similarly. a type argument to MKDECL is one of NIL. a type, or a cross type. The type 
must decompose in a way which matches the pattern. Normally. as in Lisp. we deal only in flat 
patterns. where the first element of a pattern is always a name. Such flat patterns are conveniently 
denoted by constructors of the fonn [x. y . ... ]. The reason for defining things in tenns of pairs is 
that it makes it much simple to write down precise rules for the semantics. using structural 
induction on the values. 

The main use of a decl is to type-check a binding. The basic binding constructor is MKBINDD[d. e]. 
where d is a decl and e is matching group or binding. If e is a ·binding. then its structure and names 
must match the structure and names of d. and each element of e must have the type demanded by 
the corresponding component of d, after a possible coercion. Thus MKBINDD[[x: INT. y: REAL). [x~ 3. 
y~ 3.14)] = [x~ 3. y~ 3.14]. This may seem pointless, but it has two important uses: 

Such a binding is used to bind the argument of a proc to the domain declaration. Even 
though the resulting binding is the same as the argument. the type-checking is essential. 

There may be coercions involved. so that the resulting binding is not the same. Coercions 
on the component values are discussed in § 2.6.1. There are also coercions on the binding 
itself. which can default missing elements: these are discussed in § 2.3.6. 

If e is a group. it is first coerced to a binding by attaching the names from the decl. as discussed in 
§ 2.3.6. Thus in MKBINDD[[x: INT. y: REAL]. [3. 3.14]) the second argument is coerced to [x~ 3. 
y~ 3.14]. and things then proceed as before. 

Bindings may also be used in LET expressions. Here the types are often redundant and it is better 
to use the MKBINDP primitive to bind the value directly to a pattern. The syntactic type of the result 
is the decl whose type is the syntactic type of the value. Thus [x~ 3. y~ 3.14] is short for 



MKBINDP[PATT[x. y]. [3. 3.14]]: its syntactic type is MKDECL[[x. y]. \7[3. 3.14]] = MKDECL[[x. y]. 
INTX REAL]= [x: INT. y: REAL]. 

A decl D in a block is interpreted somewhat differently. It becomes the argument of the NEWFRAME 
primitive. which turns the type of the decl D.T into the corresponding VAR type VT= D.T.MKVARO. 
allocates a new value v of type VT. and makes the binding MKBINDP[D.P. v] over the scope of the 
block. Thus -

{ x: INT: y: REAL: S} 
becomes 

LET [x. y]~[VAR INT. VAR REAL].NEW INS 
Here D=[x: INT: y: REAL]. VT=[VAR INT. VAR REAL]. and v=[VAR INT. VAR REAL].NEW. Note that 
the types might have defaults. which are used to initialize the variables as part of the NEW 
operation. 

Actually this is a bit oversimplified. since NEWFRAME has to separate the bindings in the block from 
the decls. construct the variable binding just described from the decl. and then combine it with the 
binding from the block. Thus 

{x: INT: y: REAL: z: BOOL~TRUE: S} 
becomes 

LET [x. y, z]~([YAR INT. VAR REAL].NEW PLUS [TRUE]} INS 
or more readably 

LET x~VAR INT. y~VAR REAL z: BOOL~TRUE INS 

Anomaly about uninitialized names or variables: In Cedar the names in a block are introduced 
recursively. so that the d's and b's can refer to each other. It is possible for a binding or type to 
refer to a value which has not yet been initialized. with undefined results. See § 3.4.1 for a further 
discussion of this point. 

2.4.6 Classes 

Another important use of a declaration is to characterize the cluster of a type. Since the cluster is 
just a binding. it is characterized by its type. which is a decl. When used for this purpose. a decl is 
called a class. See § 4.1 for further discussion of classes. and an enumeration of the primitive classes 
of Cedar. 

2.5 Programs 

This section describes how meaning is assigned to kernel programs. 

2.5.1 Structure of programs 

A kernel program is an expression. which is either atomic (a name or literal). or is an application 
which involves sub-expressions: the proc being applied. and the arguments. The concrete syntax 
treats certain kinds of expressions specially: modules. blocks (which introduce new variables and 
return no value). and statements (which return no value). All desugar into simple expressions. 
however. and are treated identically in the kernel. 

2.5.2 Names 

A name is a part of a program which usually serves to denote a value. There are two contexts in 
which the occurrence of a name n denotes a value: 

It may occur as an expression. Then n denotes the value bound to it in the scope in which 
the expression appears (see § 2.5.4 for details). 



It may occur after a dot. as in e.n. Then the expression e.n denotes the binding for n 
supplied by e (see § 2.4.4 and § 4.14 for details): 

the value bound to n in e, if e is a binding: 
the value bound to n in the cluster of e. if e is a TYPE: 

roughly (v' e).n[e] otherwise. 

There are also two defining contexts for a name n (see § 2.5.5 for details): 

It may occur before a ~ in a binding constructor. as in n~e. The value of e is the value 
bound to n in the binding denoted by the constructor (see § 2.3.5 for details). 

It may occur before a : in a declaration constructor. as in n: r. The value of 1 is the type of 
n in the declaration denoted by the constructor (see § 2.4.5 for details). 

These constructors are usually recursive in Cedar: that is. the expression n elsewhere in the 
constructor denotes the value bound to n in that constructor: see § 2.5.6 for details. In the kernel 
they are non-recursive unless preceded by REC. 

A name is not a value. but there are values of type ATOM which are related to names. An atom has 
a print name which is a rope (an immutable sequence of CHARS). A name following a $ is an atom 
literal: $n denotes the atom with print name n. Other properties of atoms are described in § 4.5.lA. 

Caution on names: Current Cedar has several complications in its treatment of names: 

•In an arg8inding27• n: e may be written instead of n~e. The syntactic context distinguishes 
this from a declaration. but this usage is not recommended. 

An argBinding is not recursive: in { a~ 1: Jla~ 3. b~a+ l]} b is bound to 2. not to 4. 

The declaration in an import list is non-recursive: fMPORT M is short for IMPORT M: M. 
and the second M denotes its binding in the surrounding scope (i.e .. the binding supplied 
by the DIRECTORY). Inside the body of the module. of course. M denotes the imported 
parameter. 

Names which appear in an enumerationTC54 are treated specially: see § 4.7.lA for details. 

2.5.3 Scope 

A scope is a region of the program in which all names retain the same meanings (note that many 
names denote variables. which can change their values in the same scope. but each name continues 
to denote the same variable). In the kernel there are only three constructs which introduce a new 
scope. A. LET and REC. In current Cedar. these are sugared in a variety of ways: modules. import 
lists. proc bindings. blocks. exit labels. open. iterators. safeSelects and withSelects. All have 
straightforward desugarings. however. 

2.5.4 Constructors 

The kernel has constructors. denoted [ ... ]. to make expressions which denote group. decl and 
binding values more readable. There is one flavor of constructor for each class: 

A binding constructor is a list of binding elements (b in the kernel syntax) of the form p~e 
or d~e. The presence of the ~ distinguishes it from the others. Here d is a decl element 
(not a declaration). and p is a pattern. in which the names are being defined rather than 
evaluated. 

A decl constructor is a list of dee! elements (d in the syntax) of the form p: r. The presence 
of the : without any ~ distinguishes it from the others. Again. p is a pattern. 

A group constructor is a list of expressions. Note that decl and binding elements are no! 
expressions. although constructors are expressions. 



Constructors are useful for making decls and bindings where the names are literal. This is the 
nonnal case. and in fact the only case in current Cedar. If you want to make them out of other 
decls. for instance to bind an expression to a decl which is the value of a name dn. you cannot use a 
constructor: [dn~e] would bind the value of e to the name dn. not to the decl which is its value. 
You have to write the decl-constructing primitive directly: MKDECL[d, e]. 

The only kinds of constructor you can write in current Cedar are: 

Deel constructors for proc domains and ranges, and for records and unions (fields43 in the 
syntax). 

Binding constructors for arguments in an application. or as an expression alone if a record 
or array value is needed (arg8inding27 in the syntax). 

2.5.5 Recursion 

In the kernel. you get recursive definition of names only if you write REC (or the unsugared form 
FIX) explicitly. In Cedar. on the other hand. decls and bindings are normally recursive. except for 
argBindings and import lists. 

The recursion is legal in a block or interface body (although anomalies are possible in some cases 
when names are used before they are defined: see § 3.4.1). In fields it is illegal. 

2.6 Conveniences 

The facilities described here are not fundamental. but they are of great practical importance. 

2.6.1 Coercion 

A coercion is a proc which is automatically applied under some circumstances to map a value of 
one type T (called the source) to a value of another type U (called the dest). e.g. from [0 .. 5) to INT. 
Coercions are obtained from the clusters of the types involved. The coercion mechanism adds no 
new functionality. since the programmer could always write the applications himself. but it is 
important in concealing some of the distinctions made by the type system when they are distracting 
rather than helpful. 

There is exactly one (desugared) context in which a coercion is applied: when an expression e of 
syntactic type T appears as an argument in an application which expects a value of type U; this 
means that there is a binding n: U~e. Since nearly all Cedar constructs are desugared to application. 
coercions are widely applicable. The only (desugared) context in which there is no coercion is for 
the first operand of dot. since in that case the cluster of the operand is used to interpret the name 
which is the second operand. Thus in the expression e.n. it is always Ve. the syntactic type of e, that 
is used to look up n. regardless of the fact that this expression may appear as an argument to a 
parameter of type U. If e is not a type or binding. however. then e.n desugars to P[e]. where 
P= LOOKUPC[V e.Cluster, $n]. and in the application of P. e does appear as an argument and can be 
coerced. Usually the cluster for T is set up with procs which take an argument of type T. so the 
domain of P is Ve and no coercion happens. This isn·t always true, though: a subrange T of INT 
inherits the arithmetic procs of INT. for example. and there is a coercion from T to INT when PLUS 
is applied. 

If T~ U it is sometimes natural to think in terms of a coercion from T to U that is implemented by 
the identity function. In fact. implication is stronger than that. since it propagates through many 
type constructors. including PROC. while coercion does not. Implication is discussed in § 2.4.2 and 
§ 4.12. 



There is a rather general rule for finding coercions from the clusters of types. though it is not of 
much practical importance in current Cedar. since there is no way for the user to define coercions. 
The rule goes like this. Each cluster may have a From item and a To item. T.From should consist of 
pairs with type [tag: ATOM. proc: T....,.U]. and T.To of pairs with type [tag: ATOM. proc: u ...... 71. Ignore 
the tagS for the moment. Consider the binding n: U~e. where 'iJ e= T. and T==> U is false. For each 
proc P in T.From or U. To we try n: U~ P[e]. 

If P: T....,. V is in T.From. it maps e to a value of type V. and we have to bind n: U~ P[e]. If 
V==> U we are done: otherwise we can recurse on this sub-problem. 

If P: V....,.U is in U.To. we have to bind m: V~e. If T==> V we are done: otherwise we can 
recurse on this sub-problem. 

The whole process fails if no path of coercion procs takes us from T to U. The search can terminate 
when all paths have been explored. and a particular path can be abandoned when a type appears 
on it for the second time. Since the search is done statically (by the compiler). and since the results 
of an attempt to coerce T to U can be cached. the time required for the search is not a problem. 

There are two obvious difficulties with this scheme. First it may transform erroneous applications 
into legal ones. by coercing an argument in ways not intended by the programmer. Second. more 
than one path of coercion procs may exist. and different paths may give different results. The 
second difficulty can be avoided. and the first minimized. if every coercion proc P is chosen so that 
it has a (partial) inverse. and p- 1[P[x]] = x for all x in ?.DOMAIN. This says that a coercion does not 
lose information. and that different paths give the same answer. Sometimes this is not feasible. e.g. 
for the narrowing coercion from INT to [0 .. 5). The following rule gives the builder of clusters control 
over proliferating coercions: 

If two procs on a coercion path have non-NIL tagS. they must have the same tag. 

In general. coercions that don't lose information can have NIL tags. and others should have different 
tags. 

The coercions in current Cedar are described in § 4.13. All have NIL tags. and none loses 
information except the subrange narrowing. Note that coercions extend componentwise to groups 
and bindings. 

2.6.2 Exceptions 

The basic idea behind exceptions is to extend the value space. so that it includes not only ordinary 
values. but also a set of exception values. An exception value has the special property that whenever 
it appears in an application. it becomes the value of the application. so that it propagates up 
through the control stack of the program until it finally becomes the value of the whole program. 
Of course this isn't always what is wanted. so there is a special HIDE construct which is not an 
ordinary application. but takes its argument value. ordinary or exception. and bundles it in a variant 
record which is a normal value. Then ordinary code can be used to test for the exception and take 
appropriate action. This construct is sugared to give distinctive ways of catching an exception: in the 
kernel with BUT (§ 2.2.4). and in Cedar with ENABLE. EXITS and REPEAT (§ 3.4.3). Cedar has two 
kinds of exception: GOTO labels and ERRORS. which must be raised and caught separately. and have 
slightly different semantics. 

The main point of this treatment is that it does not require continuations or any other baroque 
explanation of how control is transferred to catch an exception. The view is that exceptions are 
simply a convenience feature: the same job could be done by returning a slightly larger result from 
each proc. with an appropriate status code. 

An exception consists of a code and an optional argument value. The type of the code is ERROR T. 
where Tis the type of the argument which goes with it. GOTO labels always have empty arguments. 
The argument is a way of passing some information along in addition to the identity of the 
exception. 



A proper treatment of exceptions in the type_ sy~tem would require that e~ch_ proc rang~ include all 
the exceptions that can emerge from an apphcat1on of the proc. In fact. this ts not required or even 
possible in current Cedar. 

Cedar also has signals, which historically were viewed as a kind of exc~ption ~ut now have a very 
different interpretation. as a way of obtaining dynamic rather than stattc scopmg for names. They 
are discussed in § 3.4JA. 

2.6.3 Finalization 

This subject is discussed in § 3.4.3A. 

2.6.4 Concurrency 

This subject is discussed in § 4.10. where the Cedar facilities f~r writing concurrent pro~rams are 
given. Writing good concurrent programs, or even correct ones, is another matter. Y:htch 1_s beyond 
the scope of this manual to more than hint at Unfortunately, an adequate reference 1s lackmg. 

2.7 Miscellaneous 

The different kinds of allocation are discussed in § 4.5. Static values are defined in § 3.9.1. 

2. 7.1 Pragmas 

A pragma is a construct that does not change the meaning of the program, except perhaps to make 
something illegal which was legal without the pragma. Its purpose is to affect the implementation. 
generally by requesting optimization to favor one criterion over others. The pragmas in current 
Cedar are: 

INLINE. which causes a proc body to be expanded inline when it is applied. See § 3.5.1 for 
details. 

PACKED, which causes array components that fit in 8 or fewer bits to be packed, at the 
expense of more expensive code to access them (§ 4.4.2). 

CHECKED, which forbids application of unsafe procs in a block, and adds runtime checking 
for some primitive procs which are otherwise unsafe-in particular, narrowing to a 
subrange, and assigning a proc (§ 3.4.4). 

PRIVATE, which forbids access to items in an interface or instance except to modules which 
EXPORT (or SHARE) it(§ 3.3.6). 

MACHINE DEPENDENT, which allows positions of record fields (§ 4.6.1) and representation 
values for enumeration elements (§ 4.7.lA) to be specified (strictly, it is the absence of 
MACHINE DEPENDENT that is the pragma. since the positions or representation values are 
legal only when it is present) 



2.8 Relations among groups, types, bindings and declarations 

~edar has _are four. closely related basic ways of building product values from simple values (all are 
given precise meanings in § 2.2.1 and § 2.2.2): 

a group is simply an n-tuple of values (see § 2.3.4): 

a X-type is the type of a group (if x: Tandy: U then [x. y): TX ll) (see § 2.4.5): 

a binding is an n-tuple of [name. value] pairs (see § 2.3.5): 

a declaration is the type of a binding. an n-tuple of [name. type] pairs (see § 2.4.5). 

Fi~ure 2-1 illustrates the relations among these kinds of objects. In current Cedar most of these 
obJects can be constructed and manipulated only as interfaces and instances. In the kernel and the 
modeller. all of them are first-class citizens. The primitives which go between them are defined in 
§ 2.2. 

[a: T0 ~e0 , b: Tb~eJ [a: Ta. b: TJ [a: TYPE~Ta' b: TYPE~TJ 

binding<-MKB1Noo-soorn-►decl ~-oroe-smo-► binding with names 
(instance) (interface) t 

l
t MKBINDP MKDECL lt ~ .i DDOTP l MKBINDP 

[ a. b] pattern 

BOO TV DDOTT BDOTV 
group< ► X-type~-MKCAoss-cToo-►group without names 
[ea' eJ TaX Tb [Ta, T J 
values types types as values 

Figure 2- 1: Relations among groups. types. bindings and decls 

2.9 Incompatibilities with current Cedar 

Most of the syntax is current Cedar is an extension (or sometimes a restriction) of kernel syntax. 
There are a few things that have different meanings in the kernel. however, and these are potential 
sources of confusion: 

Type expressions in Cedar do not have the same syntax as ordinary expressions and cannot 
appear in the same contexts. for the fo11owing reasons: 

The use of +- for specifying a default value for a type vs its use for assignment. 
The use of {} for enumeration types vs its use for a block. 
The use of parentheses and brackets to specify subranges 
•The use of adjectives for variants (red Node). 

Target type overloading for union constructors ([rator~$p!us, rands~ binar;{ ... ]]), and 
•enumeration literals (red instead of Color.red or $red) is incompatible with the kernel's 
simple rules for the meaning of names. 

•In addition to writing n: t~e or n~e for a binding. you can also write n: t= e (in a module 
header or block) and n: e (in an argBinding). The most unfortunate consequence is that a 
Cedar argBinding can look like a kernel decl constructor! 

It is now possible to avoid all the conflicting constructs except the relatively harmless ones: +- for 
defaults. {} for enumeration. and union constructors. 



Chapter 3. Syntax and semantics 

This chapter gives the concrete syntax for the current Cedar language. together with an i~fonnal 
explanation of the meaning of each construct. and a precise desugaring of each construct mto the 
kernel language defined in § 2. The desugaring, together with the definitions of the kernel 
primitives used in it, are the authority for the meaning: the informal explanation is just for your 
reading pleasure. However, paragraphs beginning Anomaly or Restriction document properties of 
Cedar not captured in the desugaring. The primitive procs and types of Cedar are specified in § 4. 

In addition to the grammar rules and desugaring, there are examples for each construct. These are 
intended to illustrate the constructs and do not form a meaningful program. The Cedar Manual has 
longer examples which do something interesting, and also illustrate the use of the standard Cedar 
packages. 

There are several summaries which may be useful as references: 

A two-page summary of all the syntax. desugaring and examples in this chapter 
( CLRMSummpress). 

A one-page summary of the full syntax (CLRMFul/Gram.press). 

A shorter and less cluttered summary of the syntax for the safe language: it also omits a 
number of constructs which are obsolete or intended only for efficiency hacking 
( CLRMSafeGram.press). 

~e chapter begins with a description of the notation (§ 3.1) The next sections deal systematically 
with the rules of the grammar, explaining peculiarities of the syntax and giving the semantics: 

§ 3.2, rules 56-61: The lexical structure of programs. 

§ 3.3, rules 1-5: Modules. 

§ 3.4, rules 6-10: Blocks, OPEN, ENABLE, EXITS. 

§ 3.5, rules 11-13: Declarations and bindings. 

§ 3.6, rules 14-18: Statements. 

§ 3. 7. rules 19-27: Expressions. 

§ 3.8. rules 28-35: Conditional constructs: IF and SELECT. 

§ 3.9 treats various miscellaneous topics. § 4 deals with the syntax and semantics of types. 

The order of the grammar rules is: 
module, block. declaration, statement. 
expression, conditional 
type. 
name, literal 

and top-down within these. 



3.1 Notation 

This section describes the notation used in the grammar. desugaring. and commentary of this 
chapter. 

3.1.1 Notation/or the grammar 

The grammar is written in a variant of BNF: 
Bold parentheses are for grouping: ( interface I implementation). 
Item I item means choose one. 
?item means zero or one occurrences of item. 
item: ... means zero or more occurrences of item separated by":". The separator may also be "" 

ELSE, IN. or OR, or it may be absent If the separator is":", a trailing":" is optional. 
item: ! .. is just like item: ... but there is at least one occurrence. 
A terminal is a punctuation character other than bold ()?I. or any character underlined or a word in 

SMALL CAPS. Note that □ and{} are terminals. and do not denote optional occurrence and repetition as they do in many 
other variants of BNF. 

The rules are numbered sequentially. 
Special symbols mark constructs with special properties: 

t=unsafe: 
•=obsolete: 
; = machine-dependent: 
* = efficiency hack. 

The grammar is written so that a non-terminal never expands to the empty string. When an element 
of a rule is optional. that is always indicated explicitly by "?" or " ... " . 

The following non-terminals are so basic to the language and so frequently used. that they are 
represented in the grammar by abbreviations: 

b = bindingD 
d = declaration 11 
e = expressionl9 
n = name56 (identifier) 
s = statementl4 
t=type36 

I'm afraid this means that you must learn the meaning of these six abbreviations in order to read 
the grammar. 

With the exception of these abbreviated non-terminals. each use of a non-terminal is cross­
referenced with a small superscript numbers9, unless the non-terminal is defined in one of the next 
few rules. If a non-terminal (other than e. t or n) is used in more than one rule. then all the rules 
that use it are listed in a comment after its definition. 

Except for the entries in Table 3-1. a terminal symbol appears in only one rule. These duplications 
do not lead to syntactic ambiguity. In most cases they are harmless. since the symbol has essentially 
the same meaning in each case. and the rules are separate only for greater readability. to highlight 
an unusual use of a construct. or for historical reasons. In some cases. however. the symbol has 
quite different meanings in different rules. These are marked on the left as follows: 

® In the rules whose numbers are marked with • the symbol has a different meaning than in 
the others, and confusion is quite possible. The programmer should beware. 

o In the rules whose numbers are marked with • the symbol has a different meaning than in 
the others. but the context is sufficiently clear that confusion is unlikely. 

• The rules whose numbers are marked with • are obsolete and should be avoided. 

A superscriptxn indicates that the tenninal is repeated n times in that rule. 



Symbols 

0 

• 

0 
0 * 

+ 

• = 
=> 

® ~ 

0 -
® ANY 
® CODE 

ENDCASE 
0 ERROR 

IN 
LONG 
NOT 

• NULL 
PACKED 
SELECT FROM 
SHARES 

0 SIGNAL 
TRASH 
TRUSTED 

® USING 
0 WITH 

Rules Explanation 

19. 25. *51.1. •54 expr. subran~e. •position in r~ord bor enumeration 
19. 25. 26. 37. 43. 51 constructor/ uilt·in/funnyApp. sudFr~n

1
ge, 

application, typeName. fields. m . 1e ds 
2. 6. 8, 13. •54 interface bo9y, block. enable, machine code. 

•enumerauonTC 
2, 3. 6, 7, 9, 17, 27, See note in § 3.2. 
29, 30. 32. 34. 35. 43, 
51. 52 

6. 8. 10, 17. 27.1. 30, See note in § 3.2. 
33,35 

1, 2. 3, 5, •7. 11. 13, introducing names with types. except iJ·t=position. 
18. •27, 33, •34, 51. •7=open, •27=argBindmg •34=wi e ect 
•51.1. 53 

19, 37 dot notation for e is repeated for types 
25x4. *51.1 subrange. •position 
21. *53 infixOp. *tag 
21. 58 infixOp. exponent 
20. 21. 58 prefixOp. infixOp. exponent 
•13. 22 •binding. infixOp . . 
6. 9. 17. 31. 33. 35, 52 exits, enable, repeat. select ch01cesx4, umonTC 
14, 16. 18, 21. •55 s, e~STATE, iterator. e. *defaultTC 
2, 3. 13, 20, •22, *27 interface.implementation.b.argBinding,•unaryOp.*relOp 
7. 34 open, withSelect 
*9. 40. 43 *enable. variableTC. fields 
*13. 23 •new exception. convert t to e 
31. 52 sd~cl ~ndChuic~. union TC 
*19, *24. 41.1 •expression. *funnyAppl, transferTC 
18, 22 iterator, reIOp 
38x2, 45.1. 48 cardinal/unspecified, pointer. descriptor 
20. 22 prefixOp, relOp 
14. •27, •52, •55 statement, •argBinding. •unionTC. •defaultTC 
44, 45 array, sequence 
29. 32. 34, 52 select, safeSelect. withSelect, unionTC 
2, 3 interface and implementation 
*24, 41.1 *funnyAppl. transferTC 
27x2, 55x2 argBinding. defaultTC 
6. 13 block. machine code 
1. • 5 directory. *locks 
*32, 34 •safeSelect. withSelect 

Table 3-1: Terminal symbols appearing in more than one rule 

3.1.2 Notationfordesugaring 

The right-hand column is desugaring into the Cedar kernel language, or in a few cases into 
comments describing the meaning in English. This is a purely textual transformation: i.e .. it is done 
on the text of the program, not on the values. The rewriting is done one rule at a time: a single 
step of rewriting involves elements from exactly one rule. The desugaring is specified by slightly 
informal but straightforward rewriting rules, in which: 

An occurrence of a non-terminal (written in bold) denotes the text produced by that non­
terminal in the grammar rule. 

A I reflects a corresponding alternation in the grammar rule. ? reflects a corresponding 
optional item in the grammar rule. and (bold parentheses) are for grouping as in a grammar 
rule. As in grammar rules. literal parentheses are underlined. 

Everything else is taken literally. 



An ~nderlined non·term!nal in the right column means that the desugaring specified for that non­
temuryal must be d~ne _m order to obtain a legal program. Otherwise the transfonnations can be 
done m any order. y1eldmg a legal program at each step. 

Every occurrence of e (expression) and t (type) in the desugaring is implicitly parenthesized. so that 
the desug~red ~rogram parses as the rewriting rule indicates. To reduce clutter. these parentheses 
are not wntten m the desugaring rules. 

Fo! trpe options like PACKE_D. the desugaring of the construct in which they appear is a call on a 
bu1~t-m trpe constructor which takes a corresponding BOOL argument defaulting to FALSE: if the 
attnbute ts present. the argument is supplied with the value TRUE. 

Examples: the following rule for subranges: 

subrange::= ( type Name I) ( 
([ e1 .. e211 [ el ·· e2 )) I 
( ( el ·· e2 1 I { el ·· e2 1 ) ) 

generates these desugarings 

Index [ 10 .. 20 ] 
Index [ 10 .. 20) 
(1..100) 

(typeName I INT).MKSUBRANGE ( [el'( e2 I e2.PRED)]) I 
[ersucc. ( e2 I e2.PRED)]) 

Index.MKSUBRANGE[lO. 20) 
lndex.MKSUBRANGE[lO. 20.PRED 1 
INT.MKSUBRANGE[l.succ. 100.PRED] 

Names introduced in the desugaring are written with one or more trailing prime (" '") characters. 
Such names cannot be written in a Cedar program. and hence they are safe from name conflicts. 
The desugaring is constructed so that the Cedar scope rules prevent multiple uses of these names 
from being confused. 

3.1.3 Notation for the commentary 

Each section of the commentary begins with grammar rules. desugaring and examples for part of 
the language. It continues with text which explains the meaning of the constructs. Generally the 
meaning is fairly clear from the desugaring. and this text is short For blocks and especially for 
modules. however. there are many non-obvious implications of the desugaring. and a number of 
restrictions: these constructs have a lot of explanatory text. 

Some kinds of information are put into specially marked paragraphs. which begin with one of the 
following italicized words: 

Anomaly: the meaning of this Cedar construct is not explained by desugaring into the 
kernel. but by the special rule given here. 

Caution: here is an implication of the definition which might surprise you. 

Performance: facts about the time or space required by some construct. 

Representation: the values of a data type are represented in terms of other types like this. 

Restriction: a construct is not fully general. and will cause a static error unless the 
additional conditions stated here are satisfied. 

Style: advice about good Cedar style. 

Symbols written in SANS-SERIF SMALL CAPITALS are in the kernel but not in current Cedar. The 
superscript notation used to cross-reference non-terminals in the grammar is also used in the 
examples. usually to point to a rule whose example introduces a name. 



3.2 Lexical structure 

56 name::= letter (letter I digit)... -- But not one of the reserved words in Table 3- 2. 
51 Jiteral :: = num ?( ( DI~ I Jjlh) ?num) I -- INT literal. decimal if radix omitted or D. octal if B. I 

digit (digit IAIBl~IDI.EI.E) ... ( Hlh) ?num I --INT literal in hex: must start with digit. I 
?num . num ?exponent I -- REAL as a scaled decimal fraction: note no trailing dot I 
num exponent I -- With an exponent. the decimal point may be omitted. I 
• ( extendedChar 1 • 111

) I• digit! .. ~I~) I -- CHAR literal: the C form specifies the code in octal. I 
" ( extendedChar I') ... " ?e(!JO I [ ('extendedChar I'·) .... ] -- Rope.ROPE. TEXT, or STRING. I 
$ n -- A TOM literal. 

58 exponent::= (.Ek)?(+ I - ) num -- Optionally signed decimal exponent. 
59 num :: = digit ! .. 
60 extendedChar :: = space I \ extension I anyCharNof"Or\ 
61 extension :: = digit

1 
digit

2 
digiS I --The character with code digit1 digit2 digit3 B. I 

(nlN I rl.B) I (!ID I 021.ID I --cR. ·,0151 TAB, ·,011 I BACKSPACE. ·,010 I 
(fl.E) I OIL> I' I" I\ --FORMFEED. '\014 I LINEFEED, '\012 I' I" I\ 

Examples 

m. xl. x59y. longNameWithSeveralWords: INT: 
n: INT~ 1 + 12D+ 2B3 + 20008 -- = 1 + 12 + 1024+ 1024 

+lH+OFFH: 
rl: REAL~O.l+.l+l.OE-1 

+lE-1: 
al: ARRAY [0 . .3] OF CHAR ~['x. '\N, '\'. '\141]: 
r2: ROPE~"Hello.\N ... \NGoodbye\F": 
a2: ATOM ~$NamelnAnAtomLiteral: 

-- + 1 + 255 
-- = 0.1 +0.1 +0.1 
-- +0.1 

The main body of the grammar (rules 1-55) treats a program as a sequence of tokens: these are the 
terminal symbols of the grammar. Rules 56-61 give the syntax of most tokens. A token is: 

- A literal57. More information about literals of type Tis in the section of§ 4 devoted to T. 

A names6. not one of the reserved words in Table 3- 2. Note that case matters in names. 

- A reserved word. which is a string of uppercase letters that appears in Table 3 - 2. A 
reserved word may not be used as a name, except in an ATOM literal. 

- A punctuation symbol: any printing character not a letter or digit and not part of one of 
the two-character sequences below. The legal punctuation symbols in programs are: 

!@#$~* - + = l(){}[]+-t::·" .. <>1 
The following ASCII characters are not legal punctuation symbols (and must not 
appear in a program except in an extendedChar60): 

% & \? 

One of the following two-character symbols (used in the grammar rules indicated): 
~ - not eq ual22 
< = less than or equa\22 
~< not less than22 
> = greater than or eq uaJ22 
~ > not greater than22 
= > choosess.11. 30. 31. 33. 35. s2 

subrange constructor2s.s1.1 
bind by name6. 34 

Note that Cedar uses a variant of ASCII which includes the characters +- (instead of the underbar _) and t (instead of 
the circumflex ). Also. the character written - here is the ASCII minus. code 55B. and not any of the various dash or 
typographer"s minus characters with other codes. which are not in the standard ASCII set. 



ABS ELSE ISTYPE PACKED SIGNAL 
ALL ENABLE JOIN PAINTED SIZE 
AND END LAST POINTER START 
ANY ENDCASE LENGTH PORT STATE 
ARRAY ENDLOOP LIST PRED STOP 
ATOM ENTRY LOCKS PRIVATE STRING 
BASE ERROR LONG PROC succ 
BEGIN EXIT LOOP PROCEDURE TEXT 
BOOL EXITS LOOPHOLE PROCESS THEN 
BOOLEAN EXPORTS MACHINE PROGRAM THROUGH 
BROADCAST FINISHED MAX PUBLIC TO 
CARDINAL FIRST MIN READONLY TRANSFER 
CEDAR FOR MOD RECORD TRASH 
CHAR FORK MONITOR REF TRUSTED 
CHARACTER FRAME MONITORED REJECT TYPE 
CHECKED FREE NARROW RELATIVE UNCHECKED 
CODE FROM NEW REPEAT UNCOUNTED 
COMPUTED GO NIL RESTART UNTIL 
CONS GOTO NOT RESUME USING 
CONTINUE IF NOTIFY RETRY WAIT 
DECREASING IMPORTS NULL RETURN WHILE 
DEFINITIONS IN OF RETURNS WITH 
DEPENDENT INLINE OPEN SAFE ZONE 
DESCRIPTOR INT OR SELECT 
DIRECTORY INTEGER ORDERED SEQUENCE 
DO INTERNAL OVERLAID SHARES 

Table 3- 2: Reserved words and predefined names 

The program is parsed into tokens by starting at the beginning and successively taking from the 
front the longest sequence of characters which forms a token according to the rules above. after first 
discarding any number of initial whitespace characters or comments. 

The whitespace characters are space. tab. and carriage return. A Tioga node boundary is 
also treated as a whitespace character. 

A comment is one of: 
A sequence of characters beginning with --. not containing -- or a carriage return. 
and ending either with -- or with a carriage return. 
A Tioga node with the comment property. 

Note that whitespace and comments are not tokens. but may appear before or after any token: they 
are token delimiters. and hence cannot appear in the middle of a token. Whitespace and comments 
thus do not affect the meaning of the program except: 

When they delimit a token. 

Within a CHAR literal or a ROPE literal. where they are taken literally. Thus • is equal to 
'\040, and "I 
am --not--" is equal to "I\Nam --not--" and different from "I\Nam ". 

Both reserved words (Table 3- 2) and most names with predefined meanings (Table 4-5) are made 
up entirely of upper case letters. All are at least three characters long except the following: 

DO GO IF IN OF OR TO. 

Caution on use of reserved words and predefined names: They should not be rebound by the 
program: in some but not all cases the compiler forbids their rebinding. 



A note on lists of items and their separators. In general. semicolons are used to separate statements. 
or slightly larger constructs that contain statements. Commas are used to separate the items in all 
other kinds of lists. Precisely: 

Semi~colons are used to separate declarations. bindings and statements in a bodylo, and to 
separate choices in a select statement29. 32. 34 or in an exits6, 11 or enables. 21.1. 

Commas are used to separate declarations in fields43.51 (i.e., in a proc domain or range. a 
recordTC or a unionTC). bindings in an application27 or an open'. choices in a select 
expression 29. 32. 34 or in a unionTcs2. expressions in a choice6. 9.17. 30, 35, s2. items in imports. 
exports or shares lists2. 3. 

In general these lists may be empty. and an extra separator at the end is hannless when there is 
some kind of closing bracket, except when the sequence is bracketed with O. 

The braces {} which delimit a block6, interface body2, choices in an enables. or MACHINE CODE 
body13 may be replaced by BEGIN and END reserved words. BEGIN replaces "{" and END replaces 
"}". If one brace is replaced. its matching partner must also be replaced. The braces delimiting an 
enumTC54 may not be replaced by BEGIN and END. 

3.3 Modules 

1 module::= DIRECTORY (ni: TYPE (n
1 
I) I) 

?(USING [nu .... ])) .... : 
( interface I implementation ) 

2 interface::= nnr ! .. : ?CEDAR DEFINITIONS 
?locks (imports I ) ?e(SHARES n s· .•. ) 

~ ?•accessl2 { ?open' (d I b): ! .. } . 

3 implementation :: = nm : ?CEDAR 

?safety ( PROGRAM ?drType42 I 
MONITOR ?drType42 ( I locks)) 

(imports I) 
?(EXPORTS n e' ... ) 

?e(SHARES ns .... ) 
~ ?•access12 block . 

11imports :: = IMPORTS ( (n ; I) n ) .... --In 2. 3. 
V I 

4 safety::= SAFE I UNSAFE --In 3. 41. 
s locks :: = LOCKS e ?( USING n : t) 

u 

Examples 

A [ (nd: ( (TYPE 0
1 
I TYPE n) I TYPE n) ) .... ] IN 

LET (nrRESTRICT[n" ($nu, ... ]]), ... 
IN ( interface I implementation) 
LET r' ~[ nm: INTERFACETYPE[[ $nm, ... ]]] IN (imports I A= )r') IN 
-- SHARES allows access to PRIVATE names inns. 
LET REC nm ~open [ ?(I' ~locks.) (d I b), ... ] IN nm 

LET r' ~ [(ne: n) ..... FRAME: TYPE nm. 
nm: FRAME, CONTROL: PROGRAM] 

IN (imports I'>,.= >r') IN 
( I LET I'~( LET LOCK ~NEWLOCK IN('>,. IN LOCK) I locks) IN) 
LET b' ~NEWPROGINSTANCE[block].UNCONS IN 

[ (n ~BINDDFROM[n. b' PLUS n ~b'.n l ) .... ' 
e e m ml 

FRAME~ MKINTTYPE[block]. 
nm ~b'. CONTROL~b'.n,J where the block body is desugared: 

[ (d I b) . .... nm: PROGRAM drType~{s: ... }] 
A [(nI:n1) • ... ] = )r' IN LET [((nv I n)~ (n1 PLUS n

1
.BINDING) ) .... ] 

A?( [nu: t]) IN e 

DIRECTORY -- For Buffer/mp/below. 
Rope: TYPE USING [ROPE. Compare]. --There should always be a USING clause 
CIFS: TYPE USING [Open File.Error.Open.read]. -- unless most of the interface is used 
IO: TYPE IOStream. -- or it is a standard one like Rope or JO. 
Buffer: TYPE: -- or it is exported. 



Buffer: DEFINITIONS ~ { 
Handle: TYPE~REF BufferObject: 
BufferObject: TYPE= Rope.ROPE 
New: PROC RETURNS[h: Handle]: 
Get: PROC[h: Handle] RETURNS[BufferObject]: 
Put: PROC[h: Handle. o: BufferObject] }: 

Bufferlmpl: MONITOR [f: CIFS.OpenFile] 
LOCKS Buffer.GetLock[h]t 

USING h: Buffer.Handle 
IMPORTS Files: CIFS. 10, Rope 
EXPORTS Buffer 

~ { -- module body -- } . 

-- Implementations can have arguments. 
-- LOCKS only in MONITOR, to specify 
-- a non-standard lock. 
-- Note the absence of semicolons. 
-- EXPORTS in PROGRAM or MONITOR. 
-- Note the final dot. 

Modules serve a number of functions (which might perhaps better be disentangled. but are not): 

A file of source text (Bufferlmplmesa), or its translation into object code (Bufferlmpl.bcd). 

The unit handled by the editor, named in DF files and models. and accepted by the 
compiler. the binder, and the loader. 

A set of related structures (types. procedures, variables) which are freely accessible to each 
other. hiding secrets or irrelevant information from other modules. 

A procedure which can accept interface types and bindings as arguments. and returns 
interface instances as results. 

The procedures of a monitor. perhaps with its protected data. 

The first two uses are not relevant to the language definition. and are not discussed further here. 
The others are the subject of this section. 

There are two kinds of modules: interface modules (written with DEFINITIONS) and implementation 
modules (written with PROGRAM or MONITOR). They have the same header (except that interfaces 
have no EXPORTS list): it defines the parameters and results of the module viewed as a proc (§ 3.3.1) 
and specifies the name n of the module. The bodies (following the ~) are different. Table 3- 3 m 
summarizes the structure of modules and their types: it omits a number of details which are given 
in rules 1-3 and explained in. the text 

Example Module Module type Result Result type 

DIRECTORY Rope. IO: Interface [Rope: TYPE Rope. IO: TYPE JO] 
-.[TYPE Match] 

Interface TYPE Match 
Match: DEFINITIONS~{ ... } module 

DIRECTORY Match. Rope. JO: Implementation [Match: TYPE Match. Exported Match 
Match/mp/: PROGRAM module Rope: TYPE Rope. JO: TYPE /0. instance 
IMPORTS R: Rope. /: IO R: Rope. I: 10]-➔ [Match] 
EXPORTS Match~{ ... } 

Table 3-3: Interface and implementation modules 

The ensuing sub-sections deal in turn with: 

§ 3.3.1: Modules as procedures. and the interface or instance values they return. 

§ 3.3.2: How modules are applied. 

§ 3.3.3: Module parameters: the DIRECTORY and IMPORTS lists: USING clauses. 



§ 3.3.4: Interface module bodies and interfaces. 

§ 3.3.5: Implementation module bodies: the EXPORTS list. 

§ 3.3.6: SHARES and access12. 

The meanings of the other parts of a module header are discussed elsewhere: 

CEDAR in § 3.4.4. 
MONITOR and LOCKS in § 4.10. 

3.3. 1 Modules and instances 

A module is a proc which takes two kinds of arguments: 

Interfaces. declared in the DIRECTORY list These arguments are supplied by the model (or 
on the compiler's command line), and used during compilation. 

Instances of interfaces. declared in the IMPORTS list. These arguments are also supplied by 
the model (or in a con.fig file passed to the binder. or implicitly by the loader). and used during 
loading. 

§ 3.3.3 discusses the types of these -arguments and how they are declared. In addition. an 
implementation may take PROGRAM arguments declared in the drType following PROGRAM or 
MONITOR. These are ordinary values: they are discussed in § 3.3.2A. 

When a module is applied to its arguments, the resulting value is 

For an interface module, an interface. 

For an implementation module, a binding whose values are instances: 
one interface instance for each interface it exports: 
one for the program instance, also called a global frame: 
one for the program proc derived from the module body (§ 3.3.2A), called 
CONTROL. 

This application cannot be written in the program, only in the modet it is described in § 3.3.2. 

An interface (sometimes called an interface type) is a type, as the latter name suggests. This type is a 
declaration (obtained from the declarations which constitute the module body), with an extended 
cluster that includes all the bindings in the module body that don't use declared names (§ 3.3.4). In 
the example, the Buffer interface (obtained by applying the Buffer module to the arguments declared 
in its DIRECTORY) has declarations for New, Get, and Put. and its cluster includes values for Handle 
and BufferObject. 

An interface instance is a value whose type is an interface: such values are the results of 
instantiating implementation modules. In the example, Buffer/mp/ returns (exports) an instance of 
Buffer. 

A program instance or a global frame is a frame. as the latter name suggests, i.e .. a binding obtained 
from the bindings and declarations of an implementation (PROGRAM or MONITOR) module body. 
just like any proc frame (§ 3.3.5). Normally code outside the module does not deal with the instance 
directly, but only with the exported interface instances. In the example, Buffer/mp/ exports a 
program instance for the module and a CONTROL proc. 



In most cases. there is: 

Exactly one application of each module. and hence exactly one interface or one instance. 

Only one module which exports an interface. 

Only one interface exported by a module. 

Only one argument of the proper type for each module parameter (§ 3.3.3): hence it is 
redundant to write the arguments explicitly. 

When these conditions hold. there is a close correspondence among the following four objects: 
an interface module: 
the interface it returns (since its arguments need not be written explicitly): 
the implementation module which exports the interface: 
its instance (again, since its arguments need not be written explicitly). 

The distinctions made earlier in this section then seem needless: it is sufficient to simply consider 
the interface and implementation modules. and identify them with the files which hold their text. In 
more complicated situations, however. it is necessary to know what is really going on. 

In the example at the start of this section. Buffer/mp/ is an implementation module with seven 
parameters: 

Four interface parameters. declared in the DlRECTORY: Rope. CIFS. IO and Buffer. 

Three instance parameters. declared in the IMPORTS: Files (of type CIFS). IO (of type IO). 
and Rope (of type Rope). Since the instance parameters are declared in an inner scope. the 
instance Rope is the one visible in the module body: the interface Rope is visible only in the 
header. The same is true for IO. but both the interface CIFS and the instance Files are 
visible in the body. 

When Buffer/mp/ is compiled. the four interface parameters must be supplied. in the fonn • of 
(compiled) interface modules named Rope, CIFS. IO and Buffer. When Buffer/mp/ is instantiated 
(nonnally by loading it). the three instance parameters must be supplied, i.e. there must be other 
instantiated implementation modules which export the Rope. CIFS, and JO interfaces. Nonnally 
there will be one of each. and the entire program will consist of eight modules: 

the interface modules Rope. C/FS. IO and Buffer: 

implementation modules nonnally named Rope/mp/. C/FS/mpl, IO/mp! and Buffer/mp!. each 
exporting an instance of the corresponding interface 

The instantiated Buffer/mp/ exports an instance of Buffer. which can thus be used as a parameter by 
some other module. 

3.3.2 Applying modules 

A module is not applied to all its arguments at once. Instead. the arguments are supplied in two 
stages: 

A module is applied to its interface (DIRECTORY) arguments by compiling it: the result is a 
BCD (represented by a .bed file). The bed is still a proc. with instance parameters. Like any 
proc, a module can be applied to different arguments (i.e .. different interfaces) to yield 
different results (BCDs). 

A BCD is applied to its instance (IMPORT) arguments by loading (or binding) it: the result is 
a program instance, together with any interface instances exported by the module. Again. 
the BCD can be applied to different arguments (i.e .. different interface instances) to yield 
different instances. Indeed. because an instance may include variables. even two applications 
to the same arguments will yield different results (instances). 



These two stages are separated for several reasons: 

All the type-checking of a module can be (and is) done in the first stage. by the compiler. 
The only type error possible in the second stage is supplying an unsuitable argument. 

Compiling is much slower than loading. and a module needs to be recompiled only when 
its interface arguments change. not when the interface instances change. The latter are 
changes in the implementations of the interfaces. and are much more common. 

When there are multiple instances of the same module with the same interface parameters. 
they automatically get the same code. 

We"ve always done it that way. 

3.3.2A Initializing a program instance 

The statements in the body of an implementation module form the body of a proc called the 
program procedure. The function of this proc is to initialize an instance of the module. When 
program instance Pl is made, no code in the module is executed: hence Pl may be uninitialized. It 
is the job of the program proc pp' to initialize Pl, perhaps using the PROGRAM arguments if there 
are any. Until pp' has been called. PI is not in a good state. It would be better to supply the 
PROGRAM arguments along with the imported instances. and call PP as part of making PI. so that 
Pl is never accessible in its uninitialized state. But it isn't done that way: hence the programmer 
must ensure that pp' is called before any use is made of Pl. The preferred way to get hold of PP' is 
from an interface to which it is exported: see § 3.3.5. 

To confuse things. pp' is not an ordinary procedure but a PROGRAM, and it must be called using 
the START construct (see § 4.4.1). Note that in addition to the statements of the module body, PP 
also contains the type-specific initialization code for any variables or non-static values in the 
instance: e.g .. if x: JNT+-3, the value of x will not be 3 until after PP' has been called. 

There is some error detection associated with this kludge. If a proc in the instance is called before 
the instance has been initialized by START, a start trap occurs. At this point if pp' takes no 
arguments it is called automatically. and the original call then proceeds normally: if PP does take 
arguments, there is a Runtime.StartFault ERROR. 

Caution on initializing monitors: If the module is a monitor. pp' runs without the monitor lock: if 
another process calls into the module while pp' is running, it will not wait. but wilJ run 
concurrently with PP'. This is unlikely to be right. It is unwise to rely on a start trap to initialize a 
monitor module: call pp' explicitly with START. 

Caution on referencing module variables before initialization: If a variable in the instance is 
referenced before the instance has been initialized. no error is detected. and the uninitialized value 
will be obtained. PP' can still be called to initialize the instance. and may still be called 
automatically by a start trap. 

The program proc is bound to the name CONTROL in the result of an implementation module if its 
type is PROGRAM□ RETURNS□ (otherwise the proc Runtime.ReportStartFault is bound to CONTROL). 
This allows the modeller (and binder) to get access to PP so as to control the order in which 
modules are started. 

3.3.3 Parameters to modules: DIRECTORY and IMPORTS 

The interface parameters of a module are declared in the DIRECTORY. An interface / has type TYPE 
n. where n is any one of the names given before DEFINITIONS in the header of the interface module 
that produced I. The INTERFACETYPE primitive in the desugaring takes a list of atoms and returns a 
type which implies TYPE n for each $n in the list. The reason for allowing several names is to aid 
conversion of an interface from one name to another: both names can continue in use for a while. 



The use of these names provides_ a clumsy check that the proper interface is supplied as an 
argument. DIRECTORY n: TYPE and DIRECTORY n are both short for DIRECTORY n: TYPE n. 

The compiler must be able to find the interface arguments. which in general are stored as files. 
When the modeller is used. it supplies these arguments from the specifications in the model. 
Otherwise. they may be specified explicitly on the compiler·s command line. or failing that the 
compiler gets the interface / from the file I.bed. 

An interface is a type which can only be used: 
Before a dot (§ 4.14), to obtain a value from its cluster, which simply consists of the 
bindings in the interface module body (§ 3.3.4). 
In an IMPORTS list as the type of an instance parameter to a module. 
After POINTER TO FRAME (§ 4.5.3) 

The USING clause in the DIRECTORY. if present, restricts the cluster of the interface to contain only 
items with the names n .... Thus in the example. only ROPE and Compare are in the cluster of Rope u 
in the Buffer/mp/ module. This means that Rope.ROPE and Rope.Compare are legal. but Rope.n for any 
other n will be an error. Note that USING affects only the cluster of the parameter: it does not affect 
the clusters of any types or the bodies of any INLINE procs obtained from the interface. Thus within 
Rope. Compare might be bound by 

Compare: PROC[rl. r2: ROPE] RETURNS [BOOL]~INLINE { IF length[rl]~ = length[r2] THEN ... } 
A call of Rope.Compare in Buffer/mp! is all right. even though Rope.length in Buffer/mp! is an error. 

In the example, CIFS. JO, and Rope are interfaces. They are the types of three IMPORTS parameters 
named Files, IO, and Rope (if the IMPORTS clause gives no name for the parameter. the name of the 
interface is recycled). An actual argument for an IMPORT parameter must be an interface instance. 
i.e., a value whose type is an interface type. Such a value is obtained from one or more modules 
which export the interface (§ 3.3.5). An instance is a binding: in it, the value of a name declared in 
the interface is provided by the exporter: the value of a name bound in the interface (e.g., x~3) is 
just the value the interface binds to the name (in this case, 3). This rule has two effects: 

The client can ignore the distinction between names bound and declared in the interface. 
since both appear in the instance binding and are referenced uniformly with dot notation. 
This means that the client is not affected, for example. when a proc is moved from an 
INLINE in the interface to an ordinary definition in an implementation. 

The client can often -ignore the distinction between the interface and the instance. since all 
the values in the interface are also in the instance. with the same names. This is the 
motivation for the shorthand which allows the name of an IMPORT parameter to default to 
the name of the interface: the interface is no longer accessible. but I.x has the same 
meaning (namely 3) whether / is the interface or the instance. 

Caution on inlines in interfaces: Names bound to inline procs in an interface do not appear in the 
interface binding, but only in an instance. This somewhat dubious rule ensures that clients won't 
have to add to their imports lists if a proc stops being an inline. 

Restriction on importing multiple instances: An interface module may not import more than one instance of a given 
interface I. If an implementation module P imports more than one instance of I. the principal instance of I is the one 
with no name in the IMPORTS list (which is therefore named / by default). If P imports only one instance of type I. then 
that instance is the principal instance. 

Rescriction on importing a principal instance into imported interfaces:. Often an interface module has no IMPORTS. because 
it only needs access to the static values (types and constants) bound in its interface parameters. and does not need values 
for any names declared there (procs and interface variables). If an interface module does have IMPORTS. however. and 
there is more than one instance of any imported interface around. then there is a restriction on the argument values. 
Suppose that Intl imports lnt2, and that a program module P imports Intl. Then Intl may only import one instance of 
Intl. and if P also imports Intl. the principal instance of lnt2 in P must be the same as the value of Intl imported by 
the Intl imported by P. For example. with 

DIRECTORY lnt2: Intl: DEFINITIO'IS IMPORTS Intl V: Intl ... 
DIRECTORY Intl. lnt2: P". PROGRA\.1 IMPORTS Intl V: Intl. lnt2 V: lnt2 ... 

we must have in P that tn1lV.ln12V=lnt2V. 



3.3.4 Interface module bodies 

The body of an interface module I is a collection of bindings (e.g .. x: INT~3) and declarations (e.g .. 
y: VAR INT or P". PROC[a: INT] RETURNS [REAL]). 

Restriction on bindings in interfaces: The construct that follows the ~ in one of the bindings13 is 
restricted: 

If it is an expression. it must be static (§ 3.9.1). Thus. no imported names. As a result. 
P". PROC~ l.P 
£: ERROR~/.£ 

are not allowed. 

If it is a block (providing the body of a proc). it must be INLINE (because there isn·t any 
place to put the compiled code). 

It may not be CODE. This is an unfortunate accident of the implementation. 

The result of applying an interface module is an interface (§ 3.3.2). which is a type I obtained by 
applying the primitive MKtNTTYPE to the d's and b's of the body. This type is simply the declaration 
obtained by collecting the declarations in the body, with a cluster which is extended to include all 
the bindings of the body. However. MKINTTYPE omits any inline proc bindings from the type's 
cluster. instead leaving the proc declarations in /. It puts an extra item BINDING in fs cluster with 
the inline procs in it When an instance Inst of I is imported. the binding actually imported is Inst 
PLUS /.BINDING. This slightly dubious arrangement ensures that clients don't have to change imports 
lists if a proc stops being inline. This policy is not extended to other items. however. even though 
they might change from being bound in the interface to being interface variables. 

The interface returned by 
Red Blue. Green: DEFINITIONS~ ... 

has the types TYPE Red TYPE Blue. and TYPE Green. 

Restriction on referring to names introduced in an interface: The types and expressions in the 
declarations and bindings of an interface may refer to other names in the bindings as usual. but 
they may not refer to names introduced in the declarations. except that: 

Any declared name may be used 
in the body of an INLINE. or 
after a " ... " in a defaultTcss in the fields4J of a transferTC41 which is the type of a 
decl in the interface's body. 

A declared (opaque) type may be used anywhere. 

For example. if an interface contains 
/: DEFINITIONS~ 

x: INT~3: 
y: VAR INT; 
T: TYPE[ANY] 

then the following may also appear in the interface: 
xx: INT~x+l: 
P: PROC RETURNS[INT]~INLINE {RETURN[x+ y]}; 
Q: PROC [INT ... y]: 
V: TYPE~RECORD[f. REF T. g: U] 

but the following are illegal: 
xy: INT~ y+ 1: 
U: TYPE~INT<--y; 
W: TYPE~ARRAY [0 .. y] OF INT: 

The values of the bindings can be accessed directly by dot notation in any scope in which the 
interface is accessible. Thus if the value of the previous interface module is bound to J. e.g., because 



J: TYPE / appeared in the DIRECTORY, then J.x is equal to 3. The declarations cannot be accessed 
directly (J.y is an error). 

The declarations in an interface module are not quite like ordinary declarations. They are of three 
kinds. depending on whether the type of a declaration is: 

A transfer type (§ 4.4.1): this is just like a declaration of a transfer parameter to an ordinary 
proc. except that it is readonly. 

TYPE[ANY] or TYPE[e]: the type being declared is an opaque type or exported type. discussed 
in § 4.3.4. The expression e must be static. TYPE[ANY] or TYPE[E] is not allowed in an 
ordinary declaration: except in an interface. a type name must be bound to a type value 
when it is introduced. 

VAR T. or READONL Y T for any type T except TYPE: this is an interface variable: discussed 
in § 3.3.4.1 below. You can also write simply T here. but this is not recommended. 

An interface instance // has the interface type I if for each item n: T in the interface. there is an 
item n~ v in the instance. and v has type T. This is the same rule which determines that a binding 
has the type of a declaration: e.g .. that a proc argument has the domain type. In this respect there is 
nothing special about an interface. 

Note that a name can be declared PRIVATE in an interface. even though it must be declared PUBLIC 
in the exporter (§ 3.3.6). This can be useful if the name is used in a type constructor or inline proc 
in the interface. but its value should not be accessible to the client 

3.3.4 A Interface variables 

An interface variable v gives clients of an interface direct access to a variable in a program module. 
namely the variable which is exported to v. This is the only kind of variable parameter in current 
Cedar. 

•If you use the obsolete shorthand of T for VAR Tin an interface variable declaration. you cannot 
declare a transfer type variable as an interface variable. since that already means passing the transfer 
value. 

Caution on uninitialized interface variables: the variable which is exported to provide the value for 
an interface variable is not initialized until its module is initialized (§ 3.3.2A). However. there is 
nothing to stop it from being accessed sooner. with possibly undesired results. 

Performance of interface variables: An interface variable can be read and (if not REAOONL Y) set 
directly, which is significantly faster than Get and Set procs. Of course, the implementor gives up 
some control. These operations are not quite as fast as access to an ordinary variable. since there is 
an extra level of indirection which costs one or two extra instructions each time. There is also one 
pointer per interface variable per module which refers to it. If you use a private interface variable 
and inline Get and Set procs, you pay nothing in performance. but retain the option of changing the 
proc definitions later. 

• You can get direct access to all the variables of a module by using a POINTER TO FRAME type 
(§ 4.5.3). 

3.3.5 Implementation module bodies 

The body of an implementation module Imp is simply a block. This block plays two roles. On the 
one hand. it is an ordinary block. the body of an almost ordinary proc PP' called the PROGRAM 
proc. which has parameters and results like any other. pp' is special in one way: it has a PROGRAM 
type rather than a PROC type. When pp' is applied (using the special construct START: see § 4.4.1). 
its declarations and bindings are evaluated. its statements are executed. and its results are returned 



as with any proc. The only difference is that the values bound to the names introduced in the bloc~ 
(i.e .. the frame of pp') are retained after the proc returns: in fact, forever (unless Runtime.Unnew ts 
used to free the frame). Procs local to the block can access these values in the usual way. and values 
of exported names can also be accessed through interfaces, as explained below: see § 3.3.2A. 

As with any proc (§ 3.5.1). the frame of pp' includes the parameters and results from Imp"s drType42 

as well as the names introduced in the block's d's and b's. It also includes an additional item: 
Imp: PROGRAM T~ pp' 

where imp is the name of the module and Tis its drType. 

The body of Imp has a second role: to supply values for the names declared in the interfaces 
exported by Imp. For each interface Ex which Imp exports. an interface value Ex/ of type Ex is 
constructed. Each name n in Ex/ acquires a value as follows: 

If n: T is in Ex and n: PUBLIC T~ x is in the body of Imp. then n~ x is in Ex/. This is a 
slightly peculiar kind of binding: as in an ordinary binding, x must be coerceable to T 
(§ 4.13). Note that n must have PUBLIC access (§ 3.3.6) in the body. 

If n is imp and n: Tis in Ex. then n~ pp' is in Ex!: the type of pp' (which is PROGRAM D 
RETURNS R. where D RETURNS R is Imp's drType) must be coerceable to T. This method of 
exporting pp' is the usual way of giving another module access to the program proc. so that 
it can be called to -initialize the module at the proper time. 

If n is declared in Ex. not bound in the body of Imp. and not the same as Imp. then 
n~UNBOUND is in Ex/. UNBOUND is a special value with the following properties: 

For a proc P. it causes a Runtime.UnboundProcedure signal on any application of P. 

For a variable v. it causes a Runtime.PointerFault error on any reference to v. 
For a type T. it causes no problem. 

If n~ x in Ex. then n~ x in Ex/. Thus any names bound in the interface are bound the same 
way in any interface value. 

Caution on exporting a name to several interfaces: A name can be exported to several interfaces 
without any warning. if it has a suitable type. This is unlikely to be what is wanted. 

On the other hand. it is quite usual to have several modules exporting to the same interface. The 
modeller. loader and binder provide. facilities for merging the interface instances produced by the 
several modules into a single instance that contains all the items bound by any of the modules. 

The result of instantiating Imp is a binding with: 

One item for each exported interface Ex. namely Ex: Ex~ Ex!. where Ex/ is the interface 
value constructed above. Here Ex is the name nd given to the interface in the DIRECTORY. 

One item CONTROL: PROGRAM□ RETURNS □. whose value is the program proc pp' if that 
has no arguments and no results. and otherwise Runtime.ReportStartFaull. 

•One item for the type of the module's global frame. namely FRAME~TYPE Imp. 

•One item for Imp itself. namely Imp: FRAME. The value of this item is the program 
instance. i.e., the frame of the module's body. The instance exists before pp' is called 
(though it is uninitialized). In fact its Imp item can be applied to call PP'. 

This binding is accessible in a model. where it can be used to get access to the interface instances. 
the program proc. the global frame type. and the program instance. 

• You can pass FRAME as an argument to a DIRECTORY parameter /: TYPE Imp: like an interface: / 
provides access to constants bound in the module. and allows you to declare an IMPORTS parameter 
whose argument will be a program instance of the module. From I you can also obtain a first-class 
Cedar type POINTER TO FRAME[/]: see § 4.3.5. f s cluster includes a coercion from / to POINTER TO 
FRAME[/]. and the proc COPYIMPLINST (applied by the funnyAppl NEW). which is the same as the 
proc of the same name in cluster of POINTER TO FRAME[/]. 



•You can import Imp into another module (by writing DIRECTORY Imp ... IMPORTS Jmplnst: Imp ... ). 
and obtain access to all the variables and procs of the program instance. 

3.3.6 PUBLIC. PRIVATE and SHARES 

Cedar has a rather complicated mechanism for controlling access to names. Most uses of it are now 
considered to be obsolete. with the following exceptions: 

Names to be exported must be declared PUBLIC. 

Names included in an interface for use in inline procs etc .. but not intended for use by 
clients. should be declared PRIVATE. 

Access to a name is declared by writing PUBLIC or PRIVATE right after the colon in a declaration: 
x: PUBLIC T 

In the Cedar syntax these colons occur in the declarationsn and bindingsB in bodiesio, fields4J. s1. 
and interface modules2, and in the tag53 of a unionTC. You can set a default access for all the 
names in a module2. 3 or record50 by writing PUBLIC or PRIVATE just before the { or RECORD: this is 
overridden by an explicit PUBLIC or PRIVATE inside. By default. an interface is PUBLIC and an 
implementation is PRIVATE. 

A PRIVATE name defined in module M can only be referenced: 
from within M: 
from a module which EXPORTS M. 

•from a module which SHARES M: avoid this feature. 

This does not mean that the name is invisible. but rather that it is an error to use it if. e.g., M is 
OPENed. Thus in 

x: INT: { OPEN M: /lx]} 
if x is bound in M (and not hidden by a USING clause). the call of f is equivalent to /lM.x] 
regardless of whether xis PUBLIC or PRIVATE. It is illegal if x is PRIVATE. but it never refers to the 
x declared by the x: INT. 

Furthermore. if a record has any PRIVATE components. a constructor or extractor for the record is 
legal only in a module where use of the PRIVATE names is legal (even if the private components are 
not mentioned and have defaults). 

3.4 Blocks, OPEN and ENABLE 

6 block :: = ?(CHECKED I UNCHECKED I TRUSTED) 
{ ?open ?enable ?body 

?(EXITS (n. ! .. = )s): ... )} 
--In 3. 13. 15. 

10pen :: = OPEN ( n ~ ~ e I e ). ! .. : 
In 2. 5. 17. •The~~ may be written as:. 

s enable::= ENABLE ( enChoice I 
{ en Choice: ... } ): 

In 5. 17. 
9enChoice ::=( e. ! .. I ANY)=> s 

In 7. 27.1. 
10 body :: = (d I b): !.. : s: ... Is: ! .. 

In 5.17. 

open LET n'' .... : EXCEPTION~NEWLABEL0 .. .. 
IN (( body enable} BUT { (n" .... => s ): ... } ) 

•• But n,, is not visible ins. 
( LET n ~ A IN e.UNREF I ··The IN before! .. is a separator. 

open 

LET BINDP[(v'(e.UNREF}}.P. 
OPENPROCS[(v'(e.UNREF}).P. A IN e.UNREF]]) IN! .. IN 

BUT ( { enChoice } I 
{ enChoice; ... } ) 

( e I ANY) .... = > { s: REJECT: EXITS 
Retry'= >GOTO Retry"I4: Cont'= )GOTO Cont"l4 } 

LET NEWFRAME[ REC [(d I b), ... ] ].UNCONS IN { s: .•. } 



Examples 

CHECKED { 
OPEN Buffer, Rope: 
ENABLE Buffer.Overflow= )GOTO HandleOvfl: 
stream: IO.Stream~ 1O.CreateFileStream["X"]: 
x: JNT+-7: 

{ OPEN b~ ~ buffer: 
ENABLE { 
Files.Error--[error. file]--=>{ 

stream.Put[I O.rope[ error]]: CONTINUE: 
ANY=>{ x+-12: GOTOAfterQuit} }: 

y: INT+-9: ... }: 
x +-stream.Getlnt: ... 
EXITS 

AfterQuit= >{ ... }: 
HandleOvfl = >{ ... } } : 

-- Unnamed OPEN OK for exported 
-- interface or one with a USING clause. 
-- A single choice needn't be in{}. 
-- Use a binding if a name's value is fixed. 
-- Better to initialize declared names. 
-- A statement may be a nested block. 
-- Multiple enable choices must be in{}. 
-- ERRORS can have parameters. 
--Choices are separated by semicolons. 
-- ANY must be last. ENABLE ends with :. 
--Other bindings. decls and statements. 
-- Other statements in the outer block. 
-- Multiple EXIT choices are not in {}. 
-- AfterQuit. HandleOvfl declared here. 
-- legal only in a GOTO in the block. 

The main function of a block is to establish a new scope (§ 2.3.4) and to allow for the allocation of 
variables declared in the block, as in Algol or Pascal. A Cedar block has four other features: 

attributes: CHECKED, UNCHECKED and TRUSTED are treated in § 3.4.4 on safety. 

open 7: a combination of sugar for LET and call by name: see § 3.4.2. 

enable&: catches signal and error exceptions in the body: see § 3.4.3.1. 

EXITS: catches GOTO exceptions in the body or enable: see § 3.4.3.2. 

Note that the braces around a block may be replaced by BEGIN and END (§ 3.2). 

The statements in a block are evaluated in the order they are written. The initialization expressions 
in the d's and b's are also evaluated in the order they are written: this may be important if they 
have side effects, although that should be avoided. 

3.4.1 Scope of names and initialization 

The names introduced in the block body"s d's and b's (i.e .. appearing before a : or ~) are known 
throughout the body with the values supplied by the d's and b's, except in inner scopes where they 
are reintroduced: they are not known elsewhere in the block. The frame of the block can be 
coerced to a binding with a value for each such name. 

Actually. the frame is a value of an opaque type which has a coercion (called UNCONS) Lo this binding. As the desugaring 
for body indicates. the frame is constructed (by NEWFRAME). and then a LET makes the names in the binding known in 
the statements of the body. 

Anomaly on order of evaluating bindings: A name introduced by a binding, n: T~e. has the value of 
e throughout the body if e is static. If e is not static. it is evaluated after all preceding d·s and b's. 
but before any following ones. This means that n is trash in all the d's and b·s before its binding. 
Symmetrically, if e refers to a name introduced in a following decl or non-static binding. it will get 
a trash value. Compiling with the "u" switch will yield a warning in this case. Note that only 
attempts to use the value of n get trash: n may appear anywhere in a A-expression, and all will be 
well as long as the A-expression is not applied before n's binding is evaluated. 

A name introduced by a declaration, n: T. is bound to a new VAR T. The variable bound to n is 
allocated, and its INIT proc is executed. before any statements in the block is executed (this is done 
by the NEWFRAME proc in the desugaring). 



Anomaly on order of initializing variables: However. the !NIT proc is executed (to set a REF or 
transfer value to NIL). and any initialization specified by a defaultTCSS in T is done at the same 
time that a non-static binding would be evaluated. As with a binding. n.VALUEOF is trash before this 
time. Furthermore, any (unwise) assignment to n before this time is overridden by the defaultTC. 

Caution on uninitialized RC variables: The failure to initialize RC variables is a safety loophole. 
since the trash can be picked up and used as an address. 

Style of expressions in bindings and initializations: The expression in a binding or defaultTC should 
be functional. or at least it should have only benign side-effects. There is no enforcement of this 
recommendation. unfortunately. In current Cedar such an expression is evaluated exactly once. at 
the time described above. This may change in the future. however. 

The variables created by a declaration are deallocated when execution of the block is complete. 
unless the block"s frame is retained. Currently only an implementation's block3 has its frame 
retained. There are two ways to hang on to a variable v after execution of the block is complete: 

Obtain a pointer to v with @: this pointer value can survive the block. 

Obtain a proc value for a local proc which refers to v: this proc value can survive the block. 

In the checked language both these dangling references are impossible: the @ operator, being 
unsafe, is forbidden. and ASSIGN for proc values gives an error unless the proc is local to a program 
instance (which has a retained frame). 

Caution on dangling references to frames: An unchecked program can get into trouble. 

Performance of block entry and exit: There is no overhead associated with block entry or exit even 
if the block has an open, enable or EXITS. The only cost is for initializing the variables bound to. its 
names. It is good style to use blocks freely to limit the scope of names. 

3.4.2 OPEN 

There are two forms of open. The first. n~ ~ e. binds the name n to A IN e.UNREF. This is just like open 

A IN e.UNREF, except that there is a coercion from n to nO. In other words. every time n appears, its 
value is obtained by evaluating e.UNREF. The effect is exactly like call by name in Algol: the ~ ~ is 
to remind you that this is not ordinary value binding. The value of e.UNREF is 

e if the cluster of Ve does not include DEREFERENCE: 

et.UNREF if it includes DEREFERENCE: 

In other words. a reference value is dereferenced (and a single-component record or binding 
replaced by the component), repeatedly if necessary, to obtain a non-reference value. In an open. 
e.UNREF must be a record. interface or instance. 

The second, nameless. form of open gives an expression without binding it to a name: { OPEN e: 
... }. The expression e.UNREF must evaluate to a binding b: 

An interface or instance value is a binding (§ 3.4.2). 
A record value has a corresponding binding which has the names of the record fields 
bound to the field values (or variables. for a VAR record). 
•An application returns a binding, though the call-by-name feature makes it unwise to use 
an application in an open. 

The nameless open converts b into another binding bp in which each value is a Xopen proc (see 
above). and introduces bp's names in the block with a LET. Thus in the program 

R: TYPE~RECORD [a: INT+-3, b: REAL t-3.4]: r: R: { OPEN r: ... } 
the names a and b are known in the body of the block. with the same meaning as r.a and r.b. 



Style for nameless open: Nameless open sh~uld be use~ _with discre~ion. with the smallest practicable 
scope. and only if the value being opened 1s very familiar. or heavily used, or both. Nameless open 
can cause great confusion. since it is not obvious from the text of the progra~ where to find _the 
bindings for the names it makes known. It should never be used when evaluatton of e has a s1de-
effect. 

The scope of an open is all the rest of the block. including any enable and any EXITS. A single 
open may have several bindings or expressions. These are applied sequentially. so that the names 
bound by earlier ones are known to the later ones as well as to the rest of the block. 

3.4.3 ENABLE and EXITS 

The ENABLE and EXITS constructs are two forms of sugar for exception handling (§ 2.2.4. § 2.6.2). 
ENABLE catches signals and errors raised in the body (but not the open. enable, or exits). EXITS 
catches GOTOs in the body or enable (but not the open or exits). Both are in the scope of the open. 
if any. Neither is in the scope of any names introduced in the body. 

3.4.3A ENABLE 

An enable has a chance to catch any signal or error raised in the block (and not caught at a deeper 
level). A nearly identical construct can appear in an application26: the following explanation covers 
both cases. 

Each enable choice (enChoice9) has a list of expressions with exception values (•or ANY) before the 
= >. If ANY appears. it must be the last enChoice. If the exception is equal to one of these values, 
or if ANY appears. the statement after the = > is executed. Control leaves this statement in one of 
the following ways: 

A REJECT statement causes the exception to be the value of the block: it will then be 
propagated within the enclosing block. or if the block is a proc body it will be propagated 
to the application. 

A GOTO statement sends control to the matching choice in the EXITS. There are three 
special casesI6: 

A RETURN is not allowed in an enChoice. 
A CONTINUE statement ends execution of the current statement (in this case the 
block): execution continues with the next statement following. If the block is a proc 
body. the effect is the same as RETURN. You cannot write CONTINUE in a body's 
d's orb's. 
•A RETRY statement begins execution of the current statement (in this case the 
block) over again at the beginning. You cannot write RETRY in a body's d's or b ·s. 
The semantics of COl\TINUE and RETRY follow from the desugaring of statement14. 

A RESUME statement (signals only) is discussed below. 

•If the statement finishes normally. a REJECT statement is then executed. 

If a single expression e appears before the = >. then within the en Choice statement the names in 
Ve.DOMAIN are declared and initialized to the arguments of the exception. With multiple 
expressions. or ANY. the arguments are inaccessible. •The use of ANY is not recommended. 

Note that an error is caught by an enChoice with a matching exception value. not by one with a 
matching name. Normally an error E will be declared in some interface. its value will be supplied 
by a binding of the form £: PUBLIC ERROR ... ~ CODE. and both the signaller and the enChoice will 
refer to this value by the name £. In this case. it is natural to think of the binding as being by 
name. However. it is possible to have a different name for this exception value. e.g. by writing £/: 
ERROR ... ~ £. It is also possible to bind some other exception value to £ in a scope which includes 
some enChoice examined when the signal is raised. Thus in the silly program 



£: ERROR ~CODE: 
F: ERROR~£: 
{ENABLE £=>{--Handler/--... }: 

£: ERROR ~CODE: 
{ENABLE £=>{--Handler 2--... }: 

IF switch THEN ERROR FELSE ERROR £· 
if switch is true handler 1 will be used. and ff it is false handler 2 will be used. 

Finalization 

You are supposed to think of an ERROR as an unusual value ev which can be returned from any 
application: this value immediately stops the evaluation of the containing application. which 
likewise returns ev as its value. This propagation is stopped only by an enable choice which catches 
the ERROR. As each application is stopped. it is finalized. Aside from invisible housekeeping. 
finalization confusingly consists of executing an enChoice which catches the ERROR UNWIND. The 
programmer can write any cleanup actions he likes in this statement. 

Caution on ERRORs in finalization: If the finalization raises another ERROR which it does not catch. 
it will itself be stopped. with very confusing consequences. It isn't very useful to know exactly what 
happens then: avoid this situation. 

Anomaly on order of finalization: In fact things are a bit more complicated. When a signal or error 
is propagated. the enChoice statement is called as a proc from the SIGNAL or ERROR which raises 
the exception. When control leaves the statement by a GOTO (including EXIT. CONTINUE. RETRY or 
LOOP. but not RETURN. which is forbidden in an enChoice). the finalization is done. This means 
that the enChoice statement is executed before any finalization. This is useful for signals. which 
often resume. In some cases, however. notably if finalization would release monitor locks. this can 
cause trouble. A void the problem by exiting from the en Choice immediately with a GOTO. 

Caution on exceptions in enable choices: An enChoice can raise a second exception ex2 and fail to 
catch it. This will probably result in con fusion. and should be avoided. If it happens. ex2 is 
propagated just like the first exception ext all the enChoices which saw exl will see ex2. This is 
because the enChoice statement for exI was called as a proc. Unless ex2 is a signal which is 
resumed. the enChoice which caught exl will be finalized and abandoned. 

Caution on ANY and UNWIND: ANY unfortunately catches UNWIND. and hence its statement will be 
taken as the finalization. It is better not to use ANY. Also. it is possible to raise UNWIND explicitly: 
don't. 

Signals 

Conceptually. a signal is quite different from an error: in fact, it is very much like an ordinary 
application. The only differences are: 

The proc to be called is an enChoice which is found exactly as though the signal were an 
error. The effect of this is that SIGNAL P[args] binds the proc name P to the proc body 
dynamically, by searching up the call stack for a binding of P. This is just the way Lisp 
binds free variables, except that a binding for P can only be found in an enChoice. not in 
the frame of a proc. 
Actually this is not quite right. Like an error handler. the signal proc is not found by matching names. but by 
matching exception values. This point is discussed in detail above. 

The enChoice can be terminated by a GOTO out of its body. unlike an ordinary proc. The 
GOTO exception is treated exactly like a GOTO out of an enChoice for an error: it causes all 
the intervening frames to be finalized. 



The implementation. however. treats errors and signals in a very similar way: tJ:ie only di~erence_ is 
that you cannot resume an error (return from the enChoice). In fact. you can mvoke a s1~n~l w:1th 
ERROR. which prevents it from being resumed: avoid this feature. In the future the d1stmct1on 
between signals and errors will be reflected more dearly in the implementation. 

Anomaly on RESUME: The desugaring gives no explanation of how RESUME works. since it does not 
turn the enChoice for a signal into a proc at all. This is a defect 

3.4.3B EXITS 

An EXITS construct (confusingly called REPEAT in a loop) declares one or more exceptions which are 
local to its block. and also catches them. The syntax is just like an enable. However. names called 
labels appear before the = > rather than expressions. and the EXITS introduces these names in a 
scope which includes the block body and any enable. but not an open and not the statements in the 
EXITS itself. A label may only be used in a GOTO statement. 

Anomaly on the separate name space of labels: Actually labels have their own name space. disjoint 
from the other names known in the block. Hence it is possible to declare a label n and still to refer 
to another n in the block. A void this feature. 

Like the raising of any exception. a GOTO n stops execution of the current statement. The statement 
associated with n is executed. If it finishes normally. execution continues after the block in which n 
was declared. If it raises an exception. that exception becomes the value of the block. 

Anomaly on GOTO and UNWIND: A GOTO skips any UNWIND enChoices that intervene between the 
GOTO and its matching EXITS. This is the only way to escape from a block without executing the 
UNWIND. You can avoid this anomaly by not nesting UNWIND enChoices within blocks that have 
EXITS. 

3.4.4 Safety 

A SAFE proc has the property that if the safety invariants hold before it is called. they also hold 
afterwards. Roughly. these invariants ensure that the value of every expression has the syntactic type 
of the expression. and that addresses refer only to storage of the proper type (§ 4.5.1). An UNSAFE 
proc may lack this property. Hence a safe proc type implies the corresponding unsafe one. 

We want to have confidence that the safety invariants hold. To this end. we want to have: 

as few unsafe procs as possible: 

a mechanical guarantee that a proc is safe. if possible. 

Clearly. a proc whose body calls only safe procs will be safe: this means that all the primitives it 
applies must be safe. as well as all the user-defined procs. 

Applying this observation. Cedar provides three attributes which can be applied to a block: 

CHECKED: the compiler allows only safe procs to be applied: hence the block is 
automatically safe. and any proc with the block as its body is safe. 

UNCHECKED: there are no restrictions on the block. and it is unsafe. 

TRUSTED: there are no restrictions on the block. but the programmer guarantees that it 
preserves the safety invariants: the compiler assumes that the block is safe. This is a 
restricted form of LOOPHOLE. 



These attributes are defaulted as follows. 

A block is checked if its enclosing block is checked: otherwise it is unchecked. 

If CEDAR appears in the module header. the outennost block is checked. and a transfer type 
constructor anywhere in the module defaults the SAFE option to TRUE. Hence the resulting 
type will be safe. and its initialization must be safe or there is a type error. 

Otherwise, the outermost block is unchecked. and a transfer type constructor anywhere in 
the module defaults the SAFE option to FALSE. Hence the resulting type will be unsafe. and 
there is no safety restriction on its initialization. 

Of course you can override these defaults by writing CHECKED. UNCHECKED or TRUSTED on any 
block. and SAFE or UNSAFE on any transferTC (except ERROR, which is automatically safe). The 
defaults are provided to make it convenient to: 

write new programs in the safe language: 

continue to use old. unsafe programs without massive editing. 

An unsafe proc value never has a safe type, and hence cannot be bound to a name declared with a 
safe type. This applies to enable choices for signals as well as to procs. In both cases. the body must 
be checked or trusted if the type is safe. ERRORS are treated differently, however. because of the 
view that an ERROR is a value returned from an application. unlike a signal which calls the 
enChoice expression. Hence the enChoice for an ERROR is treated just like any statement in its 
enclosing block. and is not considered to be bound to a proc when the ERROR is raised. 

The following primitive procs are unsafe: 

@. DESCRIPTOR and BASE. 

t or FREE applied to a pointer (but not a REF). and all pointer arithmetic. 

APPLY of 
a descriptor (because it involves dereferencing a pointer): 
a computed sequence. or a record containing a computed sequence: 
a base pointer. 

APPLY for process and port types (JOIN and port calls). 

withSelectJ4. 

The fields of an OVERLAID union. 

ASSIGN of: 
An unspecified type to anything other than the same unspecified type (§ 4.9). 
A union or variant record. 

LOOPHOLE which produces a RC value (§ 4.5.1). 



3.5 Declaration and binding 

11 declaration :: = n. ! .. : ?accessl2 varTC40 

In 2. 10. 43. VAR. READO"-LY only for interface var. 
12access :: = PUBLIC I PRIVATE 

In 2. 3. 11. 13. 50. 51. 53. 
13 binding :: = n. ! .. : ?accessl2 t ~ ( 

e I 
t2 --if t=TYPE I 
CODEI 
?INLINE (ENTRY I INTERNAL I) block6 I 

:J:t ?TRUSTED MACHINE CODE { (e .... ): ... } 
) 
In 2. 10. •The~ may be written as=. 
Block or MACHINE CODE only for proc types. 
•ENTRY and 11\TER'IAL can also be before t. 

Examples 

( n: varTC ) .... 

n .... ~ LET x' : t ~ ( 
e I 
t
2 

-- Same as e except for conflicting syntax. I 
NEWEXCEPTIONCODEO ·-t=>SIGNAL or ERROR I 
A [d': t.DOMAIN] IN LET r' ~NEWFRAME[t.RANGE].UNCONS 
IN { LET r' IN 

{ {t.DOMAIN~d': (l'.ENTER: 11) block: RETURN} 
(FINALLY 1

1

.EXIT 11)} 
BUT {Return"' =>r'}) I 

MACHINECODE[(BYTESTOINSTRUCTION[ e . ... ]) .... ] 
) IN x' --e is evaluated only once. 

HistValue: TYPE[ANY]: -- Interface: An exported type. 
A type binding. Histogram: TYPE~REF HistValue: 

baseHist: READONLY Histogram: 
AddHists: PROC[x. y: Histogram] 

RETURNS [Histogram]: 
Labe)Value: PRIVATE TYPE~RECORD[ 

first.last:INT.s:ROPE.x:REAL.f.g:INT.r:REF ANY]: -­
Label: TYPE~REF LabelValue; 
Next: PROC[l: Label] RETURNS[Label]~ 

INLINE { RETURN [NARROW[l.r)] }: 

An exported variable . 
An exported proc. 

PRIVATE only for secret 
stuff in an interface. 

An inline proc binding. 

H: TYPE~Histogramll: Size: INT~ 10: -- Implementation: Binds a TYPE and INT. 
HistValue: PUBLIC TYPE~HV40.1: 
baseHist: PUBLIC H +-NEW[HistValue~ALL[l 7]]: 
x. y: HistValue+-[ 20.18. 16. 14. 12. 10. 8. 6. 4. 2. O]: -­
FatalError: ERROR[reason: ROPE]..:.cooE; 
Setup: PROC [h: Handle}. a: INT]~ENTRY { ... }: 
ij.k: INT+-0; p.q: BOOL: lb: Label: main: Handle: 

PUBLIC for exports. 
An exported variable 
with initialization. 

Binds an error. 
Binds an entry proc. 

Declarations are explained in § 2.2.lF and § 2.4.5. Their peculiarities in the different contexts where 
they can appear are explained elsewhere: 

interfaces in § 3.3.4: 

blocks in § 3.4.1: 

fields in: 
domains and ranges in § 4.4: 
records and unions in § 4.6: 

Access is explained in § 3.3.6. 

Bindings are explained in § 2.3.5. See also § 3.7 on argument bindings. Note that the e in a binding 
is evaluated just once, even if several names are bound. There are four special forms of binding 
given in rule 13. however. which are defined here: 



A TYPE binding is the only way in which a type value .can be bound to a name. since types 
cannot be passed as parameters. Unlike other bindings. this one expects a type36 rather than 
an expressionl9 after the ~. 

A name with a signal or error type can be bound to CODE; this use of CODE is not allowed 
anywhere else. See § 4.4.1 for details on the meaning of this. 

t:l=A MACHINE CODE construct can be bound to a name with a proc type. This construct 
allows machine instructions to be assembled into a proc value. The instructions are 
separated by semicolons. Each instruction is assembled from a list of expressions separated 
by commas. An expression in the list is evaluated to yield a [0 .. 256) static value which 
forms one byte of the instruction; successive expressions form successive bytes. 

A A-expression derived from a block can be bound to a name with a proc type. The 
complicated semantics of this construction are explained in the following subsection. 

3.5.1 PROC bindings 

A binding of the form n: T~{ ... } is the only way to construct a proc value and bind it to a name. 
since you cannot write a A-expression in current Cedar. 

There are other ways to construct proc values: 

The expression in a defaultTC55 is turned into a parameterless proc which is bound to Default in the type's 
cluster (§ 4.11). 

The expression following ~ ~ in an open or WITH ... SELECT is turned into a parameterless proc with a 
deproceduring coercion (§ 3.4.2). 

The statement in an enable choice for an exception is turned into a proc with domain and range given by the 
exception type (§ 3.4.3A). 

The expression following LOCKS in a module heading is turned into a proc according to a peculiar rule (§ 4.10). 

The A-expression is constructed from the block in the following way. Its domain and range are the 
domain and range of the proc type T. Its body implicitly declares a variable for each item of the 
domain and range: these variables have the names of the domain and range items. and their scope 
is the entire block. not just the block body. The domain variables are initialized to the parameters. 
and the range variables in the usual way according to their types. Then the block. with a RETURN 
tacked on the end. is evaluated. A RETURN exception in the block is caught and the current values 
of the range variables are the result of the A-expression. The only other way out of the block is to 
raise an exception. 

A RETURN in the block is sugar for GOTO Return'. which is caught as described. RETURN e assigns e 
to the range variables and then does a GOTO Return'. 

Anomaly about parameter and result names: It is an error to introduce the same name twice in the 
domain. range or block. 

Performance of proc calls: A proc call and return is about 30% faster if the proc is local. i.e .. 
denoted by a name which was bound to a proc body in the same module as the call. A proc which 
is local to another proc. rather than bound in the body of an implementation. is about 20% slower 
to call. It also introduces some overhead when its parent proc is called. and its access to non-static 
names introduced in its parent proc is slower than access to other names. A call and return for an 
ordinary. non-local proc takes about 10 times as long as the statement x+-y+ z. not counting the 
time for passing arguments or results. Each argument or result value costs as much as an assignment 
of that value. If the total size of the arugments is more than 11 words (in the current 
implementation). the cost of passing them is doubled. and likewise for results. 

The attributes ENTRY and INTERNAL can be used only in a MONITOR; they are discussed in § 4.10. 



The attribute INLINE has no effect on the meaning of the program. but it causes the proc body to 
be expanded inline whenever it is applied. This saves the cost of a proc call and return and 
sometimes the cost of argument passing. and it may allow static arguments to participate in static 
evaluation within the proc. 

Restrictions on inlines: An INLINE proc may not be: 

Recursive. 

Exported. 

Used as a proc value except in an application: thus you cannot assign it to a proc variable. 

The argument of FORK. 

Accessed from the cluster of a POINTER TO FRAME type. 

Caution on inlines in interfaces: An inline proc binding in an interface is not accessible from the 
interface (i.e .. from a DIRECTORY argument): you must get it from an instance (i.e .. import the 
interface). See § 3.3.4. 

Performance of inlines: Excessive application of inline procs will result in much larger compiled 
code. Excessive definition of inline procs will result in much larger data structures in the compiler. 
and hence in larger symbol table files. and a greater chance of overflowing the compiler's capacity. 
The following cases are efficient: 

An inline proc in an implementation which is called zero or one times. 

An in line proc which has a simple body. no locals. no named results. and no accesses to the 
fonnals after potential side effects. 

3.6 Statements 

14 Statement :: = sS 
In 6. 10. 17. 19. 

1s sS :: = e1 +-e2 I e I block6 I escape I loop I NULL 

16 escape :: = GOTO n I GO TO n I 
EXIT I CONTINUE I •LOOP I •RETRY I 
(RETURN I RESUME) ?e I 
•REJECT I t*e +-STATE 

11 loop::= (iterator I) 
(WHILE e I UNTIL e I) 
oo ?•open 7 ?•enables ?body 10 

?(REPEAT (n. !.. = >s): ... ) ENDLOOP 

1s iterator::= THROUGH e I 
FOR (n : t I *n) 

( ( I DECREASING) IN e I 

{ SIMPLELOOP {sS: GOTO Cont": EXITS Retry"=)NULL}: 
EXITS Cont"= )NULL } 

[e1 +-eJTOVOID I e --must yield VOID--I --all four yield VOID--

HEX[exception[code~ n". args~NIL]] I 
GOTO ( Exit'I7 I Cont'9 I Loop'l71 Retry'9) I 
{ ?(r'l3+-e:) GOTO (Return'B I Resume')} I 
THISEXCEPTION0 I DUMPSTATE[e] 

{ (iterator: I done' ~FALSE: Next': PROC~{ }: ) 
{ Test'~ A IN (NOT e I e I FALSE): 
{ open SIMPLELOOP { 

IF Test'□ OR done' THEN GOTO FINISHED: 
{ enable body EXITS Loop' =)NULL}: Next'0} 

EXITS Exit'~ NULL: (n. ! .. ~s): ... : FINISHED~ NULL}}} 

FOR x': e IN e I 
( n: t: I) 
( Range': TYPE~e: done': BOOL+-Range

1

.ISEMPTY: 
Next': PROC~{ IF n ( ~Range'.LAST I $Range'.FIRST) 
THEN done' +-TRUE ELSE n+-n.(succ I PRED) }: 

n+-Range'.(FIRST I LAST): I 
+-el. e} done': BOOL~FALSE: Next': PROC~{n+-e2}: n+-el): 

e is a subrange. In FOR n: t .... n is readonly except for the assignment in the iterator's desugaring. 



Examples 

x +-AddHists[baseHist. baseHist]t: 
Setup[bh~main. a~3]: 
{ENABLE FatalError=)RETURN[0]: 0+-f{3]: ... }: 
IF i)3 THEN RETURN[25] ELSE GOTO NotPresent: 

FOR t:INT DECREASING IN [0 .. 5) UNTIL f{t])3 DO 
u: INT+-0: ... ; u +-t + 4: ... 

REPEAT Out=>{ ... }: FINISHED=>{ ... } ENDLOOP: 

THROUGH [1..4) DO i+-i*i ENDLOOP: 
FOR i: INT+-1. i+2 WHILE i(8 DOj+-j+i ... : 
FOR l: Label+-lb. l.Next WHILE l#NIL DO ... : 

-- A statement can be an assignment 
-- or an application without results. 
-- or a block. 
-- or an IF or an escape statement 

-- or a loop. Try to declare, in the FOR 
-- as shown. A void OPEN or ENABLE 
-- after DO (use a block). FINISHED 
-- must be last 

-- Raises i to the 16th power. 
-- Accumulates odd numbers in [1..8). 
-- Sequences through a list of labels. 

Cedar makes a distinction between expressions and statements. This distinction is most easily 
defined in terms of a special type called VOID. which is equivalent to the empty declaration □. This 
is the range type of a PROC [ ... ]--+O. and it is also the result type of a block. control. loop or NULL 
statement. An expression whose value is a vo10 can be used as a statement. and cannot be used as 
an ordinary value in a binding (since it wouldn't have the right type). If you want to call a proc 
which returns values as a statemenl you must assign the results to an empty group: 

0+-fl ... 1 

Assignment is a special case: an assignment can be used as a statement even though its value is the 
value of the right operand. This is explained in the desugaring1s using a special proc rovo10 in the 
cluster of every assignable type: it takes a value of the type and returns a VOID. Note that the 
grammar is ambiguous here. since there are two parsings of e1 +-e2 as a statement: the one writtert in 
the rule for statement is preferred. 

Anomaly about separators for SELECT. In a select29 which is a statement (i.e .. returns VOID). the 
choices are separated by semicolons: in a select expression they are separated by commas. 

Anomaly about applying a parameterless proc: •If you write an expression whose value is a proc 
taking no arguments as a statement the proc gets applied. Thus 

P". 
is the same as 

P[]: 
This is the only situation in which an ordinary proc gets applied by coercion {but see § 3.4.2 for 
open procs). 

A statementl4 is actually a rather complicated construcl as the desugaring shows. This is because of 
the CONTINUE and RETRY statements. which respectively terminate and repeat the statement 
containing the enable9 in which they appear. The desugaring shows exactly what this means in 
various obscure cases. CONTINUE and RETRY are legal only in an enable choice (§ 3.4.2). and they 
may not appear in a declaration at all. •RETRY should be avoided everywhere. since it introduces a 
loop into the program in a distinctly non-obvious way. 

Escapel6 consists mainly of the various flavors of GOTO (including EXIT. CONTINUE. LOOP. RETRY. 
RETURN and RESUME) which raise a local exception bound in an EXITS: this is explained in § 3.4.38. 
REJECT is explained in § 3.4.3A. 

Anomaly about GOTO and procs: You cannot use a GOTO to escape from a proc body. even though 
the body is within the scope of the label. Only normal completion. or a RETURN or ERROR 
exception (or a SIGNAL which is not resumed) can terminate the execution of a proc body. 



A loopl7 is repeated indefinitely until stopped by an exception. or by the iterator18 or the WHILE or 
UNTIL test. It has a body, bracketted by DO and ENDLOOP, which is almost like a block. but with 
some confusing differences: 

You catch GOTO exceptions with REPEAT, which is exactly like EXITS in a block immediately 
around the loop. except for the different delimiting reserved word. Note that the scope of 
the labels does not include the iterator or the test. even though these are evaluated 
repeatedly during execution of the loop. This feature is best avoided if possible. but 
unfortunately is necessary if you want to catch the FINISHED exception explained below. 

•You can write an open or enable. This is also best avoided. since the scope is confusing. It 
is better to write a block explicitly inside the DO if you need these facilities. 

There are three special exceptions associated with loops: 

EXIT is equivalent to GOTO Exit', where Exit' is a label automatically declared in the REPEAT 
of every loop. Its enable choice does nothing. Thus EXIT simply tenninates the smallest loop 
that encloses it 

FINISHED is raised when the iterator or the WHILE/UNTIL test terminates the loop. It can be 
declared in the REPEAT like any label. but it must come last. If it is not declared. a null 
enable choice is supplied for it 

•LOOP causes the next repetition of the loop to start immediately. 

Anomaly about GOTO FINISHED: You cannot write GOTO FINISHED. 

An iteratorl8 declares a control variable v which is initialized by the iterator and updated after each 
execution of the loop: the scope of v is the entire loop. and it is constant in the loop. After the loop 
is terminated by the iterator (i.e .. in the FINISHED clause). the value of vis undefined. •If you omit 
the declaration and simply name an already declared variable. it will be used as the control variable. 
and will not be constant: it will still be undefined after the loop is terminated by the iterator. A void 
this feature. 

There are three flavors of iterator: 

THROUGH. which has no explicit control variable~ THROUGH [O .. k) or THROUGH (1..k] is 
convenient when you just want to loop k times. 

FOR v: T IN [first .. last] ... : v is initialized to first. and set to v.succ after each repetition. The 
iterator finishes the loop after a repetition which leaves v~ last. The > case can only occur in 
FOR v IN ... , when an out-of-range value is assigned to v in the loop body. DECREASING 
reverses the order in which the elements of the subrange are used. The subrange need not 
be static. Note that the subrange is evaluated only once. before execution of the loop 
begins. 

FOR v: P- first. next ... : v is initialized to first, and set to next after each repetition. This 
iterator never finishes the loop. Note that the expression nexL is reevaluated each time 
around the loop. The usual application is something like 

FOR v: list~ header, v.next UNTIL v= NIL. 

Note that the WHILE or UNTIL test is made with v equal to its value during the next repetition. and 
that both tests are made before the first repetition. so that zero repetitions are possible. 



3. 7 Expressions 

19 expression :: = n I literal57 I {e) I application26 I 
(e I typeName37). (9) n I 
prefixOp e I e1 infixOp e2 I 

e1 relOp (4) e2 I 
e1 AND (2) e2 I e1 OR (I) e2 I 
et (9) I •STOP I ERROR I 
builtln [ e1 ?(. e2• ! .. ) ?appIEn27) I 
funny Apple?( [?argBinding21 ?appIEn27]) I 
[ argBinding21] I 
subrange2s 1 
if28 I select29 f safeSelect32 I •withSelectJ4 I 
s 

e . prefixOp I e1 . infixOpf e2] I 
{ A [x': Ve 1• y' :Ve 2]=>[BOOL] IN relop) [e1. e2] I 
IF e1 THEN e2 ELSE FALSE I IF e1 THEN TRUE ELSE e2 I 
e . DEREFERENCE I STOP□ I ERROR NAMELESSERROR I 
e1 . builtln ?( [e2 . ... ?applEn]) I 
e. funnyAppl ?( [?argBinding ?applEn]) I 
--Binding must coerce to a record. array. or •local string-- I 

Precedence is in bold in rules 19-21. All operators associate to the left except +-. which associates 
to the right. Application has highest precedence. Subrange only after IN or THROUGH.sonly in if28 and select choices30 33 35_ 

20 prefixOp :: = @ (8) I - (7) I ( ~ I NOT) (3) 
2IinfixOp :: = *I/ I MOD (6) I + I - (5)1 +-(0) 
22relOp :: = ?NOT ( ?~ ( = I < I >) I # I 

(<=l>=)IIN) 
--In 19. 30. 

VARTOPOINTER I UMINUS I NOT 
TIMES I DIVIDE I REM I PLUS I MINUS I ASSIGN 
?NOT ( ?NOT x'.(EOUAL I LESS I GREATER)[y'] I x' ~ = y' I 
x' = y' OR x' (<I>) y' Ix'>= y'.FJRST AND { x'< = y'.LAST 

BUT {BoundsFault=)FALSE})) 
23 builtln :: = --These are enumerated in Table 4-5. 
24 funny Appl::= FORK I JOIN I WAIT I NOTIFY I BROADCAST I 

SIGNAL I ERROR I RETURN WITH ERROR I 
•NEW I •START I •RESTART iltTRANSFER WITH I :1:tRETURN WITH 

2s subrange::= (typeName37 I) 
( [ I { ) e 1 .. e2 ( ] I ) ) 

--In 19. 39. 48. 

26 application :: = e [?argBinding ?applEn] 
21 argBinding :: = (n ~ (e 11 *TRASH)).! .. I 

(e 11 *TRASH ) .... 
In 19. 26. •TRASH may be written as NULL. ~as:. 

21.iapplEn :: = ! enChoice9: ... -- In 19. 26. 

Examples 

Iv: LabelValuen.-[ i. 3. "Hello". 31.4E-l. (i + 1). 
g[x] + lb.f + j.PRED. NIL]: 

pl: PROCESS RETURNS [INT]+-FORK f{i.j]: 
ERROR NoSpace: WAIT butTerFilled: 
RT: RTBasic.Type+-CODE[LabelValueIJ]: 
h[ -3. NOT(i)j), i*j. i +-3, i NOT )j, p OR q. lb.rt]: 
lvl9 ... [first~O,last~ 5.x ~ 3.2.g~ 2.f ~ 5,r~ NIL.s~ "l "]: 
[first~i. last~j]+-Jvt9: 

b: BOOL ._.i lN [1..10]: FOR x: INT IN (0 .. 11) DO ... : 
b ... ( c IN ColorS4(red .. green] OR x IN INT[0 .. 10) ): 

LET t' ~(typeName I INT). first'~( e1 I e1.succ) IN 

t'.MKSUBRANGE[first'. (e2 I e2.PRED )] BUT 

{BoundsFault = )t' .MKEMPTYSUBRANGE[el]} 

LET m' ~e. a' ~[argBinding] IN { {m'. APPLY ► a') ?app)En) 
(n ~ (e I OMITTED I TRASH)).! .. I 
(e I OMITTED I TRASH) .... 

BUT { enChoice: ... } 

-- A constructor with some sample 
-- expressions. 
-- Funny App ls take one unbracketted 
-- arg: many return no result. so 
-- must be statements. 
-- An application with sample expressions. 
-- Short for Iv ... Labe/Value13[ ... ]. 
-- Assignment to VAR binding 
-- (extractor). 

-- Subrange only in types or with IN. 
-- The INT is redundant 



th~ Files.Open[name~lb.s. mode~ Files.read 
! AccessDenied=>{ ... }: FatalError=>{ ... n 

( GetProcsLi]. R eadProc )[k]: 
file.Read[buffer~b. count~k]: 
fli~3.j~. k~TRASH]: fli~3. k~TRASH]: 
fl3 . . TRASH]: 

-- Keywords are best for multiple args. 
-- Semicolons separate choices. 
--The proc can be computed. 
-- -=File.ReadJ]le. b. k] (object notation). 
-- j and k may be trash (see defaultTCSS). 
-- Likewise. if i. j. and k are in that order. 

Most of the forms of expression are straightforward sugar for application: prefix. infix and postfix 
operators. explicit application of a primitive proc23, or the funnyAppl24 in which the first argument 
follows the proc name without any brackets. All of these constructs desugar into dot notation 
(§ 2.4.4. § 4.14): this means that the procs come from the cluster of the first argument. The 
exceptions to this rule are ALL. CONS for variant records and lists. LIST, and the single-argument 
fonns of LOOPHOLE and NARROW. and VAL: all of these get the proc from the target type of the 
expression (§ 4.2.3). All the primitive procs are described in § 4. 

Note that AND and OR are not simply sugar for application. Rather. they are sugar for an if 
expression. since the second operand is evaluated only if the first one is TRUE or FALSE respectively. 

The order of evaluation for arguments of an application. and therefore for operands in an 
expression. is not defined (unless the operator is AND or OR). However. the arguments are evaluated 
one at a time. and all arguments are evaluated before the proc is applied. In particular. an 
assignment which executes completely behaves as though both left and right operands are 
completely evaluated before any assignments are done. even if the left side is a binding such as 
[a~x. b~y.J]. 

Rules 19-21 give the precedence for operators: t and . are highest (bind most tightly) and ~ is 
lowest. All are left-associative except ~, which is right-associative. Application has still higher 
precedence. 

Style using precedence: The precedence rules are sufficiently complex that it is wise to parenthesize 
expressions which depend on subtle differences in precedence. 

The first operand of assign can be an argBinding27 whose value is a variable group or binding. i.e .. 
one whose elements are variables: this is sometimes called an extractor. The second argument will 
typecheck if it is a group or binding with corresponding elements which can be assigned to the 
variables. Usually the second argument is either an application which returns more than one result. 
or a record-valued expression. You can omit elements of the left argBinding to discard the 
corresponding values: however. you can't write TRASH in the left operand. Note that the right 
operand is fully evaluated before any variables are changed by the assignment Thus. for example. if 

Pair". TYPE~RECORD[INT. INT] 
you can write 

[l j] ~ Pai,{j, i] 
to transpose i and j. 

The expresssion ERROR is short for raising a nameless ERROR exception. You should think of it as a 
call to the debugger. appropriate for a state which "can't occur". 

A funny Appl which takes more than one argument has the extra arguments written inside brackets 
in the usual way: e.g .. START P[3. "Help"]. RETURN WITH ERROR is explained in § 4.10. 

Anomaly about NEW: The funny Appl NEW e actually stands for e.COPYIMPLINST. See § 4.4.1 and 
§ 4.5.3. 

Anomaly about enables in funnyAppls: Enable choices are legal only for the following funnyAppls: 
FORK JOIN RESTART START STOP WAIT. You can write empty brackets if necessary to get a place for 
the en Choices. 



A subrange25 denotes a subrange type: see § 4.7.3. Standard mathematical notation for open and 
closed intervals is used to indicate whether the endpoints are included in the subrange. A subrange 
can also be used after IN in an expression or iterator: in these contexts it need not be static. 

You can write enable choices9 after a ! inside the brackets of an application26, built-in23. or 
funny App 124. See § 3.4.3A for the semantics of this. Note that only an exception returned by the 
application is caught by these choices. not one resulting from evaluating the proc or arguments. 

An argBinding2 7 denotes a binding for the arguments of an application. You can omit a 
[name. value] pair n~e in the binding if the corresponding type has a default. or you can write the 
name without the value expression (e.g .. n~ ) with the same meaning. You can also write TRASH 
(eor NULL) for the value: this supplies a trash value for the argument (§ 4.11). 

3.8 IF and SELECT 

28 if::= IF el THEN e2 (ELSE e3 I) 
29 select :: = SELECT e FROM 

choice; ... endChoice 
The":" is "." in an expression: also in 32 and 34. 

30 choice::= ( ( I rel0p22) e1 ). ! .. = >e2 
31 endChoice :: = ENDCASE ( = > e3 I ) 

In 29. 32, 34. 

32 safeSelect :: = WITH e SELECT FROM 
safeChoice: ... endChoice3I 

33 safeChoice :: = n : t = > e2 
34 •withSelect :: = WITH (n 1 ~ ~ e1 I • e1 ) 

SELECT ( I te 11) FROM 

withChoice: ... endChoice31 
•The ~ ~ may be written as:. 

35 •withChoice :: = n2 = > e2 I 
n2. 0 2· ! .. => e2 

Examples 

i+-(IF j<3 THEN 6 ELSE 8): 
IF k NOT IN Range THEN RETURN[?]: 
SELECT flj] FROM 

<7=>{ ... }: 
IN (7 .. 8] = ){ ... }: 
NOT(=8=){ ... }: 
ENDCASE=)ERROR: 

IF e1 THEN e2 ELSE (e3 I NULL) 

LET selector' ~e IN 
choice ELSE ... endChoice 

·- ELSE is a separator for repetitions of the choice. 
IF ( (selector' ( = I relOp ) e1) OR ... ) THEN e2 
ELSE (e3 I NULL) 

LET v' ~e IN 
safeChoice ELSE ... endChoice 

IF ISTYPE[v'. t] THEN LET n: t+-NARROW[V
1

, t] IN~ 

OPEN v' ~~e
1 

IN LET n' ~($n 1 I NIL). type'~ 'vv'. 

selector' ~(e 1.TAG I ell) IN withChoice ELSE ... endChoice 
-- e11 must be defaulted except for a COMPUTED variant 

IF selector'= $n2 THEN OPEN 

(BINDP(n'. LOOPHOLE[v'.type'.021] I BINDP[n'. v']) IN e2 

-- An IF with results must have an ELSE. 

-- SELECT expressions are also possible. 
--= t:INT~ .f[j]: IF t<7 THEN { ... } ELSE. .. 
-- 7. 8=> or =7. =8 =>{ ... } is the same. 
-- ENDCASE=>{ ... } is the same here. 
-- Redundant: choices are exhaustive. 

WITH r SELECT FROM -- Assumer'. REF ANY in this example. 
rlnt: REF INT=)RETURN[Gcd[rlntt.17]]: -- rlnt is declared in this choice only. 
rReal: REF REAL= )RETURN[Floor[Sin[rRealt]]]: 
ENDCASE= )RETURN[IF r= NIL THEN O ELSE l] -- Only the REF ANY , is known here. 

nr: REF Node52~ ... : WITH dn ~ ~nr SELECT FROM 
binary=>{ nr.,.dn.b}: 
unary= >{nr+-dn.a}: 
ENDCASE= ){ nr+-NIL}: 

-- See rule 52 for the variant record Node. 
-- dn is a Node.binary in this choice only. 
-- dn is a Node.unary in this choice only. 
-- dn is just a Node here. 

The kernel construct if28 evaluates the expression e1 to a BOOL value test. and then evaluates e2 if 

test=TRUE. or e3 if test= FALSE. In the expression 



IF test
1 

THEN IF rest2 THEN i[frue2 ELSE ifFalse2 
the grammar is ambiguous about which IF the ELSE belongs to. It belongs to the second one. 

A select29 is a sugared form of if which is convenient when o~e of several cases !s chosen based on 
a single value. The selector expression e is eva_luated once to y~eld a value s~lector. and ~hen each of 
the choices is tested in turn. Within each choice, each expression e1 preceding the = > ts compared 
in tum with selector': the comparison is selector re/op e1 if e1 is preceded by a re/op: otherwise it is 
selector'= e

1
. If any comparison succeeds. the expression e2 following the = > is evaluated to yield the 

value of the select. If no comparison succeeds. the next choice is tried. If no choice succeeds. the 
expression e

3 
following the ENDCASE is evaluated to yield the value of the select: e3 defaults to 

NULL, and hence must be present when the select is not a statement to prevent a type error. 

Style for SELECr. It is good practice to arrange the tests so that they are disjoint and exhaust the 
possible values of the selector. ENDCASE should be used to mean "in all other cases": often the 
appropriate e

2 
raises an error. Don't use ENDCASE to mean another specific selector value which you 

don't bother to mention. Another acceptable form is SELECT TRUE FROM .... which selects the first 
choice that succeeds. and is sometimes easier to read than a long sequence of ELSE !F's. 

Performance of SELECT. If the e2 are static and select subsets of the selector values. the average size 
of these subsets is not too large. and the density of unselected values is not too high. a select 
compiles into an indexed jump. which executes in a time independent of the number of choices. 

A safeSelect32 is a special form for discriminating cases of unions or ANY. The selector must be a 
value for which ISTYPE can be evaluated dynamically (§ 4.3.1): REF ANY. PROC ANY .... T. PROC 
T_.ANY. V. REF V. or (LONG) POINTER TO V. where Vis a variant record. Each choice specifies one 
possible type that the selector might have, and declares a name which is initialized to the selector 
value if it has that type. Thus. the example tests for , having the types REF INT and REF REAL. If it 
has REF INT. the first choice"s e is evaluated: within e. rlnt is a variable initialized to the selector. 
and has type REF INT. Likewise for REF REAL and the second choice. As with an ordinary select. the 
ENDCASE expression is evaluated (with no new names known) if none of the other choices succeeds. 
Note that safeSelect does ordinary binding by value. not the binding by name done in open and 
withSelect 

•t A withSelect34 is an unsafe and rather tricky construction for discriminating cases of unions. Its 
use should be avoided unless a safeSelect can't do the job: this is the case for a COMPUTED tag. or 
if the call by name feature of withSelect is required. 

It incorporates an open (§ 3.4.2) of the e1 being discriminated. This means that e1 is 
dereferenced to yield a variant record value. It also means that this value is not copied. and 
hence it can change its type during execution of a choice. either by assignment to the 
variant part of a variant record (an unsafe operation). or by a change in the value of e1. 

If the union has a COMPUTED tag. the selector value to be used for the discrimination must 
be given as e11 in the withSelect. It is entirely up to the programmer to supply a meaningful 
value. If the tag is not COMPUTED. e11 must be omitted and the selector value is el'TAG. 

The n2 preceding = > in a choice are literals of the (enumerated) type (§ 4.7.lA) which is 
the tag type of the union (§ 4.6.3). They are compared with the selector. and if one matches. 
the e2 following = > is evaluated as with an ordinary select If exactly one is given. then the 
e2 following = > is in the scope of • 

OPEN n1 ~ ~LOOPHOLE[e 1.UNREF. V.n2]. or simply OPEN LOOPHOLE[e1.UNREF. V.n2] 
if no n1~~ followed the WITH. If several n2 are given. then there is no discrimination. and 
the e2 following = > is in the scope of 

OPEN n I~~ e I .UN REF or OPEN el .UNREF 



3.9 Miscellaneous 

This section deals with various topics that are not naturally associated with particular types or 
grammar rules. 

3.9.1 Static values 

An expression has a static value if the compiler can compute the value. Static values are required in 
various contexts. notable in type expressions. and as the right hand side of a binding in an interface 
module. In Cedar. an expression has a static value (is static for short) if it is: 

a literal: 

a name bound to a static value: 

an application to static arguments of 
a proc declared INLINE with a static body. or 
a primitive which is not a loop. a REAL primitive (except unary minus, ABS or 
INTTOREAL). ASSIGN, @ or NEW. Note that IF and SELECT are evaluated. 

Note that values obtained from an interface are static. but imported values are not. 

Performance of static expressions: The compiler evaluates all static expressions. not just type 
expressions. This is often important for efficiency. 

3.9.2 Size restrictions 

Current Cedar has the following restrictions on the sizes of values: 

• A record type T must have T.SIZE<216. 

• A row type T must have T.SIZE(228 and T.RANGE.SIZE(216. 

• A type T with T.SIZE~2 16 lacks the following procs: 
ALL 
ASSIGN 
CONS 
DESCRIPTOR 
INIT 
NEW 

• A subrange type T must have 
0<T.LAST-T.FIRST(2 16 

-2 15 < T.FIRST<2 15 

T.LAST({IF T.FIRST<0 THEN 215 + T.FIRST ELSE 216) 

3.9.3 Checking 

Possible errors arising from certain primitive operations are checked. and cause ERROR exceptions if 
they occur, in a CHECKED block. or if the compiler's "u" switch is on: 

Dereferencing NIL. 

Narrowing an out-of-range value to a subrange type. 

Assigning a local proc to a proc variable (in CHECKED blocks only). 

In an UNCHECKED block these errors are not checked for unless the program is compiled with the 
"u" switch. 



Chapter 4. Primitives 

This chapter gives detailed infonnation about the pnm1t1ve types, type-returning procs (type 
constructors). and other procs. It should be read after § 2.4, which defines a Cedar type and explains 
the basic ideas underlying the type system. 

§ 4.1 gives the partial ordering called the class hierarchy that is used to classify the primitive types. 
§ 4.2 lists all the primitives of Cedar. §§ 4.3-4.11 give the declarations and semantics for all the 
primitive classes and types. These descriptions are ordered according to the class hierarchy in Table 
4-1. Each one specifies: 

The declarations in the class that are not in any bigger class. 

The constructor for types in the class. 

Any literals or basic constructors for values of types in the class 

Anomalies and facts about perfonnance. 

The implies relations on primitive types are summarized in § 4.12. and the coercions in § 4.13. The 
various cases of dot notation are described in § 4.14. 

4.1 The class hierarchy 

A useful way of organizing a set of types is in tenns of the properties of their clusters. Since a 
cluster is a binding. its type is a declaration: we call such a declaration a class. For example. the 
class Numeric is 

[T: TYPE: 
PLUS: PROC[T, 7J~[J1: 
MINUS: PROC[T. n~[n: 
... -- Declarations for other arithmetic procs. 
LESS: PROC[T, 7J~[BOOL): 
... -- Declarations for many other procs. ] 

By convention, the name Tin a cluster denotes the type to which the cluster belongs. We call each 
< name, type> pair in the class an item. 

Sometimes when a type U is derived from another type T (e.g .. REF T from n, some of lfs items 
are obtained from Ts items with the same names in some simple way (e.g., REF RECORD[a. b: INT] 
has procs a and b which dereference the REF and then apply the record's a and b procs). We say 
that U inherits the items from T. 

A type T is in a class C if T.Clusler has the type C: we also say that T is a C type. e.g., INT is in 
class Numeric, or is a numeric type. 

To make this explicit. we give the type CLASS a cluster proc called Type. such that every type T in class c has type 
C.Type. For example. INT has type Numeric.Type. Thus. 

Tis a C type = Tin C = T has type C.Type = (C.7)pe).Predicate{1]=TRUF 

A value satisfies the predicate for C. T1·pe if it is a type. and its cluster satisfies the declaration which defines C. E.2 .. INT 
satisfies the predicate for Numaic. Type because it is a type. and its cluster contains procs for PLUS. MINUS. LESS etc. with 
the right types. Precisely. ( C. Type).Predicate is 

A [T: ANY] IN TYPF./'redicatr{l] I\ C.Predicat,iT.cluster] 



all 

Class 

general§ 4.3.1 

assignable§ 4.3.2 

has NIL§ 4.3.7 
composite§ 4.3.3 

map§ 4.4 
transfer§ 4.4.1 
row § 4.4.2/composite 
descriptor§ 4.4.2.3 

/address 
address § 4.5 

reference § 4.5.1 
pointer§ 4.5.lB 

/ordered 

Subclasses or types 

general* I TYPE◊ § 4.8 I fully opaque§ 4.3.4 I TYPE n § 4.3.5 I interface § 4.3.5 I SEQUENCE-+row 
assignable* I hasNIL * I variable § 4.3.3 I PORT-+transfer I 
MONITOR LOCK◊ § 4.10 I CONDITION◊§ 4.10 I 
composite with a non-assignable component. and not a SEQUENCE 
-- everything not mentioned separately under all or general. i.e.:-­
n-opaque § 4.3.4 I transfer-+map I descriptor-map I address I RELATIVE I 
ordered I unspecified I composite with no non-assignable components. 
variable I address I transfer 
row I RECORD I union 

transfer* I row* I descriptor* /address I BASE POINTER/pointer§ 4.4.3 
PROC I PROGRAM I PORT I PROCESS I SIGNAL I ERROR 
ARRAY § 4.4.2A I SEQUENCE--second class--§ 4.4.28::l(TEXT◊ I StringBody◊ ) 
LONG DESCRIPTOR I DESCRIPTOR 

reference* I descriptor-map I ZONE§ 4.5.2 I POINTER TO FRAME § 4.5.3 
REF::l(LIST I ATOM◊)§ 4.5.lA I pointer* 
LONG POINTER::lLONG STRING◊ I POINTER::lSTRING◊ I BASE POINTER-+map 

RELATIVE§ 4.5.4 RELATIVE POINTER I RELATIVE DESCRIPTOR 
record --painted--§ 4.6 RECORD§ 4.6.1 I variant§ 4.6.2 

/composite 
union --second class. painted--§ 4.6.3 /composite 
ordered§ 4.7 discrete* I numeric* I pointer➔address I subrange§ 4.7.3 

discrete§ 4.7.1 whole number-numeric I 

numeric§ 4.7.2 
whole number 

§ 4.7.2A 

enumeration --painted--§ 4.7.lA::J(BOOL::BOOLEAN◊ I CHAR::CHARACTER◊) 
whole number*/discrete I REAL◊§ 4.7.28 
long number* I short number* 

long number INT::LONG INTEGER◊ I •LONG CARDINAL◊ 
short number INTEGER◊::lNAT◊ I CARDINAL◊::lNAT◊ 

•unspecified§ 4.9.1 •UNSPECIFIED◊ I •LONG UNSPECIFIED◊ 
exception I DECL I BINDING§ 4.9.2 --kernel only--
process§ 4.10 MONITOR LOCK◊ I CONDITION◊ 
Notation: 

n* 
n◊ 
n--m 
n1m 

n=e 1 .. . 
n::)e I .. . 

n is further specified in one of the indented lines below. 
n is a type. rather than a class. 
n has its main definition under (and implies) class m. 
n also appears under (implies) class m. 
n includes (is implied by) the c classes. which together exhaust n. 
n includes (is implied by) the c classes. which are special cases. 

Table 4-1: The class hierarchy 

A class C is a subclass of another class D if c~ D. Recall the implies relation for declarations 
(§ 2.2.lF) means that 

Each name n in C is also in D. 
n's type in C implies n's type in D. 

Preciselv. 
('tJ nEC.names) nED.names /\ (C.DTOB.n~ D.DTOB.n) 

For example. the class ORDERED includes 
LESS: PROC[T. n~ BOOL 



Every subclass of ORDERED must also declare a LESS_ proc whic~ takes two Ts to a BOO~. If we ~ad 
a richer assertion language. there would also be axioms defining LE~ ~o be an ordenng relation. 
Similarly. every ORDERED type (e.g .. INT) must have such a LESS proc m tts cluster. 

The subclass relation defines a class hierarchy. i.e., it gives a partial ordering on classes. Table 4-1 
gives the class hierarchy for the primitive classes of Cedar. It is presented as a tree: a node N with 
sons N l1 N 2• •.•• N k is written 

N Nl I N2. 1 ... I N k 

and any of the N. that are not leaves are marked with a * and defined on following indented lines: 
I 

Ni Nil I Na. 1 ... 

In fact. however. the class hierarchy is not a tree but a partially ordered set: some classes appear 
more than once in the table. with appropriate cross-references. Classes produced by Cedar type 
constructors are named by the constructors: other. more general classes are given suggestive names. 
sometimes lower-case versions of the constructor names. Each primitive type also appears in the 
table. under its class in the tree. 

4.2 Summary of primitives 

36 type::= typeName I builtlnType I typeCons 
37 typeName :: = nif typeName. n2 I 

typeName [e] I •n2 typeName typeName.SPECIALIZE[e] I typeName. n2 
In 19. 25. 36. 40.L 49. --n2 names a variant 

38 builtlnType :: = INT I REAL I TYPE I ATOM I MONITORLOCK I CONDITION I * ?tUNCOUNTED ZONE I •tMDSZone I •LONG CARDINAL I •t ?LONG UNSPECIFIED --See Table 4-2. 
TYPE only as tin ab or an interface·s d. INTEGER. CARDINAL, NAT, TEXT. STRING. BOOL. CHAR are predefined. 

39 typeCons :: = subrange2s I paintedTC40.l I transferTC41 I arrayTC44 I seqTC45 I tdescriptorTC45.l I 
reffC46 I listTC47 I tpointerTC4S I •trelativeTC49 I recordTCSO I unionTcs21 enumTC54 f defaultTC55 

Examples 

P: PROC[ b: BufferI.Handle, --A type from an interface. 
i: INT+-TEXT[20].SIZE ]; --A bound sequence: only in SIZE. NEW. 

Typelndex: TYPE~[0 .. 256); -- A subrange type. 
Binary Node: TYPE~ Node52.binary; -- A bound variant type. 

The tables in this section summarize the primitive and predeclared types, type constructors and 
procs of Cedar. There are also a number of interfaces which contain useful procs or values of 
primitive types: in some cases, the distinction between a primitive in the language and one in such 
an interface is rather arbitrary. These interfaces are Process. Jnline. CedarReals. AMTypes. Rope. 
SafeStorage. UnsafeStorage. ListsAndAtoms. PrincOps. Runtime. 

4.2.1 Primitive types and constructors 

Table 4- 2 lists the primitive or predeclared types of Cedar. giving the name for each in the current 
language, and either a definition or, for the primitive types. a comment suggesting the meaning of 
the type. Later sections describe the items in the clusters of these types. and give their 
representations. 



Name 

INT. LONG INTEGER§ 4.7.2.1 
REAL § 4.7.2.2 
BOOL. BOOLEAN § 4.7.1.1 
CHAR. CHARACTER§ 4.7.1.1 
TYPE § 4.8 

Meaning 

=[-231_,231) 

-- 32-bit IEEE floating point 
={FALSE.TRUE} 
= r \ooo ..... "\311} 

ATOM § 4.5.1.l -- for unique strings. global property lists 
CONDITION § 4.10 -- for process synchronization 

-- The following are appropriate when pe'{ormance tuning is needed 
*INTEGER§ 4.7.2.1 = [ - 21 .. 215): INTEGER.SIZE= 1 
*NAT § 4.7.2.1 = INTEGER[0 .. 215): NAT.SIZE= 1 
*TEXT§ 4.4.2.2 = MACHINE DEPENDENT RECORD [ 

length (0): [0 . .INTEGER.LAST] +- 0. 
text (l); PACKED SEQUENCE maxLength (l); 

[0 . .INTEGER.LAST] OF CHAR] 
*ZONE § 4.5.2 -- controls safe storage allocation 

-- The following are not recommended for general use. 
*MONITORLOCK § 4.10 -- use MONITOR or MONITORED RECORD 
tUNCOUNTED ZONE § 4.5.2 -- controls unsafe storage allocation 
LONG CARDINAL § 4.7.2.1 = [0 .. 232). mixes poorly with INT. 
CARDINAL§ 4.7.2.1 = [0 .. 216): CARDINAL.SIZE= 1 

-- The following are obsolescent. 
•tMDSZone 
•t?LONG STRING§ 4.4.2.2 
•StringBody § 4.4.2.2 

•tUNSPECIFIED § 4.9 
•tLONG UNSPECIFIED§ 4.9 

-- controls unsafe storage allocation in the MOS. 
= ?LONG POINTER TO StringBody 
= MACHINE DEPENDENT RECORD [ 

--see text for anomalies--
length (0): CARDINAL +-0. 
maxLength (1): --REAOONLY-- CARDINAL. 
text (2): PACKED ARRAY [0 .. 0) OF CHAR] 

-- unsafe. matches any one-word type 
-- unsafe. matches LONG INTEGER. LONG CARDINAL. 

REAL. LONG POINTER. or REF. 

Table 4-2: Primitive and predeclared types 

4.2.2 Type constructors 

Table 4-3 gives the declarations of all the primitive Cedar type constructors. Since type-returning 
procs cannot be written in the current language. these are in fact all the Cedar type constructors. 
The concrete syntax for type constructors is in rules 40-55. and in § 4.2.2.1 on options. Rule 39 
above lists all the cases. 

All the arguments of a type constructor must be static (§ 3.9.1). except for: 

MKSUBRANGE, which can have non-static arguments when it appears in an expression or 
iterator as the second operand of IN. 

CHANGEDEFAUL T. which takes a proc derived from the e in the defaultTC. This e may be 
non-static in an implementation. or in the fields of a transferTC in an interface. 

7ln]. where Tis a sequence-containing record. 

AH the type constructors are functional (produce the same type when given the same arguments) 
except TYPE[ANY]. TYPE[n]. MKUNION. and MKRECORD. MKENUMERATION and their MD friends in an 



interface. MKRECORD and MKENUMERATION are functional in an implementation so that module 
replacement is more convenient. A non-functional type constructor produces a different type each 
time it is applied. By a slight misuse of language. such types are sometimes called painted. 

In current Cedar. type expressions and ordinary expressions do not have the same syntax. The 
severe restrictions on where types can be used ensure that the parser can distinguish the cases where 
a type is expected. There are a few cases where this is not true. and type names (rule 37) must be 
written instead of general expressions: subrangeTC. specializations of variant records. relativeTC 
and paintedTC. 

Name Domain Class of result Rule § 

MKVAR [readOnly. shor1: BOOL +-FALSE] variable 
-- This proc in the cluster of each type T produces the type VAR Tor REAOONLY T. 
REPLACEPAINT [in: TYPE. from: OPAQUE. Type] general 
MKINTTYPE [LIST OF DECLORBINDING] interface 
INTERFACETYPE [LIST OF ATOM] TYPE n 
MKXFERTYPE [flavor: { PROC,PORT. PROCESS,SIGNAL I ERROR ,PROGRAM}. transfer 

domain. range: DECL+-NIL. safe: BOOL+-ISCEDAR] 
MKPROC [domain. range: DECL +-NIL. safe: BOOL +-iSCEDAR] PROC 

~MKXFERTYPE[PROC. domain. range. safe] 
MKARRAY [domain: DISCRETE. T;pe+-CARDINAL. range: TYPE. ARRAY 

packed: BOOL +-f ALSE] 
MKSEQUENCE [domain: TAG. range: TYPE, packed: BOOL+-FALSE] SEQUENCE 
•MKARRAYDESCR [arrayType: ARRAY.Type, DESCRIPTOR 

long: BOOL+-FALSE. readOniy: BOOL+-FALSE] 
MKREF [target: TYPE. base: BASE+-WORLD. reference 

readOnly. ordered. uncounted: BOOL+-FALSE] 
MKLIST [range: TYPE. readOnly: BOOL +-FALSE] LIST 
tMKPOINTER [target: TYPE+-UNSPECI Fl ED. pointer 

long, readOnly, ordered, base: BOOL+-FALSE] 
~MKREF[target~ target. readOnly~ readOnly. ordered~ ordered. uncounted~TRUE. 

base~(IF long THEN WORLD ELSE MDS)]. 
*tMKRELATIVE [range: TYPE. baseType: BASE.Type] RELATIVE 
MKRECORD [fields: DECL. RECORD 

or MKMDRECORD access: {PUBLIC. PRIVATE}+-CURRENTACCESS, 
monitored: BOOL +-FALSE] 

MKPOSITION [first Word: NAT. first Bit: INT+-0. last Bit: 11\T+--1] 
MKUNION [selector: TAG. variants: LIST OF FIELD] union 
MKENUMERATION [LIST OF ATOM] enumeration 
MKMDENUMERATION [LIST OF RECORD[ATOM. NAT]] enumeration 
MKSUBRANGE [FIRST: T. LAST: 71 subrange 

-- Tis the Discrete base type. which has a MKSUBRANGE type constructor in its cluster. 
CHANGEDEFAUL T [type: TYPE, proc: (PROC[]--+type). allow Trash: BOOL] assignable 

Table 4 -3: Primitive type constructors 

40 § 4.3.3 

40.l§ 4.3.4 
2 § 4.3.5 
2 § 4.3.5 
41 § 4.4.1 

41 § 4.4.1 

44 § 4.4.2.1 

45 § 4.4.2.2 
45 § 4.4.3 

46 § 4.5.1 

47 § 4.5.1.1 
48 § 4.5.1.2 

49 § 4.5.4 
50 § 4.6.1 

51 § 4.6.1 
52 § 4.6.3 
54 § 4.7.1.1 
54 § 4.7.1.1 
25 § 4.7.3 

55 § 4.11 



4.2.2A Options 

The bui_lt-in type constructors take an assortment of optional BOOL arguments. as indicated in their 
declarations. In the current syntax these are specified by writing options in the type constructor. 
When an option appears in a type constructor. the argument of the same name has the value TRUE: 
if it is missing. the argument has the value FALSE (except for SAFE. which defaults to TRUE if the 
module header says CEDAR. to FALSE otherwise). The effect of these arguments on the type 
produced by the constructor is given as part of the description of its result class. Table 4-4 lists the 
options and the constructors for which each is appropriate. 

Option 

*BASE 
LONG 
MONITORED 
•ORDERED 
*PACKED 
PUBLIC. PRIVATE 
READONLY 

SAFE 
UNSAFE 

4.2.3 Primitive procs 

Constructors 

MKPOINTER 
MKPOINTER. MKARRAYDESCR 
MKRECORD 
MK POINTER 
MKARRAY.MKSEQUENCE 
MKDECL. MKRECORD 
MKVAR. MKREF. MKLIST, MKPOINTER, MKARRAYDESCR, 
MKDECL (interface vars only) 
MKXFERTYPE 
MKXFERTYPE 

Table 4 -4: Type options and their constructors 

The primitive procs and other values of Cedar are listed in Table 4-5. All of the primitive procs in 
the Cedar language except the type constructors (see Table 4- 3) appear here. 

The Name column gives the name of the value in the cluster. For a proc. the following symbol 
summarizes the handling of exceptions: 

A "!" means that application can cause an exception. and you can write an app1Enable27
.1. 

An italic "!" means that an exception is possible. but you cannot write an applEnable. If 
you are desperate. enclose the application in a block with an enable. 

An italic "! ! " means that an exception should be possible. but the implementation does not 
make the necessary check (e.g .. for overflow on adding INTs). 

If nothing follows the name. no exception is possible. 

The Classes column gives the classes in which the name appears: see Table 4-1. 

The Type column gives the type with which it is declared in those classes. The type usually refers to 
other names of the class. Since it is taken from the class declaration. it can use these names without 
explicit qualification: see the detailed class descriptions in § 4.3-4.11 for their meanings. 

The Notes column gives information about how a proc is applied or a non-proc value is denoted in 
current Cedar. In the kernel a proc named P from the cluster of type T is applied to a value x of 
type T by the expression x.P if there is only one argument or x.P[y . ... ] if there are several. In 
current Cedar. however. not all primitives can be applied or denoted by dot notation. There are 
three other ways of applying a primitive proc: 

It may be an operator with a symbol listed in the Notes column. If it takes two arguments. 
the operator is infix. Thus for a proc named P with operator symbol EB. you write xEBy 
instead of x.P[y]. If it takes one argument the operator is usually prefix~ you write EB x 
instead of x.P. The t operator is postfix: you write xt instead of x.DEREFERENCE. 



It may ~e a bui/Hn proc named P. in which case you usually write P[x] or P[x. y, ... ] as an 
alternative to x.P or x.P(y . ... ]. For each. built-in which cannot be applied using either of 
these notations. the ways of applying it are indicated explicitly in the Notes column: any 
ways not mentioned cannot be used. 

It may be a funny application proc named P. in which case you write P x or P x[y . ... ]. 

The three kinds of primitive proc are listed in that order. alphabetically within each kind. Values 
which are not procs (ABORTED. FALSE. FIRST. LAST. NIL. SIZE. TRUE) are listed with the built-in 
procs. Except for ABORTED, FALSE and TRUE. which are globally known and must be written alone, 
the cluster must be specified by dot notation (INT.SIZE) or optionally as an argument (SIZE[INT]}. 

A few primitive procs cannot be desugared so simply into dot notation. These cases are indicated in 
the Notes column. and are described here: 

Name 

Some PROC [T]-+[ U] are coercions: CONS. FR0MGR0UND. LONG. TOGR0UND, VALUE0F. This 
means that they may be invoked automatically when typechecking demands a U and an 
expression has syntactic type T:. see § 4.13 for details. 

Some involve target typing: ALL. CONS. LIST. VAL. union constructor: they are marked TT. 
For these the proc does not come from the cluster of the type of the first argument 
Instead. it comes from the cluster of the so-called target type. An application of one of 
these procs must appear as an argument in another application (e.g .. J(y. NARROW[x]] or 
z._NARR0W[x]). and not before a dot. In this context the target type is known from the 
declaration of the outer proc being applied (for z.ASSIGN in the example: if the type of /is 
PROC [U. 71-+[J.1. the target type for the NARROW application is 7). Target typing is also 
used for enumeration literals (§ 4.7.lA). and is optional to default the type argument of 
DESCRIPTOR, NARROW or LOOPHOLE. 

One is ambiguous: MINUS for CHAR and pointer. The type of the second argument decides. 

Notes Classes Type 

Operators (infix except as noted) 
VARTOPOINTER @(prefix) general UNSAFE PROC[71-+[MKP0INTER[target~ T.TARGET. /ong~L0NG]) 

PROC[x: T. y: 71-+[BOOL] EQUAL gen er~ 
ASSIGN ._ assignable UNSAFE --sometimes--PROC[x: VAR T. y: 71-+[71 

PROC[T. 71-+[7] PLUS!! + numeric 

MINUS!/ 

UMINUS!/ 
TIMES! f 
DIVIDE/ 
LESS 
GREATER 

DEREF-
ERENCE! 

REM/ 
NOT 

+ •CHAR. •pointer PROC[T. INTEGER]-+[71 

ambiguous 
-(prefix) 
* 
I 
< 
> 
t(postfix) 

MOD 
N0T(prefix) 

• numeric 
•CHAR. •pointer 

numeric 
numeric 
numeric 
ordered 
ordered 
same as NOT 

PROC[T. 71-+[71 
PROC[T. 71-+[INTEGER] 
PROC[T. INTEGER]-+[1] 
PROC[71-+[71 
PROC[T. 71-+[7] 
PROC[T. 71-+[7] 
PR0C[T. 7l-+[BOOL] 
PROC[T. 7l-+[B00L] 

ref. PROC[r: 71-+[TARGET] 
pointer UNSAFE PR0C[r: 71-+[TARGET] 

whole number PR0C[T. 71-+[71 
BOOL PR0C[BO0L]-+[B0OL] 

continue 



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!continued!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
Name Notes Classes Type 

Built-ins (•in addition to x.P[. .. ]. procs can be applied with P[x . ... ]. except as noted) 
ABORTED 
ABS/ 
ALL 
APPLY! 
BASE 

CODE 
CONS 

ABORTED 

ALL[ ... ]: TT 
APPLY(/. a] 

ERROR ERROR 
numeric PROC[7]-+[7] 
ARRAY PROC[x: RANGE]-+[7] 
transfer PROC[map: T. arg: OOMAIN]-+[RANGE] 
ARRAY UNSAFE PROC[a: VAR 7]-+[LONG POINTER TO UNSPECIFIED] 
descriptor UNSAFE PROC[a: 7]-+[LONG POINTER TO UNSPECIFIED] 
TYPE PROC [T: TYPE]-+[AMTypes. Type] 

7{. .. ]: coercion ARRA y PROC[g: RANGE X ... ]-+[7] 
7{ ... ]: coercion RECORD PROC[b: FIELDS]-+[7] 
a( ... ]: TT for a union PROC[b: FIELDS]-+[a.]] 

! CONS[ ... ]. z.CONS[ ... ]: TI LIST PROC[z: ZONE+-SafeStorage.GetSystemZone[). x: RANGE, y: 7]-+[7l 
DESCRIPTOR DESCRIPTOR[v, ... ] row. sequence- UNSAFE PROC[v: VAR 7l-+ . 

FALSE 
FIRST!! 
first 
FREE! 

TT fort 
containing record [LONG DESCRIPTOR FOR ARRAY T.DOMAIN OF T.RANGE] 
descriptor UNSAFE PROC[base: LONG POINTER TO UNSPECIFIED. 

length: CARDINAL. t: TYPE] 

FALSE BOOL boo) 
-+[LONG DESCRIPTOR FOR ARRAY CARDINAL OF t] 

discrete T 
lfirsl LIST PROC[/: 1]-+[RANGE] 
FREE[ ... ] or z.FREE[ ... ] ZONE PROC[z: T, p: NEWTYPE[NEWTYPE[V]]]-+0 
FREE[ ... ] or z.FREE[ ... ] UNCOUNTED ZONE UNSAFE PROC[z: T, p: NEWTYPE[NEWTYPE[ U]]]-+0 

FROMGROUND/ 7{ ... ]: coercion subrange PROC[x: GROUND]-+[7] 
ISTYPE! ISTYPE[x. U] genera) PROC[x: T, U: TYPE]-+[BOOL] 
LAST!! discrete T 
LENGTH ARRAY.descriptor PROC[a: 7]-+[CARDINAL] 
LIST! uST( ••• ] or z.usT( ... ]: TI LIST PROC[z: ZONE g: RANGE X ... ]-+[7] 
LONG also coercion short number PROC[x: 7]-+[LONG 7] 

also coercion POINTER PROC(p:7]-+[LONG POINTER TOT.TARGET] 

LOOPHOLE 
MAX 
MIN 
NARROW! 
NEW! 

NIL 

ORD 
PRED/! 
rest 
SIZE 
SIZE 
succ! ! 

also coercion DESCRIPTOR PROC(p:7]-+[LONG DESCRIPTOR FOR ARRA y OFT.RANGE] 
L'E( ... ] only: TI for u general UNSAFE --if u is RC-- PROC[t: T. U: TYPE]-+[ U] 
MAX[!..] ordered PROC[T. ... ]-+[7] 
MIN(!..] ordered PROC[T .... J--.[7] 
NARRow[ •.. ]: TI for u general PRoc[x: T. U: TYPE]-+[V] 
NEW[ ... ] or z.NEW[ ... ] ZONE PROC[z: T+-SafeStorage.GetSystemZone{], U: TYPE] 

also NIL alone 

I.rest 

SIZE[T. n] 

-+[r: NEWTYPE[U)] 
variable, addre~. Tor NIL TYPE 
transfer 
en um era ti on 
discrete 
LIST 

PROC[7]-+[INT] 
PROC[x: 7]-+(7] 
PROC[7]-+[7] 
CARDINAL 

TOGROUND coercion 

general 
general 
discrete 
subrange 
BOOL 
enumeration 

PROC[T. CARDINAL]-+[CARDINAL] 
PROC[x: 7]-+[7] 
PROC[x: 7l-+[GROUND] 

TRUE TRUE BOOL 
VAL VAL[ ... ]; TI PROC[INT]-+[7] 

----------------continuA,,_ __________________ _ 



Name Notes 

Funny applications 
BROADCAST no args 
ERROR 
FORK! FORK P[args] 

JOIN! no args 
NEW no args 

NOTIFY no args 
RESTART! no args 
RETURN WITH 
RETURN WITH ERROR 
SIGNAL 
START! 
STOP! no args 
TRANSFER WITH 
WAIT! no args 

Not in current Cedar 
APPLY! 
BINDING 
BYTESTOINSTRUCTIONS 
Cluster 
Default 
DOMAIN 
DUMPSTATE 
HIDEEXCEPTION 
INIT 
ISLONG 
ISREADONLY 
LOCALSTRING coercion 
MACHINEINSTRUCTIONS 
NAMES 
NEWEXCEPTIONCODE 
NEWFRAME 
NEWLABEL 
OMITTED 
OPENPROCS 
Predicate 
RANGE 
TARGET 
TOVOID 
Trash 
UNBOUND 
UNCONS coercion 
UNREF 
VALUE 
VALUEOF 

Classes 

CONDITION PROC[J1~ □ 
SIGNAL, ERROR like APPLY 
PROC PROC[PROC[DOMAIN]~[RANGE]l~ 

[PROC[DOMAIN]~[PROCESS □~[RANGE]]] 
PROCESS UNSAFE PROC[7l~[RANGE] 
PROGRAM, PROC(p: n~rn 

POINTER TO FRAME 

/: TYPE Imp PROC(p: POINTER TO FRAME(/])~[POINTER TO FRAME[/]] 
CONDITION PROC[J1~□ 
PROGRAM PROC['T]~□ 
PrincOps.StateVector 
ERROR like APPLY 
SIGNAL like APPLY 
PROGRAM like APPLY 
PROGRAM PROCO~□ 
PrincOps.State Vector 
CONDITION PROC[7]~□ 

map 

general 
general 
map 

variable 
variable 
variable 
STRING 

binding, decl 
exception 
decl 
exception 

general 
map 
reference 
assignable 
general 

record 
general 
variable 
variable 

UNSAFE --sometimes-· PROC[map: T. arg: DOMAIN]~[RANGE] 

PROC(]~(J1 
TYPE 

BOOL 
BOOL 

PROC[ [CARDINAL] ]~[STRING] 

PROC □~FRAMETYPE[7] 
PROC □~EXCEPTION 

PROC[ANY]~ BOOL 
TYPE 
TYPE 
PROC [7l~[VOID] 
PROC(]~[7J 

PROC[7J~[FIELDS] 

TYPE 
PROC[7J~[VALUE] 

Table 4 -5: Primitive procs 



4.3 General types 

!'Jearly all type~ belong _to the_ General class (with the items enumerated below). and most belong to 
its subclass ASSLgnable (with assignment and some related items). 

4.3.1 General types 

The general class has the items 
T:TYPE 
SIZE: CARDINAL 
ISTYPE: PROC[x: T, U: TYPE]-+[BOOL] 
NARROW: PROC[x: T, U: TYPE]-+[ U) 

tLOOPHOLE: UNSAFE PROC[x: T, U: TYPE]-+[U] 

Predicate: PROC[ANY]-+[BOOL] 
Cluster: BINDING 
MKVAR: PROC[readOnly. short: BOOL ._FALSE] 

-+[TYPE] 

--The type itself. 
--The number of words to represent a Tvalue. 
-- Roughly, TRUE if x has type U. See below. 
--Converts x into a U if possible, or raises 

the error Runtime.NarrowFault. Never works 
for a variable type. 

-- Returns the bits representing x as a U. 
Requires T.SIZE= U.SIZE 

--The predicate of the type. 
--The cluster of the type. 
-- Returns the type of VAR Tor READON Ly T. 

INIT: PROC[STORAGEBLOCK[SIZE]]-+[VAR 71 -- Can't be called directly. See§ 4.3.3. 
NEW: PROC[z: ZONE.-SafeStorage.GetSystemZone(], -- Denoted NEW[71 or z.NEW[71. See§ 4.3.3. 

T: TYPE]-+[,: REF 7] 
EQUAL: PROC[x: T. y; 71-+[BOOL] -- TRUE iff the bits representing x and y 

are identical. Missing for most unions. 

All types are in this class except TYPE, fully opaque types. interface types and sequence types. 

•Anomaly about SIZE: There is another SIZE item in each cluster:. 
SIZE: PROC[n: DOMAIN]-+[CARDINAL] -- Returns the size of a PACKED ARRAY [O .. n) OFT. 

Apply with SIZE[T. n]. 
This proc can be useful in calculating the space required for the target of a descriptor for a packed 
array. You can only apply it with s12E[T. n]; the second argument is what selects this proc. It is 
usually better to use a sequence. 

In current Cedar the value of ISTYPE[x. 71 is determined as follows. Here r::::, U means that 
T.Predicate= U.Predicate. Two types may be unequal and yet have the same predicate if they have 
different clusters. Currently. the cluster can only be changed by CHANGEDEFAUL T. 

1) It is TRUE statically if: 
"vx~T. or 
one of TJ x and T is an opaque type, and the other is the corresponding concrete 
type (only in an implementation that exports the opaque type). 

2) It is tested dynamically if (with V any variant record type without a COMPUTED tag, and a 
the name of a particular variant). 

TJ x~REF ANY and r::::,REF u for any u except ANY. or 
TJ x~PROC u RETURNS ANY and r::::,PROC u RETURNS V for any u. and any V 
except ANY, or 
TJ x~PROC ANY RETURNS V and r::::,PROC u RETURNS V for any V. and any u 
except ANY, or 
TJ x~REF V. and T~REF V.a. or 
TJ x~(LONG) POINTER TO V and ~(LONG) POINTER TO V.a. 

TJ x~ V. and T~ V.a. or 

Note that the result is TRUE if x= NIL (except in the last case). 



3) It causes a static error in all other cases. even if it is statically false. 

In current Cedar. NARROW[x. 7] is 
IF ISTYPE[x. 71 THEN x ELSE ERROR e 

where e is 
AMTypes.NarrowRefFault[x. T.RANGE.CODE] if ISTYPE[x. REF ANY]: 
AMTypes.NarrowFault[] otherwise. 

Note that NARROW[x. 71 gives a static error if ISTYPE[x. 7] does (case (3) above). Note also that 
ISTYPE and NARROW are conveniently packaged in the safeSelect construct (§ 3.8). 

Performance of /STYPE for PROC ANY: The ISTYPE (and therefore NARROW) of a P~OC type with 
A NY domain or range are very slow. since they use AMTypes to do the test. and 1t consults the 
symbol tables. 

Anomaly for target typing of NARROW and LOOPHOLE: For NARROW and LOOPHOLE the second 
argument may be defaulted to the target type. 

Anomaly for LOOPHOLE on variable types: For a variable type T. if T.LOOPHOLE is applied to a 
second argument U which is not a variable type. U is coerced to U.MKVAR0. Thus 

{x: INT: LOOPHOLE[x. BOOL]+-TRUE} 
leaves x=l. 

Every general type r with T.SIZE<216 has an EQUAL proc except a variant record or union type. A 
variant record type has EQUAL only if its variant part is a union in which all the cases are the same 
size. Note that a bound variant does have EQUAL. unless it is itself a variant record. EQUAL is 
denoted by the in fix operator = . 

Anomaly for equality of variants: If v is a variant record and bv is one of its bound variants. the 
expression bv= v applies the EQUAL proc of the bound variant. This works even though v is not of 
the same type as bv. 

Representation and address equality: EQUAL compares addresses in the representation of a value: it 
does not dereference them. Thus types like ROPE and ZONE which are represented by addresses are 
compared by comparing the addresses. 

Restriction on EQUAL procs: A type has an EQUAL proc only if T.SIZE(216. 

4.3.2 Assignable types 

Most types (see Table 4-1 for exceptions) are in this class. which is a subclass of general (§ 4.3.1) 
and has items: 

ASSIGN: UNSAFE--sometimes--PROC -- Returns y after storing it in x. Denoted by the 
[x: VAR T. y: 71-+[7] right-associative infix operator+-. 

rovo10: PROC[T]-+0 -- Discards the value. See§ 3.6. 
Default: PROC0-+[J1 -- See§ 4.11. 
Trash: PROCQ-+[7l -- See§ 4.11. 

As explained in § 3.7. groups and bindings are assignable if their components are. Since you cannot 
write these types in declarations. you have to write the constructors explicitly on the left of the +-: 
they are called extractors. E.g .. 

{x: INT: y: REAL: [x. y]+-Pai,{2. 3.4]} 

Note that if T is not assignable. it cannot be used as the type of a proc argument or result. since 
arguments and results are passed by assignment to variables. 

ASSIGN is unsafe for 



unions and variant records: 

assigning an unspecified type to anything except itself. 

~n a CHECK~D bl~k. a ~roe value cannot be assigned if it is local to another proc rather than to an 
1mplementat1on (stnce this could lead to a dangling reference). This is checked at runtime. 

Restriction on ASSIGN procs: A type T has ASSIGN only if T.SIZE(216. 

Representation of ASSIGN: Since it involves a VAR parameter. an ASSIGN proc cannot be written in 
cu1:ent Cedar. The primitive ASSIGN procs simply copy the bits of js representation into the 
vanable x. unless some of them represent REFs. In this case the assignment involves reference-
counting if xis in counted storage: see § 4.5 for details. • 

CHANGEDEFAUL T can take any type and produce a new one which is identical except for the cluster 
items named Default and Trash which detennine how default values are supplied when a binding 
value is coerced to a decl type: see § 4.11 for details. 

4.3.3 Variable types 

40varTC ::= ( I READONLY I VAR) t I ANY (VARI REAOONLY I VAR) t I ANY 
In 11. 45-48. ANY only in reffC. VAR only in interface decl. 

For every non-variable type T there are corresponding variable types: 
VAR T 
READONLY T 
SHORT VAR T 
SHORT READONL Y T 

You cannot denote these types in current Cedar except in a few contexts. but they are fundamental 
to an understanding of how it works nonetheless. The basic facts about variables in Cedar are given 
in § 2.3.3. A variable type is made by the MKVAR proc in the cluster of the non-variable type 
(§ 4.3.1). 

The variable class is a sub-class of general (§ 4.3.1) and hasNIL (§ 4.3.7). and has items: 
VALUE: TYPE: -- (VAR l/).VALUE = U: T.VALUE.MKVAR = T. 
VALUEOF: PROC[71-+[VALUE]: -- A coercion. 
ISLONG: BOOL: -- FALSE for short vars. 
ISREADONLY: BOOL: --TRUE for readonly vars. 
VARTOPOINTER: UNSAFE PROC[Jl-+ --Apply by prefix@. 

[MKPOINTER[range~ T.VALUE, /ong~ISLONG, readOn/y~ISREADONLY]]: 
Furthennore. T inherits the cluster of T.VALUE. The procs are not modified. since the VALUEOF 
coercion provides them with T.VALUE arguments where needed. There is one exception: the 
component procs described below are replaced by procs which return variables instead of values. 

The INIT proc (§ 4.3.1) converts a block of storage into a legal variable of type T. at least in theory. 
In fact. it is currently a no-op except for 

RC types (§ 4.5)~ these are set to NIL. 

Bound variants: the tag field is set appropriately. 

INIT cannot be supplied or called directly by the user: it can only be called indirectly. from NEW. 

The NEW proc (§ 4.3.1) calls on the zone z to obtain a block of storage of size T.SIZE (§ 4.5.2). and 
applies T.INIT to convert the block into a VAR T'. can it x. Then if T.Default exists. NEW calls it and 
assigns the result to x. 

Caution on finalization: A variable type may have a finalization proc. which is called when no client 
references to a variable remain; see SafeStorage. This proc is executed concurrently. and must 
therefore provide proper synchronization. 



Restriction on NEW: A type has a NEW proc only if T.SIZE<2
16

• 

•The @ operator (VARTOPOINTER) does not work on a variabl~ v ~hich is a comPonent of a pack_ed 
array (no matter what its type is). or component ?fa record if _v 1~ ~epresented ~n less than 16 bits. 
These restrictions are machine-dependent. and @ 1s unsafe: av01d 1t if at all possible. 

Composite variables and component procs 

MKVAR commutes with a composite type. cross type or declaration constructor. For example. 
VAR [a: INT. b: REF ANY] 

is equal to 
[a: VAR INT. b: VAR REF ANY] 

and likewise for READONLY. Similarly. VALUEOF commutes with the component procs for values of 
these types. so that v.a.VALUEOF=v.VALUEOF.a if v has the variable type just mentioned. 

Another way to think of this is that one of these variables is the composite of a set of variables. one 
for each component If T is a record type. row type. cross type or declaration. then a component 
proc in rs cluster which extracts a component of a T value (e.g .. a field proc. APPLY which 
subscripts the array. etc.) has a counterpart in the cluster of VAR T which extracts a variable. Thus if 
a and , are array and record variables. then a[i] and r.f are also variables which can be modified by 
ASSIGN. 

4.3.4 Opaque types 

40.lpaintedTC :: = typeName PAINTED t REPLACEPAINT[in ~t. from~typeName] 
type Name must be an opaque type.ta recordTC or enumTC. 

Example 

HV: TYPE~ lnterface.HistValue PAINTED 
RECORD[ ... ] 

-- See 13 for use. 

An opaque type declaration in an interface is the only way to declare a type parameter (except for 
the interface parameters declared in the DIRECTORY). Such a type parameter is called opaque. The 
type of an opaque type must be TYPE[ANY] or TYPE[n]: thus you can write 

T: TYPE[ANY] 
or 

T: TYPE[n] 
in an interface. These expressions are non-functional: each generates a new mark. and a type can be 
exported to T (i.e .. has the type denoted by the TYPE[ANY] or TYPE(n] expression which declares T. 
and hence is an acceptable argument value for this formal parameter) only if it carries that mark. A 
type exported to T: TYPE[n] must have additional properties described below. 

You attach one of these marks to a type using a paintedTC. The type being painted (t in the rule) 
must be a recordTC or enumTC. The paint comes from the typeName. which must be an opaque 
type: it replaces the new paint which the constructor would have supplied. 

Any record or enumeration type can be painted from a type declared TYPE[ANY]: only a type so 
painted can be supplied as the argument for the declaration T: TYPE. Tis called fully opaque. 

A type V can be painted from a type U declared TYPE[n] if: 

V.SIZE=n. 

V is a recordTC or enumTC and has standard NEW. INIT. ASSIGN. EQUAL and ISTYPE procs. 
All the assignable primitive types do except 



the RC types (§ 4.5.1): 
bound variant types (§ 4.6.2): 
types produced by a defaultTC55: 

composite types with a component that has a non-standard NEW. INIT. ASSIGN. or 
EQUAL proc. 

Representation of sta_ndard procs-. The standard "IEW proc allocates n words. The standard 1N1T does nothing. The 
standard ASSIGN copies n words. The standard EQUAL compares n words bitwise. The standard 1STYPE compares 
the mark of the value with a single mark aS.50Ciated with the type. 

Only a type painted with U can be supplied as the argument for the declaration U: TYPE[n]. U is 
called n-opaque. 

Example: For the interface: 
/: DEFINITIONS~{ 

FO: TYPE[ANY]: 
nO: TYPE[SIZE [INT]] } 

this implementation is suitable: 
/Imp!: PROGRAM EXPORTS/~{ 

FO: PUBLIC TYPE~ I.FO PAINTED RECORD[a: INT. b: ROPE]; 
nO: PUBLIC TYPE~ l.nO PAINTED REC0RD[INT]: 

Note that replacing INT by REF ANY in nO would not work. since this does not have standard 
ASSIGN and INIT procs. 

The cluster of a fully opaque type T is empty: it provides no operations. A T value cannot be 
passed as a parameter. and there are no VAR T variables. Thus you cannot use T as the type in a 
declaration. The only thing to do with Tis use it as the target of a reference type such as REF T. 

The cluster of an n-opaque type u has VAR. NEW. INIT. ASSIGN. EQUAL and ISTYPE procs (the last not 
yet implemented). Thus these operations can be done on a U value. As a consequence. a U value 
can be passed as a parameter and declared. 

Restriction on values of opaque lypes: All instances of any interface produced by applying an interface module which 
declares an opaque type T must supply a type value with the same predicate for T if they supply any value at all: this 
value is called the standard implementation of T. Because of this restriction. clients can safely interassign values of type T. 
no matter how obtained. In addition. it is safe for any exporter of T to convert a value of type T to a value of the 
corresponding concrete type. and conversely. The restriction arises from the fact that the type is identified by its mark: 
hence the same mark must not be assigned to two different types. 

Anomaly on referencing opaque ·types: It is not necessary to import an interface to refer to an 
opaque type declared in that interface (because of the above restriction). 

Within an implementation P which exports an opaque type T declared in interface I. I. T and P. T 
(simply T within P) imply each other. However. they have different clusters. and are not equivalent 
You can convert from one to the other using NARROW (§ 4.3.1). 

Performance of converting between opaque and concrete types: The conversion between an opaque 
type and the corresponding concrete one costs nothing at runtime. 

4.3.5 Interface types 

The type of an interface module is d~[nm: TYPE n,J. where d is the declaration given in the 
DIRECTORY; when the module is applied. the result is an interface. with type TYPE n . The interface m 
is itself a type. A value of that type is an instance exported by an implementation module that 
exports the interface. These classes have no standard items (except an implementation instance. 
which has COPYIMPLINST). but the clusters of these types do have the items bound or declared in 
the interface. Thus you cannot do anything with these types except 



use them in a DIRECTORY. IMPORTS. SHARES. or EXPORTS: 

select items from the cluster using dot notation: 

use an interface type in an open. 

See § 3.3.4-5 for complete information. 

4.3.6 ANY 

The type ANY is implied by every type .. ANY cannot be t!te ~ype of a d orb item. and an expression 
never has syntactic type ANY unless it ts an ERROR apphcat1on. ANY can on!y be used as the target 
of a REF or as the domain or range of a transfer type. A value whose type involves ANY cannot be 
dereferenced or applied. since these operations would yield an expression with syntactic type ANY. 

However. it can be narrowed (§ 4.3.1). 

4.3.7 HasNIL 

Variable. address and transfer types are in this class, which is a subclass of general (§ 4.3.1). and 
gives them one thing in common: 

NIL: T -- A distinguished value pointing to no storage. 
There is a universal value NIL (with type Nil TYPE) which can be coerced into any particular T.NIL. 

4.4 Map types 

The map class is a subclass of assignable (§ 4.3.2) and has the items: 
DOMAIN: TYPE: -- Domain type for the mapping. 
RANGE: TYPE: -- Range type for the mapping. 
APPLY: PROC(map: T, arg: DOMAIN]-+[RANGE] -- map[arg] is sugar for map.APPL Y►arg. In current 

Cedar. you can write this explicitly only 
for transfer types. 

Usually DOMAIN and RANGE are declarations. so that bindings can be used for the arguments and 
results. Application is denoted by brackets (map[arg]). or explicitly (APPLY[map. arg]) for transfer 
types only. 

There are several subclasses of map in Cedar. each with its own APPLY proc. These are summarized 
here, and treated in detail in the sections on the various subclasses. 

Primitives (since you can't get hold of the value of the primitive, these can be applied only 
with the various special syntactic forms summarized in Table 4-5). 

Transfer types: procs. and their close friends processes. signals. errors. ports and programs: 
applying a transfer value executes the body of some A-expression (§ 4.4.1). § 2.2.1 and § 2.6 
tell all about applying procs. 

Row and descriptor types: applying an array, sequence (or sequence-containing record). or 
array descriptor to an index value yields a value of the component type (§ 4.4.2). 

BASE POINTER types: applying a base pointer to a value which is relative to that base yields 
a (non-relative) pointer: this is unsafe (§ 4.4.3). 

Reference types: if the base type T has APPLY, then the reference type inherits it composed 
with DEREFERENCE. so that a[arg] is the same as at[a,g] (§ 4.5.1). 

In addition. many subclasses of TYPE have APPLY procs with assorted meanings (§ 4.8). 



4.4.1 Transfer types 

41 transferTC :: = ?safety4 xfer ?drType 
41.lxfer :: = PROCEDURE I PROC I PROGRAM I 

PORT I PROCESS I SIGNAL I ERROR 
42 drType :: = ?fields1 RETURNS fields2 I fields 

N 
. 1 

0 domam for PROCESS. In 3. 41. 
43 fields::= [dll .... ] I [t .... ] I ANY 

At-,;Y only in drType. In 42. 50. 52. 

Examples 

Enumerate: PR0C[ 
I: RL. 
p: PROC[x: REF ANY] RETURNS [stop: B0OL]] 

RETURNS [stopped: BOOL]: 
p2:PROCESS RETURNS[i:INT]+-FORK stream.Get: 
failed: ERROR [reason: ROPE]~C0DE; 

MKXFERTYPE(drType. flavor~xfer] 

domain ~fields1• range~fields2 

Transfer is a subclass of map (§ 4.4) and of hasNIL (§ 4.3.7). The subclasses of transfer are PROC. 
PORT. PROGRAM, PROCESS. SIGNAL. and ERROR. These types are constructed by transfer type 
constructors which begin with those words. or in the kernel by the MKXFERTYPE constructor. What 
they have in common is that application executes the body of some ')..-expression. but the transfer 
class adds no items to the map class. 

One transfer type T implies another U if 

The subclass is the same. 

T.RANGE implies U.RANGE. 

U.DOMAIN implies T.DOMAIN. 

See § 2.3.2 and § 4.12. One declaration D implies another E if: 

I.e. 

They have the same names. or each has only one name. and 

The corresponding types imply each other. 

If n: Tis in D and n: U is in £. then T~U. 

If D= [m: 7] and £= [n: U], then T~ U. 

See § 2.2.lF. D implies a cross type T if D.T implies T: in this case T also implies D. 

Either the domain or the range of a transfer type (or both) can be ANY. A value of these types 
cannot be applied. but it can be narrowed to a specific transfer type (§ 4.3.1). 

Representations for transfer types are given in the PrincOps interface. They tend to change when the 
machine architecture changes. 

An attempt to apply a NIL transfer value results in the error Runtime.UnboundProc. 

PROC types 

The PR0C class is a subclass of transfer (§ 4.4.1) with no additional items. In the kernel. a new proc 
value is made by evaluating a ')..-expression. In current Cedar, it is made by a binding of the form 

P: T~{ ... } 



in a block. where Tis a proc type: see § 3.5.1 for details. 

Assignment of a proc may lead to a dangling reference, if the proc v_alue is for a local proc P and ~t 
survives the return of P's enclosing proc. In a checked block any assignment of a local proc value 1s 
disallowed (except the assignment of a parameter value to a parameter variable). 

PROGRAM types 

The program class is a subclass of transfer (§ 4.4.1). and also has items: 
•STOP: PROCO-+O --Apply by STOP. Legal only if RANGE= □. 

Denoted by STOP. since it takes no arguments. 
•RESTART: PROC[T]-+0 -- Apply by RESTART P. Legal only if RANGE= □. 
-COPYIMPLINST : PROC[p: 7]-+[7l --Apply by NEW P: 

Their use is not recommended: for details. consult a wizard. For more on implementations. see 
§ 3.3.2.1 and § 3.3.5. COPYIMPLINST makes a copy of the implementation module for. which p is the 
program proc. and returns the program proc of the copy. See § 4.5.3 for more details. 

The syntax for applying a program P is 
START P(args] 

•The START may be omitted, so that it looks like an ordinary application: avoid this feature. This 
expression's type is 'v P.RANGE. 

A program value is obtained from the frame of an implementation, which always includes the item: 
Imp: PROGRAM T~ PP: 

where Imp is the name of the module. Tits drType. and PP its program proc: see § 3.3.5. This value 
can be accessed: 

from an interface exported by Imp which declares Imp as a PROGRAM T: 

as F.Imp. where Fis a POINTER TO FRAME of the implementation: 

as the CONTROL item returned by the module. 

•PORT types 

Use of ports is complex. unsafe and not recommended. See chapter 9 of the Mesa manual if 
necessary. 

PROCESS types 

The process class is a subclass of transfer(§ 4.4.l) with no other items. but Process.AborqP] raises the 
ERROR ABORTED in P. § 4.10 describes Cedar's facilities for concurrent programming. 

A process always has DOMAIN= □- The syntax for applying a process P is 
JOIN P 

This expression's type is 'v P.RANGE. •The JOIN may be omitted, so that it looks like an ordinary 
application~ avoid this feature. 

A process value is obtained from: 
FORK: PROC[PROC[DOMAIN]-+[RANGE)]-.[PROC[DOMAIN]-+[PROCESS 0-+[RANGE]]] 

The syntax for using this is 
FORK P(args]. 

The FO~K P returns a proc which when applied to args creates a new process. starts it running. and 
returns 1t. . 

Anomaly for FORK: Note the peculiar parsing (FORK P)[args]. You cannot write FORK Palone to get 
hold of the process-creating proc. 



SIGNAL and ERROR types 

These are subclasses of transfer (§ 4.4.1) with no other items. 

In the kernel. a new signal or error value is made by applying NEWEXCEPTIONVALUE. In current 
Cedar. it is made by a binding of the form 

£: T~CODE 

in a d or b. where T is a signal or error type. The effect is to construct a unique exception value, 
not equal to any other. An enable choice which catches this value will only catch an exception 
raised with this value: it cannot catch some other expression with the same name. 

Anomaly for CODE: Unfortunately, CODE does not yield a unique value at each execution. The value 
is only unique to the textual occurrence of CODE and the module instance: if CODE appears inside a 
proc. the same value is produced each time the proc is applied. Thus care may be needed if the 
proc is recursive. 

The syntax for applying an error (signal) £ is ERROR (SIGNAL) E[args], or ERROR (SIGNAL) £ if there 
are no arguments. For a signal. this expression ·s type is V £.RANGE: for an error, its type is ANY 
(since control can never return). •If the argument constructor is present. the ERROR or SIGNAL is 
optional: avoid this feature. 

§ 2.6.2 and § 3.4.3 explain errors in detail. A signal is exactly like a proc. except that the closure that 
is executed is obtained from the statement of an enable choice: see § 3.4.3A for details. 

You can write an expression consisting simply of ERROR; this is short for ERROR NAMELESSERROR. 
Here NAMELESSERROR is an error you cannot denote in the program. Hence it cannot be caught 
(except by ANY): you should think of it as a call to the debugger. 

4.4.2 Row and descriptor types 

44 arrayTC :: = ?*PACKED ARRAY ?tl OF½ 
45 seqTC :: = ?*PACKED SEQUENCE tag53 OF t 

Legal only as last type in a recordTC or unionTC. 
4s.1tdescriptorTC :: = 

?LONG DESCRIPTOR FOR varTC40 
varTC must be an array type. 

Examples 

Yee: TYPE~ ARRA y [O .. max YecLen) OF I NT: 
Chars: TYPE~RECORD [text: PACKED SEQUENCE 

len: [0 . .INTEGER.LAST] OF CHAR]: ch: Chars: 
v: Yec~ALL[O]: 
dV: DESCRIPTOR FOR ARRAY OF INT~ 

DESCRIPTOR[v]: 

MKARRAY[domain~tl' range~tiJ 
MKSEQUENCE[domain~tag, range~t] 

MKARRA YDESCR[ array Type~ varTC] 

-- A record with just a sequence in it. 
-- ch.tex~i] or ch[i] refers to an element. 

A row value provides an indexed set of values of an arbitrary type. called the components of the 
row: application maps an index into the corresponding value. Usually the values are variables, so 
that assignment to a component is possible. A descriptor is an unsafe pointer to a row which 
includes a subrange of the domain or index type in the descriptor value; thus values of the same 
descriptor type can point to rows of different sizes. Because all the row types use the same 
representation for the set of values. it is possible to make a descriptor from any row value. 

The-domain or index type of a row must be a discrete type with no more than 216 distinct values: 
note that this rules out large subranges of INT. There is one element in the range set for each value 
of the domain type. 



The PACKED argument of the row type constr~ctors_ governs the repr~sentation of a row_ whose 
range type is represented in ~8 bits. See the d1scuss1on of representation below. It also disallows 
the use of @ on an element of the row. 

The row class is a subclass of map (§ 4.4) and also has the item: . 
DESCRIPTOR: UNSAFE PROC[r: VAR 7]-.[LONG -- Returns a descnptor for,. 

DESCRIPTOR FOR ARRAY DOMAIN OF RANGE] 

Since DESCRIPTOR returns an address. it must take a VAR: i.e .. it can·t be given a row value such as 
a constructor. but demands a row which has been declared or allocated. 

Representation of rows: A VAR row value is represented by a contiguous block ?f words. If 
PACKED= FALSE. each element VAR occupies T.RANGE.SIZE words. and the successive elements 
occupy consecutive blocks of storage. beginning with the one indexed by T.DOMAIN.FIRST •. If 
PACKED=TRUE and a T.RANGE value is represented in n~8 bits. each element occupies 
2cEIL1NG[L002[n]l bits. i.e. 1. 2. 4 or 8 bits depending on its size: PACKED has no effect on the 
representation for ranges with bigger values. Note that the entire representation of a packed array 
may be smaller than a word. and need not be word-aligned in another packed array or in a r~cor~. 
This is the entire representation of an array value~ a sequence value also has a tag field. which 1s 
represented like a component of the containing record. 

Restriction on row sizes: A row type must have T.SIZE(228 and T.RANGE.SIZE<i16
• 

It is not possible to obtain a REF to a row component this is because the implementation of both 
reference counting and REF ANY discrimination requires more information about each VAR than is 
available for an array element. If the row is PACKED. it is not possible to apply @ to obtain a 
pointer to an element either. 

Performance of row arguments and results: Passing a row as an argument or result entails copying 
the representation. Unless the row is quite small, this is expensive. It is usually better to pass a REF. 
Very large rows (say. more than 100 words} should not be declared in a block. since this results in 
large frames which consume the 64k words of frame space. Instead. they should be allocated with 
NEW. • 

4.4.2A ARRAY types 

An array is a row with an element for each value in the domain: its APPLY proc is a total function. 
The advantages of this are that no space is needed to store the length of an array. and any bounds 
checking on a subscript is done against constant values (as part of narrowing the subscript to the 
domain type. which is usually a subrange). The disadvantages are that a given proc. written to deal 
with a given array type. cannot be used on other arrays of different lengths. since there is no way in 
current Cedar to parameterize the proc with a type. In this case it is better to use a sequence 
(§ 4.4.28). 

The array class is a subclass of row (§ 4.4.2) and of assignable (§ 4.3.2) if RANGE is assignable. It also 
has the items: 

CONS: PROC(g: RANGE X ... ]-.[71 -- A coercion from the group. or denoted n: ... ]. 
ALL: PROC[x: RANGE]-.[71 -- Returns an array with each element= x 
LENGTH: CARDINAL --The cardinality of DOMAIN. 
BASE: PROC[a: VAR 7)-.[LONG POINTER TO UNSPECIFIED] -- Returns the address of o's first element. 

CONS takes a group of values. one for each element of the array. into an array value. Note that the 
argument of CONS may have omitted values. which are filled in if possible by the defaulting 
coercion for T.RANGE. If the index type is enumerated. CONS takes a binding. with one element 
named n of type T.RANGE for each index value n. In current Cedar you can't write T.CONS. Instead 
you write T itself: i.e .. 7l ... ] for T.CONS[ ... ]. Because CONS is a coercion from group or binding to 
array. you can omit the T whenever the group or binding appears as an argument or in a binding: 
see § 4.13. Examples: 



I: TYPE~INT.-Q: B: TYPE~BOOLEAN.-TRUE 
A: TYPE~ARRAY [0 .. 5) OF/: 
al: A~[0. L 2. 3. 4]: 
a2: A~[ .1. 2, 3. 4]: 
i: INT~ A[4. 3. 2. 1. 0][1]: 
£: TYPE~ARRAY {red blue. green} OF B: 
el: £~[TRUE. FALSE. TRUE]: 
e2: E~[blue~FALSE]: 

-- OK to omit A here. 
-- Same as al. by defaulting. 
-- i= 3. The A is required here. 

-- Same as el. 

Anomaly about ALL: ALL replicates its argument in all the elements of an arrav In current Cedar 
you can·~ ":"rite T.AL~. Instead you just write ALL: it must be in an argument .. ;r binding. Unlike 
most built-ms, ALL 1s not sugar for dot notation. If the range type permits it. you can write 
ALL[TRASH] to trash all the elements. 

a3: A~ ALL[3]: -- Same as [3. 3. 3. 3, 3] 

BASE retur~s the address of its VAR array argument. It is mostly useful for writing storage allocators. 
The resulting LONG POINTER TO UNSPECIFIED can also be passed to DESCRIPTOR to yield a 
descriptor for a different type of array: obviously this is dangerous. 

•Anomaly about arrays with empty domains: An array may be declared with a domain type which is 
an empty subrange. The effect is to suppress the bounds checking in APPLY. If a pointer p to such 
an array is constructed (with a LOOPHOLE). then pt[i] (you can also write p[i], because p inherits 
APPLY) will never give an BoundsFault. This kludge is sometimes useful for obtaining arrays whose 
size is not static. However, beware that operations on the array other than subscripting (e.g .. 
equality tests, assignment and parameter passing) will believe the type declaration and do the wrong 
thing. It is generally better to use a sequence or a descriptor. 

4.4.2B SEQUENCE types 

A sequence is like an array. but each sequence value includes a tag value which specifies the 
number of elements in that sequence, i.e. the values of the domain type for which APPLY is defined. 
Note that APPLY for a sequence is usually not total. If the domain type is T and the tag value is v. 
then APPLY is defined for [T.FIRST .. v). Usually Tis NAT. so that vis the number of elements in the 
sequence, and the elements are indexed by 0, L .... v-1. 

In current Cedar there are many restrictions on the use of sequences. A sequence type is defined by 
a sequenceTci 5: it is not a first-class type, and can only appear as the type of the last field of a 
variant record or union {§ 4.6.2). The items in the cluster of a sequence type are just those for a 
row: they are inherited by the containing variant record, which is the type a program normally 
deals with. 

A record type T containing a sequence field is a variant record Tis a first-class type which can be 
bound to a name, but unlike a union-containing record it cannot be used where type36 appears in 
the grammar. except in a reITC46 (or pointerTC~). The only items in the cluster of Tare the ones 
of the variant record class. and those inherited from the row class of the contained sequence: 

DOMAIN: TYPE -- =TAGTYPE. 
RANGE: TYPE --The RANGE of the sequence. 
APPLY: PROC[map: r. arg: DOMAIN]-.[RANGE] -- Indexes the sequence. 

~{RETURN[map.VARIANTPART[arg]]}. 
DESCRIPTOR: UNSAFE PROC[r: VAR 7l-.[LONG DESCRIPTOR FOR ARRAY DOMAIN OF RANGE] 

~{RETURN[DESCRIPTOR[T.VARIANTPART]]}. -- Yields a descriptor for the sequence. 
The tag of a sequence is readonly. 

Hence the only uses of T are: 

As the target type of a reference type. e.g., REF T. 



In the form 7ln] to yield a specialization of T. 

The specialization T{n] has TAG= T.TAGTYPE.FIRST.succn. and n elements in the seque~ce: n need 
not be static. This application causes a Runtime.BoundsFault if _n NOT IN T.TAGTYPE. 7Jn] 1s also not a 
first-class type: you cannot write it where type36 appears m the grammar. and 1t has only the 
following cluster {§ 4.3.1): 

NEW: PROC[z: ZONE+-SafeStorage.GetSystemZone{] -- Denoted NEW[7lnl] or z.NEW(T{nl] 
T: TYPE]-+[,: REF GENERAL] 

SIZE: CARDINAL 
GENERAL: TYPE -- The type of the unspecialized sequence. 

Note that since you cannot use T or 7ln] in a declaration. there are no declared variables. record 
fields. or arguments to non-primitive procs of these types: you must use REF r (or a pointer to n. 
Furthennore. these types have no ASSIGN or EQUAL procs: you must do these operations on the 
components. Finally. there are no constructors for sequence types: you must explicitly trash the 
sequence field in a record constructor. A sequence does get initialized when allocated. however: in 
current Cedar this just means that non-composite RC variables are set to NIL. 

Thus the nonnal way to use a sequence is to embed it in a record (which need not have any other 
components). and to allocate one of the desired size using NEW (as in the examples below). The 
record value can then be applied to index the sequence. Usually it is convenient to have 
DOMAIN=NAT. If. however, some maximum length N is important to you. consider DOMAIN=[O •• N]: 
then the value of the tag field for a sequence of length n~N is just n. and the valid indices are IN 

[O .. n). 

Examples: 
StackRep: TYPE~RECORD[ 

top: INT+- -1. 
item: SEQUENCE size: NAT OF T]: 

Number: TYPE~RECORD[ 
sign: {plus. minus}. 
magnitude: SELECT kind: * FROM 

short=>[ val: (0 .. 1000)). 
long=)[val: LONG CARDINAL]. 
extended=)[ val: SEQUENCE length: NAT OF CARDINAL] 
ENDCASE]: 

rsl: REF StackRep+-NEW[StackRep(lOO]]: -- rsl.top= -1. rsl[i] is trash. 
rs2: REF StackRep+-NEW(StackRep(lOO]+-[top~ 3, item~TRASH]]: -- rs2.top= 3, rs2[i] is trash. 
rnl: REF Number.extended+-NEW[Number.extendea{2* k]]: 
-- rnl[2] = ml t[2] = rnl.item[2] = rnl t .ilem[2]. but all start out trashed. 

• •A sequence may have a COMPUTED tag, with the same meaning as for unions: no tag field exists. 
no bounds checking is possible so that application is unsafe, and the cluster has no DESCRIPTOR 
proc. You can still compute the address of the sequence with @ and use the unsafe three-argument 
form of DESCRIPTOR {§ 4.4.2.3). Example: 

-- Here is the recommended unsafe method for imposing an indexable structure on raw storage. 
WordSeq: TYPE~RECORD[SEQUENCE COMPUTED CARDINAL OF Word]: 

A sequence may not have an OVERLAID tag. and * cannot be used for the tag type. 

A sequence may appear in a MACHINE DEPENDENT record. It must come last. both in the record 
constr~ctor and in the layout. The total length of a record with a zero-length sequence part must be 
a multiple of the word length. The size of the sequence field (if specified) must describe a zero­
length sequence: i.e., it must account for just the space occupied by the tag field (if any). 

There is a predefined ~equence TEXT: see Table 4- 2 for its declaration. There are literals of type 
~EF T~XT. denoted as m rule 57 by the characters of the literal enclosed in doublequotes. Such a 
hteral 1s shorthand for a constructor (which you couldn't actually write in current Cedar. since it 
lacks constructors for sequences). REF TEXT can be used where efficiency is critical: for general 
purposes use Rope.ROPE. 



•There _are also unsafe predefined types LONG STRING and STRING: see Table 4-2 for their 
de~larat1on. They are described here for completeness. but should not be used. These types are 
pointers to a StringBody type also given in Table 4- 2. 

Anomaly for StringBody: In spite of the declaration, StringBody behaves like a sequence with tag 
maxlength and sequence text. Thus z.NEW[StringBodJ,{n]] returns a STRING or LONG STRING with 
maxlength= n: ifs is a STRING or LONG STRING. ~i] indexes its tex1, etc. You can also use s.text. as 
with sequences. but this is not recommended: because of the definition. s.rext[i] is never bounds­
checked (use s{i]). and DESCRIPTOR[s.,ext] describes an array of length O (use DESCRIPTOR[st]. 

•There is a special kludge for allocating a string in the local frame of a proc: 
LOCALSTRING: PROC[ [length: CARDINAL] ]~[STRING] -- A coercion. 

Because this is a coercion. you can write 
s: STRING~[20] 

to obtain a local string of length 20. Of course. the storage will be freed when the proc frame is 
freed, and a dangling reference may remain. This construct is legal only in declarations as the e of a 
defaultTC. 

•There are literals of type STRING. denoted just like REF TEXT literals as in rule 57. Since they are 
string literals. they are allocated in the MOS, where they consume precious space. By suffixing L to 
the literal. you can get it allocated in the proc frame. where the space is recovered when the frame 
is freed. at the risk of a dangling reference. 

t4.4.2C Descriptor types 

A descriptor is a pointer to a row value which includes a subrange of the row's domain as part of 
the descriptor value. A proc which takes descriptors rather than rows or REFS to rows can deal with 
rows of different sizes. Because a descriptor is like a pointer, there are short, long and relative 
descriptors which are exactly analogous to short, long and relative pointers: see § 4.5.1 and § 4.5.4 
for details. 

Style for rows of variable length: Applying a descriptor is unsafe. It is generally better to use a REF 
to a sequence-containing record. 

Like a row. a descriptor can be applied to yield a VAR of the range type. If it is REAOONL Y. the VAR 
will be READONL y too. 

Descriptor is a subclass of row (§ 4.4.2) and address(§ 4.5). Like array. it has the items: 
LENGTH: PROC[a: tJ~[CARDINAL] -- Returns the cardinality of the subrange in a. 
BASE: UNSAFE PROC[a: 7] --Returns the address of a·s first element. 

~[LONG POINTER TO UNSPECIFIED] 
Like pointer, it has: 

TARGET: TYPE -- The type of the array Type used to 
make the descriptor. 

In addition. there is an unsafe and untypesafe proc for making a descriptor with RANGE= CARDINAL 
from a LONG POINTER: 

DESCRIPTOR: UNSAFE PROC[base: LONG POINTER TO UNSPECIFIED. length: CARDINAL. type: TYPE] 
~[d: LONG DESCRIPTOR FOR ARRAY CARDINAL OF type] 

d.LENGTH = length and d.BASE= base. 

Anomaly for target typing of DESCRIPTOR: The type argument of DESCRIPTOR may be omitted. in 
which case it is the range type of the target type (which must be a descriptor type). Similarly if the 
target type is packed. 

There is a compile-time coercion from LONG DESCRIPTOR to DESCRIPTOR. which works exactly like 
the similar coercion from LONG POINTER to POINTER (§ 4.5.18). 



•t4.4.3 BASE POINTER types 

A base pointer bp is like an ordinary pointer. except that it has an APPLY operation _which maps a 
relative pointer rp (see § 4.5.4) into an ordinary pointer p. Its class is a subclass of pomter (§ 4.5.18) 
and approximately a subclass of map (§ 4.4). but with the items: 

APPLY: UNSAFE PROC[bp: T, rp: DOMAIN]-+(p: rp.TARGET] 
DOMAIN: TRELATIVE POINTER 

Note that the type of bp(rp] is detennined by the type of rp. and has nothing to do with the type of 
bp. There can be many relative pointer types for a single base pointer type. The scheme is much 
less safe than ordinary pointers. since a particular relative pointer in general makes sense only 
relative to a particular base value. but the type system allows it to be used with any base value of 
the proper base type. 

In other respects. a base pointer is like an ordinary pointer: indeed. it is a subclass of pointer. Thus. 
it has a target type of its own. and can be dereferenced to yield a value of that type. This allows it 
to point to a record or other variable at the start of the region. Note that the base pointer's target 
has nothing to do with the range of its APPLY. which is the target of the relative pointer it is applied 
to: unlike other map types. a base pointer has no RANGE of its own. 

A base pointer type implies the corresponding non-base type. and vice versa. 

Representation of base pointers: The APPLY proc is 
A [bp: T, rp: DOMAIN] IN 

LOOPHOLE[LOOPH0LE[bp.LONG, LONG CARDINAL]+ LOOPH0LE[rp.L0NG, LONG CARDINAL]. 
LONG POINTER TO rp.RANGE]t 

if T.TARGET.ISL0NG=TRUE or DOMAIN.ISLONG=TRUE. or the same thing without the LONGS if 
neither is long. 

Anomaly for relative array descriptors: A relative array descriptor (obtained by using a descriptor 
type as the range argument of the type constructor) doesn't quite work this way. since it uses the 
bounds in the descriptor. rather than in TARGET.DOMAIN, to check the subscript. 

4.5 Address types 

46 reITC :: = REF ( varTC40 I ) 
47 listTC :: = LIST ( OF varTC40 I ) 

48 tpointerTC:: = ?LONG ?ORDERED ?•BASE 
POINTER ?•subrange25 (TO varTC40 I ) I 

•POINTER TO FRAME [ n] 
Subrange only in a relativeTC: no typeName37 on it. 

MKREF[target~( varTC I ANY)] 
MKLIST[range~( varTC I REF ANY)] 

MKP0INTER[target~( varTC I UNSPECIFIED). 
subrange~subrange] I 

n 

49 •trelativeT~ :: = type_Name37 RELATIVE t MKRELATIVE[range~t. baseType~typeName] 
t must be a pomter or descnptor type. type Name a base pointer type. 

Examples 

ROText: TYPE~REF READONL y TEXT: 
RL: TYPE~ LIST OF REF REAOONL Y ANY: rl:RL: 

-- NARROW[rl.first. ROText]t is a 
-- REAOONLY TEXT (or error). 

UnsafeHandle: TYPE~L0NG POINTER TO Vec44: 

Address is a subclass of assignable (§ 4.3.2) and of hasNIL (§ 4.3.7). It has no items of its own. An 
address value is the address of a variable. i.e .. of a block of storage. 



Sto!age i~ a precious re~ource which must be reclaimed when it is no longer needed. i.e .. when the 
vanable_ 1t represe~ts will no l?nger be touched by the program. Cedar provides safe storage which 
does this reclamation automat1ca1ly. and unsafe storage which must be reclaimed explicitly by the 
program. A checked program (§ 3.4.4) deals only with safe storage. and need not be concerned with 
how storage is reclaimed. or how things can go wrong. except for one point discussed in the next 
paragraph. If you write only checked programs. you can skip to § 4.5.1. An unchecked program 
must maintain the safety invariants. in order to ensure that the Cedar system continues to function. 
These invariants are given in the remainder of this sub-section. 

Cedar has two garbage collectors for reclaiming safe storage. The incremental collector runs 
continuously and reclaims storage without stopping other computations for more than a few 
milliseconds at a time. The trace-and-sweep collector runs only when invoked. and stops other 
computations for many seconds. The disadvantage of the incremental collector is that it cannot 
reclaim a cyclic structure. even if that structure can no longer be reached by the program. 
Therefore. a production program. especially a real-time or interactive one. should break the cycles 
in its structures when they are no longer needed. The package finalization mechanism is often 
helpful in doing this. It and other features of Cedar safe storage are described in the SafeStorage 
interface. 

Anomaly in garbage collection: It is possible that an unreachable variable will not be reclaimed 
because it appears to be pointed to by some double-word quantity in a frame which is not actually 
a REF. This can happen because the collectors cannot tell which double-words in a frame are REFS. 
and hence proceed conservatively. 

Definitions 

To state the safety invariants. we need some definitions. 

A safe variable (SY for short) is a frame or a counted variable. i.e .. one allocated by z.NEW. where z 
is a ZONE (§ 4.5.2). A safe reference (SR for short) is a transfer or REF value. A SR is the only 
legitimate way of addressing a SY. and furthermore. a SR can legitimately only be stored in a SY. 
A reference-containing type (RC for short) is a SR type. or a composite type with a RC component. 

A SY is reachable if: 

it is the process array or. in current Cedar. the global frame of a module. 

or a SR which points to it is stored in some reachable SY. 

The collector tries to reclaim safe storage when it is no longer reachable. 

A SY vis good if: 

It overlaps no variable of another type. 

If its VALUE type is RC. then v.VALUEOF is good. 

A SR is good if it points to a good SY of the proper type. or is NIL A composite RC value is good 
if each of its RC components is good. 

The idea is that if: 

new address values are generated only by NEW or frame allocation. and 

these allocators always return an SR which is the address of a SY that doesn't overlap any 
other SY. and 

SR values never get damaged or mistyped. 

then by keeping track of the SRs the collector can know about all possible ways of reaching an SY. 
If there are no ways. the SY can be freed. 



For the purpose of this analysis. we assume that every value is hel? in some variable: the fact that 
some values are constant is not important here. Storage can be modified only by an ASSIGN proc ~or 
some variable. Hence the behavior of ASSIGN determines how values. can change. A ~ompos1te 
variable (§ 4.3.4) is made up of other variables: in Cedar record, umon and row vanables are 
composite. ASSIGN for a composite variable is simply a sequence_ of ASSIGNS for the components. 
Therefore the remaining analysis considers only non-composite vanables. 

Safe storage main invariants 

Cedar safe storage depends on three invariants. These in turn depend on some local invariants (L~­
L4). and some properties of the Cedar primitives (Pl-P3) given below. The proofs of the mam 
invariants follow these definitions. 

Sl) Every SV is good. 

S2) Every SR is good. 

S3) A SV is not freed if there is an SR for it in some other SY. 

local invariants 

Ll) No variable of another type overlaps an existing SY. The allocator ensures that no SV will do 
so. because NEW[t) returns the address of a block of at least T.SIZE words. none of which is part of 
an existing SY. Similarly, applying a closure allocates a block of unused words at least as large as 
the frame. Unchecked code must ensure this for other variables. 

L2) Assignment to a SY works. and is type-correct: the value being assigned has the VALUE type of 
the SV. and the assignment leaves it as the value of the SV (Pl). Unchecked code must ensure that 
only a SR of the proper type is assigned to a SV. In particular. it must not produce a SR value out 
of thin air. unless it is known that there is an equal existing reachable SR value. 

L3) A counted SV is reached only through a REF: the allocator which creates a counted SY returns 
only a REF to it There is no safe operation for obtaining a counted SV except from a REF. 
Unchecked code must not produce a counted SV except from a REF. 

L4) An SR which points to a frame (i.e .. a transfer SR) is stored only in a frame which is freed 
first. A checked assignment cannot assign a transfer SR unless it points to a global frame. which is 
never freed (except by an unsafe operation): when a SR is bound to a name. it must be from the 
same or a larger scope. Unchecked code must not preserve a transfer SR after its frame has been 
freed 

Primitive properties 

Pl) ASSIGN(to~SV. from~SR) leaves SV.VALUEOF=SR and affects no other non-overlapping variable. 
If SV is counted (i.e .. came from dereferencing a REF) it updates the count correctly. 

P2) The collector does not free a counted SV holding a SR until the value of the SR is NIL. 

P3) The collector does not free a SY until no SR on the stack points to it and it has a zero 
reference count 

P4) A SR is stored only in a SY. 

Proof of main invariants 

Sl) Every SV vis good. Proof by induction. 
Basis: A SY is good when created by NEW. 
Induction: There are three ways v might cease to be good: 

Another variable might come to overlap it. but this doesn·t happen (Ll). 



If v.VALUEOF is SR. it might change: 
By assignme~t to it, but ASSIGN replaces the value in v with another SR value (L2). and this 
other value 1s good (S2). 

By an assignment to some other variable which clobbers v, but no variable of another type 
overlaps ~ (Sl). ~nd ~o assignment to a non-overlapping variable can clobber v (Pl). 

If v.VALUEOF 1s SR. 1t might cease to be good. but it points to a good SV (S2) which remains good 
(Sl). 

S2) Every SR is good. Proof by induction. 
Basis: !he values produced by NEW and by applying a closure are good. 
Ind~ctton: the ot_her_source ofSRs is SVs (P4). and these are good (Sl). Furthermore. an SV for 
which an SR exists 1s not freed (S3). so the SR remains good. 

S3) A SV v is not freed if there is an SR for it. Proof by case analysis. 
A) Not by the reference counting garbage collector, because: 

This collector frees v only if no SR on the stack points to it. and it has a zero reference count 
(P3). 

An SR can be stored only in a SV. i.e .. on the stack or in a counted SV (P4). 
The number of SRs pointing to v in counted SVs is equal to the reference count for v. by 
induction: 
'Basis: Both start at zero. 
Induction: There are three ways the number of counted SRs pointing to v can change: 

ASSIGN to a counted SV. which updates the count correctly. because a counted SV is 
reached only through a REF (L3). and any assignment through a REF updates the count 
correctly (Pl). 

ASSIGN to some variable w of another type. but vis good. hence overlaps no variable of 
another type (Sl). hence is not affected by ASSIGN to w (Pl). 

Freeing a counted SV. but it is not freed until its value is NIL (P2). 
B) Not by the trace-and-sweep garbage collector, because: 

It implements the definition of reachability. Note that the collector sets SRs for unreachable SVs 
to NIL. thus breaking circular structures. 

C) Not by the frame deallocator~ because: 
A frame is either pennanent (a global frame). or an SR which points to it is stored only in a 
frame which is freed first (L4). 

It is possible to obtain a variable without going through a SR value by using an unsafe pointer­
containing type (PC for short). The non-composite PC types are: 

pointer (which includes POINTER TO FRAME. string and uncounted zone): 
descriptor: 

A program which obtains a variable from a PC value (by dereferencing a pointer. applying a string 
or descriptor. or using NEW or FREE for an uncounted zone) must maintain the safety invariants Ll­
L4. 

4.5.1 Reference types 

This class is a subclass of address (§ 4.5) and has the items: 
TARGET: VARIABLE.Type -- Always a variable type. 
DEREFERENCE: PROC[r: 71--.[T.TARGET] -- Denoted by rt 
APPLY: PROC[r. T. arg: T.TARGET.DOMAIN]--. -- Inherited from the target type if it has APPLY. 

[T.TARGET.RANGE] 
f. PROC[r: T, arg: T.TARGET./DOMAIN]--. 

[T.TARGET J.RANGE] 
-- Inherited from the target type for each proc/ 

in its cluster: see below. 

The target of a reference type T may be any variable type VAR U or REAOONLY U. If T is 
READONLY, then T.TARGET is READONLY also: this means that assignment to the dereferenced 
address is impossible. Dereferencing a T yields a VAR U (which can then be coerced to a U value if 
appropriate). Dereferencing NIL causes the error Runtime.PointerFault. 



If the target has an APPLY. DESCRIPTOR. WAIT. NOTIFY or BROADCAST proc. _or an~ rec?rd field 
procs in its cluster. these are inherited by the reference type (except th~t AP~LY is_ not mhented by a 
BASE POINTER. which has its own APPLY: see § 4.4.3). The value of an mhented f lS 

A [r: T. arg: T.TARGET.f.DOMAIN] IN rt.f[arg) . . . . 
In other words. the address is dereferenced. and then the targets f 1s apphed. The effect ts that a 
reference to an array or proc can be applied without explicit dereferencing, a reference to an array 
can be turned into a descriptor. a reference to a condition can be used to do a WAIT or whatever. 
and a reference to a record can be used to select a field. 

Procs which get into a cluster by being in an interface instance are also inherited in this way. but 
this is not useful, since they are not modified to dereference their reference argument: this is a 
deficiency. To compensate for this. you can define such procs to take a REF T. so they will be 
useful when inherited from T.Cluster to (REF n.ctuster. 

4.5.J A REF types 

The REF class is a subclass of reference (§ 4.5.1) and has no additional items. A REF value can be 
safely created only by a NEW proc. Every general type except union has one of these (§ 4.3.1). 

The type VAR ANY may be the target of a REF: it cannot appear anywhere else. This REF type is 
denoted REF ANY. or simply REF. It is implied by every REF type. ISTYPE can be used to test the 
particular REF type of a REF ANY value. and NARROW can be used to convert a REF ANY value into 
a REF T value (§ 4.3.1). These two operations are combined in a convenient way by safeSelect32 
(§ 3.8). REF ANY does not have a DEREFERENCE proc. and of course there are no procs for it to 
inherit from the target. 

LIST types 

The LIST class is a subclass of REF. and has items: 
RANGE: VARIABLE.Type: -- Always a variable type. 
first: PROC[/: 7l-+[RANGE]: -- Denoted I.first. notfirst(l] 
rest: PROC[/: 7)-+[71: -- Denoted I.rest. not rest[/] 
CONS: PROC[z: ZONE+-SafeStorage.GetSystemZone(]. -- Denoted z.CONS[x. y] or CONS[x. y). 

x: RANGE. y: 7l-+[7) 
LIST: PROC[z: ZONE+-SafeStorage.GetSystemZone[], -- Denoted z.LIST gor LIST g. 

g: RANGE X ... ]-+[7) 

The TARGET type R of a list type T is opaque, but it may be thought of as an unpainted record 
[first: RANGE, rest: 11: thus a list value is a REF to an R. The first and rest procs return the fields of 
an R. LIST is short for LIST OF REF ANY. 

CONS is NEW[R+-[x. y]]: the optional zone tells where to do the NEW. LIST does a series of CONSes 
yielding a list such that • 

LIST[x0, •..• xJ.resl.first= xi 
Note that the g argument of LIST may have omitted values, which are filled in if possible by the 
defaulting coercion for RANGE. Examples: 

/: TYPE~INT~0 
L: TYPE~LIST OF/~ 
/: L~LIST[0. 1, 2. 3. 4): 
m: L~LIST[ . L 2. 3. 4]: -- Same as/, by defaulting. 



The type ATOM 

An ATOM is a REF to an opaque type which is exported from AtomsPrivate as 
AtomRec: TYPE~REC0RD[ 

printName: Rope.ROPE. 
property list: REF A NY +-NIL. 
link: A TOM +-NIL] 

There_ are no add!tional items in ATOM's cluster: the useful operations on ATOMS are provided by 
the l1stsAndAtoms mterface. However. the language does provide A TOM literals for atoms which have 
Cedar names as their printnames. with the syntax $n. Examples: 

$red 
$VeryLongAtomMadeUpOfSeveralWords 

There is a coercion from ATOM to any enumerated type: see § 4.7.lA. 

Anomaly for space in ATOM literals: You cannot put white space between the $ and the name in an 
ATOM literal. In return. the name may be a reserved word. 

4.5./ B tPointer types 

Pointer is a subclass of reference (§ 4.5.1). There are two flavors of pointer: short and long. Short 
pointers occupy one word. and point only within the 64k word main data space where frames are 
allocated. Long pointers occupy two words and point anywhere. 

Pointer dereferencing is unsafe; hence all the inherited procs are also unsafe. Dereferencing a 
pointer may cause an address fault if it points to storage which is not mapped by the operating 
system; this is about the least disastrous thing that can happen if an unsuitable value gets into a 
pointer. 

Long pointer types have the following dubious items: 
•PLUS: PROC[T. LONG INTEGER]-.[71 -- Denoted by infix +. 
•MINUS: PROC[T. LONG INTEGER]-.[7] -- Denoted by infix - . 
•DIFF: PROC[T. 71-.[LONG INTEGER] -- Also denoted by infix - . 

Anomaly for MINUS on pointers: The infix " - " cannot be desugared into dot notation. since there 
are two procs denoted by an infix 11 

-

11 whose first argument is a pointer. The choice between 
MINUS and DIFF is based on the type of the second argument. 

Short pointer types have the same procs without the LONG. They also have the following coercion. 
called lengthening: 

LONG: PROC(p: 7l-.[LONG POINTER TO TARGET] 

Note that VAR types have a VARTOP0INTER proc (denoted by prefix @); this turns a VAR T into a 
LONG POINTER TO T. 

Anomaly for narrowing to a short pointer. The VART0P0INTER and BASE primitives turn a variable 
into a LONG POINTER. If the compiler can determine that the variable is in the main data space. 
then an application of one of these primitives can be narrowed into a POINTER. This is done 
statically: if an error is possible it is reported by the compiler. even though the actual narrowing 
might have been successful. 

The subrange in pointerTC48 is only for a pointer type used as the range argument of RELATIVE 
(§ 4.5.4). 



4.5.2 Zone types 

The zone class is a subclass of address (§ 4.5) and has the items: 
NEWTYPE: PROC[U: TYPE]-+[A: REFERENCE]: 
NEW: PROC[z: T. U: TYPE]-+[,: NEWTYPE[V]]: 
FREE: PROC[z: T. p: VAR NEWTYPE[U]]-+0: -- For a ZONE. 
FREE: UNSAFE PROC[z: T. -- For an uncounted zone. 

p: NEWTYPE[ NEWTYPE[ U]]]-+ 0: 

Currently there are exactly three zone types: 

ZO'.'lE. with NEWTYPE=A [U: TYPE] IN MKREF[target~U]. which implies REF. 

UNCOUNTED ZONE. with NEWTYPE = A [ U: TYPE] IN MKPOINTER[target~ U. /ong~TRUE]. which 
implies LONG POINTER. 

MDSZone. with NEWTYPE= A [U: TYPE] IN MKPOINTER[target~U. /ong~FALSE]._ which implies 
POINTER. 

In other words. a ZONE deals in REFS, an UNCOUNTED ZONE in LONG POINTERS. and an MDSZone 
in POINTERS. The latter two are called uncounted zone types. 

NEW is explained in § 4.3.1. FREE takes a pointer p to a variable v containing a reference r to a 
variable Jv. For a ZONE. the expression denoting p must have the form @v. In spite of appearances. 
this is safe: think of v as a VAR parameter to FREE, and the @ as indicating in the application that 
it is modified. For example. 

{ v: REF~NEW[INTI; FREE[@v] } 
The reference r must be supplied by the NEW proc of the same zone: this is checked for a ZONE. 
FREE sets v to NIL. In addition: 

For a ZONE. FREE sets all the REF variables of fv to NIL: this helps to break circular 
structures. but only the collector actually reclaims storage. Hence FREE for a ZONE is safe. 

For an uncounted zone. FREE reclaims the storage for fv by calling the Dea/foe proc of the 
zone (see below): hence FREE is unsafe for an uncounted zone; the safety invariant 
demands that FREE not be called with a pointer unless the variable will not be used any 
more. It is best if no other pointers to fv exist. 

New zones can be obtained. and other aspects of storage allocation monitored and controlled. using 
the procs in SafeStorage (for ZONES) or UnsafeStorage (for uncounted zones). lt is also possible. 
though not recommended. to make up your own UNCOUNTED ZONE using a type like this: 

UncountedZoneRep: TYPE~LONG POINTER TO MACHINE DEPENDENT RECORD [ 
procs (0: 0 . .31): LONG POINTER TO MACHINE DEPENDENT RECORD [ 

Aflac (0): PROC[zone: UncountedZoneRep. size: CARDINAL]-+[LONG POINTER]. 
Dea/foe (1): PROC[zone: UncountedZoneRep. object: LONG POINTER] 
-- possibly followed by other fields--]. 

data (2: 0 .. 31): LONG POINTER -- Optional: see below 
-- possibly followed by other fields--]: 

The same structure serves for a M DSZone. with all the LONGS dropped and the field pos1t1ons 
adjusted accordingly. You must use a LOOPHOLE to turn one of these Rep values into an uncounted 
zone value. 

If z is an uncounted zone. the code generated for z.NEW[T] is 
zt .procst .A/lac[ z. T.SIZE] 

and the code generated for z.FREE[p] is 
{temp: LONG POINTER~pt: pt+-NJL: zt.procst.Dealloc(z. temp]} 

Usually p is @q. for some variable q which holds the pointer being freed. 

Within this framework. you may design a representation of zone objects appropriate for your 
storage manager. In general. you should create an instance of a UncountedZoneRep for each zone 
instance. The procs record can be shared by all zones with the same implementation: the data 
pointer normally references the state information for a particular zone. 



•4.5.3 POINTER TO FRAME types 

This class contains the types of the frames of instances of implementation modules (§ 3.3.5). It is a 
subclass of address. and has the items: 

FRAME: TYPE -- POINTER TO FRAME[/].FRAME = /. 
FROMIMPLINST: PROC[FRAME]-+[7] -- Coercion from FRAME to r. 
COPYIMPLINST: PROC[i: 71-+[7] -- Returns a copy of the module instance i. 

Denoted NEW i. 
TOPROGRAM: PROC[7]-+FRAME.PROGRAMPROC -- Coercion from Tto the program proc 

for the instance. 
In addition. T has a field proc for each value in the frame. 

Note that there are coercions from an imported module instance II: I to the corresponding POINTER 
TO FRAME, and from the latter to the program proc for the frame. You can get a POINTER TO 
FRAME[/] value from an imported implementation using the first coercion. or from NEW PF. where 
PF is an existing POINTER TO FRAME[/] value (an application of COPYIMPLINST). 

4.5.4 RELATIVE types 

Sometimes it is convenient to have addresses which are relative to the base of some region. Such 
pointers can be shorter than ordinary pointers. Also, the entire collection of variables in the region 
can be moved in storage simply by changing the base; in fact. it can be written out and later read 
in to a possibly different place. and any relative pointers stored in it will still be valid. Cedar 
provides some (unsafe) support for this facility. in the form of RELATIVE types. A RELATIVE type 
has a target type which plays the same role as the target type in an ordinary pointer. The analogy to 
dereferencing a pointer is applying a base pointer to the relative pointer. The RELATIVE class has no 
DEREFERENCE or APPL y proc. The only useful thing to do with a RELATIVE value is to apply a 
suitable BASE POINTER to it (§ 4.4.3). 

Relative is a subclass of address (§ 4.5) and has items: 
BASE: TYPE; --The type of the base pointer. 
SUBRANGE: SUBRANGE.Type --The subrange type; only for pointers. 
TARGET: TYPE: -- If b: BASE and rp: Tthen b[rp] has type TARGET. 

A relativeTC takes a pointer or descriptor type as its range argument. The TARGET of the RELATIVE 
type is the TARGET of the range. To indicate the desired size of a RELATIVE POINTER value. the type 
constructor for the range pointer type can specify a subrange of CARDINAL. There are coercions 
between RELA TIYE POINTER types which differ only in their subranges; these are just like the 
coercions between subranges of CARDINAL(§ 4.7.3). 



4.6 Record and union types 

50 record TC :: = ?access12 ( 
?MON I TO RED RECORD fields43 I 
:i: MACHINE DEPENDENT RECORD 

(mdFields I •fields 43)) 
51 :j:mdFields :: = [( (n pos). ! .. : --In 50. 52. 

?•access12 t) .... ] 
51.1:I:pos :: = ( e

1 
?(: e2 .. e3)} -- In 51. 53. 

52 union TC :: = SELECT tag FROM 
(n .... = > (fields43 l mdFields51 I •NULL)) ..•• 
?. ENDCASE 

Legal only as last type in a recordTC or union TC. 
53 tag::= (n (:j:possu I) : ?•access12 I 

*tCOMPUTED I *tOVERLAID) (t I*) 
In 44. 52. • only in unionTC52. 

Examples 

Cell: TYPE~RECORD[next: REF Cell. val: ATOM]: 
Status: TYPE~MACHINE DEPENDENT RECORD [ 

channel (0: 8 .. 10): [O .. nChannels). 
device (0: 0 .. 3): DeviceNumber. 
stopCode (0: 11..15): Color. fill (0: 4 .. 7): BOOL, 
command (1: 0 .. 31): ChannelCommand ]: 

MKRECORD[ fields) I 

MKMDRECORD[mdFields I fields] 
MKMDFIELDS[LIST[ ( LIST[ ([$n. pos] ) .... ] . t ) .•.• ] ] 

MKPOSITION[firstWord~el. firstBit~er last8it~e3] 

MKUNION[selector~tag. variants~LIST[ 
( [ labels~ LIST[ $n . ... ]. value~fields] ) .... ]] 

[ ( [ $n. (pos I NIL)] I $COMPUTED' I $OVERLAID'). 
( t I TYPEFROMLABELS ) ] 

-- Don't omit the field positions. 
-- nChannels < 8. 
-- DeviceNumber held in < 4 bits. 
-- No gaps allowed. but any ordering OK. 
-- Bit numbers > 16 OK: fields can cross 
-- word boundaries only if word-aligned. 

Node: TYPE~MACHINE DEPENDENT RECORD [ -- rands is a union or variant part. 
type (0: 0 . .15): Typelndex. rator (1: 0 .. 13): Op54• -- This is the common part. 
rands (1: 14 .. 79): SELECT n (1: 14 .. 15): * FROM -- Both union and tag have pos. 

nonary = >0. -- Type of n is {nonary. unary, binary}. 
unary= >[a (1: 16..47): REF Node]. -- Can use same name in several variants. 
binary= >[a (1:16 . .47). b(l:48 .. 79): REF Node] -- At least one variant must fill 1: 14 .. 79. 
ENDCASE ]; 

Record types are Cedar's facility for grouping values of different types (since group and binding 
types cannot be named or written in ordinary declarations). Unions are closely related to records 
because they must be embedded within records in current Cedar. 

4.6.l Record types 

RECORD is a subclass of assignable (§ 4.3.2). or of general (§ 4.3.1) if any component is not 
assignable. The MKRECORD type constructor takes one argument called fields: a declaration or group 
ofTYPEs: in the latter case. it is rebound to a decl with secret names. If fields=h: T1. n2: Tr .... nk: 

T). MKRECORD produces a type with items: 

n .: PROC[7l--+ T. -- One for each name in the decl. 
I I 

FIELDS: DECL 
CONS: PR0C[b: FIELDS]--+[71 -- Apply by r b; a coercion from the binding. 
UNCONS: PROC[7l--+[FIELDS] -- No denotation; a coercion to the binding. 
UNWRAP: PR0C[71--+[ U] -- If fields= [n: U]. i.e. for a single-component record 

Nameless fields are not very useful. since there is no way to name the field procs. The values of the 
ni procs are not accessible: they can only be applied with dot notation. Thus if r is a record value. 
r.n. denotes its ,th field. 

I 



A re~ord type T with a single component of type U inherits all of lls cluster. There is also a 
coercion UNWRAP from T to U. The effect is that a T value behaves just like a u value but not vice 
versa. • 

A variant record inherits some procs from the sequence or union type it contains (§ 4.4.28. § 4.6.2). 

If v is a YAR U r~turned b~ a field proc. you can only apply @ to it if U.SIZE) 1. or lls 
representatmn oc~up1es an enttre word. or by accident i• happens to occupy a whole word in the 
record representatmn. 

Record types in interfaces are painted: each type produced by RECORD[ ... ] (i.e .. by MKRECORD or 
~KMD~ECORD) in an interface has a unique mark. Thus two occurrences of a record type constructor 
m an interface always produce two different types. In this respect, recordTCs are like unionTCs and 
enumerationTCs, and differ from all other type constructors. In a program module. however. record 
types are not painted (unless they are machine-dependent or union-containing: this is a deficiency. 
and these should not be painted either in this context). The reason is to ensure that-old values will 
still be useful after module replacement. Since painting is the only way to generate unique marks. it 
is the only way that an implementation can guarantee that its types cannot be forged. In practice. 
however. the protection afforded by opaque types(§ 4.3.4) is usually adequate. 

Representation of records: A record variable is represented by a contiguous block of storage. in 
which the bits representing each field are contiguous and do not cross a word boundary unless they 
fill a block of words. but are otherwise arranged at the discretion of the compiler. It is not possible 
to obtain a REF to a record element; this is because the implementation of both reference counting 
and REF ANY discrimination requires more infonnation about each VAR than is available for a 
record field. Unless a field fills one or more words, it is not possible to obtain a pointer to the field 
either ( using @): this is because pointers point to words. 

Restriction on record sizes: A record type T must have T.SIZE(2 12. 

A MACHINE DEPENDENT RECORD type constructor can specify the exact arrangement of the fields in 
a record. using the syntax of rules 51-53. Examples are given with the rules. Fields must be 
arranged according to the following constraints. 

A pos51.l ( w) for a field with type U means that the field occupies words w through 
w+ U.SIZE, which are bits 16w through 16.--(w+ U.SIZE)-1, of the record variable: ( w: f.l) 
means that it occupies bits 16w+ / through 16w+ / inclusive (05:f~l is required: there is no 
upper bound on {). Like everything else in a type constructor. all of w. f and I must be 
static. 

The pos must be large enough to hold a variable of the field type U: if U.SIZE) 1. it must 
exactly fill U.SIZE words: if U.SIZE= 1 and U is represented in less than 16 bits (possible for 
a discrete. row. or record type). it need only be as large as the representation. but may not 
cross a word boundary. Union fields are treated specially (§ 4.6.3). 

If there is a union field. the subfields of at least one case must exactly fill the pos specified 
for the union field. 

Fields may not overlap. and if they fill at least one word. they together must completely fi11 
an integral number of words. The order of fields is not important. except that any variant 
part must come last both in the layout and in the constructor. 

If any field has a pos. each must have one. A machine dependent record may have no pos. 
In this case. the fields are arranged consecutively. and the constructor must be such that 
that the rules about word alignment and boundary crossing are not violated by this 
arrangement: this may require the presence of dummy fields which fill out unused space. 

Note that a pos is really explicit code for the field proc. written in a rather restrictive special 
language. 



4.6.2 Variant record types 

There are two classes. unions (§ 4.6.3) and sequences {§ 4.4.2B). whose typ~s are not first-class type 
values. but can only appear as the type of the las~ field of a r~cord o~ umon. A record whose las~ 
field is one of these types is a variant record. and 1~ last field 1_s a. vanant field. The other _propert)_ 
shared by a union and a sequence type _is t~at e?ch 1s a gene~ahzat1on of a number of special cases. 
there is a single value called the tag which identifies the special case. 

For a union. the special cases are unrelated. and the tag is a value from an enumeration. 

For a sequence. the special cases are rows of different length. and the tag is a value from 
the row's domain .. 

The tag53 is treated as a field of the conta~ning variant record: This ~eld is readonly. tF?r a u~ion 
it can be changed only by an unsafe assignment to the entire vanant part or the entire vanant 
record. There is no way to change the tag field of a sequence. t A tag o_f COMPUTED or oyER~AID 
means that there is no tag field: instead. the tag value must be supplied by an e_xpres~ion m a 
withSelect34 when it is needed for specialization. Tags of * and OVERLAID are only for umons. and 
are explained in § 4.6.3. 

The cluster of a variant record has the items: 
The usual procs for the record fields (including the variant field itself. and the tag). and any items 

inherited by the record type. 
For a union. the types of the bound variants: T.n= T.SPECIALIZE[$n]. 
TAG TYPE: TYPE -- The type of the tag. 
TAG: TAGTYPE~ -- Another proc for the tag field. 
VARIANTTYPE: TYPE --The (union or sequence) type of the variant field. 
VARIANTPART: PROC[7]-+[VARIANTTYPE] -- Another proc for the variant field. 
SPECIALIZE: PROC[x: TAGTYPE]-+[BT: TYPE] -- BT is a bound variant of r, denoted 7{x] for a 

sequence-containing variant record type. 

Specialization yields a record type called a bound variant in which the type of the variant field is 
one of the special cases of the union or sequence. The bound variant differs by: 

GENERAL: TYPE --The type of the unbound variant record. 
lacking SPECIALIZE. 
a readonly tag field. 
for a union: 

VARIANTTYPE equal to the corresponding case. 
procs inherited from the corresponding case. 

Note that if the special case is itself a union or sequence. the bound variant is still a variant record: 
otherwise it is an ordinary record. A bound variant of a union-containing variant record is denoted 
T.n. since the bound variant types are in the cluster of the variant record type (•alternate. obsolete 
notations are 7{n] or n n. A bound variant of a sequence-containing variant record is denoted 7{e]. 

Anomaly for equality of variants: A variant record type has EQUAL only if it does not have a 
SEQUENCE field. and for any two tag values a and b. r.a.SIZE= T.b.SIZE. Even if not all sizes are 
equal. the bound variants have an EQUAL which takes the variant record as its second argument: 
hence bv= v is always correct. 

The special properties of the subclasses of variant records are given in the sections on unions 
(§ 4.6.3) and sequences (§ 4.4.2B). 

4.6.3 Union types 

Together with REF ANY, union types provide Cedar's facilities for associating a type T with a class 
which contains subtypes T1, ...• Tn. and dynamically narrowing a value of type T into a value of the 
proper type Tr REF ANY is more convenient: 

Any REF Tis a subtype of REF ANY; no pre-planning of the subtypes is required. 



REF T implies REF ANY; hence procs taking REF ANY accept any REF r without further ado. 
Union types. on the other hand. have perfonnance advantages: 

A union type is just a value. not constrained to be a REF. These values or their VARS can be 
embedded in records or arrays without paying for extra storage allocation or an extra level 
of indirection. 

The subtype of a union type can be discriminated somewhat faster than a REF ANY. 

Union types can therefore be recommended when perfonnance tuning is required. 

Like record. union is a subclass of assignable (§ 4.3.2). or of general (§ 4.3.1) if it has an 
~n~ssignable component. Assignment to a union is unsafe. A union type is defined by a unionTC52: 
It IS not a first-class type in Cedar, and can only appear as the type of the last field of a variant 
record (§ 4.6.2) or another union. A union type has items: 

the types of the union cases. named by their tags-thus case n of union type Tis denoted by T.n: 
CONS ( see below). 

The types and tag are inherited by the containing variant record. which is the type a program 
nonnally deals with. Note that a union type is always painted (although it shouldn't be painted in 
an implementation). 

A case of the union has items: 
the field procs for its fields: 
GENERAL: TYPE --The union type of which this is a case. 

These are inherited by the containing bound variant record in the obvious way. 

The cases of the union are given by the anns of the SELECT. The type of the tag must be an 
enumeration. and each case is named by one or more literals of the enumeration. Thus Node in the 
example has cases binary. unary and nonary. and the type of the tag could have been written { binary. 
unary. nonary}. The * which actually appears for the tag type is short for an enumTC54 which lists 
all the names preceding the = > symbols of the SELECT in tum. If the tag type is given explicitly. 
any enumeration values which don't appear preceding a = > symbol have empty cases. 

A record type T containing a union field is a variant record. T is a first-class type which can be 
used like any other Cedar type. The only items in the cluster of Tare the ones of the variant record 
class. The fields of the union cases are not in the cluster of the variant However. the fields of the 
selected case in a bound variant are in the cluster (e.g .. in the example Node.binary has procs for a 
and b). The name declared in a field must not be the same as any name declared in the containing 
record. However. the same name may be declared in more than one case of the union. •NULL 
following = > is an obsolete synonym for O. 

Anomaly for union constructors: A constructor for a union value has the fonn a[ ... ]. where a is one 
of the enumeration literals of the tag type. and [ ... ] is an ordinary argBinding27 for the fields of case 
a. The literal a may not be omitted. Thus 

n: Node+-[rator~plus. rands~binal}{a~NIL. b~NIL]] 
and also 

n: Node.binary+-[rator~plus. rands~binary{a~NIL. b~NIL]] 

Anomaly for union values: If n is the name of the variant field. and ,: T. r.n is legal only as the first 
operand of+-. In all other cases. only a constructor can denote a union value. 

The primitive ISTYPE can be used to distinguish the case of a union-containing variant record value 
x. and NARROW can be used to obtain a value bx of the bound variant type from x; see § 4.3.1. The 
safeSelect32 construct is a useful and efficient combination of ISTYPE and NARROW which deals 
systematically with any number of cases. The withSelect34 construct is an unsafe version of 
safeSelect which can be used with any union type. and is the only alternative when the tag is 
COMPUTED or OVERLAID. See § 3.8 for discussion of these fonns. 



If the tag is OVERLAID. any field name that appea~ in ex~ctly one case of the u~ion has a _proc in 
the cluster of the variant record. When such a proc 1s apphed to a val~e. x. there ts no _checking that 
x is the proper case of the union. tObviously this is not typesafe. and 1t 1s also unsafe m general. 

A union u has machine-dependent fields if and only if its contain_ing record type R is machine­
dependent. u must be last both in the fields and in the representation. Its pos mclu~es the tag. It 
need not be word-aligned. though its tag and each field in each case must obey the ahgnment r~les 
for record fields (§ 4.6.1). If R's representation is <16 bits in size. all cases must be the same size. 
Otherwise. all cases of R must be a multiple of 16 bits in size. and at least one case of U must 
exactly fill the space given by the pos for U. 

4. 7 Ordered types 

Ordered types can be compared. and they have subranges. The subclasses of ordered are discrete. 
numeric. pointer. and subrange. Ordered is a subclass of assignable (§ 4.3.2). and has items: 

LESS: PR0C[T. 71--+[B00L]: -- Apply by infix<. See rules 19. 22. 
GREATER: PR0C[T. 71--+[BO0L]: -- Apply by infix>. See rules 19. 22. 
MAX: PR0C[T+-T.FIRST, ... ]--+(7t -- Apply by MAX[x. y, ... ]. 
MIN: PR0C[T+-T.LAST, ... ]--+[n -- Apply by MIN[x, y, ... ]. 

All these procs do just what you expect. MAX and MIN accept more arguments than you have the 
patience to write. Pointers have these procs only if 0RDERED=TRUE. 

The class also has items: 
SUBRANGE: CLASS: --The class of subrange types of T. 
MKSUBRANGE: PROC[first. last: 7]--+[SUBRANGE]: -- See rule 25 for denotations. 
MKEMPTYSUBRANGE: PROC[first: 71--+[SUBRANGE]--See rule 25 for denotations. 

These are discussed in § 4. 7.3 

4. 7.1 Discrete types 

The discrete types are those which have a useful bijection into an interval of the natural numbers: 
whole numbers an~ enumerations. These are the types that can be used as domains for row types 
(§ 4.4.2). The class ts a subclass of ordered (§ 4.7). and has items: 

FIRST: T 
LAST: T 
PRED: PROC[x: 7]--+[7] 
SUCC: PR0C[x: 7]--+[7] 

-- Predecessor. May cause a bounds fault. 
-- Successor. May cause a bounds fault. 

Whole numbers are discussed in § 4.7.2A as a subclass of numeric. 

4.7.1 A Enumeration types 

S4enumTC ::= { n .... } I 
MACHINE DEPENDENT {( (n I) (e} I n) .... } 

Examples 

Op: TYPE~{plus. minus. times. divide}: 
Color: TYPE~MACHINE DEPENDENT { 

red(O). green, blue(4). (15)}: c: Color: 

MKENUMERATI0N[ LIST[$n .... ] ] I 
MKMDENUMERATI0N[LIST[( [($n I NIL). e] I [$n. -1] ) .... ]] 

-- A Co/or value takes 4 bits: green::l. 

Enumeration is. a subclas~ of discrete (§ 4.7._1). An enumeration type is isomorphic to a [O .. k] 
subrange of the mtegers. without any of the anthmetic operators. The enumeration type T= { n0 • •.... 
n k} has in its cluster: 



FROMATOM: PROC[ATOM]-+[7l 
ORD: [7l-+[INT] 
VAL: [INT]-+[7l 

-- •The value of the first element of T. 
Also denoted 7f n0] 

-- •The value of the last element of T. 

Also denoted 71:nk] 
-- A coercion. The argument must be static. 
-- T.FIRST.SUCCn.ORD= n. 
-- Denote by target typing only. VAL[x.ORDJ= x 

The ATOM to enumeration coercion is done only at compile-time: the effect is that you can write $n. 

rather than T.ni for an enumeration literal anywhere except before a dot (and by desugaring. as th~ 
first operand of an operator). Note that when the n. appear in the type constructor. or as tags in a 

. . I 

vanant record declaration or constructor. they are not expressions: hence this coercion doesn't 
apply. and you can't write $n. in those contexts. 

I 

ORD and VAL convert between T and INT. 

Enumeration types in interfaces are painted: each type produced by { ... } (i.e .. by MKENUMERATION 
or MKMDENUMERATION) in an interface has a unique mark. Thus two occurrences of an enumTC 
always produce two different types unless both are in implementations and are textually identical. In 
this respect. enumTCs are like recordTCs and unionTCs. and differ from all other type constructors. 

•Anomaly for enumeration literals: You can write n. for T.n. in an argument or binding where the 
I I 

desired type is T. In these contexts. even if n. is known in the current scope. it denotes T.n. and not 
I I 

the value it is bound to in the scope. Thus 
Color: TYPE~{red blue. green}: 
red: Color+-Color.blue: 
c: Color.,. red 

leaves c= Color.red. not = Color.blue. In fact, red= red is false! It is best not to redeclare enumeration 
names. Better yet is to always write atoms for enumeration literals. and qualify explicitly with the 
type in the rare cases where this fails because the literal comes before a dot Thus red= $red would 
be false. and $red= red would be illegal. 

Representation of enumerations: The representation of n. in an enumeration type is the same as that 
I 

of the INT i. For a subrange of an enumeration. T.FIRST.succi is represented by i. 

The type BOOL or BOOLEAN 

This is an enumeration type {FALSE. TRUE}: BOOLEAN is a synonym for BOOL. It also has items: 
NOT: PROC[BOOL]-+[BOOL] -- Denoted by prefix NOT or~. 
IFPROC[U: TYPE. test: BOOL, -- Denoted by IF testTHEN "if[rue" 

i[True, ifFalse: PROCO-+[ U]]-+[ U] ELSE" ifFa/se" 
The meaning of "if[rue" and "ifFalse'' is that in the construct 

IF test THEN if[rue ELSE ifFalse 
the ifTrue and ijFalse expressions are converted into parameterless procs and passed to IFPROC. which 
applies the one selected by test. The other one is never applied. so that expression is never 
evaluated. 

Note that AND and OR look like infix operators on Booleans. but have special evaluation rules for 
their arguments, because they are desugared into IF expressions (§ 3.7). The literals TRUE and FALSE 
can always be written without qualification. 



The type CHAR or CHARACTER 

This is an enumeration type which could be written {'\000. ··:· ·\377} if the CHAR literals were 
names: CHARACTER is a synonym for CHAR. CHAR literals are wntten: 

As • c for any character c except \. denoting the 1th CHAR value, where i is the ASCII 
character code for c. 
As '\ddd. where each d is an octal digit. denoting the dddBth CHAR value. 

As '\c for various values of c, denoting the CHAR values for various non-printing or 
otherwise confusing characters (see rule 57). 

•As dddC, denoting the same value as '\ddd (obsolete). 

Note that CHAR literals are not names, and you cannot use any of the notations for enumeration 
literals: CHAR[c/] or CHAR.cl or $cf are not allowed if cl is a CHAR literal. 

CHAR also has the following dubious items: 
•PLUS: PROC[T. INTEGER]-+[7] 
•MINUS: PROC[T. INTEGER]-+[J1 
•DIFF: PROC[T. tj-+[INTEGER] 

-- Denoted by infix +. 
-- Denoted by infix - . 
-- Also denoted by infix - . 

Anomaly for CHAR MINUS: The infix " - " cannot be desugared into dot notation, since there are 
two procs denoted by an infix " - " whose first argument is a CHAR. The choice between MINUS and 
DIFF is based on the type of the second argument. 

4. 7.2 Numeric types 

Numeric types have arithmetic operations. There are no numeric type constructors, only the 
primitive types INT= LONG INTEGER, LONG CARDINAL, INTEGER, CARDINAL and REAL. All except 
REAL are subclasses of whole numbers, corresponding to different finite subsets of the integers, and 
are discrete as well (§ 4.7.1). The class is a subclass of ordered (§ 4.7), and has items: 

PLUS: PROC[T. 7]-+[7] -- Denoted by infix"+". 
MINUS: PROC[T. 7]-+[7] -- Denoted by infix" - ". 
TIMES: PROC[T. 7]-+[7] -- Denoted by infix "*". 
DIVIDE: PROC[T, 7]-+[7] -- Denoted by infix"/". Truncates toward 

ABS: PROC[7]-+[7] 
UMINUS: PROC[7]-+[7] 

4. 7.2A Whole numbers 

O: -(i/j) = ( - i}lj= ii( - j}, except for REAL. 
which normally rounds. 

-- Denoted by prefix " - ". 

This class is a subclass of discrete(§ 4.7.1) and of numeric(§ 4.7.2), and has the item: 
REM: PROC[T, 7]-+[7] -- Denoted by infix MOD. i= l(ilj)+ i MOD j 

Considerable confusion surrounds Cedar's treatment of whole numbers. This section gives a simple 
but somewhat idealized description of how it works. Then it tells you the hard facts: future versions 
of Cedar will adhere more closely to the ideal. and this part will shrink. Finally. it describes various 
obsolete facilities whose use is not recommended. 

In ~eneral, a _whole number type (~xcept _the CARDINAL types) is a subrange of INT. which is 
[-2 1 .. 231). This means that all the anthmet.Ic procs work on INTs. If an argument of such a proc is 
a subrange value, it is coerced to INT (this cannot lose information or cause a fault). and the result 
is coerced to a subrange type if necessary (with a possible Runtime.BoundsFault). An arithmetic proc 
gives a BoundsFault if its result is not an INT (overflow). 



Anomaly in arithmetic: In fact. there are two deficiencies in the implementation: 

1) ~ere is no overflow checking on the numeric procs. except for DIVIDE and REM. which may 
raise an ERROR defined in Jnline. 

2) A subrange with ~2 16 values is called short (currently all subranges have this property. as 
do INTEGER and. NA~). If all arguments are short. the result of an arithmetic proc is 
truncated to 16 btts without notice (even if it is static) This means that the result is always 
IN [ - 2

15 
.. 215

). and_ may ~iffer fr?l!l the correct result by some multiple. of 216. You can 
force proper INT anthmet1c by wntmg at least one argument as x.LONG rather than x. Thus 
the program 

X. y: [0 .. 10000)+-1000: 
z: I NT+-x*y: 
w: INT+-x.LONG*y 

initializes w to 1000000 but z to 16960. Beware. This will also happen if x and y are 
declared as INTEGER or NAT. since these too are short. 

There are several forms of whole number literal. given in rule 57. The radix may be: 

Decimal. the default. or specified by D after the number. 

Octal. specified by B after the number. A sequence of digits without a B is never taken as 
octal. except in a CHAR literal. 

Hexadecimal. specified by H after the number. A hex number may include the letters A 
through F. denoting the hex digits with decimal values 10 through 15. It must start with a 
digit in the range 0 through 9. however. 

The optional number following the radix character is a scale factor. given in decimal; that many 
zeros are tacked on the end of the number. Precisely. 

num1 R num2 = num1 0 R num3 if num3 = num2 -1; 

num1 R O = num1 R 

Note that literals are always non-negative: a static negative value can be obtained by arithmetic: 
e.g .. -1. 

Representation of whole numbers: Short values are represented in one word: other INT values 
require two words. The representation is twos complement. with one more negative than positive 
value. 

Performance of whole numbers: Arithmetic is less efficient on subranges with FIRST¢0 (except for 
INTEGER. which is efficient). Widening a short value to INT is more efficient if FIRST=O. Multiply 
and divide are quite slow when the arguments are not short. Short divide is faster when FIRST=O 
than for INTEGER. 

The interface lnline has inline procedures for doing bit manipulation on numbers. for obtaining the 
quotient and remainder simultaneously. and for doing certain other calculations more efficiently 
than is possible using the procs described above. 

•Cardinal types 

The type LONG CARDINAL has elements in the ran~e [0 .. 232): CARDINAL is the subrange [0 .. 216). 
The arithmetic procs produce answers modulo 23 (or modulo 216 if all arguments are short 
cardinals). Use of these types is not recommended, mainly because there are confusing coercions to 
and from INT. If you program so that these coercions are never invoked. by never mixing 
CARDINAL and INT values. you will avoid these problems: in the future Cedar will not have these 
coercions. and cardinal types will be harmless. 



Anomaly for mixed integer and cardinal arithmetic: •Current Cedar attemI?ts to do_ the "~ight" thing 
when subranges of INT are mixed with sub~anges o! LONG CARDINAL m an anthmet1c proc. by 
supplying various coercions whi~h may lose _mformat1on. Do not use these features (un~ortunately. 
the compiler won't check for their non-use): 1f you need to understand them. consult a wizard. 

4.7.2B The type REAL 

Cedar uses the IEEE standard 32-bit floating point arithmetic for REALS. There are REAL literals wit~ 
syntax given in rule 57: they are round~d to the nearest repres~ntable number. T~e _expone~t. if 
present. indicates the power of 10 by which the number or fraction should be r:nu1t1phed. A hte~al 
that overflows the representation is a static error; one that underflows _ is repla~ed by_ Its 
denonnalized approximation. Note that a REAL literal can begin. but not end. with a decimal poml 

The interface CedarReals has items for handling exceptions that can arise in real arithmetic. for 
changing the rounding modes. etc. 

4. 7.3 Subrange types 

Each discrete type U has a MKSUBRANGE type constructor; its application is denoted by the syntax in 
rule 25. The first and last arguments specify the first and last elements of the subrange: the FIRST 
and LAST items in the subrange cluster have these values. The number of values in the subrange 
type is last- first+ 1. The subrange is empty if last<.first. It is also possible to make an empty 
subrange with first= U.FIRST using the EMPTYSUBRANGE type constructor. You cannot make an 
empty subrange with last= U.FIRST. 

In current Cedar the arguments of MKSUBRANGE must satisfy 
- 215~rst<.2 15 AND (last- first)<216 - 1 AND last<(IF first<O THEN 215 + first ELSE 216

) 

There is a subrange class for each discrete type. which is a subclass of discrete (§ 4.7.1). with the 
items: 

GROUND: TYPE: 

TOGROUND: PROC[x: J1-+[GROUND] 
FROMGROUND: PROC[x: GROUND]-+[J1 

--The type whose MKSUBRANGE or 
EMPTYSUBRANGE proc produced T. 

-- A widening coercion. 
-- A narrowing coercion: may raise 

Runtime.BoundsFault. Apply explicitly by 7{x]. 
Note that there are coercions both to and from the ground type. The fonner cannot lose 
infom1ation or raise an exception. but the latter raises BoundsFault if its argument is not in the 
subrange. ~ubra_nges have their own FIRST. LAST. and ASSIGN items. as well as the items of general. 
1!1ey a~so mhent unchanged all the procs of the ground type with names not in the subrange class 
(mcludmg the MKSUBRANGE and EMPTYSUBRANGE type constructors): these procs still take the same 
arguments. and the coercions make it convenient to apply them to subrange values. There are no 
special arithmetic. or co~pa~son procs for subranges. Note that assigning a value of the ground type 
to a subrange vanable will mvoke the FROMGROUND coercion. with its attendant bounds check. 

Representation of subranges: If Tis a subrange type. T.FIRST is represented by the INT O (except for 
INT~GER. w~ich has O represented by 0). and T.LAST by the INT (T.LAST-T.FIRST+ 1). The number 
of bits reqmred to represent a T value is the n such that 

2n-l((T.LAST-T.FIRST+ 1)~2n 
In current Cedar. a subrange value always fits in one word, because a subrange may not have more 
than 216 values. 



4.8 TYPE types 

All type values have type TYPE. TYPE is no! a general type: it lacks SIZE. NEW and the other general 
p~ocs nearly all. types have. Furthennore. m current Cedar a type can't be passed as a parameter 
with two exceptions: • 

~n interface type parameter can be declared in a DIRECTOR y statement. and the resulting 
interface type c~n be used to declare an interface parameter in an IMPORTS clause. The 
~rgument for this latter parameter is supplied by an implementation which exports the 
mterface type. See § 4.3.5. 

An opaque or exported type can be declared in an interface module. An implementation of 
the interface provides the actual argument See § 4.3.4. 

A type also can't be returned as a result. with two parallel exceptions: 

an interface type is returned by an interface module: 

an exported type is returned by an instance of an implementation. 

The other possible uses of a type value are these: 

A type value appears in a declaration. after a colon: e.g .. i: INT. 

A type value appears as a value bound to a type name: e.g .. T: TYPE~INT. 

Some of the values in the cluster of a primitive type can be denoted by T.n. In general a 
proc cannot be denoted this way, though it is often possible to write x.P[ ... ] to apply the 
primitive P to x and other arguments. 

Certain primitives take type arguments: CODE, DESCRIPTOR. FIRST. ISTYPE. LAST. 
LOOPHOLE. NARROW, NEW, SIZE and a number of type constructors. 

The runtime type system (in the interface AMTypes) provides complete facilities for manipulating 
types during execution of the program (but currently not for constructing them). The type values it 
manipulates have the type AMTypes. Type. rather than TYPE. A AMTypes. Type can be obtained from a 
TYPE using the primitive: 

CODE: PROC [T: TYPE]--+[AMTypes. Type]. 

In a number of cases the syntax 7lx] (which looks like applying a type value) can be used. 
Depending on the class of T, the meaning varies. The cases are summarized here. and described in 
detail in the appropriate section above: 

TYPE applied to a static integer n yields an opaque type of size n~ applied to ANY it yields a 
fully opaque type (§ 4.3.4). 

A record type applied to a group or binding yields a record value: this is called a record 
constructor (§ 4.6.1). The same thing works for arrays (§ 4.4.2A). 

A sequence-containing record type applied to a (not necessarily static) CARDINAL yields a 
record type containing a sequence of definite length. which can only be used in NEW and 
SIZE (§ 4.4.28). 

A subrange type (including NAT. INTEGER, or CARDINAL) applied to a value of its ground 
type yields a subrange value (§ 4.7.3). 

•A variant record type applied to a static tag value yields a bound variant type (§ 4.6.2). 

•An enumerated type applied to a name which is one of the enumeration literals yields the 
corresponding enumeration value (§ 4. 7 .IA). 

The last two cases are obsolete notations for expressions which should be written with dot notation. 

One other use of TYPE is to denote the type of an interface: TYPE n (§ 4.3.5). 



4.9 Miscellaneous types 

•4.9.l Unspecified 

The type UNSPECIFIED both implies and _is implied by any ~ype _ T with ~SIZE= 1. The type LONG 
UNSPECIFIED is implied by any type T w1th T.SIZE = 2. and 1mphes any type T equal to a type of 
the form LONG ... or REAL In a CHECKED block. T must not be RC (~ 4.5). _ These typ~s are 
assignable (§ 4.3.2). and in addition have a peculiar co11ection of operations_ m their cl~sters: tf Y?U 
need to know about any of these. consult a wizard. The main use of u~spec1fied types ts as_ dom_ams 
of procs which must accept an assortment of types as arguments. Theu use should be av01ded tf at 
all possible. 

4.9.2 Kernel types 

Declarations are explained in § 2.4.5. groups in § 2.3.4. and bindings in § 2.3.5. There is a su_mma~ 
of the relations among these classes in § 2.8. The different kinds of constructor are explained m 
§ 2.2.5. Precise definitions of the types and primitives are in § 2.2.1. 

4.10 Concurrency 

This section describes the Cedar facilities for concurrent programming. and offers some very sketchy 
guidance on the proper construction of concurrent programs. The paper by Lampson and Redell 
("Experience with processes and monitors in Mesa." Comm. ACM. Feb. 1980) has more information 
on this subject. 

4.10.J Processes 

FORK creates a new concurrent process P. which is returned as the value of the FORK. P runs the 
proc which is the first argument of the FORK. P is destroyed when the proc returns. JOIN P waits 
until P is destroyed. and returns the results returned by the proc. Thus 

x+-JOIN FORK Proc[x. y] 
is an inefficient way of doing 

x+-Proc{x. y] 
Process.Detach[P] never waits. and causes the results of P to be discarded silently. If you do neither 
JOIN nor Detach. the process stays around uselessly after its proc returns. 

A FORKed proc runs just like one which is applied in the usual way. except that an exception which 
escapes from it is not propagated to the proc doing the FORK. but instead calls the debugger (an 
applEn27.1 can be written on a FORK. but it does not catch exceptions from the new process). Thus 
any proc that can be FOR Ked can also be called normally. but not vice versa. since a proc to be 
FORKed must handle all exceptions. 

4.10.2 Monitors 

Monitors are for synchronizing access to shared variables. A monitor is a construct which unifies 
synchronization, declaration of shared data. and the code which touches the data. A monitor is a 
module which normal1y contains a11 the procs that access a certain set of shared variables. These are 
of two kinds (declared in the block which contains the proc body). ENTRY procs which can be 
called only from outside the monitor. and INTERNAL procs. which can be called only from within 
the monitor. A monitor module can also contain other. external procs; these are in the module. but 
are not considered to be in the monitor. They have no special properties. and should not access any 
shared data that changes; however. this rule is not enforced. 



Only one proc in the monitor is allowed to run at a time. so that such a proc behaves as though 
only o~e process could access the data. Associated with a monitor there should be an invariant. 
which 1s true of the shared data ~henever no monitor proc is running. This invariant can be 
assumed whenever an ENTRY _proc 1s en~ered. and must be established whenever an ENTRY proc 
returns. and whenever a proc m the monitor does a WAIT. There should be no shared variables not 
protected by a f!10nitor. Further discussion of how to write concurrent programs that work is beyond 
the scope of this manual. 

There is exactly one MONITORLOCK variable associated with each monitor (not necessarily with each 
MONIT~R module instance, though this is so in the simplest case). Note that this is a variable. and is 
not assignable: usually you use a reference to it. In most cases. however. this variable is not 
declared explicitly, but instead is declared implicitly with the name LOCK: 

A MONITOR module with no LOCKS clause has an implicit declaration of a variable LOCK: 
MONITORLOCK. 

A MONITORED RECORD has an implicit declaration of a field LOCK: MONITORLOCK. 

The locks4 clause in a MONITOR module determines which monitor all the entry and internal procs 
of the module belong to (i.e .. which MONITORLOCK they lock and unlock). There are three cases. 
increasingly complicated to handle and providing increasing amounts of flexibility and concurrency. 
Use the simplest case you can get away with. 

1) If there is no locks clause, the procs in one instance of the module all belong to a single 
monitor associated with the instance. The MONITORLOCK is the LOCK variable of the 
module instance. 

2) If there is a locks clause but it has no USING clause, the e of the locks clause is evaluated to 
obtain the MONITORLOCK. This is done in the scope of the module parameters and any 
open on the module block. This case is useful when procs in several MONITOR modules 
must be part of the same monitor. One module declares the lock. and the others import it 
Alternatively. it can be allocated elsewhere, and passed to each instance at initialization. 

3) If the locks clause has a USING n : T. every proc P in the monitor must have a parameter u m 
n : T. The e in the locks clause is made into a proc 

lJ 

P : PROC[n : t] RETURNS [MONITORLOCK]~{RETURN[e]} u u 
(in the same scope in which e is evaluated in (2)), and P is applied to the n parameter of u u 
P to yield the lock variable each time it is needed. This case is useful when there are m 
many instances of the shared data. all operated on by the same procs. and each instance has 
an invariant which is independent of the others. 

Restriction on LOCK expressions: The evaluation of the expression that yields a lock must not do a 
WAIT. 

Caution that lock expressions must be functional: In cases (2) and (3). the expression that yields the 
lock variable is reevaluated each time the lock is needed. i.e .. at start and end of each ENTRY proc 
application. and of each WAIT. Within a given application of an ENTRY proc, it must always yield 
the same variable. or chaos will result: however. this is not enforced. 

Caution on global variables with USING: In case (3). the global variables of the MONITOR module 
instance are not protected by the lock. Almost certainly they should be changed only during 
initialization. 

•In cases (2) and (3). the expression that yields the lock variable may yield a MONITORLOCK. a 
record containing a field LOCK: MONITORLOCK. or a reference value which can be dereferenced to 
yield one of these. This is a minor convenience to save you from writing t.LOCK. and it should be 
avoided. 



An ENTR y proc may be inline. and may be decl~red in an i~terface. In this case the interface must 
have a locks clause. which probably refers to an mterface variable or has a USING. 

4.10.3 Conditions. WAIT and SIGNAL 

Often a monitor proc cannot complete its job. but must wait for the state of its d~ta to change (e.g •• 
in a bounded buffer. the Put proc might find the buffer full_. and must .v:a1t for. space to be 
available). Waiting is done by a WAIT ~ri1:1itive. ~hich spe~1fies a ~ondaw_n vanable of type 
CONDITION on which to wait. Note that this 1s a vanable and 1s not assignable. usually you use a 
reference to it. 

The WAIT releases the monitor lock for the monitor that encloses it. so the ~aiting process must 
establish the monitor invariant. Execution will resume after WAIT c at some time after one of the 
following is true: 

There is a BROADCt\ST done on C. 

There is a NOTIFY done on c, and the waitmg process has the highest priority of any 
process waiting on c. and has been waiting on c longer than any other process with the 
same priority. 

The process has been waiting longer than the timeout interval associated with c. There are 
procs in the Process interface for setting timeout intervals. There is no special indication that 
waiting ended because of a timeout: the program can read the clock. or find this out in 
some other way. 

An ABORTED ERROR is caused in the process by some other process. There is a proc in the 
Process interface to accomplish this. The ABORTED is the result of the WAIT, and never arises 
from any other primitive. 

A process continuing after a WAIT has no special priority. and may not assume anything about the 
monitor data except the invariant. Thus a WAIT should be inside a loop of the form 

UNTIL data is such that the process can proceed DO WAIT C ENDLOOP 
The idea is that WAIT is simply an optimization of busy waiting, in which the process repeatedly 
tests for the desired state. wasting a lot of processor cycles. 

For this to work. when a monitor proc changes the data so that a waiting process might be able to 
proceed. it should do a BROADCAST to a condition variable which has been declared to reflect this 
fact. It may do a NOTIFY instead if only one process should proceed, and it is always the process at 
the head of the condition queue: this is an optimization which may avoid needless execution of 
several waiting processes (but if misused. it may prevent the right process from running). In a 
properly written program. BROADCAST is always correct 

There is no way to time out a process waiting to acquire a monitor lock. 

Note that an internal proc doing a WAIT in a monitor with a USING clause must have a suitable n u 
parameter. 

4.10.4 Exceptions 

An exception which is the result of an entry proc will not release the lock when the proc is 
finalized. unless there is an enChoice9 which catches only UNWIND in the enable of the proc·s block. 
Hence every entry proc should have such an enChoice. unless it is known that it never raises an 
ERROR or a SIGNAL that isn't resumed. Of course. the UNWIND enChoice should establish the 
invariant. If no work is required to do this. it can simply be NULL. 

Anomaly about errors exiting from ENTRY procs: Recall that the current implementation of ERROR 
handling does not do finalization until there is a GOTO out of the enChoice that catches the error 



(§ 3.4.~.l). This means_ that if the error came out of an entry proc the lock is not released: hence the 
enCho1ce should refrain from calling any monitor procs. 

If the exceptio_n is actually raised in the ENTRY proc itself. an alternative is to raise it using RETURN 
~n H_ l:RIWR mstead of l:RROR. This causes the lock to be released first. Of course the monitor 
mvanant s_hould be establ~s~ed. In this case the lock is released before the error is propagated. so 
the enCho1ce that catches 1t 1s free to call the monitor again. 

An enChoice on a WAIT, like al1 the other code in a monitor proc. is executed with the lock held. 

4. I 0.5 Miscellaneous 

The monitor data must be initialized before any entry procs are called. It is unwise to rely on a 
start trap (§ 3.3.2A) for this, since the monitor lock is not held during execution of the program 
proc. An initialization proc should be called (•or the module should be STARTed explicitly) before 
any processes are allowed to ca11 entry procs of the monitor. 

Performance of process primitives: WAIT. NOTIFY. BR0AOCAST. and entry to and exit from an ENTRY 
proc are quite efficient: each costs significantly less than an ordinary proc call. A process switch 
costs about as much as calling a null proc with no. arguments or results. A FORK/JOIN pair costs 
about 30 times as much. 

4.1 I Defaults 

ssdefaultTC ::= CHANGEDEFAULT[oldT~t. ( 
t +-I Default~NIL, trashOK~FALSE] I 
t +-e I Default~INLINE A IN e. trashOK~FALSE] I 
*1 +-el TRASH I Default~INLINE A IN e, trashOK~TRUE] I 
*1 +-TRASH Default~t.Trash, trashOK~TRUE]) 
defaultTC legal only as the type in a decl in a body9 or field 43 (n: t +- e). in a TYPE binding 13. or in NEW. Note the terminal !. 
•TRASH may be written as NULL. 

Examples 

-- Except as noted, a constructor or application must mention each name and give it a value. 
Q: TYPE~REC0RD[ --Otherwise there's a compile-time error. 

i: INT, -- QO. Q[i~ ] trash i (not in argBinding27). 
j: INT+-. -- No defaulting or trash for j. 
k: INT+-3. -- QD. Q[k~ ] leave k= 3. 
I: INT+-3 I TRASH. --Ask. but Q[/~TRASH] trashes/. 
m: INT+-TRASH ]: -- QO. Q[m~] trash m. 

A default in a type cluster provides a value which is supplied automatically in a binding where no 
value is explicitly given. Example: 

Put/nt: PROC[i: INT. radix: [0 .. 100]+-10] 
makes Putln~i~ x] short for Putln~i~ x. radix~ 10]. This is very convenient f~r infrequ~n~lt~sed 
arguments. if arguments are added to a widely-used proc. or to ensure that vanables are m1tiahzed 
uniformly. 

In summary, the usual cases for defaults and bindings are given in Table 4-6. It says that you can 
forbid defaulting by writing the defaultTC T+-. and you can provide a default by writing T+-~- ~ote 
that the default expression e is evaluated in the scope of the type T+-e. not the scope of the bmdmg. 



Declaration n: P.-e n: T in drType42 

Bindin short for 
n~x n~x n~x 
n~ or nothing 

n~x 
n~OMITTED 

n~x 
ERROR n~ e (in scope of decl) ERROR 

Table 4-6: Usual cases for defaults 

Anomaly on discarding defaults for domain and ~ange declarations: T~e last colu~n says that if you 
just write T in a proc domain or range declaration. any default 1s ~1scard~d. This me~ns that ~ou 
can tell by looking at the declaration whether there will be defaultmg, without knowmg anythmg 
about the defaulting properties of the types. 

The basic idea is complicated by an assortment of features for improving efficiency. which are 
described in the remainder of this section. Defaulting is controlled by two items in the cluster for a 
type T. and by two special values. The cluster items are: 

Default: PROC []--+[71. a procedure which supplies a default value. If this item is missing or 
NIL. values of T cannot be defaulted. Defaulting is done by coercing the special value 
OMITTED to T.Default□ . 

Trash: PROC 0--+[71; a procedure which supplies a trash value of type T. a haphazard 
collection of bits of the same size as a value of type T. If this item is missing. values of T 
cannot be trashed. The main virtue of this procedure is that executes very fast. See the 
description of TRASH below. 

The CHANGEDEFAUL T primitive makes a new type with these items modified. It cannot be written in 
a program. but is invoked by the syntax for defaultTC. 

CHANGEDEFAUL T: PROC[OldT: TYPE. Default: PROC [)--+[7]. trashOK: BOOL]--+[NewT: TYPE] 

NewT has the same predicate and cluster as 0/dT, except that: 

Ne»--T.Default is Default. 

NewT.Trash is copied from 0/dT.Trash if trashOK=TRUE: a missing 0/dT.Trash causes an error 
in this case. NewT. Trash is omitted if trashOK = FALSE. 

As described earlier, a type in a proc domain or range which is not a defaultTC has its Default and 
Trash procs omitted. 

The two special values cannot be written explicitly in a program. but are supplied as follows: 

OMITTED-in an arg8inding27 the syntax n~ , which omits the value. means n~OMITTED. 
Then if there is a Default, OMITTED is coerced to T.Default□ to provide a value of type T. 
There is also a coercion which adds n~OMITTED to a binding which lacks n. so that n can be 
left out entirely with the same effect as writing n~ . You can write a denotation for 
OMITTED in a VAR constructor, i.e., on the left side of.-. 

In a group (constructor without names). an empty element means OMITTED: note that the 
group is first coerced to a binding by attaching the binding·s names to the group elements 
in order (§ 2.2.6), and then if the resulting binding is too short, n~OMITTED elements are 
added for the trailing names. 

TRASH - a binding can specify this value explicitly with the syntax n~TRASH. It is unwise to 
use TRASH if the program uses the value. Its purpose is to avoid the cost of initializing a 
variable which is going to be reinitialized before it is read. 

The effect of these rules is that binding [n1 ~e1 ... ] to [n1: T1 ... ] has the same effect as binding any of 
[n1 ~ ••• ]. [ ... ]. or [ .... ] to [n1: T1.,. e1 ... ] (assuming that any free variables have the same bindings). 



Primitive types and those returned by primitive type constructors (except CHANGEDEFAULT) have a 
Trash proc, and a Default proc equal to the Trash proc. with the following exceptions: 

CO~DITION, MONl"!"ORLOCK and PORT have no Trash or Default; they do have an INIT proc 
which sets any vanable to NIL 

REF and PROC types have no Trash. and a Default which returns NIL 

Bound variant records have no Trash. and a Default which sets the tag value appropriately. 

Composite_ types have a Trash or Default if all their component types do; it is the obvious 
concatenation of the component Trash or Default procs. 

lnclud~ng the various dangerous uses of TRASH which omit initializations, we get a larger and more 
confusing summary table. which should be ignored except by efficiency hackers. 

Default type constructor 

Default 
Trash 

Declaration 
Bindin 
n~x 
n~ or nothing 
n~TRASH 

short for 
n~x 
n~OMITTED 
n~TRASH 

n: T+-

X 

ERROR 
ERROR 

T+-e T+-e I TRASH 

AD IN e A O IN e 
T.Trash 

n: T+-e n: T+-e !TRASH 

X X 

e (Defaulrf]) e (Defau/8) 
ERROR T.Trash 

Table 4- 7: Complete cases for defaults 

4.12 Type implication 

A type T implies another type T' (T⇒ T' for short) if for any value x, 

T+-TRASH Tin domain/ 
ran e decl 

T.Trash 
T.Trash 

n: T+-TRASH n: T 

X X 

T.Trash~ ERROR 
T.Trash ERROR 

T.Predicate[x]⇒ T' .Predicate{x] 
In other words, if any value that has type T (satisfies Ts predicate) also has type T. then T implies 
T'. A consequence is that a proc with domain type T' can safely be given a value of type T. since 
this value must also have type T, as required by the proc. We also say that a T value is as good as 
a T value. or that T is a subtype of T'. 

If Ts predicate includes a test for some mark. then any type which implies T must test for the same 
mark or a bigger one. For instance. if R is a variant record type with variants a, b. and c. then 
R.a⇒ R if R.a.SIZE = R.SIZE. In fact. the predicate for R.a tests for R's mark and for a tag equal to a. 
In other words, a bound variant value is as good as an unbound one. 

From the implementation's viewpoint (and after all, it is the implementation of an abstraction that 
is responsible for attaching marks). two values should have the same mark only if they both have 
representations with all the properties implied by that mark: occupy at least that much space. have 
the proper fields interpreted in the proper way, etc. This is the rationale for marks: to distinguish 
values which are not acceptable to the same primitives. Of course this is not an enforceable rule: an 
implementation can unwisely allow the marks it controls to be applied to unsuitable values. 

For example. [0 .. 5]⇒ [0 .. 7] because both occupy four bits and represent the integer unbiased. But 
(1..5] does not imply [0 .. 7]. because it happens that the implementation biases the representation of 
a subrange value. so that the value 1 is represented in [1..5] by binary 0000. but in [0 .. 7] by binary 
0001. [1..5] and [0 . .7] must have different marks. but (0 . .5] and [0 .. 7] can have the same mark (which 
might be called "four bit unbiased representation for unsigned integer"). and distinguish the values 
with the rest of their predicates (0<x:=;5 vs o:=;x=:;7}. 

For T to imply r. there must be a proof that Ts predicate implies t·s predicate. If T is an 
arbitrary type, and nothing is known about its relationship to other types. or if it tests for a unique 



mark. then no such proof is possible. As a result only an a~gument with syntactic type T_ is 
acceptable to a T-+ R proc. For built-in types and type-retu_rnm~ procs._ however. the. c~mpi_ler 
knows the predicates and keeps track o~ the _implications._ The 1mphes relations among built-m type 
are (the transitive closure of those) specified m the following table. 

Certain points about the table are of special interest: 
The first line says that implies extends elementwise to declaration types. 

The line for transfer types (including PROC) says that (D--. R)~(D' ~ R') i~ D' => D and 
R=> R'. The relation is reversed for the domain types. because a D __. R proc P mu_st _accept 
any D', while a D-+R proc P only accepts Ds. If Pis used in the former context. it is only 
guaranteed to get a D'. and that must imply a D. 

There are no implications of the form VAR T=> VAR U. Y ?u might think t~at_ T=> U should 
imply this. but it doesn't work, because a VAR can be assigned to, and assignmg a U (sa~ a 
[0 .. 7]) to a T (say a [0 .. 5]) clearly won't do. So a VAR T can't be as good as a YAR U, which 
can be assigned a U value. In fact if there were write~only V_ARs. the ~elat10n would be 
backwards. This is a reflection of the fact that the only mterestmg operat10n on such VARS 
is assignment. which has the type [VAR T. 71-+[7]: as we have seen. proc type implication is 
backwards from the domain type implication. 

Any argument omitted from the type constructor applications in the table may take any legal value. 
but it must take the same value in both applications in a single row. 

4.13 Coercions 

In a binding n: t~e, the value e must have the type 1. To ensure that it does. the bind_ing 
constructor is type-checked by requiring "'v e to imply t. If it does not, an attempt is made to find a 
coercion function C: "'v e-+ t which can map the argument to the required type. If C is found, the 
binding is rewritten as n: t~C[e], which typechecks. We say that e is coerced to the type D. 

A coercion may also be done in an application such as J[e]: this is actually a special case of a 
binding. Note that infix operators. including assignment. are special ways of writing applications, 
and hence also do coercions. In particular. x: REAL: x+-3 will coerce 3 to a REAL. 

There are no coercions from VAR T to VAR V: this is because coercing produces a new value. but a 
new VAR would be disjoint from the old one and would increase the size of the state. which is 
unlikely to be what is wanted. 

Note that if T implies U (see § 4.12). no coercion from T to U is needed to make an application 
type-check. Another way of thinking about this: T=> U means that there is a coercion function from 
T to U. but it does no computation. This is why REF T can be coerced to REF U if T=> U. 

A group or binding can be coerced element by element. Formally. a declaration type. which is the 
type of a binding. has one coercion for each coercion that an element type has. These can be 
composed to coerce several elements. 

There is currently no way for the program to specify coercion procs. However, there is a modest set 
of built-in coercions. which are are listed in table 4-9. These can be composed. if the types permit 
it. to yield a coercion function. None of them loses information. except those from various whole 
numbers to REAL: in other words. they all have inverses. None of them can raise an exception. 
except a coercion from a base type to a subrange. which can cause Runtime.BoundsFault. Any 
argument omitted from the type proc applications in the table may take any legal value. but it must 
take the same value in both applications in a single row. 



In current form 
These types Imply these types Conditions 

[n: T . ... ] [n: T, ... ] if T=>T 
Pointwise extension to bindings. Likewise for groups. 

T T PAINTED U 
and vice versa. 

T ANY for any T 

VAR T READONLY T 
READONL Y T REAOONL Y T if T=> T 
PROC/ERROR/... PROC/ERROR/... if T=>T 

[71 [T'] and 
RETURNS [ U] RETURNS [ l/] U=> l/ 

Note the reversed implication for the domain type. 
SAFE PROC/ERROR/ ... UNSAFE PROC/ERROR/ ... 

In kernel form 
These types Imply these types 

[n: T . ... ] 

T 

VAR T 

READOl\LY T 

MKXFERTYPE[ 

domain~T. 

range~U] 

MKXFERTYPE[ 

sa/e~TRUE] 

[n: r . ... ] 

REPLACEPAINT 

[in~U. Jrom~71 

READ01'LY T 

READO\ILY T 

MKXFERTYPE[ 

domain~T. 

range~U] 

MKXFERTYPE[ 

safe~ FALSE] 

ARRAY ... OF T ARRAY ... OF T if T=> T MKARRAY[range~7] MKARRAY[range~T] 

If PACKED= FALSE or T.SIZE)l. If PACKED=TRUE and T.SIZE= 1. the number of bits required to 
represent a T and to represent a T must be equal when rounded up to the next power of 2. Likewise 
for SEQUENCE and DESCRIPTOR. 

REF T REF READONL Y T 
and likewise for POINTER and LIST. 

REF READONLY T REF REAOONLY T 

and likewise for POINTER and LIST. 

REF T REF ANY 

ORDERED POINTER TO T 
POINTER TOT 

BASE POINTER POINTER 

if T=>T 

and vice versa 

MKREF[readOn/y~ FALSE] MKREF[readOn/y~TRUE) 

MK REF[ large/~ T. 

readOn/y-TRUE] 

MKREF[ large/~ 7l 
MKPOINTER[ 

ordered~TRUE] 

MKPOINTER[ 

base~TRUE] 

MKREF[large/~ T. 
readOnf1•~TRUE} 

MKREF[ large/~ ANY} 

MKPOINTER[ 

ordered~FALSE} 

MKPOINTER[ 

base~ FALSE) 

T.n T if T.n.SIZE = T.SIZE T.n T 

A bound variant implies the unbound variant. 
RECORD[n: 7l T I-element record 

and likewise for MACHINE DEPENDENT RECORD. 
(PROC[A]~[n: 1]).RANGE T I-element binding 
(PROC[A]~[Jl).RANGE T I-element group 
T[x .. y] etc. T 

if T.FIRST=x and SIZE(T[x .. y])=SIZE[7l 

1{x .. y] etc. T[x' .. y'] etc. 
if T.GROUND=T.GROUND and x=x' and y~y'. 

T T~e etc. 
and vice versa: changing defaults doesn ·t affect the predicate. 

MKRECOAD[fie/ds~[n: 71] T 

(n: 71 
CROSS[[7l) 

T.MKSUBRANGE[x. y] 

T.MKSUBRANGE[ x. y) 

T 

T 

T 

T 

T .MKSUBRANGE[ x. y] 

CHANGEDEFAULT 

[T .... ] 

Table 4-8: Implies relations for primitive types 



In current form In kernel form 
These types can be coerced to these types Remarks These types can be coerced to these types 

[ .... n: T . ... ] [ .... n: T .... ] if T coerces to T [ .... n: r . ... ] 
This is pointwise extension of coercion to bindings. Likewise for groups. 

[T1 ••••• Tk] lni: Tr .... nk: Tk] group to binding rx ... xr, 
[nl: Tr •••• nk: Tk] [nl: Tr .... n k: Tk. n: n if T has a default. [n,: Tl . .... n,: T) 
T r if r~r r 
7lx .. y] T T.MKSUBRANGE[x. y) 

T 7l x .. y] may raise T 

Runtime. BoundsFau!I 
and the same subrange coercions for relative address types. 

INT /INTEGER/ REAL loses information same 
CARDIT\AL/ 
LONG CARDINAL 

POINTER LONG POINTER 

and likewise for DESCRIPTOR. 

T.n T 
VAR T T 
ATOM T 
NIL T 
POINTER TO PROGRAM[d] 

FRAME [n] RETURNS[,] 
OMITTED T 

MKPOINTER[ 

long~ FALSE] 

bound variant T.n 

variable to value vAR r 
Tan enumeration: static only. 
if T.NIL exists. 
if the PP of n has 

the PROGRAM type. 
if T.Default exists. 

Table 4-9: Coercions for primitive types 

[ .... n: T . ... ] 

[n: T . .... n: T] 
I I i " 

[n
1
:T

1
• •••• /1

1
: r,, n: T] 

t 
T 

T.MKSUBRANGE[x. y] 

MKPOINTER[ 

/ong~TRUE] 

T 

T 



4.14 Dot notation 

Cedar provi_des a single basic mechanism for getting a name looked up in a particular binding. 
rather than m the current scope (§ 2.4.4): 

If b is a binding. then b.n is the value of n in b: it is an error if b has no element n. 
By a natural extension: 

If Tis a type, then T.n is the value of n in Ts cluster. 

By a somewhat less natural. but very useful further extension (inspired by classical notation for 
records. and by Smalltalk): 

If e is an expression not a type or binding, then Jet P=(Ve).n. 
If P.DOMAIN = [p: D], then e.n is P(e]. 

Otherwise. if P.DOMAIN=[p 1: D1. p2: D2, ... , pn: DJ e.n is A [p2: D
2 
..... pn: DJ IN 

P(e, P2, •••• P,J 
In other words. the value of n is obtained from the cluster of e's syntactic type: call it P. If P takes 
one argument. it is applied to e. Otherwise. e.n denotes a proc which collects the other arguments p

2 
• 

•••• Pn that P wants. and applies P to e, Pr ... , Pn· In current Cedar you can't do anything with this 
proc except apply it immediately: you have to write e.n[ ... ]. 

There are four major applications for dot notation in current Cedar: they are described in the table 
below. All use the simple rules just stated (look up n in a binding: in the cluster of a type: or in the 
cluster of Ve and then apply it). But the sources of the clusters used and the procedure values in 
the clusters are quite various. 

Object notation is the most general. since any opaque, record or enumeration type D defined in an 
interface acquires a user-defined cluster by this method. The current implementation is clumsy: all 
the procs in the interface I from which D comes are added to D's cluster. with the names they have 
in /, except those whose names are already in D's cluster. Of course, an element of this cluster is 
only useful if it takes a D or reference to D as its first argument. The reference case is often useful 
because when these procs are inherited by a reference type, they are not modified. E.g .. if P: [REF 
D]-+[ ... ] is in D's cluster. it will also be in REF D's cluster. and if,: REF D. then r.P will be correct. 

The interface I from which P is obtained is normally an interface instance I (which is imported). 
not an interface type IT (declared in the DIRECTORY clause). because only the instance provides a 
proc value for P. See § 3.3 for more on interfaces. 

Restriction on object notation with multiple imported instances: The value for P always comes from 
the principal imported instance of IT (see § 3.3.3). You can ignore this if only one IT value is 
imported. If more than one is imported, however. confusion can result. If it does. consult a wizard. 

The cluster for a record type R is fonned automatically by the record type constructor. and simply 
contains a procedure for each field f. T1 which takes an R and returns a T1 There are similar 
clusters for VAR R and REAOONL Y R. in which the procedures take VAR or REAOONLY R and return 
VAR or READONLY T

1 

An imported interface instance can be thought of as a binding. with a value for each name in the 
interface. (Actually it is more like a record; its cluster contains a proc for each name declared in the 
interface. which returns the exported value when applied to the interface value.) An interface type 
also yields a binding. which contains those names which are bound in the interface rather than 
simply declared (usually constants and types). 



Case 

Meaning 

Object 
notation 
(Ve must 
be record. 

Source for n Ve.n 

can ·t write this 
literally. 

e.n 

("v e).n(e] 

n: PROC[p1: D]-+[J1 l.n ::l.n(e]. since 
declared in same n= l.n 
interface / as Ve. Useless unless Ve coerces to Dor reference to D. 

e.n[p2 ~ x . ... ] 

(V e).n[e](p2 ~ x . ... ] or 
(V e).n(p1 ~ e. p2 ~ x . ... ] 

* 

enumeration.n: PROC[p1: D. l.n No (can't get the ::l.n[p
1
~e. p

2
~x . ... ] 

or opaque p2: D2 • ... ]-+[71 declared value of the curried proc). 
type). in same / as Ve. Useless unless Ve coerces to D. 

Record 

Imported 
interface 

Interface 
type 

RECORD[ .... n: T . ... ] 

IT: DEFS{ ... : n: T: ... }: 
DIRECTORY IT'. TYPE: 
IMPORT e: IT: 

No (can't get the 
record selector 
value). 

No (can't get the 
interface selector 
value). 

IT: DEFS{ ... : n: T~ v: ... ] No (it would 
DIRECTORY e: TYPE IT:. be TYPE.n). 

* Only if Tis a proc type with the right domain. 

=a VAR r for * 
field n of record e. 

::the value exported * 
as n in the e instance 
of IT. 

=v (need a binding 
for n. not just n: n. * 

Table4-J0: Casesfordot notation in current Cedar 
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This section lists the headings of the paragraphs throughout the manual calling attention to points 
that should be specially noted: anomalies. cautions. performance. representation. restrictions. and 
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process array 18,88 representation 36,116 
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program proc 43.94, 108 result name 56 
PROGRAM type 81 RESUME 53 
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PUBLIC 46.47.48 RETURN 51. 56 
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range declarations 109 row 82,83 
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114 row type 64 
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REC 5.14 rule 69 
reclaimed 88 Runtime 67 
record type 20, 50. 95. 96. 114. runtime type system 104 

115 
record field 97 s 48,34.39,57 
record field proc 91 safe 6. 87. 93 
record size 96 SAFE 53 
recordTC 77,95 safe language 33 

recursion 5,57 safe reference 88 
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SafeStorage 67. 76,88,93 style 36.116 
safe variable 88 sub-expression 9 

safeChoice 62 subdass 4.66.80 

safeSelect 62. 63, 75. 91, 98 subrange 37.60.62.64,82,87, 

safety 39,50.53 92.94.99.101.103 
safety invariants 6,88 subtype llO 

SANS-SERIF SMALL CAPS 36 succ 99 
scale factor 102 summaries 33 
scope 5.49.56,59.106, 108 superscript 34.36 
SELECT 35,62.63,98 SV 88 

selector 63 switch 64 
semicolon 39.58 synchronization 6, 76,105 
separator 34.39 syn tactic type 4. 7. 8 

separators for SELECT 58 syntax 7,33 
seqTC 82 
sequence 74.83,84 t 8.13.34 .. 36.39.55. 
sequence-containing record 68 57. 62. 67, 76. 77. 
set of values 4 82.87.95.108 
shared variables 105. 106 71n] 68.104 
SHARES 35.48 tab 38 
short 102 tag 6,82.84.95.97. 98 

SHORT 76 TAG 63 
short pointer 92 TAGTYPE 97 

side-effects 3,50 TARGET 86,90.94 
signal 51, 52, 82 target type 86.87 
SIGNAL 35 target typing 61, 71. 75 
simple 2 of DESCRIPTOR 86 
simpleLoop 14 ofNARROW,LOOPHOLE 75 
single component 50, 96 terminal symbol 34,35.37 
SIZE 74.85 TEXT 85 
size restrictions 64 textual 35 
Smalltalk 114 THEN 10 
source text 40 THEND 11 
space 36.38 THROUGH 59 

space in ATOM literals 92 tilde 5 
specialization 85 time 36 
SPECIALIZE 97 timeout 6.107 
SR 88 TIMES 101 
sS 57 Tioga 38 
standard application 9 TOGROUND 103 
standard implementation 78 token 37 
standard proc 78 TOPROGRAM 94 
START 46.61 TOVOID 58. 75 

start trap 43,108 trace-and-sweep 88 
StartFault 43 transfer 80. 81, 82 

state 16 transfer type 54, 79,80,111 
statement 3414.17,.58 transfer TC 80 
static 6.36.45,46.56.64, TRASH 35,62 

68,96,102 Trash 75,84. 109 
static error 36. 75.103 TRUE 11 
static expression 64 truncated 102 
static negative value 102 TRUSTED 6.35.53 

STOP 61. 81 two-character symbols 37 
storage 88 type 4.11.18,34.65. 70. 
strict 15 114.115 
string 90 TYPE 11 
STRING 86 TYPE binding 56 
String Body 86 type constructor 65.68 

type expression 64 



type implication 110 variant record 63. 74. 75. 76.84.96. 
type option 36. 70 97 
type value 104 VARIANTPART 97 

TYPE n 43. 78 VARIANTTYPE 97 
type-checking 4.11. 43 varTC 55. 76.82.87 
typeCons 67 VARTOPOINTER 76.92 
typeName 36.60.67. 77.87 VOID 14.58 
TYPE[ANY] 46.68. 77 
TYPE[n] 46.68. 77 WAIT 6. 61. 91. 107 

WHILE 59 
"u" switch 64 white space 38.92 
UMINUS 101 whole number 101.102 
UNBOUND 47 whole number literal 102 

U nboundProc 47.80 widening 103 
unchecked 6.88 WITH 35.56 
UNCHECKED 53.64 withChoice 62 
UNCONS 49.95 withSelect 63.97.98 
uncounted zone 90.93 wizard 81.105.114 
underflow 103 write-only 111 
underlined 35 
UNHIDE 15 xDOTy 7 
uninitialized 43 xfer 80 

interface variables 46 
RC variables 50 ZONE 6. 75. 76.93 

union 75. 76. 84. 91. 97 
union constructor 98 I 37. 70. 71. 72 
union value 98 !! 70. 71. 72 

unionTC 95 " 37 
Unnew 47 # 37 
unpainted record 91 $ 5. 37. 92 
UNREF 50.63 $n 11 
unsafe 34.54.63.92.93.97. % 37 

98 & 37 
UNSAFE 74. 75. 77.82.85.86 ' 37 
unsafe storage 88 ' 101 C 
U nsafeS to rage 67.93 '\ddd 101 
unspecified 76.105 I 36,37 
UNTIL 59 () 35.37 
UNWIND 52.53.107 * 35.37.85.97.101 

UNWIND and ANY 52 + 35. 37.101 
UNWIND and GOTO 53 35.37 

UNWRAP 95 38 
upper case 37.38 35.37 
user-defined cluster 114 35.37 
USING 35.44. 106 I 37.101 

14.35.37 
VAL 61. 100 .. 7 .. 
VALUE 76.87 35.37 
value 353.9. 16. 18 .. 51.52 < 37.99 
VALUEOF 76 <= 37 
values of opaque type 78 = 35.37. 75 
VAR 3.18.46. 76.83.90. => 35. 37. 51. 53. 63 

111.114 > 37.99 
VAR ANY 91 >= 37 

variable 3. 18.49. 75. 79.87. @ 37. 50. 64. 76. 77. 
90 83.85.92.93.96 

variable type 75. 76 [ ] 13. 35. 37 
variant field 97 \ 37.101 
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• 34 
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Cedar Safe Language Syntax 
§3.3 1 module::= DIRECTORY (nd ?(: TYPE n1) ?(USING [nu, ... ])), ... : §4 36 type::= type Name I builtlnType I typeCons 

( interface I implementation) 37 typeName :: = n I type Name. n I typeName[e] --In 19.25.36.40.J 

2 interface::= nm.! .. : CEDAR DEFINITIONS ?locks §4.2 38 builtlnType :: = INT I REAL I TYPE I ATOM I 
?imports~ { ?open7 (d I b): ! .. } . CONDITION I MONITORLOCK 

3 implementation :: = nm : CEDAR See Table 4 - 2. TYPE only in ab or a~ interface·s d 
( PROGRAM ?drType42 I MONITOR ?drType42 ?locks) 39 typeCons :: = subrange25 I pamt~dTC40.I I transferTC4

I I 
?imports ?(EXPORTS ne, ... ) ~ block . arrayTC44 I seq~C45 I reffC 46 I hstTC47 I 

4 imports::= IMPORTS ( (n;r: I) nil), ... ) --In 2. 3. recordTCS0 I umonTC52 I enumTC54 l defaultTCS5 

51ocks ::= LOCKS e ?(USING n : t) §4.3 4ovarTC ::= ( I REA~ONLY I VAR) t I_ A_NY 
u In I J. 46. 47. ANY only rn reffC. VAR only in mterface dee/. 

§3.4 6 block::= ?(CHECKED I UNCHECKED I TRUSTED) 40.IpaintedTC :: = typeName37 PAINTED t 
{ ?open ?enable ?body?( EXITS (n. !.. = >s): ... ) } --In 3. 13. /4. §4.4 41 transferTC :: = ?(SAFE I UNSAFE) xfer ?drType 

7 open :: = OPEN (n ~ ~ e I e). ! .. : ·· In 2. 5. 41.lxfer :: = PROC I PROGRAM I PORT I PROCESS I SIGNAL I ERROR 
s enable::= ENABLE { enChoice: ... }: 42 drType :: = ?fields1 RETURNS fields2 I fields1 -·In 3. 41. 
9 enChoice :: =( e. ! .. j ANY) =) s --In 7. 27.I. 43 fields::= [ dll, ... ] I [t ... ] I ANY -·In 42. 50. 52. ANY only in drType. 
10 body::= (d I b): ! .. : s: ... Is: ! .. --In 5. 11. 44 arrayTC :: = ARRAY t1 OF t2 

§3.5 11 declaration::= n, ! .. : ?(PUBLIC I PRIVATE) varTC40 --In 2. IO. 41 45 seqTC :: = SEQUENCE n : t1 OF t2 --Only as last type in 50 or 52. 

D binding::= n, ! .. : ?(PUBLIC I PRIVATE) t ~ ( --In 2. 10. §4.5 46 reITC :: = REF ?varTC40 

e I t2 -- t=TYPE·· I CODE I ?INLINE ?(ENTRYIINTERNAL) block6) 47 listTC :: = LIST ?(OF varTC40) 
---------------------~4.6 50 recordTC :: = ?MONITORED RECORD fields43 

§3.6 14 statement::= e1 +-e2 I e I block6 I escape I loop I NULL 52 union TC::= SELECT n : (t I*) FROM (n = > fields43), ... ?. 
16 escape::= GOTO n I EXIT I CONTINUE I (RETURNIRESUME) ?e ENOCASE •. Only as last type infields of50 or 52. 
17 loop::= ?iterator ?(WHILE e I UNTIL e) §4 7 TC { } . . 54 enum :: = n .... 

DO?bodylO?(REPEATFl~ISHED=)s)ENDLOOP §4.1155defaultTC::= t+-lt+- e 
18 iterator :: = TH ROUGH e I Only as tin a dee! in body9 or fie/d43 (n: t ~ e).in a TYPE bindingl3or in NEW. 

FOR n : t ( ?DECREASING IN e I +-e1, e2) 
e is a subrange. n is readonly. 

*3.7 19 expression::= n I litera)57 l {e} I (e I typeName37). (9) n I 
prefixOp e I e1 infixOp e2 I e1 AND (2) e2 I e1 OR (I) e2 I 
et (9) I ERROR I [ argBinding27] I 
application26 I 
builtln [ e .... ?app1En27.I) I 
funny Apple?( [?argBinding21 ?app1En27.I)) I 
subrange25 I if28 I select29 I safeSelect32 I s 
Precedence is in bold in rules /9-2/. All opera/ors associale 10 the left excepl 
~-which associates to the right. Application has highest precedence. Subrange 
only after 1, orTHROUGH. sonly in if28 and select choices30 33. 

20 prefixOp :: = @ (8) I - (7) I ( ~ I NOT) (3) 

21 infixOp :: = *I/ I MOD (6) I + I - (5) I relOp (4) I +-(O) 

22 relOp ::=?NOT(?~(= I< I>) I<= I>= I# I IN)--/n 21. 30. 
23 builtln :: = -- These are enumerated in Table 4-5. 
24 funny Appl::= FORK I JOIN I WAIT I NOTIFY I BROADCAST I 

SIGNAL I ERROR I RETURN WITH ERROR 
25 subrange::= ?typeName37 ( [ I {) e1 .. e2 (]I}) --In 19. 39. 

26 application::= e [ ?argBinding ?applEn] 
27 argBinding :: = (n ~ ?e ). ! .. I (?e). ! .. --fn 19. 26. 
n.1applEn :: = ! enChoice9: ... -- In 19. 26. 

§3.8 28 if::= IF e1 THEN e2 ?(ELSE e3) 
29 select::= SELECT e FROM choice: ... endChoice 

The ":" is "." in an expression. here and in 32. 
Jo choice::= (?relOp22 e1 ), ! .. = > e2 
JI endChoice :: = ENDCASE ?( = > e3) --In 29. 32. 34. 

32 safeSelect :: = WITH e SELECT FROM safeChoice: ... endChoice3t 
.u safeChoice :: = n : t = > e2 

*3.2 56 name::= letter (letter I digit) ... -- No1 a resmed word(Table 3-2)~ 
51 \iteral :: = num ?( Q 1.8) I digit (digit 1Alfll~1QI.EI.E) ... HI 

?num . num ?exponent I num exponent I$ n I 
• (extendedChar I' I") I" (extendedChar I') ... " 

58 exponent::= .E ?( + I - ) num 
59 num :: = digit! .. 
r,o extendedChar :: = space I \ extension I anyCharNot"'Or\ 
r,1 extension::= digit1 ctigit2 digitJ IN IR I I I .81.E I.LI' I" I\ 



Cedar Full Language Syntax 
§3.3 1 module :: = DIRECTOR y (nd ?( : TYPE ?n1) §3.8 28 if::= IF e1 THEN e2 ?(ELSE e3) 

?(USING [nu, ... ])), ... : 29 select::= SELECT e FROM choice: ... endChoice 
( interface I implementation ) The ":" is "." in an expression. here and in 32 and 34. 

2 interface :: = nm. ! .. : ?CEDAR DEFINITIONS ?locks ?imports Jo choice :: = (?relOp 22 e1 ), ! .. = > e2 
?•(SHARES ns, ... ) ~ ?•accessl2 { ?open7 (d I b): ! .. } . 31 endChoice :: = ENDCASE ?( = > e3) --In 29. 32. 34. 

3 implementation::= nm: ?CEDAR ?safety 32 safeSelect :: = WITH e SELECT FROM safeChoice: ... endChoiceJI 
( PROGRAM ?drType42 I MONITOR ?drType42 ?locks) 33 safeChoice :: = n : t = > e2 
?imports ?(EXPORTS ne, ... ) ?e(SHARES n_s. ... ) 34 •withSelect :: = WITH (n1 ~ ~ e1 I• e1) SELECT ?teu FROM 
~ ?•accessI2 block. withChoice: ... endChoice31 --•The~~ may be writ/en as:. 

3.1imports:: = IMPORTS ((nil,: I) n;t ) .... ) --In 2. 3. 35 •withChoice :: = n2 = > e2 I n2, n2, ! .. = > e2 
4 safety::= SAFE I UNSAFE ·-In 3- 41• §4 36 type::= type Name I builtlnType I typeCons 
s locks::= LOCKS e ?(USING nu: t) 37 typeName :: = n1 I type Name. n2 I typeName[e] I 

§3.4 6 block :: = ?(CHECKED I UNCHECKED I TRUSTED) •n 2 typeName --In 19. 25. 36. 4O.J. 49. 

{ ?open ?enable ?body?( EXITS (n. !.. = )s): ... ) } --In 3.13.14. §4.2 38 builtlnType :: = INT I REAL I TYPE I ATOM I CONDITION I 
1 open::= OPEN ( n ~ ~ e I e ). ! .. ~ MONITOR LOCK I •LONG CARDINAL I •t?LONG UNSPECIFIED I 

In 2. 5. 11. •The~~ may be wrillen as:. •tMDSZone I* ?tUNCOUNTED ZONE 
&enable::= ENABLE(enChoice I {enChoice: ... }): --ln5. l7. SeeTable4-2. TYPEonlyinaboraninterface"sd 
9 enChoice :: =( e. ! .. I ANY) = > s --In 7. 21.1. 39 typeCons :: = subrange2s I paintedTC40.1 I transferTC41 I 
10 body::= (d I b): ! .. : s: ... 1 s: !.. --In 5. 11. arrayTC44 I seqTC45 l tdescriptorTC45.1 I reffC46 I listTC47 I 

3 5 tpointerTC48 l •trelativeTC49 I recordTC50 I unionTC52 f 
§ • 11 declaration::= n. !.. : ?access varTC 40 TC'-4 I d J:: I TC55 

In 2. JO. 43. VAR. REAOONLY only for interface var. en um - eiau t 
12 access::= PUBLIC I PRIVATE --In 2. 3_ 11_ 13_ 50_ 51_ 53_ *4.3 40 var TC::= ( I READONL YI VAR) t I ANY 

b , ? ( In 11. 45-48. ANY on/JI in refTC. VAR only in interface dee/. 
13 inding :: = n .... : .access t ~ 40.1paintedTC :: = typeName37 PAINTED t 

e I t2 -- if 1 =TYPE·· I CODE I *4.4 41 transferTC :: = ?safety4 xfer ?drType 
?INLINE ?(ENTRY I INTERNAL) block 6) 4uxfer :: = PROCEDURE I PROC I PROGRAM I PORT I 
tt ?TRUSTED MACHINE CODE { (e .••• ); ••• }I PROCESS I SIGNAL I ERROR 

In 2. 10. •The~ may be wrillen as=. •ENTRY or It\ TERNAL may be writlen 
before t. Block or MACHl\iE CODE only for proc types. 42 drType :: = ?fields1 ?(RETURNS fields2) --In 3. 41. 

§3.6 l4Statement ::= e1 +-e2 I e I blockn I escape I loop I NULL 43 fields::= (dll, ••• ] I [t. ... ] I ANY --ln42. 50. 52. A'Y only in 42. 
- 44 arrayTC :: = ?*PACKED ARRAY ?t1 OF l2 

In 6. 9. I 0. I 7. I 9. TC ? 53 
I I I I I 

45 seq :: = . *PACKED SEQUENCE tag OF t 
!6escape ::= GOTO n GOTO n EXIT CONTINUE •LOOP Legalon/yaslasllypeinthefieldsofarecordTCorunionTC. 

•RETRY I •REJECT I (RETUR!\ I RESUME) ?e I t:j:e +-STATE 45.itdescriptorTC :: = ?LONG DESCRIPTOR FOR varTC40 
n loop::= ?iterator ?(WHILE e I UNTIL e) var TC must be an array type. 

DO ?•open 7 ?•enable 8 ?body 10 *4.5 46 reITC :: = REF ?varTC40 
?•(REPEAT (n. ! .. =) s): ... ) ENDLOOP 47 listTC :: = LIST ?(OF varTC40) 

18 iterator::= THROUGH e I 48 tpointerTC :: = ?LONG ?ORDERED ?•BASE POINTER 
FOR (n : t I •n) ( ?DECREASING IN e I +-e1, e2) ?•subrange2s ?(TO varTC40) I •POINTER TO FRAME [ n] 

e is a subrange. In fOR n: t .... n is readonly. Subrange only in a relative TC: no typeName37 on it. 

§3.7 19 expression :: = n I litera)57 I (e} I (e I typeName37). (9) n I 49•trelativeTC :: = typeName 37 RELATIVE t 
prefixOp e I eI infixOp e2 I e1 AND (2) e2 I eI OR (1) e

2 
I *4.6 so recordTC :: = ?access12 ( ?MONITORED RECORD fields43 I 

et (9) I •STOP I ERROR I [ argBinding2 7 ] I :j: MACHINE DEPENDENT RECORD (mdFields I •fields 4J)) 
application26 I 51 :j:mdFields :: = [( (n pos). ! .. : ?•accessI2 t ) .••• ] -- In 50. 52. 

b ·Itl [ ? IE 27 I] I 5LI:j:pos :: = ( e1 ?(: e2 .. e3)} -- In 51. 53. u1 n e ..... app n . 
funny Apple?( [?argBinding27 ?appIEn27.I]) I s2 union TC::= SELECT tag FROM 
subrange25 I if28 I select29 I safeSelectJ2 I •withSelect34 Is ( n •••• = > ( fields43 I mdFields 5I I •NULL)) .... ?. ENOCASE 
Precedence is in bold in rules J 9-21. All operators associate to the left except Legal only as last type in the fields of a recordTC or union TC. 
f-_ which associates to the right. Application has highest precedence. Subrange 53 tag::= (n ?:j:posSl.l : ?•access12 I *t(COMPUTEDIOVERLAI D)) 
on~v after l"-1 orTHROLGH. sonly in if28 and select choices30 33 35_ (t I *) --In 44. 52. * only in union TC. 

2oprefixOp ::= @<8) I - (7) I(~ I NOT){3) *4.7 54enumTC ::= {n .... } I MACHINE DEPENDENT {(?n (e} In) .••• } 
21 infixOp :: = *I/ I MOD (6) I + I - (5) I relOp (4) I+- (0) *4.11 55 defaultTC :: = t ~ It +-e I •t +-e 1 TRASH I •t +-TRASH 
22 relOp :: = ?NOT(?~ ( = I (I)) I ( = I)= I # I IN) --In 21. 30. defaulr!'C_le!f onlt as the type in a dee/ ~n a body9 or field 43 (n: _, f- e). ;n a 
23 builtln :: = -- These are enumerated in Table 4- 5. TYPE binding -. or m NEW. Note the termma/1. •TRASH may be wntten NL:LL 

24 funny Appl::= FORK I JOIN I WAIT I NOTIFY I BROADCAST I ~3.2 5nname :: = letter (letter I digit) ... -- Not a reserved word(Tab/e3-2). 
SIGNAL I ERROR I RETURN WITH ERROR I •NEW I •START I 57 literal::= num ?( ( Qlg I f!l12) ?num) -- "1 literal. I 
•RESTART I :l=tTRANSFER WITH I :j:tRETURN WITH digit (digit IAI.Bl~IQI.EI.E) ... ( Hlh) ?num -- Hex INT li1eral. I 

25 subrange::= ?typeName 37 ?num. num ?exponent I num exponent -- REAL literal. I 
( [ e1 .. e2] I [ e1 .. e2} I ( e1 .. e2] I ( e1 .. e2}) --In 19. 39. 48. • (extendedChar I' I") I• digit! .. <.Cl~) --CHAR literal. I 

26 application::= e [ ?argBinding ?applEn] "(extendedChar 1 ·) ... " ?•(11D I $n -- ROPE. ATOM li1eral. 
21 argBinding :: = (n ~ (e 11 *TRASH)).! .. I (e 11 *TRASH).!.. 58 exponent::= (El~)?(+ I - ) num 

In /9. 26. •The~ may be ~•riflen as:. •NLLL may be written forTRASH. 59 num :: = digit ! .. 
n.1app1En :: = ! enCh01ce9: ••• -- In 19. 26. 60 extendedChar :: = space I\ extension I anyCharNot'"Or\ 

6t extension::= digit1 digit2 digit-' lnlNlrlRl1IIl121.BlflElll1IT'I\ 



Syntax Meaning 
, module::= DIRECTORY (nd(: TYPE (nt I )I) ,\ [ (n,t: ( (TYPE nt I TYPE nd) I l YPE nd) ) ..•. ] IN 

?(USING [nu, ... ])) .... : LET (nd~RESTRICT[nd, ($1111, ... ) ] ) .... 
( interface I implementation) IN ( interface I implementation) 

! interface::= nm.!..: ?CEDAR DEFINITIONS LET r'~[nm: INTERFACETYPE([ $nm, ... ))) IN (imports I >..=r') 
IN . 
?locks (imports I) ?•(SHARES n, .... ) •• SHARES allows access to PRIVATE names inns. 
~ ?•access" { ?open' (d I b): ! .. I . LET REC nm~open I ?(I'~ locks. )(d I b) .... ] IN nm 

, implementation::= nm: .?CEDAR LET r ~[(ne: lie) ..... FRAME: TYPE llm. nm: FRAME. 
?safety ( PROGRAM ?lirType': I COI\TROL: PROGRAM) IN (imports I >..=r') IN 

MO"-ITOR ?drT:,,pe'' ( I locks)) ( I LET I'~( LET LOCK-NEWLOCK IN{>,, IN LOCK} I locks) IN) 
(imports I) LET b ~NEWPROGINSTANCE(block).UNCONS IN 
?(EXPORTS n,, .... ) [ (ne~BINODFROM[n,.. b' PLUS nm~b·.nm] ) ..... 
?e(SHARES n5 • ... ) FAAME~MKINTTYPE(block). nm~b·. COI\TROL~b .nm ] 
~ ?•access•: block. with the block's body desugared to: [(d I b) ..... nm: PROGRAM drType~{s: ... I] 

, ,imports::= I"1PORTS ( (n •,·: I) n, ) .... ··In V >, l(n,:nt) .... ] = >r· IN LET [( (n,4nt)~{n, PLUS nt.BINDING} ) .... ] 
,safety::= SAFE I UNSAFE ··In 3. 41. 
, locks::= LOCKS e ?( USl1'G nu: t) >, ?( [nu: t]) IN e 

.. block::= 
?(CHECKED I U1'.CHECKED I TRUSTED) 
{ ?open ?enable ?bod} 

?(EXITS (n. ! .. = >s): ... ) } 
··In J /J 15. 

• open : : = OPEN ( n - - e I e ). ! .. : 
Ir, 2. 5. 17. •Th,·~- may be ,.rt/1,n a,:. 

,enable::= E1'ABLE ( enChoice I 
{ enChoice: ... f ): 

In 5. 17. 
,en('hoice :: =( e. ! .. I A -..:y) => s 

In 7. 17.I. 
,,,body ::= (d I b): ! .. : s: ... 1 s: ! .. 

In 5. 17. 

~ LET n" .... : EXCEPTION~NEWLABELU .... 
IN { t ~ enable l BUT l (n·· .... = > s ): ... } } 

•• Btit "" ,snot fls,ble :" ,. 

( LET n-A 0~n IN e.UNREF I •• Th.- IN before! .. is a seporato,. 
LET BINDP[{v{e.UNAEF}}.P. 
OPENPROCSL{Vfe.UNREF}}.P. >,, IN e.UNREF) I) IN! .. IN 

BUT ( I enChoice I 
{ enCho,ce: ... I ) 

( e I ANY) .... => Is: REJECT: EXITS 
~etr~·=>GOTO Retry" 1\: Cont'=)GOTOConl" 1'} 

LET NEWFRAME[ REC [td I b) .... ) ).UNCONS IN { s: ... } 

,i d«la,aru•r :: = n. ! .. : ?access1i varTC" ( n: ,arTC ) .... 
/,; 2. /0. 43. VAR. READO"L Y on~1for 111/crfac,· ,w. 

:access::= PUBLIC I PRIVATE 
I,; 2. J. II. IJ. 50. 51. 51. 

, , bindtn!! :: = n. ! .. : ?access:: t ~ ( 
e I 
t .• •• 1t=TYPE I 
CODEI 
'?INI.INE(E'-.:TRY I INTERN . .\LI) hlock'· I 

tt ?TRUSTED MACHINECODE {(e .... ): ... f 
) 
In 2. JO. • The - ma,, be wrillen a.< =. 
Block or MACHINE CODE only/or proc /_l'/Ji'' 
•E'- TR\ and INTERNAL can also be bef1r1!f. 

"stal<'m,·,,t :: = sS 
In fl. 9. JO. I l. /9. 

,,sS ::=e1+-e: I e I block• I escape I loop I '-ULL. 
,,. escape :: = GOTO n \ GO TO n I 

EXIT I CONTINUE •LOOP I •RETRY I 
(RETURN I RESUME) ?e I 
•Rl:JECT I t:j:e +-STATE 

,·loop::= (iteraLOr I) 
(WHILE e I UNTIL e I) 
DO ?ec>pen' ?•enable·' ?body1" 

?(REPEAT (n. ! .. =>s): ... ) El'iDL.OOP 
"iterator::= THROUGH e I 

FOR (n : t I •n) 
( ( I DECREASING) IN e [ 

n .... ~ LET x· : t ~ ( 
el 
!1 - Samease o:.-eptfor conflicting synta\. I 
NEWEXCEPTIONCODE0 ··r=SIG\:AL or ERROR I 
>, [d': l.DOMAIN] IN LET r'~NEWFRAME[t.RANGE].UNCONS 
IN { LET r' IN 

{ {t.DOMAIN+-d': (l'.ENTEA: 11) block: RETURN} 
(FINALL y !'.EXIT 11) i 

BUT { Return'"= )r'}l I 
MACHINECODE[(BYTESTOINSTRUCTION[e .... ]) .... ) 

) IN X • •• e is f\'{Jlllated univ onrc. 

! SIMPLELOOP {sS: GOTO Cont": EXITS Retry"=)NULL}: 
EXITS Conf'=>NULL} 

[e: .. e:].TOVOID I e --must >•ieldVOID·· I ··al/four yie/d\'OID·· 
HEX[exception[code~ n". args~NIL]] I 
GOTO( Exit' 11 I Cont'' I Loop'"I Retry·•) I 
{ ?(r'i 1+-e:) GOTO (Return'" I Resume')} I 
THISEXCEPTION0 I DUMPSTATE)e) 
{(iterator: I done'~FALSE: Next'; PROC~{}:) 
{ I est'~>. IN (NOT e I e I FALSE): 
{ ~ SIMPLELOOP { 

IF Test'□ OR done' THEN GOTO FINISHED: 
{ enable body EXITS Loop'= )NULL }: Next'□ } 

EXITS Exit'=NULL: (n. !..=s): ... : FINISHED='-ULL}}} 
FOR x.': e II\ e I 
fn:1:rr-
( Range·: TYPE~e: done·: BOOL+-Ran;e·.IsEMPTY: 

Next': PROC~{ IF n ( ~Range'.LAST <Range'.FIRST) 
THEN done'+-TRUE ELSE n .. n.(succf PRED) }: 

n.-Range'.(FIRST I LAST): I 
.. e:. e!) done·: BOOL~FALSE: Next': PROC~{n .. e:}: n+-e1): 

,, I 5 a 5ubrange. I,; FOR n: I ... . n i.s readonly e ,cepr for rhe assignment ir. the iterator's desugarini:. 

,,,e 'f''euiun :: = n I literal" I {e} I application!'• I 
te I type Name"). (9) n [ 
prelixOp e I e, inlixOp e, I e. prefixOp I e1 • infix0ple 1) I 
ei rcl0p(4)e: I (>. [x·: v'eI.y' :'ve1)=>[BOOL) IN~}[e I.e:] I 
Ci AND (21 e: I ei OR ti) e, I IF e1 THEN e: ELSE FALSE I IF c1 THEN TRUE ELSE e1 I 
et (9) I •STOP I ERROR I e. DEREFERENCE I STOPn I ERROR NAMELESSEAROR I 
builtln [ e ?(. e2, ! .. ) ?applEn'') I e1 • builtln ?( [e, .... ) ?applf:n) I 
funnyAppl e,J( f ?argBinding'' ?applEn:']) I e. ~un~yAppl ?( [?argBinding ?a pp I En)) I 
I argBmdmit I . ··Bmdmg must coerce to a record. arra:,,. or •local string·· I 
subrange:• I 1f-' selecF• I safeSelect•: I •w1thSelect-..: Is 
Precedence is in bold in rule, /9-21. All operators aJ!IOC'iate to the left e.u:ept ~- ...,h,ch assoc,a/es 
to the fight. Appltcutiun has highesr pr«ede11ce. Subrange on(\' after I"- or THROUGH. ~ on(1• in if:, and select choices"'"''. 

·" prefixOp :: = <?!; (8) I - ( 7) I ( -1 'JOT) 1 J) VARTOPOINTER I UMINUS I NOT 
:1 infixOp :: = • I / I MOD (6) l + - (5l I +-(II) TIMES I DIVIDE I REM I PLUS I MINUS I ASSIGN 
:!relOp ::= ?NOT ( ?~ ( = I< I>) I#\ ?NOT (?NOT x'.(EOUAL I LESS I GREATER)[y') 1,:-=y· I 

(<= I>=) I IN x'= y' OR x· (<I>»· 1 x')=y'.FIRST Al\D { x <= y'.LAST 
··ln/9.JO. BUT IBoundsFault=)FALSE}}) 

:• huiltln :: = •• These are enumerated in Tahle 4- 5. 
:• funnyApfl :: = FORK I JOI'\! I WAIT I '-OTIFY I BROAlX'AST I SIGNAL I ERROR I RITURN WITII ERROR I 

•NEW •START I •RESTART ltnR,,NsFER w1rn I ttRHURN w1rH 
:•subrange::= (t:,,peName•· I) LET t' ~(typeName I INT). first'~( ei I e,.succ) IN 

( [It) e, .. e: (]I}) t'.MKSUBRANGE[first'. (e: I e,.PRED )] BUT 
··In 19. 19. 48. { BoundsFault= )LMKEMPTYSUBRANGE[e:)} 

Examples Notes 
DIRECTORY 

Rope: TYPE USING (ROPE. Compare]. •• There should always be a USING clause 
Cl FS: TYPE us, NG [OpenFile.Error.Open.read]. •• unless most of the interface is used 
10: TY PE IOStream. •• or it is a standard one like Rope or JO 
Buffer: TYPE: •• or it is exported. 

BufTerlmpl: M01'ITOR [f: CIFS.OpenFile) 
LOCKS BufTer.GetLock[h)t 

LSlll.G h: Buffer.Handle 
IMPORTS Files: CIFS.10. Rope 
EXPORTS Bu!Ter 

~ l •• module body·· } . 

CHECKED { 
OPEN Buffer. Rope: 
ENABLE BufTer.Overllow=>GOTO HandleOvll: 
stream: 10.Stream ~ 10.CreateFileStream["X"]: 
x: INT+-7: 

{OPE1' b~~buffer: 
E~ABLE I 
Files.Error··[error. file]··=>{ 

stream.Put{IO.rope[error]): CONTINUE }: 
AN,·=>{ x .. 12:GOTOAfterQuit} f: 

y: INT+-9: ... }: 
x +-stream.Getlnt: ... 
EXITS 

AfterQuit=>{ ... }: 
HandleOvll=>{ ... } }: 

•• Implementations can have arguments. 
•• LOCKS only in MONITOR. to specify 
•• a non·standard lock. 
•• Note the absence of semicolons. 
•• EXPORTS in PROGRAM or MO"ilTOR. 
•• Note the final dot 

•• Unnamed OPEN OK for exported 
•• interface or one with a USING clause. 
•• A single choice needn·t be in I}. 
•• Use a binding if a name's value is fixed. 
•• Better to initialize declared names. 
•• A statement may be a nested block. 
•• Multiple enable choices must be in I}. 
•• ERRORS can have parameters. 
•• Choices are separated by semicolons. 
•• A 'IIY must be last ENABLE ends with:. 
•• Other bindings. decls and statements. 
•• Other statements in the outer block. 
•• Multiple EXIT choices are not in{}. 
•• AJterQuit. Hand/eOi'/1 declared here. 
•• fegal only in a GOTO in the block. 

HistValue: TYPE[ANY]: •• Interface: An exported type. 
A type binding. H1stog_ram: TYPE~REF J:listValue: 

baseH1st: REAOO\iLY Histogram: 
Add Hists: PRoc{x. y: Histogram] 

RETUR 'IIS [Histogram]: 
LabelValue: PRIVATE TYPE~RECORD[ 

first.last:INT.s:ROPE.x:REALf.g:INT.r:REF ANY): •• 
Label: TYPE~REF LabelValue: 
Next: PROC(I: Label] RETUR~S!Label]~ 

INLINE { RETURN [NARROW[l.r]) }: 

An exported variable. 
An exported proc. 

PRIVATE only for secret 
stuff in an interface. 

An inline proc binding. 

H: TYPE~Histogram 11: Size: INT~lO: •• Implementation: Binds a TYPE and INT. 
Hist Value: PUBLIC TYPE~HV"'u: •• .PUBLIC for exports. 
base Hist: PUBLIC H .. 1',;EWfHistValue .. ALL[l 71): •• An exported variable 
x. y: Hist Value+-( 20. 18. 16. 14. 12. 10. 8. 6. 4. 2. OJ: •• with initialization. 
Fatal Error: ERROR[reason: ROPE)~CODE: •• Binds an error. 
~etup: PROC [h: Handle'. a: INT)-EN1:RY { ... }: •• Binds an entry proc. 
IJ.k: INT+-0: p.q: BOC)L: lb: Label: main: Handle: 

x +-AddHists(baseHist baseHist)t: •• A statement can be an assignment 
Setup[bh~main. a~)): •• or an application without results. 
{E:"IIABLE FatalError=>RETURN[O]: 0 .. flJJ: ... }: •• or a block. 
IF i>3 THE"'-i RETURN[25) ELSE GOTO Notf>resent: •• or an IF or an escape statement. 

FOR t:INT DECREASING IN (0 .. 5) UNTIL ijt))) DO •• or a loop. Try to declare I in the FOR 
u: INT .. 0: ... : u .. t+4: ... •• as shown. Avoid OPEN or ENABLE 
REPEAT Out=>J •.. }: FINISHED=>{ ... } ENDLOOP: •• after DO(use a block). FINISHED 

•• must be last. 

THROUGH [1..4] DO i .. i•i ENDLOOP: 
FOR i: l\:T .. l. i+2 WHILE i<8 DO j+-j+i __ ,: 
FOR I: Label+-lb.1.Next WHILE l#NIL DO ... : 

•• Raises ito the 16th power. 
•• Accumulates odd numbers in (1..8). 
•• Sequences through a list of Labels. 

Iv: LahelValue 11+-[ i. 3. "Hello". 31.4E-l. (i+ 1). •• A constructor with some sample 
g[x) + lb.f + j.PRED. NIL]: •• expressions. 

pl: PROCESS RETURNS fiNT] .. FORK Qi. j]: •• FunnyAppls take one unbracketted 
ERROR NoSpace: WAITbufferFilled: •• arg: many return no result. so 
RT: RTBasic.Type.-CODE[LabelValueI'): •• must be statements. 
h[-3. NOT(i>j). 1•j. i+-3. i NOT >j. p OR q. lb.rt]: •• An application with sample expressions. 
lvi• .. [first~O.l_ast~5.x~3.14.g-2.f-5.r~'IIIL.s-"l"]: •• Short for /v+-Labe/Value1'[ ••• ]. 
[first~1. last~J)+-lvI•: -· Assignment to VAR binding 

•• (extractor). 

b: BOOL+-i IN (1..10]: FOR x: INT IN (0 . .11) DO ... : •• Subrange only in types or with 1:--. 
h .. ( c IN Color''(recf .. green] OR x IN 1'-T)0 .. 10) ): •• The INT is redundant. 



Syntax Meaning 
2 .. applifat!on :: = e [?argBinding ?applEn] LET m'~e. a·~ a Bindin IN l {m'. APPLY ► a'} ?applEn} 
2, arg81ndmg :: = (n ~ (e 11 *TRASH )). ! .. I (n - (e I OMITTED TRASH)). 1.. I 

(e 11 *TRASH ). ... (e I OMITTED I TRASH ) .... 
In /9, 26. •TRASH may be wrillen as NULL ~as:. 

mapp!En :: = ! enChoice9: ..... In 19. 26. BUT { enChoice: .•. } 

lK if::= IF e, THEN e2 (ELSE e., I ) 
l9Select :: = SELECT e FROM 

choice: ... endChoice 
The ":" is "." in on expression: also in 32 and 34. 

"'choice :: = ( ( I rel0p 22) ea ). ! .. = >ei 
,, endChoice :: = ENDCASE ( = > e, I) 

In 29. 32. 34. 

,zsafeSelect :: = WITH e SELECT FROM 
safeChoice: ... endChoice-11 

,,sareChoice ::= n: t =>e, 
l-l•withSelect ::= WITH (n,·~~ e1 I• e1 ) 

SELECT ( I teu) FROM 
withChoice: ... endChoice 11 

• The - - may be written as:. 
,~•withChoice :: = nl =>el I 

n,. n2. ! .. => el 

,. type::= typeName I builtlnlype I typeCons 
n typeName :: = nI I type Name . n1 

IF e1 THEN ei ELSE (e, I NULL) 
LET selector' ~e IN 

choice ELSE ... endChoice 
•• EmTsa separator }or repe111Ions of the choice. 
IF ( (selector' ( = I rel Op ) e1) OR ... ) TH EN e1 
ELSE (e, I NULL) 

LET v·-e IN 
safeChoice ELSE ... endChoice 

IF ISTVPE(v'. t]THEN LET n: ... NARROW[v'. t] IN e, 
OPEN v·~~e 1 IN LET n'~($n 1 I NIL). type·~vv·. 

selector'~(e,.TAG I e11) IN withChoice ELSE ... endOoice 
•• e11 must be defaulted except fora COMPUTED 1'{Jria-nL __ _ 

If selector'= $nl TH EN OPEN 
(BINDP(n'. LOOPHOLE(v'.type'.ni] 11 BINDP[n'. v·] > IN e, 

t~rpeName [e] I •ni lypeName typeName.SPECIALIZE[e] I typeName. n1 
In /9. 25. 36. 40./. 49. •·n, names a variant. 

1~builtlnType ::= INT I REAL I TYPE I ATOM I MONITORLOCK I CONDITION I * ?tuNCOUNTED ZONE I •tMDSZone I •LONG CARDINAL I •t ?LONG UNSPECIFIED •• See Tablt 4-2. 
TYPE only as tin a boron interface'sd. lNTEc'.iER. CARDINAL NA1'. TEXT STRING. BOOL CHAR are predefined 

w typeCons :: := subrange2) I paintedTC4il1 I transferTC' 1 I array TC'' I seqTC'5 I tdescriptorTC' 5 1 I 
reffC-"' I hstTC"' I tpointerTC'" I •trelativeTC''' I recordT0' 1 I unionTC 52 I enumTc1-11 defaultTC5! 

,oYarTC ::= <J READONLY I VAR) t I Ar--Y (VARI READONLY I VAR) t I A'V'( 
In II. 45-4 . ANY only in re/TC. VAi{ only in interface de<:/. 

11,.1paintedTC :: = type Name PAINTED t REPLACEPAINT[in: I. from: typeName] 
typeNome must be an opaque 1ype. t recorr/TC or enumTC. 

" transfer TC::= ?safety' xfer ?drType MKXFERTYPE[drType. flavor~xfer] 
411xfer :: = PROCEDURE I PROC I PROO RAM I 

PORT I PROCESS I SIGNAL I ERROR 
,idrType ::= ?fields, RETURNS fields2 I fields1 domain~fields 1. range~fields2 

No domain for PROCESS.. In 3. 41. 
11fields ::= [d11 •••• ] I (L ... ) I ANY 

A NY only in drType. In 42. 50. 52 . 

.warrayTC ::= ?*PACKED ARRAY ?t1 OF ti MKARRAY[domain~t1, range~li] 
,ssegTC ::=?*PACKED SEQUENCE tag5' OF t MKSEQUENCE[domain~tag. range~t] 

Legal only as last type in a recordTC or union TC. 
,,.,tdescriptorTC :: = 

?LONG DESCRIPTOR FOR varTC41! 
var TC must be an array type. 

MKARRA YDESCR(arrayType~varTC] 

... rerrc :: = REF ( varTC"' I) MKREFLtarget~( varTC I ANY)] 
"listTC :: = LIST ( OF var1C''' I) MKLIST[range~( YarTC I REF ANY)] 
-llltpointerTC:: =?LONG ?ORDERED ?•BASE MKPOINTER[target~( YarTC I UNSPECIFIED). 

POINTER ?•subran~e15 (TO varTC'" I ) I subrange-subrange ] I 
•POINTER TO FRAME n l n 
Subrange only in a relative C: no typeName" on it. 

,~•trelatiYeTC ::= typeName" RELATIVE t MKRELATIVE[range~t. baseType~typeName] 
I must be a pointer or descriptor IJ'fH!. (>'peName a base pointer type. 

:<l1 reconffC :: = ?access1l ( 
?MONITORED RECORD fields" I 
; MACHINE DEPENDENT RECORD 

(mdFields I •fields 4') ) 

MKRECORD( fields] I 

<1 :t:mdFields :: = [( (n pos). ! .. : •·In 50. 52. 
?•access12 t) .... ] 

su:t,os ::= { e1 ?(: e, .. e,)} •· ln5J. 53. MKPOSITION[firstWord~e1• firstBit~e 1. lastBit~e,] 

5, union TC :: = SELECT tag FROM MKUNION[selector~tag. variants~ LIST[ 
tn, ... =>(fields4 1 I mdFields 51 I •NULL)).... ( [ labels~LIST[ $n .... ]. value~fields] ) .... ]) 
.. E'IDCASE 

legal only as last type in a recordTC or union TC. 
i, tag::= (n (=l:pos~II I): ?•access11 I [ ( [ $n, (pos I NIL)] I $COMPUTED' I $OVERLAID'). 

*tC'OMPUTED I •tOVERLAID) (t I*) ( t I TYPEFROMLABELS) I 
In 44. 52. • only in unionTC:-1. 

~enumTC ::= { n .... } I MKENUMERATION[ LIST[$n .... ]) I 
MACHINE DEPENDENT {( (n I) {e} In) .... } MKMDENUMERATION[LlST[( [($n I '-IL). e] I [$n. -1] ) .... )) 

i1defauttTC :: = CHANGEDEFAUL TfoldT ~t. ( 
t +- I Oefault~NIL trashOK~FALSEl I 
L .. e I Default~INLINE>. IN e. trashOf<~F,\LSE] I 
*L ... el TRASH I Default~INUNE>. IN e. trashOK~TRUE) I 
•t .. TRASH Oefault~t.Trash. trashOK~TRUE]) 
default TC legal only as the type ma dee/ in a body~ or field" (n: t ,. e). in a TYPE binding". or in NEW. Note the terminal J. 
•TRASH mi1ybe wnuen as NULL 

,, name :: = letter (letteriifr-. t ... •• But not one of the reserved words in Table 3 - 2. 
"literal :: = num ?( ( ,!;; d b ) ?num ) I •• I NT literal. decimal if radix omitted or D. octal if B. I 

digit (digit jAIBIGlQl _, ( Hlh) ?num I •• INT literal in hex: must start with digit. I 
?num . num Fxponerit - - •• REAL as a scaled decimal fraction: note no trailing dot. I 
num exponent I •• With an exponent. the decimal point may be omitted. I 
• (extendedChar I' I") I• di~t !.. (Qf) I •• CHAR literal: the C form specifies the code m octal. I 
"(extendedChar 1 ·) ... "?e(bl!) I [ ('extendedCharl' ") .... ] •• Rope.ROPE. TEXT. or STRING. I 
$ n •• ATOM literal. 

... exponent:;=:=~?(+ I-) num ·- Optionall~ signed decimal exponent 
,, num :: = digit ... 
,,,extendedChar :: = space I \ extension I anyCharNot"'Or\ 
1,1 extension :: = digit 1 digit 1 digit, I ·· The character with code digit1 digit1 digit, 8.1 

<nlli I rIB> I t_t[D 1 &I.ID 1 ·-cR. ·,0151 TAB. ·,ou I BACKSPACE.·,0101 

(!IE) I (!l!J I" I" I\ •• FORM FEED. '\014 I LINEFEED. ·,0121 • 1 n I\ 

Examples 
th .. Files.Open [name~ I b.s. mode - Fi I es.read 

! AccessDenied=>{ ... J: FatalError=>{ ... }]: 
(GetProcs[i].ReadProc)[k]: 
file.Read[butfer~b. count-kl: 
fli~3.j~. k~TRASH]: fli~]. k~TRASH]: 
fl] .. TRASH]: 

i .. (IF jO THEN 6 ELSE 8): 

Notes 
•• Keywords are best for multiple args. 
•• Semicolons separate choices. 
•• The proc can be computed. 
•• =File.Reat/Jile. b. k] (object notation). 
•• j and k may be trash (see defaultTC 55), 

··Likewise.if i.j. and k are in that order. 

•• An IF with results must have an ELSE. 
IF k NOT IN Range THEN RETURN(?): 
SEL~CT f{j] _FROM •• SELECT e~ressions are also possible. 

<7-){...}. •• El:INT~jlJ]: IF /(7 THEN{ ... } ELSE ... 
IN [7 .. 8]=>{ ... }: •• 7. 8=> or =7. =8=>{ ... } Is the same. 
NOT<= 8 = >{ ... } : •• EN DC ASE=>{ ... } is the same here. 
ENOCASE=>ERROR: •• Redundant: choices are exhaustive. 

WITH r SELECT FROM •• Assume r. REF ANY in this example. 
rlnt: REF INT= >RETURN[Gcdf rlntt. 17~]: •• rlnt is declared in this choice only. 
rReal: REF REAL=)RETURN[fioor[Sin rRealt]Il: 
ENOCASE=)RETURN[IF r=NIL THEN ELSE 1] •• Only the REF ANY r is known here. 

nr: REF Nodel1~ ... : WITH dn~ ~nr SELECT FROM •• See rule 52 for the variant record Node. 
binary=>{ nr .. dn.b}: •• dn is a Node.binary in this choice only. 
unary=>{nr'"dn.a}: •• dn is a Node.unary in this choice only. 
ENDCASE= ){nr .. NIL}: ·- dn is just a Node here. 

P: PROC[ b: Buffer I.Handle. 
i: INT'"TEXT[20].SIZE ): 

Typelndex: TYPE~[0 .. 256): 
BinaryNode: TYPE-Node''.binary: 

HV: TYPE~lnterface.HistValue PAINTED 
RECORD[ ... ] 

Enumerate: PROC[ 
I: RL. 
p: PROC[x: REF ANY] RETURNS [stop: BOOL)] 

RETURNS [stopped: BOOL): 
p2:PROCESS RETURNS[i:INT] .. FORK stream.Get: 
failed: ERROR [reason: ROPE]~CODE: 

Vee: TYPE~ARRAY [0 .. maxVecLen)OF INT: 
Chars: TYPE~RECORD [text: PACKED SEQUENCE 

!en: [0 .. INTEGER.LAST] OF CHAR]: ch: Chars: 
v: Vec~ALL{O]: 
dV: DESCRIPTOR FOR ARRAY OF INT~ 

DESCRIPTOR[v]: 
ROText: TYPE~REF READONLY TEXT: 
RL: TYPE~LISTOF REF READO\/LY ANY; rl:RL: 
UnsafeHandle: TYPE~LONG POINTER TO Vec4l: 

Cell: TYPE~RECORD(next: REF Cell. val: ATOM]: 
Status: TYPE~MACHINE DEPENDENT RECORD [ 

channel (0: 8 . .10): [O .. nChannels). 
device (0: 0 .. 3): DeviceNumber. 
stopCode (0: 11..15): Color. fill (0: 4 .. 7): BOOL. 
command (1: 0 .. 31): ChannelCommand ]: 

Node: TYPE~MACHINE DEPENDENT RECORD [ 
type (0: 0 .. 15): Typelndex. rator (1: 0 . .13): Op>-1, 
rands (1: 14 .. 79): SELECT n (1: 14 . .15): * FROM 

nonary=>O. 
unary=>(a (l: 16 .. 47): REF Node). 
binar> = >[a (1: 16 .. 47). b(l:48 .. 79): REF Node) 
ENDCASE]: 

·- A type from an interface. 
-·Abound sequence: only in SIZE. NEW. 

•• A subrange type. 
•• A bound variant type. 

•• See 13 for use. 

•• A record with_just a sequence in il 
•• ch.1exl(1J or chiI] refers to an element 

-· NARROW[r/Jirst. ROTexr]t is a 
•• READONL y TEXT (or error). 

•• Don't omit the field positions. 
-· nChanne/s < 8. 
•• DeviceNum"Eer held in < 4 bits. 
-· No gaps allowed. but any ordering OK. 
-· Bit numbers> 16 OK: fields can cross 
•• word boundaries only ifword·aligned. 

•• rands is a union or variant part. 
·- This is the common part. 
•• Both union and tag have f'.lS. 
•• Type of n is { nonary, unary, binary}. 
•• Can use same name in several variants. 
-· At least one variant must fill 1: 14 .. 79. 

Op: TYPE~{plus. minus. times. divide}: 
Color: TYPE~MACH INE DEPENDENT { •• A Color value takes 4 bits: green= 1. 

red(O). green. blue(4). (15)}: c: Color: . . . . 
•· Except as noted. a constructor or application must mention each name and give 1t a value. 
Q: TYPE-RECORD[ •• Otherwise there·s a compile-time error. 

i: INT. •• Q[]. Ofi~] trash i(not in arg8inding 1'). 

j: INT'". •• No deraulting or trash for j. 
k: INT ... 3. •• QO. Q[k~~eave k=3. 
I: INT .. 3 I TRASH. ··Ask. but /~TRASH] tra'ihes /. 
m: INTt-TRASH ): •• QI]. Q[m~ trash m. 

m. xl. x59y. longNameWithSeveralWords: INT: 
n: INT~ 1 + 120+ 283+ 20008 

+lH+OFFH: 
rl: REAL~O.l+.l+l.OE-1 

+ lE-1: 
al: ARRAY..f0 .. 3IOFCHAR~rx. "\N. \ .. ·\141]: 
r2: ROPE~ lielfo.\N ... \NGoodbye\F . 
a2: ATOM~$NamelnAnAtomLiteral: 

•• = 1+12+1024+1024 
•• +1+255 
•• = 0.1 +O.l +0.1 
•• +OJ 
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