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The work described here was completed in late 1983 but not published at that time. It attempts to
provide a reasonably formal and precise definition of the Cedar programming language. The then
current version of the language was perceived as an inadequate base for a number of planned
extensions to the language and supporting environment; on the other hand, there was already a large
body of Cedar code that could not simply be abandoned. These problems are dealt with by defining a
small but powerful kernel language plus a mapping of existing Cedar constructs into that kernel. The
kernel language introduces value spaces and operations over them that go well beyond what has been
available in any implemented version of the Cedar language: it was to provide the basis for extension
and simplification. The mapping from existing Cedar into the kernel provides not only a migration
path for existing code but also a definitional method.

This report should be of interest to students of programming languages and their definitions.
Most of the interesting ideas of the Cedar language appear in the kernel, which is described in Chapter
2. Such readers should note that the formalism used to describe the kernel has several known
shortcomings. Its treatment of so-called dependent types is somewhat cavalier. A subsequent report by
Burstall and Lampson (*A Kernel Language for Modules and Abstract Data Types,” Digital Systems
Research Center, September 1984) includes a more careful treatment of such types in a language very
similar to the kernel. The present treatment also glosses over most of the definitional problems raised
by the possibility of concurrent evaluation.

The report should also be of interest to Cedar programmers. Chapters 3 and 4 constitute the most
complete, precise and accurate definition of the implemented Cedar langauge that has appeared to
date. For a reader willing to make the effort to assimilate the concepts introduced in Chapter 2, this
report can serve as an interim reference manual. The later chapters are painfully honest and complete;
as the abstract notes, they say much more than anyone probably wants to know. As of March 1986, the
only known differences between the description and implemention, other than minor bugs in each, are
the following:

* The improved syntax for ENTRY and INTERNAL has not been implemented: these attributes
must still precede the type in a procedure declaration (Section 3.5).

* Sections 3.3.4 and 4.3.4 document an improved design for opaque types that was never
implemented. In current Cedar, opaque types behave as they do in Mesa.

* According to Section 4.14, if P is a procedure taking one argument, its application to x using
dot notation is written without brackets, as x.P. In current Cedar, the alternative form x.Pf] is
also accepted.

Both classes of readers should note that many parts of the kernel language have never been
implemented in their full generality. Some of the current developers and users of the Cedar language
would not even agree that the directions of evolution suggested by the kernel language are desirable or
feasible. The claims about long-term goals and promised improvements in this report should therefore

be taken as the personal opinions of the author.
Ed Satterthwaite, March 1986



Chapter 1. Introduction

The Cedar language is a programming language derived from Mesa, which in turn is derived from
Pascal. It is meant to be used for a wide variety of programming tasks. ranging from low-level
system software to large applications. In addition to the sequential control constructs, static type
checking and structured types of Pascal, and the modules, exception handling, and concurrency
control constructs of Mesa. Cedar also has garbage collection, dynamic types, and a limited form of
type parameterization.

This manual describes the Cedar language. Except for the overview material in §2.1 and the
discussion of concepts in §§2.3-2.7. it is written strictly as a reference manual, not a tutorial.
Furthermore. it describes the entire language, including a number of obsolete constructs and
historical accidents. Hence it tells much more than you probably want to know. A summary of the
safe language and comments throughout the manual, suggest which constructs should be preferred
for new programs.

The manual is organized into three major parts:

Chapter 2: A description of a much simpler kernel language, in terms of which the current
Cedar language is explained. This description includes:

An overview or glossary, in which the major technical terms used in the kernel are
briefly defined (§ 2.1).

An informal explanation of the ideas of the kernel and the restrictions imposed by
current Cedar (§§ 2.3-2.9)

A precise definition of the kernel (§2.2). Most readers will probably find this rather
hard going.

Chapter 3: The syntax and semantics of the current Cedar language. The semantics is given
precisely by a desugaring into the kernel. It is also given more informally by English text.
This chapter also contains a number of examples to illustrate the syntax.

Chapter 4: The primitive types and procedures of Cedar. For each one, its type is given as
well as an English definition of its meaning. This chapter is organized according to the class
hierarchy of the primitive types (§ 4.1).

In addition, there is a one-page grammar for the full language. a shorter grammar for the safe
language. and a two-page language summary which includes the grammar, the desugaring. and the
examples from § 3. The tables in §§4.1-2 summarize the types and primitives.

To find your way around:
First read chapter 2, except for § 2.2.

Then consult the table of contents, or the index, for the topics of interest to you. The full

grammar (at the end) and the class hierarchy (Table 4—1) may also be useful as starting
points.

The manual is extensively cross-referenced. Section titles and numbers appear at the top of

each page. The summaries and tables also point to the section in which each construct is
defined.

Acknowledgements. Rod Burstall and Ed Satterthwaite helped me greatly in clarifying the ideas
presented in §2. Ed was also indispensable in getting an accurate description of the current Cedar
tanguage. Bill McKeeman's work on an earlier Cedar language description was the starting point for
this manual. Will Crowther, Jim Horning and Lyle Ramshaw read part or all of the manual
carefully. and made many helpful comments. Several other Cedar programmers have pointed out
errors or omissions. Of course, | am responsible for the errors that remain.



Chapter 2. The kernel language

This document describes the Cedar language in terms of a much smaller language. which we will
usually call the kernel or the Cedar kernel. Cedar differs from the kernel in two ways:

e It has a more elaborate syntax (§ 3). The meaning of each construct in Cedar is explained
by giving an equivalent kernel program.

Often ghe kernel program is longer or less readable; the Cedar construct can be thought of as an idiom which
cqnvemenl[y expresses a common operation. Sometimes the Cedar construct has no real advantage. and the
difference is the result of backward compatibility with the ten-year history of Mesa and Cedar.

e [t has a large number of built-in or primitive types and procedures (§4). In the kernel
language all of these could in principle be programmed by the user, though in fact most are
provided by special code in the Cedar compiler. In general, you can view these built-in
fa(r:lilities much like a library, selecting the ones most useful for your work and ignoring the
others.

Unfortunately, the current Cedar language is not a superset of the kernel language. Many important
objects (notably types, declarations and bindings) which are ordinary values in the kernel that can
be freely passed as arguments or bound to variables, are subject to various restrictions in Cedar:
they can only be written in literal form, cannot be arguments or results of procedures, or whatever.
The long-term goal for evolution of the Cedar language is to make it a superset of the kernel
defined here. In the meantime, however, you should view the kernel as a concise and hopefully
clear way of describing the meaning of Cedar programs.

To help in keeping the kernel and current Cedar separate, reserved words and primitives of the
kernel which are not available in current Cedar are written in SANS-SERIF SMALL CAPITALS, rather
than the SERIF SMALL CAPITALS used for those symbols in current Cedar. Operator symbols of the
kernel which are not in current Cedar are not on the keyboard.

The kernel is a distillation of the essential properties of the Cedar language, not an entirely separate
invention. Most Cedar constructs have simple translations into the kernel. Those which do not (e.g..
some of the features of OPEN) are considered to be mistakes. and should be avoided in new
programs.

Roadmap

§2.1 gives a brief summary of each major idea in the kernel, which may be helpful as an
introduction and reminder. Most of the chapter (§§2.3-2.8) is an informal explanation of the
concepts behind the kernel. Usually. terms are defined and explained before they are used. but
some circularity seems to be unavoidable. Both this and the explanations in §§2.3-2.7 are given
under five major headings, as follows:

Values and computations

The type system

Programs

Conveniences

Miscellaneous
There is also a sketch of the restrictions imposed by the current Cedar language on the generality of
the kernel: for more on this subject. see § 3. The meaning of the various built-in primitives is given
in §4. The incompatibilities between the kernel language and current Cedar are described in §2.9.
i.e., the constructs in Cedar which would have a different meaning in a kernel program. For the

most part, these are bits of syntax which do not have consistent meanings in current Cedar; future
evolution of the language will replace them with their kernel equivalents,



§2.2 precisely defines the syntax and semantics of the Cedar kernel language, the former with a
grammar. and the latter by explaining how to take a program and deduce the function it computes
and the state changes it causes. The kernel definition follows the'ordenng of the kernel grammar.
This section is rather difficult to read, and you may prefer to skip it.

2.1 Overview

This section gives a brief summary of the essential concepts on which the Cedar language is based.
The explanations are informal and incomplete. For more precise but more formal definitions, see
§ 2.2: for more explanation, see § 2.3-§ 2.8.

2.1.1 Values and computations

Application: The basic mechanism for computing in Cedar is applying a procedure (proc for short) to
arguments. When the proc is finished, it returns some resufts, which can be discarded or passed as
arguments to other procs. The application may also change the values of some variables. In the
program an application is denoted by (the denotation of) the proc followed by square brackets
enclosing (the denotation of) the arguments: f [first~3, last~x+1]. here the ~ symbol binds the
value of the expression on the right to the name on the left. There are special ways of writing many
kinds of application: x+ 1, person.salary. 1F xX3 THEN red ELSE green, x¢7.

Value: An entity which takes part in the computation (i.e., acts as a proc, argument or result) is
called a value. Values are immutable: they are not changed by the computation. Examples: 3. TRUE,
"Hello". A [x: INT] IN x+3: actually these are all expressions which denote values in an obvious
way. The A-expression denotes a proc value P; the name x is called a parameter. When P is applied
to an argument, the parameter x is bound to the argument.

Variable: Certain values. called variables, can contain other values. The value contained by a
variable v (usually called the value of v) is returned by v.VALUEOF, and can change when a new
value is assigned to v In addition to its results. a proc may have side-effects by changing the values
of variables. Nearly every non-variable type 7 has a corresponding variable type VAR T values of
type VAR T contain values of type 7. Every VAR type has a NEW proc which creates a variable of the
type. A variable is usually represented by a single block of storage; the bits in this block hold the
representation of its value. A variable may be Jocal to a proc. or it may be created by an explicit
call of NEw, and referred to by a REF or pointer value.

Group: A group is an ordered set of values, often denoted by a constructor like this: [3, x+1,
"Hello"]. Like everything else. a group is itself a value.

Binding: A binding is an ordered set of [name, value] pairs. often denoted by a constructor like this:
[x: INT~3, y: BOOL~TRUE] (or simply [x~3, y~TRUE], in which the types of the names are the
syntactic types of the expressions). If 4 is a binding. b.n denotes the value of the name » in 5. Note
the difference between binding and assignment: one introduces a new name with a fixed value; the
other changes the value of a variable.

Argument: A binding constructor written explicitly after an expression (e.g., Copy{from~x. to~)l])
denotes application of the value P denoted by the expression to the value e denoted by the
constructor, called the argument. P is usually a proc, and a is a binding, which is bound to P's
domain declaration D to get the argument which is passed. In making this binding a is coerced. if
necessary, to match the declaration:

If a name in D is missing from a. a defaul! value is supplied.

If a value in a doesn’t have the type required by D. it is coerced (if possible) into another
value which does.

The constructor can also be for a group, in which case the names from D are attached to its
elements to turn it into a binding.



2.1.2 The type system

Type: A type defines a set of values by specifying certain properties of each value in the set (e.g..
integer between 0 and 10): these properties are so simple that the compiler can make sure that proc
arguments have the specified properties. A value may have many types; i.e., it may be in many of
the?e; slet)s. A type also collects together some procs for computing with the value (e.g.. add and
multiply).

More precisely, a type is a value which is a binding with two items:

Its predicate, a function from values to the distinguished type BOOL. A value has type T if
T's predicate returns TRUE when applied to the value.

Its cluster. a binding in which each value is usually a proc taking one argument of the type.
For any expression e, the expression e.f denotes the result of looking up fin the cluster of
e's syntactic type Ve, and applying the resulting proc to the value of e.

A proc’s type depends on the types of its domain and range; a proc with domain (argument type) D
and range (result type) R has the type D—R. Every expression e has a syntactic type denoted Ve,
e.g., the range declared for its outermost proc; in general this may depend on the arguments. The
value of e always has this type (satisfies this predicate); of course it may have other types as well.

Mark: Every value carries a set of marks (e.g.. INT or ARRAY: think of them as little flags stuck on
top of the value). The predicate HASMARK tests for a mark on a value: it is normally used to write
type predicates. The set of all possible marks is partially ordered.

The set of marks carried by a value must have a largest member m, and it must include every mark smaller than m.
Hence all the marks on a value can be represented by the single mark m: we can say that m is the mark on the value.
This does not imply a total ordering on the marks.

Type-checking: The purpose of type-checking is to ensure that the arguments of a proc satisfy the
predicate of the domain type; this is a special kind of pre-condition for executing the proc. The
proc body can then rely on the fact that the arguments satisfy their type predicates. It must
establish that the results satisfy the predicate of the range type: this is a special kind of post-
condition which holds after executing the proc. Finally, the caller can rely on the fact that the
results satisfy their type predicate. In summary:

Caller—  establish pre-condition: arguments have the domain type:
rely on post-condition: results have the range type.
Body — rely on pre-condition: parameters have the domain type.

establish post-condition: returns have the range type.

Declaration: A declaration is an ordered set of [name, type] pairs. often denoted like this:
[x: INT, y: BOOL). If 4 is a declaration, a binding b has type 4 if it has the same set of names. and for
each name n the value &.n has the type dn. A binding b matches d if the values of b can be coerced
to yield a binding 4" which has type d.

A declaration can be instantiated (e.g.. on block entry) to produce a binding in which each name is
bound to a variable of the proper type: instantiating the previous example yields
[x: VAR INT~{VAR INT).NEW. y. VAR BOOL~(VAR BOOL).NEW].

Class: A class is a declaration for the cluster of a type. For instance, the class Ordered is [T: TYPE,
LESS: PROC[T, T]—[BOOL]. . . ). C is a subclass of D if (loosely) C includes at least all the [name,
type] pairs in D.



2.1.3 Programs

Name: A name (sometimes called an identifier) appearing in a program denotes the value bound to
the name in the scope that the name appears in (unless the name is in a pattern before a colon
(declaration or binding) or tilde (binding). or after a dot or $). An arom is a value that can be used
to refer to a name; a literal atom is written like this: $a/pha.

Expression: In a program a value is denoted by an expression, which is one of:
a literal value—3 or "Hello":
a name— x OT salary.
an application of a proc value to a group or binding value — GetProperties|directory. input]:
a A-expression. which yields a proc value— A [x: INT]=>[INT] IN (IF 0 THEN — x ELSE x).
a constructor for a declaration or binding—[x: INT~3, y: REAL~3.14]).

If a value is given for each free name in an expression, then it can be evaluated to produce a value.
Thus an expression is a rule for computing a value. The entire program is a single expression, made
up of sub-expressions according to the five constructs above.

Scope: A scope is a region of the program in which the value bound to a name does not change
(although the value might be a variable. whose contents can change). For each scope there is a
binding called ENv (for environment) which determines these values. A new scope is introduced (in
the kernel) by IN (after LET or A) or by a Rec [...] constructor for a declaration or binding: e.g..

LET x~3 IN x+35:

LET REC Fact~A [n: INT]=>[r: INT] IN (IF n=0 THEN 1 ELSE n*Fac{n—1]) IN Fact[4].
The first expression evaluates to 8. the second to 24.

Constructors: Brackets delimit explicit constructors for group. declaration or binding values. They
all have the form [x,. x,. ..]. and are distinguished by the form of the X

an expression for a group:
n. e for a declaration:
n~e oI n: e ~e, for a binding.

Recursion: When names are introduced in a constructor in Cedar. this is done recursively:

If v is bound to » in a binding constructor, then in expressions in the constructor » has the
value v. rather than its value in the enclosing scope. Exception: argument bindings are non-
recursive,

If nis declared in a declaration constructor, then it may not be used in the constructor.
unless there is an ordering of the declarations in the constructor such that a name is used
only by later declarations. Exception: declared names may be used in the bodies of A-
expressions in the constructor (see § 3.3.4).

In the kernel. however, constructors are non-recursive unless preceded by REC.

Dot notation: The form er looks up n in some binding associated with e. and does something with
the result. There are three cases:

If e is a binding. en is just the value paired with nin e.

If eis a type. e.n is e.Cluster.n.

Otherwise, e.n is (Ven)[el. and e.nfmore args] is usually (Ve.n)[e. more args]. Recall that Ve
is the syntactic type of e.

In all cases you are supposed to think of n as some property or behavior associated with e; en
denotes that property or evokes that behavior.



2.1.4 Conveniences

Coercion: Each type cluster may contain To and From procs for converting between values of the
type and values of other types (e.g.. Floar: PROC[INT]—=[REAL]: this would be a To proc in REAL and
a From proc in INT). One of these procs is applied automatically if necessary to convert or coerce an
argument value to the domain type of a proc: this application is a coercion. Each coercion has an
associated atom called its tag (e.g.. $widen for INTREAL or Soutpur for INT—ROPE): several
coercions may be composed into a single one if they have the same tag. The tags thus serve to
prevent unexpected composition of coercions: all are NIL currently. however.

Exception: There is a set of exception values. An expression e denotes a value which is either of
type Ve or is an exception. Whenever an exception value turns up in evaluating an expression €. 1t

immediately becomes the value of e,. unless (in the kernel) ¢, has the form e, BuT {..}. The {..}

tests for exception values and can supply an ordinary value. or another exception, as the value of
the BUT expression. An exception value may contain an ordinary value. called the argument of the
exception, so that arbitrary information can be passed along with an exception.

Finalization: When a variable is no longer accessible, the storage it occupies is freed (automatically
in the safe language). Before this is done. a finalization proc in the cluster of the variable’s type is
called to do any other appropriate resource deallocation. Finalization is done by separate processes.
and hence must be explicitly synchronized with the rest of the program. The local variables of a
proc or other scope may also be finalized (using UNWIND): this is done synchronously (§ 3.4.3A).

Safe: The safety invariant says that all references are legal. i.e.. each REF T value is NIL or refers to
a variable of type 7. A proc is safe if it maintains the safety invariant whenever it is applied to
arguments of the proper types. If a proc body (A-expression) is
checked. the compiler guarantees that the proc value is safe:
trusted. the programmer asserts that it is safe (the compiler makes no checks): the proc value is safe:
unchecked. the compiler makes no checks and the proc value is unsafe.
It is best to write checked code whenever possible. However, checked code cannot call unsafe procs
(since the compiler then cannot guarantee safety).

Process: Concurrency is obtained by creating a number of processes. Each process executes a single
sequential computation. ong step at a time. They all share the same address space. Shared data
(touched by more than one process) can be protected by a monitor: only one process can execute
within the procs of the monitor at a time. So that each process can know what to rely on. there
must be an invariant for the monitored data which is established whenever a monitor proc returns
or waits. A process can wait on a condition variable within a monitor: other processes can then enter
the monitor. The waiting process runs again when the condition is notified. or after a timeout.

2.1.5 Miscellaneous

Allocation: Cedar has standard facilities for allocating new variables of any type (the NEW
primitive): related variables can be allocated in the same zone. Normally. variables are deallocated
automatically by the garbage collector when they can no longer be referenced: such vanables can
only be referred to by REFs. Variables can also be deallocated explicitly by FREE. but this is unsafe.

Static: An expression whose value is computed without executing the program is called siatic.
Literals are static. as are names bound to literals. and any expression with static operands. Proc
bodies are never static unless they are inline, and often not then.

Pragma: Some language constructs do not affect the meaning of the program (except possibly to
make a legal program illegal). but only its time and space costs: these are called pragmas. Examples
are INLINE for proc bodies and PACKED for arrays.



2.2 Kernel definition

This section gives the syntax and semantics of the Cedar kernel language. Motivation, and an
explanation of the relation between the kernel and the current Cedar language, can be found in
§§ 2.3-2.8. Since this section is rather formal, you are advised to read the rest of the chapter first.
and then return here if you want a more precise definition.

The kernel is subdivided into
A rather austere core; anything can be desugared into this, but not very readably (§ 2.2.1).
A set of conveniences, with these, readable programs can be written (§ 2.2.2).
Imperative constructs: statements and loops (§ 2.2.3).
Exception handling (§ 2.2.4).

The format of this section interleaves grammar rules which give the syntax of the language with text
which gives the meaning. The meaning of the core is given in English. For other parts of the
kernel. it is given by desugaring rules which show how to rewrite each construct in terms of others:
if rewriting is done repeatedly. the result is a core program, which may invoke some primitives. The
meaning of these is also given in English. There is also some English explanation of the desugaring.
but this is only a commentary and does not have the force of law.

See § 3.1 for the notation used in the grammar and desugaring.

2.2.1 The core

The Cedar core is a minimal subset of the kernel, barely adequate as a base into which the rest of
the kernal can be desugared. In the core, there is syntax only for names. literals. application. A-
expressions. a basic and a recursive binding construction, and syntactic type: everything else is done
with primitives. We never write anything in the core. however, except to show the desugaring of a
kernel construct. Thus the reader need not struggle with programs in the ugly core syntax.

Many readers may be happy with the kernel definition given in the other sub-sections of § 2.2, and
may wish to avoid the formalism of this section.

Table 2—1 gives the core syntax (in the first column). together with a comment suggesting the
meaning of each construct (in the last column). The meaning is given in detail in §2.2.1A-G. The
middle column gives the syntactic type of each construct. For readability. this is written in the full
kernel language. with a few conventions:

a * in front of the syntactic type indicates that it gives less information that one would like.
For instance. DDOTP has type DECL—TYPE. which says nothing about the fact that the type
1s a cross type whose structure matches the structure of the decl.

A parameter to a primitive declared with :: is the type of some other argument: the
argument for this type parameter may be omitted in an application of the primitive, in
which case it is supplied as the syntactic type of the other argument. For instance. p: [1::
TYPE. x: t]—[...] can be applied with p[x~3]. which is short for p[r~INT. x~3].

A bold name is a reference to another parameter. e.g.. t in the previous example.

In the kernel, a core primitive named xDOTy is in the cluster of the type of its argument under the
name y. Thus DDOTP is in the cluster of DECL under the name P, so that 4.P=pDOTP|[d] if 4 is a decl.



Syntax Syntactic type Meaning
expression i =
n| vn ENV.R
literal | Vliteral
e de,| (Ve .RANGE)[e,] -- Standard application. |
Ad=>d,iNe d,—d, -- Standard proc constructor. |
Ad=>d,Ne] d,—d, -- Unchecked standard proc constructor. |
[(n~e), ] [(n: Ve), ...] -- Vanilla binding constructor. |
Fixd ~e| d -- Recursive binding constructor. |
Ve TYPE -- Syntactic type.
type ii=¢ Ve --=>TYPE-- -- A type is syntactically just an expression.
decizi=e Ve --=>DECL-- -- A decl is syntactically just an expression.
Name 1=
letter (letter | digit)... (VENvV).n -- Appears as an e or in a pattern.
literal ::=
$nj ATOM - ATOM literal. |
primitive Vprimitive
primitive ::=
ARROW | [d: DECL. p: (d—DECL)]|—[a: --arrow--TYPE]
DOMAIN | RANGE | *[a: --arrow--TYPE]—[r: TYPE]
MKPAIR | [1,:0 TYPE. first: £, 1,21 TYPE. rest: t,]=[v: t Xt,]
GROUP | [, TYPE]=[r: TYPE] ~-1=>TYPE
MKCROSS | [¢: GROUP[TYPE]]—[c: --cross--TYPE]
CDOTG | *[1: --cross--TYPE]—[g: GROUP[TYPE]]
MKBINDD | [¢: DECL, v: d.T]—[5: d]
BDOTD | BDOTV | [6: BINDING]—[d: DECL] | [4:: DECL. b: d]—=[v: d.T ]
MKBINDP | [p: PATTERN, 1:: TYPE, v: t]=[b: MKDECL[p. t]] -- =MKBINDD[d~MKDECL[p. t]. v~+]
LOOKUP | [d:: DECL, b: d. n: ATOM]=[v: DTOB[d].n]
THEN | [d,:: DECL. b2 d,. d,:: DECL. b,: d,]—>[v: d, THEND d, ]
ENV | *BINDING
MKDECL | *[p: PATTERN, 12 TYPE]—[d: DECL]
DDOTP | *[d: DECL]—[p: PATTERN]
DDOTT | *[d: DECL]—[r: TYPE]
DTOB | *[d: DECL]—[b: BINDING] -- =MKBINDP[p~d.P. v~d.T.G] ]
BTOD | *[b: BINDING]—[d: DECL] --=MKDECL[p~5.D.P., 1~MKCROSS[4.V] ]
THEND | [4,: DECL. d,: DECL]—(v: DECL] --=BTOD[DTOB[d,] THEN DTOB(4,]]
BOOL | ATOM | TYPE
TRUE | FALSE | BOOL
TYPE | DECL | BINDING | TYPE -- DECL=TYPE, BINDING=TYPE
PATTERN | TYPE -- = GROUP[ATOM]
ANY | TYPE -- T=>ANY forany type T
HIDE | [£:: TYPE. v; t]—[h: HEX] --See §2.2.4
HEX TYPE -See §2.24

Table 2—I: The core language

A name not in a literal (or pattern. in the kernel) denotes the value to which it is bound g’n the
current environment ENV (A below). An ATOM literal is a value which stands for a name in the
primitives which deal with declarations and bindings.

A literal denotes a value according to a rule which depends on its syntax. The core has only
numeric and ATOM literals, and the primitives enumerated above.



An expression denotes a value according to a rule which depends on its syntax. If the expression is
a name or literal. the value is the value of the name or literal. The remaining cases are discussed in
the following sub-sections. Most of these cases define the value of the expression in terms of the
value of its sub-expressions. The sub-expressions may be evaluated in any order.

A. The current environment ENV
The current environment ENv is a binding. The value of the expression » is ENv.n. ENV for a sub-
expression is the same as ENv for its containing expression. except that:

For the b of a closure being applied, ENv is computed according to B below.

For the e of a Fix, ENV is computed according to E below.

Thus applying a closure and evaluating a Fix are the only ways to change ENv.

B. Application

The value of a standard application is obtained by evaluating e, and e, to obtain v, and v, and
applying v, to v,. There are two cases for application:

v, is a primitive. The value of the application is a function of v, given in the definition of

the primitive. The core primitives are defined throughout §2.2.1. the Cedar primitives in
§4.

v is a closure ¢ (C below), with domain declaration d, body b and environment E. The

value of the application is the value of the expression b in the environment
MKBINDD[d, v,] THEN E

(E below). Note that if the closure was made with A, the body must be type-checked when
it is applied: a closure made with A was type-checked when it was made (C below).

Ve, must be an arrow type. An application type-checks if Ve, implies Ve, .DOMAIN (G below). The
type of the application is obtained by applying Ve, RANGE 0 v,. In simple cases. Ve, .RANGE is a

constant. For instance, NOT: BOOL—BOOL has RANGE=A BOOL=D>TYPE IN BOOL. However, the
result type may depend on the argument value. Thus

VMKBINDD.RANGE = A [d: DECL, v: d.T]=>TYPE IN [#: d]
so that MKBINDD[[:: INT]. 3] has type [#: [i: INT]] to go with its value [b~[i~3]).

C. Lambda

The value of a A-expression is a closure, which has three parts:
A domain declaration 4. equal to the value of d.
A body b, which is the expression e (not the value of e).

An environment £, equal to the current environment ENV when the A is evaluated.

A A-expression type-checks if
d, evaluates to a declaration d.

For any x of type d.T. Ve implies 4,.T in the environment MKBINDD[d. x] THEN E.

A A-expression type-checks if d, evaluates to a declaration; type-checking of the body is deferred
until the closure is applied.



D. Pairs. groups and cross types

A pair is the basic structuring mechanism. MKPAIR[x, y] yields the pair <x, y>. Bigger structures are
made. as in Lisp. by making pairs of pairs. When we are interested in the leaves of such a structure.
we call it a group and call the leaves its elements. A group has type GROUP[T7] if all its elements

have type T or are NIL. A flat group is a pair in which first is not a group, and rest is a flat group or
NIL.

The type of a pair is a cross type: MKPAIR[x, y] has type TXU iff x has type 7 and y has type U.
Cross types are made with MKCROSS. which turns a GROUP[TYPE] (i.e.. a group whose elements are
types) into a cross type in the obvious way:

MKCROSS[NIL] =NILTYPE
MKCROSS[7]=T if T is a type.
MKCROSS[ MKPAIR[x. y] ] =MKCROSS[x] XMKCROSS[y]

Note that MKCROSS of a flat group is flat. CDOTG goes the other way, turning a cross type into a
GROUP[TYPE] in which no element is a cross type. Thus MKCROSS is the inverse of CDOTG, but not
necessarily the other way around.

E. Bindings

A binding is either NIL. or an <atomn. value> tuple, or a <binding. binding> tuple. The primitive
MKBINDD constructs a binding from a declaration 4 and a matching value v, i.e. (as the type of
MKBINDD indicates), one with the type 4.T. The resulting binding has type 4. and consists of the
names from d paired with the corresponding values from v. Example:
MKBINDD[ [x: INT, b: BOOL]. [3, TRUE] ] = [x~3, b~TRUE]
= {<8x. 3>.<<$b, TRUED, NIL D> >
In this example. 4T is INTXBOOL.
The declaration and group in this example is written using the syntax of §2.2.2: in the core they would be

MKDECL[p~[$x. $8]. t~MKCROSS[[INT. BOOL]] | and mkPaIR[firsi~3. rest~MKPAIRfirst~TRUE. rest~NIL]] (where we have written
the arguments of these primitives in the kernel syntax).

The primitives BTOD and BTOV return the arguments of the MKBINDD primitive that made the
binding. MKBINDP is redundant; it is like MKBINDD, but takes a pattern instead of a declaration. and
hence accepts any v with the right structure, regardless of the component types.

LOOKUP returns the value of the name » in the binding. THEN combines two bindings. giving
priority to the first one in case of duplicate names. It works only for flat bindings, in which the first
element of each <binding, binding> tuple is an <atom, value> tuple, and the second element is
another <binding. binding> tuple or NIL. The value of b, THEN b, is another flat binding. obtained
by first replacing any tuple <<a, >, & in b, where a is equal to an atom in b, by b. and then using
this binding to replace the final NIL in b,.

The binding constructor [(n~e). ...] has the value MKBINDP[p~[n, ...]. v~[e. ...] ].

Fix makes a recursive binding: the value of FIX d,~e is MKBINDD[d. v]. where d is the value of 4, in

ENV and v is the value of e in the environment (LET FIX d~e IN d~¢) THEN ENV. Of course in general
this computation may not terminate: normally the names in 4 occur in e only in the bodies of A-
expressions, and in this case it does terminate. The Fix typechecks if Ve in the latter environment
implies DTOT[d].



F. Declarations

A declaration is either NIL, or an <atom, type> tuple. or a <declaration, declaration> tuple. The
primitive MKDECL constructs a decl from a pattern p and a value ¢ of type GROUP[TYPE]. A pattern is
a GROUP[ATOM]. i.e.. either NIL, or an atom, or a pair of patterns: the ATOM elements must all be
different. An application of MKDECL typechecks if 1 matches p. i.e.. if

both p and : are NIL. or
p is an atom and ¢ has type TYPE, or
p is a pair [p,. p,] and 1 is a cross type £, X1, and p matches ¢ and p, matches 7,.
The resulting declaration consists of the names from p paired with matching type values from r.

The primitives DDOTP and DDOTT return the arguments of the MKDECL primitive that made the
declaration. Thus

DDOTT[NIL]=NILDECL;

DDOTT[KS$n, D]=T:

DDOTT[{d,. d,>]=DDOTT[d,]XDDOTT[d,]
DTOB is redundant; it converts a declaration to a binding in which each name has the corresponding
type as its value. Thus DTOB[[x: INT. y: REAL]]J=[x~INT, y~REAL]. The inverse is BTOD. also

redundant; it is defined only if all the values in the binding are types. THEND combines two
declarations just as THEN combines two bindings: V(b THEN b))=Vb THEND Vb,

G. Types and type-checking

A type is a value consisting of a pair:
the predicate, a function from values to BOOL.
the cluster. a binding.

A value v has type T if T's predicate applied to v is TRUE.

T implies U iff (Vx) T.Predicate] x|=> U.Predicate x].

Typechecking consists of ensuring that the argument of an application has the type specified by the
domain of the proc (B above). The body of a A-expression can then be type-checked (or the
implementation of a primitive constructed) independently, assuming that the parameter satisfies the
domain predicate. Symmetrically. the result of an application can be assumed to have the type
specified by the range of the proc.

To complete the induction. it is also necessary to check that the value of the body of a A-expression
has the range type (C above).
The primitive types in the kernel are:

BOOL., with two values TRUE and FALSE.

ATOM, with values denoted by literals of the form $n.

TYPE, a predicate satisfied by any type value.

ANY, a predicate satisfied by any value.

DECL. the type of a declaration (F above).

BINDING. the type of any binding.



Arrow types, the types of procs (C above). An arrow type has a domain type and a range
type.

Cross types, the types of pairs (D above).
GROUP[7]. the type of any pair in which all the elements have type T.
Declarations, the types of bindings (E and F above).

There are no non-trivial implications among any of these types, except as follows:
DECL=>TYPE: BINDING=>TYPE; GROUP[T]=>TYPE.
T=>ANY for any type T.
N XT,=U XU, iff )=V, and 7,= U,
GROUP[7T]=>GROUP[U] iff T=>U.
N ->T,=U-U, iff U=T and (Yx: U) (A 7, N T)[x=>(A U, IN U)[x]. Note the
reversal of the domains.
d,=>d, for declarations iff d,.p=d,P and DTOB[d,].n=>DTOB[d,}.n for each n in d,.P.

2.2.2 Conveniences

Table 2—2 gives the syntax and semantics for kernel expressions. Most of this is straightforward
sugar. LET adds the binding e, to ENv in evaluating e, The separate case for b, ... simply allows the

[1 which normally enclose a binding constructor to be omitted in this case: see below. IF wraps e,
and e; in A’s so that they don't get evaluated: the IFPROC primitive chooses the one to evaluate and
applies it.

The dot notation has three cases.
For a binding it just looks up » in the binding.
For a type it looks up r» in the type’s cluster.

For anything else, it looks up rn in the cluster of Ve and applies the result to e. The special
LOOPUPC primitive does something special if it finds a proc which takes more than one
argument: it splits the proc into one which takes the first argument and returns a proc
taking the remaining arguments. This ensures that if Ven is such a proc P, the expression
e.nfa, b] will desugar into something equivalent to e, a. 8].

The usual syntax for application is a proc e, followed by an explicit binding constructor. The kind
of application may depend on the type of e, via the APPLY element of its type; for a proc applied
by the standard apply operator », APPLY is the identity. If ¢, is followed by an group rather than a
binding constructor, the argument is obtained by binding the group to the declaration which is e's
domain.

Infix operators desugar straightforwardly into application: note that the choice of proc is determined
by the type of the first operand only. AND and OR are not ordinary infix operators, since they
evaluate no more than necessary: this is expressed by the desugaring into IF.

The remaining expression syntax is various constructors, described below, and the imperative and
exception features described in the next two sections.



expression :: = coreExpression |

d, = d,l|
Alle)(I=>e)Nel
LET e, IN€, |
LETb...IN¢]|

IF e, THEN ¢, ELSE e, |
e.nj

e [b...lle[e, ...l
e, infixOpee, |
€, AND e,le OrRe, |

[110e (et

statements | simpleLoop |
but
infixOp ::=
X
PLUS
THEN
literal :: = coreLiteral |
digit digit ... |
declaration i =
p:t|
i(p:v)...]
binding 1=
p~el
d~el
pattern ;1=

n|
(P -]

primitive ::= corePrimitive |

LOOKUP | LOOKUFC |
PLUS |
IFPROC |

ARROW P [d,. A d, =>DECL INd,]
-- The domain defaults to []. the range to Ve, |
(A Ve Ne,)Pe.v--¢ abinding|

LET [b....]INe]

(IFPROC[ Ve, e, AINe,. AIN e[l

IF Ve=>BINDING THEN LOOKUP » [Ve, $n]

ELSE IF Ve=>TYPE THEN LOOKUP P [Ve.cluster, $n]
ELSE ( LOOKUPC » [Ve.cluster, $n] ) » [e] |

e,.APPLY > [b,...]| e, . APPLY b MKBINDD[Ve .DOMAIN, [e,. ..]
e, . infixOple,] |

IF €, THEN €, ELSE FALSE | IF ¢, THEN TRUE ELSE ¢, |

NIL | MxPAIR[e,. [ (] e, ! ) ]-- Group constructor. |

-- Pattern constructor: see the rule for p below. |
b PLUS ... PLUS NIL |

FIX [p. ...] : MKCROSS[[t. ...]]~[e. ...]|

d PLUS ... PLUS NIL |

xxxxxx | --Also recursive d maps into this?

- See §2.2.3

--See §2.2.4.

MKCROSS

INT -- Numeric literal, giving the decimal representa

-- A dis not an e; a d must be before ~ or after LET or DECL.

MKDECL[ PATT p, t] |

[p. ...]: MKCROSS][t , ...]] -- to separate names and types

-- Only the [...] form is an e; a b must be written after LET. |

MKBINDP[PATT p. €] |

MKBINDD[d, ]

-- Note: a pattern is not an €; it can appear only before ~ or :,
or after PATT in the kernel.

- PATTn=3$n

- PATT [p,...]=[PATT p,, ...]

-- Fill in types

The precedence of operators in e is: (highest) []. ». infixOps (all the same), BUT, IN (lowest). All are

left associative.

Table 2— 2: Kernel expression syntax and semantics



Constructors

A bracketted sequence of expressions (e.g.. [1. 2. 3]) denotes a flat group with its elements in the
same order (e.g.. MKPAIR[1, MKPAIR[2, MKPAIR[3, NIL]]l. Thus a group constructor is just like the
LIST function in Lisp. A pattern is a similar construct, except that it contains names which stand
for the corresponding ATOM literals; PATT yields the group obtained by replacing each name n by
the literal $n. After desugaring a pattern always appears after PATT and hence is always desugared
into an atom or a GROUP[ATOM].

Brackets are also used to delimit binding and declaration constructors. They are distinguished from
each other. and from group constructors, by the presence of ~ in each element of a binding
constructor, and : in each element of a declaration constructor. The elements of a binding or
declaration constructor are sugar for applications of the MKDECL, MKBINDP and MKBINDD primitives.
The constructor itself strings the resulting declarations into a big one using the PLUS operator,
which is just like THEN except that it does not allow duplicate atoms; the motivation for this is to
allow the names and corresponding types or values to be written together, instead of factored as the
primitives require. As a result, values made from constructors are always flat.

Note that these constructors do not nest, so they can only be used to build flat values. The only
exception is that a d can be [(p: 4. ... ]. This is intended for the d~e form of binding; e.g.. if DivRem
returns two INTs, you can write [d: INT. . INT]~DivRen|...] instead of [d. r]: INTXINT~ DivRem...].

The REC binding constructor is sugar for Fix which exactly parallels the non-recursive one.

2.2.3 Imperatives

These constructs are generally used together with non-functional procs.

statements ::= { e: ... } IF (IsvoiD[e]) AND ... THEN [ ] ELSE ERROR
-- Ordering by non-prompt evaluation. )
simpleLoop ::= SIMPLELOOP statements LET ReC [loop’~(A IN { statements; loop[] })]iNloop'[]

-- Only an exception (such as EXIT) will terminate the loop.

Each e in the statements must evaluate to voID, which is a distinguished null value; this is to catch
mistakes like writing x+1 as a statement. The definition of AND ensures that the ¢'s are evaluated
left-to-right.

The simpleLoop is the standard way to express a loop in terms of recursion. You are supposed to
use an exception to get out of this loop; Cedar provides a number of convenient ways to do this,
such as EXIT and RETURN.



2.2.4 Exceptions

An exception is treated as a special value returned from an application. The exception value
contains an exception code and an args value which may be of any type. When an application sees
an exception value, it immediately abandons the application and returns the exception value; thus
application is strict. There has to be some way to stop this, or the first exception would be the value
of the program. The HIDE primitive takes any value and returns a variant record of type HEX. It
turns:

a normal value into the normal variant, with the value in its v field;

an exception into the exception variant, with the code in its code field and the arguments in
its args field.

UNHIDE takes a HEX value and returns the original unhidden value.

An exception code has the type EXCEPTION[T]. where T is a declaration which is the type of the
args: it is the domain of the exception, and (VEXCEPTION[T]).DOMAIN=T. An exception value is
constructed by the primitive

RAISE: [T:: TYPE. code; EXCEPTION[T]. args: T}
Thus the args always has the type demanded by the code.

This is dressed up with the following syntax.

but ::= e BUT { butChoice: ... } LET v'~HIDE[e] IN (
IF ISTYPE[v', HEX.normal] THEN UNHIDE[V']
ELSE IF ISTYPE[v', HEX.exception] THEN
LET h'~NARROW[V', HEX.exception ] IN
LET selector'~h’.code IN butChoice ELSE ... ELSE UNHIDE[v']
ELSE ERROR )

butChoice ::= e, =D>e, | IF selector'=e, THEN LET MKBINDD[V e .DOMAIN, h'.args] IN e, |
e .e .l =>e,| IF (selector' =e ) OR ... THEN e, |
ANY =>e, IF TRUE THEN e,

A BUT expression evaluates e. If it is a normal value, that is the value of the BuT. If it is an
exception, each butChoice in turn gets a look at it. If one of them likes it. then it supplies the value
of the BUT: otherwise the exception is the value.

The e, in a butChoice must evaluate to an exception code. If there is just one, and it matches code
in the exception. then args in the exception is bound to the domain of the code, and e, is evaluated
in that environment. If there is more than one, then e, is just evaluated in the current environment.
An ANY butChoice matches any exception, but of course doesn’t bind the arguments.



2.3 Values and computations

A co_mputation in Cedar is the evaluation of an expression in some environment. This section
describes the kinds of values which can be computed by Cedar programs, and the basic mechanisms
for doing computations.

2.3.1 Application

The basic mechanism for computing in Cedar is applying a proc to argument values. A proc is a
mapping
from argument values and the state of the computation,
to result values, and a new state of the computation.
The state is the values of all the variables.
A proc is implemented in one of two ways:

By a primitive supplied as part of the language (whose inner workings are not open to
inspection, but which is defined in § 4).

By a closure, which is the value of a A-expression whose body in turn consists of an
expression, which may contain further applications of procs to arguments, e.g., A [x: INT] IN
x+3. When a closure is applied, the parameters declared after the A are bound to the
arguments, and then the body after IN is evaluated in the new environment thus obtained.

In Cedar, each parameter value thus obtained is used to initialize a variable, which is the object
named by the parameter in the body. Thus the body can assign to the parameters. Use of this
feature is not recommended.

Note that when a A-expression is evaluated to obtain a closure its body is not evaluated, but is
saved in the closure, to be evaluated when the closure is applied. Some constructs (IF, SELECT, AND,
OR) are defined (see §2.2.2 and § 3.8) by wrapping A-expressions around some arguments, and then
applying them only when certain conditions hold; e.g.. IF b THEN f{x] ELSE g[y] evaluates fx] iff 5
is TRUE and g[y] iff b is FALSE.

Application is denoted in programs by expressions of the form flarg, arg. ... If the value of fis a
closure, this expression is evaluated by evaluating f and all the arg's, and then evaluating the body
of the closure with the formal parameters bound to the arguments (unless an exception value turns
up; see §2.6.2). Thus to evaluate (A [x: INT] IN x+3)[4]:

evaluate the A-expression to obtain a closure;
evaluate the argument 4 to obtain the number 4;
evaluate x+3 with x bound to 4 to obtain the number 7.

The first two evaluations can be done in either order (with different results in general, though not
in this case).

To evaluate a primitive application such as x+3, evaluate the arguments, and then invoke the
primitive on those arguments to obtain the result and any state change. With a few exceptions (e.g..
assignment and dereferencing or following references), primitives are functions and can be thought
of as tables which enumerate a result value for each possible combination of arguments. Invoking a
primitive can therefore be viewed as a simple table lookup using the arguments as the table index.

Actually there may be one more step in an application. If an argument doesn't have the type
expected by the proc, the argument is coerced to the proc’s domain type if possible. If no coercion
can be found, there is a type error. Coercion is discussed further in §2.6.1 and §4.13.



Most procs take a binding as argument, in which the various parts of the argument are named. E.g..
OpenfFile. PROC[name: ROPE, mode: Files.Mode] takes a binding with two values named name and.m_ode.
It might be applied like this: OpenFildname~"Budget.memo", mode~$read). If the names are missing,
there is a positional coercion which supplies them left-to-right, see § 2.3.6. There is also a defaulting
coercion that supplies missing parts of the binding; see § 4.11.

If fis neither a primitive nor a closure, the meaning of applying it is defined by the APPLY proc for
its type: this case is discussed further in § 4.4.

There are many ways of writing applications other than f{x]. In fact, many Cedar primitives cannot
be the values of expressions. and can only be applied by writing some other construct. The
desugaring rtules show how large parts of the Cedar syntax denote various special kinds of
application. In each case. the meaning is defined by the standard meaning of application and the
specific meaning of the primitives involved: see § 4.1.

This is partly because of history, and partly because specialized syntax makes the program more readable. Future
evolution of the language will improve the situation.

Functions and order of evaluation

An expression is functional if
its value does not depend on the state, but only on the values bound to its free names, and
evaluating it does not change the state.

As a consequence of this definition,
Two identical functional expressions in the same scope will always have the same value.

Note that a functional expression must not depend on values contained in variables bound to its
free names. Thus, v.VALUEOF is not functional.

A proc is a function if every application of it is functional. 1t doesn't matter when or how many
times a function is applied: the order of evaluation doesn’t matter for functions. Thus Cedar
functions can be thought of as mathematical functions for many purposes. Note that a constant can
be regarded as an application of a function of no arguments.

Non-functional procs. on the other hand. are more complicated objects. Cedar makes no formal
distinction. either in syntax or in the type system, between functions and procs. However. it does
not define the order of evaluation in an expression. except that:

all arguments are evaluated before a proc is applied:

because of the desugaring of IF, SELECT. AND and OR into A-expression. the order of
evaluation for these expressions is determined by the first rule:

statements separated by semi-colons are evaluated in the order they are written.

As a consequence. two applications of non-functions should not be written in the same statement
unless they don't affect each other: if this is done the effect of the program is unpredictable.

An expression is guaranteed to be functional if it only applies functions: thus if fis a function, p a
non-functional proc. and x a variable, f[3] is functional and p[3] and p[x] may not be. Furthermore.
S1x] may not be functional, because it is sugar for f[x.vALUEOF]. and VALUEOF is not a function. The
value of a A-expression is a function if its body is functional. There are more complicated ways of
guaranteeing that an expression is functional, just as for any other interesting property.

Because the values of variables constitute the state. it is only the existence of variables that allows
non-functional procs to exist. In particular, the VALUEOF proc which returns the value of a variable
is non-functional (because its result depends on the state). and the ASSIGN proc which changes the
value of a variable is non-functional (because it changes the state).



2.3.2 Values

A Cedar program manipulates values. Anything which can be denoted by a name or expression in
the program is a value. Thus numbers, arrays, variables, procedures, interfaces, and types are all
values. In the kernel language. all values are treated uniformly, in the sense that each can be:

passed as an argument,
bound to a name, or

returned as a result.

These operations must work on all values so that application can be used as the basis for
computation and A-expressions as the basis for program structure. In addition. each particular kind
or fype of value has its own primitive operations. Some of these (like assignment and equality) are
defined for most types. Others (like addition or subscripting) exist only for certain specific types
(numbers or arrays). None of these operations. however, is fundamental to the language. Formally.
assignment or equality has the same status as any operation on an abstract type supplied by its
implementor; thus INTEGER.ASSIGN has the same status as /O.Get/nt. In practice, of course, special
syntax is usually used to invoke these operations, and the implementations are not Cedar programs
open to inspection by the editor or debugger. A complete description of the primitives supplied by
the language can be found in Chapter 4, organized by the type of the main operand. Table 4—5 is
an alphabetized index of these descriptions.

Restrictions on types, declarations, bindings and unions: In current Cedar, however, there are
restrictions on values which are types, declarations or bindings: they can only be arguments or
results of modules, and hence are first-class values only in the modelling language, and not within a
module. Also, declarations and bindings cannot be constructed or bound to identifiers within a
module. Unions are also restricted: they can only appear inside records. Nonetheless, it is simplest
to emphasize the uniform treatment of all values, and consider separately the restrictions on types.
declarations, bindings and unions. Future evolution will improve this situation.

Restriction on dot notation: In current Cedar you can only use dot notation for some operations of
built-in clusters: the procs which access record fields, and others as noted in Table 4—5. As a
substitute. there are various syntactic forms which are sugar for dot notation: infix, prefix and
postfix operators, built-in functions, and funny applications. These desugarings are given in rules
20-24 of the Cedar grammar in § 3.

2.3.3 Variables

Certain values, called variables. can contain other values. A variable containing a value of type T
has type vAR T. If the variable doesn’t allow the value to be changed. the type is READONLY T this
is not the same as 7, because there may be a VAR T value which is the same container. The value
contained by a variable (usually called the value of the variable) can be changed by assigning a new
value to the variable. The set of all variables accessible from the process array constitutes the state
of the computation: these are all the variables which can be reached from any process. and a
variable which cannot be reached cannot affect the computation. Note that a variable value is a
container. which like all values is immutable; it may help to think of it as (the address of) a block
of storage. The contents of a variable can be changed by assignment. Thus the value of a variable
can change. even though the value that is the variable is immutable.

A suitable abstract representation for a VAR T is a value of type [Ger: [|=T. Se: T—[]). This
representation is not used in Cedar. but it clarifies the way in which variables fit into the type
system: VAR T=»>VAR U only if 7 and U have the same predicate, because the Ger proc requires
T=>U and the Ser proc requires U=>T. READONLY T corresponds to [Ger: [][—=7] and a write-only
variable type would be [Ser: T—]].

There is a coercion (an automatically applied conversion: see §2.6.1) from vAR T to 7. so that a
variable can be passed without fuss as an argument to a proc which expects a value.



Restriction on variables: In current Cedar, variables generally cannot be passed as arguments or
results. The only exception is that an interface can declare a variable (called an exported variable)
for which an implementation supplies a value: this is normally written x: VAR INT in the interface,
but for historical reasons it is also possible to write just x: INT. Certain primitives (e.g.
dereferencing a REF or POINTER) return variables. a variable can (indeed, must) be passed as the
first argument to ASSIGN, and a variable can be bound to a name by a declaration in a LET or block
(LET x~INT.NEW IN ... binds a VAR INT value to x). For the most part, however. a program which
wants to handle variables must do so at one remove, through procs or REFs (or. unsafely,
POINTERS).

A variable is often represented by a block of storage: the bits in this block hold the representation
of its value. All the built-in VAR types are represented in this way. A variable u overlaps another
variable v if assigning to u can change the value of v. The primitive ASSIGN procs have the property
that

if r and s are REFs, then rt overlaps st iff r=s.

For any variables « and v with the same VAR type, « overlaps v iff u=yv, provided that no unchecked
program has given overlapping blocks of storage to the two variables (if « and v have different
types. one might be contained in the other).

The role of variables in non-functional expressions is discussed in § 2.3.1.

2.3.4 Groups

There is a basic mechanism for making a composite value out of several simpler ones. Such a
composite value is called a group. and the simpler values are its components or elements. Thus [3.
x+1, "Hello"] denotes a group, with components 3, the value of x+1, and "Hello". The main use
of explicit groups is for passing arguments to procs without naming them (these are sometimes
called positional arguments). This is done by binding the group to the declaration which is the
domain type of the proc; the result is a binding which is the argument the proc expects. Thus, with
P: [x: INT, y. REAL]—[. . .]. the application P[2. 3.14] is sugar for P[ [x: INT. y: REAL]~[2, 3.14] ],
which is equivalent to P[x~2, y~3.14].

A group has a type which is the cross type of its component types: if x has type T and y has type U,
then [x )] has type T7XU. Thus for syntactic types. Vle. e, .. ]=VeXVe,X ... The X type

constructor is associative, and type implication (§ 2.4.2) extends to cross types elementwise. If the T .
are types, there is a coercion called MKCROSS from [7,. 7, ..] to T\XT,X ... because of this, the
explicit cross type is usually not needed.

Restriction on cross types. Current Cedar provides no way of making cross types except as domain
and range types of a proc type (or other transfer type); e.g.. PROC [INT, REAL]—>[BOOL, ATOM].
There are no procs taking groups except the group-to-binding coercions. Hence the only thing to do
with a group is pass it to one of the built-in coercion procs by writing it as a proc argument. or to a
record or array constructor as described in the next section. Current Cedar does not have X, but it

does have the MKCROSS group to cross type coercion described in the last paragraph and illustrated
in the example.

2.3.5 Bindings

A binding is a group in which each component has a name. Thus, it is an ordered set of [name.
value] pairs. There are three main uses for a binding:

e As an argument in an application. Thus, if P is a proc with type PROC[:: INT, b: BOOL]. its
argument must be a binding such as [i~3., 5~TRUE]. The application then looks like this:

Pli~3, b~TRUE]. A binding argument is sometimes called a keyword argument list. See the
next section for details.



e In a LET expression. to give names to values in the scope of the LET. Thus,
LET i~3. b~TRUE IN (IF 5 THEN i+ 5 ELSE 0)
has the value 8. Current Cedar doesn't have LET expressions. but a binding at the beginning
of a block has the same effect. See § 2.5.4 on scopes for details.

e As a way of collecting and naming a set of related values. A value can be extracted from
the set using dot notation. Thus if 4 is the binding [i~3, b~TRUE], the value of &4.i is 3. In
current Cedar this only works for interfaces; see § 3.3.4 and § 4.14 for details.

A binding is usually denoted by a constructor, which takes the form
[i~3. b~TRUE]
or redundantly (if there are no coercions)
[z INT~3, b BOOL~TRUE]
in which the types are specified explicitly (but you can’t write the second form as the argument of
an application). See § 2.5.5 on constructors for details.

2.3.6 Arguments

When a group or binding is bound to a declaration (d~v), there are various conversions called
coercions which may be applied to the values. This usually happens when the arguments of a proc
application are bound to the parameter declaration.

First, if v is a group rather than a binding, it is coerced to a binding by attaching the names from &
to the elements of v in order. Thus in

[a: INT, b: REAL]~[2. 3.14]
the group constructor is coerced to [a~2, b~3.14].

Next, if v is shorter than 4, elements of the form n~OMITTED are appended, where n is the
corresponding name from the declaration. Thus in

[a: INT, b: REAL]~([2]
the group constructor is coerced to [a~2, b~OMITTED].

Now the items of the binding are matched by name with the items of the declaration. There is an
error unless the names match exactly. The remaining coercions are done on individual items, n:
from the declaration and the corresponding n~v from the binding. If v has a type implying « all is
well. Otherwise, if there is a sequence of coercions from the type of v to 1, these are applied to v. If
no such sequence exists, there is an error. In particular, there is a coercion from OMITTED to the
default value for 1, if any. Thus in

[a: INT«0, b: REAL«1.1]~[6~3.14]
the group constructor is coerced to [a~0, ~3.14], and in

[a: INT+0, b: REAL+ L1]~[]
it is coerced to [a~0, b~1.1]. Coercions are discussed in § 2.6.1 and § 4.13, defaulting in §4.14.

An important special case is constructors for record and array values. A record type has a
construction proc; e.g.,

R: TYPE~RECORD]a: INT, b: REAL«0.0]
has a proc R.CONS of type PROC[a: INT, b REAL«0.]=[R]. Thus R.CONS[a~2, b~3.1416} constructs a
record value. There is also a coercion from BINDING to the particular declaration RB which is the
domain type of R.CONS, so that

ri: Re[a~2, b~3.1416]
is short for

rl: R+ R.CONS[a~2, b~3.1416].
Composing the positional coercion from GROUP to RB with R.CONS makes

ri: R€[2, 3.1416] ‘
also short for the previous line.

The same scheme works for arrays. but only an array indexed by an enumeration has a
corresponding binding which can be written; the elements of an array indexed by numbers don't
have names which can be written in a binding. However, the group constructor still works.



2.4 The type system

This section describes the way in which types can be used to make assertions about the program
which the compiler can verify. It also discusses the role of types in organizing the names of the
program.

2.4.1 Types

Types serve two independent but related functions in Cedar:

e A type contains an assertion about some property of a value, e.g.. that it is a whole number
between 0 and 10 represented in a single machine word. A value which has the property is
said to be of that type, or to have that type.

The assertion part of a type is called its predicate. 1t is a function which accepts a single
value (of any type) and returns TRUE iff the value satisfies the assertion. In principle the
predicate can be applied to any value at runtime, but in practice a lot of optimization is
done by the compiler.

e A type contains a collection of named procs (and perhaps other values) related in some
useful way. Most often. the procs of type T take a value of type T as their first argument.
For example, INT has PLUS, TIMES and MINUS procs (usually written as infix or prefix
operators) which can be applied to INTs. The dot notation (see §2.4.4) makes it easy to
refer to the procs in a type's collection.

The collection part of a type is called its cluster. It is simply a binding. No rules are
enforced about what kind of values are in the binding. However, the idea is that the cluster
is an interface for manipulating values of the type (perhaps the main or even only
interface). As with any interface, a tasteful choice of names and values is important.

The predicate and the cluster serve rather different purposes:

The predicate provides the basis for type-checking (§ 2.4.2). The most important function of
type-checking is to guarantee the integrity of abstract data types; this is done with basic
predicates called marks (§ 2.4.3).

The cluster provides the basis for convenient naming of a large collection of procs and
other values (§ 2.4.4). Clusters are organized into a hierarchy of classes (§ 2.4.5).

Like everything else which can be named, a type is a value. Hence there is nothing special about
binding a type value to a name. If T is a type expression, the binding
U: TYPE~T

binds T's value to U. In the scope of U, T and U are completely interchangeable (provided 7 is not
rebound). Furthermore., with two exceptions. all type expressions are functional: identical type
expressions in the same scope denote the same type value. The exceptions are the record and
enumeration type constructors, which make a distinct type each time they are used (by constructing
a new mark; see §2.4.3).

Restriction on uses of types: Current Cedar has a number of restrictions on the use of TYPE values,
given in §4.8.

2.4.2 Type predicates and type-checking

Type predicates provide a way of making assertions in the program which can be checked
mechanically. These assertions take the form of declarations for the formal parameters of procs. In
general the checking must be done during execution. Thus, if the program says

a: ARRAY [0..10] OF INT«ALL[0]:

it INT€s.Readlnt;,

s.PutFl 4 ]: :
there must be a check that >0 and /<10 just before the expression 4/ is evaluated. This is called
a bounds check; if it fails there is an exception called Runtime.BoundsFault. Where did this check



come from? Note that o] is short for Va.APPLY[a. i]. and Va.APPLY is SUBSCRIPT, the subscript
procedure for ARRAY [0..10] OF INT. The type of SUBSCRIPT is PROC[array: VAR ARRAY [0..10] OF
INT, index: [0..10]]=[vAR INT]. So when i is passed as the index argument. the declaration of
SUBSCRIPT says it must have the type [0..10]. The predicate for this type is

A [x: ANY] IN HASMARK([x, INT] AND LET y~NARROW[x, INT] IN y>=0 AND X =10.
Leaving the HASMARK term for later discussion, we see that the rest of the predicate is the same as
the bounds check.

The type system is designed, however, so that most assertions can be checkeq statically (i.e., proyed).
by examining the text of the program without running it. Static checking has three obvious
advantages:

It reports any errors after a single examination of the program, leaving none (of this kind)
to be discovered later in Peoria.

It introduces no cost in time or space for run-time checking.
The compiler can take advantage of the assertions to generate better code.

Of course, there is a corresponding drawback: the assertions made by parameter declarations must
be simple enough that the compiler can reliably prove or disprove them.

The proofs done for type-checking have exactly the same form as program correctness proofs based
on preconditions and postconditions. Consider a proc whose value is the A-expression

Al T1=>: UlINe.
The domain declaration [x: 7] is a precondition for the body e. This means that any application of
the proc must satisfy this condition. As a consequence, the body e can be analysed on the
assumption that the precondition holds, i.e., that x has type 7. Similarly, the range declaration [y: U]
is a postcondition for the body. This means that given the precondition, any evaluation of e must

produce a value y which has type U. In summary, for the body we assume the precondition and
must establish the postcondition.

To make this hang together. each application must establish the precondition; this means that the

argument must have the domain type. In return, the application can assume the postcondition: this

means that the result of the application has the range type. Thus we have a linkage:
argument=>domain=>range=>result

The result in turn will be the argument of another application. In this way the proof is extended to

larger and larger expressions, and finally to the whole program. In summary:

Application—  establish pre-condition: arguments have the domain type:
rely on post-condition: results have the range type.
Body — rely on pre-condition: parameters have the domain type;

establish post-condition: returns have the range type.

These proofs require showing that an expression always has a particular type 7. This is done by
observing that every expression has a unique syntactic type U, which is the type of every evaluation
of that expression: e.g.. an application always has the range type of its proc (see below for a more
detailed discussion of syntactic type). If every value of type U has type 7. we are done. Hence the
usefulness of type implication. One type implies another, T=> U, iff (Vx) T[x]=> U[x]: sometimes we
say that 7 is a sub-type of U. If two types are equal. each implies the other. However, there are
many other useful cases of implication. For instance. VAR INT implies READONLY INT. The type
implications in current Cedar are given in §4.12.

Of course, not all arguments are applications. The kernel grammar gives the other possible forms of
argument expressions, and we enumerate the proof rules for each:

A literal is like a zero-argument proc: it has a known range (e.g.. 3 has type INT. 'A has
type CHAR).

A name has the type specified in its declaration or binding.
If there is only a declaration n: 7 (e.g.. x: INT), it must be the domain declaration



of a A-expression, and we have already seen how to ensure that the n's value has
type T when the resulting proc is applied.

If there is a binding n: T~e for the name (e.g.. x: INT~3), we must check that e has
type T.

A A-expression A [x: 7]=>[y: U] IN e has the type [x: T]—[»: U]. This works for the reason
discussed in the next paragraph.

A binding constructor [x~e. y~7] has the type of the corresponding declaration. [x: Ve, y:
v

There is one more link in the chain. An application f[x] has an arbitrary expression for f not
necessarily a A-expression. The requirement is that f must have a proc type. say D—R: D is the
domain type and R the range type. Since the type of A D=>R IN e is D—R, satisfying the
precondition D for the application is the same as satisfying the precondition D for the A-expression,
and similarly in reverse for the postcondition. The value of f may be a primitive rather than a
closure obtained from a A-expression. In this case, the implementation of the primitive can still
depend on the precondition and must still establish the postcondition, but since the implementation
cannot be examined (within the framework of Cedar) we can say nothing about how this is
accomplished. Example: INT.pLUS, which is implemented by the machine’s 32-bit add instruction.

In a proc type D—>R, D and R may be declarations which provide names for the arguments and
results. In general. the expression R may include names declared in D. The range type of an
application then depends on the argument values.

Restriction on dependent proc types: In current Cedar only a module has a type whose range
depends on its argument values; the type returned by an interface, or the interfaces exported by an
implementation, may depend on the interface and implementation parameters.

As a by-product of the type-checking proof rules just given, a syntactic type is derived for every
expression e in the program. It is denoted by Ve, and computed as follows:

for a name, the declared type;
for a literal, its type;

for an application, the range type (which may depend on the argument);
for a A the obvious proc type:

for a binding constructor, the declaration obtained by pairing the names with the syntactic
types of the value expressions.

Typechecking ensures that whenever e is evaluated, the resulting value will have type Ve (though it

may have other types as well, i.e., it may satisfy other predicates). The main use of syntactic types is
in connection with dot notation (see § 2.4.4).

In order to carry out the proofs described above, the compiler must either compute the values of all
types, including those denoted by complex expressions such as ARRAY [i.j] OF INT. or it must be
able to prove the equality of unevaluated type expressions. For the most part, current Cedar
requires the former approach: hence a type expression must have value which the compiler can
compute. Such a value is called static: the rules for static values are given in § 3.9.1.

2.4.3 Marks

By this point you may have thought of asking why the assertions provided by type predicates are
worth all this fuss. The reason is simple: they are the basis for authenticating values of an abstract
type. so the implementation can be sure that it is working on properly formed values. Suppose you
are the implementer of an abstraction. e.g.. Table. You provide operations to Lookup a key in the
table, to /nsert a [key. value] pair, and to Enumerate the items in the table. A Table is implemented as
a REF to a record containing a sorted array a of items and an INT » which gives the number of



items, Lookup is implemented by binary search. All three operations are programmed on the
assumption that elements 0 through »n—1 of q are sorted. and that » is smaller than the size of the
array. They will not work properly if these assumptions are not satisfied, and indeed they may try
to subscript the array with an out-of-bounds index or to violate other requirements of the
abstractions they depend on.

Here is a lower level, but perhaps more dramatic example. The dereferencing operation * for a REF
REAL returns a VAR REAL, which can, for instance, be assigned to, as in the program fragment
r: REF REAL~NEW[REAL «1.0];

rn « 314159
A REF REAL is represented by the address of a four-byte block of storage which holds a REAL. and
the assignment to rt stores the four bytes which represent 3.14159 into that block. If somehow a
REF BOOL finds its way into r. the assignment will still store four bytes, since it doesn’t know any
better. But the REF BOOL points to a two-byte block: the other two bytes that will be modified
belong to some unrelated variable, which will be clobbered without warning.

The second example is scarier because the consequences of the bug seem more unpredictable. In
both cases. however, the fundamental problem is the same: even if the implementation is correct,
the wrong thing happens because it is given an improper value to work on. Or to make the same
point in different words, the implementation cannot be held responsible for bad results from one of
its operations, if it has no control over the validity of the arguments it receives.

So that the implementation of an abstraction can take responsibility for correct operation, there
must be a way to authenticate a value of the abstract type. In Cedar this is done by placing a mark
on the value; think of it as a little flag stuck into the value. The mark uniquely identifies the
abstract type, and authority to affix it is under the control of the implementation. A correct
implementation will mark only values which have the properties needed for a representation of an
abstract value, and if no one else can affix the mark. the implementation can be sure that every
value with the mark has the desired properties.

A mark can be thought of as an abbreviation for an assertion or type invariant which characterizes a
proper abstract value, such as Table or REF REAL. Such an assertion can be quite complex. In the
Table example, it would say that the representation is a record of the proper form, that » is less than
the array size, and that the first n array elements are sorted. In the REF REAL example, it would say
that the address points to a block of storage such that at least the first four bytes don't overlap any
other blocks. Such assertions are not easy to write down formally, and proving them is certainly
beyond the power of any existing program. So the abbreviations are not a mere convenience. but a
necessity.

A new mark can be created on demand by the primitive

CREATEMARK: PROC[Rep: TYPE, tag: UNIQUEID]—>[m: MARK, Affix: [Rep]—[TYPEFROMMARK[]] ]
The primitive HASMARK tests a value for the presence of a mark. so HASMARK[x, m] tests x for the
presence of the mark m. Affix adds the mark to a Rep value.

Restriction on marks. MARK, UNIQUEID, CREATEMARK, HASMARK and TYPEFROMMARK are not
accessible in current Cedar. Record and enumeration type constructors provide some access to
CREATEMARK, as described below. The ISTYPE primitive, also described below. is closely related to
HASMARK.

With these facilities. it is easy to create a new abstract type. Choose its representation type, and
obtain a new mark m. TYPEFROMMARK|m] with an appropriate cluster added is the new abstract type.
The implementation must use Affix to mark only values which satisfy the properties it demands.

The type returned by TYPEFROMMARK[m] has the predicate

A [x: ANY]=>[BOOL] IN HASMARK[x, m]
and an empty cluster. Except for subranges and bound unions, all types in current Cedar have a
predicate of this form. The built-in types (INT. BOOL etc.) come with such predicates, and the built-



in type constructor procs (ARRAY, RECORD etc.) obtain a mark from CREATEMARK. So that two
invocations of ARRAY [0..10] OF INT will produce the same type., ARRAY and most of the other
constructors use a canonical encoding of the constructor and its arguments for the UNIQUEID, and
hence are functional. RECORD and ENUMERATION produce a different type each time they are
invoked. so they obtain fresh unique identifiers. Since the program cannot invoke CREATEMARK
directly. we need not explain how to prevent forgery of UNIQUEIDS. Future versions of Cedar will address
this problem.

In current Cedar you make a new abstract type by declaring it as an opaque type in an interface:

T: TYPE[ANY]
This generates a new mark, and declares T to be a type which has that mark. You get such a type
by explicitly painting some other type. normally in an implementation which exports 7 to the
interface which declared it:

T: PUBLIC TYPE~ Interface.T PAINTED RECORD [...}.
See §4.3.4 for more details.

The implementation actually stores a mark with each variable allocated by NEW. Such a variable can
be referenced by a REF, and in particular by a REF ANY value. The type of a REF ANY value can be
tested at runtime using the primitive
ISTYPE: PROC[x: ANY, U: TYPE]—[BOOL]

If Ve is REF ANY and RT=REF T, then the value of ISTYPE[e, RT] is TRUE iff the predicate for T
just tests for mark m, and xt has the mark vAR m. ISTYPE is described in detail in § 4.3.1, along with
the WITH ... SELECT construct and the NARROW primitive, which are more powerful operations built
up from ISTYPE.

For other values, there is no mark actually stored; instead, types must be computable statically
using the methods described in the last section. The AMTypes interface, however, gives a way to
refer to any value in a uniform way, and to test its type at runtime.

There is only room for one mark on a variable, and this must encode all the marks that the value
actually carries. We arrange for this by imposing a partial order on the marks, and requiring that:
The set of marks on a value must have a maximal element.
Every mark smaller than the maximal one must be on the value.
With these rules, a single mark stored on the value is enough to code all the others.

In current Cedar. a value actually has only one mark, since:

The only 'way to create a new mark is with the record or enumeration type constructors, or
by declaring an opaque type.

When you paint a type T with the mark of an opaque type. 7 must be a record or
enumeration type, and the opaque type mark replaces the mark it had before.

Note that VAR 7, READONLY T and T are different types with different marks, although VAR
T=>READONLY 7, and there is a coercion VALUEOF from either one to 7.

2.4.4 Clusters and dot notation

It is convenient to associate with a type the procs supplied by its implementor for dealing with
values of the type. This is done by putting these procs into the type’s cluster. The cluster is simply a
binding which is part of the type value (the predicate is the other part). There are no rules enforced
about what goes into the cluster. However, there is a special dot notation which makes it desirable
to populate T's cluster with procs which take a T as their first argument. The usual effect is like
this: zn is sugar for V.n[s]. and wn[other args] is sugar for Vrn{s. other args).

For example, if ¢ has type T, and a proc [7. INT]=[BOOL] is in T's cluster under the name P, then



the proc can be applied by an expression like «P[3]. which is sugar for V.P[«. 3]. The name P is
looked up only in T's cluster. not in the current scope. If Q: [T]—[INT] is also in the cluster. it can
be applied with Q. which is sugar for V.Q[1].

The general rule that makes this work is the following: rn is sugar for LOOKUPC[Vs $n]ld].
LOOKUPC[V 1. $n] is just Vin. except that if Vi is a proc that takes several arguments. it is split
into a proc that takes the first argument and returns a proc taking the remaining ones. Thus
LoOKUPC[V 1. $n][4] will be a proc taking the remaining arguments. and r.nfother args] = LOOKUPC[V «.
$n][diother args] will be the same as V¢.nx(t, other args].

Dot notation can also be used to obtain values from a binding or from the cluster of a type without
any application: 7.P would be the proc named P in the previous example. The possible cases of dot
notation in current Cedar are described in detail in §4.14.

Restriction on constructing clusters: There is currently no way to explicitly construct clusters. The
built-in types and type constructors have clusters; they are described in detail in §4. In addition.
there is a clumsy way to provide a cluster for an opaque or record type in an interface: every proc
name in the interface is put into the type's cluster. For a record. the procedures supplied by the
record constructor are also in the cluster. and they win if there are name conflicts. There is one of
these clusters for each type in each imported interface value: if a module imports more than one
value of the same interface. however, there are severe restrictions (see § 3.3.3).

2.4.5 Declarations

A declaration is the type of a binding. Thus, the binding [x~3, y~3.14] has the type [x: INT. y:
REAL]. All the relationships among types, and between types and values, are carried over
elementwise to decls and bindings: the elements are matched up by name rather than by position.
A decl itself simply has the type DECL.

A decl is made up of two parts: the names or pattern, and the types. The basic operation for
making decls. MKDECL, takes a pattern and a type. Thus MKDECL[ PATT[x. y]. INTXREAL]=[x: INT, y:
REAL]. In general, a pattern is one of NIL, a simple name, or a pair of patterns, just like a Lisp S-
expression. Similarly, a type argument to MKDECL is one of NIL, a type, or a cross fype. The type
must decompose in a way which matches the pattern. Normally, as in Lisp, we deal only in flat
patterns, where the first element of a pattern is always a name. Such flat patterns are conveniently
denoted by constructors of the form [x. y. ...]. The reason for defining things in terms of pairs is
that it makes it much simple to write down precise rules for the semantics. using structural
induction on the values.

The main use of a decl is to type-check a binding. The basic binding constructor is MKBINDD[d. €].
where 4 is a decl and e is matching group or binding. If e is a-binding. then its structure and names
must match the structure and names of 4, and each element of e must have the type demanded by
the corresponding component of d, after a possible coercion. Thus MKBINDD[[x: INT. y: REAL]. [x~3.
y~3.14]}=[x~3. y~3.14]. This may seem pointless, but it has two important uses:

Such a binding is used to bind the argument of a proc to the domain declaration. Even
though the resulting binding is the same as the argument, the type-checking is essential.

There may be coercions involved, so that the resulting binding is not the same. Coercions
on the component values are discussed in §2.6.1. There are also coercions on the binding
itself, which can default missing elements: these are discussed in § 2.3.6.

If e is a group, it is first coerced to a binding by attaching the names from the decl. as discussed in
§2.3.6. Thus in MKBINDD[[x: INT, y: REAL]. [3. 3.14]] the second argument is coerced to [x~3.
»~3.14], and things then proceed as before.

Bindings may also be used in LET expressions. Here the types are often redundant. and it is better
to use the MKBINDP primitive to bind the value directly to a pattern. The syntactic type of the result
is the decl whose type is the syntactic type of the value. Thus [x~3. y~3.14] is short for



MKBINDP[PATT[x. y]. [3. 3.14]]: its syntactic type is MKDECL[[x. y]. V[3. 3.14]]=MkDeCL[[x. ).
INTXREAL]=[x: INT, y: REAL].

A decl D in a block is interpreted somewhat differently. [t becomes the argument of the NEWFRAME
primitive. which turns the type of the decl D.T into the corresponding VAR type VT= D.T.MKVAR[],
allocates a new value v of type V7, and makes the binding MKBINDP[D.P, v] over the scope of the
block. Thus

{x: INT: y: REAL: S}
becomes

LET [x. yJ~[VAR INT. VAR REAL]JNEW IN §
Here D=[x: INT: y: REAL]. ¥T=[VAR INT, VAR REAL]. and v=[VAR INT. VAR REAL].NEW. Note that
the types might have defaults. which are used to initialize the variables as part of the NEW
operation.

Actually this is a bit oversimplified, since NEWFRAME has to separate the bindings in the block from
the decls. construct the variable binding just described from the decl. and then combine it with the
binding from the block. Thus

{x: INT: y: REAL: z: BOOL~TRUE: S}
becomes

LET [x. ». ZJ~([VAR INT. VAR REAL].NEW PLUS [TRUE]) IN §
or more readably

LET x~VAR INT. y~VAR REAL. z: BOOL~TRUEIN S

Anomaly about uninitialized names or variables. In Cedar the names in a block are introduced
recursively, so that the d's and b's can refer to each other. It is possible for a binding or type to
refer to a value which has not yet been initialized. with undefined results. See § 3.4.1 for a further
discussion of this point.

2.4.6 Classes

Another important use of a declaration is to characterize the cluster of a type. Since the cluster is
just a binding, it is characterized by its type. which is a decl. When used for this purpose. a decl is

called a class. See §4.1 for further discussion of classes, and an enumeration of the primitive classes
of Cedar.

2.5 Programs

This section describes how meaning is assigned to kernel programs.

2.5.1 Structure of programs

A kernel program is an expression, which is either atomic (a name or literal), or is an application
which involves sub-expressions: the proc being applied, and the arguments. The concrete syntax
treats certain kinds of expressions specially: modules, blocks (which introduce new variables and
return no value), and statements (which return no value). All desugar into simple expressions,
however. and are treated identically in the kernel.

2.5.2 Names
A name is a part of a program which usually serves to denote a value. There are two contexts in
which the occurrence of a name » denotes a value:

It may occur as an expression. Then » denotes the value bound to it in the scope in which
the expression appears (see § 2.5.4 for details).



It may occur after a dot. as in en. Then the expression en denotes the binding for n
supplied by e (see § 2.4.4 and § 4.14 for details):

the value bound to n in e, if e is a binding;
the value bound to r in the cluster of e, if e is a TYPE;
roughly (Ve).n[e] otherwise.

There are also two defining contexts for a name » (see § 2.5.5 for details):

It may occur before a ~ in a binding constructor, as in a~e. The value of e is the value
bound to » in the binding denoted by the constructor (see § 2.3.5 for details).

It may occur before a : in a declaration constructor, as in n: . The value of s is the type of
n in the declaration denoted by the constructor (see § 2.4.5 for details).

These constructors are usually recursive in Cedar; that is, the expression n elsewhere in the
constructor denotes the value bound to » in that constructor; see § 2.5.6 for details. In the kernel
they are non-recursive unless preceded by REC.

A name is not a value, but there are values of type ATOM which are related to names. An atom has
a print name which is a rope (an immutable sequence of CHARs). A name following a $ is an atom
literal. $n denotes the atom with print name n. Other properties of atoms are described in § 4.5.1A.

Caution on names: Current Cedar has several complications in its treatment of names:

eln an argBinding?’. n: e may be written instead of n~e. The syntactic context distinguishes
this from a declaration, but this usage is not recommended.

An argBinding is not recursive: in {a~1; fla~3. b~a+1]} b is bound to 2, not to 4.

The declaration in an import list is non-recursive: IMPORT M is short for IMPORT M: M.
and the second M denotes its binding in the surrounding scope (i.e.. the binding supplied
by the DIRECTORY). Inside the body of the module, of course, M denotes the imported
parameter.

Names which appear in an enumerationTC** are treated specially; see §4.7.1A for details.

2.5.3 Scope

A scope is a region of the program in which all names retain the same meanings (note that many
names denote variables, which can change their values in the same scope. but each name continues
to denote the same variable). In the kernel there are only three constructs which introduce a new
scope. A, LET and REC. In current Cedar, these are sugared in a variety of ways: modules, import
lists, proc bindings, blocks. exit labels, open. iterators. safeSelects and withSelects. All have
straightforward desugarings. however.

2.5.4 Constructors

The kernel has constructors, denoted [..]. to make expressions which denote group. decl and
binding values more readable. There is one flavor of constructor for each class:

A binding constructor is a list of binding elements (b in the kernel syntax) of the form p~e
or d~e. The presence of the ~ distinguishes it from the others. Here ¢ is a decl element
(not a declaration), and p is a pattern, in which the names are being defined rather than
evaluated.

A dec! constructor is a list of decl elements (d in the syntax) of the form p: . The presence
of the : without any ~ distinguishes it from the others. Again. p is a pattern.

A group constructor is a list of expressions. Note that decl and binding elements are nor
expressions, although constructors are expressions.



Constructors are useful for making decls and bindings where the names are literal. This is the
normal case, and in fact the only case in current Cedar. If you want to make them out of other
decls. for instance to bind an expression to a decl which is the value of a name dn. you cannot use a
constructor; [dn~¢] would bind the value of e to the name dn, not to the decl which is its value.
You have to write the decl-constructing primitive directly: MKDECL[d, €].

The only kinds of constructor you can write in current Cedar are:

Decl constructors for proc domains and ranges, and for records and unions (fields* in the
syntax).

Binding constructors for arguments in an application, or as an expression alone if a record
or array value is needed (argBinding?’ in the syntax).

2.5.5 Recursion

In the kernel, you get recursive definition of names only if you write REC (or the unsugared form
FiX) explicitly. In Cedar, on the other hand, decls and bindings are normally recursive, except for
argBindings and import lists.

The recursion is legal in a block or interface body (although anomalies are possible in some cases
when names are used before they are defined; see § 3.4.1). In fields it is illegal.

2.6 Conveniences

The facilities described here are not fundamental, but they are of great practical importance.

2.6.1 Coercion

A coercion is a proc which is automatically applied under some circumstances to map a value of
one type T (called the source) to a value of another type U (called the dest), e.g. from [0..5) to INT.
Coercions are obtained from the clusters of the types involved. The coercion mechanism adds no
new functionality, since the programmer could always write the applications himself, but it is
important in concealing some of the distinctions made by the type system when they are distracting
rather than helpful. :

There is exactly one (desugared) context in which a coercion is applied: when an expression e of
syntactic type T appears as an argument in an application which expects a value of type U; this
means that there is a binding n: U~e. Since nearly all Cedar constructs are desugared to application.
coercions are widely applicable. The only (desugared) context in which there is no coercion is for
the first operand of dot, since in that case the cluster of the operand is used to interpret the name
which is the second operand. Thus in the expression e.n, it is always Ve, the syntactic type of e, that
is used to look up n, regardless of the fact that this expression may appear as an argument to a
parameter of type U. If e is not a type or binding, however, then en desugars to Pe. where
P=LOOKUPC[V e.Cluster, $n]. and in the application of P, e does appear as an argument and can be
coerced. Usually the cluster for T is set up with procs which take an argument of type T. so the
domain of P is Ve and no coercion happens. This isn’t always true, though: a subrange 7 of INT
inherits the arithmetic procs of INT, for example, and there is a coercion from 7 to INT when PLUS
is applied.

If 7= U it is sometimes natural to think in terms of a coercion from 7 to U that is implemented by
the identity function. In fact, implication is stronger than that, since it propagates through many

type constructors, including PROC, while coercion does not. Implication is discussed in § 2.4.2 and
§4.12.



There is a rather general rule for finding coercions from the clusters of types. though it is not of
much practical importance in current Cedar, since there is no way for the user to define coercions.
The rule goes like this. Each cluster may have a From item and a To item. 7.From should consist of
pairs with type [tag: ATOM, proc. T— U], and T.To of pairs with type [tag: ATOM, proc: U= T}. Ignore
the rags for the moment. Consider the binding n: U~e. where Ve=T, and T=>U is false. For each
proc Pin T.Fromor U.To we try n. U~Fe.

If P, 7=V is in T.From, it maps e to a value of type V, and we have to bind n: U~He. If
V=> U we are done: otherwise we can recurse on this sub-problem.

If P V> U is in U.To, we have to bind m: V~e, If T=V we are done; otherwise we can
recurse on this sub-problem.

The whole process fails if no path of coercion procs takes us from 7 to U. The search can terminate
when all paths have been explored. and a particular path can be abandoned when a type appears
on it for the second time. Since the search is done statically (by the compiler). and since the results
of an attempt to coerce 7 to U can be cached, the time required for the search is not a problem.

There are two obvious difficulties with this scheme. First. it may transform erroneous applications
into legal ones. by coercing an argument in ways not intended by the programmer. Second. more
than one path of coercion procs may exist. and different paths may give different results. The
second difficulty can be avoided. and the first minimized, if every coercion proc P is chosen so that
it has a (partial) inverse. and P~ ![Ax]]=x for all x in P.DOMAIN. This says that a coercion does not
lose information. and that different paths give the same answer. Sometimes this is not feasible. e.g.
for the narrowing coercion from INT to [0..5). The following rule gives the builder of clusters control
over proliferating coercions:

[f two procs on a coercion path have non-NIL tags, they must have the same 1ag.

In general, coercions that don't lose information can have NIL tags, and others should have different
tags.

The coercions in current Cedar are described in §4.13. All have NIL tags. and none loses
information except the subrange narrowing. Note that coercions extend componentwise to groups
and bindings.

2.6.2 Exceptions

The basic idea behind exceptions is to extend the value space, so that it includes not only ordinary
values, but also a set of exception values. An exception value has the special property that whenever
it appears in an application, it becomes the value of the application, so that it propagates up
through the control stack of the program until it finally becomes the value of the whole program.
Of course this isn’t always what is wanted, so there is a special HIDE construct which is not an
ordinary application, but takes its argument value, ordinary or exception, and bundles it in a variant
record which is a normal value. Then ordinary code can be used to test for the exception and take
appropriate action. This construct is sugared to give distinctive ways of catching an exception: in the
kernel with 8UT (§2.2.4), and in Cedar with ENABLE, EXITS and REPEAT (§3.4.3). Cedar has two
kinds of exception: GOTO labels and ERRORS, which must be raised and caught separately. and have
slightly different semantics.

The main point of this treatment is that it does not require continuations or any other baroque
explanation of how control is transferred to catch an exception. The view is that exceptions are
simply a convenience feature: the same job could be done by returning a slightly larger result from
each proc, with an appropriate status code.

An exception consists of a code and an optional argument value. The type of the code is ERROR T.
where T is the type of the argument which goes with it. GOTO labels always have empty arguments.
The argument is a way of passing some information along in addition to the identity of the
exception.



A proper treatment of exceptions in the type system would require that each proc range include all
the exceptions that can emerge from an application of the proc. In fact, this is not required or even
possible in current Cedar.

Cedar also has signals, which historically were viewed as a kind of exception but now have a very
different interpretation, as a way of obtaining dynamic rather than static scoping for names. They
are discussed in § 3.4.3A.

2.6.3 Finalization

This subject is discussed in § 3.4.3A.

2.6.4 Concurrency

This subject is discussed in §4.10. where the Cedar facilities for writing concurrent programs are
given. Writing good concurrent programs, Or even COITecCt ones, 1S another matter, w_'hlch is beyond
the scope of this manual to more than hint at. Unfortunately, an adequate reference is lacking.

2.7 Miscellaneous

The different kinds of allocation are discussed in §4.5. Static values are defined in §3.9.1.

2.7.1 Pragmas

A pragma is a construct that does not change the meaning of the program, except perhaps to make
something illegal which was legal without the pragma. Its purpose is to affect the implementation,

generally by requesting optimization to favor one criterion over others. The pragmas in current
Cedar are:

INLINE, which causes a proc body to be expanded inline when it is applied. See §3.5.1 for
details.

PACKED, which causes array components that fit in 8 or fewer bits to be packed, at the
expense of more expensive code to access them (§ 4.4.2).

CHECKED, which forbids application of unsafe procs in a block, and adds runtime checking
for some primitive procs which are otherwise unsafe—in particular, narrowing to a
subrange, and assigning a proc (§ 3.4.4).

PRIVATE, which forbids access to items in an interface or instance except to modules which
EXPORT (or SHARE) it (§ 3.3.6).

MACHINE DEPENDENT, which allows positions of record fields (§4.6.1) and representation
values for enumeration elements (§4.7.1A) to be specified (strictly, it is the absence of

MACHINE DEPENDENT that is the pragma, since the positions or representation values are
legal only when it is present.)



2.8 Relations among groups, types, bindings and declarations
gsgzrpl;:;:ée mfg:':i glg(;‘seierl]y§r2e.lzza.tieda rl‘);séczz?zy)s: of building product values from simple values (all are
a group is simply an n-tuple of values (see § 2.3.4);
a X-type is the type of a group (if x T and y: U then [x. y]: TXU) (see §2.4.5);
a binding is an n-tuple of [name. value] pairs (see §2.3.5):
a declaration is the type of a binding, an n-tuple of [name, type] pairs (see § 2.4.5).

Figure 2—1 illustrates the relations ‘among these kinds of objects. In current Cedar most of these
objects can be constructed and manipulated only as interfaces and instances. In the kernel and the

glgczleller. all of them are first-class citizens. The primitives which go between them are defined in

la: T ~e, b: T,~e) l[a: T, b: T) [a: TYPE~T b: TYPE~T)]
binding<=wm«ainoo™8sporo==>decl <=oros sTo0™> binding with names
(instance) (interface) t
1 MKBINDP MkpecL T\ MKBINDP
{ ppote

[a. 8] pattern

4 spotv ¢ oppoTT | soorv
group< > X-type <™ mkcross™cToG™> group without names
le e : T XT, 7.7)
values types types as values

Figure 2— I: Relations among groups, types, bindings and decls

2.9 Incompatibilities with current Cedar

Most of the syntax is current Cedar is an extension (or sometimes a restriction) of kernel syntax.
There are a few things that have different meanings in the kernel, however, and these are potential
sources of confusion:

Type expressions in Cedar do not have the same syntax as ordinary expressions and cannot
appear in the same contexts, for the following reasons:

The use of « for specifying a default value for a type vs its use for assignment.
The use of {} for enumeration types vs its use for a block.

The use of parentheses and brackets to specify subranges

eThe use of adjectives for variants (red Node).

Target type overloading for union constructors ([rator~$plus. rands~binarj..]]). and
eenumeration literals (red instead of Color.red or $red) is incompatible with the kernel's
simple rules for the meaning of names.

eln addition to writing n: t~e or n~e for a binding, you can also write n: t=e (in a module
header or block) and n: e (in an argBinding). The most unfortunate consequence is that a
Cedar argBinding can look like a kernel decl constructor!

It is now possible to avoid all the conflicting constructs except the relatively harmless ones: « for
defaults, {} for enumeration, and union constructors.



Chapter 3. Syntax and semantics

This chapter gives the concrete syntax for the current Cedar language. together with an 1pformal
explanation of the meaning of each construct, and a precise desugaring of each construct into the
kernel language defined in §2. The desugaring, together with the deﬁmn_ons'of the kernel
primitives used in it, are the authority for the meaning: the informal explanation is just for' your
reading pleasure. However, paragraphs beginning Anomaly or Restriction document properties of
Cedar not captured in the desugaring, The primitive procs and types of Cedar are specified in § 4.

In addition to the grammar rules and desugaring, there are examples for each construct. These are
intended to illustrate the constructs and do not form a meaningful program. The Cedar Manual has
longer examples which do something interesting, and also illustrate the use of the standard Cedar
packages,

There are several summaries which may be useful as references:

A two-page summary of all the syntax, desugaring and examples in this chapter
(CLRMSumm.press).

A one-page summary of the full syntax (CLRMFullGram.press).

A shorter and less cluttered summary of the syntax for the safe language; it also omits a
number of constructs which are obsolete or intended only for efficiency hacking
(CLRMSafeGram.press).

The chapter begins with a description of the notation (§ 3.1) The next sections deal systematically
with the rules of the grammar, explaining peculiarities of the syntax and giving the semantics:

§ 3.2, rules 56-61: The lexical structure of programs.

§3.3, rules 1-5: Modules.

§ 3.4, rules 6-10:  Blocks, OPEN, ENABLE, EXITS.

§ 3.5, rules 11-13: Declarations and bindings.

§ 3.6, rules 14-18: Statements.

§ 3.7, rules 19-27: Expressions.

§ 3.8, rules 28-35: Conditional constructs: IF and SELECT.
§ 3.9 treats various miscellaneous topics. § 4 deals with the syntax and semantics of types.

The order of the grammar rules is:

module, block, declaration, statement,
expression, conditional
type.
name, literal
and top-down within these,



3.1 Notation

T}?istsection describes the notation used in the grammar, desugaring, and commentary of this
chapter.

3.1.1 Notation for the grammar

The grammar is written in a variant of BNF;
Bold parentheses are for grouping: ( interface | implementation).
Item | item means choose one.
%item means zero or one occurrences of item.
item; ... means zero or more occurrences of item separated by ";". The separator may also be ",",
ELSE, IN, Or OR, Or it may be absent. If the separator is ";", a trailing ";" is optional.
item; L. is just like item; ... but there is at least one occurrence.
A terminal is a punctuation character other than bold ()2). or any character underlined, or a word in

SMALL CAPS. Note that [] and {} are terminals. and do nor denote optional occurrence and repetition as they do in many
other variants of BNF,

The rules are numbered sequentially.
Special symbols mark constructs with special properties:
1 =unsafe:
e =qbsolete:;
$=machine-dependent;
* = efficiency hack.

The grammar is written so that a non-terminal never expands to the empty string. When an element

of a rule is optional, that is always indicated explicitly by "?" or ".." .

The following non-terminals are so basic to the language and so frequently used, that they are
represented in the grammar by abbreviations:

b=binding13

d=declaration!!

e=expression!?

n=name36 (identifier)

s =statement!4

t=type¥
I'm afraid this means that you must learn the meaning of these six abbreviations in order to read
the grammar.

With the exception of these abbreviated non-terminals, each use of a non-terminal is cross-
referenced with a small superscript number9, unless the non-terminal is defined in one of the next
few rules. If a non-terminal (other than e, t or n) is used in more than one rule, then all the rules
that use it are listed in a comment after its definition.

Except for the entries in Table 3—1, a terminal symbol appears in only one rule. These duplications
do not lead to syntactic ambiguity. In most cases they are harmless, since the symbol has essentially
the same meaning in each case, and the rules are separate only for greater readability, to highlight
an unusual use of a construct, or for historical reasons. In some cases, however, the symbol has
quite different meanings in different rules. These are marked on the left as follows:

® In the rules whose numbers are marked with * the symbol has a different meaning than in
the others, and confusion is quite possible. The programmer should beware.

O In the rules whose numbers are marked with * the symbol has a different meaning than in
the others, but the context is sufficiently clear that confusion is unlikely.

e The rules whose numbers are marked with e are obsolete and should be avoided.

A superscript* indicates that the terminal is repeated n times in that rule.



d

Symbols Rules Explanation
o} 19. 25, *51.1, *54 expr. subrange, *position in record or enumeration
0 H 19, 25. 26, 37. 43, 51 constructor/ uilt-m/funnyAFJ)l. subrgm(gie.
application, tygeName. fields, mdFields
o{} 2.6.8,13, *54 interface body, block, enable, machine code.
*enumerationTC
2.3.6,7.9.17, 27,  See note in §3.2.
29,30, 32, 34, 35, 43,
51, 52 )
: 6. 8. 150. 17.27.1, 30, See note in §3.2.
33,3 ) .
o : 1, 2. 3,5, 7. 11, 13, introducing names with types, except *31.1=position,
° 18 027,33, @34, 51.  e7=open, #27 =argBinding 34 =withSelect
*51.1, 53
19, 37 dot notation for e is repeated for types
o) 254, *51.1 subrange, *position
o * 21, *53 infixOp, *tag
+ 21, 58 infixOp, exponent
- 20, 21, 58 prefixOp, infixOp. exponent
o = el3, 22 ebinding. infixOp . '
=> 6.9, 17. 31, 33, 35. 52 exits, enable, repeat, select choices*4, unionTC
® « 14, 16, 18, 21, *55 s, e«STATE, iterator, ¢, *defaultTC
o ~ 2.3.13, 20, *22, *27 interface.implementation,b,argBinding,*unaryOp.*relOp
~~ 7,34 open, withSelect
® ANY *9. 40, 43 *enable, variableTC, fields
® CODE *13, 23 *new exception. convert t to e
ENDCASE 31, 52 select endChoice, unionTC
O ERROR *19, *24, 41.1 *expression, *funnyAppl, transferTC
IN 18, 22 iterator, relOp .
LONG 38x2, 45.1, 48 cardinal/unspecnﬁed, pointer, descriptor
NOT 20. 22 prefixOp, relOp
e NULL 14, 27, #52, #55 statement, eargBinding, eunionTC, edefaultTC
PACKED 44, 45 array, sequence
SELECT FROM 29, 32, 34, 52 select, safeSelect, withSelect, unionTC
SHARES 2.3 interface and implementation
O SIGNAL *24,41.1 *funnyAppl. transferTC
TRASH 27x2, 55x%2 argBinding, defaultTC
TRUSTED 6,13 block, machine code
® USING * ‘ directory, *locks
O WITH *32, 34 *safeSelect, withSelect

Table 3— 1: Terminal symbols appearing in more than one rule

3.1.2 Notation for desugaring

The right-hand.c.olumn is desugaring into the Cedar kernel language, or in a few cases into
comments describing the meaning in English. This is a purely textual transformation; i.e., it is done
on the fext of the program, not on the values. The rewriting is done one rule at a time: a single

step of rewriting involves elements from exactly one rule. The desugaring is specified by slightly
informal but straightforward rewriting rules, in which:

An occurrence of a non-terminal (written in bold) denotes the text produced by that non-
terminal in the grammar rule.

A I reflects a corresponding alternation in the grammar rule, ? reflects a corresponding
optional item in the grammar rule, and (bold parentheses) are for grouping as in a grammar
rule. As in grammar rules, literal parentheses are underlined.

Everything else is taken literally.



An underlined non-term!'nal in the right column means that the desugaring specified for that non-
terminal must be done in order to obtain a legal program. Otherwise the transformations can be
done in any order. yielding a legal program at each step.

Every occurrence of e (expression) and t (type) in the desugaring is implicitly parenthesized, so that
the desugared program parses as the rewriting rule indicates. To reduce clutter, these parentheses
are not written in the desugaring rules.

qu type options like PACKED, the desugaring of the construct in which they appear is a call on a
built-in type constructor which takes a corresponding BOOL argument defauiting to FALSE; if the
attribute is present, the argument is supplied with the value TRUE.

Examples: the following rule for subranges:

subrange ::= (typeName |) (
([e,.. e,][e, . e, )| (typeName | INT).MKSUBRANGE ( [e. (e, | e,.PRED)]) |

(( e ]l (e, . e, ))) e,.succ. ( e,|e,.PRED)])
generates these desugarings

Index [10..20] Index.MKSUBRANGE[10. 20]
Index [10..20) Index.MKSUBRANGE[10, 20.PRED ]
(1..100) INT.MKSUBRANGE[1.succ, 100.PRED ]

Names introduced in the desugaring are written with one or more trailing prime (") characters.
Such names cannot be written in a Cedar program. and hence they are safe from name conflicts.
The desugaring is constructed so that the Cedar scope rules prevent multiple uses of these names
from being confused.

3.1.3 Notation for the commentary

Each section of the commentary begins with grammar rules, desugaring and examples for part of
the language. It continues with text which explains the meaning of the constructs. Generally the
meaning is fairly clear from the desugaring, and this text is short. For blocks and especially for
modules, however. there are many non-obvious implications of the desugaring. and a number of
restrictions; these constructs have a lot of explanatory text.

Some kinds of information are put into specially marked paragraphs, which begin with one of the
following italicized words:

Anomaly: the meaning of this Cedar construct is not explained by desugaring into the
kernel, but by the special rule given here.

Caution: here is an implication of the definition which might surprise you.
Performance: facts about the time or space required by some construct.
Representation: the values of a data type are represented in terms of other types like this.

Restriction: a construct is not fully general. and will cause a static error unless the
additional conditions stated here are satisfied.

Style: advice about good Cedar style.
Symbols written in SANS-SERIF SMALL CAPITALS are in the kernel but not in current Cedar. The

superscript notation used to cross-reference non-terminals in the grammar is also used in the
examples, usually to point to a rule whose example introduces a name.



3.2 Lexical structure

u= r (letter | digit)... -- But not one of the reserved words in Table 3 - 2

i: rii:real o -:etr:fms 2 ( p_||g |gBI)§ ) 7num ) | - INT Iiteral._decimal if radix omitted or D, octal if B. |
digit (digit |AIBIC|DIEIF) ... (Hlh ) 2num | -- INT literal in hex: must start with digit. | B
2num . num Zexponent | -- REAL as a scaled decimal ﬁ:actxon:.note no trailing dot.|
num exponent | -- With an exponent, the decimal point may be omitted. |
* (extendedChar | '] " )| e digit !.. (Clo) | -- CHAR literal; thq C form specifies the code in octal. |
" (extendedChar|")... " 2e(LID | [ CextendedChar | * ). ...] -- Rope.ROPE, TEXT, or STRING. |
$n -- ATOM literal. '

sgexponent ::= (Ele) (+ | —) num -- Optionally signed decimal exponent.

sonum :: = digit L. .
0 extendedChar :: = space | \ extension | anyCharNot™"'Or\

¢l extension ::= digit, digit, digit, | -- The character with code digit, digit, digit, B. |
(N 4R | (D | (bIB) | -- CR, "\015 | TAB, "\011 | BACKSPACE. "\010 |
@ iamwmir N -- FORMFEED, "\014 | LINEFEED, 012 | "| " |\
Examples

m, x1, x59y. longNameWithSeveralWords: INT:

n: INT~1+12D+2B3+2000B . - =1+12+1024+1024
+1H +0FFH; - +1+255
rl: REAL~0.1+.1+10E-1 - =01+01+01
+1E-1; - +0.1

al: ARRAY [0..3] OF CHAR~['x, "\N, "\", \141];
12: ROPE~"Hello.\N...\NGoodbye\F";
a2: ATOM~$NamelnAnAtomLiteral;

The main body of the grammar (rules 1-55) treats a program as a sequence of tokens; these are the
terminal symbols of the grammar. Rules 56-61 give the syntax of most tokens. A token is:

— A literals’. More information about literals of type T is in the section of § 4 devoted to T.

— A name3%¢, not one of the reserved words in Table 3—2. Note that case matters in names.

— A reserved word, which is a string of uppercase letters that appears in Table 3—2. A
reserved word may not be used as a name, except in an ATOM literal.

— A punctuation symbol: any printing character not a letter or digit. and not part of one of
the two-character sequences below. The legal punctuation symbols in programs are:
'1@#S~*—+=|O){}[]er::"".. <>/

The following ASCIi characters are not legal punctuation symbols (and must not
appear in a program except in an extendedChar60);

% & \ ?
— One of the following two-character symbols (used in the grammar rules indicated):
~= not equal2?
(= less than or equal22
~< not less than22
>= greater than or equal22
~> not greater than22
=> chooses8. 17. 30. 31, 33, 35. 52
w“ subrange constructor?s.51.1
~e bind by namest. 34

Note that Cedar uses a variant of ascii which includes the characters « (instead of the underbar _) and t (instead of
the circumflex ). Also. the character written — here is the ascll minus, code 55B. and not any of the various dash or
typographer’s minus characters with other codes. which are not in the standard ascn set.
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ABS ELSE ISTYPE PACKED SIGNAL
ALL ENABLE JOIN PAINTED SIZE

AND END LAST POINTER START
ANY ENDCASE LENGTH PORT STATE
ARRAY ENDLOOP LIST PRED STOP
ATOM ENTRY LOCKS PRIVATE STRING
BASE ERROR LONG PROC SuCC
BEGIN EXIT LOOP PROCEDURE TEXT
BOOL EXITS LOOPHOLE PROCESS THEN
BOOLEAN EXPORTS MACHINE PROGRAM THROUGH
BROADCAST FINISHED MAX PUBLIC TO
CARDINAL FIRST MIN READONLY TRANSFER
CEDAR FOR MOD RECORD TRASH
CHAR FORK MONITOR REF TRUSTED
CHARACTER FRAME MONITORED REJECT TYPE
CHECKED FREE NARROW RELATIVE UNCHECKED
CODE FROM NEW REPEAT UNCOUNTED
COMPUTED GO NIL RESTART UNTIL
CONS GOTO NOT RESUME USING
CONTINUE IF NOTIFY RETRY WAIT
DECREASING IMPORTS NULL RETURN WHILE
DEFINITIONS IN OF RETURNS WITH
DEPENDENT INLINE OPEN SAFE ZONE
DESCRIPTOR INT OR SELECT

DIRECTORY INTEGER ORDERED SEQUENCE

DO INTERNAL OVERLAID SHARES

Table 3— 2: Reserved words and predefined names

The program is parsed into tokens by starting at the beginning and successively taking from the
front the longest sequence of characters which forms a token according to the rules above, after first
discarding any number of initial whitespace characters or comments.

The whitespace characters are space, tab. and carriage return. A Tioga node boundary is
also treated as a whitespace character.
A comment is one of:

A sequence of characters beginning with --, not containing -- or a carriage return,
and ending either with -- or with a carriage return.

A Tioga node with the comment property.

Note that whitespace and comments are not tokens, but may appear before or after any token: they
are token delimiters, and hence cannot appear in the middle of a token. Whitespace and comments
thus do not affect the meaning of the program except:

When they delimit a token.

Within a CHAR literal or a ROPE literal, where they are taken literally. Thus ~ is equal to

"\040, and "1
am --not--" is equal to "[\Nam --not--" and different from "[\Nam ".

Both reserved words (Table 3—2) and most names with predefined meanings (Table 4 —5) are made
up entirely of upper case letters. All are at least three characters long except the following:
DO GO IF IN OF OR TO.

Caution on use of reserved words and predefined names: They should not be rebound by the
program: in some but not all cases the compiler forbids their rebinding.



A note on lists of items and their separators. In general. semicolons are used to separate statements,
or slightly larger constructs that contain statements. Commas are used to separate the items in all

other kinds of lists. Precisely:

Semi-colons are used to separate declarations, bindings and statements in a body!0, and to
separate choices in a select statement29.32.34 or in an exitsé. 17 or enable8.27.,

Commas are used to separate declarations in fields43.51 (i.e., in a proc domain or range. a
recordTC or a unionTC), bindings in an application2’ or an open’. choices in a select
expression29.32.34 or in a unionTCs2, expressions in a choicet.9.17.30.35.52, jtems in imports.

exports or shares lists2.3,

In general these lists may be empty, and an extra separator at the end is harmless when there is
some kind of closing bracket, except when the sequence is bracketed with [].

The braces {} which delimit a blocké, interface body2, choices in an enable8, or MACHINE CODE
body!3 may be replaced by BEGIN and END reserved words. BEGIN replaces "{" and END replaces
"}". If one brace is replaced. its matching partner must also be replaced. The braces delimiting an
enumTC34 may not be replaced by BEGIN and END.

3.3 Modules

1module ::= DIRECTORY (n (. TYPE (n,[)|)
NUSING [0 w0 1)), s

(interface | implementation )
2interface ::= n,. !.. : 7CEDAR DEFINITIONS

?locks (imports | ) 2¢(SHARES ., ...)
~ 2eaccessi2 { Topen’(d | b): !.. }.

3implementation ::= n_ : 2CEDAR

?safety ( PROGRAM MdrType#? |

_ MONITOR ?drType42 (| locks))
(imports | )
NEXPORTS 0, ...)

?8(SHARES n, ...)
~ Peaccess!2 biock .
s1imports ::= IMPORTS ((n,:|)n,). .. ~-In2.3.

asafety ;2= SAFE | UNSAFE --In3.41.
5locks ::= LOCKS e { USING n;:t

Examples

DIRECTORY
Rope: TYPE USING [ROPE, Compare],
CIFS: TYPE USING [OpenFile Error,Open,read],
1O: TYPE 1OStream,
Buffer: TYPE;

A[(n,:((TYPEn, | TYPE nd)ITYPEnd)), w ] IN
LET (n,~RESTRICT[n , [$n. ... ]]). oo
IN (interface | implementation )
LETr'~[n_: INTERFACETYPE[[ $n__ ...]1]IN (imports | A =>r') IN
-- SHARES allows access to PRIVATE namesinn. .
LETREC n, ~open [ XI'~locks,) (d|b)...] Nn_

LETr'~[(n,:n) ....,FRAME: TYPER .
n,: FRAME, CONTROL: PROGRAM]
IN (imports | A=>1') IN
(] LET I'~( LET LOCK ~NEWLOCK IN (A IN LOCK) | locks) IN)
LET b’ ~NEWPROGINSTANCE[block].UNCONS IN
[ (n,~BINDDFROM[n, b'PLUS n_~b'n ] ). ...
FRAME ~MKINTTYPE[block],
n,~b’, CONTROL~b'n_] where the block body is desugared:
[(@][b)....n_: PROGRAM drType~{s: ..}]
Al(m;n), ..]=>1" INLET [((n,] n)~ (n,PLUS N BINDING) ). ... ]

AN, :t])iNe

-- For Buffer/mpl below.,

-- There should always be a USING clause
-- unless most of the interface is used

-- oritis a standard one like Rope or /O,
-- oritis exported.



Buffer: DEFINITIONS ~ {
Handle: TYPE~REF BufferObject;
BufferObject: TYPE=Rope.ROPE
New: PROC RETURNS[h: Handle];
Get: PrROC[h: Handle] RETURNS[BufferObject];
Put: prROC[h: Handle, o: BufferObject] }:

BufferImpl: MONITOR [f: CIFS.OpenFile]
Locks Buffer.GetLock[h]t
USING h: Buffer.Handle
IMPORTS Files: CIFS, 10, Rope
EXPORTS Buffer
~ { -- module body -- } .

-- Implementations can have arguments.
-- LOCKS only in MONITOR, to specify

-- anon-standard lock.

-- Note the absence of semicolons.

-- EXPORTS in PROGRAM or MONITOR.
-- Note the final dot.

Modules serve a number of functions (which might perhaps better be disentangled. but are not):
A file of source text (BufferImpl.mesa), or its translation into object code (Bufferimpl.bed).
The unit handled by the editor, named in DF files and models. and accepted by the

compiler, the binder, and the loader.

A set of related structures (types. procedures, variables) which are freely accessible to each
other, hiding secrets or irrelevant information from other modules.

A procedure which can accept interface types and bindings as arguments, and returns

interface instances as results.

The procedures of a monitor, perhaps with its protected data.

The first two uses are not relevant to the language definition, and are not discussed further here.

The others are the subject of this section.

There are two kinds of modules: interface modules (written with DEFINITIONS) and implementation
modules (written with PROGRAM or MONITOR). They have the same header (except that interfaces
have no EXPORTS list); it defines the parameters and results of the module viewed as a proc (§ 3.3.1)
and specifies the name n, of the module. The bodies (following the ~) are different. Table 3—3

summarizes the structure of modules and their types: it omits a number of details which are given

in rules 1-3 and explained in the text.

Example Module

DIRECTORY Rope. 10; Interface
Maich: DEFINITIONS~{...}  module

DIRECTORY Match, Rope. I0. Implementation
Matchimpl: PROGRAM module

IMPORTS R: Rope. I: 10
EXPORTS Match~{...}

Module type

[Rope: TYPE Rope, 10: TYPE /0]
—[TYPE Match]

[Match: TYPE Match,
Rope; TYPE Rope, 10: TYPE [0.
R: Rope, I 10]—[Match]

Result Result type

Interface TYPE Match

Exported March
instance

Table 3—3: Interface and implementation modules

The ensuing sub-sections deal in turn with:

§ 3.3.1: Modules as procedures, and the interface or instance values they return.

§ 3.3.2: How modules are applied.

§ 3.3.3: Module parameters: the DIRECTORY and IMPORTS lists; USING clauses.



§ 3.3.4: Interface module bodies and interfaces.
§ 3.3.5: Implementation module bodies; the EXPORTS list.
§ 3.3.6: SHARES and access!2,

The meanings of the other parts of a module header are discussed elsewhere:
CEDAR in § 3.4.4.
MONITOR and LOCKS in §4.10.

3.3.1 Modules and instances

A module is a proc which takes two kinds of arguments:

Interfaces, declared in the DIRECTORY list. These arguments are supplied by the model (or
on the compiler's command line), and used during compilation.

Instances of interfaces, declared in the IMPORTS list. These arguments are also supplied by
the model (or in a config file passed to the binder. or implicitly by the loader), and used during
loading.

§3.3.3 discusses the types of these arguments and how they are declared. In addition, an
implementation may take PROGRAM arguments declared in the drType following PROGRAM or
MONITOR. These are ordinary values; they are discussed in § 3.3.2A.

When a module is applied to its arguments, the resulting value is
For an interface module, an interface.

For an implementation module, a binding whose values are instances:
one interface instance for each interface it exports;
one for the program instance, also called a global frame;

one for the program proc derived from the module body (§3.3.2A), called
CONTROL.

This application cannot be written in the program, only in the model; it is described in § 3.3.2.

An interface (sometimes called an interface type) is a type, as the latter name suggests. This type is a
declaration (obtained from the declarations which constitute the module body), with an extended
cluster that includes all the bindings in the module body that don’t use declared names (§ 3.3.4). In
the example, the Buffer interface (obtained by applying the Buffer module to the arguments declared
in its DIRECTORY) has declarations for New, Get, and Put, and its cluster includes values for Handle
and BufferObject.

An interface instance is a value whose type is an interface; such values are the results of
instantiating implementation modules. In the example, BufferImp! returns (exports) an instance of
Buffer.

A program instance or a global frame is a frame, as the latter name suggests, i.e., a binding obtained
from the bindings and declarations of an implementation (PROGRAM or MONITOR) module body,
just like any proc frame (§ 3.3.5). Normally code outside the module does not deal with the instance
directly, but only with the exported interface instances. In the example, Bufferimp! exports a
program instance for the module and a CONTROL proc.



In most cases, there is:
Exactly one application of each module, and hence exactly one interface or one instance.
Only one module which exports an interface.
Only one interface exported by a module.

Only one argument of the proper type for each module parameter (§3.3.3): hence it is
redundant to write the arguments explicitly.

When these conditions hold, there is a close correspondence among the following four objects:

an interface module;

the interface it returns (since its arguments need not be written explicitly):

the implementation module which exports the interface;

its instance (again, since its arguments need not be written explicitly).
The distinctions made earlier in this section then seem needless; it is sufficient to simply consider
the interface and implementation modules, and identify them with the files which hold their text. In
more complicated situations, however, it is necessary to know what is really going on.

In the example at the start of this section, Buffer/mp/ is an implementation module with seven
parameters:

Four interface parameters, declared in the DIRECTORY: Rope, CIFS, 10 and Buffer.

Three instance parameters, declared in the IMPORTS: Files (of type CIFS), 10 (of type 10).
and Rope (of type Rope). Since the instance parameters are declared in an inner scope, the
instance Rope is the one visible in the module body; the interface Rope is visible only in the
header. The same is true for /0, but both the interface C/FS and the instance Files are
visible in the body.

When Bufferimp! is compiled, the four interface parameters must be supplied, in the form:of
(compiled) interface modules named Rope, CIFS. 10 and Buffer. When Bufferimpl is instantiated
(normally by loading it), the three instance parameters must be supplied, i.e. there must be other
instantiated implementation modules which export the Rope, CIFS, and IO interfaces. Normally
there will be one of each. and the entire program will consist of eight modules:

the interface modules Rope, CIFS, 10 and Buffer,

implementation modules normally named Rope/mpl, CIFSImpl, I0Imp! and BufferImpl, each
exporting an instance of the corresponding interface

The instantiated Buffer/imp! exports an instance of Buffer, which can thus be used as a parameter by
some other module.

3.3.2 Applying modules

A module is not applied to all its arguments at once. Instead, the arguments are supplied in two
stages:

A module is applied to its interface (DIRECTORY) arguments by compiling it; the result is a
BCD (represented by a .bcd file). The bcd is still a proc, with instance parameters. Like any
proc, a module can be applied to different arguments (i.e., different interfaces) to yield
different results (BCDs).

A BCD is applied to its instance (IMPORT) arguments by loading (or binding) it; the result is
a program instance, together with any interface instances exported by the module. Again,
the BCD can be applied to different arguments (i.e.. different interface instances) to yield
different instances. Indeed, because an instance may include variables, even two applications
to the same arguments will yield different results (instances).



These two stages are separated for several reasons.

All the type-checking of a module can be (and is) done in the first stage, by the compiler.
The only type error possible in the second stage is supplying an unsuitable argument.

Compiling is much slower than loading, and a module needs to be recompiled only when
its interface arguments change. not when the interface instances change. The latter are
changes in the implementations of the interfaces, and are much more common.

When there are multiple instances of the same module with the same interface parameters,
they automatically get the same code.

We've always done it that way.

3.3.2A Initializing a program instance

The statements in the body of an implementation module form the body of a proc called the
program procedure. The function of this proc is to initialize an instance of the module. When
program instance P/ is made, no code in the module is executed: hence P/ may be uninitialized. It
is the job of the program proc PP’ to initialize P/, perhaps using the PROGRAM arguments if there
are any. Until PP has been called, P/ is not in a good state. It would be better to supply the
PROGRAM arguments along with the imported instances, and call PP’ as part of making P/, so that
PI is never accessible in its uninitialized state. But it isn't done that way: hence the programmer
must ensure that PP’ is called before any use is made of P/ The preferred way to get hold of PP is
from an interface to which it is exported; see § 3.3.5.

To confuse things, PP is not an ordinary procedure but a PROGRAM, and it must be called using
the START construct (see §4.4.1). Note that in addition to the statements of the module body, PP
also contains the type-specific initialization code for any variables or non-static values in the
instance: e.g., if x: INT«3, the value of x will not be 3 until after PP’ has been called.

There is some error detection associated with this kludge. If a proc in the instance is called before
the instance has been initialized by START, a start trap occurs. At this point, if PP takes no

arguments it is called automatically, and the original call then proceeds normally; if PP" does take
arguments, there is a Runtime.StartFault ERROR.

Caution on initializing monitors. 1f the module is a monitor, PP’ runs without the monitor lock; if
another process calls into the module while PP is running, it will not wait, but will run

concurrently with PP, This is unlikely to be right. It is unwise to rely on a start trap to initialize a
monitor module; call PP’ explicitly with START.

Caution on referencing module variables before initialization: 1f a variable in the instance is
referenced before the instance has been initialized. no error is detected. and the uninitialized value

will be obtained. PP’ can still be called to initialize the instance, and may still be called
automatically by a start trap.

The program proc is bound to the name CONTROL in the result of an implementation module if its
type is PROGRAM[] RETURNS|] (otherwise the proc Runtime.ReportStartFault is bound to CONTROL).

This allows the modeller (and binder) to get access to PP so as to control the order in which
modules are started. '

3.3.3 Parameters to modules: DIRECTORY and IMPORTS

The interface parameters of a module are declared in the DIRECTORY. An interface / has type TYPE
n, where n is any one of the names given before DEFINITIONS in the header of the interface module
that produced /. The INTERFACETYPE primitive in the desugaring takes a list of atoms and returns a
type which implies TYPE n for each $r in the list. The reason for allowing several names is to aid
conversion of an interface from one name to another: both names can continue in use for a while.



The use of these names provides a clumsy check that the proper interface is supplied as an
argument. DIRECTORY #: TYPE and DIRECTORY n are both short for DIRECTORY #n: TYPE n.

The compiler must be able to find the interface arguments. which in general are stored as files.
When the modeller is used. it supplies these arguments from the specifications in the model.
Otherwise. they may be specified explicitly on the compiler's command line. or failing that. the
compiler gets the interface / from the file /.bcd.

An interface is a type which can only be used:

Before a dot (§4.14). to obtain a value from its cluster, which simply consists of the
bindings in the interface module body (§3.3.4).

In an IMPORTS list as the type of an instance parameter to a module.
After POINTER TO FRAME (§4.5.3)

The USING clause in the DIRECTORY, if present, restricts the cluster of the interface to contain only
items with the names . ... Thus in the example, only ROPE and Compare are in the cluster of Rope

in the BufferImpl module. This means that Rope.ROPE and Rope.Compare are legal, but Rope.n for any
other » will be an error. Note that USING affects only the cluster of the parameter: it does not affect
the clusters of any types or the bodies of any INLINE procs obtained from the interface. Thus within
Rope, Compare might be bound by

Compare: PROC[rl, r2: ROPE] RETURNS [BOOL]~INLINE { IF Length[rl]~ = Length[r2] THEN ... }
A call of Rope.Compare in BufferImpl is all right, even though Rope.Length in Buffer!mpl is an error.

In the example, CIFS, 10, and Rope are interfaces. They are the types of three IMPORTS parameters
named Files, /0, and Rope (if the IMPORTS clause gives no name for the parameter, the name of the
interface is recycled). An actual argument for an IMPORT parameter must be an interface instance,
i.e., a value whose type is an interface type. Such a value is obtained from one or more modules
which export the interface (§ 3.3.5). An instance is a binding: in it, the value of a name declared in
the interface is provided by the exporter; the value of a name bound in the interface (e.g.. x~3) is
just the value the interface binds to the name (in this case, 3). This rule has two effects:

The client can ignore the distinction between names bound and declared in the interface,
since both appear in the instance binding and are referenced uniformly with dot notation.
This means that the client is not affected, for example. when a proc is moved from an
INLINE in the interface to an ordinary definition in an implementation.

The client can often.ignore the distinction between the interface and the instance, since all
the values in the interface are also in the instance, with the same names. This is the
motivation for the shorthand which allows the name of an IMPORT parameter to default to
the name of the interface: the interface is no longer accessible, but /x has the same
meaning (namely 3) whether / is the interface or the instance.

Caution on inlines in interfaces. Names bound to inline procs in an interface do not appear in the
interface binding, but only in an instance. This somewhat dubious rule ensures that clients won’t
have to add to their imports lists if a proc stops being an inline.

Restriction on importing multiple instances: An interface module may not import more than one instance of a given
interface /. If an implementation module P imports more than one instance of /. the principal instance of I is the one
with no name in the IMPORTS list (which is therefore named / by defauit). If P imports only one instance of type /. then
that instance is the principal instance.

Restriction on importing a principal instance into imported interfaces. Often an interface module has no IMPORTS. because
it only needs access to the static values (types and constants) bound in its interface parameters, and does not need values
for any names declared there (procs and interface variables). If an interface module does have IMPORTS, however. and
there is more than one instance of any imported interface around. then there is a restriction on the argument values,
Suppose that /a1l imports /mi2, and that a program module P imports /nl. Then /m] may only import one instance of
/ni2. and if P also imports /a2, the principal instance of /n2 in P must be the same as the value of /a2 imported by
the /ml imported by P. For example, with

DIRECTORY /nt2: [ni1: DEFINITIONS IMPORTS /n2V: Ini ...

DIRFCTORY /ntl. Ini2: P: PROGRAM IMPORTS /nrl V2 tnfd, Ini2V: Ini2 ...
we must have in P that /mlV./n2V=(nidV.



3.3.4 Interface module bodies

The body of an interface module / is a collection of bindings (e.g.. x: INT~3) and declarations (e.g..
¥. VAR INT or P: PROC[a: INT] RETURNS [REAL}).

Restriction on bindings in interfaces. The construct that follows the ~ in one of the bindings!? is
restricted:

If it is an expression, it must be static (§ 3.9.1). Thus, no imported names. As a result,
P. PROC~ 1P
E: ERROR~/E

are not allowed.

If it is a block (providing the body of a proc), it must be INLINE (because there isn't any
place to put the compiled code).

It may not be CODE. This is an unfortunate accident of the implementation.

The result of applying an interface module is an interface (§3.3.2), which is a type / obtained by
applying the primitive MKINTTYPE to the d's and b’s of the body. This type is simply the declaration
obtained by collecting the declarations in the body, with a cluster which is extended to include all
the bindings of the body. However, MKINTTYPE omits any inline proc bindings from the type's
cluster, instead leaving the proc declarations in /. [t puts an extra item BINDING in /s cluster with
the inline procs in it. When an instance /ast of / is imported, the binding actually imported is /nst
PLUS /.BINDING. This slightly dubious arrangement ensures that clients don't have to change imports
lists if a proc stops being inline. This policy is not extended to other items, however, even though
they might change from being bound in the interface to being interface variables.

The interface returned by
Red. Blue, Green: DEFINITIONS~...
has the types TYPE Red TYPE Blue. and TYPE Green.

Restriction on referring to names introduced in an interface. The types and expressions in the
declarations and bindings of an interface may refer to other names in the bindings as usual. but
they may not refer to names introduced in the declarations, except that:

Any declared name may be used
in the body of an INLINE, or

[TOINT]

after a "«" in a defaultTC55 in the fields®3 of a transferTC# which is the type of a
decl in the interface’s body.

A declared (opaque) type may be used anywhere.

For example, if an interface contains
I: DEFINITIONS~
X INT~3;
y: VAR INT;
T: TYPE[ANY]
then the following may also appear in the interface:
xx: INT~x+1:
P: PROC RETURNS[INT}~INLINE {RETURN[x+]};
Q: PROC [INT*+y];
V: TYPE~RECORD[f: REF 7. g U]
but the following are illegal:
xy. INT~y+1;
U: TYPE~INT¢y;
W: TYPE~ARRAY [0..y] OF INT;

The valu_es of thg bindings can be accessed directly by dot notation in any scope in which the
interface is accessible. Thus if the value of the previous interface module is bound to J. e.g.. because



J: TYPE / appeared in the DIRECTORY, then J.x is equal to 3. The declarations cannot be accessed
directly (/y is an error).

The declarations in an interface module are not quite like ordinary declarations. They are of three
kinds. depending on whether the type of a declaration is:

A transfer type (§ 4.4.1); this is just like a declaration of a transfer parameter to an ordinary
proc, except that it is readonly.

TYPE[ANY] or TYPE[¢]; the type being declared is an opaque type or exported type, discussed
in §4.34. The expression e must be static. TYPE[ANY] or TYPE[E] is not allowed in an
ordinary declaration; except in an interface, a type name must be bound to a type value
when it is introduced.

VAR T, or READONLY T for any type T except TYPE: this is an interface variable; discussed
in § 3.3.4.1 below. You can also write simply T here, but this is not recommended.

An interface instance /7 has the interface type [ if for each item n: T in the interface, there is an
item n~v in the instance, and v has type 7. This is the same rule which determines that a binding
has the type of a declaration; e.g.. that a proc argument has the domain type. In this respect there is
nothing special about an interface.

Note that a name can be declared PRIVATE in an interface, even though it must be declared PUBLIC
in the exporter (§ 3.3.6). This can be useful if the name is used in a type constructor or inline proc
in the interface, but its value should not be accessible to the client.

3.3.4A Interface variables

An interface variable v gives clients of an interface direct access to a variable in a program module,
namely the variable which is exported to v. This is the only kind of variable parameter in current
Cedar.

olf you use the obsolete shorthand of T for VAR T in an interface variable declaratipn. you cannot
declare a transfer type variable as an interface variable, since that already means passing the transfer
value.

Caution on uninitialized interface variables. the variable which is exported to provide the value for
an interface variable is not initialized until its module is initialized (§ 3.3.2A). However, there is
nothing to stop it from being accessed sooner, with possibly undesired results.

Performance of interface variables. An interface variable can be read and (if not READONLY) set
directly, which is significantly faster than Ger and Ser procs. Of course, the implementor gives up
some control. These operations are not quite as fast as access to an ordinary variable, since there is
an extra level of indirection which costs one or two extra instructions each time. There is also one
pointer per interface variable per module which refers to it. If you use a private interface variable
and inline Ger and Ser procs, you pay nothing in performance, but retain the option of changing the
proc definitions later.

eYou can get direct access to all the variables of a module by using a POINTER TO FRAME type
(§4.5.3).

3.3.5 Implementation module bodies

The body of an implementation module /mp is simply a block. This block plays two roles. On the
one hand, it is an ordinary block, the body of an almost ordinary proc PP’ called the PROGRAM
proc, which has parameters and results like any other. PP’ is special in one way: it has a PROGRAM
type rather than a PROC type. When PP is applied (using the special construct START: see § 4.4.1).
its declarations and bindings are evaluated, its statements are executed, and its results are returned



as with any proc. The only difference is that the values bound to the names introduced in the block
(i.e.. the frame of PP) are retained after the proc returns; in fact, forever (unless Runtime.Unnew 18
used to free the frame). Procs local to the block can access these values in the usual way, and values
of exported names can also be accessed through interfaces, as explained below: see § 3.3.2A.

As with any proc (§ 3.5.1). the frame of PP includes the parameters and results from /mp's drType4
as well as the names introduced in the block’s d's and b's. It also includes an additional item:

Imp: PROGRAM T~ PP’
where /mp is the name of the module and T is its drType.

The body of /mp has a second role: to supply values for the names declared in the interfaces
exported by /mp. For each interface Ex which /mp exports. an interface value Ex/ of type Ex is
constructed. Each name » in Ex/ acquires a value as follows:

If n Tisin Ex and n: PUBLIC T~x is in the body of imp, then n~x is in Ex{. This is a
slightly peculiar kind of binding; as in an ordinary binding, x must be coerceable to T
(§4.13). Note that » must have PUBLIC access (§ 3.3.6) in the body.

If nis Imp and n: Tis in Ex. then n~PP is in Ex/; the type of PP’ (which is PROGRAM D
RETURNS R, where D RETURNS R is /mp's drType) must be coerceable to 7. This method of
exporting PP is the usual way of giving another module access to the program proc, so that
it can be called to initialize the module at the proper time.

If n is declared in Ex. not bound in the body of /mp. and not the same as /mp. then
n~UNBOUND is in Ex/. UNBOUND is a special value with the following properties:

For a proc P, it causes a Runtime.UnboundProcedure signal on any application of P.
For a variable v, it causes a Runtime. PointerFault ertor on any reference to v.
For a type T, it causes no problem.

If n~x in Ex, then na~x in Ex/. Thus any names bound in the interface are bound the same
way in any interface value.

Caution on exporting a name to several interfaces: A name can be exported to several interfaces
without any warning, if it has a suitable type. This is unlikely to be what is wanted.

On the other hand, it is quite usual to have several modules exporting to the same interface. The
modeller, loader and binder provide facilities for merging the interface instances produced by the
several modules into a single instance that contains all the items bound by any of the modules.

The result of instantiating /mp is a binding with:

One item for each exported interface Ex, namely Ex: Ex~Ex/, where Ex/ is the interface
value constructed above. Here Ex is the name n, given to the interface in the DIRECTORY.

One item CONTROL: PROGRAM[] RETURNS []. whose value is the program proc PP if that
has no arguments and no results, and otherwise Runtime.ReporiStartFaull.

oOne item for the type of the module’s global frame, namely FRAME~TYPE Imp.

eOne item for /mp itself. namely /mp. FRAME. The value of this item is the program
instance, i.e., the frame of the module’s body. The instance exists before PP 1s called
(though it is uninitialized). In fact. its /mp item can be applied to call PP

This binding is accessible in a model, where it can be used to get access to the interface instances,
the program proc, the global frame type, and the program instance.

eYou can pass FRAME as an argument to a DIRECTORY parameter /: TYPE /mp; like an interface; /
provides access to constants bound in the module, and allows you to declare an IMPORTS parameter
whose argument will be a program instance of the module. From 7 you can also obtain a first-class
Cedar type POINTER TO FRAME[/]; see §4.3.5. I's cluster includes a coercion from / to POINTER TO
FRAME[/]. and the proc cOPYIMPLINST (applied by the funnyAppl NEW). which is the same as the
proc of the same name in cluster of POINTER TO FRAME[/].



eYou can import /mp into another module (by writing DIRECTORY /mp ... IMPORTS I/mpinst: Imp ...).
and obtain access to all the variables and procs of the program instance.

3.3.6 PUBLIC, PRIVATE and SHARES

Cedar has a rather complicated mechanism for controlling access to names. Most uses of it are now
considered to be obsolete, with the following exceptions:

Names to be exported must be declared PUBLIC.

Names included in an interface for use in inline procs etc.. but not intended for use by
clients, should be declared PRIVATE.

Access to a name is declared by writing PUBLIC or PRIVATE right after the colon in a declaration:
X: PUBLICT

In the Cedar syntax these colons occur in the declarations!! and bindings!? in bodies!0, fields+3.5!,
and interface modules?, and in the tags3 of a unionTC. You can set a default access for all the
names in a module2 3 or records0 by writing PUBLIC or PRIVATE just before the { or RECORD: this is
overridden by an explicit PUBLIC or PRIVATE inside. By default, an interface is PUBLIC and an
implementation is PRIVATE.

A PRIVATE name defined in module M can only be referenced:

from within M;

from a module which EXPORTS M.

efrom a module which SHARES M; avoid this feature.
This does not mean that the name is invisible, but rather that it is an error to use it if, e.g., M is
OPENed. Thus in

x: INT: {OPEN M: fIx]} ' '

if x is bound in M (and not hidden by a USING clause). the call of f is equivalent to f{M.x]

regardless of whether x is PUBLIC or PRIVATE. It is illegal if x is PRIVATE, but it never refers to the
x declared by the x: INT.

Furthermore, if a record has any PRIVATE components, a constructor or extractor for the record is
legal only in a module where use of the PRIVATE names is legal (even if the private components are
not mentioned and have defaults).

3.4 Blocks, OPEN and ENABLF,

6 block ::= 2(CHECKED | UNCHECKED | TRUSTED)

{ ?open ?enable ?body open LET n'', ... . EXCEPTION~NEWLABEL[] . ...
NEXITS (n, L.=>s):..) } IN ( ( body enable )BuUT {(n",... =>s):.. })

--In 3.13.15. -- But n- is not visible in s.
70open:i= OPEN(n~~e¢|e) . (LET n~}\open IN €.UNREF | --The IN before ... is a separator.

In2.5.17. oThe ~~ may be written as :. LET BINDP|[( V(€.UNREF)).P.

OPENPROCS[(V (e.UNREF)).P. A IN e.UNREF] ] ) IN!..IN

s enable:: = ENABLE ( enChoice | BUT ( { enChoice } |

s 1 {enChoice; ...}); { enChoice; ... } )

nS. 17.
9enChoice ::=(e, .. ] ANY) =>5s (e] ANY), ... => { s: REJECT; EXITS )

In7.27.1. Retry’ =>GOTO Retry'14; Cont’=>G0OTO Cont 14 }
10body ::=(d|b): L. ;s ]s: M LET NEWFRAME[ REC [(d | b). ...] LJUNCONS IN { s: ...}

In5.17.



Examples

CHECKED { -- Unnamed OPEN OK for exported
OPEN Buffer, Rope: -- interface or one with a USING clause.
ENABLE Buffer.Overflow = >GOTO HandleOvfl; -- A single choice needn’t be in {}.
stream: 10.Stream~10.CreateFileStream["X"]: -- Use a binding if a name’s value is fixed.

X: INT«7: -- Better to initialize declared names.
{OPEN b~ ~buffer: - A statement may be a nested block.
ENABLE { -- Multiple enable choices must be in {}.
Files.Error--[error, file]--=>{ -- ERRORS can have parameters,
stream.Put[10.ropeferror]}; CONTINUE:  -- Choices are separated by semicolons.
ANY =>{ x«12; GoTO AfterQuit } }: -- ANY must be last. ENABLE ends with ;.
y:INT€9; ... }: -- Other bindings, decls and statements.
x «stream.Getlnt: ... -- Other statements in the outer block.
EXITS -- Multiple EXIT choices are not in {}.
AfterQuit=>{...}; -- AfterQuit, HandleOvfl declared here,
HandleOvfl=>{...} }: -- legal only in a GOTO in the block.

The main function of a block is to establish a new scope (§2.3.4) and to allow for the allocation of
variables declared in the block, as in Algol or Pascal. A Cedar block has four other features:

attributes; CHECKED, UNCHECKED and TRUSTED are treated in § 3.4.4 on safety.
open’: a combination of sugar for LET and call by name: see § 3.4.2.

enable8: catches signal and error exceptions in the body; see § 3.4.3.1.

EXITS: catches GOTO exceptions in the body or enable; see § 3.4.3.2,

Note that the braces around a block may be replaced by BEGIN and END (§ 3.2).

The statements in a block are evaluated in the order they are written. The initialization expressions
in the d’s and b’s are also evaluated in the order they are written: this may be important if they
have side effects, although that should be avoided.

3.4.1 Scope of names and initialization

The names introduced in the block body's d's and b’s (i.e.. appearing before a : or ~) are known
throughout the body with the values supplied by the d’s and b's, except in inner scopes where they
are reintroduced: they are not known elsewhere in the block. The frame of the block can be
coerced to a binding with a value for each such name.

Actually. the frame is a value of an opaque type which has a coercion (called UNCONS) to this binding. As the desugaring
for body indicates. the frame is constructed (by NEwrraME), and then a LET makes the names in the binding known in
the statements of the body.

Anomaly on order of evaluating bindings: A name introduced by a binding, n: T~e, has the value of
e throughout the body if e is static. If e is not static, it is evaluated after all preceding d's and b's,
but before any following ones. This means that » is trash in all the d's and b’s before its binding,
Symmetrically, if e refers to a name introduced in a following decl or non-static binding. it will get
a trash value. Compiling with the “u" switch will yield a warning in this case. Note that only
attempts to use the value of » get trash: n may appear anywhere in a A-expression, and all wiil be
well as long as the A-expression is not applied before n's binding is evaluated.

A name introduced by a declaration, »: T, is bound to a new VAR T. The variable bound to n is
allocated, and its INIT proc is executed, before any statements in the block is executed (this is done
by the NEWFRAME proc in the desugaring).



Anomaly on order of initializing variables. However. the INIT proc is executed (to set a REF or
transfer value to NIL), and any initialization specified by a defaultTCss in 7 is done at the same
time that a non-static binding would be evaluated. As with a binding. n.VALUEOF is trash before this
time, Furthermore, any (unwise) assignment to » before this time is overridden by the defaultTC.

Caution on uninitialized RC variables: The failure to initialize RC variables is a safety loophole,
since the trash can be picked up and used as an address.

Style of expressions in bindings and initializations. The expression in a binding or defaultTC should
be functional, or at least it should have only benign side-effects. There is no enforcement of this
recommendation, unfortunately. In current Cedar such an expression is evaluated exactly once. at
the time described above. This may change in the future, however.

The variables created by a declaration are deallocated when execution of the block is complete.
unless the block’s frame is retained. Currently only an implementation’s block3 has its frame
retained. There are two ways to hang on to a variable v after execution of the block is complete:

Obtain a pointer to v with @; this pointer value can survive the block.
Obtain a proc value for a local proc which refers to v; this proc value can survive the block.

In the checked language both these dangling references are impossible: the @ operator, being
unsafe, is forbidden, and AssIGN for proc values gives an error unless the proc is local to a program
instance (which has a retained frame).

Caution on dangling references to frames. An unchecked program can get into trouble.

Performance of block entry and exit: There is no overhead associated with block entry or exit. even
if the block has an open, enable or EXITS. The only cost is for initializing the variables bound to. its
names. It is good style to use blocks freely to limit the scope of names.

3.4.2 OPEN

There are two forms of open. The first, n~~e, binds the name » to )\Open IN e.UNREF. This is just like

A IN eUNREF, except that there is a coercion from » to nf]. In other words, every time n appears, its
value is obtained by evaluating e.UNREF. The effect is exactly like call by name in Algol; the ~~ is
to remind you that this is not ordinary value binding. The value of e.UNREF is

e if the cluster of Ve does not include DEREFERENCE;
et.UNREF if it includes DEREFERENCE;

In other words, a reference value is dereferenced (and a single-component record or binding
replaced by the component), repeatedly if necessary, to obtain a non-reference value. In an open.
e.UNREF must be a record, interface or instance.

The second, nameless, form of open gives an expression without binding it to a name: { OPEN e:
...}. The expression e.UNREF must evaluate to a binding &:

An interface or instance value is a binding (§ 3.4.2).

A record value has a corresponding binding which has the names of the record fields
bound to the field values (or variables, for a VAR record).

eAn application returns a binding, though the call-by-name feature makes it unwise to use
an application in an open.
The nameless open converts b into another binding bp in which each value is a )\open proc (see

above), and introduces bp’s names in the block with a LET. Thus in the program
R: TYPE~RECORD [a: INT«3, b; REAL¢3.4]; r: R: { OPEN r; ...}
the names a and b are known in the body of the block, with the same meaning as r.a and r.b.



Style for nameless open: Nameless open should be used with discretion, with the smallest practicable
scope. and only if the value being opened is very familiar, or heavily used, or both. Nameless open
can cause great confusion. since it is not obvious from the text of the program where to find _the
bindings for the names it makes known. It should never be used when evaluation of e has a side-
effect.

The scope of an open is all the rest of the block. including any enable and any EXITS. A single
open may have several bindings or expressions. These are applied sequentially, so that the names
bound by earlier ones are known to the later ones as well as to the rest of the block.

3.4.3 ENABLE and EXITS

The ENABLE and EXITS constructs are two forms of sugar for exception handling (§2.2.4. §2.6.2).
ENABLE catches signals and errors raised in the body (but not the open, enable, or exits). EXITS
catches GOTOs in the body or enable (but not the open or exits). Both are in the scope of the open,
if any. Neither is in the scope of any names introduced in the body.

3.4.3A ENABLE

An enable has a chance to catch any signal or error raised in the block (and not caught at a deeper

level). A nearly identical construct can appear in an application26; the following explanation covers
both cases.

Each enable choice (enChoice?) has a list of expressions with exception values (eor ANY) before the
=>. If ANY appears. it must be the last enChoice. If the exception is equal to one of these values,

or if ANY appears, the statement after the => is executed. Control leaves this statement in one of
the following ways:

A REJECT statement causes the exception to be the value of the block: it will then be

propagated within the enclosing block, or if the block is a proc body it will be propagated
to the application.

A GOTO statement sends control to the matching choice in the EXITS. There are three
special caseslé:

A RETURN is not allowed in an enChoice.

A CONTINUE statement ends execution of the current statement (in this case the
block):; execution continues with the next statement following. If the block is a proc
body, the effect is the same as RETURN. You cannot write CONTINUE in a body’s
d’'s or b’s,

oA RETRY statement begins execution of the current statement (in this case the
block) over again at the beginning. You cannot write RETRY in a body’s d's or b's,
The semantics of CONTINUE and RETRY follow from the desugaring of statementl4,

A RESUME statement (signals only) is discussed below.

olf the statement finishes normally, a REJECT statement is then executed.

If a single expression e appears before the =>, then within the enChoice statement the names in
VeDOMAIN are declared and initialized to the arguments of the exception. With multiple
expressions, or ANY, the arguments are inaccessible. #The use of ANY is not recommended.

Note that an error is caught by an enChoice with a matching exception value, not by one with a
matching name. Normally an error £ will be declared in some interface, its value will be supplied
by a binding of the form E: PUBLIC ERROR ... ~ CODE, and both the signaller and the enChoice will
refer to this value by the name E. In this case, it is natural to think of the binding as being by
-name. However, it is possible to have a different name for this exception value. e.g. by writing £/:
ERROR ... ~ E. It is also possible to bind some other exception value to £ in a scope which includes
some enChoice examined when the signal is raised. Thus in the silly program



E: ERROR~CODE;
F: ERROR~E;
{ENABLE E=>{--Handler 1--...};
E: ERROR~CODE:
{ENABLE E=>{--Handler 2--...}:
‘ IF switch THEN ERROR FELSE ERROR E:
if switch is true handler 1 will be used. and if it is false handler 2 will be used.

Finalization

You.are. supposed to think of an ERROR as an unusual value ev which can be returned from any
apphcauon: this value immediately stops the evaluation of the containing application. which
likewise returns ev as its value. This propagation is stopped only by an enable choice which catches
the ERROR. As each application is stopped. it is finalized. Aside from invisible housekeeping.
finalization confusingly consists of executing an enChoice which catches the ERROR UNWIND, The
programmer can write any cleanup actions he likes in this statement.

Cau;iogz on ERRORSs in finalization: If the finalization raises another ERROR which it does not catch.
it will itself be stopped. with very confusing consequences. It isn't very useful to know exactly what
happens then: avoid this situation.

Anomaly on order of finalization: In fact, things are a bit more complicated. When a signal or error
is propagated, the enChoice statement is called as a proc from the SIGNAL or ERROR which raises
the exception. When control leaves the statement by a GOTO (including EXIT. CONTINUE. RETRY Or
LOOP, but not RETURN, which is forbidden in an enChoice). the finalization is done. This means
that the enChoice statement is executed before any finalization. This is useful for signals, which
often resume. In some cases, however, notably if finalization would release monitor locks, this can
cause trouble. Avoid the problem by exiting from the enChoice immediately with a GOTO.

Caution on exceptions in enable choices: An enChoice can raise a second exception ex2 and fail to
catch it. This will probably result in confusion, and should be avoided. If it happens, ex2 is
propagated just like the first exception exl; all the enChoices which saw exl will see ex2. This is
because the enChoice statement for ex]l was called as a proc. Unless ex2 is a signal which is
resumed, the enChoice which caught ex]l will be finalized and abandoned.

Caution on ANY and UNWIND: ANY unfortunately catches UNWIND, and hence its statement will be
taken as the finalization. It is better not to use ANY. Also, it is possible to raise UNWIND explicitly:
don't.

Signals

Conceptually, a signal is quite different from an error; in fact, it is very much like an ordinary
application. The only differences are:

The proc to be called is an enChoice which is found exactly as though the signal were an
error. The effect of this is that SIGNAL Plargs] binds the proc name P to the proc body
dynamically, by searching up the call stack for a binding of P. This is just the way Lisp
binds free variables, except that a binding for P can only be found in an enChoice. not in
the frame of a proc.

Actually this is not quite right. Like an error handler, the signal proc is not found by matching names. but by
matching exception values. This point is discussed in detail above.

The enChoice can be terminated by a GOTO out of its body, unlike an ordinary proc. The
GOTO exception is treated exactly like a GOTO out of an enChoice for an error: it causes all
the intervening frames to be finalized.



The implementation, however, treats errors and signals in a very similar way: the only dlfference‘ is
that you cannot resume an error (return from the enChoice). In fact, you can invoke a mgngl V\{lth
ERROR. which prevents it from being resumed; avoid this feature. In the future the distinction
between signals and errors will be reflected more clearly in the implementation.

Anomaly on RESUME: The desugaring gives no explanation of how RESUME works, since it does not
turn the enChoice for a signal into a proc at all. This is a defect.

3.4.3B EXITS

An EXITS construct (confusingly called REPEAT in a loop) declares one or more exceptions which are
local to its block. and also catches them. The syntax is just like an enable. However., names called
labels appear before the =) rather than expressions, and the EXITS introduces these names in a
scope which includes the block body and any enable, but not an open and not the statements in the
EXITS itself. A label may only be used in a GOTO statement.

Anomaly on the separate name space of labels. Actually labels have their own name space, disjoint
from the other names known in the block. Hence it is possible to declare a label » and still to refer
to another » in the block. Avoid this feature.

Like the raising of any exception, a GOTO n stops execution of the current statement. The statement
associated with n is executed. If it finishes normally, execution continues after the block in which »n
was declared. If it raises an exception, that exception becomes the value of the block.

Anomaly on GOTO and UNWIND: A GOTO skips any UNWIND enChoices that intervene between the
GOTO and its matching EXITS. This is the only way to escape from a block without executing the

UNWIND. You can avoid this anomaly by not nesting UNWIND enChoices within blocks that have
EXITS.

3.4.4 Safety

A SAFE proc has the property that if the safety invariants hold before it is called, they also hold
afterwards. Roughly, these invariants ensure that the value of every expression has the syntactic type
of the expression, and that addresses refer only to storage of the proper type (§4.5.1). An UNSAFE
proc may lack this property. Hence a safe proc type implies the corresponding unsafe one.
We want to have confidence that the safety invariants hold. To this end, we want to have:

as few unsafe procs as possible;

a mechanical guarantee that a proc is safe, if possible.
Clearly, a proc whose body calls only safe procs will be safe: this means that all the primitives it
applies must be safe, as well as all the user-defined procs.
Applying this observation, Cedar provides three attributes which can be applied to a block:

CHECKED: the compiler allows only safe procs to be applied; hence the block is
automatically safe, and any proc with the block as its body is safe.

UNCHECKED: there are no restrictions on the block, and it is unsafe.

TRUSTED: there are no restrictions on the block, but the programmer guarantees that it

preserves the safety invariants; the compiler assumes that the block is safe. This is a
restricted form of LOOPHOLE.



These attributes are defaulted as follows.
A block is checked if its enclosing block is checked; otherwise it is unchecked.

If CEDAR appears in the module header. the outermost block is checked. and a transfer type
constructor anywhere in the module defaults the SAFE option to TRUE. Hence the resulting
type will be safe, and its initialization must be safe or there is a type error.

Otherwise, the outermost block is unchecked. and a transfer type constructor anywhere in
the module defaults the SAFE option to FALSE. Hence the resulting type will be unsafe, and
there is no safety restriction on its initialization.

Of course you can override these defaults by writing CHECKED. UNCHECKED or TRUSTED on any
block. and SAFE or UNSAFE on any transferTC (except ERROR, which is automatically safe). The
defaults are provided to make it convenient to:

write new programs in the safe language:
continue to use old. unsafe programs without massive editing.
An unsafe proc value never has a safe type, and hence cannot be bound to a name declared with a
safe type. This applies to enable choices for signals as well as to procs. In both cases, the body must
be checked or trusted if the type is safe. ERRORs are treated differently, however. because of the
view that an ERROR is a value returned from an application, unlike a signal which calls the
enChoice expression. Hence the enChoice for an ERROR is treated just like any statement in its
enclosing block, and is not considered to be bound to a proc when the ERROR is raised.
The following primitive procs are unsafe:
@. DESCRIPTOR and BASE.
+ or FREE applied to a pointer (but not a REF), and all pointer arithmetic.
APPLY Of
a descriptor (because it involves dereferencing a pointer);
a computed sequence. or a record containing a computed sequence;
a base pointer.
APPLY for process and port types (JOIN and port calls).
withSelect34,
The fields of an OVERLAID union.
ASSIGN of:
An unspecified type to anything other than the same unspecified type (§ 4.9).
A union or variant record.

LOOPHOLE which produces a RC value (§4.5.1).



3.5 Declaration and binding

11 declaration $2= n, l. : 2accessi2 varTC40 (n: varTC). ...

In 2. 10.43. var. READONLY only for interface var.
12access ::= PUBLIC | PRIVATE
In 2.3.11.13,50.51. 53.

13 binding 2= n. !.. : Taccessi2 t ~ ( N .. ~LETX :t~(

el el

t, -ift=Tvee | t, - Same as e except for conflicting syntax. |

CODE| NEWEXCEPTIONCODE] --t=>SIGNAL or ERROR |

INLINE (ENTRY | INTERNAL | ) blocké | A [d': t.DOMAIN] IN LET 1’ ~NEWFRAME[t.RANGE].UNCONS
IN(LETT IN

( {toomaIN~d": (I'ENTER: || ) block: RETURN}
(FINALLY ' EXIT|]))
BuT {Return”' =>r'}|
MACHINECODE[(BYTESTOINSTRUCTION[e, ...]). ...]
}iIN X' -- e is evaluated onty once.

+t 2TRUSTED MACHINE CODE {(€. ...); ...}

In 2. 10. ¢The ~ may be written as =.
Block or MACHINE CODE only for proc types.
®ENTRY and INTERNAL can also be before t.

Examples

HistValue: TYPE[ANY]: -- Interface: An exported type.
Histogram: TYPE~REF HistValue; - A type binding.
baseHist: READONLY Histogram; - An exported variable .
AddHists: PROC[x, y: Histogram} - An exported proc.

RETURNS [Histogram]:

L.abelValue: PRIVATE TYPE~RECORD{ --
first.last:INT,S:ROPE.X:REAL.f.g:INT,I:REF ANY]; --

Label: TYPE~REF LabelValue;

Next: PROC[l: Label] RETURNS[Label]~ -
INLINE { RETURN [NARROW[LI]] }:

H: TYPE~Histograml!; Size: INT~10;

PRIVATE only for secret
stuff in an interface.

An inline proc binding.

-- Implementation: Binds a TYPE and INT.

HistValue: PUBLIC TYPE~HV40.1; - PUBLIC for exports.
baseHist: PUBLIC He«NEW[HistValue«ALL[17]}:  -- An exported variable
X. y: HistValue«[ 20, 18, 16, 14, 12, 10, 8. 6, 4. 2. 0]: -- with initialization.

FatalError: ERROR[reason: ROPE]~CODE; -
Setup: PROC [h: Handle3, a: INT]~ENTRY {...}: -
i,j.k: INT«0; p.q: BOOL: Ib: Label: main: Handle;

Binds an error.
Binds an entry proc.

Declarations are explained in § 2.2.1F and § 2.4.5. Their peculiarities in the different contexts where
they can appear are explained elsewhere:

interfaces in § 3.3.4;
blocks in § 3.4.1;
fields in:
domains and ranges in §4.4;
records and uhions in § 4.6:
Access is explained in § 3.3.6.
Bindings are explained in § 2.3.5. See also § 3.7 on argument bindings. Note that the e in a binding

is evaluated just once, even if several names are bound. There are four special forms of binding
given in rule 13, however, which are defined here:



A TYPE binding is the only way in which a type value can be bound to a name, since types
cannot be passed as parameters. Unlike other bindings, this one expects a type3 rather than
an expression!? after the ~.

A name with a signal or error type can be bound to CODE; this use of CODE is not allowed
anywhere else. See § 4.4.1 for details on the meaning of this.

THA MACHINE CODE construct can be bound to a name with a proc type. This construct
allows machine instructions to be assembled into a proc value. The instructions are
separated by semicolons. Each instruction is assembled from a list of expressions separated
by commas. An expression in the list is evaluated to yield a [0..256) static value which
forms one byte of the instruction; successive expressions form successive bytes.

A )\-qxpression derived from a block can be bound to a name with a proc type. The
complicated semantics of this construction are explained in the following subsection.

3.5.1 PROC bindings

A binding of the form n: 7~{...} is the only way to construct a proc value and bind it to a name,
since you cannot write a A-expression in current Cedar.

There are other ways to construct proc values:

The expression in a defaultTC3S is turned into a parameterless proc which is bound o Defaulr in the type's
cluster (§4.11).

The expression following ~~ in an open or WITH .. SELECT is turned into a parameterless proc with a
deproceduring coercion (§ 3.4.2).

The statement in an enable choice for an exception is turned into a proc with domain and range given by the
exception type (§ 3.4.3A).

The expression following LOCKS in a module heading is turned into a proc according to a peculiar rule (§4.10).

The A-expression is constructed from the block in the following way. Its domain and range are the
domain and range of the proc type T. Its body implicitly declares a variable for each item of the
domain and range; these variables have the names of the domain and range items, and their scope
is the entire block, not just the block body. The domain variables are initialized to the parameters,
and the range variables in the usual way according to their types. Then the block, with a RETURN
tacked on the end, is evaluated. A RETURN exception in the block is caught, and the current values
of the range variables are the result of the A-expression. The only other way out of the block is to
raise an exception.

A RETURN in the block is sugar for GOTO Return’, which is caught as described. RETURN e assigns e
to the range variables and then does a GOTO Return'.

Anomaly about parameter and result names: It is an error to introduce the same name twice in the
domain, range or block.

Performance of proc calls: A proc call and return is about 30% faster if the proc is local, i.e..
denoted by a name which was bound to a proc body in the same module as the call. A proc which
is local to another proc, rather than bound in the body of an implementation, is about 20% slower
to call. It also introduces some overhead when its parent proc is called, and its access to non-static
names introduced in its parent proc is slower than access to other names. A call and return for an
ordinary, non-local proc takes about 10 times as long as the statement x¢y+z not counting the
time for passing arguments or results. Each argument or result value costs as much as an assignment
of that value. If the total size of the arugments is more than 11 words (in the current
implementation), the cost of passing them is doubled, and likewise for results.

The attributes ENTRY and INTERNAL can be used only in a MONITOR; they are discussed in §4.10.



The attribute INLINE has no effect on the meaning of the program, but it causes the proc body to
be expanded inline whenever it is applied. This saves the cost of a proc call and return and
sometimes the cost of argument passing. and it may allow static arguments to participate in static
evaluation within the proc.

Restrictions on inlines; An INLINE proc may not be;

Recursive.

Exported.

Used as a proc value except in an application; thus you cannot assign it to a proc variable.
The argument of FORK.

Accessed from the cluster of a POINTER TO FRAME type.

Caution on inlines in interfaces. An inline proc binding in an interface is not accessible from the
interface (i.e., from a DIRECTORY argument): you must get it from an instance (1e import the
interface). See § 3.3.4.

Performance of inlines: Excessive application of inline procs will result in much larger compiled
code. Excessive definition of inline procs will result in much larger data structures in the compiler,
- and hence in larger symbol table files, and a greater chance of overﬂowmg the compiler’s capacity.
The following cases are efficient:

An inline proc in an implementation which is called zero or one times.

An inline proc which has a simple body. no locals, no named results, and no accesses to the
formals after potential side effects.

3.6 Statements
14 Statement 3: = SS { siMPLELOOP {sS; GOoTO Cont'"; EXITS Retry” =>NULL};
In 6.10. 17, 19. EXITS Cont” =>NULL }
1588 ii=¢ «e, | e | blocké | escape | loop [NULL  [e, +€,].TOVOID | € -must yield VOID-- | --all four yield VOID--
16 escape :: = GOTO n|GoTton| Hex[exception[code~ n", args~NIL]] |
EXIT | CONTINUE | 8LOOP | 8RETRY | GOTO ( Exit'17 | Cont"9 | Loop'1| Retry’9) |
(RETURN | RESUME) %¢ | { Ar'13«e;) GOTO (Return'13 | Resume’) } |
OREIECT | Tfe ¢ STATE ' THISEXCEPTION[] | DUMPSTATE[e]
17 loop :: = (iterator | ) { (iterator ; | done'~FALSE; Next": PROC~{}:)
(WHILEe | UNTIL e]) { Test'~X IN(NOT e ] e | FALSE);
DO ?eopen’ Teenabled ?body!10 { open SIMPLELOOP {
IF Test'[] OR done’ THEN GOTO FINISHED:
{ enable body EXITS Loop’=>NULL }; Next'[] }
AREPEAT (n, !..=>s); ...) ENDLOOP ‘EXITS Exit'=>NULL: (n. !..=>s); ...; FINISHED=>NULL}}}
18 iterator :: = THROUGH e| FOR “eiNe|
FOR(n :t|%n) (m |)
( (| DECREASING) IN €| ( Rang ": TYPE~e: done”: BOOL < Range'.ISEMPTY:
Next': PROC~{ IF n ( >Range'.LAST | <Range'.FIRST)
THEN done’«TRUE ELSE n«n.(SUCC | PRED) };
n‘-Range AFIRST | LAST): |
“e .¢e) done’: BOOL~FALSE; Next': PROC~{n¢e,}. nee ).

e is a subrange. In FOR n: t.... n is readonly except for the assignment in the iterator's desugaring,



Examples

x«AddHists[baseHist. baseHist]t: -- A statement can be an assignment,
Setup[bh~main, a~3]: -- or an application without resuits,
{ENABLE FatalError=>RETURN[0]; [J«f[3]: ..}: --ora block.

IF >3 THEN RETURN[25] ELSE GOTO NotPresent; -- or an IF or an escape statement,

FOR L:INT DECREASING IN [0..5) UNTIL f]t]>3 DO

- or a loop. Try to declare ¢ in the FOR
u: INT€0; ... uet+4; ..

- as shown. Avoid OPEN or ENABLE

REPEAT Out=>{...}; FINISHED=>{...} ENDLOOP: -- after DO (use a block). FINISHED
-- must be last.
THROUGH [1..4] DO i«i*i ENDLOOP: -- Raises i to the 16th power.
FORi: INT«1.i4+2 WHILE X8 DO j¢j+i ... -- Accumulates odd numbers in [1..8).
FOR I: Label «1b, I.Next WHILE | #NIL DO ... -- Sequences through a list of Labek.

Cedar makes a distinction between expressions and statements. This distinction is most easily
defined in terms of a special type called voID, which is equivalent to the empty declaration []. This
is the range type of a PROC [...]—[]. and it is also the result type of a block, control, loop or NULL
statement. An expression whose value is a vOID can be used as a statement, and cannot be used as
an ordinary value in a binding (since it wouldn’t have the right type). If you want to call a proc
which returns values as a statement, you must assign the results to an empty group:

0es.]

Assignment is a special case: an assignment can be used as a statement even though its value is the
value of the right operand. This is explained in the desugaring!s using a special proc TOvOID in the
cluster of every assignable type: it takes a value of the type and returns a voiD. Note that the
grammar is ambiguous here, since there are two parsings of €, «e, as a statement; the one written in

the rule for statement is preferred.

Anomaly about separators for SELECT. In a select? which is a statement (i.e., returns voID), the
choices are separated by semicolons: in a select expression they are separated by commas.

Anomaly about applying a parameterless proc. elf you write an expression whose value is a proc
taking no arguments as a statement, the proc gets applied. Thus

P .
is the same as

This is the only situation in which an ordinary proc gets applied by coercion (but see § 3.4.2 for
open procs).

A statement!4 is actually a rather complicated construct. as the desugaring shows. This is because of
the CONTINUE and RETRY statements, which respectively terminate and repeat the statement
containing the enabled in which they appear. The desugaring shows exactly what this means in
various obscure cases. CONTINUE and RETRY are legal only in an enable choice (§ 3.4.2). and they
may not appear in a declaration at all. eRETRY should be avoided everywhere, since it introduces a
loop into the program in a distinctly non-obvious way.

Escape!é consists mainly of the various flavors of GOTO (including EXIT, CONTINUE, LOOP, RETRY.
RETURN and RESUME) which raise a local exception bound in an EXITS: this is explained in § 3.4.3B.
REJECT is explained in § 3.4.3A.

Anomaly about GOTO and procs: You cannot use a GOTO to escape from a proc body. even though
the body is within the scope of the label. Only normal completion. or a RETURN or ERROR
exception (or a SIGNAL which is not resumed) can terminate the execution of a proc body.



A loop! is repeated indefinitely until stopped by an exception, or by the itera'torl8 or the WHILE or
UNTIL test. It has a body. bracketted by DO and ENDLOOP, which is almost like a block, but with
some confusing differences:

You catch GOTO exceptions with REPEAT, which is exactly like EXITS in a block immediately
around the loop. except for the different delimiting reserved word. Note that the scope of
the labels does not include the iterator or the test. even though these are evaluated
repeatedly during execution of the loop. This feature is best avoided if possible, but
unfortunately is necessary if you want to catch the FINISHED exception explained below.

eYou can write an open or enable. This is also best avoided. since the scope is confusing. It
is better to write a block explicitly inside the DO if you need these facilities.

There are three special exceptions associated with loops:

EXIT is equivalent to GOTO Exif, where Exif' is a label automatically declared in the REPEAT
of every loop. Its enable choice does nothing. Thus EXIT simply terminates the smallest loop
that encloses it.

FINISHED is raised when the iterator or the WHILE/UNTIL test terminates the loop. It can be
declared in the REPEAT like any label, but it must come last. If it is not declared. a null
enable choice is supplied for it.

eLOOP causes the next repetition of the loop to start immediately.
Anomaly about GOTO FINISHED: You cannot write GOTO FINISHED.

An iterator!8 declares a control variable v which is initialized by the iterator and updated after each
execution of the loop; the scope of v is the entire loop. and it is constant in the loop. After the loop
is terminated by the iterator (i.e., in the FINISHED clause). the value of v is undefined. oIf you omit
the declaration and simply name an already declared variable, it will be used as the control variable,

and will not be constant; it will still be undefined after the loop is terminated by the iterator. Avoid
this feature.

There are three flavors of iterator:

THROUGH, which has no explicit control variable; THROUGH [0..k) or THROUGH [1..A] is
convenient when you just want to loop & times.

FOR v: T IN [first .. last] ...; v is initialized to first, and set to v.SUCC after each repetition. The
iterator finishes the loop after a repetition which leaves v>/ast. The > case can only occur in
FOR v IN ... when an out-of-range value is assigned to v in the loop body. DECREASING
reverses the order in which the elements of the subrange are used. The subrange need not

be static. Note that the subrange is evaluated only once, before execution of the loop
begins.

FOR v: T«first, next ... v is initialized to first, and set to next after each repetition. This
iterator never finishes the loop. Note that the expression nex: is reevaluated each time
around the loop. The usual application is something like

FOR v. List« header, v.next UNTIL v=NIL.

Note that the WHILE or UNTIL test is made with v equal to its value during the next repetition, and
that both tests are made before the first repetition. so that zero repetitions are possible.



3.7 Expressions

19 expression ::= n | literal57 | (e) | application26 |
(e | typeName3?) .(9)n |

prefixOp e | e infixOpee, | e. prefixOp | e, . infixOple,] |

e, relOp@e, | (A[x: Ve.y :Ve]=>[BoOL] INrelop) [e,. &,] |

e, AND(2)e, |e, OR(I)e, | IF e, THEN e, ELSE FALSE | IF e, THEN TRUE ELSE ¢, |

et(9) | #STOP | ERROR | e . DEREFERENCE | STOP[] | ERROR NAMELESSERROR |
builtin [ e, 2(, e,, 1..) 2applEn?7] | e, . builtln ([e,. ... 7applEn ] ) |

funnyAppl e X [?argBinding?? 2applEn?7] ) | e . funnyAppl 2( [?argBinding ?applEn] ) |

[ argBinding?7 | | --Binding must coerce to a record. array, or elocal string-- |

subrange?s |

if28 | select?? | safeSelect32 | ewithSelect |

S

Precedence is in bold in rules 19-21. All operators associate to the left except «. which associates

to the right. Application has highest precedence. Subrange only after IN or THROUGH. s only in if 28 and select choices30 33 35,

wprefixOp = @ @) | — (M| (~ | NOT) (3) VARTOPOINTER | UMINUS | NOT
ainfixOp ::=*|/|[MoOD @) | + | — )] « 0 TIMES | DIVIDE | REM | PLUS | MINUS | ASSIGN
nrelOp = MNoT( 2~ (= <)) | # | NOT ( INOT x'(EQUAL | LESS | GREATER)[Y'] | x'~=y'|
K=1>=)IN) X' =y ORX (<|>)y | x>=y".FIRSTAND ( x'<=y .LAST
-In 19. 30. BUT {BoundsFault =>FALSE} ))

23 builtln :: = -- These are enumerated in Table 4—5.

24 funnyAppl ::= FORK | JOIN | WAIT | NOTIFY | BROADCAST |
SIGNAL | ERROR | RETURN WITH ERROR |
ONEW | @START | @RESTART [+ TRANSFER WITH | £##RETURN WITH

25subrange :: = (typeName3’|) LET t'~(typeName | INT) , first' ~( e, | €,.SUCC) N
(IO e, e, (11)) t'.MKsUBRANGEIfirst', (e, | e,.PRED )} BUT

~In 19.39.48. {BoundsFault=">t' MKEMPTYSUBRANGE(e, |}
26 application :: = e [?argBinding ?applEn] LET m'~e, a'~[argBinding] IN ((m’. APPLY Pa") ?applEn )
27argBinding ::= (n ~ (e | | *TRASH)). L. | (n ~ (e | OMITTED | TRASH)), L. |

(e || *TRASH), ... (e | OMITTED | TRASH ), ...

In 19. 26. €TRASH may be written as NULL. ~ as ..

21.1applEn :: = ! enChoice?; ...~ In 19. 26. BuT { enChoice; ... }

Examples

lv: LabelValuel3«[ i, 3, "Hello". 31.4E—1, (i+ 1), -- A constructor with some sample

g[x]+1b.f+j.PRED, NIL ] -~ expressions,
pl: PROCESS RETURNS [INT]¢FORK fTi. jl: -- FunnyAppls take one unbracketted
ERROR NoSpace; WAIT bufferFilled: -~ arg: many return no result, so
RT: RTBasic.Type « CODE[LabelValue!3]; -- must be statements.
h[—3, NOT(i>j), i*j,1¢3, 1 NOT >j. pOR q. lb.rt];  -- An application with sample expressions.
lvi9«[first~0,last~5.x~3.2,g~2.f~5r~NILs~"1"]: -- Short for /ve LabelValue!3[...].
[first~i, last~j]«1v19; -- Assignment to VAR binding

-~ (extractor).

b: BOOL«i IN [1..10]: FOR x: INTIN(0..11) DO ....  -- Subrange only in types or with IN.

be( ¢ IN Colors4(red..green] OR x IN INT[0..10) ):  -- The INT is redundant.



fh «Files.Open[name~Ib.s, mode~Files.read ~ -- Keywords are best for multiple args.

! AccessDenied =>{...}: FatalError=>{...}]; -- Semicolons separate choices.
(GetProcs[j].ReadProc)[k]: -- The proc can be computed.
file.Read[buffer~b, count~Kk]; -- = File.Read(file. b, k] (Object notation).
fli~3.j~ . k~TRASH]: fli~3. k~TRASH]; -- jand k may be trash (see defaultTCs3).
f[3. . TRASH]: -- Likewise, if i, j, and & are in that order.

Most of the forms of expression are straightforward sugar for application: prefix, infix and postfix
operators, explicit application of a primitive proc2, or the funnyAppl24 in which the first argument
follows the proc name without any brackets. All of these constructs desugar into dot notation
(§2.44. §4.14); this means that the procs come from the cluster of the first argument. The
exceptions to this rule are ALL. CONS for variant records and lists, LIST, and the single-argument
forms of LOOPHOLE and NARROW, and VAL all of these get the proc from the target type of the
expression (§ 4.2.3). All the primitive procs are described in § 4.

Note that AND and OR are not simply sugar for application. Rather, they are sugar for an if
expression, since the second operand is evaluated only if the first one is TRUE or FALSE respectively.

The order of evaluation for arguments of an application, and therefore for operands in an
expression, is not defined (unless the operator is AND or OR). However, the arguments are evaluated
one at a time, and all arguments are evaluated before the proc is applied. In particular, an
assignment which executes completely behaves as though both left and right operands are
completely evaluated before any assignments are done, even if the left side is a binding such as
[a~x, b~pA.

Rules 19-21 give the precedence for operators: t+ and . are highest (bind most tightly) and « is
lowest. All are left-associative except «, which is right-associative. Application has still higher
precedence.

Style using precedence: The precedence rules are sufficiently complex that it is wise to parenthesize
expressions which depend on subtle differences in precedence.

The first operand of assign can be an argBinding?” whose value is a variable group or binding. i.e.,
one whose elements are variables: this is sometimes called an extractor. The second argument will
typecheck if it is a group or binding with corresponding elements which can be assigned to the
variables. Usually the second argument is either an application which returns more than one result,
or a record-valued expression. You can omit elements of the left argBinding to discard the
corresponding values; however, you can’t write TRASH in the left operand. Note that the right
operand is fully evaluated before any variables are changed by the assignment. Thus, for example, if
Pair. TYPE~RECORD[INT, INT] ‘
you can write
[z A« Pair).

to transpose i and j.

The expresssion ERROR is short for raising a nameless ERROR exception. You should think of it as a
call to the debugger, appropriate for a state which "can’t occur”.

A funnyAppl which takes more than one argument has the extra arguments written inside brackets
in the usual way: e.g., START P[3. "Help"]. RETURN WITH ERROR is explained in §4.10.

Anomaly about NEw: The funnyAppl NEW e actually stands for e.COPYIMPLINST. See §4.4.1 and
§4.5.3.

Anomaly about enables in funnyAppls: Enable choices are legal only for the following funnyAppls:

FORK JOIN RESTART START STOP WAIT. You can write empty brackets if necessary to get a place for
the enChoices.



A subrange? dgnotes a sqbra_mge type: see §4.7.3. Standard mathematical notation for open and
closed intervals is used to indicate whether the endpoints are included in the subrange. A subrange
can also be used after IN in an expression or iterator; in these contexts it need not be static.

You can write enable choices? after a ! inside the brackets of an application26, built-in23, or
funn.yAppP‘}. See §3.4.3A for the semantics of this. Note that only an exception returned by the
application is caught by these choices, not one resulting from evaluating the proc or arguments.

An argBinding?’ denotes a binding for the arguments of an application. You can omit a
[name, value] pair n~e in the binding if the corresponding type has a default, or you can write the
name without the value expression (e.g., n~ ) with the same meaning. You can also write TRASH
(eor NULL) for the value: this supplies a trash value for the argument (§ 4.11).

3.8 IF and SELECT

»if ::= IF e, THEN ¢, (ELSE &, ] )
29select ::= SELECT e FROM

choice; ... endChoice
The ":"is "." in an expression: also in 32 and 34.

30choice ::= ((| relOp22) e, ). L..=De,
31endChoice :: = ENDCASE ( => &)
In 29,32, 34.

32safeSelect ::= WITH e SELECT FROM
safeChoice; ... endChoice3!
33safeChoice i:=n:t => e,
saewithSelect ::= WITH(n, ~~ ¢, |oe,)
SELECT (| fe,,) FROM

withChoice; ... endChoice3!
eThe ~~ may be written as ..
s ewithChoice ::=n, =) e, |

[ -
n, n, L. => e,

Examples

i«(IF j<3 THEN 6 ELSE 8):
IF kK NOT IN Range THEN RETURN[7];
SELECT f[j] FROM
<TI=X{..};
IN[7.8]=>{..}:
NOT<=8=>{..}:
ENDCASE=>ERROR;

WITH r SELECT FROM
rint: REF INT =>RETURN[Gcd[rIntt, 17]]:

IF e, THEN e, ELSE (e, | NULL)

LET selector’~e IN

choice ELSE ... endChoice
-- ELSE is a separator for repetitions of the choice.

IF ((selector’ (= | relOp ) ) OR ...) THEN e,
ELSE (e, | NULL)

LET V' ~e N
safeChoice ELSE ... endChoice
IF ISTYPE[V', t] THEN LET n : t«NARROW[V t] IN e,

OPEN V'~~e, INLET n'~($n, | NIL), type'~V V",
selector'~(e,.TAG | e,,) IN withChoice ELSE ... endChoice
- e;; must be defaulted except for a COMPUTED variant.

IF selector’ = $n, THEN OPEN
(BINDP[n’. LOOPHOLE[V type'.n,] ] | BINDP[n'. v]) IN €,

-- An IF with results must have an ELSE.

-- SELECT expressions are also possible.
-- =£LINT~f[)]: IF K7 THEN {...} ELSE ...
- 7.8=>o0r =7, =8=>{..} is the same.
-- ENDCASE=>{...} is the same here.

-- Redundant; choices are exhaustive.

-- Assume r. REF ANY in this example.
-- rint is declared in this choice only.

rReal: REF REAL =>RETURN[Floor{Sin[rRealt]]];
ENDCASE = >RETURN[IF r=NIL THEN 0 ELSE 1] -- Only the REF ANY ris known here.

nr: REF Nodes2~...; WITH dn~~nr SELECT FROM  -- See rule 52 for the variant record Node.
binary =>{nr«dn.b}: -~ dn is a Node.binary in this choice only.
unary =>{nredn.a}; -- dn is a Node.unary in this choice only.
ENDCASE=>{nreNIL}: -- dn is just a Node here.

The kernel construct if8 evaluates the expression e, to a BOOL value rest, and then evaluates e, if
test=TRUE, OF e; if test=FALSE. In the expression



IF test; THEN IF test, THEN ifTrue, ELSE ifFalse,
the grammar is ambiguous about which IF the ELSE belongs to. It belongs to the second one.

A select® is a sugared form of if which is convenient when one of several cases gs chosen based on
a single value. The selector expression e is evaluated once to yield a value selector and then each of
the choices is tested in turn. Within each choice, each expression e, preceding the => is compared
in turn with selector’; the comparison is selector relop e, if e is preceded by a relop. otherwise it is
selector =e,. If any comparison succeeds. the expression e, following the => is evaluated to yield the

value of the select. If no comparison succeeds, the next choice is tried. If no choice succeeds, the
expression e, following the ENDCASE is evaluated to yield the value of the select: e, defaults to

NULL, and hence must be present when the select is not a statement to prevent a type €rror.

Style for SELECT: It is good practice to arrange the tests so that they are disjoint and exhaust the
possible values of the selector. ENDCASE should be used to mean "in all other cases”; of_ten the
appropriate e, raises an error. Don't use ENDCASE to mean another specific selector value which you

don't bother to mention. Another acceptable form is SELECT TRUE FROM ..., which selects the first
choice that succeeds. and is sometimes easier to read than a long sequence of ELSE IF's.

Performance of SELECT: If the e, are static and select subsets of the selector values, the average size

of these subsets is not too large. and the density of unselected values is not too high. a select
compiles into an indexed jump. which executes in a time independent of the number of choices.

A safeSelect32 is a special form for discriminating cases of unions or ANY. The selector must be a
value for which ISTYPE can be evaluated dynamically (§4.3.1); REF ANY, PROC ANY—T, PROC
T—ANY, V, REF V, or (LONG) POINTER TO V, where V is a variant record. Each choice specifies one
possible type that the selector might have, and declares a name which is initialized to the selector
value if it has that type. Thus, the example tests for r having the types REF INT and REF REAL. If it
has REF INT, the first choice’s e is evaluated: within e, r/nt is a variable initialized to the selector,
and has type REF INT. Likewise for REF REAL and the second choice. As with an ordinary select, the
ENDCASE expression is evaluated (with no new names known) if none of the other choices succeeds.

Note that safeSelect does ordinary binding by value, not the binding by name done in open and
withSelect.

oA withSelect’ is an unsafe and rather tricky construction for discriminating cases of unions. Its
use should be avoided unless a safeSelect can’t do the job: this is the case for a COMPUTED tag, or
if the call by name feature of withSelect is required.

[t incorporates an open (§3.4.2) of the e, being discriminated. This means that ¢, is

dereferenced to yield a variant record value. It also means that this value is not copied, and
hence it can change its type during execution of a choice, either by assignment to the
variant part of a variant record (an unsafe operation). or by a change in the value of e,

If the union has a COMPUTED tag, the selector value to be used for the discrimination must
be given as e, in the withSelect. It is entirely up to the programmer to supply a meaningful
value. If the tag is not COMPUTED, e, must be omitted and the selector value is ). TAG.

The n, preceding => in a choice are literals of the (enumerated) type (§4.7.1A) which is

the tag type of the union (§ 4.6.3). They are compared with the selector. and if one matches,
the e, following => is evaluated as with an ordinary select. If exactly one is given, then the

e, following => is in the scope of

OPEN 7~ ~LOOPHOLE[e,.UNREF, V.n,]. or simply OPEN LOOPHOLE[e,.UNREF. V.n,]
if no n ~~ followed the WITH. If several n, are given, then there is no discrimination. and
the e, following => is in the scope of

OPEN n,~~¢ .UNREF  Or OPEN e.UNREF



3.9 Miscellaneous

This section deals with various topics that are not naturally associated with particular types or
grammar rules.

3.9.1 Static values

An expression has a static value if the compiler can compute the value. Static values are required in
various contexts, notable in type expressions, and as the right hand side of a binding in an interface
module. In Cedar, an expression has a static value (is static for short) if it is:

a literal;
a name bound to a static value;
an application to static arguments of

a proc declared INLINE with a static body, or

a primitive which is not a loop, a REAL primitive (except unary minus, ABS or
INTTOREAL), ASSIGN, @ or NEW. Note that IF and SELECT are evaluated.

Note that values obtained from an interface are static, but imported values are not.

Performance of static expressions: The compiler evaluates a// static expressions, not just type
expressions. This is often important for efficiency.

3.9.2 Size restrictions

Current Cedar has the following restrictions on the sizes of values:
e A record type T must have T.S1ZE2'.
e A row type 7 must have T.S1ZE<22 and T.RANGE.SIZE<2'.

e A type T with T.51ZE>2'% lacks the following procs:
ALL
ASSIGN
CONS
DESCRIPTOR
INIT
NEW

e A subrange type 7 must have
0<T.LAST — T.FIRST(2'®
—2B< TFIRSTL2Y
T.LAST{(IF T.FIRST<0 THEN 213+ T.FIRST ELSE 216)

3.9.3 Checking
Possible errors arising from certain primitive operations are checked, and cause ERROR exceptions if
they occur. in a CHECKED block, or if the compiler’s "u" switch is on:

Dereferencing NIL.

Narrowing an out-of-range value to a subrange type.

Assigning a local proc to a proc variable (in CHECKED blocks only).

In an UNCHECKED block these errors are not checked for unless the program is compiled with the
"u" switch,



Chapter 4. Primitives

This chapter gives detailed information about the primitive types, type-returning procs (lype
constructors), and other procs. It should be read after § 2.4, which defines a Cedar type and explains
the basic ideas underlying the type system.

§ 4.1 gives the partial ordering called the class hierarchy that is used to classify the primitive types.
§4.2 lists all the primitives of Cedar. §§4.3-4.11 give the declarations and semantics for all the
primitive classes and types. These descriptions are ordered according to the class hierarchy in Table
4 —1. Each one specifies:

The declarations in the class that are not in any bigger class.
The constructor for types in the class.

Any literals or basic constructors for values of types in the class
Anomalies and facts about performance.

The implies relations on primitive types are summarized in §4.12, and the coercions in §4.13. The
various cases of dot notation are described in § 4.14.

4.1 The class hierarchy

A useful way of organizing a set of types is in terms of the properties of their clusters. Since a
cluster is a binding, its type is a declaration; we call such a declaration a class. For example, the
class Numeric is

[T: TYPE:

PLUS: PROC[T, T]—[T1:

MINUS: PROC[T, T]—[T]:

... - Declarations for other arithmetic procs.

LESS: PROC[T, 7T]—[BOOL]:

... - Declarations for many other procs. ]
By convention, the name 7 in a cluster denotes the type to which the cluster belongs. We call each
<{name, type> pair in the class an item.

Sometimes when a type U is derived from another type 7 (e.g.. REF T from T), some of U's items
are obtained from T's items with the same names in some simple way (e.g., REF RECORD[a. b: INT]
has procs a and b which dereference the REF and then apply the record’s a and b procs). We say
that U inherits the items from 7.

A type T is in a class C if T.Cluster has the type C. we also say that T is a C type, e.g.. INT is in
class Numeric, or is a numeric type.

To make this explicit. we give the type cLAss a cluster proc called Twpe. such that every type T in class ¢ has type
C.Type. For example, INT has type ANumeric.Type. Thus.

Tisa Ctype = T in C = T has type C.Tywpe = (C.Type).Predicate 7] = TRUF
A value satisfies the predicate for C.7wpe if it is a type. and its cluster satisfies the declaration which defines C. E.g.. INT
sansﬁes the predicate for Aumeric.Type because it is a type. and its cluster contains procs for PLUS. MINUS. LESS etc. with
the right types. Precisely. (C.Type).Predicate is

A [7: any] N TYPE. Predicatd T) N\ C. Predicate T.cluster]



Class Subclasses or types
all general* | TYPEC § 4.8 | fully opaque § 434 | TYPE n § 4.3.5 | interface § 4.3.5 | SEQUENCE—tow
general § 4.3.1 assignable* | hasNIL* | variable §4.3.3 | PORT—stransfer |

MONITORLOCK < § 4.10 | CONDITIONS § 4.10 |
composite with a non-assignable component, and not a SEQUENCE
assignable § 432  -- everything not mentioned separately under all or general, i.e.:--
n-opaque § 4.3.4 | transfer—map | descriptor—map | address | RELATIVE |
ordered | unspecified | composite with no non-assignable components.
has NIL § 4.3.7 variable | address | transfer
composite§ 433  row | RECORD | union

map § 4.4 transfer* | row* | descriptor*/address | BASE POINTER/pointer § 4.4.3
transfer § 4.4.1 PROC | PROGRAM | PORT | PROCESS | SIGNAL | ERROR
TOow § 4.4.2/composite  ARRAY § 4.4.2A | SEQUENCE--second class-- § 4.42BD(TEXTC | StringBody< )
descriptor § 4423  LONG DESCRIPTOR | DESCRIPTOR

/address
address § 4.5 reference® | descriptor—map | ZONE § 4.5.2 | POINTER TO FRAME §4.5.3
reference § 4.5.1 REFD(LIST | ATOM<) § 4.5.1A | pointer*
pointer § 4518 LONG POINTERDLONG STRINGS | POINTERDSTRINGS | BASE POINTER —map
/ordered
RELATIVE § 4.5.4 RELATIVE POINTER | RELATIVE DESCRIPTOR
record --painted- § 46  RECORD § 4.6.1 | variant § 4.6.2
/composite
union --second class. painted-- § 4.6.3 /composite
ordered § 4.7 discrete* | numeric* | pointer—address | subrange § 4.7.3
discrete § 4.7.1 whole number— numeric |
enumeration --painted-- § 4.7.1A D(BOOL=BOOLEAN< | CHAR=CHARACTERC)
numeric § 4.7.2 whole number*/discrete | REALO § 4.7.2B
whole number  long number* | short number*
§4.7.2A

long number  INT=LONG INTEGERC | 8LONG CARDINALS

short number  INTEGERO DNATSC | CARDINALO DNATO
eunspecified § 4.9.1 ®UNSPECIFIEDC | 8LONG UNSPECIFIED
exception | DECL | BINDING § 4.9.2 --kernel only--

process § 4.10 MONITORLOCK < | CONDITIONO
Notation:
n* n is further specified in one of the indented lines below.
n® n is a type. rather than a class.
n—m n has its main definition under (and implies) class m.
n/m n also appears under (implies) class m.
n=el.. n includes (is implied by) the e classes. which together exhaust n.
nDe]|... n includes (is implied by) the e classes. which are special cases.

Table 4 — I The class hierarchy

A class C is a subclass of another class D if C=>D. Recall the implies relation for declarations
(§ 2.2.1F) means that

Each name »in Cis also in D.

n's type in C implies n's type in D.
Precisely.

(VY n€C.names) n€ D.names /\ (C.DTOB.n=> D.DTOB.n)

For example, the class ORDERED includes
LESS: PROC[T. T]—BOOL



Every subclass of ORDERED must also declare a LESS proc which takes two T's to a BOOL. If we had
a richer assertion language, there would also be axioms defining LESS to be an ordering relation.
Similarly, every ORDERED type (e.g.. INT) must have such a LESS proc in its cluster.

The subclass relation defines a class hierarchy, i.e., it gives a partial ordering on classes. Table 4—1
gives the class hierarchy for the primitive classes of Cedar. It is presented as a tree: a node N with
sons Ny, Ny, ... N is written

N NI Ny L I N, . .
and any of the N, that are not leaves are marked with a * and defined on following indented lines:
N, Ny Ny
In fact, however, the class hierarchy is not a tree but a partially ordered set; some classes appear
more than once in the table, with appropriate cross-references. Classes produced by Cedar type
constructors are named by the constructors; other, more general classes are given suggestive names,
sometimes lower-case versions of the constructor names. Each primitive type also appears in the
table, under its class in the tree.

4.2 Summary of primitives

36 type 2= typeName | builtInType | typeCons

37typeName :i= n | typeName . n, |
typeName [e] | en, typeName typeName.SPECIALIZE[e] | typeName . n,
In 19, 25. 36, 40.1. 49. --n, names a variant.

38 builtInType :: = INT | REAL | TYPE | ATOM | MONITORLOCK | CONDITION |

* 2*UNCOUNTED ZONE | #fMDSZone | 8LONG CARDINAL | #F 2LONG UNSPECIFIED -- See Table 4—2.
TyPE only as tin a b or an interface’s d. INTEGER, CARDINAL, NAT, TEXT. STRING, BOOL, CHAR are predefined.

39typeCons ::= subrange?’ | paintedTC40.1 | transferTC4! | arrayTC# | seqTC45 | $descriptorTC45.1 |
refTC46 | listTC#7 | TpointerTC48 | etrelativeTC4 | recordTCS0 | unionTC52 | enumTC54 | defaultTCSS

Examples
P: PROC| b: Bufferl.Handle, -- A type from an interface.
i: INT€TEXT[20].S1ZE ]; ' -- A bound sequence; only in SIZE, NEW,
Typelndex: TYPE~[0..256); -- A subrange type.
BinaryNode: TYPE~NodeS2,binary; -- A bound variant type.

The tables in this section summarize the primitive and predeclared types, type constructors and
procs of Cedar. There are also a number of interfaces which contain useful procs or values of
primitive types; in some cases, the distinction between a primitive in the language and one in such
an interface is rather arbitrary. These interfaces are Process, Inline, CedarReals, AMTypes, Rope,
SafeStorage, UnsafeStorage, ListsAndAtoms, PrincOps, Runtime.

4.2.1 Primitive types and constructors

Table 4—2 lists the primitive or predeclared types of Cedar, giving the name for each in the current
language, and either a definition or, for the primitive types, a comment suggesting the meaning of
the type. Later sections describe the items in the clusters of these types, and give their
representations.
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Name Meaning

INT, LONG INTEGER § 4.7.2.1 =[-231..23Y

REAL §4.7.22 -- 32-bit 1EEE floating point

BOOL. BOOLEAN §4.7.1.1 ={FALSE, TRUE}

CHAR, CHARACTER § 4.7.1.1 ={"\000, ..., \377}

TYPE §4.38

ATOM §45.1.1 -- for unique strings, global property lists
CONDITION §4.10 -- for process synchronization

-- The following are appropriate when performance tuning is needed.
*INTEGER § 4.7.2.1 =[-21.2%); INTEGER SIZE=1
*NAT §4.7.21 = INTEGER[0..2%); NAT.S1ZE=1
*TEXT § 44.2.2 =MACHINE DEPENDENT RECORD |

length (0): [0..INTEGER.LAST] ¢ 0,
text (1) PACKED SEQUENCE maxLength (1):
[0..INTEGER.LAST] OF CHAR ]

*ZONE §4.5.2 -- controls safe storage allocation
-- The following are not recommended for general use.
*MONITORLOCK § 4.10 -- use MONITOR or MONITORED RECORD
tUNCOUNTED ZONE §4.5.2 -- controls unsafe storage allocation
LONG CARDINAL §4.7.2.1 =[0..22), mixes poorly with INT.
CARDINAL § 4.7.2.1 =[0..216); CARDINAL.SIZE=1
-- The following are obsolescent.
otMDSZone -- controls unsafe storage allocation in the MDS.
oF7LONG STRING § 4.4.2.2 =7LONG POINTER TO StringBody
eStringBody § 4.4.2.2 =MACHINE DEPENDENT RECORD |
--see text for anomalies--
length (0): CARDINAL « 0,
maxLength (1): --READONLY-- CARDINAL,
text (2): PACKED ARRAY [0..0) OF CHAR ]
oTUNSPECIFIED § 4.9 -- unsafe, matches any one-word type
oFLONG UNSPECIFIED § 4.9 -- unsafe, matches LONG INTEGER. LONG CARDINAL,

REAL. LONG POINTER, or REF.
- ———M@M@MMMMM™@}

Table 4 — 2: Primitive and predeciared types

4.2.2 Type constructors

Table 4—3 gives the declarations of all the primitive Cedar type constructors. Since type-returning
procs cannot be written in the current language. these are in fact all the Cedar type constructors.
The concrete syntax for type constructors is in rules 40-55, and in §4.2.2.1 on options. Rule 39
above lists all the cases.

All the arguments of a type constructor must be static (§ 3.9.1). except for:

MKSUBRANGE, which can have non-static arguments when it appears in an expression or
iterator as the second operand of IN.

CHANGEDEFAULT, which takes a proc derived from the e in the defaultTC. This e may be
non-static in an implementation, or in the fields of a transferTC in an interface.

Tln), where T is a sequence-containing record.

All the type constructors are functional (produce the same type when given the same arguments)
except TYPE[ANY], TYPE[n], MKUNION, and MKRECORD, MKENUMERATION and their MD friends in an



interface. MKRECORD and MKENUMERATION are functional in an implementation. so that module
replacement is more convenient. A non-functional type constructor produces a dzjfgrent type each
time it is applied. By a slight misuse of language, such types are sometimes called painted.

In current Cedar. type expressions and ordinary expressions do not have the same syntax. The
severe restrictions on where types can be used ensure that the parser can distinguish the cases where
a type is expected. There are a few cases where this is not true, and type names (rule 37) must be
written instead of general expressions: subrangeTC, specializations of variant records. relativeTC

and paintedTC.

Name Domain Class of result Rule §
MKVAR [readOnly. short: BOOL «FALSE] variable 40 §43.3
-- This proc in the cluster of each type 7 produces the type VAR T or READONLY T.

REPLACEPAINT [in: TYPE, from: OPAQUE.Type| general 40.1§4.3.4
MKINTTYPE [LIST OF DECLORBINDING] interface 2 §435
INTERFACETYPE [LIST OF ATOM] TYPE n 2 §4.35
MKXFERTYPE [flavor:{PROC PORT,PROCESS,SIGNAL ERROR,PROGRAM}.  transfer 4] §44.1
domain, range: DECL¢NIL, safe: BOOL «ISCEDAR]
MKPROC [domain, range: DECL < NIL, safe: BOOL «ISCEDAR] PROC 4] §44.1
~MKXFERTYPE[PROC. domain, range, safe]
MKARRAY [domain: DISCRETE. Type« CARDINAL, range: TYPE, ARRAY 44 §44.2.1
packed: BOOL ¢ FALSE]
MKSEQUENCE [domain: TAG, range: TYPE, packed: BOOL « FALSE] SEQUENCE 45 §44.22
®MKARRAYDESCR larrayType: ARRAY.Type, DESCRIPTOR 45 §4.43
long: BOOL ¢ FALSE, readOnly. BOOL ¢ FALSE]
MKREF [target: TYPE, base: BASE ¢ WORLD. reference 46 §4.5.1
readOnly, ordered. uncounted. BOOL ¢ FALSE]
MKLIST [range: TYPE. readOnly. BOOL ¢ FALSE] LIST 47 §45.1.1
+tMKPOINTER [target: TYPE«UNSPECIFIED, pointer 48 §4.5.1.2
long, readOnly, ordered, base: BOOL ¢ FALSE]
~MKREF[target~ target, readOnly~ readOnly. ordered~ ordered, uncounted~TRUE.,
base~(IF long THEN WORLD ELSE MDS)].
*TMKRELATIVE range: TYPE, baseType. BASE.Type] RELATIVE 49 §4.54
MKRECORD fields: DECL, RECORD 50 §4.6.1
O MKMDRECORD access. {PUBLIC, PRIVATE } ¢ CURRENTAGCESS,
monitored: BOOL ¢ FALSE]
MKPOSITION firstWord: NAT, firstBir: INT«0, lastBit: INT« — 1] - 51 §46.1
MKUNION selector: TAG. variants: LIST OF FIELD] union 52 §4.6.3
MKENUMERATION LIST OF ATOM] enumeration 54 §4.7.1.1
MKMDENUMERATION  [LIST OF RECORD[ATOM, NAT]] enumeration 54 §4.7.1.1
MKSUBRANGE [FIRST: 7. LAST: 7] subrange 25 §4.7.3
-- T'is the Discrete base type. which has a MKSUBRANGE type constructor in its cluster.
CHANGEDEFAULT [type: TYPE, proc: (PROC[]— type). allowTrash: BOOL] assignable 55 §4.11

L . — ——————————— ]

Table 4 — 3: Primitive type constructors



4.2.2A4 Options

The built-in type constructors take an assortment of optional BOOL arguments, as indicated in their
declarations. In the current syntax these are specified by writing options in the type constructor.
When an option appears in a type constructor. the argument of the same name has the value TRUE:
if it is missing. the argument has the value FALSE (except for SAFE. which defaults to TRUE if the
module header says CEDAR, to FALSE otherwise). The effect of these arguments on the type
produced by the constructor is given as part of the description of its result class. Table 4—4 lists the
options and the constructors for which each is appropriate.

Option Constructors

*BASE MKPOINTER

LONG MKPOINTER, MKARRAYDESCR

MONITORED MKRECORD

®ORDERED MKPOINTER

*PACKED MKARRAY, MKSEQUENCE

PUBLIC, PRIVATE MKDECL. MKRECORD

READONLY MKVAR, MKREF, MKLIST, MKPOINTER, MKARRAYDESCR,
MKDECL (interface vars only)

SAFE MKXFERTYPE

UNSAFE MKXFERTYPE

]
Table 4 —4: Type options and their constructors

4.2.3 Primitive procs

The primitive procs and other values of Cedar are listed in Table 4—35. A4/l of the primitive procs in
the Cedar language except the type constructors (see Table 4—3) appear here.

The Name column gives the name of the value in the cluster. For a proc, the following symbol
summarizes the handling of exceptions:

A "!" means that application can cause an exception. and you can write an applEnable?’-\.
An italic “!” means that an exception is possible. but you cannot write an applEnable. If
you are desperate. enclose the application in a block with an enable.

An italic ”!!" means that an exception should be possible, but the implementation does not
make the necessary check (e.g.. for overflow on adding INTs).

If nothing follows the name, no exception is possible.
The Classes column gives the classes in which the name appears; see Table 4—1.

The Type column gives the type with which it is declared in those classes. The type usually refers to
other names of the class. Since it is taken from the class declaration, it can use the’se names without
explicit qualification: see the detailed class descriptions in § 4.3-4.11 for their meanings.

The Notes column gives information about how a proc is applied or a non-proc value is denoted in
current Cedar. In the kernel a proc named 2 from the cluster of type T is applied to a value x of
type T by the expression x.P if there is only one argument or x.Py. ..} if there are several. In
current Cedar. however, not all primitives can be applied or denoted by dot notation. There are
three other ways of applying a primitive proc:

It may be an operator with a symbol listed in the Nores column. If it takes two arguments.
the operator is infix. Thus for a proc named P with operator symbol @. you write x®y
instead of x.P[y]. If it takes one argument the operator is usually prefix; you write ®x
instead of x.P. The t operator is postfix: you write xt instead of x.DEREFERENCE.



It may be a built-in proc named P, in which case you usually write P{x] or Ax y...] as an
alternative to x.P or x.Py. ..]. For each built-in which cannot be applied using either of

these notations. the ways of applying it are indicated explicitly in the Notes column: any
ways not mentioned cannot be used.

It may be a funny application proc named P, in which case you write P x or P «Ay. ..).

The three kinds of primitive proc are listed in that order, alphabetically within each kind. Values
which are not procs (ABORTED, FALSE, FIRST. LAST. NIL, SIZE. TRUE) are listed with the built-in
procs. Except for ABORTED, FALSE and TRUE, which are globally known and must be written alone,
the cluster must be specified by dot notation (INT.SIZE) or optionally as an argument (SIZE[INT]).

A few primitive procs cannot be desugared so simply into dot notation. These cases are indicated in
the Notes column. and are described here:

Some PROC [T]—[U] are coercions: CONS. FROMGROUND, LONG, TOGROUND, VALUEOF. This
means that they may be invoked automatically when typechecking demands a U and an
expression has syntactic type T; see § 4.13 for details.

Some involve target typing: ALL, CONS. LIST, VAL, union constructor; they are marked TT.
For these the proc does not come from the cluster of the type of the first argument.
Instead, it comes from the cluster of the so-called targer type. An application of one of
these procs must appear as an argument in another application (e.g.. fly. NARROW[x]] or
z¢NARROW[x]). and not before a dot. In this context the target type is known from the
declaration of the outer proc being applied (for zASSIGN in the example; if the type of fis
PROC [U, T]—[V]. the target type for the NARROW application is 7). Target typing is also
used for enumeration literals (§4.7.1A), and is optional to default the type argument of
DESCRIPTOR, NARROW Or LOOPHOLE.

One is ambiguous: MINUS for CHAR and pointer. The type of the second argument decides.

Name

Notes Classes Type

Operators (infix except as noted)

VARTOPOINTER @(prefix) general UNSAFE PROC[T]—[MKPOINTER|arget~ T.TARGET, long~LONG]]
EQUAL = general PROC[x: T, y: T|—[BOOL]
ASSIGN € assignable UNSAFE --sometimes-- PROC[x: VAR T, y: T|—(T}
PLUS!! + numeric PrOC[T, T1—(T]
+ eCHAR, epointer PROC[7, INTEGER]—[T]
MINUS!/ - " numeric PROCI[T, T}—
- _ ®CHAR, epointer PROC[7, T]—>[INTEGER]
ambiguous PROC|[T, INTEGER]—[T]
UMINUS!!  —(prefix) numeric PROC[T]—[T]
TIMES!! * numeric PROC[T, T1—(T]
DIVIDE/ / numeric PrROC[T. 7T]—(T]
LESS < ordered PROC|T, 7T]—[BOOL]
GREATER > ordered PROC|T, T]—[BOOL]
~ same as NOT
DEREF- +(postfix) ref, PROC[r. T]—[TARGET]
ERENCE/ pointer UNSAFE PROC[r: T]—=[TARGET]
REM/ MOD whole number PROC|T, 7T]—[7]
NOT NOT(prefix) BOOL PROC[BOOL]—[BOOL]

continued



Notes Classes

Built-ins (ein addition to x.P[...]. procs can be applied wit,

h Plx. ...]. except as noted)

ABORTED  ABORTED ERROR ERROR
ABS! numeric PROC[T]—[T]
ALL ALLL.):TT ARRAY PROC[x: RANGE]—[7]
APPLY! APPLY[f d] transfer PROC[map: T. arg: DOMAIN]—>[RANGE]
BASE ARRAY UNSAFE PROC[a: VAR T7]—[LONG POINTER TO UNSPECIFIED]
descriptor UNSAFE PROC[a: T]—[LONG POINTER TO UNSPECIFIED]
CODE TYPE PROC [T: TYPE]—>[AMTypes.Type)
CONS 71...]J: coercion ARRAY PROC[g: RANGE X ...]—[T]
71...); coercion RECORD PROC[b: FIELDS]=[T]
d..J; TT fora union PROC[b: FIELDS]—[a.]]
! CONS]...). zCONS...): TT LIST PROC[z: ZONE ¢ SafeStorage.GetSystemZond]. x: RANGE, y: T]—[T]
DESCRIPTOR DESCRIPTOR[v, ...] row,sequence- UNSAFEPROC[v: VAR T]— _
containing record  [LONG DESCRIPTOR FOR ARRAY 7.DOMAIN OF 7.RANGE]
TT for« descriptor UNSAFE PROC[base: LONG POINTER TO UNSPECIFIED,
length: CARDINAL, 1: TYPE]
—[LONG DESCRIPTOR FOR ARRAY CARDINAL OF /]
FALSE FALSE BOOL bool
FIRST!! discrete T
first Lfirst LIST PROC[/: T]—[RANGE]
FREE! FREEL...) or z.FREE[..] ZONE PROC[z: T, p: NEWTYPE[NEWTYPE[U]]] =[]
FREE]...] or zFREE]...] UNCOUNTED ZONE UNSAFE PROCz: T, p: NEWTYPE[NEWTYPE[U]]]—=[]
FROMGROUND! 71...]; coercion ~ subrange PROC[x: GROUND]—([T]
ISTYPE! ISTYPE[x, U] general PROC[x: T, U: TYPE]—[BOOL]
LAST!! discrete T
LENGTH ARRAY descriptor PROC[a: T]—>[CARDINAL]
LIST/ ust...)or zust..J: TT LIST PROC[z: ZONE g: RANGE X ...]=[T7]
LONG also coercion short number  PROC[x: T]—>[LONG 7]
also coercion POINTER PROC[p: T]—*[LONG POINTER TO T.TARGET]
also coercion DESCRIPTOR  PROC[p:7]—*[LONG DESCRIPTOR FOR ARRAY OF T.RANGE]
LOOPHOLE L'E[.]only: TT for v general UNSAFE --ifu is RC-- PROC[z: T, U: TYPE]—=[U]
MAX MAX[!..] ordered PROCIT. ...]=[T]
MIN MIN[!..] ordered PROCT. ...]=[7]
NARROW!  NarroW[..]: TTfor v general PROC[x: T, U: TYPE]—[U]
NEW! NEW[...] or z.NEW[..] ZONE PROC|z: T« SafeStorage.GetSystemZond], U: TYPE]
—[r: NEWTYPE[U]]
NIL also NIL alone variable, address, 7 or NILTYPE
transfer
ORD enumeration  PROC[T]—[INT]
PRED/!! discrete PROC[x: 7T]—[T]
rest Lrest LIST PROC[T]—[T]
SIZE general CARDINAL
SIZE SIZE[T. n] general PROC[T., CARDINAL]—[CARDINAL]
succ!! discrete PROC[x: T]—[T]
TOGROUND  coercion subrange PROC[x: T]—[GROUND]
TRUE TRUE BOOL BOOL
VAL VALL.L TT enumeration  PROC[INT]—[7]

continued
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Name Notes Classes Type _
Funny applications
BROA}l;Cng no args CONDITION PROC[T]—]]
ERROR SIGNAL, ERROR like APPLY
FORK! FORK Plargs] PROC PROC[PROC[DOMAIN]—>[RANGE]]—
[PROCIDOMAIN]—=[PROCESS []—[RANGE]]]

JOIN! no args PROCESS UNSAFE PROC[7]—>[RANGE]
NEW no args PROGRAM, PROC[p: T]—[T7]

POINTER TO FRAME

I TYPE Imp  PROC[p: POINTER TO FRAME[/]]=[POINTER TO FRAME[/]]

NOTIFY no args CONDITION PROC[T]-]]
RESTART!  no args PROGRAM PrROC[T}—]
RETURN WITH PrincOps.StateVector
RETURN WITH ERROR ERROR like APPLY
SIGNAL SIGNAL like APPLY
START! PROGRAM like APPLY
STOP! no args PROGRAM PrROC[]—{]
TRANSFER WITH PrincOps.StateVector
WAIT! no args CONDITION PROC[T]—]]
Not in current Cedar
APPLY! map UNSAFE --sometimes-- PROC[map: T. arg: DOMAIN]— [RANGE]
BINDING
BYTESTOINSTRUCTIONS
Cluster general
Default general PROC[]—[N]
DOMAIN map TYPE
DUMPSTATE
HIDEEXCEPTION
INIT variable
ISLONG variable BOOL
ISREADONLY variable BOOL
LOCALSTRING coercion STRING PROC[ [CARDINAL] ]=[STRING]
MACHINEINSTRUCTIONS
NAMES binding, decl
NEWEXCEPT!ONCODE exception
NEWFRAME decl PROC []—FRAMETYPE[T]
NEWLABEL exception PROC [J=EXCEPTION
OMITTED
OPENPROCS
Predicate general PROC[ANY]—BoOL
RANGE map TYPE
TARGET reference TYPE
TOVOID assignable PROC [7]—[voID]
Trash general PROC]—([T]
UNBOUND
UNCONS coercion record PROC[7]—[FIELDS]
UNREF general
VALUE variable TYPE
VALUEOF variable PROC[7]—[VALUE]

—%

Table 4—5: Primitive procs



4.3 General types

_Nearly all types belong to the.GeneraI class (with the items enumerated below). and most belong to
its subclass Assignable (with assignment and some related items).

4.3.1 General types

The general class has the items

T: TYPE -- The type itself.

SIZE: CARDINAL -- The number of words to represent a 7 value.
ISTYPE: PROC[x: T, U: TYPE]—[BOOL] -- Roughly, TRUE if x has type U. See below.
NARROW: PROC[x: T, U: TYPE]=[U] -- Converts x into a U if possible, or raises

the error Runtime. NarrowFault. Never works
for a variable type.

TLOOPHOLE: UNSAFE PROC[x: T, U: TYPE]—[U] -- Returns the bits representing x as a U.
Requires T.SIZE= U.SIZE

Predicate: PROC[ANY]—>[BOOL] -- The predicate of the type.

Cluster: BINDING -- The cluster of the type.

MKVAR: PROC%readOnly. short: BOOL ¢ FALSE] -- Returns the type of VAR T or READONLY T.
—[TYPE]

INIT: PROC[STORAGEBLOCK[SIZE]]—>[VAR 7] -- Can'’t be called directly. See § 4.3.3.

NEW: PROC[z: ZONE ¢ SafeStorage.GetSystemZond}, -- Denoted NEW[T] or z.NEW[7]. See § 4.3.3.
T: TYPE]—[r: REF 7]
EQUAL: PROC[x: T, y: T]—[BOOL] -- TRUE iff the bits representing x and y
are identical, Missing for most unions.

All types are in this class except TYPE, fully opaque types, interface types and sequence types.

e Anomaly about SiZE: There is another SIZE item in each cluster:.
SIZE: PROC[n: DOMAIN]—[CARDINAL] -- Returns the size of a PACKED ARRAY [0..n) OF T.
Apply with SIZE[T. n).
This proc can be useful in calculating the space required for the target of a descriptor for a packed
array. You can only apply it with SIZE[T. n]; the second argument is what selects this proc. It is
usually better to use a sequence.

In current Cedar the value of ISTYPE[x, 7] is determined as follows. Here 7/<U means that
T.Predicate= U.Predicate. Two types may be unequal and yet have the same predicate if they have
different clusters. Currently. the cluster can only be changed by CHANGEDEFAULT.

1) It is TRUE statically if:
Vx=T, or
one of Vx and T is an opaque type, and the other is the corresponding concrete
type (only in an implementation that exports the opaque type).
2) It is tested dynamically if (with ¥ any variant record type without a COMPUTED tag, and a
the name of a particular variant).
V x=REF ANY and T=REF U for any U except ANY, or

Vx=PROC U RETURNS ANY and TPROC U RETURNS V for any U, and any V
except ANY, or

V x=PROC ANY RETURNS V¥ and T<PROC U RETURNS ¥ for any V¥, and any U
except ANY, or

V x=REF V. and T<REF V.q, or
V x=(LONG) POINTER TO ¥ and T=(LONG) POINTER TO V.a.
Vx=V, and T<V.a, or

Note that the result is TRUE if x=NIL (except in the last case).



3) It causes a static error in all other cases. even if it is statically false.

In current Cedar, NARROW[x. 7] is
IF ISTYPE[x. T} THEN x ELSE ERROR e
where ¢ is
AMTypes.NarrowRefFaulf x. TRANGE.CODE] if ISTYPE[x. REF ANY]:
AM Types. NarrowFaulf] otherwise.
Note that NARROW[x. T] gives a static error if ISTYPE[x. 7] does (case (3) above). Note also that
ISTYPE and NARROW are conveniently packaged in the safeSelect construct (§ 3.3).

Performance of ISTYPE for PROC ANY: The ISTYPE (and therefore NARROW) of a PROC type with
ANY domain or range are very slow, since they use AMTypes to do the test. and it consults the
symbol tables.

Anomaly for target typing of NARROW and LOOPHOLE: For NARROW and LOOPHOLE the second
argument may be defaulted to the target type.

Anomaly for LOOPHOLE on variable types: For a variable type 7, if T.LOOPHOLE is applied to a
second argument U which is not a variable type, U is coerced to U.MKVAR[]. Thus

{x: INT; LOOPHOLE[x, BOOL]*TRUE}
leaves x=1.

Every general type T with 7.S1ZEC2'® has an EQUAL proc except a variant record or union type. A
variant record type has EQUAL only if its variant part is a union in which all the cases are the same
size. Note that a bound variant does have EQUAL, unless it is itself a variant record. EQUAL is
denoted by the infix operator =.

Anomaly for equality of variants. If v is a variant record and bv is one of its bound variants, the

expression bv=v applies the EQUAL proc of the bound variant. This works even though v is not of
the same type as bv.

Representation and address equality: EQUAL compares addresses in the representation of a value; it
does not dereference them. Thus types like ROPE and ZONE which are represented by addresses are
compared by comparing the addresses.

Restriction on EQUAL procs: A type has an EQUAL proc only if T.SIZE<21®,

4.3.2 Assignable types

Most types (see Table 4—1 for exceptions) are in this class, which is a subclass of general (§4.3.1)
and has items:

ASSIGN: UNSAFE --sometimes-- PROC -- Returns y after storing it in x. Denoted by the
[x: VAR T, y: T|—[T] right-associative infix operator «.

TOVOID: PROC(T]—]] -- Discards the value. See § 3.6.

Defaulr: PROC[]—[T] -- See § 4.11.

Trash: PROC[]—[7] -- See §4.11.

As explained in § 3.7, groups and bindings are assignable if their components are. Since you cannot
write these types in declarations, you have to write the constructors explicitly on the left of the «:
they are called extractors. E.g.,

{x: INT: y: REAL: [x. y]« Paif2. 3.4] }

Note that if 7 is not assignable. it cannot be used as the type of a proc argument or result, since
arguments and results are passed by assignment to variables.

ASSIGN is unsafe for



unions and variant records:

assigning an unspecified type to anything except itself,

Ina CHECKED block. a proc value cannot be assigned if it is local to another proc rather than to an
implementation (since this could lead to a dangling reference). This is checked at runtime.

Restriction on ASSIGN procs: A type T has ASSIGN only if 7:S1ZEC2'S,

Representation of 4SSIGN: Since it involves a VAR parameter, an ASSIGN proc cannot be written in
current Cedar. The primitive ASSIGN procs simply copy the bits of y's representation into the
variable x, unless some of them represent REFs. In this case the assignment involves reference-
counting if x is in counted storage; see § 4.5 for details. '

CHANGEDEFAULT can take any type and produce a new one which is identical except for the cluster
items named Default and Trash which determine how default values are supplied when a binding
value is coerced to a decl type: see § 4.11 for details.

4.3.3 Variable types

40varTC ::= (| READONLY | VAR ) t | ANY ( VAR | READONLY | VAR ) t | ANY
In 11. 45 —48. ANy only in refTC. vAR only in interface decl.

For every non-variable type 7 there are corresponding variable types:

VAR T

READONLY T

SHORT VAR T

SHORT READONLY T
You cannot denote these types in current Cedar except in a few contexts, but they are fundamental
to an understanding of how it works nonetheless. The basic facts about variables in Cedar are given
in §2.3.3. A variable type is made by the MKVAR proc in the cluster of the non-variable type
(§4.3.1).

The variable class is a sub-class of general (§4.3.1) and hasNIL (§ 4.3.7), and has items:

VALUE: TYPE; -- (VAR U).VALUE = U: TVALUEMMKVAR=T.
VALUEOF: PROC[T]—[VALUE]: -- A coercion.

ISLONG: BOOL; -- FALSE for short vars.

ISREADONLY: BOOL: -- TRUE for readonly vars.
VARTOPOINTER: UNSAFE PROC[T]— -- Apply by prefix @.

[MKPOINTER([range~ T.VALUE, long~ISLONG, readOnly~|SREADONLY]]:
Furthermore, 7 inherits the cluster of 7.vALUE. The procs are not modified, since the VALUEOF
coercion provides them with T.vALUE arguments where needed. There is one exception: the
component procs described below are replaced by procs which return variables instead of values.

The NIT proc (§4.3.1) converts a block of storage into a legal variable of type 7. at least in theory.
In fact, it is currently a no-op except for

RC types (§ 4.5); these are set to NIL.

Bound variants; the tag field is set appropriately.
INIT cannot be supplied or called directly by the user; it can only be called indirectly, from NEW.
The NEW proc (§4.3.1) calls on the zone z to obtain a block of storage of size T.SIZE (§4.5.2), and

applies T.INIT to convert the block into a VAR T call it x. Then if T.Default exists, NEW calls it and
assigns the result to x.

Caution on finalization: A variable type may have a finalization proc, which is called when no client
references to a variable remain; see SafeStorage. This proc is executed concurrently, and must
therefore provide proper synchronization.



Restriction on NEW: A type has a NEW proc only if T.SIZEC2'®.

eThe @ operator (VARTOPOINTER) does not work on a variable v which is a component of a pack'ed
array (no matter what its type is). or component of a record if v is ;epresented in less than 16 bits.
These restrictions are machine-dependent, and @ is unsafe: avoid it if at all possible.

Composite variables and component procs

MKVAR commutes with a composite type, cross type or declaration constructor. For example,
VAR [a: INT, b: REF ANY]
is equal to
[a: VAR INT, b: VAR REF ANY]
and likewise for READONLY. Similarly. VALUEOF commutes with the component procs for values of
these types, so that v.a.VALUEOF = v.VALUEOF.a if v has the variable type just mentioned.

Another way to think of this is that one of these variables is the composite of a set of variables, one
for each component. If T is a record type. row type, cross type or declaration. then a component
proc in T's cluster which extracts a component of a T value (e.g.. a field proc, APPLY which
subscripts the array, etc.) has a counterpart in the cluster of VAR T which extracts a variable. Thus if

a and r are array and record variables, then 4] and r.f are also variables which can be modified by
ASSIGN.

4.3.4 Opaque types

40.1paintedTC :: = typeName PAINTED t REPLACEPAINT[in~t, from~typeName]
typeName must be an opaque type, t a recordTC or enumTC. '

Example

HV: TYPE~Interface.HistValue PAINTED -- See 13 for use.
RECORD]...]

An opaque type declaration in an interface is the only way to declare a type parameter (except for
the interface parameters declared in the DIRECTORY). Such a type parameter is called opaque. The
type of an opaque type must be TYPE[ANY] or TYPE[x]; thus you can write

T: TYPE[ANY]
or

T: TYPE[n]
in an interface. These expressions are non-functional: each generates a new mark, and a type can be
exported to 7 (i.e., has the type denoted by the TYPE[ANY] or TYPE[n] expression which declares 7,
and hence is an acceptable argument value for this formal parameter) only if it carries that mark. A
type exported to T TYPE[n] must have additional properties described below.

You attach one of these marks to a type using a paintedTC. The type being painted (t in the rule)
must be a recordTC or enumTC, The paint comes from the typeName, which must be an opaque
type: it replaces the new paint which the constructor would have supplied.

Any record or enumeration type can be painted from a type declared TYPE[ANY]: only a type so
painted can be supplied as the argument for the declaration 7: TYPE. T is called fully opaque.

A type V can be painted from a type U declared TYPE[#] if:
VSIZE=n.

V is a recordTC or enumTC and has standard NEW, INIT, ASSIGN, EQUAL and ISTYPE procs.
All the assignable primitive types do except



the RC types (§4.5.1);
bound variant types (§ 4.6.2);
types produced by a defaultTCss:

composite types with a component that has a non-standard NEW. INIT, ASSIGN, or
EQUAL proc.

Representation of standard procs. The standard New proc allocates n words. The standard iNT does nothing. The
standard AssIGN copies n wordg. The standard equaL compares n words bitwise. The standard ISTYPE compares
the mark of the value with a single mark associated with the type.

Only a type painted with U can be supplied as the argument for the declaration U: TYPE[n). U is
called n-opaque.

Example: For the interface:
I: DEFINITIONS~{
FO: TYPE[ANY]:
nO: TYPE[SIZE [INT]] }
this implementation is suitable:
IImpl: PROGRAM EXPORTS /~{
FO: PUBLIC TYPE~/.FO PAINTED RECORD[a: INT, b: ROPE];
nO: PUBLIC TYPE~1.nO PAINTED RECORD[INT]:

Note that replacing INT by REF ANY in nO would not work. since this does not have standard
ASSIGN and INIT procs.

The cluster of a fully opaque type T is empty: it provides no operations. A T value cannot be
passed as a parameter, and there are no VAR T variables. Thus you cannot use 7T as the type in a
declaration. The only thing to do with T is use it as the target of a reference type such as REF 7.

The cluster of an n-opaque type U has VAR, NEW, INIT, ASSIGN, EQUAL and ISTYPE procs (the last not
yet implemented). Thus these operations can be done on a U value. As a consequence, a U value
can be passed as a parameter and declared.

Restriction on values of opaque types. All instances of any interface produced by applying an interface module which
declares an opaque type T must supply a type value with the same predicate for 7 if they supply any value at all: this
value is called the standard implementation of T. Because of this restriction. clients can safely interassign values of type T.
no matter how obtained. In addition. it is safe for any exporter of T to convert a value of type 7 to a value of the
corresponding concrete type. and conversely. The restriction arises from the fact that the type is identified by its mark:
hence the same mark must not be assigned to two different types.

Anomaly on referencing opaque types: It is not necessary to import an interface to refer to an
opaque type declared in that interface (because of the above restriction).

Within an implementation P which exports an opaque type T declared in interface /. LT and P.T
(simply T within P) imply each other. However. they have different clusters, and are not equivalent.
You can convert from one to the other using NARROW (§4.3.1).

Performance of converting between opaque and concrete types: The conversion between an opaque
type and the corresponding concrete one costs nothing at runtime,

4.3.5 Interface types

The type of an interface module is d—[n_: TYPE n ]. where d is the declaration given in the
DIRECTORY; when the module is applied. the result is an interface, with type TYPE n_. The interface
is itself a type. A value of that type is an instance exported by an implementation module that
exports the interface. These classes have no standard items (except an implementation instance,

which has COPYIMPLINST), but the clusters of these types do have the items bound or declared in
the interface. Thus you cannot do anything with these types except



use them in a DIRECTORY. IMPORTS, SHARES, or EXPORTS!
select items from the cluster using dot notation:
use an interface type in an open.

See § 3.3.4-5 for complete information.

4.3.6 ANY

The type ANY is implied by every type. ANY cannot be the type of a d or b item, and an expression
never has syntactic type ANY unless it is an ERROR application. ANY can on!y be used as the target
of a REF or as the domain or range of a transfer type. A value whose type 1r_1v0|ves ANY cannot be
dereferenced or applied, since these operations would yield an expression with syntactic type ANY.
However, it can be narrowed (§ 4.3.1).

4.3.7 HasNiL

Variable, address and transfer types are in this class, which is a subclass of general (§4.3.1). and
gives them one thing in common:

NIL: T -- A distinguished value pointing to no storage.
There is a universal value NiL (with type NILTYPE) which can be coerced into any particular 7.NIL.

4.4 Map types
The map class is a subclass of assignable (§ 4.3.2) and has the items:
DOMAIN: TYPE: -- Domain type for the mapping.
RANGE: TYPE; -- Range type for the mapping.
APPLY: PROC[map: T, arg: DOMAIN]—[RANGE|  -- maplarg] is sugar for map.APPLYParg. In current
Cedar, you can write this explicitly only
for transfer types.

Usually boMAIN and RANGE are declarations, so that bindings can be used for the arguments and

results. Application is denoted by brackets (maparg]). or explicitly (APPLY[map. arg]) for transfer
types only.

There are several subclasses of map in Cedar. each with its own APPLY proc. These are summarized
here, and treated in detail in the sections on the various subclasses.

Primitives (since you can't get hold of the value of the primitive, these can be applied only
with the various special syntactic forms summarized in Table 4—5).

Transfer types: procs. and their close friends processes. signals, errors, ports and programs;

applying a transfer value executes the body of some A-expression (§4.4.1). §2.2.1 and § 2.6
tell all about applying procs.

Row and descriptor types: applying an array, sequence (or sequence-containing record), or
array descriptor to an index value yields a value of the component type (§ 4.4.2).

BASE POINTER types: applying a base pointer to a value which is relative to that base yields
a (non-relative) pointer: this is unsafe (§4.4.3).

Reference types: if the base type T has APPLY, then the reference type inherits it composed
with DEREFERENCE, so that aarg] is the same as at[arg] (§ 4.5.1).

In addition. many subclasses of TYPE have APPLY procs with assorted meanings (§ 4.3).



4.4.1 Transfer types

a1 transferTC :: =2safety4 xfer ?drType MKXFERTYPE[drType, flavor~xfer]
aL1xfer ::= PROCEDURE | PROC | PROGRAM |

PORT | PROCESS | SIGNAL | ERROR
@drType ::= ?ﬁeldsl RETURNS fields, | fields, domain~ﬁelds]. range~fields,

No domain for PROCEsS. In 3. 41.

a3fields ;o= [d1L, .. ]| [t. ... ]| ANY
ANY only in drType, In 42. 50, 52.

Examples

Enumerate: PROC|
I: RL,
p: PROC[X: REF ANY] RETURNS [stop: BOOL]]
RETURNS [stopped: BOOL];
P2:PROCESS RETURNS[i:INT]« FORK stream.Get;
failed: ERROR [reason: ROPE]~CODE;

Transfer is a subclass of map (§4.4) and of hasNIL (§4.3.7). The subclasses of transfer are PROC.
PORT, PROGRAM, PROCESS, SIGNAL, and ERROR. These types are constructed by transfer type
constructors which begin with those words, or in the kernel by the MKXFERTYPE constructor. What
they have in common is that application executes the body of some A-expression, but the transfer
class adds no items to the map class.
One transfer type T implies another U if

The subclass is the same.

T.RANGE implies U.RANGE.

U.DOMAIN implies T.DOMAIN.
See §2.3.2 and § 4.12. One declaration D implies another £ if;

They have the same names, or each has only one name, and

The corresponding types imply each other.
Le. _

If n: Tisin D and n: U is in E, then T=>U.

If D=[m: 7] and E=[n: U}, then T=>U.
See § 2.2.1F. D implies a cross type T if D.T implies 7 in this case 7 also implies D.

Either the domain or the range of a transfer type (or both) can be ANY. A value of these types
cannot be applied, but it can be narrowed to a specific transfer type (§ 4.3.1).

Representations for transfer types are given in the PrincOps interface. They tend to change when the
machine architecture changes.

An attempt to apply a NIL transfer value results in the error Runtime.UnboundProc.

PROC types

The PROC class is a subclass of transfer (§ 4.4.1) with no additional items. In the kernel. a new proc
value is made by evaluating a A-expression. In current Cedar, it is made by a binding of the form
P.T~{...}



in a block, where T is a proc type: see § 3.5.1 for details.

Assignment of a proc may lead to a dangling reference, if the proc value is for a local proc P and it
survives the return of P's enclosing proc. In a checked block any assignment of a local proc value is
disallowed (except the assignment of a parameter value to a parameter variable).

PROGRAM types
The program class is a subclass of transfer (§ 4.4.1), and also has items: .
esTOP: PROC[]—(] -- Apply by STOP. Legal only if RANGE =[].
Denoted by STOP, since it takes no arguments.
®RESTART: PROC[7]—{] . -- Apply by RESTART P. Legal only if RANGE =].
eCOPYIMPLINST : PROC[p: T]—[T] -- Apply by NEW P,

Their use is not recommended; for details, consult a wizard. For more on implementations. see
§3.3.2.1 and §3.3.5. COPYIMPLINST makes a copy of the implementation module for_whlch p is the
program proc, and returns the program proc of the copy. See §4.5.3 for more details.

The syntax for applying a program P is

START Plargs]
eThe START may be omitted, so that it looks like an ordinary application; avoid this feature. This
expression’s type is V P.RANGE.

A program value is obtained from the frame of an implementation, which always includes the item:
Imp: PROGRAM T~ PP,

where /mp is the name of the module, T its drType, and PP its program proc; see § 3.3.5. This value
can be accessed:

from an interface exported by /mp which declares /mp as a PROGRAM T
as F.Imp, where F is a POINTER TO FRAME of the implementation;
as the CONTROL item returned by the module.

®PORT types

Use of ports is complex, unsafe and not recommended. See chapter 9 of the Mesa manual if
necessary.

PROCESS types

The process class is a subclass of transfer (§ 4.4.1) with no other items, but Process. Aborf[P] raises the
ERROR ABORTED in P. § 4.10 describes Cedar's facilities for concurrent programming.

A process always has DOMAIN=[]. The syntax for applying a process P is
JOIN P

This expression’s type is VP.RANGE. eThe JOIN may be omitted, so that it looks like an ordinary
application; avoid this feature.

A process value is obtained from:

FORK: PROC[PROC[DOMAIN]—[RANGE]]—[PROC[DOMAIN]—[PROCESS []—[RANGE]]]
The syntax for using this is

FORK Plargs].

The FORK P returns a proc which when applied to args creates a new process, starts it running, and
returns it.

Anomaly for FORK: Note the peculiar parsing (FORK P)args]. You cannot write FORK P alone to get
hold of the process-creating proc.



SIGNAL and ERROR types
These are subclasses of transfer (§ 4.4.1) with no other items.

In the kernel, a new signal or error value is made by applying NEWEXCEPTIONVALUE. In current
Cedar. it is made by a binding of the form

E: T~CODE
in a d or b, where T is a signal or error type. The effect is to construct a unique exception value,
not equgl to any other. An enable choice which catches this value will only catch an exception
raised with this value; it cannot catch some other expression with the same name.

_Anomaly Jor copk: Unfortunately, CODE does not yield a unique value at each execution. The value
is only unique to the textual occurrence of CODE and the module instance; if CODE appears inside a
proc. the same value is produced each time the proc is applied. Thus care may be needed if the
proc is recursive.

The syntax for applying an error (signal) £ is ERROR (SIGNAL) Elargs]. or ERROR (SIGNAL) E if there
are no arguments. For a signal, this expression's type is VERANGE: for an error, its type is ANY
(since control can never return). eIf the argument constructor is present, the ERROR or SIGNAL is
optional; avoid this feature.

§2.6.2 and § 3.4.3 explain errors in detail. A signal is exactly like a proc, except that the closure that
is executed is obtained from the statement of an enable choice; see § 3.4.3A for details.

You can write an expression consisting simply of ERROR; this is short for ERROR NAMELESSERROR.
Here NAMELESSERROR is an error you cannot denote in the program. Hence it cannot be caught
(except by ANY); you should think of it as a call to the debugger.

4.4.2 Row and descriptor types

s arrayTC ::= T%PACKED ARRAY ?t OF t, MKARRAY[domain~t,, range~t,]
455eqTC ::=T%PACKED SEQUENCE tag’3 OF t MKSEQUENCE[domain~tag, range~t]
Legal only as last type in a recordTC or unionTC,
as.1tdescriptorTC i =
?LONG DESCRIPTOR FOR varTC40 MKARRAYDESCR[array Type~varTC]

varTC must be an array type.

Examples

Vec: TYPE~ARRAY [0..maxVecLen) OF INT:
Chars: TYPE~RECORD [text: PACKED SEQUENCE  -- A record with just a sequence in it.
len: [0..INTEGER.LAST] OF CHAR]; ch: Chars; -~ ch.texf{{] or chi] refers to an element.
v: Vec~ALL[0]:
dV: DESCRIPTOR FOR ARRAY OF INT~
DESCRIPTOR[V];

A row value provides an indexed set of values of an arbitrary type. called the components of the
row: application maps an index into the corresponding value. Usuaily the values are variables, so
that assignment to a component is possible. A descriptor is an unsafe pointer to a row which
includes a subrange of the domain or index type in the descriptor value; thus values of the same
descriptor type can point to rows of different sizes. Because all the row types use the same
representation for the set of values, it is possible to make a descriptor from any row value.

The domain or index type of a row must be a discrete type with no ‘more than 216 distinct values:
note that this rules out large subranges of INT. There is one element in the range set for each value
of the domain type.



tation of a row whose
The PACKED argument of the row type cOnstructors governs the represen .
range type is re;g)resented in <8 bits. See the discussion of tepresentation below. It also disallows
the use of @ on an element of the row.

The tow class is a subclass of map (§ 4.4) and also has the item:
DESCRIPTOR: UNSAFE PROC|7: VAR T]=[LONG  -- Returnsa descriptor for r.
DESCRIPTOR FOR ARRAY DOMAIN OF RANGE]

Since DESCRIPTOR Teturns an address, it must take a VAR; i.e., it can't be given a row value such as
a constructor. but demands a row which has been declared or allocated.

Representation of rows. A VAR Tow value is represented by a contiguous block of words. If
PACKED=FALSE. each element VAR occupies T.RANGE.SIZE words, and the successive elements
occupy consecutive blocks of storage. beginning with the one indexed by T.DOMAIN.FIRST. .If
PACKED=TRUE and a T.RANGE value is represented in n<8 bits, each element occupies
cEILNG[LoG2lnl] it je. 1, 2. 4 or 8 bits depending on its size; PACKED has no effect on the
representation for ranges with bigger values. Note that the entire representation of a packed array
may be smaller than a word, and need not be word-aligned in another packed array or in a reporgi.
This is the entire representation of an array value; a sequence value also has a tag field, which is
represented like a component of the containing record.

Restriction on row sizes: A Tow type must have T.SIZEC2% and 7.RANGE.SIZE2'.

It is not possible to obtain a REF to a row component. this is because the implementation of both
reference counting and REF ANY discrimination requires more information about each VAR than is

available for an array element. If the row is PACKED. it is not possible to apply @ to obtain a
pointer to an element either.

Performance of row arguments and results: Passing a row as an argument or result entails copying
the representation. Unless the row is quite small, this is expensive. It is usually better to pass a REF.
Very large rows (say, more than 100 words) should not be declared in a block, since this results in

large frames which consume the 64k words of frame space. Instead., they should be allocated with
NEW, '

4.4.2A ARRAY types

An array is a row with an element for each value in the domain: its APPLY proc is a total function.
The advantages of this are that no space is needed to store the length of an array, and any bounds
checking on a subscript is done against constant values (as part of narrowing the subscript to the
domain type. which is usually a subrange). The disadvantages are that a given proc, written to deal
with a given array type, cannot be used on other arrays of different lengths, since there is no way in

guzrent gledar to parameterize the proc with a type. In this case it is better to use a sequence
§4.4.2B).

The array class is a subclass of row (§ 4.4.2) and of assignable (§ 4.3.2) if RANGE is assignable. It also
has the items:

CONS: PROC[g: RANGE X ...]—[7] -- A coercion from the group, or denoted 71...].

ALL: PROC]x: RANGE]—[T7] -- Returns an array with each element = x
LENGTH: CARDINAL -- The cardinality of DOMAIN.
BASE: PROC[a: VAR T]—>[LONG POINTER TO UNSPECIFIED] -- Returns the address of a's first element.

CONS takes a group of values, one for each element of the array, into an array value. Note that the
argument of CONS may have omitted values. which are filled in if possible by the defaulting
coercion for 7.RANGE. If the index type is enumerated, CONS takes a binding. with one element
named » of type T.RANGE for each index value n. In current Cedar you can't write T.CONS. Instead
you write T itself; i.e., 7]...] for T.CONS|...]. Because CONS is a coercion from group or binding to

array, you can omit the 7 whenever the group or binding appears as an argument or in a binding;
see § 4.13. Examples:



I TYPE~INT«0; B: TYPE~BOOLEAN ¢ TRUE
A: TYPE~ARRAY [0..5) OF /;

al: A~[0.1.2.3,4]; -- OK to omit 4 here.
q2: A~[ .1,2,3.4]; -- Same as al, by defaulting.
i INT~A[4,3,2,1,0][1]; --i=3. The 4 is required here.

E: TYPE~ARRAY {red. blue. green} OF B:
el: E~[TRUE. FALSE, TRUE]:
€2: E~[blue~FALSE]: -- Same as el.

Anomaly abqut ALL: ALL replicates its argument in all the elements of an array. In current Cedar
you can’; write T.ALL. Instead you just write ALL: it must be in an argument or binding. Unlike
most built-ins, ALL is not sugar for dot notation. If the range type permits it. you can write
ALL[TRASH] to trash all the elements.

a3 A~ALL[3]; --Same as 3. 3. 3. 3, 3]

BASE returns the address of its VAR array argument. It is mostly useful for writing storage allocators.
The .resultmg LONG POINTER TO UNSPECIFIED can also be passed to DESCRIPTOR to yield a
descriptor for a different type of array; obviously this is dangerous.

e Anomaly about arrays with empty domains: An array may be declared with a domain type which is
an empty subrange. The effect is to suppress the bounds checking in APPLY. If a pointer p to such
an array is constructed (with a LOOPHOLE), then pt[{] (you can also write p[i], because p inherits
APPLY) will never give an BoundsFault. This kludge is sometimes useful for obtaining arrays whose
size is not static. However, beware that operations on the array other than subscripting (e.g..
equality tests, assignment and parameter passing) will believe the type declaration and do the wrong
thing. It is generally better to use a sequence or a descriptor.

4.4.2B SEQUENCE types

A sequence is like an array, but each sequence value includes a tag value which specifies the
number of elements in that sequence, i.e. the values of the domain type for which APPLY is defined.
Note that APPLY for a sequence is usually nof total. If the domain type is T and the tag value is v.
then APPLY is defined for [7.FIRST..v). Usually T is NAT, so that v is the number of elements in the
sequence, and the elements are indexed by 0, 1, ..., v—1.

In current Cedar there are many restrictions on the use of sequences. A sequence type is defined by
a sequenceTC®; it is not a first-class type, and can only appear as the type of the last field of a
variant record or union (§4.6.2). The items in the cluster of a sequence type are just those for a
row: they are inherited by the containing variant record, which is the type a program normally
deals with.

A record type T containing a sequence field is a variant record. T is a first-class type which can t_ae
bound to a name, but unlike a union-containing record it cannot be used where type* appears in
the grammar, except in a refTC* (or pointerTC®). The only items in the cluster of T are the ones
of the variant record class, and those inherited from the row class of the contained sequence:

DOMAIN: TYPE -- =TAGTYPE.
RANGE: TYPE -- The RANGE of the sequence.
APPLY: PROC[map: T. arg. DOMAIN]—>[RANGE] -- Indexes the sequence.

~{RETURN[map.VARIANTPART[arg]]}.
DESCRIPTOR: UNSAFE PROC[r: VAR T]—[LONG DESCRIPTOR FOR ARRAY DOMAIN OF RANGE]
~{RETURN[DESCRIPTOR[T.VARIANTPART]]}.  -- Yields a descriptor for the sequence.
The tag of a sequence is readonly.

Hence the only uses of T are:
As the target type of a reference type,. e.g.. REF T.



In the form 7{n] to yield a specialization of T.

The specialization 7{n] has TAG=T.TAGTYPE.FIRST.SUCC", and n elements in the sequence; n need
not be static. This application causes a Runtime. BoundsFault if n NOT IN T.TAGTYPE. 7In] is also not a
first-class type; you cannot write it where type®® appears in the grammar, and it has only the
following cluster (§ 4.3.1):

NEW: %ROC[z: Z(ONE‘-S)afeStorage.GelS ystemZond] -- Denoted NEW([7{n]] or ZNEW[T{n]]

T: TYPE]—[r: REF GENERAL]
SIZE: CARDINAL _
GENERAL: TYPE -- The type of the unspecialized sequence.

Note that since you cannot use T or 7{r] in a declaration, there are no declared variables, record
fields. or arguments to non-primitive procs of these types: you must use REF T(ora pointer to .
Furthermore, these types have no ASSIGN or EQUAL procs: you must do these operations on the
components. Finally, there are no constructors for sequence types. you must explicitly trash the
sequence field in a record constructor. A sequence does get initialized when allocated, however; in
current Cedar this just means that non-composite RC variables are set to NIL.

Thus the normal way to use a sequence is to embed it in a record (which need not have any other
components), and to allocate one of the desired size using NEW (as in the examples below). The
record value can then be applied to index the sequence. Usually it is convenient to have
DOMAIN = NAT. If. however, some maximum length N is important to you, consider DOMAIN=[0..N]:

then the value of the tag field for a sequence of length n<N is just n, and the valid indices are IN
[0..n).

Examples:
StackRep: TYPE~RECORD[
top. INT« —1,

item: SEQUENCE size: NAT OF TJ;
Number. TYPE~RECORD{
sign: { plus. minus},
magnitude: SELECT kind: * FROM
short=>{val: [0..1000)},
long=>[val: LONG CARDINAL],
extended=>[val: SEQUENCE length: NAT OF CARDINAL]
ENDCASE];
rs1: REF StackRep<NEW([StackRep{100]]: -- rsl.top= —1, rsl[i] is trash.
rs2: REF StackRep« NEW[StackRep[100]« [top~3, item~TRASH]]. -- rs2.top=3, rs2{i] is trash.
rnl: REF Number.extended« NEW[Number.extended2* k]|
-- rn1[2] = rl1[2] = rnl.item[2] = rnl*.item[2]. but all start out trashed.

@A sequence may have a COMPUTED tag, with the same meaning as for unions: no tag field exists.
no bounds checking is possible so that application is unsafe, and the cluster has no DESCRIPTOR
proc. You can still compute the address of the sequence with @ and use the unsafe three-argument
form of DESCRIPTOR (§ 4.4.2.3). Example:

-- Here is the recommended unsafe method for imposing an indexable structure on raw storage.
WordSeq: TYPE~RECORD[SEQUENCE COMPUTED CARDINAL OF Word];
A sequence may not have an OVERLAID tag, and * cannot be used for the tag type.

A sequence may appear in a MACHINE DEPENDENT record. It must come last, both in the record
constructor and in the layout. The total length of a record with a zero-length sequence part must be
a multiple of the word length. The size of the sequence field (if specified) must describe a zero-
length sequence; i.e., it must account for just the space occupied by the tag field (if any).

There is a predefined sequence TEXT. see Table 4—2 for its declaration. There are literals of type
REF TEXT. denoted as in rule 57 by the characters of the literal enclosed in doublequotes. Such a
literal is shorthand for a constructor (which you couldn’t actually write in current Cedar, since it

lacks constructors for sequences). REF TEXT can be used where efficiency is critical; for general
purposes use Rope.ROPE.



eThere are also unsafe predefined types LONG STRING and STRING; see Table 4—2 for their
deglaratlon. They are described here for completeness, but should not be used. These types are
pointers t0 a StringBody type also given in Table 4—2.

Anomaly for StringBody: In spite of the declaration, StringBody behaves like a sequence with tag
maxlength and sequence texr. Thus zNEW[StringBody{n]] returns a STRING or LONG STRING with
maxlength=n: if s is a STRING or LONG STRING, i indexes its fexs, etc. You can also use sfext. as
with sequences. but this is not recommended: because of the definition. s.text[i] is never bounds-
checked (use o), and DESCRIPTOR[s.fexi] describes an array of length 0 (use DESCRIPTOR[st].

eThere is a special kludge for allocating a string in the local frame of a proc:
LOCALSTRING: PROC| [length: CARDINAL] ]—>[STRING] -- A coercion.
Because this is a coercion, you can write
s: STRING~[20]
to obtain a local string of length 20. Of course, the storage will be freed when the proc frame is

freed, and a dangling reference may remain. This construct is legal only in declarations as the e of a
defaultTC.

oThere are literals of type STRING, denoted just like REF TEXT literals as in rule 57. Since they are
string literals, they are allocated in the MDS, where they consume precious space. By suffixing L to
the literal, you can get it allocated in the proc frame, where the space is recovered when the frame
is freed. at the risk of a dangling reference.

74.4.2C Descriptor types

A descriptor is a pointer to a row value which includes a subrange of the row's domain as part of
the descriptor value. A proc which takes descriptors rather than rows or REFs to rows can deal with
rows of different sizes. Because a descriptor is like a pointer, there are short, long and relative
descriptors which are exactly analogous to short, long and relative pointers; see §4.5.1 and §4.5.4
for details.

Style for rows of variable length: Applying a descriptor is unsafe. It is generally better to use a REF
to a sequence-containing record.

Like a row, a descriptor can be applied to yield a VAR of the range type. If it is READONLY. the VAR
will be READONLY t0o0. ’

Descriptor is a subclass of row (§ 4.4.2) and address (§ 4.5). Like array, it has the items:
LENGTH: PROC[a: T]—>[CARDINAL] -- Returns the cardinality of the subrange in a.
BASE: UNSAFE PROC[a: 7] -- Returns the address of a's first element.

—[LONG POINTER TO UNSPECIFIED]

Like pointer, it has:

TARGET: TYPE -- The type of the arrayType used to
make the descriptor.

In addition, there is an unsafe and untypesafe proc for making a descriptor with RANGE = CARDINAL

from a LONG POINTER:

DESCRIPTOR: UNSAFE PROC[base; LONG POINTER TO UNSPECIFIED, length: CARDINAL, fype: TYPE]
—[d: LONG DESCRIPTOR FOR ARRAY CARDINAL OF type]
d.LENGTH = length and 4.BASE = base.

Anomaly for target typing of DESCRIPTOR: The type argument of DESCRIPTOR may be pmitte_d. in
which case it is the range type of the target type (which must be a descriptor type). Similarly if the
target type is packed.

There is a compile-time coercion from LONG DESCRIPTOR to DESCRIPTOR. which works exactly like
the similar coercion from LONG POINTER to POINTER (§4.5.1B).



e74.4.3 BASE POINTER lypes

A base pointer bp is like an ordinary pointer, except that it has an APPLY operation .Wthh maps a
relative pointer rp (see § 4.5.4) into an ordinary pointer p. Its class is a subclass of pointer (§ 4.5.1B)
and approximately a subclass of map (§ 4.4), but with the items:

APPLY: UNSAFE PROC[bp: T, rp: DOMAIN]—[p: rp.TARGET]

DOMAIN: T RELATIVE POINTER )
Note that the type of bp{rp] is determined by the type of 7p, and has nothing to do with the type of
bp. There can be many relative pointer types for a single base pointer type. The scheme is much
less safe than ordinary pointers, since a particular relative pointer in general makes sense only
relative to a particular base value. but the type system allows it to be used with any base value of
the proper base type.

In other respects, a base pointer is like an ordinary pointer: indeed. it is a subclass of pointer. Thus,
it has a target type of its own. and can be dereferenced to yield a value of that type. This allows it
to point to a record or other variable at the start of the region. Note that the base pointer’s target
has nothing to do with the range of its APPLY, which is the target of the relative pointer it is applied
to: unlike other map types, a base pointer has no RANGE of its own.

A base pointer type implies the corresponding non-base type. and vice versa.

Representation of base pointers. The APPLY proc is
A [bp: T, rp: DOMAIN] IN
LOOPHOLE[LOOPHOLE[6p.LONG, LONG CARDINAL]+ LOOPHOLE[rp.LONG, LONG CARDINAL],
LONG POINTER TO rp.RANGE]®

if T.TARGET.ISLONG=TRUE Or DOMAIN.ISLONG=TRUE, or the same thing without the LONGs if
neither is long,

Anomaly for relative array descriptors: A relative array descriptor (obtained by using a descriptor
type as the range argument of the type constructor) doesn’t quite work this way, since it uses the
bounds in the descriptor, rather than in TARGET.DOMAIN, to check the subscript.

4.5 Address types

461efTC ::= REF (varTC#®|) , MKREF[target~( varTC | ANY )]

#71istTC ::= LIST( OF varTC% |) MKLIST[range~( varTC | REF ANY )]

48 tpointerTC:: =?LONG ?0RDERED ?eBASE MKPOINTER[target~( varTC | UNSPECIFIED ),

POINTER ?esubrange?s (TO varTC40 | ) | subrange~subrange ] |

®POINTER TO FRAME [ n ] n
Subrange only in a relative TC: no typeName37 on it.

49 otrelativeTC :: = typeName3? RELATIVE t MKRELATIVE[range~t, baseType~typeName]
t must be a pointer or descriptor type. typeName a base pointer type.

Examples

ROText: TYPE~REF READONLY TEXT: -- NARROW[r! first. ROTexi]t is a

RL: TYPE~LIST OF REF READONLY ANY: rl:RL;  -- READONLY TEXT (or error).

UnsafeHandle: TYPE~LONG POINTER TO Vec#:

Address is a subclass of assignable (§4.3.2) and of hasNIL (§4.3.7). It has no items of its own. An
address value is the address of a variable, i.e.. of a block of storage.



Storage Is a precious resource which must be reclaimed when it is no longer needed. i.e.. when the
variable it represents will no longer be touched by the program. Cedar provides safe storage which
does this reclamation automatically, and unsafe storage which must be reclaimed explicitly by the
program. A checked program (§ 3.4.4) deals only with safe storage, and need not be concerned with
how storage is reclaimed. or how things can go wrong, except for one point discussed in the next
paragraph. lf you write only checked programs, you can skip to §4.5.1. An unchecked program
must maintain the safety invariants, in order to ensure that the Cedar system continues to function.
These invariants are given in the remainder of this sub-section.

Cedgr has two garbage collectors for reclaiming safe storage. The incremental collector runs
continuously and reclaims storage without stopping other computations for more than a few
milliseconds at a time. The trace-and-sweep collector runs only when invoked, and stops other
computations for many seconds. The disadvantage of the incremental collector is that it cannot
reclaim a cyclic structure. even if that structure can no longer be reached by the program.
Therefore, a production program, especially a real-time or interactive one, should break the cycles
in its structures when they are no longer needed. The package finalization mechanism is often
helpf];u] in doing this. It and other features of Cedar safe storage are described in the SafeStorage
interface.

Anomaly in garbage collection: 1t is possible that an unreachable variable will not be reclaimed
because it appears to be pointed to by some double-word quantity in a frame which is not actually
a REF. This can happen because the collectors cannot tell which double-words in a frame are REFs,
and hence proceed conservatively.

Definitions
To state the safety invariants, we need some definitions.

A safe variable (SV for short) is a frame or a counted variable, i.c., one allocated by zNEW, where z
is a ZONE (§4.5.2). A safe reference (SR for short) is a transfer or REF value. A SR is the only
legitimate way of addressing a SV, and furthermore. a SR can legitimately only be stored in a SV,
A reference-containing type (RC for short) is a SR type, or a composite type with a RC component.
A SV is reachable if:

it is the process array or, in current Cedar, the global frame of a module,

or a SR which points to it is stored in some reachable SV.

The collector tries to reclaim safe storage when it is no longer reachable.

A SV v is good if:
It overlaps no variable of another type.
If its VALUE type is RC, then v.VALUEOF is good.
A SR is good if it points to a good SV of the proper type, or is NIL. A composite RC value is good
if each of its RC components is good.
The idea is that if; :
new address values are generated only by NEW or frame allocation, and

these allocators always return an SR which is the address of a SV that doesn’t overlap any
other SV, and

SR values never get damaged or mistyped,

then by keeping track of the SRs the collector can know about all possible ways of reaching an SV.
If there are no ways, the SV can be freed.



For the purpose of this analysis. we assume that every value is held in some variable: the fact that
some values are constant is not important here. Storage can be modified only by an ASSIGN proc for
some variable. Hence the behavior of ASSIGN determines how values can change. A composite
variable (§4.3.4) is made up of other variables: in Cedar record, union and row variables are
composite. ASSIGN for a composite variable is simply a sequence of AssIGNs for the components.
Therefore the remaining analysis considers only non-composite variables.

Safe storage main invariants

Cedar safe storage depends on three invariants. These in turn _depend on some local invariants (L1-
L4). and some properties of the Cedar primitives (P1-P3) given below. The proofs of the main
invariants follow these definitions.

S1) Every SV is good.
S2) Every SR is good.
S3) A SV is not freed if there is an SR for it in some other SV.

Local invariants

L1) No variable of another type overlaps an existing SV. The allocator ensures that no SV will do
so. because NEW[T] returns the address of a block of at least T.SIZE words, none of which is part of
an existing SV. Similarly, applying a closure allocates a block of unused words at least as large as
the frame. Unchecked code must ensure this for other variables.

L2) Assignment to a SV works, and is type-correct: the value being assigned has the VALUE type of
the SV. and the assignment leaves it as the value of the SV (P1). Unchecked code must ensure that
only a SR of the proper type is assigned to a SV. In particular, it must not produce a SR value out
of thin air, unless it is known that there is an equal existing reachable SR value.

L3) A counted SV is reached only through a REF: the allocator which creates a counted SV returns
only a REF to it. There is no safe operation for obtaining a counted SV except from a REF.
Unchecked code must not produce a counted SV except from a REF.

L4) An SR which points to a frame (i.e., a transfer SR) is stored only in a frame which is freed
first. A checked assignment cannot assign a transfer SR unless it points to a global frame. which is
never freed (except by an unsafe operation); when a SR is bound to a name, it must be from the

same or a larger scope. Unchecked code must not preserve a transfer SR after its frame has been
Sreed.

Primitive properties

P1) ASSIGN(10~SV, from~SR) leaves SV.VALUEOF=SR and affects no other non-overlapping variable.
If SV is counted (i.e.. came from dereferencing a REF) it updates the count correctly.

P2) The collector does not free a counted SV holding a SR until the value of the SR is NIL.

P3) The collector does not free a SV until no SR on the stack points to it and it has a zero
reference count.

P4) A SR is stored only in a SV.

Proof of main invariants

S1) Every SV vis good. Proof by induction.
Basis: A SV is good when created by NEW.
Induction: There are three ways v might cease to be good:
Another variable might come to overlap it, but this doesn’t happen (L1).



If v.vALUEOF is SR, it might change:

By assignmeqt to it, but ASSIGN replaces the value in v with another SR value (L2). and this
other value is good (S2).

By an assignment to some cher variable which clobbers v, but no variable of another type
overlaps v(S1), and no assignment to a non-overlapping variable can clobber v (P1).

IE Sv.l\/)ALUEOF is SR. it might cease to be good, but it points to a good SV (S2) which remains good

S2) Every SR is good. Proof by induction.
Basis: the values produced by NEW and by applying a closure are good.

Indqction: the other source of SRs is SVs (P4). and these are good (S1). Furthermore, an SV for
which an SR exists is not freed (S3). so the SR remains good.

S3) A SV v is not freed if there is an SR for it. Proof by case analysis.
A) Ngt by the reference counting garbage collector, because:
'I'(l;)lg)collector frees vonly if no SR on the stack points to it, and it has a zero reference count
An SR can be stored only in a SV, i.e., on the stack or in a counted SV (P4).

The number of SRs pointing to vin counted SVs is equal to the reference count for v, by
induction:

Basis: Both start at zero.
Induction: There are three ways the number of counted SRs pointing to v can change:
ASSIGN to a counted SV, which updates the count correctly, because a counted SV is
reached only through a REF (L3), and any assignment through a REF updates the count
correctly (P1).
ASSIGN to some variable w of another type, but v is good, hence overlaps no variable of
another type (S1), hence is not affected by ASSIGN to w (P1).
Freeing a counted SV, but it is not freed until its value is NIL (P2).
B) Not by the trace-and-sweep garbage collector, because:
It implements the definition of reachability. Note that the collector sets SRs for unreachable SVs
to NIL, thus breaking circular structures.
C) Not by the frame deallocator, because:
A frame is either permanent (a global frame), or an SR which points to it is stored only in a
frame which is freed first (L4).

It is possible to obtain a variable without going through a SR value by using an unsafe pointer-
containing type (PC for short). The non-composite PC types are:

pointer (which includes POINTER TO FRAME, string and uncounted zone);

descriptor; '
A program which obtains a variable from a PC value (by dereferencing a pointer. applying a string
or descriptor, or using NEW or FREE for an uncounted zone) must maintain the safety invariants L1-
L4.

4.5.1 Reference types
This class is a subclass of address (§ 4.5) and has the items:
TARGET: VARIABLE.Type -- Always a variable type.
DEREFERENCE: PROC[r. T]—[T.TARGET] -- Denoted by rt
APPLY: PROC[r. T, arg: T.TARGET.DOMAIN]— -- Inherited from the target type if it has APPLY.
[T.TARGET.RANGE]
f PROC|r. T, arg: T.TARGET.£DOMAIN]— -- Inherited from the target type for each proc f
[T.TARGET./RANGE] in its cluster; see below.

The target of a reference type T may be any variable type VAR U or READONLY U. If T is
READONLY, then T.TARGET is READONLY also: this means that assignment to the dereferenced
address is impossible. Dereferencing a T yields a VAR U (which can then be coerced to a U value if
appropriate). Dereferencing NIL causes the error Runtime. PointerFault.



If the target has an APPLY, DESCRIPTOR, WAIT, NOTIFY or BROADCAST proc, o any recgrd field
procs in its cluster, these are inherited by the reference type (except that APPLY is not inherited by a
BASE POINTER. which has its own APPLY: see § 4.4.3). The value of an inherited /1S
A [~ T. arg: T.TARGET.£.DOMAIN] IN rt.flarg] o ' .

In other words, the address is dereferenced, and then the target’s f is applied. The effect is that a
reference to an array or proc can be applied without explicit dereferencing, a reference to an array
can be turned into a descriptor. a reference to a condition can be used to do a WAIT or whatever,
and a reference to a record can be used to select a field.

Procs which get into a cluster by being in an interface instance are also inherited in this way. but
this is not useful, since they are nor modified to dereference their reference argument: thg is a
deficiency. To compensate for this, you can define such procs to take a REF T, so they will be
useful when inherited from 7T.Cluster to (REF T).Cluster.

4.5.1A REF types

The REF class is a subclass of reference (§4.5.1) and has no additional items. A REF value can be
safely created only by a NEW proc. Every general type except union has one of these (§ 4.3.1).

The type VAR ANY may be the target of a REF; it cannot appear anywhere else. This REF type is
denoted REF ANY. or simply REF. It is implied by every REF type. ISTYPE can be used to test the
particular REF type of a REF ANY value, and NARROW can be used to convert a REF ANY value into
a REF T value (§4.3.1). These two operations are combined in a convenient way by safeSelect32

(§ 3.8). REF ANY does not have a DEREFERENCE proc, and of course there are no procs for it to
inherit from the target.

LIST types

The LIST class is a subclass of REF, and has items:
RANGE: VARIABLE. T ype; -- Always a variable type.
Jirst: PROC[/: T]—[RANGE]; -- Denoted Lfirst, not firsf/]
rest: PROC[/: T]—[T]: -- Denoted /.rest, not rest]

CONS: PROC[z: ZONE ¢ SafeStorage.GetSystemZoné]]. -- Denoted z.CONS[x. y] or CONS[x. }].
X: RANGE. y: T]—>[T]
LIST: PROC[z: ZONE ¢ SafeStorage. GetSystemZone{], -- Denoted zLIST gor LIST g.
g RANGE X ..]—[7]

The TARGET type R of a list type T is opaque, but it may be thought of as an unpainted record

[first: RANGE, rest: 7], thus a list value is a REF to an R. The first and rest procs return the fields of
an R. LIST is short for LIST OF REF ANY.

CONS is NEW[R«[x. )]]: the optional zone tells where to do the NEW. LIST does a series of CONSes,
yielding a list such that

LIST[x;, ..., x ).rest first= X,

Note that the g argument of LIST may have omitted values, which are filled in if possible by the
defaulting coercion for RANGE. Examples:

I: TYPE~INT«0

L: TYPE~LIST OF /;

L L~1L1sT[0, 1, 2. 3. 4]

m: L~LIsT[ . 1.2, 3.4]; -- Same as /, by defaulting.



The type ATOM

An ATOM is a REF to an opaque type which is exported from AtomsPrivate as
AtomRec: TYPE~RECORD[

printName. Rope.ROPE.

propertyList: REF ANY €NIL.

link: ATOM €NIL]
There are no additional items in ATOM's cluster; the useful operations on ATOMs are provided by
the ListsAndAtoms interface. However, the language does provide ATOM literals for atoms which have

Cedasr names as their printnames. with the syntax $n. Examples:
red

$VeryLongAtomMadeUpOfSeveralWords
There is a coercion from ATOM to any enumerated type: see § 4.7.1A.

Anomaly for space in ATOM literals: You cannot put white space between the $ and the name in an
ATOM literal. In return, the name may be a reserved word.

4.5.1B #Pointer types

Pointer is a subclass of reference (§4.5.1). There are two flavors of pointer: short and long. Short
pointers occupy one word, and point only within the 64k word main data space where frames are
allocated. Long pointers occupy two words and point anywhere.

Pointer dereferencing is unsafe; hence all the inherited procs are also unsafe. Dereferencing a
pointer may cause an address fault if it points to storage which is not mapped by the operating
system; this is about the least disastrous thing that can happen if an unsuitable value gets into a
pointer.

Long pointer types have the following dubious items:

®PLUS: PROC[T, LONG INTEGER]—[7] -- Denoted by infix +.
®MINUS; PROC[7, LONG INTEGER]—[T] -- Denoted by infix —.
®DIFF: PROC[T, T]—[LONG INTEGER] -- Also denoted by infix —.
Anomaly for MINUS on pointers. The infix "—" cannot be desugared into dot notation, since there

are two procs denoted by an infix "—" whose first argument is a pointer. The choice between
MINUS and DIFF is based on the type of the second argument.

Short pointer types have the same procs without the LONG. They also have the following coercion,
called lengthening:
LONG: PROC[p: 7]—[LONG POINTER TO TARGET]

Note that VAR types have a VARTOPOINTER proc (denoted by prefix @); this turns a VAR T into a
LONG POINTER TO T.

Anomaly for narrowing to a short pointer. The VARTOPOINTER and BASE primitives turn a variable
into a LONG POINTER. If the compiler can determine that the variable is in the main data space.
then an application of one of these primitives can be narrowed into a POINTER. This is done
statically: if an error is possible it is reported by the compiler. even though the actual narrowing
might have been successful.

The subrange in pointerTC* is only for a pointer type used as the range argument of RELATIVE
(§4.5.4).



4.5.2 Zone types

The zone class is a subclass of address (§ 4.5) and has the items:
NEWTYPE: PROC[U: TYPE]—[A4: REFERENCE].
NEW: PROC|[z: T. U: TYPE]—>[r: NEWTYPE[U]L:
FREE: PROC[z: T. p: VAR NEWTYPE[U]] =[] -- For a ZONE.
FREE: UNSAFE PROC[z: T, -- For an uncounted zone.
p: NEWTYPE[ NEWTYPE[U]]]—I:

Currently there are exactly three zone types:
ZONE. with NEWTYPE = A [U: TYPE] IN MKREF(rarger~ U], which implies REF.

UNCOUNTED ZONE. with NEWTYPE=A [U: TYPE] IN MKPOINTER[arget~ U, long~TRUE]. which
implies LONG POINTER.

MDSZone. with NEWTYPE=A [U: TYPE] IN MKPOINTER[/argei~U. long~FALSE]. which implies
POINTER.

In other words. a ZONE deals in REFs, an UNCOUNTED ZONE in LONG POINTERS, and an MDSZone
in POINTERs. The latter two are called uncounted zone types.

NEW is explained in §4.3.1. FREE takes a pointer p to a variable v containing a reference r to a
variable fv. For a ZONE. the expression denoting p must have the form @v. In spite of appearances.
this is safe: think of v as a VAR parameter to FREE, and the @ as indicating in the application that
it is modified. For example,

{v: REF~NEW[INT): FREE[@)] }
The reference r must be supplied by the NEW proc of the same zone: this is checked for a ZONE.
FREE sets v to NIL. In addition:

For a ZONE, FREE sets all the REF variables of fv to NIL: this helps to break circular
structures. but only the collector actually reclaims storage. Hence FREE for a ZONE is safe.

For an uncounted zone, FREE reclaims the storage for fv by calling the Dealloc proc of the
zone (see below): hence FREE is unsafe for an uncounted zone; the safety invariant
demands that FREE not be called with a pointer unless the variable will not be used any
more. It is best if no other pointers to f¥ exist.

New zones can be obtained. and other aspects of storage allocation monitored and controlled. using
the procs in SafeStorage (for ZONES) or UnsafeStorage (for uncounted zones). It is also possible,
though not recommended. to make up your own UNCOUNTED ZONE using a type like this:
UncountedZoneRep: TYPE~LONG POINTER TO MACHINE DEPENDENT RECORD |
procs(0: 0..31): LONG POINTER TO MACHINE DEPENDENT RECORD |
Alloc (0): PROC[zone: UncountedZoneRep. size: CARDINAL]—{LONG POINTER],
Dealloc (1): PROC[zone: UncountedZoneRep, object: LONG POINTER]
-- possibly followed by other fields-- ].
data (2: 0..31): LONG POINTER -- Optional: see below
-- possibly followed by other fields— ]:
The same structure serves for a MDSZone. with all the LONGs dropped and the field positions

adjusted accordingly. You must use a LOOPHOLE to turn one of these Rep values into an uncounted
zone value.

If z is an uncounted zone, the code generated for z.NEW[7] is
zt.procst. Alloc|z. T.SIZE]
and the code generated for zFREE[p] is
{temp: LONG POINTER ~pt; pt €NIL; zt.procst.Deallodz temp] }
Usually p is @gq. for some variable g which holds the pointer being freed.

Within this framework, you may design a representation of zone objects appropriate for your
storage manager. In general, you should create an instance of a UncountedZoneRep for each zone
instance. The procs record can be shared by all zones with the same implementation; the data
pointer normally references the state information for a particular zone.



4.5.3 POINTER TO FRAME types

This class contains the types of the frames of instances of implementation modules (§ 3.3.5). It is a
subclass of address, and has the items:

FRAME: TYPE -- POINTER TO FRAME(/] FRAME = /.
FROMIMPLINST: PROC[FRAME]—[T7] -- Coercion from FRAME to T.
COPYIMPLINST: PROC[: T]—[T] -- Returns a copy of the module instance /.

Denoted NEW /.
TOPROGRAM: PROC[T]—FRAME.PROGRAMPROC  -- Coercion from T to the program proc
for the instance.
In addition. T has a field proc for each value in the frame.

Note that there are coercions from an imported module instance //: / to the corresponding POINTER
TO FRAME, and from the latter to the program proc for the frame. You can get a POINTER TO
FRAME[/] value from an imported implementation using the first coercion, or from NEW PF, where
PF is an existing POINTER TO FRAME[/] value (an application of COPYIMPLINST).

4.5.4 RELATIVE types

Sometimes it is convenient to have addresses which are relative to the base of some region. Such
pointers can be shorter than ordinary pointers. Also, the entire collection of variables in the region
can be moved in storage simply by changing the base; in fact, it can be written out and later read
in to a possibly different place, and any relative pointers stored in it will still be valid. Cedar
provides some (unsafe) support for this facility, in the form of RELATIVE types. A RELATIVE type
has a target type which plays the same role as the target type in an ordinary pointer. The analogy to
dereferencing a pointer is applying a base pointer to the relative pointer. The RELATIVE class has no
DEREFERENCE or APPLY proc. The only useful thing to do with a RELATIVE value is to apply a
suitable BASE POINTER to it (§ 4.4.3).

Relative is a subclass of address (§ 4.5) and has items:

BASE: TYPE: -- The type of the base pointer.
SUBRANGE: SUBRANGE.Type -- The subrange type: only for pointers.
TARGET: TYPE; -- If b: BASE and rp: T then ¥{rp] has type TARGET.

A relativeTC takes a pointer or descriptor type as its range argument. The TARGET of the RELATIVE
type is the TARGET of the range. To indicate the desired size of a RELATIVE POINTER value, the type
constructor for the range pointer type can specify a subrange of CARDINAL. There are coercions
between RELATIVE POINTER types which differ only in their subranges; these are just like the
coercions between subranges of CARDINAL (§ 4.7.3).



4.6 Record and union types

sorecordTC :: = Taccess!2 (

IMONITORED RECORD fields#3 | MKRECORD] fields] |
MACHINE DEPENDENT RECORD
* (mdFlelds | efields#3)) mkMDRECORD[mdF ields | fields]
s1imdFields ::= [((n pos). !.. : ~In 50.52. MKMDFIELDS[LIST[ ( LIST] ([$n. pos] ). ... ] . t). ... 1]
2eaccess!2 )., ...] N '
siifpos ii= (e, e, .. e))) - In5Ls3. MKPOSITION[firstWord ~e, . firstBit~e,. lastBit~e,]
s2unionTC ::= SELECT tag FROM MKUNION[selector~tag. variants~LIST[
(n. ...=> (fields® | mdFieldss! | eNULL)). ... ([ labels~LisT{ $n, ...]. value~fields ]). . .11
2. ENDCASE
Legal only as last type in a recordTC or unionTC. ) ‘
sitag ;i = (n (fpossli|) : 2eaccessi? | [ ([ $n. (pos | NIL) ]| SCOMPUTED' | SOVERLAID') ,
%*COMPUTED | *’}'OVERLAID (] ¥) (t| TYPEFROMLABELS ) |

In 44, 52. * only in unionTCS2

Examples

Cell: TYPE~RECORD[next: REF Cell, val: ATOM]:

Status: TYPE~MACHINE DEPENDENT RECORD [ -- Don’t omit the field positions.
channel (0: 8..10): [0..nChannels), -- nChannels < 8.
device (0: 0..3): DeviceNumber, -- DeviceNumber held in < 4 bits.
stopCode (0: 11..15): Color. fill (0: 4..7): BOOL, -- No gaps allowed, but any ordering OK.
command (1: 0..31): ChannelCommand J; -- Bit numbers >16 OK; fields can cross

-- word boundaries only if word-aligned.

Node: TYPE~MACHINE DEPENDENT RECORD | -- rands i$ a union Or variant part.
type (0: 0..15): Typelndex. rator (1: 0..13): Op34, -- This is the common part.
rands (1: 14..79): SELECT n (1: 14..15): * FROM -- Both union and tag have pos.

nonary =>]. -- Type of n is {nonary, unary, binary}.
unary =>[a (1: 16..47): REF Node], -- Can use same name in several variants.
binary =>[a (1:16..47). b(1:48..79): REF Node] -- At least one variant must fill 1: 14..79.
ENDCASE [;

Record types are Cedar's facility for grouping values of different types (since group and binding
types cannot be named or written in ordinary declarations). Unions are closely related to records
because they must be embedded within records in current Cedar.

4.6.1 Record types

RECORD is a subclass of assignable (§4.3.2), or of general (§4.3.1) if any component is not
assignable. The MKRECORD type constructor takes one argument called fields: a declaration or group
of TYPEs; in the latter case, it is rebound to a decl with secret names. If fields= [n Ty nyt T

2 * k

"z: PROC[T]—T, -- One for each name in the decl.

FIELDS: DECL

CONS: PROC[b: FIELDS]—[T] -~ Apply by T b ; a coercion from the binding.
UNCONS: PROC[T]—>[FIELDS] -- No denotation; a coercion to the binding.

UNWRAP: PROC[7T]—[U] -- If fields=[n: U], i.e. for a single-component record
Nameless fields are not very useful, since there is no way to name the field procs. The values of the
n, procs are not accessible; they can only be applied with dot notation. Thus if r is a record value.
r.n; denotes its ith field.



A record type T with a single component of type U inherits all of U's cluster. There is also a

sgfsrglon UNWRAP from 7 to U. The effect is that a T value behaves just like a U value. but not vice

A variant record inherits some procs from the sequence or union type it contains (§ 4.4.2B, § 4.6.2).

If v is a VAR U returned by a field proc, you can only apply @ to it if USIZEDL. or Us
representation occupies an entire word, or by accident v happens to occupy a whole word in the
record representation.

Record types in interfaces are painted: each type produced by RECORD...] (i.e.. by MKRECORD or
MKMDRECORD) in an interface has a unique mark. Thus two occurrences of a record type constructor
in an interface always produce two different iypes. In this respect, recordTCs are like unionTCs and
enumerationTCs, and differ from all other type constructors. In a program module. however. record
types are not painted (unless they are machine-dependent or union-containing; this is a deficiency.
and these should not be painted either in this context). The reason is to ensure that-old values will
still be useful after module replacement. Since painting is the only way to generate unique marks, it
is the only way that an implementation can guarantee that its types cannot be forged. In practice,
however, the protection afforded by opaque types (§ 4.3.4) is usually adequate.

Representation of records: A record variable is represented by a contiguous block of storage. in
which the bits representing each field are contiguous and do not cross a word boundary unless they
fill a block of words, but are otherwise arranged at the discretion of the compiler. It is not possible
to obtain a REF to a record element; this is because the implementation of both reference counting
and REF ANY discrimination requires more information about each VAR than is available for a
record field. Unless a field fills one or more words, it is not possible to obtain a pointer to the field
either (using @); this is because pointers point to words.

Restriction on record sizes: A tecord type T must have T.SIZEC2!2.

A MACHINE DEPENDENT RECORD type constructor can specify the exact arrangement of the fields in
a record, using the syntax of rules 51-53. Examples are given with the rules. Fields must be
arranged according to the following constraints.

A pos’’! (w) for a field with type U means that the field occupies words w through
w+ USIZE, which are bits 16w through 16*w+ U.SIZE)—1, of the record variable: (w: f.})
means that it occupies bits 16w+ f through 16w+ 1 inclusive (0</</ is required; there is no
upper bound on /). Like everything else in a type constructor, all of w. f and / must be
static.

The pos must be large enough to hold a variable of the field type U: if U.SIZEDL, it must
exactly fill U.S1ZE words; if U.SIZE=1 and U is represented in less than 16 bits (possible for
a discrete, row, or record type), it need only be as large as the representation, but may not
cross a word boundary. Union fields are treated specially (§ 4.6.3).

If there is a union field, the subfields of at least one case must exactly fill the pos specified
for the union field.

Fields may not overlap. and if they fill at least one word, they together must completely fill
an integral number of words. The order of fields is not important, except that any variant
part must come last both in the layout and in the constructor.

If any field has a pos, each must have one. A machine dependent record may have no pos.
In this case, the fields are arranged consecutively. and the constructor must be such that
that the rules about word alignment and boundary crossing are not violated by this
arrangement; this may require the presence of dummy fields which fill out unused space.

Note that a pos is really explicit code for the field proc, written in a rather restrictive special
language.



4.6.2 Variant record types

wo classes. unions (§ 4.6.3) and sequences (§ 4.4.2B). whose types are not first-class type
Iernllirees.agitt canconly appear as.( §the ty)pe of the last field of a record or union. A record whose last
field is one of these types is a variant record, and its last field is a variant field. The other .propert).'
shared by a union and a sequence type is that each is a generallzatlon of a number of special cases:
there is a single value called the tag which identifies the special case.

For a union, the special cases are unrelated. and the tag is a value from an enumeration.

For a sequence, the special cases are rows of different length. and the tag is a value from
the row’'s domain. .

The tag® is treated as a field of the containing variant record. This field is readonly. 1For a union
it can be changed only by an unsafe assignment to the entire variant part or the entire varant
record. There is no way to change the tag field of a sequence. TA tag of COMPUTED or OVERLAID
means that there is no tag field; instead, the tag value must be supplied by an expression n a
withSelect* when it is needed for specialization. Tags of * and OVERLAID are only for unions, and
are explained in §4.6.3.

The cluster of a variant record has the items:
The usual procs for the record fields (including the variant field itself, and the tag). and any items
inherited by the record type.
For a union, the types of the bound variants; 7.n=T.SPECIALIZE[$n}.

TAGTYPE: TYPE -- The type of the tag.

TAG: TAGTYPE; -- Another proc for the tag field.

VARIANTTYPE: TYPE -- The (union or sequence) type of the variant field.
VARIANTPART: PROC[7]—>[VARIANTTYPE] -- Another proc for the variant field.

SPECIALIZE: PROC[x: TAGTYPE]—>[BT: TYPE] -- BT is a bound variant of T; denoted 7{x] for a

sequence-containing variant record type.

Specialization yields a record type called a bound variant in which the type of the variant field is
one of the special cases of the union or sequence. The bound variant differs by:

GENERAL: TYPE -- The type of the unbound variant record.
lacking SPECIALIZE,

a readonly tag field.
for a union:
VARIANTTYPE equal to the corresponding case,
procs inherited from the corresponding case.
Note that if the special case is itself a union or sequence, the bound variant is still a variant record;
otherwise it is an ordinary record. A bound variant of a union-containing variant record is denoted
T.n, since the bound variant types are in the cluster of the variant record type (ealternate, obsolete
notations are 7[n] or n T). A bound variant of a sequence-containing variant record is denoted T{e].

Anomaly for equality of variants: A variant record type has EQUAL only if it does not have a
SEQUENCE field. and for any two tag values @ and b, T.a.SIZE=T.bSIZE.- Even if not all sizes are

equal. the bound variants have an EQUAL which takes the variant record as its second argument:
hence bv=rv is always correct.

The special properties of the subclasses of variant records are given in the sections on unions
(§4.6.3) and sequences (§ 4.4.2B).

4.6.3 Union types

Together with REF ANY, union types provide Cedar’s facilities for associating a type T with a class
which contains subtypes T, ... T . and dynamically narrowing a value of type 7 into a value of the

proper type 7. REF ANY is more convenient:

Any REF T is a subtype of REF ANY; no pre-planning of the subtypes is required.



REF T implies REF ANY; hence procs taking REF ANY accept any REF T without further ado.
Union types. on the other hand. have performance advantages:

A union type is just a value, not constrained to be a REF. These values or their VARs can be

em.bed.ded.in records or arrays without paying for extra storage allocation or an extra level
of indirection.

The subtype of a union type can be discriminated somewhat faster than a REF ANY.
Union types can therefore be recommended when performance tuning is required,

Like record. union is a subclass of assignable (§4.3.2). or of general (§4.3.1) if it has an
unassignable component. Assignment to a union is unsafe. A union type is defined by a unionTC>?;
it is not a first-class type in Cedar, and can only appear as the type of the last field of a variant
record (§4.6.2) or another union. A union type has items:

the types of the union cases, named by their tags ~ thus case » of union type T is denoted by T.n;
CONS (see below).

The types and tag are inherited by the containing variant record. which is the type a program

normally deals with. Note that a union type is always painted (although it shouldn't be painted in
an implementation).

A case of the union has items:

the field procs for its fields;

GENERAL: TYPE -- The union type of which this is a case.
These are inherited by the containing bound variant record in the obvious way.

The cases of the union are given by the arms of the SELECT. The type of the tag must be an
enumeration, and each case is named by one or more literals of the enumeration. Thus Node in the
example has cases binary, unary and nonary. and the type of the tag could have been written {binary.
unary. nonary}. The * which actually appears for the tag type is short for an enumTC** which lists
all the names preceding the => symbols of the SELECT in turn. If the tag type is given explicitly,
any enumeration values which don’t appear preceding a => symbol have empty cases.

A record type 7 containing a union field is a variant record. T is a first-class type which can be
used like any other Cedar type. The only items in the cluster of T are the ones of the variant record
class. The fields of the union cases are not in the cluster of the variant. However, the fields of the
selected case in a bound variant are in the cluster (e.g., in the example Node.binary has procs for a
and b). The name declared in a field must not be the same as any name declared in the containing
record. However, the same name may be declared in more than one case of the union. eNULL
following => is an obsolete synonym for [}.

Anomaly for union constructors. A constructor for a union value has the form d...], where a is one
of the enumeration literals of the tag type, and [...] is an ordinary argBinding?’ for the fields of case
a. The literal 2 may not be omitted. Thus

n: Node<«[rator~ plus, rands~ binary{a~NIL, b~NiL]]
and also

n: Node.binary*«[rator~ plus, rands~ binaryla~NIL, b~NIL]]

Anomaly for union values: If n is the name of the variant field, and 7 T, r.n is legal only as the first
operand of «. In all other cases. only a constructor can denote a union value.

The primitive ISTYPE can be used to distinguish the case of a union-containing variant record value
x, and NARROW can be used to obtain a value bx of the bound variant type from x; see §4.3.1. The
safeSelect’ construct is a useful and efficient combination of ISTYPE and NARROW which deals
systematically with any number of cases. The withSelect’® construct is an unsafe version of
safeSelect which can be used with any union type, and is the only alternative when the tag is
COMPUTED or OVERLAID. See § 3.8 for discussion of these forms.



If the tag is OVERLAID, any field name that appears in exgctly one case of the upion hﬁs ai 'proih mt
the cluster of the variant record. When such a proc 1s applied to a value x. there is no chec mg1 a
x is the proper case of the union. +Obviously this is not typesafe, and it is also unsafe in general.

ion U has machine-dependent fields if and only if its containing record type R 1S machine-
Qe;;J:r:gent. U must be last goth in the fields and in the representation. Its pos mcludps the tag. It
need not be word-aligned. though its tag and each field in each case must obey the alignment rules
for record fields (§4.6.1). If R's representation is <16 bits in size, all cases must be the same size.
Otherwise. all cases of R must be a multiple of 16 bits in size, and at least one case of U must
exactly fill the space given by the pos for U.

4.7 Ordered types

Ordered types can be compared. and they have subranges. The subclasses of ordergd are discrete,
numeric, pointer. and subrange. Ordered is a subclass of assignable (§ 43.2), and has items:

LESS: PROC[T. T]—[BOOL]; -- Apply by infix <. See rules 19, 22.
GREATER: PROC[T, T]—[BOOL]: -- Apply by infix >. See rules 19, 22.
MAX: PROC[T* T.FIRST, ...]=[T]; -- Apply by MAX[x, y. ...
MIN: PROC[T« T.LAST, ...]—=[T]- -- Apply by MIN[x, y. ...]

All these procs do just what you expect. MAX and MIN accept more arguments than you have the
patience to write. Pointers have these procs only if ORDERED =TRUE.

The class also has items:
SUBRANGE: CLASS; -- The class of subrange types of T.
MKSUBRANGE: PROC[first, last. T|—>[SUBRANGE]: -- See rule 25 for denotations.

MKEMPTYSUBRANGE: PROC[first: T]—[SUBRANGE] -- See rule 25 for denotations.
These are discussed in §4.7.3

4.7.1 Discrete types

The discrete types are those which have a useful bijection into an interval of the natural numbers;

whole numbers and enumerations. These are the types that can be used as domains for row types
(§ 4.4.2). The class is a subclass of ordered (§ 4.7), and has items:

FIRST: T

LAST: T

PRED: PROC[x: 7T]—{T] -- Predecessor. May cause a bounds fault.
SUCC: PROC[x: T]—[T] -- Successor. May cause a bounds fault.

Whole numbers are discussed in §4.7.2A as a subclass of numeric.

4.7.14 Enumeration types

ssenumTC :i= {n,.. }| MKENUMERATION[ LIST[$n, ...] ]
MACHINE DEPENDENT {((n]) (e)| n), ... } MKMDENUMERATION[LIST[( [($n | NIL), e} | [$n, —1]). ... ]]
Examples

Op: TYPE~{plus. minus, times, divide}:
Color: TYPE~MACHINE DEPENDENT { -- A Color value takes 4 bits: green=1.
. red(0). green, blue(4). (15)}: c: Color;

Enumeration is a subclass of discrete (§4.7.1). An enumeration type is isomorphic to a [0..4]
subrange of the integers. without any of the arithmetic operators. The enumeration type T={n,. . ...
n,} has in its cluster:



-- #The value of the first element of 7.
Also denoted T[n,)

n: T -- oThe value of the last element of 7.
Also denoted 7[n,]
FROMATOM: PROC[ATOM]—>[T7] -- A coercion. The argument must be static.
ORD: [T]=[INT] * == T.FIRST.SUCC".ORD = n.
VAL: [INT]=[T] -- Denote by target typing only. VAL[x.ORD]= x

The ATOM to enumeration coercion is done only at compile-time; the effect is that you can write $n,
rather than T.n, for an enumeration literal anywhere except before a dot (and by desugaring, as the
first operand of an operator). Note that when the n; appear in the type constructor, or as tags in a

variant record dec}aratipn or constructor, they are not expressions; hence this coercion doesn't
apply, and you can't write $n, in those contexts.

ORD and VAL convert between T and INT.

Enumeration types in interfaces are painted; each type produced by {..} (i.e., by MKENUMERATION
Or MKMDENUMERATION) in an interface has a unique mark. Thus two occurrences of an enumTC
always produce two different types unless both are in implementations and are textually identical. In
this respect, enumTCs are like recordTCs and unionTCs. and differ from all other type constructors.

e Anomaly for enumeration literals: You can write n, for T.n, in an argument or binding where the
desired type is 7. In these contexts, even if n, is known in the current scope, it denotes T.n. and not

the value it is bound to in the scope. Thus

Color; TYPE~{red blue, green}:

red. Color« Color.blue,

c. Color« red
leaves c¢=Color.red, not = Color.blue. In fact, red=red is false! It is best not to redeclare enumeration
names. Better yet is to always write atoms for enumeration literals, and qualify explicitly with the
type in the rare cases where this fails because the literal comes before a dot. Thus red=$red would
be false, and $red= red would be illegal.

Representation of enumerations: The representation of », in an enumeration type is the same as that
of the INT /. For a subrange of an enumeration, T.FIRST.SUCC' is represented by i.

The type BOOL or BOOLEAN
This is an enumeration type {FALSE, TRUE}, BOOLEAN is a synonym for BOOL. It also has items:
NOT: PROC[BOOL]—[BOOL] -- Denoted by prefix NOT or ~.
IFPROC[U: TYPE, test: BOOL, -- Denoted by IF rest THEN "ifTrue"
ifTrue, ifFalse. PROC[]—[U]]—[U] ELSE "ifFalse"

The meaning of "ifTrue" and "ifFalse" is that in the construct

IF test THEN ifTrue ELSE ifFalse
the ifTrue and ifFaise expressions are converted into parameteriess procs and passed to IFPROC, which
applies the one selected by rest. The other one is never applied, so that expression is never
evaluated.

Note that AND and OR look like infix operators on Booleans, but have special evaluation rules for
their arguments, because they are desugared into IF expressions (§ 3.7). The literals TRUE and FALSE
can always be written without qualification.



The type CHAR or CHARACTER
This is an enumeration type which could be written {"™000. ..., "\377} if the CHAR literals were
names: CHARACTER is a synonym for CHAR. CHAR literals are written:

As ‘¢ for any character ¢ except \. denoting the ith CHAR value, where i is the ASCil
character code for c.

As "\ddd. where each d is an octal digit, denoting the dddBth CHAR value.

As "\¢ for various values of ¢, denoting the CHAR values for various non-printing or
otherwise confusing characters (see rule 57).

eAs dddC, denoting the same value as "\ddd (obsolete).

Note that CHAR literals are not names, and you cannot us€ any pf the notations for enumeration
literals: CHAR[c/] or CHAR.c/ or $¢/ are not allowed if ¢/ is a CHAR literal.

CHAR also has the following dubious items:

®PLUS: PROC[T. INTEGER]—[7] -- Denoted by infix +.

eMINUS: PROC|[ T INTEGER]—[T7] -- Denoted by infix —.

®DIFF: PROC[T. T]—[INTEGER] -- Also denoted by infix —.
Anomaly for CHAR MINUS: The infix "—" cannot be desugared into dot notation, since there are
two procs denoted by an infix " —" whose first argument is a CHAR. The choice between MINUS and

DIFF is based on the type of the second argument.

4.7.2 Numeric types

Numeric types have arithmetic operations. There are no numeric type constructors, only the
primitive types INT=LONG INTEGER, LONG CARDINAL, INTEGER, CARDINAL and REAL. All except
REAL are subclasses of whole numbers, corresponding to different finite subsets of the integers, and
are discrete as well (§ 4.7.1). The class is a subclass of ordered (§ 4.7), and has items:

pLUS: PROCIT. T]—(T] -- Denoted by infix " +".

MINUS: PROC]T. 7]—[7] -- Denoted by infix " —".

TIMES: PROCIT. T]—[T] -- Denoted by infix "*".

DIVIDE: PROC[T, T]—[T7] -- Denoted by infix "/". Truncates toward

0: —(i/))=(-i)/j=i/(—)), except for REAL,
which normally rounds.
ABS: PROC[T]—[T]

UMINUS: PROC[7]—(7] -- Denoted by prefix " —".
4.7.2A Whole numbers

This class is a subclass of discrete (§ 4.7.1) and of numeric (§4.7.2), and has the item:
REM: PROCIT. T]—[T7] -- Denoted by infix MOD. i=/*(i/j)+iMOD j

Considerable cpnfug:ion surrounds Cedar’s treatment of whole numbers. This section gives a simple
but somewhat idealized description of how it works. Then it tells you the hard facts; future versions

of Cedar will adhere more closely to the ideal. and this part will shrink. Finally, it describes various
obsolete facilities whose use is not recommended.

In gjelnesria], a whole number type (except the CARDINAL types) is a subrange of INT, which is
[—2°%..2°Y). This means that all the arithmetic procs work on INTs. If an argument of such a proc is
a subrange value, it is coerced to INT (this cannot lose information or cause a fault), and the result

is coerced to a subrange type if necessary (with a possible Runtime. BoundsFault). An arithmetic proc
gives a BoundsFaulr if its result is not an INT (overflow).



Anomaly in arithmetic: In fact, there are two deficiencies in the implementation:

1) There is no overflow checking on the numeric procs, except for DIVIDE and REM. which may
raise an ERROR defined in /nline.

2) A subrange with <2 values is called short (currently all subranges have this property, as
do INTEGER and‘ NAT). If all arguments are short, the result of an arithmetic proc is
truncatelcsi to 16 bits without notice (even if it is static). This means that the result is always
IN [-25.2%), and may differ from the correct result by some muitiple of 2%, You can

force proper INT arithmetic by writing at least one argument as x.LONG rather than x. Thus
the program

x. y. [0..10000)«1000;
20 INT e x*y;
W INT¢ x.LONG*y

initializes w to 1000000 but z to 16960. Beware. This will also happen if x and y are
declared as INTEGER or NAT, since these too are short.

There are several forms of whole number literal, given in rule 57. The radix may be:

Decimal, the default, or specified by D after the number.

Octal, specified by B after the number. A sequence of digits without a B is never taken as
octal, except in a CHAR literal.

Hexadecimal, specified by H after the number. A hex number may include the letters A
through F, denoting the hex digits with decimal values 10 through 15. It must start with a
digit in the range 0 through 9, however.

The optional number following the radix character is a scale factor, given in decimal; that many

zeros are tacked on the end of the number. Precisely,

numy R numy = num; O R nums if num,= num

1R0=num1R

2
num

Note that literals are always non-negative; a static negative value can be obtained by arithmetic;
eg., — 1.

Representation of whole numbers: Short values are represented in one word; other INT values
require two words. The representation is twos complement, with one more negative than positive
value.

Performance of whole numbers. Arithmetic is less efficient on subranges with FIRST#0 (except'for
INTEGER, which is efficient). Widening a short value to INT is more efficient if FIRST=0. Multiply
and divide are quite slow when the arguments are not short. Short divide is faster when FIRST=0
than for INTEGER.

The interface Infine has inline procedures for doing bit manipulation on numbers, for obtaining the
quotient and remainder simultaneously, and for doing certain other calculations more efficiently
than is possible using the procs described above.

eCardinal types

The type LONG CARDINAL has elements in the range [0..2%): CARDINAL is the subrange [0..2!%).
The arithmetic procs produce answers modulo 22 (or modulo 2!® if all arguments are short
cardinals). Use of these types is not recommended, mainly because there are confusing coercions to
and from INT. If you program so that these coercions are never invoked, by never mixing
CARDINAL and INT values, you will avoid these problems: in the future Cedar will not have these
coercions, and cardinal types will be harmless.



Anomaly for mixed integer and cardinal arithmetic. ®Current Cedar attempts to do the “rjght" thing
when subranges of INT are mixed with subranges of LONG CARDINAL 1n an arithmetic proc. by
supplying various coercions which may lose information. Do not use these features (unfortunately,

the compiler won't check for their non-use); if you need to understand them. consult a wizard.

4.7.2B The type REAL

Cedar uses the 1EEE standard 32-bit floating point arithmetic for REALs. There are REAL literals with
syntax given in rule 57; they are rounded to the nearest represgntable number. The exponent, if
present. indicates the power of 10 by which the number or fraction should be multlphed. A literal
that overflows the representation is a static error; one that underflows is replaced by its
denormalized approximation. Note that a REAL literal can begin. but not end. with a decimal point.

The interface CedarReals has items for handling exceptions that can arise in real arithmetic, for
changing the rounding modes, etc.

4.7.3 Subrange types

Each discrete type U has a MKSUBRANGE type constructor; its application is denoted by the syntax in
rule 25. The first and last arguments specify the first and last elements of the subrange: the FIRST
and LAST items in the subrange cluster have these values. The number of values in the subrange
type is last—first+1. The subrange is empty if lasefirse. It is also possible to make an empty

subrange with firs/=U.FIRST using the EMPTYSUBRANGE type constructor. You cannot make an
empty subrange with last= U.FIRST.

In current Cedar the arguments of MKSUBRANGE must satisfy
— 2B < firsi<215 AND (last— first)<21¢ —1 AND lasK(IF first<O THEN 235+ first ELSE 216)

There is a subrange class for each discrete type, which is a subclass of discrete (§4.7.1), with the
items:

GROUND: TYPE; -- The type whose MKSUBRANGE OT

EMPTYSUBRANGE proc produced T.

TOGROUND: PROC[x: T}—[GROUND] -- A widening coercion.

FROMGROUND: PROC[x: GROUND]—[T7] -- A narrowing coercion; may raise

: Runtime. BoundsFault. Apply explicitly by 7{x].

Note that there are coercions both to and from the ground type. The former cannot lose
information or raise an exception, but the latter raises BoundsFault if its argument is not in the
subrange. Subranges have their own FIRST, LAST. and ASSIGN items, as well as the items of general.
They also inherit unchanged all the procs of the ground type with names not in the subrange class
(including the MKSUBRANGE and EMPTYSUBRANGE type constructors); these procs still take the same
arguments, and the coercions make it convenient to apply them to subrange values. There are no
special arithmetic or comparison procs for subranges. Note that assigning a value of the ground type
to a subrange variable will invoke the FROMGROUND coercion, with its attendant bounds check.

Representation of subranges: If T is a subrange type, 7.FIRST is represented by the INT 0 (except for
INTEGER. whlch has 0 represented by 0), and T.LAST by the INT (7.LAST— T.FIRST+1). The number
of bits required to represent a T value is the n such that

2"~ (T .LAST — TFIRST + 1)< 2"

In curggnt Cedar, a subrange value always fits in one word, because a subrange may not have more
than 2'° values.



4.8 TYPE types

All type values have type TYPE. TYPE is not a general type; it lacks SIZE, NEW and the other general

procs nearly all.types have. Furthermore, in current Cedar a type can't be passed as a parameter,
with two exceptions:

An interface type parameter can be declared in a DIRECTORY statement, and the resulting
interface type can be used to declare an interface parameter in an IMPORTS clause. The

argument for this latter parameter is supplied by an implementation which exports the
interface type. See §4.3.5.

An opaque Or exported type can be declared in an interface module. An implementation of
the interface provides the actual argument. See §4.3.4.

A type also can't be returned as a result, with two parallel exceptions:
an interface type is returned by an interface module:
an exported type is returned by an instance of an implementation.
The other possible uses of a type value are these:
A type value appears in a declaration, after a colon; e.g.. i; INT.
A type value appears as a value bound to a type name; e.g.. T: TYPE~INT.

Some of the values in the cluster of a primitive type can be denoted by 7.n. In general a
proc cannot be denoted this way, though it is often possible to write x./...] to apply the
primitive P to x and other arguments.

Certain primitives take type arguments: CODE, DESCRIPTOR, FIRST. ISTYPE, LAST,
LOOPHOLE, NARROW, NEW, SIZE and a number of type constructors.

The runtime type system (in the interface AMTypes) provides complete facilities for manipulating
types during execution of the program (but currently not for constructing them). The type values it
manipulates have the type AMTypes. Type. rather than TYPE. A AMTypes.Type can be obtained from a
TYPE using the primitive:

CODE: PROC [T: TYPE]—[AMTypes. Type).

In a number of cases the syntax 7[x] (which looks like applying a type value) can be used.
Depending on the class of T, the meaning varies. The cases are summarized here, and described in
detail in the appropriate section above:

TYPE applied to a static integer » yields an opaque type of size n; applied to ANY it yields a
fully opaque type (§ 4.3.4).

A record type applied to a group or binding yields a record value; this is called a record
constructor (§ 4.6.1). The same thing works for arrays (§ 4.4.2A).

A sequence-containing record type applied to a (not necessarily static) CARDINAL yields a
record type containing a sequence of definite length, which can only be used in NEW and
SIZE (§ 4.4.2B).

A subrange type (including NAT. INTEGER, or CARDINAL) applied to a value of its ground
type yields a subrange value (§4.7.3).

eA variant record type applied to a static tag value yields a bound variant type (§ 4.6.2).

eAn enumerated type applied to a name which is one of the enumeration literals yields the
corresponding enumeration value (§ 4.7.1A).

The last two cases are obsolete notations for expressions which should be written with dot notation.

One other use of TYPE is to denote the type of an interface: TYPE n (§4.3.5).



4.9 Miscellaneous types

©4.9.1 Unspecified

The type UNSPECIFIED both implies and is implied by any type 7 with T.s1zeé=1. The type LONC%
UNSPECIFIED is implied by any type T with T.SIZE=2, and implies any type 7 equal to a'type 0
the form LONG .. or REAL. In a CHECKED block. 7 must not be RC (§ 4.5)..These lypgs are
assignable (§4.3.2). and in addition have a peculiar collection of operations in their clusters: if you
need to know about any of these, consult a wizard. The main use of u_nspecnﬁed types is as domains
of procs which must accept an assortment of types as arguments. Their use should be avoided if at
all possible.

4.9.2 Kernel types

Declarations are explained in § 2.4.5, groups in §2.34, and bindings in §2.3.5. There is a summary
of the relations among these classes in §2.8. The differgnt kinds of constructor are explained in
§2.2.5. Precise definitions of the types and primitives are in §2.2.1.

4.10 Concurrency

This section describes the Cedar facilities for concurrent programming, and offers some very sketchy
guidance on the proper construction of concurrent programs. The paper by Lampson and Redell

("Experience with processes and monitors in Mesa,” Comm. ACM, Feb. 1980) has more information
on this subject.

4.10.1 Processes

FORK creates a new concurrent process P, which is returned as the value of the FORK. P runs the
proc which is the first argument of the FORK. P is destroyed when the proc returns. JOIN P waits
until P is destroyed, and returns the results returned by the proc. Thus

x*JOIN FORK Proc|x. y]
is an inefficient way of doing

x€ Prod x. y]
Process.Detach[ P] never waits, and causes the results of P to be discarded silently. If you do neither
JOIN nor Detach, the process stays around uselessly after its proc returns.

A FORKed proc runs just like one which is applied in the usual way, except that an exception which
escapes from it is not propagated to the proc doing the FORK, but instead calls the debugger (an
applEn27.1 can be written on a FORK, but it does not catch exceptions from the new process). Thus

any proc that can be FORKed can also be called normally, but not vice versa, since a proc to be
FORKed must handle all exceptions.

4.10.2 Monitors

Monitors are for synchronizing access to shared variables. A monitor is a construct which unifies
synchronization, declaration of shared data, and the code which touches the data. A monitor is a
module which normally contains all the procs that access a certain set of shared variables. These are
of two kinds (declared in the block which contains the proc body)., ENTRY procs which can be
called only from outside the monitor, and INTERNAL procs, which can be called only from within
the monitor. A monitor module can also contain other, external procs; these are in the module, but
are not considered to be in the monitor. They have no special properties, and should not access any
shared data that changes; however, this rule is not enforced.



Only one proc in the monitor is allowed to run at a time, so that such a pro

only one process could access the data. Associated with a monitor there ls)hofjlge}l;i}vgi az’sn:crzlfig%?
which is true of the shared data whenever no monitor proc is running. This invariant can be
assumed whenever an ENTRY proc is entered, and must be established whenever an ENTRY proc
returns, and whenever a proc in the monitor does a WAIT. There should be no shared variables not

protected by a monitor. Further discussion of how to write concurrent programs that work is beyond
the scope of this manual.

There is exactly one MONITORLOCK variable associated with each monitor (nof necessarily with each
MONITOR module instance, though this is so in the simplest case). Note that this is a variable. and is
not asmgnablp; usually you use a reference to it. In most cases. however. this variable is not
declared explicitly, but instead is declared implicitly with the name LOCK:

A MONITOR module with no LOCKS clause has an implicit declaration of a variable LOCK:
MONITORLOCK.

A MONITORED RECORD has an implicit declaration of a field LOCK: MONITORLOCK.

The locks# clause in a MONITOR module determines which monitor all the entry and internal procs
Qf the module belong to (i.e.. which MONITORLOCK they lock and unlock). There are three cases.
increasingly complicated to handle and providing increasing amounts of flexibility and concurrency.
Use the simplest case you can get away with.

1) If there is no locks clause, the procs in one instance of the module all belong to a single
monitor associated with the instance. The MONITORLOCK is the LOCK variable of the
module instance.

2) If there is a locks clause but it has no USING clause, the e of the locks clause is evaluated to
obtain the MONITORLOCK. This is done in the scope of the module parameters and any
open on the module block. This case is useful when procs in several MONITOR modules
must be part of the same monitor. One module declares the lock. and the others import it.
Alternatively, it can be allocated elsewhere, and passed to each instance at initialization.

3) If the locks clause has a USING n: T.every proc P_in the monitor must have a parameter
n;: T. The e in the locks clause is made into a proc
P PROC[n,: f] RETURNS [MONITORLOCK]~{RETURN[e]}
(in the same scope in which e is evaluated in (2)), and P is applied to the n parameter of

P to yield the lock variable each time it is needed. This case is useful when there are

many instances of the shared data, all operated on by the same procs. and each instance has
an invariant which is independent of the others.

Restriction on LOCK expressions: The evaluation of the expression that yields a lock must not do a
WAIT.

Caution that lock expressions must be functional. In cases (2) and (3). the expression that yields the
lock variable is reevaluated each time the lock is needed, i.e., at start and end of each ENTRY proc
application. and of each WAIT. Within a given application of an ENTRY proc, it must always yield
the same variable, or chaos will result; however, this is not enforced.

Caution on global variables with USING: In case (3). the global variables of the MONITOR module
instance are not protected by the lock. Almost certainly they should be changed only during
initialization.

eln cases (2) and (3). the expression that yields the lock variable may yield a MONITORLOCK. a
record containing a field LOCK: MONITORLOCK, or a reference value which can be dereferenced to
yield one of these. This is a minor convenience to save you from writing t.LOCK. and it should be
avoided.



An ENTRY proc may be inline, and may be declared in an ir_\terface. In this case the interface must
have a locks clause. which probably refers to an interface variable or has a USING.

4.10.3 Conditions. WAIT and SIGNAL

Often a monitor proc cannot complete its job, but must wait for the state of its data to change (e.g..
in a bounded buffer. the Pur proc might find the buffer full. and must wait for.space to be
available). Waiting is done by a WAIT primitive, which specifies a gondmon variable of type
CONDITION on which to wait. Note that this is a variable and is not assignable; usually you use a
reference to it.

The WAIT releases the monitor lock for the monitor that encloses it, so the waiting process must
establish the monitor invariant. Execution will resume after WAIT ¢ at some time after one of the
following is true:

There is a BROADCAST done on c.

There is a NOTIFY done on ¢, and the waiting process has the highest priority pf any
process waiting on c¢. and has been waiting on ¢ longer than any other process with the
same priority.

The process has been waiting longer than the fimeout interval associated with c. There are
procs in the Process interface for setting timeout intervals. There is no special indication that

waiting ended because of a timeout; the program can read the clock. or find this out in
some other way.

An ABORTED ERROR is caused in the process by some other process. There is a proc in the

Process interface to accomplish this. The ABORTED is the result of the WAIT, and never arises
from any other primitive.

A process continuing after a WAIT has no special priority, and may not assume anything about the
monitor data except the invariant. Thus a WAIT should be inside a loop of the form

UNTIL data is such that the process can proceed DO WAIT ¢ ENDLOOP
The idea is that WAIT is simply an optimization of busy waiting, in which the process repeatedly
tests for the desired state, wasting a lot of processor cycles.

For this to work, when a monitor proc changes the data so that a waiting process might be able to
proceed, it should do a BROADCAST to a condition variable which has been declared to reflect this
fact. It may do a NOTIFY instead if only one process should proceed, and it is always the process at
the head of the condition queue; this is an optimization which may avoid needless execution of
several waiting processes (but if misused, it may prevent the right process from running). In a
properly written program, BROADCAST is always correct.

There is no way to time out a process waiting to acquire a monitor lock.

Note that an internal proc doing a WAIT in a monitor with a USING clause must have a suitable »,
parameter.

4.10.4 Exceptions

An exception which is the result of an entry proc will not release the lock when the proc is
finalized. unless there is an enChoice® which catches only UNWIND in the enable of the proc's block.
Hence every entry proc should have such an enChoice, unless it is known that it never raises an

ERROR Or a SlGNAL.that isn’t resumed. Of course, the UNWIND enChoice should establish the
invariant. If no work is required to do this, it can simply be NULL.

Anomaly about errors exiting from ENTRY procs. Recall that the current implementation of ERROR
handling does not do finalization until there is a GOTO out of the enChoice that catches the error



(§ 3.4.3.1). This means that if the error came out of an en roc the lock i :
enChoice should refrain from calling any monitor procs. e ¢ locks not reeased: hence the

If ;he exception is actually raised in the ENTRY proc itself, an alternative is to raise it using RETURN
WITH ERROR instead of ERROR. This causes the lock to be released first. Of course the monitor
invariant should be established. In this case the lock is released before the error is propagated, so
the enChoice that catches it is free to call the monitor again. ‘

An enChoice on a WAIT, like all the other code in a monitor proc, is executed with the lock held.

4.10.5 Miscellaneous

The monitor data must be initialized before any entry procs are called. It is unwise to rely on a
start trap .(§' 3.3:2A) for this, since the monitor lock is not held during execution of the program
proc. An initialization proc should be called (eor the module should be STARTed explicitly) before
any processes are allowed to call entry procs of the monitor.

Performance_ of process primitives: WAIT, NOTIFY, BROADCAST. and entry to and exit from an ENTRY
proc are quite efficient: each costs significantly less than an ordinary proc call. A process switch
costs about as much as calling a null proc with no arguments or results. A FORK/JOIN pair costs
about 30 times as much.

4.11 Defaults

ssdefaultTC :: = CHANGEDEFAULT[oldT ~t, (
te] Default~NiL, trashOK ~FALSE] |
teel Default~INLINE A IN e, trashOK ~FALSE] |
*t « e | TRASH | Default~INLINE A IN e, trashOK ~TRUE] |
*t « TRASH Default~t.Trash, trashOK ~TRUE] )

defaultTC legal only as the type in a decl in a body? or field 43 (n: t « €). in a TYPE binding!3, or in NEw. Note the terminal |.
®TRASH may be written as NULL.

Examples
-- Except as noted, a constructor or application must mention each name and give it a value.
Q: TYPE~RECORD[ -- Otherwise there’s a compile-time error.
it INT, - 0[). Q[i~ ] trash i (not in argBinding??).
JoINT*, -- No defaulting or trash for j.
K INT*3, - Oll. Ok~ ] leave k=3.
l: INT+3 | TRASH, -- As k, but Q[/~TRASH] trashes /.
m: INT+TRASH |; -- Q). Q[m~ ] trash m.

A default in a type cluster provides a value which is supplied automatically in a binding where no
value is explicitly given. Example:

Putint: PROC[i: INT, radix: [0..100]«10]
makes Putindi~x] short for Putinfi~x, radix~10]. This is very convenient for infrequently-used
arguments, if arguments are added to a widely-used proc. or to ensure that variables are initialized
uniformly.

In summary, the usual cases for defaults and bindings are given in Table 4—6. It says that you can
forbid defaulting by writing the defaultTC T« and you can provide a default by writing T+e. Note
that the default expression e is evaluated in the scope of the type T«e, not the scope of the binding.



Declaration n: T« n. Tee n: T in drType®?
Binding short for

n~x n~x n~x n~x . n~x

n~ or nothing  a~OMITTED ERROR n~e (in scope of decl) ERROR

Table 4 —6: Usual cases for defaults

Anomaly on discarding defaults for domain and dange declarations; The last column says that if you
Just write T in a proc domain or range declaration, any default is discarded. This means that you
can tell by looking at the declaration whether there will be defaulting, without knowing anything
about the defaulting properties of the types.

The basic idea is complicated by an assortment of features for improving efficiency. which are
described in the remainder of this section. Defaulting is controlled by two items in the cluster for a
type T. and by two special values. The cluster items are:

Defaulr: PROC []—[7]. a procedure which supplies a default value. If this item is missing or
NIL, values of 7 cannot be defaulted. Defaulting is done by coercing the special value
OMITTED to T.Defaullf].

Trash: PROC [|—[T}: a procedure which supplies a trash value of' type 7. a haphazard
collection of bits of the same size as a value of type T. If this item is missing, values of T

cannot be trashed. The main virtue of this procedure is that executes very fast. See the
description of TRASH below.

The CHANGEDEFAULT primitive makes a new type with these items modified. It cannot be written in
a program. but is invoked by the syntax for defaultTC.
CHANGEDEFAULT: PROC[O/T: TYPE, Default: PROC [|=[7]. trashOK: BOOL]—[NewT: TYPE]

NewT has the same predicate and cluster as Q/dT, except that:
NewT. Default is Default.

NewT.Trash is copied from OIdT.Trash if trashOK = TRUE: a missing O/dT.Trash causes an error
in this case. NewT.Trash is omitted if trashOK =FALSE.

As described earlier, a type in a proc domain or range which is not a defaultTC has its Defauir and
Trash procs omitted.

The two special values cannot be written explicitly in a program, but are supplied as follows:

OMITTED—in an argBinding?’ the syntax n~ . which omits the value, means n~OMITTED.
Then if there is a Defaulr, OMITTED is coerced to T.Defauld] to provide a value of type T.
There is also a coercion which adds n~OMITTED to 2 binding which lacks ». so that n can be
left out entirely with the same effect as writing n~ . You can write a denotation for
OMITTED in a VAR constructor, i.e., on the left side of .

In a group (constructor without names), an empty element means OMITTED: note that the
group is first coerced to a binding by attaching the binding’s names to the group elements

in order (§2.2.6). and then if the resulting binding is too short, n~OMITTED elements are
added for the trailing names.

TRASH —a binding can specify this value explicitly with the syntax n~TRASH. It is unwise to
use TRASH if the program uses the value. Its purpose is to avoid the cost of initializing a
variable which is going to be reinitialized before it is read.

The effect of these rules is that binding [n,~e, ..] to [ T, ..] has the same effect as binding any of
[n~ ) [.Jor[..]tw [n: T)*e, ..] (assuming that any free variables have the same bindings).



Primitive types and those returned by primitive type constructors (except CHANGEDEFAULT) have a
Trash proc, and a Default proc equal to the Trask proc, with the following exceptions:

CONDITION, MONITORLOCK and PORT have no Trash or Defaulr, they do have an INIT proc
which sets any variable to NIL.

REF and PROC types have no Trash, and a Default which returns NIL.

Bound variant records have no Trash. and a Default which sets the tag value appropriately.

Composite_ types have a Trash or Default if all their component types do: it is the obvious
concatenation of the component Trash or Defaulr procs.

lnclud@ng the various dangerqus uses of TRASH which omit initializations, we get a larger and more
confusing summary table, which should be ignored except by efficiency hackers.

e eeee———————————————————————————————————

Default type constructor | T« T<e T«e| TRASH T¢TRASH T in domain/
range decl

Default - AllINe AQINe T.Trash -

Trash - — T.Trash T.Trash -

Declaration n: T« n. Tee n. T«e [TRASH n:T«TRASH2: T

Binding short_for

n~x . n~Xx X X X X X

n~ or nothing  n~OMITTED ERROR e (Defaui]) e (Defamld]) T.TrashH ERROR

n~TRASH n~TRASH ERROR ERROR T.Trash T.Trash ERROR

Table 4 —7: Complete cases for defaults
4.12 Type implication

A type T implies another type T' (T=>T for short) if for any value x,

T.Predicate| x|=> T . Predicate] x]
In other words, if any value that has type T (satisfies T's predicate) also has type 7', then T implies
T'. A consequence is that a proc with domain type 7' can safely be given a value of type 7, since
this value must also have type T', as required by the proc. We also say that a T value is as good as
a T value. or that T is a subtype of T'.

If T's predicate includes a test for some mark, then any type which implies 7 must test for the same
mark or a bigger one. For instance, if R is a variant record type with variants a, 4, and c, then
R.a=>R if R.aSIZE=R.SIZE. In fact, the predicate for R.a tests for R's mark and for a tag equal to a.
In other words, a bound variant value is as good as an unbound one.

From the implementation’s viewpoint (and after all, it is the implementation of an abstraction that
is responsible for attaching marks), two values should have the same mark only if they both have
representations with all the properties implied by that mark: occupy at least that much space. have
the proper fields interpreted in the proper way, etc. This is the rationale for marks: to distinguish
values which are not acceptable to the same primitives. Of course this is not an enforceable rule: an
implementation can unwisely allow the marks it controls to be applied to unsuitable values.

For example, [0..5]=>[0..7] because both occupy four bits and represent the integer unbiased. But
[1..5] does not imply [0..7]. because it happens that the implementation biases the representation of
a subrange value, so that the value 1 is represented in [1..5] by binary 0000, but in [0..7] by binary
0001. [1..5] and [0..7] must have different marks. but [0..5] and [0..7] can have the same mark (which
might be called "four bit unbiased representation for unsigned integer"). and distinguish the values
with the rest of their predicates (0<x<5 vs 0<x<7).

For T to imply T there must be a proof that T's predicate implies 7°s predicate. If T is an
arbitrary type, and nothing is known about its relationship to other types. or if it tests for a unique



1 1 / ith syntactic type 7 is
mark. then no such proof is possible. As a result. only an argument wi '
acceptable to a T—R proc. For built-in types and type-returning procs. however, the cqmpl’ler
knows the predicates and keeps track of the implicationszThe implies relations among built-in type
are (the transitive closure of those) specified in the following table.

Certain points about the table are of special interest:
The first line says that implies extends elementwise 10 declaration types.

The line for transfer types (including PROC) says that (D—»R)=,>(D',—>R') if D'=D and
R=>R'". The relation is reversed for the domain types, because a D =R proc P’ must accept
any D', while a D—R proc P only accepts Ds. If P is used in the former context. it is only
guaranteed to get a D', and that must imply a D.

There are no implications of the form VAR 7=>VAR U. You might think that T=U should
imply this, but it doesn’t work, because a VAR can be assigned to, and assigning a U (say a
[0.7]) to a T (say a [0..5]) clearly won't do. So a VAR T can't be as good as a VAR U, which
can be assigned a U value. In fact, if there were write-only VARs, the relation would be
backwards. This is a reflection of the fact that the only interesting operation on such VARS
is assignment, which has the type [VAR T, 7T]—[T1; as we have seen, proc type implication 1s
backwards from the domain type implication.

Any argument omitted from the type constructor applications in the table may take any legal value.
but it must take the same value in both applications in a single row.

4,13 Coercions

In a binding n: t~e. the value ¢ must have the type « To ensure that it does. the binding
constructor is type-checked by requiring Ve to imply « If it does not, an attempt is made to find a
coercion function C: Ve—>¢ which can map the argument to the required type. If C is found, the
binding is rewritten as n: ¢~Cle]. which typechecks. We say that e is coerced to the type D.

A coercion may also be done in an application such as f[e]: this is actually a special case of a
binding. Note that infix operators, including assignment, are special ways of writing applications,
and hence also do coercions. In particular, x: REAL; x«3 will coerce 3 to a REAL.

There are no coercions from VAR T to VAR U; this is because coercing produces a new value, but a

new VAR would be disjoint from the old one and would increase the size of the state, which is
unlikely to be what is wanted.

Note that if 7 implies U (see §4.12). no coercion from 7 to U is needed to make an application
type-check. Another way of thinking about this; 7=>U means that there is a coercion function from
T to U. but it does no computation. This is why REF 7T can be coerced to REF U if T=>U.

A group or binding can be coerced element by element. Formally, a declaration type, which is the

type of a binding, has one coercion for each coercion that an element type has. These can be
composed to coerce several elements.

There is currently no way for the program to specify coercion procs. However, there is a modest set
of built-in coercions, which are are listed in table 4—9. These can be composed. if the types permit
it, to yield a coercion function. None of them loses information, except those from various whole
numbers to REAL; in other words, they all have inverses. None of them can raise an exception,
except a coercion from a base type to a subrange. which can cause Runtime BoundsFauli. Any

argument omitted from the type proc applications in the table may take any legal value. but it must
take the same value in both applications in a single row.



In current form

In kernel form

These types Imply these types Conditions These types Imply these types
[ T..] o T o] if T=T n: 7. . [ 7. .1
Pointwise extension to bindings. Likewise for groups.
T ' T PAINTED U T REPLACEPAINT
and vice versa. [in~U. from~T}
T ANY forany T
VAR T READONLY T VAR T READONLY T
READONLY T READONLY T’ if T=T READONLY T READONLY T°
PROC/ERROR/... PRO?/ ERROR/... if 7’'=T MKXFERTYPE[ MKXFERTYPE[
[T] and domain~T. domain~T .
RETURNS [U] ~ RETURNS (U1 U=sU range~U] range~U']
Note the reversed implication for the domain type.
SAFE PROC/ERROR/... UNSAFE PROC/ERROR/... MKXFERTYPE| MKXFERTYPE[
safe~ TRUE] safe~ FALSE]

ARRAY .. OF T

ARRAY ... OF T’

if =T

MKARRAY[range~T] MKARRAY[range~T']

If PACKED=FALSE or T.SIZE>Ll. If PACKED=TRUE and T.SIZE=1, the number of bits required to
represent a T and to represent a 7' must be equal when rounded up to the next power of 2. Likewise

for SEQUENCE and DESCRIPTOR.

REF T REF READONLY T
and likewise for POINTER and LIST.

REF READONLY T’

REF READONLY T

and likewise for POINTER and LIST.

REF T REF ANY

ORDERED POINTER TO T
POINTER TO T

BASE POINTER POINTER

T.n T

A bound variant implies the unbound variant.

RECORD[n: 7] T

if T=>T

and vice versa
if T.n.SIZE=TSIZE

1-element record

and likewise for MACHINE DEPENDENT RECORD.

(PROC[A]—>[n: T]).RANGE T
(PROC[A]—[T]).RANGE T
T{x..y} etc. T

if T.FIRST = x and SIZE[T[x..y]] = SIZE[T].

T{x..y] etc. T[x..y] etc.

if T.GROUND = T'.GROUND and x=x" and y<y"

T T«e etc.

1-element binding
1-element group

and vice versa: changing defaults doesn't affect the predicate.

MKREF] readOnly~ FALSE] MKREF[readOniy~TRU E]

MKREF[rarget~T .
readOnly~TRUE]

MKREF[/arger~T.
readOnly~TRUE]

MKREF|farger~ T} MKREF|rarget~ANY]

MKPOINTER[ MKPOINTER[

ordered~TRUE] ordered~FALSE]
MKPOINTER] MKPOINTER]
base~TRUE] base~FALSE]
T.n T

MKRECORD[fields~[n: TI} T

[« 7N T
cross{[7]] T
TMKSUBRANGE[x, ] T

TMKSUBRANGE[x. ] T .MKSUBRANGE([x. ¥

T CHANGEDEFAULT
7. ..]

Table 4—8: Implies relations for primitive types



In current form In kernel form

These types can be coerced to these types  Remarks These types can be coerced to these types
[on T S A if T coerces to T’ e T e T L)

This is pointwise extension of coercion to bindings. Likewise for groups.
(7. ... T [n: Tpeon2 T, group to binding TX..XT [0: T in: T]
[n: Tpovonys T (7T, o n 2T, n: T if T has a default. [n: Towwn: Tl [niT.n T m 7]
T T if T=T T T
Tx..y] T TMKSUBRANGE[x. v] T
T T{x..y] may raise T T.MKSUBRANGE[x. ]

Runtime. BoundsFault
and the same subrange coercions for relative address types.

INT/INTEGER/ REAL loses information same
CARDINAL/
LONG CARDINAL
POINTER LONG POINTER MKPOINTER] MKPOINTER[
long~FALSE) long~TRUE]
and likewise for DESCRIPTOR.
T.n T bound variant Ton T
VAR T T - variable to value VAR T T
ATOM T T an enumeration; static only.
NIL T if T.NIL exists.
POINTER TO PROGRAM[d] if the PP of n has
FRAME [n] RETURNS][/] the PROGRAM type.
OMITTED T if T.Default exists.

M

Table 4—9: Coercions for primitive t 'ypes



4.14 Dot notation

Cedar provides a single basic mechanism for getting a n i i indi
: ame looked
rather than in the current scope (§ 2.4.4): seine coked up i & particular binding.

If b is a binding. then b.n is the value of # in &: it is an error if & has no element n.
By a natural extension:

If Tis a type. then T.n is the value of n in T's cluster.

By a somewhat less natural, but very useful further extension (inspired by classical notation for
records, and by Smalltalk):

If e is an expression not a type or binding, then let P=(Ve).n.
If P.DOMAIN=[p: D]. then en is Ple].
Otherwise. if P.DOMAIN=(p,: Dy py Dy wpi D) enis Apy: Dy o pi DJIN
Ple. py ... p)]

In other words, the value of n is obtained from the cluster of e's syntactic type: call it P. If P takes
one argument, it is applied to e. Otherwise. e.n denotes a proc which collects the other arguments Py

... p, that P wants, and applies P to e, Py. - p,- In current Cedar you can't do anything with this
proc except apply it immediately: you have to write e.n[...].

There are four major applications for dot notation in current Cedar; they are described in the table
below. All use the simple rules just stated (look up » in a binding; in the cluster of a type; or in the
cluster of Ve and then apply it). But the sources of the clusters used and the procedure values in
the clusters are quite various.

Object notation is the most general. since any opaque, record or enumeration type D defined in an
interface acquires a user-defined cluster by this method. The current implementation is clumsy: a//
the procs in the interface / from which D comes are added to D’s cluster, with the names they have
in /, except those whose names are already in D’s cluster. Of course, an element of this cluster is
only useful if it takes a D or reference to D as its first argument. The reference case is often useful
because when these procs are inherited by a reference type, they are not modified. E.g., if P: [REF
D]—[...] is in D’s cluster, it will also be in REF D’s cluster, and if r. REF D. then r.P will be correct.

The interface / from which P is obtained is normally an interface instance I (which is imported).
not an interface fype IT (declared in the DIRECTORY clause), because only the instance provides a
proc value for P. See § 3.3 for more on interfaces.

Restriction on object notation with multiple imported instances: The value for P always comes from
the principal imported instance of /T (see §3.3.3). You can ignore this if only one /7 value is
imported. If more than one is imported, however. confusion can result. If it does, consult a wizard.

The cluster for a record type R is formed automatically by the record type constructor, and simply
contains a procedure for each field f. Tf which takes an R and returns a Tf There are similar

clusters for VAR R and READONLY R, in which the procedures take VAR or READONLY R and return
VAR Or READONLY T,

An imported interface instance can be thought of as a binding, with a value for each name in the
interface. (Actually it is more like a record; its cluster contains a proc for each name declared in the
interface, which returns the exported value when applied to the interface value.) An interface type
also yields a binding. which contains those names which are bound in the interface rather than
simply declared (usually constants and types).



Case Source for n Ven e.n e.n[p,~x. ...]
Meaning can't write this (Ve).nle (Ve).nlellp,~x. ..] or
literally. (Ve)nlp,~e. py~x. ...]
Object n: PROC[p,: D]—[T] I.n =/.n[€}. since *
notation declared in same n=ln
(Vemust interface / as Ve. Useless unless Ve coerces to D or reference to D.
be record. .
enumeration. n: PROC[p,: D. I.n No (can't get the =lnlp~e py~x. ]
or opaque  p,: D,. ..]—[7] declared value of the curried proc).
type). in same / as Ve. Useless unless Ve coerces to D.
Record RECORD [..., n: T, ..]] No (can’t get the =a VAR T for *
record selector field » of record e.
value).
Imported IT: DEFS{.... n: T:....};  No (can't get the =the value exported *
interface DIRECTORY /T: TYPE. interface selector as n in the e instance
IMPORT e T value). of IT.
Interface IT. DEFS{...; n: T~v...] No (it would =v (need a binding *
type DIRECTORY e: TYPE /T. be TYPE.n). for n, not just n: 7).

* Only if T'is a proc type with the right domain.

\

Table 4— 10: Cases for dot notation in current Cedar



Index of points to note

This section lists the headings of the paragraphs throughout the manual calling attention to points
that should be specially noted: anomalies. cautions. performance, representation, restrictions, and
style notes..lt also gives the number of the page on which each note can be found. See §3.1.3 for
an explanation of these categories.
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abbreviations
Abort
ABORTED
ABS
abstract
access
Acknowledgements
address
equality
fault
ALL
allocation
of variables
allocator
alternation
ambiguous
AMTypes
AND
anomaly
ANY

and UNWIND
applEn
application

of a program

of an error

of a module
APPLY

argBinding
argument
arithmetic
array

with empty domains
arrayTC
arrayType
arrow type
as good as
ASCII
assertion language
ASSIGN
assignable

assignment

of a local proc
ATOM

literal
AtomsPrivate
attribute

b
BASE
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81
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101

18

48, 55

1
79.87.90.93
75

92

61, 83. 84

34,58.63.71
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BASE POINTER

bed

BEGIN
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BINDING

binding

constructor

in interfaces
block entry and exit
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BNF
body
bold parentheses
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bound variant
BoundsFault

braces
brackets
BROADCAST
BTOD

BTOV
built-in
builtinType
BUT
butChoice

C
call by name
CARDINAL
carriage returmn
cases of unions
catch
caution
CDOTG
CEDAR
Cedar kernel
CedarReals
CHANGEDEFAULT
CHAR

literal

MINUS
CHARACTER
CHECKED
checking
choice
chooses
class

hierarchy
cleanup

87,91, 94

40,42

39

50

37

40

11,45

3,10, 19. 20. 34. 41.
42,50, 55. 64, 114

12

45, 64

50
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62.63
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52



closure
CLRMFuliGram.press
CLRMSafeGram
CLRMSumm.press
cluster

Cluster
CODE
code
coercion

colon
command line
comma
comment
commentary
compatibility
compile-time
compiler
compiler switch
component
proccomponent
composite
composite type
composite variable
computation
COMPUTED
concepts
concrete type
concurrency
CONDITION
condition variable
CONS
constant
constructor
for a union
contain
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contents

contiguous block of storage

CONTINUE
CONTROL
control variable
conveniences

converting between opaque

and concrete types
COPYIMPLINST
core language
counted storage
Cross type
cross-reference
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9
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DECL

declaration
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DECREASING
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default access

defaults for domain and

range declarations

Default
defaultTC
deferred
DEFINITIONS
delimiter
denormalized
denote
dereference

dereferencing NiL
DEREFERENCE
descriptor

DESCRIPTOR

descriptorTC

desugaring

Detach

DF files

DIFF

different types

digit

DIRECTORY

discrete type

discriminating

DIVIDE
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domain declaration

domain type implication

DOMAIN
dot
dot notation

drType
DTOB
dynamically narrowing

€

editor
efficiency
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empty
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EMPTYSUBRANGE
enable
enable choice

enable in funnyAppl
enChoice
END
endChoice
ENDCASE
endpoints
English
ENTRY proc
enumeration
enumeration literal
enumTC
ENV
environment
EQUAL

equality of variant records

error
exiting ENTRY procs
in finalization
ERROR
escape
essential concepts
establish
evaluate
exception

exception handling
exception value

exceptions in enChoices

EXIT

exiting from ENTRY procs

EXITS

exponent

export
to several interfaces
exported type
exported variable

EXPORTS

expression

expressions in bindings and

initializations
extendedChar
extension
external
extra separator
extractor

FALSE
field proc
fields

file
finalization
FINISHED
FIRST

Sfirst

103

48. 51, 57. 59
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98.99. 100. 114
100
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47

46

19

48

4,5.9,34,58.60

first-class values
FIX

flat

FOR

forbid defaulting
FORK

formal

FRAME

frame

frame allocation
FREE
free variables
FROMATOM
FROMGROUND
FROMIMPLINST
fully opaque
function
functional
funny application
funnyAppl

garbage collector
General

general type
global frame
global variables
good
GOTO
GOTO and procs
GOTO and UNWIND
GOTO FINISHED
grammar
GREATER
GROUND
group
guarantee

hasNIL
header

HEX
hexadecimal
HIDE

hiding
history

identifier
idiom
IFEE floating point
i

if expression
IFPROC
immutable
imperative
implementation

implies

for primitive types

57.61.81.105

7

94

41, 47,49, 50, 81. 86.
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71,73
60, 61
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74,76,79.85,91,95.
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import
interface
module instance
multiple instances
principal instance
values
IN
IN
incompatibilities
incremental collector
index
indexed set of values
infix
infixOp
informal
inherit

INIT
initialize
initialization
initializing monitors
initializing variables
inline
inlines in interfaces
INLINE
Inline
inner scopes
instance
INT
INTEGER
interface

interface instance
interface type
interface variable
INTERFACETYPE
INTERNAL
invariant
ISLONG
ISREADONLY
ISTYPE
ISTYPE for PROC ANY
item
iterator

JOIN

kernel
kernel definition
kernel expressions
kernel types

keyboard

keyword argument list

A-expression
labels
LAST

39,41, 43, 114, 115
44,78

13.60. 61

3

65. 76, 84, 90. 92, 96,
97.98

49, 64, 74

4, 16. 43, 46, 85, 108

43,50

40, 41, 44, 50, 78, 114

101

101

39. 40, 41, 44, 45, 50.
57.69, 77, 100,
107,115

40, 91

40,41.74,78.114

46

43

105

6, 53.106

76

76

63,74, 75,91, 98

61,81, 105
1.2

7
13
105
2
19

9. 56,80
53
99. 103

LENGTH
lengthening
LESS
LET
library
Lisp
LIST
lists of items
ListsAndAtoms
listTC
literal
literal parentheses
loader
local
local proc
local string
LOCALSTRING
LOCK
LOCK expression
LOCKS
locks
LONG
LONG CARDINAL
LONG INTEGER
LONG POINTER
LONG STRING
LONG UNSPECIFIED
LOOKUP
LOOKUPC
loop
LOOPHOLE
on variable types

MACHINE CODE
machine-dependent
MACHINE DEPENDENT
MACHINE DEPENDENT
RECORD
machine instructions
main data space
map
map type
mark
matches
MAX
mdFields
MDSZone
meaning
Mesa
Mesa manual
MIN
MINUS
MINUS on pointers

mixed integer and cardinal

arithmetic
MKBINDD
MKBINDP
MKCROSS

92



MKDECL
MKEMPTYSUBRANGE
MKENUMERATION
MKINTTYPE
MKPAIR
MKRECORD
MKSUBRANGE
MKUNION
MKVAR
MKXFERTYPE
MOD
model
module
module body
module replacement
module variables
monitor
monitor lock
MONITORED RECORD
MONITORLOCK
multiple instances

multiple imported instances

n

n-opaque
name

names introduced in an
interface

name space of labels
nameless open
NARROW
narrow

to a short pointer
NarrowfFauli
NarrowRefFault
negative literal
NEW

NEWEXCEPTIONVALUE
NEWFRAME
NEWTYPE

next

NIL

NILDECL

node boundary
non-terminal
NOT

notation
notified
NOTIFY

NULL

num

numeric type

43
6, 40, 43, 106
52
106
106. 110
43, 44

114

8,13, 34, 37. 39, 48,
55,57, 60, 62, 67.
87.95,99

78

3,5,18.19, 20, 34,
37,48, 49, 51, 52,
68,70,71,72,73

45

53

50
61,74,75,78,91, 98
64. 79, 80. 83, 103
92 '

75

75

102

47,61, 64,74,.76, 717,

85,88,91.93
82
49
93
59
79. 90
11
38
34,35
35, 100
34,115
6
91,107
35,58, 63
37
101

object

object notation
object code
obsolescent
obsolete
octal
omit
OMITTED
opaque

opaque type
open

operator
option
optional
OR
ORD
order
of evaluation
of evaluating bindings
order of finalization
of initializing variables
ordered type
overflow checking
OVERLAID
overlap

package finalization
PACKED
PACKED ARRAY
painted
paintedTC
pair
parameter
parameter name
parameterless proc
partial ordering
pattern
PC type
performance
performance tuning
PLUS
pointer
pointer-containing
POINTER TO FRAME
PointerFault
pointerTC
PORT type
pos
positional
post-condition
postfix
pragma
pre-condition
precedence
PRED

115

114

40

68

34

102

62

20, 109

74,71,91, 92, 104,
114

46,78

39, 48. 50. 56. 57. 59.
63.79

2.70,71

70

34,35

12, 61, 100

100

9

17.61

49

52

50

99

102, 103

85,97.98

19,89

8.13

88

35,83

7477

69, 96, 98, 100
77

10

3.16

56

58

67

11, 14

90

36,98

68

14,92, 101
87,90. 92, 93
90
44.46.47,57.94
47

84. 87
81,110

95

17.19

4

61.70

6

4

61

99



predeclared types
predefined names
predicate
Predicate

prefix

prefixOp

prime

primitive

primitive application
primitive proc
primitive type
principal instance
PrincOps
priority
PRIVATE
proc
PROC
PROC ANY
PROC bindings
proc calls
PROC type
PROC type implication
proc value
procedure
process
process array
process primitive
PROCESS type
Process
PROGRAM
PROGRAM arguments
program instance
program proc
PROGRAM type
program value
properties
PUBLIC
punctuation

radix
RAISE
range
range declarations
RANGE
reachable
READONLY

REAL

REC
reclaimed
record type

record field
record field proc
record size
recordTC
recursion

68

38

4.11

74.110

61,70

60

36

1.2.8.9,16, 54, 64.
65

16

61,70.73

67-69

44,114

67, 80

107

46,48

3

110

63,74,75

56

56

4,80

111

56.57

3

6,105

18, 88

108

81

67

40

41

41,42, 47

43,94, 108

81

81

4

46,47, 48

37

102

15

4,12, 56

109

79. 80, 84,91

38

18, 46, 76, 84, 90, 97,
114

64, 101, 103

5,14

83

20, 50, 95, 96, 114,
115

REF

REF ANY

REF TEXT
reference

reference type
reference-containing

RC type

RC variables
reference-counting
referencing opaque types

91, 93,110
63, 74,91, 97

76
78

referring to module variables

before initialization

43

referring to names introduced

in an interface
refTC
REIECT
related structures
RELATIVE
relative array descriptor
relative pointer
relativeTC
relOp
rely
REM
REPEAT
ReportStartFault
representation
reserved word
rest
RESTART
restrict
restriction
result
result name
RESUME
retained
RETRY
RETURN
RETURN WITH ERROR
rewriting
ROPE
ROPE literal
Rope
row
TOW as an argument
or result
Tow size
FOW type
rows of different sizes
rule
Runtime
runtime type system

S
safe
SAFE
safe language
safe reference
safe storage

45

2,33,36,116
3.16,18
56

53
47,50
51,58
51, 56
108

35
75,85
38

67
82,83

83

83

64
82,86
69

67
104

48, 34, 39, 57
6,87.93



SafeStorage 67, 76, 88,93
safe variable 88
safeChoice 62
safeSelect 62.63,75.91.98
safety 39, 50, 53
safety invariants 6. 88
SANS-SERIF SMALL CAPS 36
scale factor 102
scope 5. 49, 56, 59. 106, 108
SELECT 35,62,63.98
selector 63
semicolon 39, 58
separator 34.39
separators for SELECT 58
seqTC 82
sequence 74, 83, 84
sequence-containing record 68
set of values 4
shared variables 105, 106
SHARES 35,48
short 102
SHORT 76
short pointer 92
side-effects 3.50
signal 51,52,82
SIGNAL 35
simple 2
simpleLoop 14
single component 50, 96
SIZE 74. 85
size restrictions 64
Smalltalk 114
source text 40
space 36. 38
space in ATOM literals 92
specialization 85
SPECIALIZE 97
SR 88
sS 57
standard application 9
standard implementation 78
standard proc 78
START 46. 61
start trap 43,108
StartFault 43
state 16
statement 3414,17, .58
static 6. 36, 45, 46, 56, 64,
68, 96, 102
static error 36.75.103
static expression 64
static negative value 102
STOP 61, 81
storage 88
strict 15
string 90
STRING 86
StringBody 86

style
sub-expression
subclass
subrange

subtype
SUCC
summaries
superscript
SV

- switch

synchronization
syntactic type
syntax

t

Tn]
tab
tag
TAG
TAGTYPE
TARGET
target type
target typing
of DESCRIPTOR
of NARROW, LOOPHOLE
terminal symbol
TEXT
textual
THEN
THEND
THROUGH
tilde
time
timeout
TIMES
Tioga
TOGROUND
token
TOPROGRAM
TOVOID
trace-and-sweep
transfer
transfer type
transferTC
TRASH
Trash
TRUE
truncated
TRUSTED
two-character symbols
type

TYPE

TYPE binding
type constructor
type expression

36.116

9

4, 66. 80

37. 60, 62, 64, 82, 87,
92.94.99.101. 103

110

6,76, 105
4.7,8
7.33

8.13. 34, 36, 39, 55.
57.62,67,76, 77,
82,87.95.108

68, 104

38

6, 82, 84.95,97.98

54,79, 80,111

80

35,62

75, 84,109

11

102

6.35,53

37

4,11, 18, 34, 65. 70,
114,115



type implication
type option
type value
TYPE n
type-checking
typeCons
typeName
TYPE[ANY]
TYPE[n]
"u" switch
UMINUS
UNBOUND
UnboundProc
unchecked
UNCHECKED
UNCONS
uncounted zone
underflow
underlined
UNHIDE
uninitialized
interface variables
RC variables
union
union constructor
union value
unionTC
Unnew
unpainted record
UNREF
unsafe

UNSAFE
unsafe storage
UnsafeStorage
unspecified
UNTIL
UNWIND

UNWIND and ANY

UNWIND and GOTO

UNWRAP

upper case
user-defined cluster
USING

VAL
VALUE
value
VALUEOF

values of opaque type

VAR

VAR ANY
variable

variable type
variant field

110

36,70

104

43,78

4,11.43

67

36, 60, 67, 77, 87
46, 68, 77

46, 68. 77

64

101

47

47.80

6. 88

53,64

49.95

90, 93

103

35

15

43

46

50

75,76, 84,91, 97

98

98

95

47

91

50, 63

34, 54,63,92,93,97,
98

74,775,717, 82, 85,86

88

67,93

76, 105

59

52, 53,107

52

53

95

37.38

114

35. 44, 106

61,100

76, 87

353.9.16.18..51, 52

76

78

3,18, 46, 76. 83, 90,
111,114

91

3.18.49,75. 19, 87,
90

75.76

97

variant record

VARIANTPART
VARIANTTYPE
varTC
VARTOPOINTER
vOID

WAIT
WHILE
white space
whole number
whole number literal
widening
WITH
withChoice
withSelect
wizard
write-only

xDOTy
xfer

ZONE

.o

63, 74,75, 76, 84, 96,

55,76,82, 87
76,92
14, 58

6, 61,91, 107
59

38,92

101. 102
102

103

35,56

62
63,97,98
81,105, 114
111

7
80

6,75,76,93

37,70,71,72

70,71, 72

37

37

5.31.92

11

37

37

37

101

101

36, 37

35,37

35.37.85,97.101

35,37,101

35,37

38

35,37

35,37

37,101

14,35.37

7

35,37

37.99

37

35.37.75

35,37,51.53.63

37.99

37

37.50.64.76.77,
83. 85.92.93.96

13,35, 37

37.101



37

35, 37,75, 108
35,37.39
8.13

14, 35,37



Cedar Safe Language Syntax
3.3 1 module :: =DIRECTORY (n  ?(: TYPE n}) 2(USING [n,. ...]) ). ... . §4 36type::= typeName | builtinType | typeCons

{ interface | implementation )
vinterface ::= n,, \.. : CEDAR DEFINITIONS ?locks
?imports ~ { 2open’(d | b): !.. }.
zimplementation ::= n,, ; CEDAR
( PROGRAM 2drType#2 | MONITOR ?drType#2 ?locks )
Nimports 2(EXPORTS n,., ...) ~ block .
simports::= IMPORTS ((n; :|)n; ). ...)
slocks 2= LOCKS e 2(USING n,: 1)

--In2. 3

§3.4 sblock ::= NCHECKED | UNCHECKED | TRUSTED)

y1typeName ::= n | typeName . n | typeName[e] --/n 79.25.36.40.1

§4.2 s builtInType ::= INT | REAL | TYPE | ATOM |

CONDITION | MONITORLOCK
See Table 4— 2. TYPE only in a b or an interface’s d.

19 typeCons :: = subrange?s | paintedTC4.! | transferTC4! |
arrayTC# | seqTC# | refTC46 | listTC#7 |
recordTCS0 | unionTC52 | enumTC54 | defaultTCss

§4.3 40varTC ::= (| READONLY | VAR) t | ANY

In11.46. 47. aNy only in refTC. vAR only in interface dec!.
40.1paintedTC :: = typeName3? PAINTED t

{ ?open ?enable ?body 2 EXITS (n. L.=Ds): o ) } --in 3. 13, 14, §4.4 41 transferTC :: =ASAFE | UNSAFE) xfer ?drType

70pen:i= OPEN(n ~~ele) . --/n2 5
senable ::= ENABLE { enChoice: ... };
9enChoice ::=(e. .. | ANY) =>s —-/n7 271
1wbody ::=(d|b): L. isi.]si . a5 7
§3.5 11 deciaration :: = n, .. . PUBLIC | PRIVATE) varTC# --jn 2. 10. 43,
13 binding ::= n, 1. : APUBLIC | PRIVATE) t ~ (
€]ty - r=Tvpe-- | CODE | INLINE W ENTRYJINTERNAL) blocksé )

§3.6 14 S1arement 11 = e, +e, | e | blocks | escape | loop | NULL
16 escape ::=GOTO n | EXIT | CONTINUE | (RETURN|RESUME) ?e
17 loop ::= ?iterator (WHILE e | UNTIL €)
DO ?body10 REPEAT FINISHED = >s) ENDLOOP
18 iterator ::= THROUGH e |

FOR n : t{ 7DECREASING INe| « e, €))
e isa subrange. n is readonly.

§3.7 19 expression ;2= n | literals? | (e) | (¢ | typeName37) . 9y n |
prefixOp e | e, infixOp e, | e; AND(2) €,] €) OR (1) &5
e 1(9)| ERROR | [ argBinding?’ | |
application26 |
builtln [e. ... 2applEn?7.1] |
funnyAppl e N [?argBinding?? 2applEn27.1] ) |
subrange?s | if28 | select?9 | safeSelect3? | s
Precedence is in bold in rules 19-21. All operaiors associate 0 the left except

«. which associates 1o the right. Application has highest precedence. Subrange
only after \\ or THROUGH. s only in if28 and select choices30 33,

wprefixOp := @ ®) | — (M| (~ | NOT) (3)

2infixOp ::= *|/|MOD (6) | + | — (5)| reiOp (a)| « ()

2relOp ii= WNOT (P~ (= | <)<= |>=| # | IN) --in 21. 30.

23 builtIn :: = -- These are enumerated in Table 4 —5.

24 funnyAppl ::= FORK | JOIN | WAIT | NOTIFY | BROADCAST |
SIGNAL | ERROR | RETURN WITH ERROR

:ssubrange ;1= ?typeName3” ([|()e;..es(]1])) ~in 19 30

20 application ::= e [ ?argBinding 2applEn |

27argBinding ::= (n ~ % ). L. (%e).t.. --in 19 26,

21.1applEn :: = ! enChoice?: ... -- /n 19. 2.

§3.8 28if ;1= IF e; THEN €, ELSE e3)
29select ::= SELECT e FROM choice: ... endChoice
The ":" is "." in an expression. here and in 32.
30 choice ;1= (relOp22e) ). L..=> ey
31 endChoice ::= ENDCASE A(=>e;) --/n 29. 32 34.
32safeSelect ::=WITH e SELECT FROM safeChoice: ... endChoicel!
wsafeChoice :=n:t=>e,

§3.2 saname 2= letter (letter | digit)... - Not a reserved word (Table 3 —2).
s7literal ;2= num 2 D | B) | digit (digit JA|B|CID|E|F) ... H|
?num . num ?exponent | num exponent | $ n |
“(extendedChar| ' | ") | " (extendedChar | )..."
ssexponent ::= E2(+ | —) num
59 num ::= digit !..

60 extendedChar ::= space | \ extension | anyCharNot™"Or\

a1.1xfer ::=PROC | PROGRAM | PORT | PROCESS | SIGNAL | ERROR
42drType ::= ields; RETURNS fields, | fields; --/n 3. 4.

afields ;= [dlL . ]| [t ... ]| ANY  -=In 42, 50. 52. ANY only in drType.
4sarrayTC ;= ARRAY 1, OF t;

455eqTC ::= SEQUENCE n : t| OF ty -- Only as last type in 50 or 52.

win2 10, $4.5 461efTC ;1= REF varTC%

47 listTC :: = LIST NOF varTC4)

§4.6 sorecordTC ::= ?MONITORED RECORD fields#3

s2unionTC ::= SELECT n : (t| *) FROM (n => fields#3), ... 2.
ENDCASE -- Only as last type in fields of 50 or 52.

$4.7 saenumTC ::= {n....}
§4.11 ssdefaultTC ::=t « [t e e

Only as t in a decl in bod)® or field43 (n: t « e).in a TYPE binding!3or in NEW,



§3.3

§3.4

§3.5

§3.6

§3.7

Cedar Full Language Syntax

1 module ::= DIRECTORY (ngy2( : TYPE ?n,)

NUSING [0, w0 1)), e
( interface | implementation )

2interface ::= n,, L. : 2CEDAR DEFINITIONS Nocks ?imports

?6(SHARES ng, ...) ~ ?eaccess!? { 2open’(d | b); 1. }.
3implementation ::= n,, : 7CEDAR ?safety

( PROGRAM ?drType42 | MONITOR 2drType#2 Nocks )

Yimports 2(EXPORTS n,. ...) 78(SHARES n. ...)

~ Peaccess!? block .
3.1imports:: = IMPORTS ((n;, :{) n;). ...)
asafety ::= SAFE| UNSAFE --/n3 41.
slocks 1= LOCKS e AUSING n,: t)

--In 2. 3.

§3.8 28if ::= IF ) THEN e, N(ELSE €3)

29select ;2= SELECT e FROM choice; ... endChoice
The ":" is "." in an expression. here and in 32 and 34.

30 choice ::= (?relOp22e;). L..=> g,

31endChoice ::= ENDCASE (=) e3) --/n 29. 32. 34,

12safeSelect :: =WITH e SELECT FROM safeChoice; ... endChoice3!

isafeChoiceii=n:t=>¢

s ewithSelect ::= WITH (n; ~~ ¢; | ® €; ) SELECT ?fe;; FROM
withChoice; ... endChoice3! --eThe ~~ may be written as ..

1sewithChoice ::=ny => e nyum L. => e

§4 36 type :: = typeName | builtinType | typeCons
37typeName ::= n; | typeName . n, | typeNamele] |

6 block ::= NCHECKED | UNCHECKED | TRUSTED)

{ ?open ?enable ?body 2 EXITS (n. %..=D8): ...) } ~In 3.13.14,
7open:i= OPEN(n~~¢e|e).l.;

In 2. 5.17. eThe ~~ may be written as :.
genable :: = ENABLE (enChoice | {enChoice: ...}); -in 5. 17,
9enChoice :i=(e, .| ANY ) =D>s ~/n7 271
wohody :i=(d|b): L. isiu|si b —ins 17

on; typeName --/n 19. 25. 36. 40.1. 49.
§4.2 3 builtlnType ::= INT | REAL | TYPE | ATOM | CONDITION |
MONITORLOCK | LONG CARDINAL | ®?LONG UNSPECIFIED |

otMDSZone | * 7tUNCOUNTED ZONE
See Table 4— 2. TYPE only ina b or an interface’s d

39 typeCons :: = subrange2s | paintedTC40.1 | transferTC4! |
arrayTC# | seqTC45 | tdescriptorTC4s.1 | refTC4 | listTC4? |

N declaration s = n, L. : Paccess varTC40
In 2. 10. 43. VAR, READONLY only for interface var.

12access (= PUBLIC | PRIVATE --/a 2. 3. 1. 13. 50. 5. 53.
13binding ::= n, .. : Taccess t ~ (

e |ty - ifr=vpe-- | CODE |

2INLINE 2(ENTRY | INTERNAL) blocké )

1t 7TRUSTED MACHINE CODE { (e. ...); ... } |
In 2. 10. #The ~ may be written as =. ®ENTRY or INTERNAL may be written
before 1. Block or MACHINE CODE only for proc types.

+pointerTC48 | efrelative TC# | recordTCS0 j unionTC52 |
enumTC54 | defaultTCSs

$4.3 aovarTC ::= (| READONLY | VAR) t | ANY
In11.45—48. ANy only in refTC. VAR only in interface decl.

40.1paintedTC ::= typeName3? PAINTED t
§4.4 a1 transferTC :: = ?safety4 xfer 2drType
s11xfer ;= PROCEDURE | PROC | PROGRAM | PORT |
PROCESS | SIGNAL | ERROR
42drType ::= ields, 2RETURNS fields;) --In 3. 41.

o —

14 Statement ::= €+ e, | & | block® | escape | loop | NULL
In6.9.10.17. 19,
16 escape ::= GOTO n | GO TO n | EXIT | CONTINUE | #LOOP |
ORETRY | @REJECT | (RETURN | RESUME) ?e | T1e « STATE
17 loop :: = ?Titerator A WHILE e | UNTIL €)
DO ?e0pen’ Teenabled ?body!0
2¢(REPEAT (n, !.. =2 5);...) ENDLOOP
18 iterator ::= THROUGH ¢ |
FOR (n : t| %n) ( 7DECREASING INe | « ¢;.¢))
e isa subrange. In FOR n: I .... n is readonly.

a3fields 2= [d1L, ..} | [t. ... ]| ANY --/n 42, 50. 52. axv only in 42.
asarrayTC 1= ?%PACKED ARRAY ) OF t,
45seqTC 1= ?7%PACKED SEQUENCE tags3 OF t

Legal only as last 1ype in the fields of a recordTC or unionTC.

as.1tdescriptorTC ::= ?LONG DESCRIPTOR FOR varTC#
varTC must be an array type.

§4.5 46 refTC :: = REF ?varTC4
47listTC :: = LIST 2(OF varTC%)
a3 TpointerTC ::= ?LONG ?0RDERED ?#BASE POINTER

2esubrange?s ATO varTC4) | @POINTER TO FRAME [ n ]
Subrange only in a relativeTC: no (ypeName3 on it.

19 expression 22 = n | literals7 | (e) | (e | typeName3?).(9) n |
prefixOp e | e; infixOp e;| ) AND(2) €;]| €, OR (1) &3 |
e 1(9) | STOP | ERROR | [ argBinding2? ]|
application26 |
builtln [e. ... 2applEn27.1] |
funnyAppl e 2( [?argBinding?’ 2applEn27.1])
subrange2s | if28 | select?9 | safeSelect3? | ewithSelect3* | s

Precedence is in bold in rules 19-21. All operators associate io the left excepi
«. which associates 1o the right. Application has highest precedence. Subrange

only after IN or THROLGH. s only in if 28 and select choices30 33 33,
wprefixOp ::= @ @) | — (D] (~ | NOT) (3)
ninfixOp 2= *| 7| MoD (6| + | — (5) ] relOp 4y |« (M

nrelOpii= INOT (2~ (= [<ID) K= |>=| # | IN) --/n 21. 30.

23 builtln ::= -- These are enumerated in Table 4 —5.

24 funnyAppl :: = FORK | JOIN | WAIT | NOTIFY | BROADCAST |
SIGNAL | ERROR | RETURN WITH ERROR | éNEW | ®START |
O®RESTART | £ TRANSFER WITH | $TRETURN WITH

2ssubrange ::= TtypeNamed’
([e)-.ex]ller..esd](ey..es]l(ej..er)) —in19.39 48

26 application :: = e[ ?argBinding ?applEn |

27argBinding ;1= (n ~ (e || *TRASH)). \.. | (e | | *TRASH). !..
In 19. 26. @The ~ may be written as :. NULL may be written for TRASH.

27.1applEn :: = ! enChoice?; ... -- 1n 19. 26.

setrelativeTC :: = typeName37 RELATIVE L
§4.6 sorecordTC :: = ?access!? ( MONITORED RECORD fields4? |
+ MACHINE DEPENDENT RECORD (mdFields | efields#3) )
st tmdFields :: = [((n pos). !..: 7eaccess!2 t), ...] -- in 50. 52
51.15pos (e;2(:ey..€)) - In5L 53
s2unionTC :: = SELECT tag FROM
(n. ... => (fields®3 | mdFieldss! | eNULL) ). ... 2. ENDCASE
Legal only as last type in the fields of a recordTC or unionTC.
satag = (n ?4possl! : eaccess!2 | *T(COMPUTED|OVERLAID))
(L] *) --In44.52.* only in unionTC.
§4.7 saenumTC :: = {n....} | MACHINE DEPENDENT {(?n (e) | n). ...}

LY g
e —

§4.11 ssdefaultTC ::= t « |t « e| %t « e | TRASH | %t « TRASH

defaultTC legal only as the type in a decl in a bods® or field 43 (n: 1 « e).ina
TYPE bindingl3. or in NEw. Note the terminal |. 8TRASH may be written NULL.

§3.2 s6 name .. = letter (letter | digit)... - Nor a reserved word (Table 3 -2).
s7literal ::= num 2(( D|d | Blb ) Tnum) ¥ literal. |
_____ -- Hex INT literal. |
?num . num ?exponent | num exponent - REAL literal. |
* (extendedChar | "] ") | e digit !.. (Clc) - CHAR literal. |
" (extendedChar| ") ... " ?o(LID | $n -- ROPE. ATOM literal.
ssexponent ::= (Ele) 2(+ | —) num
sonum 3= digit L.
o0 extendedChar :: = space | \ extension | anyCharNot™"Or\

o1 extension :: = digit, digit, digity [nINIr|RIUITIIBIAEMLITIN



ax Meaning
\module = DIRECTORY (ng(: TYPE (0, 1)) A{(ng: ((TYPEn, | TYPE nd | TYPE NS ).... ] IN
AUSING [ nye e D). et LET (ng~RESTRICT[ng. [$n4. oo ] 1), e
(interface | implementation ) IN (interface | implementation )
rinterface ;1= npm. L. : 2CEDAR DEFINITIONS LET r'~[nm: INTERFACETYPE([ $np. ...]1) IN (imports | A=>T)

IN .
Nocks (imports | ) ?¢(SHARES n.....)
~ Teaccess’ { open”(d [ b): \. }.
\implementation :: = n,, : 2CEDAR
%afety (PROGRAM drTvpe: J
MONITOR 2drType® (| locks))
(imports | )
NEXPORTS n. ...)

-- SHARES allows access 1o PRIVATE names in ns.
LET REC ny~open [ '~locks. ) (d | b)....] INny
LET 1 ~[(ne: ng) . .... FRAME: TYPE fin . Nt FRAME.
CONTROL: PROGRAM] IN (imports | A=T1) IN
(JLET I'~( LET LOCK ~NEWLOCK IN (A IN LOCK) | locks) 1N )
LET b ~NEWPROGINSTANCE{block].UNCONS IN
[ (n~BINDDFROM[n,. b" PLUS np~b".nm} ). ... .
7e(SHARES ng. ...) FRAME ~MKINTTYPE[block]. nm~b'. CONTROL~b .0y |
~ Teaccess" block . with the block's body desugared to: [(d | b). ... . npm: PROGRAM drType~{s: ..}]
vimports 3= IMPORTS ({n: 1) ng ). e ==/ 2.0 A [(emg). o] =>F INLET {( (n\dn)~(n; PLUS n.BINDING) ). ...]
isafety :2= SAFE | UNSAFE --in 3. 41
<locks ;s = LOCKS e 2 USING n,: t)

AN :t]yiNe

Examples
DIRECTORY
Rope: TYPE USING [ROPE, Compare],

CIFS: TYPE USING [OpenFile.Error.Open.read}.

10: TYPE 1OStream,
Buffer: TYPE:

Bufferlmpl: MONITOR [f; CIFS.OpenFile]
LOCKS Buffer.GetLock[h]t
USING h: Buffer.Handle
IMPORTS Files: CIFS. 10. Rope
EXPORTS Buffer
~ { -- module body -- } .

Notes

- There should always be a USING clause
-~ unless most of the interface is used

- oritisa standard one like Rope or 10
-- oritisexported.

-- Implementations can have arguments.
-- LOCKS only in MONITOR. to specify
-- anon-standard lock.

-- Note the absence of semicolons.

-- EXPORTS in PROGRAM or MONITOR.
-- Note the final dot.

«block 1=
NCHECKED | UNCHECKED | TRUSTED)
{ 2open ?enable ?body
NEXITS (n. Lo=Ds): ) }
~In3 1315
-openii= OPEN(n ~~eje). .
Ir 2. 5. 17. eThe ~~ may be vritten as ..

open Lad N b IEXCEPTIONjNEWL)ABEL[] e
y T L =08 )
Syl enabe JouT (0 ¥ h)
(LET n~Xgper IN €UNREF | -~The IN before !.. is a separator.
LET BINDP[(V(e.UNREF)).P.
OPENPROCS|(V(e.UNREF)).P. A IN e.UNREF] ] ) INL.IN
BUT (’ enChoice fl

«enable::= ENABLE ( enChoice |
enChoice: ... } )

{enChoice: ..}):
inS 172

senChoice =(e. L. JANY ) =D
In7 271

wbody = (d|b): .15 st
1517

(e ANY ). .. => { st REJECT: EXITS
etry’ =>GOTO Retry”'*: Cant'=>GOTO Cont™" 'I
LET NEWFRAME[ REC [(d | b)....] JUNCONS IN { 5. ...

CHECKED é
OPEN Buffer. Rope:

ENABLE Buffer.Overflow =>GOTO HandleOvfl:
stream: 10.Stream~10.CreateFileStream["X"]:

% INT*T7;
{OPEN b~ ~buffer:
ENABLE {
Files.Error--ferror. file]--=

{
stream.Put{10.ropeferror]): CONTINUE }:

ANY =>{ x+12: GOTO AfterQuit } }:
yIINT#9: .. |2
x*-slrgam.Gellm: -

EXITS
AfterQuit=>{...}:
HandleOvil=>{...} }

-- Unnamed OPEN OK for exported

-- interface or one with a USING clause.
-- A single choice needn’t be in {}.

-- Use a binding if a name's value is fixed.
-- Better to initialize declared names.

- A statement may be a nested block.

-- Multiple enable choices must be in {}.
-- ERRORs can have parameters.

-- Choices are separated by semicolons.
-- ANY must be last. ENABLE ends with .
-- Other bindings, decls and statements.
-- Other statements in the outer block.

-- Muitiple EXIT choices are notin {}.

-- AfterQuit. HandleOvfl declared here,
-- [egal only in a GOTO in the block.

adectaration 2o = n, L. : Taccess' varTC* (n:varTC). ...
Iz 2.10. 43. VAR. READONLY only for interface var.

raccess 3= PUBLIC | PRIVATE
In 2. 3.11.13.50.51.53.

nbimimx = n. .1 2access t ~ ( n. | ~LETX it~ (
e e

L. - y7=TYPE | t, - Same as ¢ except for conflicting syatax. |
CODE| NEWEXCEPTIONCODE[] --r=>SIGNAL or ERROR |

NLINE(ENTRY | INTERNAL|) block” | A [d'(: L.DOMAIN] IN LET r'~NEWFRAME[t.RANGE|.UNCONS
IN (LET I'IN
( {t.DOMAIN«d": (I.ENTER: | |) block: RETURN}
(FINALLY I EXIT [|) )
BUT {Return™ =>r
MACHINECODE([(BYTESTOINSTRUCTION[e. ...]). ...]
) IN X' - e is evaluated only once.

$t 27TRUSTED MACHINE CODE {(e. ...): ...}

In 2. 10. #The ~ may be writien as =.
Block or MACHINE CODE only for proc tvpes
®ENTRY and INTERNAL can also be before .

HistValue: TYPE[ANY]:

Histogram: TYPE~REF HistValue:

baseHist: READONLY Histogram:

AddHists: PROC{x. y: Histogram]
RETURNS [Histogram):

LabelValue: PRIVATE TYPE~RECORD]|

first.Jast:INT.s:ROPE.x:REAL.f.g:INT.I:REF ANY}:

Labet: TYPE~REF LabelValue:

Next: PROC{I: Label] RE!'UR.\‘SlleabeI]~
INLINE { RETURN [NARROW(LI]] }:

H: TYPE~Histogram'': Size: INT~10:

HistValue: PUBLIC TYPE~HV®!;

baseHist: PUBLIC H « NEW[HistValue«ALL|[]
x. y: HistValue«+{ 20. 18, 16. 14,12, 10, 8, 6.4.

FatalError: ERROR[reason: ROPE]~CODE;

Setup: PROC [h: Handle*, a; INT]~ENTRY {...}:

ij.k: INT+0: p.g: BOOL: Ib: Label: main:

-- Interface:  An exported type.

-- A type binding.

- An exported variable .
- An exported proc.

-- PRIVATE only for secret
- stuffin an interface.

- An inline proc binding.

-- Implementation: Binds a TYPE and INT.

= .PUBLIC for exports.
- An exported variable
- with initialization.
- Binds an error.

- Binds an entry proc.

uSiatement 3= §S { SIMPLELOOP {sS: GOTO Cont": EXITS Retry"=>NULL}:
In6.9.10.17. 19. EXITS Cont"=>NULL }
«sSi=e¢,+e: | e | block® | escape | loop | NULL. [e,~e.,).TOVOID | € --must yield VOID-- | --all four yield VOID-~
wescape ::= GOTOn |GOTOn | HEX[exception[code~ n”, args~NIL]] |
EXIT | CONTINUE | #LOOP | @RETRY | GOTO ( Exit"”] Cont* | Loop™'| Retry®) |
(RETURN | RESUME) 2% | { Ar*+e:) GOTO {(Return ' | Resume’) }
SREJECT | te « STATE THISEXCEPTION[] | DUMPSTATE]e]
~loop ::= (iterator | ) {i iterator : | done'~FALSE: Next'; PROC~{}:)
(WHILEe |UNTILe]|) Test~A IN(NOT e | e | FALSE):
DO ?e0pen’ ?eenable’ ?body { open SIMPLELOOP {
IF Test'{] OR done’ THEN GOTO FINISHED:
{ enable body EXITS Loop =>NULL }: Next{} }
EXITS Exit'=>NULL: (n. !..=s§: ... FINISHED=NULL}}}
FORX:eINe]
T

NAREPEAT (n. !..=3s): ...) ENDLOOP
~iterator it = THROUGH ¢
FOR{n :t| »n) n: t
{ (| DECREASING) IN e | Range: TYPE~e: done: BOOL ~Range .ISEMPTY:
Next’: PROC~{ IF n( >Range".LAST | <Range .FIRST )
THEN done’« TRUE ELSE n*n.(SUCC rPRED) b
n«Range (FIRST | LAST): |
“e.e) done’: BOOL~FALSE: Next': PROC~{n+e;}. n+e,):
¢isa subrange. In FOR n: ... nis readorty except for the assignment in the iterator's desugaring.

x+AddHists{baseHist. baseHistjt:
Setup[bh~main, a~3]:

{ENABLE FatalError =>RETURN[0]: []-gsll: bl
NotPresent;

IF i>3 THEN RETURN|[25] ELSE GOTO

FOR t:INT DECREASING IN [0..5) UNTIL flt]>3 DO

uINT«0: .. tust+4: ..,

REPEAT Out=>}...}: FINISHED=5{...} ENDLOOP:

THROUGH {1..4] DO i+i*i ENDLOOP:
FOR i INT#1,i+2 WHILE i<§ DO j*+j+1 ...

FOR I: Label +1b. .Next WHILE I#NIL DO ...

-- A statement can be an assignment.
-- or an application without results,
-- or a block.

-- 0T an IF Or an escape statement.

-- or a loop. Try to declare ¢ in the FOR
-~ as shown. Avoid OPEN or ENABLE
-- after DO (use a block). FINISHED

-~ must be last.

-- Raises i to the 16th power.
-- Accumulates odd numbers in [1..8).
-- Sequences through a list of Labek.

weapression 2= n | Iizeral‘7|| (e) } application |
e | typeName") (9 n
prefixOp e | e, infixOpee, |
e relOpdye; |
e, AND(2)e: e, OR (1) e, |

e . prefixOp | e, . infixOple,] |
(A[x: Te. v :ve;)=>[BOOL] IN relop ) [e;. )] |
IF e; THEN e; ELSE FALSE | IF ¢; THEN TRUE ELSE e, |
et | #STOP | ERROR ] € . DEREFERENCE STOPH| ERROR NAMELESSERROR |
builtin [ e. 2(. €. '..) ?applEn~’] | e, . builtin 2( [e.. ...] TapplEn ) |
funnyAppl e 2 [?argBinding™ 2applEn} ) | e. funnyAppl 2( [?argBinding ?applEn]) |
[ argBinding’ ] --Binding must coerce to a record. array. or elocal string-- |
subrange? [if* | select™ | safeSelect*: | ewithSelect™ | s
Precederce is in bold in rules 19-21. All operators associaie 1o the lefi except ~. which asvociates
to the right. Applicaticn has highest precedence. Subrange only after YN or THROUGH. s only in if ™ and seleci choices™ "' v,
wprefixOp = @ @) | ~ (7) |](- NOT) (3) VARTOPOINTER | UMINUS | NOT
*{/7]MOD@)] + | — (9]« TIMES) DIVIDE | REM | PLUS | MINUS | ASSIGN
MOT( 2~ (={<[>) | # k INOT ( 2NOT X" (EQUAL | LESS | GREATER)y] | x'~=V'|

<=|>=)]IN X =y OR X' (K]2)y | x>=y .FIRSTAND { X {=y'LAST
--In 19. 30. BUT {BoundsFault=>FALSE} ))
nhuiltln :: = -- These are enumerated in Table 4 - 5.
= funnyAppl i: = FORK | JOIN | WAIT | NOTIFY | BROADCAST | SIGNAL | ERROR | RETURN WITH ERROR |

ONEW | oSTART | SRESTART [t TRANSFER WITH | FHRETURN WITH

:«subrange ::= (typeName" | )

(1Oe e (1))

LET t'~(typeName | INT) . first' ~( ¢, | ¢,.SUCC ) IN
U.MKSUBRANGE(first’, {e; | e2.PRED )] BUT

~In 19. 39. 48. { BoundsFault = > MKEMPTYSUBRANGE[e.]}

Iv: LabelValue'«[i. 3. “Hello". 31.4E—1.(i+1).

(x]+1b.f+j.PRED. NIL |
pl: PROCESS RETURNS ng?‘-FORK fli.jl:
ERROR NoSpace: WAIT bufferFilled:
RT: RTBasic. Type « CODE[LabelValue"];

h[— 3, NOT(i>j), 1*j. i+3. i NOT >j. p OR q. Ib.rt]:
v+ {first~0,last~5.x~3.14,g~2.f~S.r~NILs~"1"]:

[first~i. last~j]«1v!*:

-- A constructor with some sample

- expressions.

-- FunnyAppls take one unbracketted

== arg: many return no result. so

-- must be statements.

-- An application with sample expressions.
-- Short for {v+ LabetValue'\...}.

-- Assi to VAR binding

-- (extractor).

b: BOOL«i IN[1..10): FOR x: INTIN(0..11) DO ...; -- Subrange only in types or with IN.

be(cIN Color(red..green] OR x IN INT[0..10) );

-- The INT is redundant.



Syntax

»application

e ]| *TRASH ). ...

In 19, 26, TRASH may be written as NULL, ~ as ..

mapplEn :: = ! enChoice®; ...-- In 19, 26.

= e [?argBinding ?appl|En]
rargBinding ::= (n ~ (e | | *TRASH)). L.

Me

o - anin%
LET m'~e, a'~[argBinding] IN ‘ (ri'l’. APPLY »a’ ) ?applEn )

}n ~ (e | OMITTED [TRASH) ).
e | OMITTED | TRASH ). ...

BUT { enChoice: ... }

Examples

fh«Files.Open[name~Ib.s, mode~ Files.read
! AccessDenied = >{ﬁ(] FatalError=>{..}]:

?_GetProcs j)-ReadProc){k]:
ile.Read[buffer~b. count~k

l&i»«l j~ . k~TRASH]: fli~3. ]{~TRASH]:
3.. TRASH]:

Notes
-- Keywords are best for multiple args.
-- Semicolons separate choices.
-- The proc can be computed.
-- =File.Readfile. b. k] (object notationg.
-- jand k may be trash (see defaultTC*
-- Likewise. if i j. and k are in that order.

»ifii= IF e, THEN ¢, (ELSE e, | )
sselect i = SELECT ¢ FROM
choice; ... endChaice

The *:™is "." in an expression: als in 32 and 34,

wehoice :1= ((| relOp? ) g, ). L. =De,
wendChoice ::= ENDCASE (=D e, |)
In29.32. 34.
nsafeSelect ::= WITH e SELECT FROM
safeChoice: ... endChoice*
nsafeChoice:i=n:t =>¢,
wewithSelect ::= WITH(n, ~~ ¢, |eo¢,)
SELECT (| fe,) FROM
withChoice: ... endChoice"
eThe ~~ may be written as :.
sowithChoice ::= n, => ¢ |
n.n . =De

IF e; THEN e, ELSE {e, | NULL)
LET selector' ~e IN
choice ELSE ... endChoice
-- ECSE 75 a separator Jor repeiitions of the choice,
IF ((selector’ (= | relOp ) ¢) OR ... ) THEN ¢,
ELSE (e: | NULL)

LET v'~e IN
safeChoice ELSE ... endChoice

IF ISTYPE[V". t] THEN LET n : (*NARROW[V'. t] IN e;

OPEN v'~~g, INLET n'~($n, | NIL). type'~Uv".

selector’~(e,. TAG | e,,) IN withCheice ELSE ... endChoice
== &), must be defaulted except fora COMPUTED variant.

IF selector'=$n, THEN OPEN

(BINDP[n". LOOPHOLE[v".type'.n,] | | BINDP[n". v]) IN e;

i'-&le(} THEN 6 ELSE 8):
iF k NOT IN Range THEN RETURN([7]:
SELECT f[j] FROM
<7=>§... H
IN[7.8]=>{..}:
NOT<=8=>{..}:
ENDCASE =>ERROR:
WITH 1 SELECT FROM

rint; REF INT =>RETURN[Gcd[rIntt. 17]]:
rReal: REF REAL =>RETURN{Floor{Sin[rRealt]]}:

ENDCASE =>RETURN][IF r=NiL THEN

nr: REF Nodef?~...: WITH dn~~nr SELECT FROM

binary =>{nredn.b}:
unary =>{nredn.a}:
ENDCASE=>{nreNIL}:

-- An IF with results must have an ELSE,

-- SELECT expressions are also possible.
- =£INT~fT: IF K7 THEN {...} ELSE ...
--7.8=>o0r =7, =8=>{...} is the same.
-- ENDCASE ={...} is the same here.

-- Redundant: choices are exhaustive,

-- Assume r: REF ANY in this example.
-- rint is declared in this choice only.

-- Only the REF ANY ris known here.

-- See rule 52 for the variant record Node.
-- dn is a Node.binary in this choice only.
-- dn is a Node.unary in this choice only.
- dn is just a Node here.

wiype .= typeName | builtinType I typeCons

wtypeName ::= n;| typeName . n,
typeName [e] | en, typeName
In 19. 25. 36. 40.1. 49.

typeName.SPECIALIZE[e] | typeName . n,

=ty names g variani.

whuiltinType 2= INT | REAL | TYPE | ATOM | MONITORLOCK | CONDITION |

* 2tUNCOUNTED ZONE | oM DSZone
TYPE onfyastina boran interface’sd INTE

ER.CARDINAL. NA

#LONG CARDINAL_IO_IT ?LONG UNSPECIFIED -- See Table4—2.
. TEXT. STRING. BOOL. CHAR are predefined

wtypeCons ::= subrange* | painted TC*! | transferTC* | array TC* | seqTC*$ | tdescriptor TC:s!

refTC# | 1listTC* | fpointerTC* | strelativeTC* | recordTC* | union TC* | enumTC | default TC*
wyarTC::= sJ READONLY | VAR‘)t ANY
3 A

In11.45—48. ANY only in refTC.
wipaintedTC :: = typeName PAINTED t

VAR | READONLY | VAR ) t | ANY

only in interface decl.
REPLACEPAINT]in: t. from: typeName)

typeName musi be an opaque type. 1 recordTC or enumTC.

«1 transferTC :: =?safety* xfer ?drType

aixfer :: = PROCEDURE | PROC | PROGRAM |

PORT | PROCESS | SIGNAL | ERROR

«wdrType :2= ?fields, RETURNS fields, | fields,

No domain for PROCESS. In 3. 41.
afields 2= [d", ... ]| [L... ]| ANY
ANY only in drType. In 42.50. 52,

warrayTC ::= 7%PACKED ARRAY 7, OF t;

- =?%PACKED SEQUENCE tags OF t
! only as last type in a recordTC or unionTC.

s5eqTC 2

s.ifdescriptorTC 1=
?LONG DESCRIPTOR FOR varTC*
varTC must be an array type.

wrefTC ::= REF ( varTC”_'lj

+listTC ;2= LIST ( OF var

“1)

wtpointerTC:: =?LONG ?0RDERED ?eBASE
POINTER Zesubrange® (TO varTC* |} |

®POINTER TO FRAME ﬁn ]

Subrange only in a relativeTC: no typeName" on it.
wefrelativeTC ::= typeName"” RELATIVE L

MKXFERTYPE[drType. flavor~xfer]

domain~fields,. range~fields,

MKARRAY|[domain~t,. range~t,]
MKSEQUENCE[domain ~tag. range~{]

MKARRAYDESCR[arrayType~varTC]

MKREFI[largel~( varTC | ANY )]
MKLIST[range~( varTC | REF ANY )]

MKPOINTER[target~( varTC | UNSPECIFIED ).

subrange~subrange ] |

n
MKRELATIVE[range~t. baseType~typeName]

t musi be a pointer or descripior type. typeName a base pointer lype.

wrecordTC ::=72access'? (
IMONITORED RECORD fields" |
3 MACHINE DEPENDENT RECORD
(mdFields |efields*))
« $mdFields ::= [((n pos). !.. : --/n 50. 52.
Peaccess'? 1), ...
sufposii= (e, Niey.e)) - InSi 53

sunionTC:i= SELECT tag FROM

111. .. = X(fields* | mdFields*! | eNULL)). ...

ENDCASE

Legal only as last type in a recordTC or unionTC.

s:itag o= (n ($post ' [) : Teaccesst |
*FCOMPUTED | #TOVERLAID ) (1| *)
1n44. 52.* only in unionTC*.

semmTC = { n,

MACHINE l.){EPE"bi[];ISINT e ...}

«defautTC 1=
te]
tee
*t+e | TRASH|
*1 ¢ TRASH

sTRASH may be written as NULL.

MKMDRECORD
MKMDFIELDS[LI

MKENUMERATION[ LIST{$n,
MKMDENUMERATION[LIST(

MKRECORD fields] |

[mdFields | fields]
ST (LT n.pos])...].t)..]]

MKPOSITION[firstWord ~e,. firstBit~e,, lastBit~e}

MKUNION|selector~tag. variants~LIST[
([ labels~LIST[ $n. ...]. value~fields ] )....] |

[: [ $n. (pos | NiL) } | $COMPUTED' | $OVERLAID') .
{ | TYPEFROMLABELS ) |

CHANGEDEFAULT[oldT ~t. (
fault~NIL. trashOK ~FALSE] |
Default~INLINE A IN e. trashOK ~FALSE] |
Default~INLINE A IN e, trashOK ~TRUE] |
Default~t.Trash, trashOK ~TRUE] )
defauli TC legal only as the 1ype in a decl in a body® or fieid ' (n: 1 « e). in a TYPE binding"'. or in NEW. Note the terminal |.

'['&LH NI el | [$n. —1]).... 1]

P: PROC] b: Buffer'.Handle.
i INT#TEXT[20].SIZE ).

Typelndex: TYPE~[0..256):
BinaryNode: TYPE~Node®.binary:

HV: TYPE~Interface.HistValue PAINTED
RECORD...]

Enumerate: PROC{
it RL

p: PROC[x: REF ANY] RETURNS [stop: BOOL]]

RETURNS [stopped: BOOL);

D] X
?2:PROCESS RETURNSJi:INT]« FORK stream.Get:

ailed: ERROR [reason: ROPE]~CODE:

Vec: TYPE~ARRAY [0.maxVecLen) OF INT:
Chars: TYPE~RECORD [text: PACKED SEQUENCE
len: [0..INTEGER LAST] OF CHARY]; ch: Chars;

v: Vec~ALL[0]:
dV: DESCRIPTOR FOR ARRAY OF INT~
DESCRIPTOR[v]:

ROText: TYPE~REF READONLY TEXT:

RL: TYPE~LIST OF REF READONLY ANY; rl:RL:
UnsafeHandle: TYPE~LONG POINTER TO Vec*:

Cell: TYPE~RECORD[next: REF Cell, val: ATOM):
Status: TYPE~MACHINE DEPENDENT RECORD

channel (0: 8..10): [0..nChannels).
device (0: 0..3): DeviceNumber.

stopCode (0: 11..15): Color. fill (0: 4..7): BOOL.
command (1: 0..31): ChannelCommand J:

Node: TYPE~MACHINE DEPENDENT RECORD
type (0: 0..15): Typelndex. rator (1: 0..13): Op™,
rands (1: 14..79): SELECT n (1: 14..15): * FROM

nonary =>[],
unary =>[a(1: 16..47;: REF Node].
binary = )[]a (1:16.47
ENDCASE |:
Op: TYPE~{plus, minus, times. divide}:
Color: TYPE~MACHINE DEPENDENT {
red(0). green. blue(4). (15)}: c: Color:

. b(1:48..79): REF Node]

-- A type from an interface.
-- A bound sequence: only in SIZE. NEW.

== A subrange type.
-- A bound vanant type.

-- See 13 for use.

-- A record with just a sequence in it.
- ch.texqi] or chi:] refers 10 an element.

-- NARROW][rl first. ROTexi]t is a
-- READONLY TEXT (or error).

-- Don‘t omit the field positions.

-- nChannels < 8.

-- DeviceNumber held in < 4 bits.

-- No gaps allowed, but any ordering OK.
-~ Bit numbers >16 OK: fields can cross
-- word boundaries only if word-aligned.

-= rands is a union or variant part.

-- This is the common part.

-- Both union and tag have yos.

-- Type of nis {nonary, unary. binary}.

-- Can use same name in several vanants.
-~ At least one variant must fill 1: 14..79.

-- A Color value 1akes 4 bits: green=1.

-- Except as noted. a constructor or application must mention each name and give it a value.

Q: TYPE~RECORD|
iV INT.
JUINT e,
ki INT*3,
I INT#3 | TRASH.
m: INT<TRASH |

-- Otherwise there’s a compile-time error.
-- 0. Qli~ ] trash i (not in argBinding®).
-- No defaulting or trash for j.

- Qfl. Qlk~ ]leave k=3.

== As k. but Q[/~TRASH] trashes /.

- Qf). Qim~ ] trash m.

sofame 1=
o literal =

?num . num ‘exponent
num exponent |

;(extendedChar 17).." 2(LID]
n

wexponent ;= ‘E]e]?(i- ] —)num
«num = digit I,

letter (letter | digit)...
:= num ( ) um )|
digit (digit JA|B . (Hh)?num|

‘ {extendedChar| " | ™) |_'o’di it L. (Clo) |

-- But not one of the reserved words in Table 3—2.
== INT literal. decimal if radix omitted or D. octal if B. |

-- INT literal in hex: must start with digit. |

-- REAL as a scaled decimal fraction: note no trailing dot. |
-- With an exponent, the decimal point may be omitted. |
-- CHAR literal: the C form specifies the code in octal. |

[ CextendedChar| ). ...] -- Rope.ROPE. TEXT. or STRING. |

-~ ATOM literal.
-- Optionally signed decimal exponent.

wextendedChar :: = space | \ extension | anyCharNot™"Or\

wextension 2= digit, digit, digit
@N 4R [ D [ (IB) ]
anaw i

-- The character with code digit, digit, digit. B. |
-- CR. "™\015 | TAB. "\011 | BACKSPACE. "\010
-- FORMFEED. "\O14 | LINEFEED. \O12 | |" |\

m. x1. x59y. longNameWithSeveralWords: INT:

a1 INT~1+12D+ 2B3+ 2000B
+1H+0FFH:
rl: REAL~0.1+.14+1.0E-1
+1E-1:
al: ARRAY {0..3]
12: ROPE~"Hello.AN..\NGoodbye\F":
a2: ATOM~$NamelnAnAtomLiteral:

I]61: CHAR~['%. N, "\ "\141}:

- = 1+12+1024+ 1024
- +1+255

- =0140.1+0.1

- +0.1
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