
'on ·the Transfer of Control between Contexts

Abstract

On the Transfer of Control between Contexts

B. W. Lampson, J. G. Mitchell end E. H. Satterthwaite
Xerox Research Center

3180 Porter Drive
Palo Alto, CA 94304, USA

We describe a single primitive mechanism for transferring control from one
module to. another, and show how this mechanism, together with suitable
f acllltlcs for record handling ond storage allocation, can be used to construct
a variety of hlqher-level transfer dlsclpllnes. Procedure and function calls,
coroutine linkages, non-local gotos, aod signals can all be specified and
Implemented In a compatible way. The conventions for storage allocation end
name binding associated with control transfers are also under the programmer's
control. Two new control disciplines ere defined: a generalization of
coroutines, and a f aciltty for handling errors end unusual conditions which
arise during program execution. Examples are drawn from the Modular
Programming Language, In which all of the f acllltles described are being
Implemented.

1. Introduction

Transfers of control In programs can be divided Into two classes. A
local transfer stays within the same piece of program text, and does not
change the naming environment. A goto which docs not Involve an exit
from a block has traditionally been the primitive local transfer operation, and
other operations have been described by translating them Into sequences of
(possibly conditional) gotos and assignments. Recently there has been a
lot of effort to find a 900d set of higher-level local transfer operations,
motivated by an awareness that the undlsclplined use of the goto results
In badly structured programs. The choice of if-then-else,
for-while and case constructs, sometimes augmented by
loop and exit operations, has met with wide acceptance. This Is
not because of theoretical proofs that they are sufficient to express any
computation, but because many years of experimentation with the posslbllltles
of the ~oto showed that It Is most effectively used In a few stylized
ways, fr oil) which these constructs were abstracted. In fact, the arguments for
keeping goto available In programming languages are based on the
observation that there are times when Its use cannot readily be cast In one of
these molds.

A global transfer, on the other hand, does more than alter the-sequential

On the Transfer of Control between Contexts

flow of control. It usually Invokes a new piece of program text, and It always
affects the allocation of storaqe and the binding of names. This paper Is about

. global transfers. In fact, It Is on attempt to find a suitable primitive (which we
will coll transfer) and to describe higher-level global transfers or
control dlsclpllnes by translating them Into sequences of
transfers, assignments and other data-handling operations.

There are two reasons why this seems worthwhile. First, It Is difficult to
describe clearly how the control disciplines In existing languages work
without resorting to the construction of a formal interpreter (Fisher].
Non-Interpretive descriptions either contain large quantities of ambiguous
English prose, or they Involve operations (such as the Algol 60 copy rule for
procedure calls) which may be precise but are certainly not clear. If a
language con be used to describe Itself, by defining certain operations In terms
of sequen9es of simpler operations In the language, the amount of conceptual
baggage required to understand It can be reduced considerably.

Second, It Is our opinion that much remains to be learned about the proper
choice of global transfer operations. Until recently very few languages other
than assemblers gave the programmer any choice of control operations. Simula
[Hoare and Dahl] and the new crop of languages for artificial Intelligence
have changed this situation to some extent, but it will be a long time before
the possibilities for global transfers have been thoroughly explored. If
programmers have the opportunity to create their own control disciplines they
will certainly make a lot of mistakes, but from this experimentation we can
hope to learn what works well and what does not.

From this discussion the flavor of the paper should be clear. We will define a
transfer primitive ond then exploit the local expressive power of the
language to describe some control disciplines which we happen to like. This
Is not a trivial job, since a good discipline must satisfy a number of constraints:

. programming generality [Dennis] - Independently constructed modules can
work together without having to know each other's Internal structure. In
particular, each module con choose Its names and Its storage allocation
strategies Independently of the others;
. compatibility - modules using different disciplines can still communicate, or
the advantages of diversity will be completely overwhelmed by the
drawbacks of Babel;
. robustness - it Is easy to get things set up, and restrictions and caveats
are consplclous by their absence;
. reconfigurability - connections betweeen modules can easily be broken
and recstahllshed, so that debugging f acilltles can be spliced In and the
behavior of a module can be changed by attaching "adaptors" to Its external
connections.

This approach should not be misinterpreted. The fact that a construct can be
explicated in terms of simpler ones does not mean that the programmer must
have this decomposition In mind whenever he uses It. On the contrary, If he
uses It as port of his working vocabulary he will normally think of It as an
atomic concept. The explication Is helpful In making the definition precise,
and In answering questions about what will happen In unf amlllar situations; It
should be thought of In that light. •

Questions about the binding of names are, In our view, orthogonal to the study

2

On the Transfer of Control between Contexts

of transfers, and are not considered In this paper. In partlcular, rules for
binding non-local variables and for llnklng separately complled modules are
not discussed.

2. Tho host language

• The f acllltles described In this paper are Implemented In a general purpose
system programming language called the Modular Programming Language
(MPL), which Is a component of a system for modular programming. MPL
borrows much of Its local character from Pascal [Wirth] and El/1 [Wegbrelt].
In partlcular, It Is a typed language In which new types can be bullt out of old
ones using record, array and pointer declaratlons. There Is •
also a way to prevent components of a record from being accessed except by
a group of procedures which are declared with It. Such a record Is called
closed, and the procedures are called Its handles. Finally, it Is
possible to declare a record type s as a direct extension of another
record typo r, by adding additional components and handles. Extension Is
the transitive closure of direct extension, and the set of all extensions of r Is
tho class of r. Closed records and classes were Inspired by the
class rnechanlsm of Simula [Hoare and Dahl]; that language, however,
encourages tho restriction of access to handles, but does not enforce It.. The
control transfer operations use closed records and classes to construct and·
manipulate their data structures.

A construct patterned after Pascal's with Is used heavlly as syntactic
sugar by the control disciplines. Any block can be prefixed by one or more
clauses of the form:

USING p,
• where p Is a pointer to a record of type r. Within the block the names of the

components of r can then be used without qualification. If c Is such a
component, then within the block c Is short for p.c.

3. Contexts and frames

The entitles between which global transfers occur we call contexts.
The definition which follows reflects our views about the properties which
such entitles ought to hove. Although nearly all of the transfer operations of
existing programming languages can be described within this framework, we
ore not making any claims for Its universal appllcabllity. Since we make use
of Its properties In constructing control disciplines, our constructions wlll not
work In systems for which contexts cannot be defined.

Within this framework we may restate the subject matter of this paper:
. the nature of contexts, and their creation and destruction;
. minimal primitives which are suf flclent to describe any transfer of control
between contexts;
. definition of good higher-level transfer dlsclpllnes;
. description of these disclplines In terms of the primitives.

A context consists of:
. o pointer to the text of a program, which we shall abstract as an
array of objects called Instructions whose Internal structure and

3

On the Transfer of Control between Contexts

properties are left undefined. We assume that the program Is not modified
during execution;
. a binding rule for names, which we shall abstract as a function
mapping names Into pointers; .
. some local storngc, Including an Integer Index Into the program
text called the progrnm counter.

3.1 Representation of contexts

A context Is represented by a frame, which Is a record whose
components contain the Information needed to define the context. More
precisely, a context base Is a closed record type containing a program
text pointer, a binding rule and a program counter; these components are
accessible only to the control transfer primitives, which are the handles. A
context can nlmost be described as a member of the class of context bases.
Unfortunately, this description cannot quite be taken literally, because we
need the transfer primitive to describe how procedures are called, and
hence this primitive cannot be defined as a procedure. The other operations on
contexts, however, can properly be defined In this way.

It l_s Interesting to compare this situation with what happens If we try to define
as a class some other type which Is normally taken as primitive. A 32 bit
Integer, for example, could be defined as a closed record containing a Boolean
arrny with 32 elements, and we could (rather clumsily) write procedures to
Implement the standard arithmetic operations, without becoming involved In any
circularity. As with any other closed record, these procedures must cooperate
In maintaining the consistency of the representation: if add assumes that
the Integer Is represented in 2's complement, then multiply had better not
assume sign-magnitude representation. All the questions of consistency are
out In the open, however, since everything having to do with the closed record
Is expressed In the declaration of Its handles.

For contexts the consistency requirement has a new aspect. The procedure
which creates a context, for instance, must build a data structure which Is
consistent not only with the other handles of the class context, but also with
the transfer primitive. This is actually a rather strong requirement,
because the transfer primitive causes instructions to be executed from the
program text. When this text was constructed, some assumptions were made
(by the compiler) about the environment which would be present during
execution of the program. The creation procedure Is responsible for setting up
the environment so that these assumptions are satisfied. If they are not, chaos
wlll result, since the foundation will be undermined on which the entire
representation of the program is based. If care Is taken to satisfy the
assumptions of the transfer primitive, then, we may think of a context as
a class, and the remaining discussion will proceed on that basis.

We will coll o pointer to a context an lnport. The name Is Intended to
suggest tho main purpose of this type, which Is to be an operand for the
transfer primitive. A pointer to an tnport we wlll call an outport,
with the Idea that most of tho control dlsclpllnes we are Interested In need this
extra level of Indirection so that transfers Into a context can be trapped
when necessary.

3.2 Creation of contexts

4

On the Transfer of Control between Contexts

We now proceed to explore In detail how contexts are created. Our
discussion concentrates on the logical structure of the creation process,
Ignoring the details of the lmplementntlon, In which much of the work Is done
at compile or llnk time, and many of the operations described are coalesced
for efflclenc·y. We say a good deal about the treatment of the types of the
various objects Involved In order to make It clear that everything we are doing
Is consistent with the constraints of a fully typed language.

Since a context Is on Instance of a class, there must be a single create
primitive which takes some arguments and creates a context. The arguments to
create are:

. a record called a program which contains
- an array of program text-,
- the type of the frame r~cord which the program expects;

a frame record (which Is not yet a context).
We wlll consider later where· these records come from.

With these Inputs, create's Job Is easy. It checks that the frame record
actually presented is of the type specified by the program (using the facilities
of the type system to find out what the frame's type Is). Then It Inserts a
pointer to the program text array In the frame, lnltlallzes the program counter
to zero, and returns the frame record as a context.

A pr·ogram must be derived eventually from a source file which has been
complied by the MPL complier. The output of \he compiler Is an object flle
which contains the same Information as the program record. There Is an
operation called load which converts a file name Into a program record,
after checking as best It can that the file Is In fact a legitimate object. flle (the
type checking machinery cannot be expected to handle this situation perfectly,
since It has no control over the way in which Information Is stored In the flle
system). The only hard work load has to do Is to find space for the
program text nrray In the addressable memory of the machine on which the
program Is running. How this Is done depends on the details of the machine
and Is not relevant to this paper.

Constructing a frame Is more dlf flcult. Again, we can break this operation
down Into two parts:

. obtolnlng storage for the frame;

. lnltlalizing this storage properly and returning It as the frame.
Any record type In MPL has a creation operation associated with It which Is
defined when the type Is declared. This operation accepts a block of storage
and perhaps some other parameters, and produces a record of the proper type.
It Is the only way to make such a record. The create primitive for
contexts discussed above Is an example of such an operation.

An ordinary frame creator In MPL Is a special case of this general mechanism,
with two distinctive characteristics. First, It usually has a standard program
text, for two reasons:

. frames tend to have a rather stylized form, so that the dlff erences between
them con be of flciently encoded Into a data structure called a frame
descriptor which con then be accepted as a parameter and Interpreted
by the standard creator program .
• there Is another clrcularlty problem - someone has to create the frame

·5

On the Transfer of Control between Contexts

creator. A standard creator can Itself be created In· a standard way which
can be part of the lnltlal system. •

The fro mo descriptor Is usually stored .In the object flle along with the program
text. Use of this scheme Is not compulsory, however. All of the fecllltles for
creating records can be used to cre_ate frames.

The second unusual thing about e frame creator Is that It has to provide the
binding function for the context.· Recall that this function maps the names used
In the pror1ram text Into pointers to the objects which are bound to those
names by this Incarnation of the program. This Is done,by a generalization of
tho display which Is often used to Implement the binding rules of Algol.
The names used by the program have the form rp.v, where rp Is a pointer to
the frame of some other context and v Is a variable local to ·that context. We
call the set of frames r, s, t, ... referenced by a context In this way the
neighborhood of the context; It ·1s defined by a collection rp, sp, tp, ... of
pointers to the frames. The context Is automatically prefixed with a clause of
the form

USING rp, sp, tp, ...
so that the program con refer to the variables without quallflcatlon, Just es It
refers to non-local variables In Algol. One element of the neighborhood Is
always _the argument record.

To define the binding function, then, the creator has to define the
nelgl)borhood, I.e. set the pointers rp, sp, tp, ... to the proper frames. The
type of each frame Is of course fixed by the declarations In the source
program, but there may several frames of the some type to choose from. As
for os the typing and control mechanisms of the language are concerned, the
creator Is free to choose any of them. One f amillar possibility Is the Algol
rule, which takes the unique textually enclosing occurrence [Wang and 0ahl].
In a more complex control environment, however, It· may be difficult to define
such o unique occurrence, or the programmer may want more flexlbillty In
doflnlng the environment. In any event, the choice of binding rule Is entirely
under the programmer's control and Is not relevant to the subject of this paper.

3.3 Storage ollocotlon

There remains the qt1estlon of storage allocation for a frame. This must be
done with some care, since creating a context Is a rather common operation
which Is required, for example, by every coll of an Algol-like procedure. The
standard solution Is to allocate frames from a stack: this works well In a
control dlsclpllne which ensures that contexts are created and destroyed In
last-In f Ir st-out f ashlon. Such a restriction would not be Incompatible with the
basic control primitives, but it would severely constrain the set of compotlble
higher-level dlsclpllnes which would be designed.

In order to avoid this problem, we have made a convention that frames are
allocated on a heap; they can then be created and destroyed In any order. A
standard non-compacting, coalesclng free storage allocator [Knuth] Is used,
supplemented for speed by o vector of lists of available blocks for all the
commonly used sizes. To keep the vector short, frame sizes are quantized by
tho compiler so that they dlf fer by about 10%. Thus the possible sizes might
bo 10, 12, 14, 16, 18, 20, 22, ... , 200, 220, etc. With this scheme only 40
sizes ore required to span the range from 10 to 320, which Is a much greater
variation than Is likely to be encountered In practice. Furthermore, It Is

On the Transfer of Control between Contexts

always possible to allocate a larger block than the one requested In order to
reduce external fragmentation. •

4. The transfer primitive

As we have already seen, In order to handle transfers which change the
environment we need at least one language feature orthogonal to that subset of
the longuoge which Is used for programs which run In a slngle environment.
This section describes a single primitive called transfer to meet this
requirement. We have tried to make this primitive do a minumum amount of
work, leaving everything possible to be done by local code surrounding It In
the two contexts which are Involved In the transfer.

The basic transfer primitive, then, takes an lnport as Its single argument.
After It has been executed, the context which executed It is no longer running,
and the context specified by the inport has started running at the location
specified by its program counter. In fact, this operation bears a striking
similarity to the primitive used in Multics for switching control from one
process to another [Saltzer], where the system scheduler, running within a
user process, picks another process to run and transfers to It. The
dif_f ercnce Is that In Mulllcs there Is no relationship between the processes
except for that established by the Implementation of the scheduler.

In our case, however, we almost always want to pass some kind of return link
and ·some arguments to the new context. We do this by establishing the
convention that the link should be put Into a global variable called link,
and the argument Into another nlobal called args, before the
transfer is executed. The context being entered must use the values of
these vorlnbles, if It cares, before doing another transfer. Since this
convention Is followed in all our examples, the rem.a ind er of the paper uses a
three-argument primitive

transfer(destinotlon inport, return outport, argument pointer).
as an abbreviation for

dcst := destination inport; link := return outport;
args : = argument pointer; transfer;

In the Implementation the global variables dest. link and args are of
course machin~ registers.

For obvious reasons we make args a pointer to the argument record.
From the point of view of the type machinery, this will be a "universal" pointer
which carries Its type with It. When the receiving context tries to use It, a

• run-time type check Is needed to ensure that it actually has the proper type.
In most case~. however, this check can be done at binding time, as we shall
see later.

Note that the transfer primitive says nothing about what is to be done
with the link or the arguments, and It does not create any contexts or allocate
any storage. All of this is the responsibility of higher-level conventions or
control disciplines, and the existing local features of the language, together
with transfer, ore suf ficlcnt to permit almost all of the transfer operations
we know about to be programmed. An actual Implementation, of course, may
favor certoin disciplines by pre-defining them In a standard prologue and
generotlng especially good code for them, as ours does for the port, procedure
and signal disciplines described below.

7

On the Transfer of Control between Contexts

6. Conventions for compatible transfers

In def inlng control disciplines, we .would Ilka to have es much compatlblllty as
possible, so that It Is possible to leave a context using one dlsclpllne and enter
a second context using a dlf f crcnt one. To make this work, we must be
careful obout storage allocation and about the rules for handling the arguments
and return links. We have olreod.y discussed a suitably general method for
allocating frames. This section considers the other general problems
encountered In designing a fairly broad set of compatible control dlsclpllnes.

The transfer primitive allows for a single argument, which Is normally a
pointer to the record containing the arguments which the user wanted to pass.
The semantics of binding a formal parameter, say x, to an actual parameter,
say 14, Is very simple. • The sender of the argument record assigns the actual
parameter to a suitably named component of the argument record (actualargs.x
:= 14). When he has finished C!Jnstructlng the record and Is ready to.transfer,
he does

args : = actualargs; transfer(destlnatlon).
The receiver does

!ormalargs := args,
and (nutomoticolly) prefixes his block with the clause

USING formolargs,
where formalargs Is declared to have the type of the argument record he
expects.

The effect of all this Is that:
. the low-level convention for passing arguments Is very slmple - one
pointer Is passed;
. the entire collection of arguments Is treated as a unit, so that It can be
passed on unchanged by a context which Is simply doing monitoring or
tracing and Is not Interested In the Internal structure of the arguments;
. the receiver con reference the f ormols with the usual syntax;
. the longunge f ocllities for constructing ond decomposing records are
automatically available for arguments. These allow, among other things

- component values to be specified by name, by position or by default;
- a record to be decomposed by assigning It to an extractor, a
syntactic construct which looks exactly like a record constructor except
that all the components are treated as left-hand-sides of assignment
operators;
- variable-length records.

In this way a f alrly elaborate set of f acllitles Is made to do double duty
without any need to Introduce new semantics Into the language.

To preserve generality, we must ensure that the storage occupied by the
argument record will not be reused until the receiver Is through with It. It Is
undesirable to put this storage In the sender's frame, as Is customary In Algol
Implementations, because the sender's frame may not live as long as the
receiver (e.g. when the sender Is a returning procedure; this case can be
handled specially In Algol because of the restrictions on what a function can
return). We therefore allocate separate storage for the arguments, and require
tho receiver to free this storage when he Is done with It.

Copying the entire argument Into the receiver's frame would be another

8

·on the Transfer of Control between Contexts

alternative, but Is Is unattractive for varloble length argument records and In
situations where a receiver Is not Interested In the values of the arguments,
but Is simply ttolng to poss them on to someone else. Copying does work well
for short argument records, however, especially since the record can be
constructed In the machine's registers, and this strategy Is used for records of
less than 6 words.

6. Coroutines and ports

In this section we toke up a pair of control dlsclpllnes which treat the two
parties to a transfer as equals. In particular, this means that no creation of
contexts or allocation _of storage Is Involved In a transfer, and that the relation
between the parties Is symmetric - each thinks that It Is calling on the other
one.

6.1 Coroutines

A coroutine (more or less as In Simula [Hoare and Dahl); see also
[Mcilroy] and [Conway]) is a context which, when entered, continues
execution where It loft off the lost time It relinquished control. Local storage
survives unchanged from exit to entry (as In a Fortran procedure, Interestingly
enough). This is the simplest control dlsclpllne, and the easiest to describe.
Each context Is pointed to by static lnports set up at link time. Hence a
transfer passes no return outport. The linkages are normally symmetric, as
shown In figure 1.

There are throe problems with coroutines of this kind as a general-purpose
control discipline. One Is that, because of the fixed llnkaqes, a coroutine
cannot be used to provide o service to more than. one cus tamer. A procedure,
by contrast, Is Ideally suited for this purpose, since It Is created as a result of
a call and destroyed when Its work Is done.

A second dlf flculty Is that the control Is entirely anarchic. There Is nothing to
prevent control from entering a coroutine In an entirely unsymmetrlc way. For
example, In figure 1 context O might gain control over lnport a from line s1 of
P, even though Its program counter Is at t1. If subjected to an appropriate
dlsclpllnc this kind of control transfer might be useful, but no such dlsclpllne
Is present In the simple coroutine scheme.

6.2 lnltlallzntlon of coroutines

The third problem Is proper Initialization of a collection of coroutines. Recall
that a transfer from context P to context a does not change O's program
counter, but simply causes execution to resume at the point where It stopped,
or at the beginning If a hos never run before. Since no buffering of args
or link Is provided by transfer, Q must save their values before ,-
doing another transfer. In general It will do this properly only If Jt Is
sitting Immediately after a transfer to P. In figure 1, for example: If P Is
started first, It will transfer to a at s1, but a will transfer to R and
thus loso P's argument record.

This dlf flculty can be reduced by lnltlallzlng more cautiously, as follows:
(a) Start each context In turn by transfe~lng to It, let It run up to Its

9

On the Transfer of Control between Contexts

f lrst transfer, and stop It before It sets up ergs end link.
(b) Carefully choose _one of the contexts and restart It by transferring
to It. ..

Step (n) Is unattractive because It' requires a kind of control over the Internal
activities of the contexts which Is quite different from what Is needed for
normal transfers. Ste,, (b) has more serious problems, which wlll become
apparent on further examination.

Suppose In figure 1 that P Is .acting as a producer of data and O as a consumer
who may occasionally return a reply. The fact that P and Q play different
roles Is concealed In the figure by the Identical form of the skeletal program
text. In f lgure 2 this dlf f crence has been brought out by expanding the
argument handling associated with each transfer Into send end
receive operations. The sequence of processing Is:

P: setup - send - transfer -: receive - compute - send - transfer -

0: setup - . ·- transfer - receive - compute - send - transfer -

The two sequences ere Identical except for the phase et Initialization: In both
cases there Is a send - transfer - receive sequence which Is the
expansion of the simple transfer of figure 1.

The difference In phase Is quite Important, however, for step (b) of our
cautious Initialization procedure. If we choose P to restart, It will Immediately
transfer to 0, which will Immediately transfer back, and P's· first
message will be lost. If, on the other hand, we choose a to restart, all wlll be
well. Unfortunately, It Is hard to seo how to make the proper choice In more

• complex situations (if Indeed It Is always possible).

6.3 Processes end messages as a model·

Rather than making further attempts to patch up the simple coroutine discipline, •
we now turn to a much more powerful scheme: processes executing In parallel
and communicating via event channels. This, of course, Is more power than
we need or want, but by extracting the essential functions of the parallelism
and message buff er Ing we can design a control disc Ip line with understandable
properties which preserves the strengths of coroutines whlle avoiding their
problems.

The Idea of processes executing In parallel we assume to be f amillar
[Dijkstra]. A message channel Is an object on which two basic actions can be
performed by a process: send a message and receive a message. A
message is an arbitrary record, and the channel can buffer an arbitrary number
of messages. An attempt to receive a message from an empty channel causes
the receiving process to wait until a message Is sent to that channel. There Is
no constraint on the number of processes which can send or receive messages
on o ulven channel. This f acllity Is synthesized from two operating systems
[Lampson, Brlnch Hansen]; we have suppressed many details which are
Irrelevant to our purpose.

Any transfer operation can now be modeled by some combination of
send and receive. We don't have to worry about losing messages,
because of the buff er Ing provided by the channels; each process wlll get
around to processing Its messages In due course. Nor Is the order In which

10

On the Transfer of Control between Contexts

processes run of any Importance; In fact, It Is not even defined, except when
processes must wait for messages. We still need a convention which allows
one process to provide service for many customers, however. We get It by
analogy with the link parameter of· the transfer primitive: an event
channel on which to return a reply goes along with each message.

6.4 Ports

The process-channel model has added three essential features to the coroutine
discipline:

. parallel execution;

. but fer Ing of messages;

. Indirect access to processes through message channels.
Figure 3 Illustrates the structur~ of a symmetric connection. We now proceed
to adnpt these features to o sequential, unbuffered environment. The first step
Is to def lne a new type for symmetric transfer of control, called a port,
to replace the <channel, outport> pairs In figure 3 [Balzer, Krutar]. Each port
Is likewise a pair, consisting of on lnport IP and an outport OP. IP points to
the context which will get control when a transfer is made through this
port, ond OP Is where the return link will be stored.

We con ovoid the need for parallel execution In a straightforward way, by
modeling the notion of "a process waiting for a message on a channel" with
the new concept of "a context beinq pending on an lnport". LSlnce a
process can only be walt!ng on one ~hannel.l we will insist that a context can
only be pending on one lnport. Now, If all transfers are to pending
lnports, it will always be possible to run the context to which a transfer
Is directed, and there will be no need for parallel execution. A transfer
which does not obey this rule will not be executed, but Instead will cause a
control fault, with consequences which we will explore shortly.

Rother than explicitly associating the attribute "pending" with each lnport, we
con observe that on lnport Is a capability to start execution of a context, and
Interpret the pending rule as a requirement that only one non-null lnport at a
time should exist for each context. The lnport components of all the other
ports associated with a context will be null, and a transfer to a null
lnport will cause a control fa ult. We thus complicate the semantics of
transfer as little as possible.

Note thnt the pending rule hns nothing to do with the transfer primitive,
but Is a convention which we introduce In order to construct a useful
higher-level control discipline, that of ports. Even within this context, It may
be proper to break the rule If It can be shown that no untoward consequences
will result. Since the rule Is strictly Internal to the port discipline, It stands or
foils solely on the consistency of that discipline, and it is entirely independent
of the requirements of any other, separate convention for control transfers.
We do, however, want It to be compatible with a procedure discipline;
fortunately, this causes no trouble.

A context gets· to be pending on an lnport In tho same way that a process gets
to be waiting for a message on a particular channel: by executing a
receive operation on the port containing that lnport. There Is a definite
relationship between the value of the program counter and the pending lnport:

. the program Is at the point where It expects control to arrive over that port.

11

On the Transfer of Control between Contexts

As a result, there Is no need for message buff erlng In a successful port
transfer, since the receiving context Is ready and wllllng to pick up the
message et once.

6.5 Control faults end message buffering

During normal execution a control fa ult Indicates an error, an attempt to
transfer control to a context which was not Interested In receiving It In that
way. During lnltlolizatlon, on the other hand, a control fault may simply be an
Indication that there Is another context to start. When a fault occurs,
therefore, control Is passed to the owner of the faulting context; the
owning context must decide whether another context should be started. The
mechonlsm by which this Is done Is described In section 9. Here we confine
ourselves to the local consequences of the fa ult. The argument used above to
show that no message buffering Is required depended on the absence of
control faults. When a fa ult does occur, what action should be taken to
ensure that no messages are lost?

First of ell, If no message Is being sent (I.e. args Is null) there Is no need
for buffering. For Instance, when two contexts have a strict
producer-consumer relationship, transfers from the consumer to the
producer Involve no message. This explains why no specie! action was
needed during the slmple coroutine Initialization (discussed In section 6.2
above) when we chose to restart the consumer.

When a control fa ult occurs during a transfer from P to a {see figure 6)
and orgs Is not null, we actually have to do something. We would like
not to Introduce any new kinds of objects, and not to complicate any existing
operations. Since our repertoire of objects and operations Is limited, things
look unpromising at first sight. Fortunately, however, we do have contexts at
our cllsposol, ond within o context we con embed any kind of special
processing and storage we want, as long as It lnterf aces properly to the rest
of the world.

In particular, what we can do Is to construct a buffer context B with a
standard pro9ram text, and local storage within which we keep the argument.
We want B to emit tho argument the next time control is transferred to P
throur,h the port ili. l>To r,et this effect, we put an lnport for B lnto'.a's lnport__:>' " •

component, and save the lnport for P which normally is there In B's local
storage. When B gets control, It will rostoro P's lnport, transmit the saved
argument and destroy Itself. It does this by executing:

f,lnport : = savcdlnport; transfer(DC, B, (Ji, savedargument));
where DC Is a system-provided context which destroys B and then does:

transfer(p.outport, address(n.lnport), savedarqument);
The cost of nll this machination 'ts quite moderate (which Is not actually very
Important, since control faults take place only at Initialization If there are no
errors), and It has the great advantage that normal transfers are not
complicated at all by the requirements of control faults. Figure 6 Illustrates
the successive stages of Initialization for our f amlllar two-context example.

6.6 Linkage faults

Wo also want to be able to do dynamic llnklng, as In Multics [Bensoussan et.
al], so that we must be prepared to deal with a transfer through an

12

On the Transfer of Control between Contexts

outport which hos not yet been defined. Fortunately, the techniques we have
developed can handle this situation without dlf flculty. Undefined outports are
lnltlollzcd to point to a stondnrd context which constructs a buffer context, If
necessary, to save the argument of the transfer which caused the linkage
f oult, .and then posses the f oult on to the owner of the faulting context. If the.
owner fills In the outport and transfers to It, everything will proceed
exactly as for a control fault. Indeed, It Is quite possible .that a control fault'
will then occur~

6. 7 Railroad switching

As we have already pointed out In passing, the outport component of a port Is
used to hold the return link passed by transfer. Figure 6 makes the

• purpose of this arrangement clearer. If context a transfers through port
q which Is joined to context R through port r, then r .outport Is set to q. A
subsequent transfer through r will then return control to a. If later P
transfers through p to .r, then r.outport will be reset to p, so that control will
subsequently return to P. This action, which resembles the action of a
sprlng-loncled rnllroad switch, ollows many-to-one connections of ports, and
provides the memory required to return control correctly. Switching Is done by
the' receiving context, since it is part of the port control discipline and has
nothing to do with the transfer primitive. Often It produces no change,
as for example In the transfers from R back to P or a. To preserve
compatibility with procedure return.s (section 7.3) we make the convention that
a null link suppresses switching.

7. Procedures

Procedures have semantics much like that of Algol·procedures. The
Implementation makes use of almost all the facilities which have been
described In the preceding sections.

7.1 Procedure calls

If p Is declared ns a procedure, then p(a,b, ...) Is a procedure coll, just as It
would be a port call If p had been declared as a port. There are two
dlff ercnces:

. o procedure p Is simply an outport; all procedure calls from a given
context share a single lnport In the frame, called the shared lnport.
Since only one such coll con bo outstnnding at a time (because of the
pending rule), the pair (p, shared lnport) behaves exactly like a port .
. there Is no switching done when control returns from a procedure call,
because the call is regarded as a completed event, which may be repeated
but cannot be resumed.

Because of the way In which responsibility Is distributed during a
transfer, these attributes of a procedure call are not visible to the
context which receives control, but are solely the local responsiblllty of the
context making the call.

7.2 Procedure entry

Whenever a procedure Is entered, a context P must be created. This Is done

On tho Transfer of Control between Contexts

by another context C colled tho creator, as discussed In section 3. Since the
transfer which results In creotlon of o procedure context Is not speclol In
any way, the creator must olso take care to start the newly created context
and poss It tho argument supplied by the transfer. Furthermore, C must
leave Itself ready to create additional contexts, since the procedure may be
entered recursively. Thus there must be o unique lnport for C, ond the
behavior of C must be constant with respect to all transfers through that
lnport. On the other hand, C Is baslcally en art If act Introduced to obtain a
uniform control Interface, ond there Is no reason for It to be Involved In the
return of control from P.

The consequence of these design constraints Is that the transfer operation
which suspends the creator Is used In a somewhat unconventional manner.
The link that was received In C when It was stortcd Is simply passed on
to P. The ti,port through which control arrived In C remains unchanged, and C
loops right a f tor the transfer to P, so that It wlll execute the same code
the next time It gets control.

The following, somewhat simplified code describes the body of a typical
procedure creator:

start: q := ALLOCATE(frameslze);
q.pc := inltlalpc; q.neighborhood := accessllnk;
q.sharedport := NIL; q.startport := q;
transfer(q.startport, link, args);
~oto start

When the creator Is created, the values of the local variables frameslze and
lnitlolpc arc extracted from the text of a, and accessllnk Is set up based on
the rules for defining the binding function.

This code Is mislcrndlngly long In the sense that a c1ever Implementation can
achieve the effect it describes with just a few machine Instructions, and It Is
too short In the sense that the "ALLOCATE" operator conceals some additional
complexity; It has been discussed In section 3.

7.3 Procedure return

A procedure context has an outport called returnport Into which It puts
link when It Is entered. A first stab at Its return sequence would be:

transfer(roturnport, NIL, returnargs);
but this won't do, because It Ignores the fact that the context must be
destroyed as part of the return. The caller cannot be expected to take care of
this, since ho· doesn't necessarily know that he called a procedure. The actual
return, then, Is more like the sequence used by a buffer context (section 6.6):

transfer(DP, self, (returnport, returnargs));
where DP Is n standard context which destroys /Ink and then does

transfer(rcturnport, NIL, returnargs); •
Note that this, like the procedure call described in section 7.1, Is fully
compatible and does not, for example, depend on any assumptions about the
nature of the context pointed to by the returnport. Furthermore, an arbitrary.
return record can be transmitted. The null link suppresses railroad
switching If the call was made through a port (see section 6. 7).

8. Signals

14

On the Transfer of Control between Contexts

Finally, we take up a control dlsclpllne designed to handle exceptional events
eff lclently and conveniently. Tho basic eloments of this discipline are:

. a set of names for events, called signal codes (e.g. "out of storage",
"overflow");
. for each context, an ordered set .of outports called handlers;
. a system procedure called the signaller whose argument s Is a pair
(signal code, argument record).

8.1 Signalling

Anyone can signal the occurrence of an event by calling the signaller with the
appropriate signal code as an argument, thus:

sign al(OutO r Storage, spaceneecfed);
The second argument may be an arbitrary. record which can be used to pass
additional Information to the handler. ·There Is also an optional third argument
which specifics the context in which the signal should be qenerated; usually
this Is the current context. An Identifier declared as a signal code is treated
by def a ult like an Identifier declared as a procedure: a search Is made,
according to whatever binding rules are In force, for a definition which can
be bound to the Identifier. Tho value of a signal code Is simply an Integer,
guaranteed to be different for different codes. Its only purpose Is to permit
two signal codes to be compared for equality.

The signaller calls the first handler, passing It s as an argument. If the
handler returns to the signaller, Its result r Is a pair (action, return record). If
the action Is reject, the signaller tries the next handler; If It Is
resume, the signaller returns the return record to Its caller.

Usually each context supplies o handler, starting with the current context, and
the handlers are ordered by a pointer In each cont.ext called the signal
port, which can be set by the user. The default choice of signal port for a

procedure Is the return link. Thus If all the contexts were Algol procedures,
the effect would be to search up the stack, trying each procedure to see If It
was Interested In the signal.

Normnlly, hnncllers are declared In line with the program text of the context
which will supply them, and there Is convenient syntax for declaring a handler
with each control transfer and with each block. If several handlers are
declnred In a context, they are concatenated into a single one, using the same
rule thnt the signaller uses. These declared handlers have the form of case
statements which test the value of the signal code. By writing any as a
case, however, the programmer can get hold of all the signals that go by and
apply his own tests to them.

Thus, for example, one can write:

begin
enabling OutOfStorage:

begin prlnt("Storage exhausted"); exit computation end

BulldTnble(x, y
enabling Out Of Storage(spaceneeded: integer):

if tablespace > 1000 then return

15

On the Transfer of Control between Contexts

end

Get-TableSpace(spaceneeded)
else reject);

If the Out Of Storage slgnnl Is generated within the call of BulldTable, It wlll
first be given to the handler nssoctated with the call of BulldTable, and then to
the handler for the block. The Hrst (Innermost) hondler checks to see If more
space Is available. If so, It ohtnlns the space and returns It to the context
which did the slgnalllng. If not, It rejects the slgnol, and It Is passed to the
handler for the block, which prints an error message and does a (structured)
non-local goto. The consequences of this last action are discussed later.

The handlers have the same semantics as ordinary procedures, differing only· In
the syntax for declaring them. 'furthermore, the programmer Is free to provide
his own hnndlcr for a context; all he has to do Is to put an outport Into the
component called handler In the context's frame. The handlers declared with
enabling have some advantages, however. A great deal of trouble Is
token to make the cost of declaring a handler small, since It Is assumed that
signals are unusual, so fhat most declarations will never be Invoked. In fact,
entering the scope of a declared handler does not cause any Instructions to be
executed. Instead, the compiler generates some recognizable Instructions
which do nothing, and distributes them strategically In the program text where.
tho slgnallor can find them.

When tho signaller gets to a context which has no explicit handler, then, It
examines the program text for in-line handlers. If one Is found, Its associated
program text Is located from the clues loft by the compiler, and It Is called In
tho usunl way.

This scheme for handling signals has a good deal In common with the
ON-condition facllitles of Pl/1. There are also a number of differences,
however:

a) enabling o handler In MPL Is a declaration, not an executable statement;
b) the program has much greater control of signal handling than In Pl/1. In
particular:

. any and reject together allow decisions about signal handling
to be mode In a very flexible way;
. if this isn't good enough, tho user can write his own handler, rather
than use enabling;

c) arguments con bo passed with a. signal, and results can be returned, as In
the example above;
d) the zero time-cost for enabling a handler makes the facility very
attractive to use.

8.2 Unwinding

Sometimes Is Is necessary to abandon a computation In mld-fllght and restart
from some earlier point. We coll this operation unwinding. For example,
when on error Is detected In a compller, tho current state becomes useless and
we wnnt to mako a frnsh start, perhaps with tho Input advanced to the next
statement of the source program. In general when this happens there Is some
collection of contexts which are no longer useful and should be destroyed. To

16

On the Transfer of Control between Contexts

deal with this situation, we need: _
a) o way of deciding which contexts should be destroyed;
b) o procedure for destroying each context In an orderly way;
c) some place to send control· when the unwinding Is complete.

If there ere a lot of contexts- around which ere not related hlerarchlcally, It Is
not at all ctear who should be destroyed during unwinding. We therefore
provide a standard procedure which does the right thing for nested procedure
calls, and leave It to the programmer to write his own unwinder for more
complex situations, using the operations of the next two paragraphs. The
standnrd procedure Is

unwind(from context, to context, signal),
and it destroys all the contexts encountered In propagating the signal between
the two contexts, not Including the end points. It Is normally used In a
handler, thus:

unwlnd(myself, myparent, myslgnal).
The parent Is passed to the handler when It Is entered, along with the signal
and signal argument.

Destroying a context Is a two-step process. First It must be given a chance to
put Its house In order, I.e. to restore to a consistent state any non-local data
structures which It may have been modifying. This Is done by passing tha
slgnol clean up to Its handler. If the context wants to get control before
being destroyed, It should enable this signal. When the handler returns, the
cont.ext Is destroyed, using the same facilities which would be used to destroy

. any other record. With tho destroy operation In hand, we can write a skeletal
program for unwind:

C := fromcontext;
· for c := NcxtSlgnalHandler(c, signal) while c # tocontext do
destroy(c).

Finally, we consider how to continue the computation, for the special case In
which the context doing the unwind Is an In-tine handler of the one which Is
to receive control. Since the handler knows about the program text of the
destination In this case, It can simply set the destination's program counter to
the proper value, and then exit by destroying Itself, exactly like a buff er
context (section 6.5). The exit statement In the previous "OutOf Storage"
example Is syntactic sugar for:

unwind(myself, myporent, myslgnal);
myparent.programcounter : :: ExitfromComputatlon;
transfcr(DC, myself, (myparent, Nil)).

The Multics system [Organlck] supports en unwind operation somewhat similar
to what has just been described.

Q, Control f oults

The discussion of control faults In section 6.5 left two questions open:
. who gets notified when a control fault occurs?
. how Is the notice served?

The first question Is hondlod like the similar problem for signals. Each context
hos an owner outport which defines who should be notified. By default
this Is set to the creator of the context, but the user can establish any

17

On the Tronsfer of Control between Contexts

relationships he likes by resetting It ..

When Q control fa ult occurs, It Is simply converted Into a signal called
con trolfault which Is started off at the context specified by the owner
outport of the foulter, ond then propagates In the usual way. This makes It
reosonobly convenient for the owner to differentiate a fault from a normal exit.
During startup, when control f oults are expected, each handler wlll probably

specify on exit to the next statement.

10. Conclusion

We hove created an environment for describing global control dlsclpllnes,
consisting of contexts within which execution takes place, and a
transfer primitive for passing control from one context to another.

Records and classes were used to create contexts and to handle arguments.
We showed how to define the binding function for names In a fairly general
woy, oncl described a strntegy which allocates storage for contexts. We
established conventions for passing arguments and return links which can
ac_comodote a wide variety of control dlsclpllnes In a compatible way.

Ports were Introduced os a non-hlerorchlcol control dlsclpllne, ond we
saw how to lnltlallze a collection of contexts connected by ports, how to
handle linkage faults, and how to switch port connections so that several
contexts con use a single port. We showed how to hanclle Algol-like
procedures without any new primitives, and compatibly with ports.

Finally, we Introduced slgmils as a control dlsclpllne for dealing with
_ unusual events, described how to give the programmer complete control over
signal propagation and how to implement slgnal handlers ef flclently, and used
the signal mechanism to provide for orderly retreat from untenable situations.

References

Balzer, R. M., "PORTS - A Method for Dynamic lnterprogram Communication
and Job Control," Proc AF/PS Conf. 39 (1971 SJCC)

Bensoussan, A. et. al., "Tho Multics Virtual Memory: Concepts and Design,"
Comm ACM 16, 5 (May 1972)

Bobrow, D. G. and Wegbrelt, B., "A Model and Stack Implementation of
Multiple Environments," Comm. ACM 16, 10 (Oct 1973)

Brinch Hansen, P., "The Nucleus of a Multlprogrammlng System," Comm.
ACM 13, 4 (April 1970)

Conwny, M. E., "Design of a Separable Transition-diagram Compller, 11 Comm.
ACM 6, 7 (July !063)

18

On the Transfer of Control between Contexts

Dennis, J: B., "Programming Gonerallty, Parallelism and Computer Architecture,"
Proc. IFIP Congress 1968, North-Holland Publlshlng Co., Amsterdam, 1969

Dijkstra, E. W., "Cooperating Sequential Processes," In Programming
Languages, Gonuys, ed., Academic Press, New York, 1967

•
Fisher, 0. A., Control Structures for Progrnmmlng Languages, Ph.D.
Thesis, Corncgle-Mellon University, May 1970 (AD 708511)

Hoare, C. A. R. and Dahl, 0-J., "Hierarchical Program Structures," In
Structured Programming, Academic Press, New York, 1972

Knuth, D., Fundamental Algorithms, Addison Wesley, Reading, Mass.,
1968, p. 425

Krutor, R. A., "Conversational Systems Programming," In Slgplan Notices
6, 12 (Doc 1971)

Lampson, B. W., "On Rellable and Extendable Operating Systems," In The
Fo._urth Generation, lnfotech, Maidenhead, Berks., 1971

Mcllroy, M. 0., "Coroutines: Semantics In Search of a Syntax," Bell Telephone
Laboratories, Murray Hill, N.J., unpublished report

Organlck, E. I., The Mu/tics System, An Examination of /ls Structure, MIT
Press, Cambridge, Mass., 1972

Saltzer, J. H., Traffic Control In a Multiplexed Computer System, Sc.O.
Thesis, MIT, 1966 (MAC TR-30)

Wang, A. ond Dahl, 0-J., "Coroutine Sequencing In a Block Structured
Environment," BIT 11 (1971), p 425 •

Wegbrclt, B., "The Treatment of Data Types In EL/1," Comm. ACM
17, 4 (April 1974)

Wirth, N., "The Programming Language Pascal," Acta Informal/ca 1,
1 (1971)

19

start:

st:

s2:

start:

loop:

P: context
pc: s
program text:

.
transfer(a)

.
transfer(a)

P (producer)

send message
tronsfer
receive reply

ooto looo

b: inport

c: 1nport

figure 1: Coroutine linkages

start:

loop:

Q: context
pc: t.

roqrr1m text:

.
transfer(c)

.
transfer(b)

. Q (consumer)

transfer
receive message

send reply
ooto looo

Figura 2: Producor and consumer with reply

:start

:tl

:t2

P: process Q: process

a: outport b: outport

ac: channel

other outports------- ------other outports

Figure 3: Symmetric communication between processes using message channels

P: context Q: context

b: port

other outports-----J ------other outports

Figure 4: Symmetric communication between contexts using ports

·1

P: context p: port
flI[I lit NIL

(a) Before p has attempted to use p

P: context p: port
FlI[I
B

B: context

(b) P has transferred top, and a buffer context B has been created

P: context p: port Q: port Q: context
tH p I I • B NIL *

B: context

(c) Q has been created and started, and Q has been connected top

P: context

--

p: port q: port Q· context

~IL pq g l--J.....,__ .• --.I
B: context . P. inport ,-

(d).Q has transferred through q and p to B, which is running

P: context p: port q: port Q: context

• I ~IL ~.__,.Q _ _J-l ----,J----
(e) 8 has destroyed itself and returned to P.

Initialization is complete

Fhrnro 5: Jn1t1c1117c1t1on n51nr, r1 h11ffr.r c:nnt.n)(t to h,mrll~ control faults

I

I

I

P: context p: port
r

1111 NIL r: port R: context
f1I[I
R

Q: context Q: port
r

I' NIL

(a) Before any use of the ports

P: context p: port
r
p r: port R: context

p

I I tHL •
Q: context Q: port·

I r
till

(b) After P. transfers through p

P: context p: port

I r
NIL r: port R: context

Q

NIL •
Q: context q: port

r

(c) After Q transfers through q

Figure 6: Railroad switching (• indicates the contaxt which has control)

	Abstract
	1. Introduction
	2. The host language
	3. Contexts and frames
	3.1 Representation of contexts
	3.2 Creation of contexts
	3.3. Storage allocation

	4. The transfer primitive
	5. Conventions for compatible transfers
	6. Coroutines and ports
	6.1 Coroutines
	6.2 Initialization of coroutines
	6.3 Processes and messages as a model
	6.4 Ports
	6.5 Control faults and message buffering
	6.6 Linkage faults
	6. 7 Railroad switching

	7. Procedures
	7.1 Procedure calls
	7.2 Procedure entry
	7.3 Procedure return

	8. Signals
	8.1 Signalling
	8.2 Unwinding

	9. Control faults
	10. Conclusion
	References
	Figures
	1: Coroutine linkages
	2: Producor and consumer with reply
	3: Symmetric communication between processes using message channels
	4: Symmetric communication between contexts using ports
	5: Initialization using a buffer context to handle control faults
	6: Railroad switching

