SRC Modula-3
Version 2.07

Bill Kalsow
FEric Muller

Systems Research Center
Digital Equipment Corporation
130 Lytton Avenue
Palo Alto, CA 94301-1044

released: June 15, 1992
manual update: July 20, 1992

SRC Modula-3 Non-commercial License

SRC Modula-3 is distributed by Digital Equipment Corporation (“DIGITAL”), a corporation of
the Commonwealth of Massachusetts. DIGITAL hereby grants to you a non-transferable, non-
exclusive, royalty free worldwide license to use, copy, modify, prepare integrated and derivative
works of and distribute SRC Modula-3 for non-commercial purposes, subject to your agreement
to the following terms and conditions:

e The SRC Modula-3 Non-commercial License shall be included in the code and must be
retained in all copies of SRC Modula-3 (full or partial; original, modified, derivative, or
otherwise):

e You acquire no ownership right, title, or interest in SRC Modula-3 except as provided herein.

e You agree to make available to DIGITAL all improvements, enhancements, extensions, and
modifications to SRC Modula-3 which are made by you or your sublicensees and distributed
to others and hereby grant to DIGITAL an irrevocable, fully paid, worldwide, and non-
exclusive license under your intellectual property rights, including patent and copyright, to
use and sublicense, without limititation, these modifications.

e SRC Modula-3 is a research work which is provided “as is”, and DIGITAL dis-
claims all warranties with regard to this software, including all implied war-
ranties of merchantability and fitness of purpose. In no event shall DIGITAL
be liable for any special, direct, indirect, or consequential damages or any dam-
ages whatsoever resulting from loss of use, data or profits, whether in an action
of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of this software.

Copyright ©) 1990 Digital Equipment Corporation
All Rights Reserved

VAX, DECstation and ULTRIX are trademarks of Digital Equipment Corporation.
UNIX is a trademark of AT&T Corporation.

SPARC and SunOS are trademarks of Sun MicroSystems.

Apollo and Domain/OS are trademarks of Apollo.

IBM and AIX are trademarks of International Business Machines Corporation.

RT and PS/2 are trademarks of International Business Machines Corporation.

HP, HP9000 and HP9000/300 are trademarks of Hewlett-Packard Company. HP-UX is Hewlett-
Packard’s implementation of the UNIX operating system.

PostScript is a trademark of Adobe Systems Incorporated.

Contents

1 Imntroduction

2 License

3 History

4 Installation
4.1 Whatisavailable
4.2 Getting SRC Modula-3 e
4.3 Installation procedure
4.4 Running the tests L

5 How to use the system
5.1 Compiling oL e
5.2 Anexample
5.3 Makefiles
5.4 Language restrictions L L
5.5 Pragmaso
5.6 Linking L e
5.7 Runtime arguments Lo
5.8 Garbage Collection oL
5.9 Debugging
5.10 Thread scheduling o L
5.11 Profiling L
5.12 Pretty printing L.
5.13 Gnuemacs Support
5.14 Keeping in toucho

6 The libraries
6.1 The m3 library
6.2 The data structures library
6.3 The X11R4 library
6.4 The Trestle library
6.5 The FormsVBT lLibrary
6.6 The TclTk library e

7 Local Guide 28

8

7.1 Your Environment 28
7.2 Editing e 29
7.3 Compiling L 34
7.4 Debugging 34
7.5 Packages oL 36
7.6 Public Directories L 36
7.7 Package Organization L e 37
Internals 38
8.1 A tour of the compiler 38
8.2 A tour of the runtime 39
8.3 Porting to another machine oL 0oL 40

i

Chapter 1

Introduction

This document describes SRC Modula-3 and the terms under which 1t 1s distributed.

The distribution contains a Modula-3 compiler and runtime, a set of libraries, a coverage analyzer, a Modula-
3 pretty printer, and a small test suite of Modula-3 programs. The compiler generates C as intermediate
code.

This release is known to work on a variety of machines (see the table on page 6). We have not tested
the software in any other configurations. It may function correctly on other versions of Ultrix or on other
machines.

The compiler and runtime system was designed and implemented by Bill Kalsow and Eric Muller. Neither of
us view this as a finished product. Nonetheless, we thought others might like to use it. The system should be
of interest to two camps: those interested in trying out Modula-3 and those interested in compiler hacking.

Other Documents

The bibliography at the end of this document contains some references related to Modula-3.

The Modula-3 language is described in “Systems Programming with Modula-3” [14], edited by Greg Nelson
and published by Prentice Hall. It should be available in book stores. Other chapters in this book describe
the thread mechanism and readers and writers.

Sam Harsion wrote “Modula-3” [9] and “Safe Programming with Modula-3” [10], overviews of Modula-3 and
“Modula-3” [11], a textbook for Modula-3.

To receive a SRC report on paper, contact:

SRC Report Distribution
Digital Equipment Corporation
130 Lytton Avenue

Palo Alto, CA 94301-1044

src-report@src.dec.com

Acknowledgments

Many people contributed to SRC Modula-3, and we would like to thank them. Below is a partial list of the
contributors.

We use the garbage collector developed by Joel Bartlett (DEC-WRL).
John Dillon (DEC-SRC) provided the original C version of thread switching.
Mark R. Brown and Greg Nelson (DEC-SRC) designed the readers and writers interfaces.

Jorge Stolfi (DEC-SRC) and Stephen Harrison (DEC-WSE) were very patient alpha-testers. They gave
us invaluable bug reports and also translated some DEC-SRC Modula-24 modules to Modula-3.

Jéréme Chailloux (ILOG) developed the X interfaces while visiting DEC-SRC. We also had numerous
discussions about the evolution of SRC Modula-3.

The “gatekeepers” (DEC-WRL), in particular Paul Vixie, helped with the distribution of SRC Modula-3.
David Goldberg (XEROX PARC) ported SRC Modula-3 to the SPARC machines.

Ray Lischner ported the system to the APOLLO machines.

Richard Orgass (IBM Rochester) ported the system to the IBM machines.

Piet van Oostrum (Utrecht University) ported the system to the HP series 9000/300 computers running
HP/UX 7.0.

Pat Lashley (KLA Instruments) contributed the lexer for pps.
Régis Crelier (ETH) designed and implemented the pickles modules while he was a summer intern at SRC.
Mick Jordan (DEC-SRC) provided challenging programs to compile.

Norman Ramsey (Princeton University) has pushed the system into obscure corners and found many bugs
there.

R.J. Stroud and Dick Snow (University of Newcastle upon Tyne) provided the Encore Multimax port.
Dave Nichols (Xerox PARC) fixed and improved the pretty printer.

Greg Nelson and Mark Manasse (DEC-SRC) designed and implemented the Trestle window system.
Sam Harbison contributed the fieldlist interface.

Steven Pemberton (CWI) wrote the enquire program and made it available to the community.

The vbtkit software has been designed and implemented by a large number of people at SRC: Andrew
Birrell, Ken Brooks, Marc H. Brown, Mark R. Brown, Pat Chan, Luca Cardelli, John DeTre-
ville, Steve Glassman, Mark Manasse, Jim Meehan, Greg Nelson, Jorge Stolfi, Mary-Claire van
Leunen.

FormsVBT is due to Jim Meehan and Marc H. Brown (DEC-SRC).
Thanks also to all the people who used SRC Modula-3 and reported bugs.

The various ports would have been impossible without the work of a number of people, who kindly made
their modifications available. However, most of the bugs you may find in these ports were introduced during
the final integration of these modifications and we are to be blamed for them.

Chapter 2

License

SRC Modula-3 is distributed under the terms of this license:

SRC Modula-3 Non-commercial License

SRC Modula-3 is distributed by Digital Equipment Corporation (“DIGITAL”), a corporation of
the Commonwealth of Massachusetts. DIGITAL hereby grants to you a non-transferable, non-
exclusive, royalty free worldwide license to use, copy, modify, prepare integrated and derivative
works of and distribute SRC Modula-3 for non-commercial purposes, subject to your agreement
to the following terms and conditions:

e The SRC Modula-3 Non-commercial License shall be included in the code and must be
retained in all copies of SRC Modula-3 (full or partial; original, modified, derivative, or
otherwise):

e You acquire no ownership right, title, or interest in SRC Modula-3 except as provided herein.

e You agree to make available to DIGITAL all improvements, enhancements, extensions, and
modifications to SRC Modula-3 which are made by you or your sublicensees and distributed
to others and hereby grant to DIGITAL an irrevocable, fully paid, worldwide, and non-
exclusive license under your intellectual property rights, including patent and copyright, to
use and sublicense, without limititation, these modifications.

e SRC Modula-3 is a research work which is provided “as is”, and DIGITAL dis-
claims all warranties with regard to this software, including all implied war-
ranties of merchantability and fitness of purpose. In no event shall DIGITAL
be liable for any special, direct, indirect, or consequential damages or any dam-
ages whatsoever resulting from loss of use, data or profits, whether in an action
of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of this software.

Copyright ©) 1990 Digital Equipment Corporation
All Rights Reserved

NOTICE: There is also a commercial license. By signing and returning it, further rights to use and distribute
SRC Modula-3 are granted. This license is in doc/agreement.ps.

Chapter 3

History

Version 2.0 implements the twelve language changes (i.e. generics, IEEE floating point interfaces, ...)
that are included in [14]. Version stamp checking was moved into the m3 driver, which also supports -make
mode and generates enough type declarations to make debugging tolerable. The compiler internals were
rearranged and many bugs were removed. Better code is produced.

Version 1.6 fixes many bugs that have been reported. It also introduces the SUN3, UMAX and ARM archi-
tectures. Some Unix interfaces have been added or modified (Usocket, Udir, Uexec, Uerror). The names in
the Rd and Wr interfaces are now more coherent. The new Pkl interface allow input/output of binary data
structures. The runtime has been rewritten to be mostly in Modula-3; this allows for clean interfaces to the
runtime; some limitations have been removed (profiling; scheduling). The driver has been rewritten, so as
to support shared libraries (on IBMR2, by default); the syntax of some options has changed.

Version 1.5 supports five new architectures (AP300, AIX386, IBMR2, IBMRT and HP300). The driver has
been modified to improve portability of user systems. The SRC Modula-3 libraries have been reorganized,
and of course known bugs have been fixed. New demonstration programs and games are included.

Version 1.4 is the second public release of SRC Modula-3. It uses the new features of version 1.3 and was
alpha-tested by several SRC clients. This version added <*UNUSED#> and <*OBSOLETE*> pragmas, simplified
coverage profiling by having the compiler directly generate the counters, reduced the number of #1line
directives in the generated C, added “map” procedures so that the garbage collector can efficiently locate
global references, packed enumerations into smaller C types, and fixed several bugs.

Version 1.3 is for internal use only. This version serves to snapshot the massive editing that has taken
place since 1.2. This version fixed the variable renaming problems, made TEXT a REF ARRAY OF CHAR,
converted the text implementation to Modula-3, passed nested procedures as closures, used C initialization
where possible for constants and variables, added warning messages, and fixed many bugs.

Version 1.2 Thanks to the new technology introduced in 1.1, porting the compiler to other machines is
much easier. We have ported it to DECstation 3100 running Ultrix 3.1. A few bugs have been fixed. The
driver processes the options -D and -B in a slightly different way.

The installation procedure is new, and we no longer furnish executables as the intermediate C files are present
on the release. Because the intermediate C files vary according to the target machine, there are separate

tar files for each of the supported machines. However, each distribution contains all of the sources; only the
intermediate C files differ.

Version 1.1 This version is for internal use only. The main difference with Version 1.0 is the use of RCS
and the use of imake rather than the standard make.

Version 1.0 This version is the first public release of the SRC Modula-3 system. It contains a Modula-3
compiler and runtime, a core library, a coverage analyzer, a dependency checker, a Modula-3 pretty printer,
and a small test suite of Modula-3 programs. The compiler generates C as an intermediate code.

It is known to run on VAX Ultrix 3.1. We have not tested the software in any other configurations. The
software may function correctly on other versions of Ultrix, and if recompiled, may even work on other
machines.

Chapter 4

Installation

This chapter describes how to get and install the SRC Modula-3 system.

4.1 What is available

SRC Modula-3 is distributed via anonymous f£tp from gatekeeper.dec.com. The distribution is in a set
of compressed tar files in the directory named pub/DEC/Modula-3/release. The files are of the form
archive-version.tar.Z; in the rest of the chapter, we will speak of the archive archive and forget the version
numbers.

The archives boot . architecture are used to build and install m3make, a driver and a compiler. These programs

are built from intermediate C files that are architecture specific; you need to get the archive(s) corresponding
to the architecture(s) on which you want to install SRC Modula-3. The supported architectures are:

architecture | Hardware Operating system Build Install
disk cpu (usr+sys)
(KB) (min) (KB)

ATX386 ATIX/PS2

AP3000 Apollo DN4500 Domain/OS 10.2

ARM Acorn R260 RISC i1X 1.21

DS3100 DECstation 5000/200 Ultrix 4.2 23170 8+ 7 2758

HP300 HP 9000/300 HP-UX 7.0

IBMR2 IBM RISC System/6000 AIX 3.1

IBMRT IBM RT IBM/4.3 (AOS 4.3)

NEXT NeXT

SPARC Sparcstation-1 SunOS 4.1.x

SUN3 Sun 3/7 SunOS 7

UMAX Encore Multimax UMAX 4.3 (R4.1.1)

VAX VAX 8800 Ultrix 4.2

Each of these archives is about 4000 kilobytes. The column “Build” indicates the resources you need to build
the two programs: “disk” is the amount of disk space (in kilobytes), “cpu” is the amount of user and system
cpu time (in minutes). The column “Install” indicates the amount of disk space that will be permanently
used after the installation i1s done.

The other archives contain Modula-3 source files for various libraries and programs.

File Build Install | Contents

Name Size | disk cpu (usr+sys)
(KB) | (KB) (min) (KB)

bicycle 45 bitmaps of cards for games, needs trestle
compiler 408 | 11255 12 +5 0 | compiler sources
data 28 2693 241 856 | some generic container types
demos 74 | 10446 441 0 | a few demo programs, needs trestle and bicycle
driver 77 0 | driver sources
doc 424 the documentation for SRC Modula-3
dpskit 112 binding interfaces to Display PostScript
dpsapps 12 applications using Display PostScript
formsvbt 112 FormsVBT, needs vbtkit
libm3 2160 | 20374 8+ 4 5742 | base library
m3make 68 0 | make for Modula-3
tcl 696 binding interface to Tecl
tests 472 0 | “validation” tests
tools 272 1746 140 548 | development tools, need trestle
trestle 2400 | 13245 14 4+ 3 4048 | Trestle window system, needs X11R4
vbtkit 416 More VBTs, needs trestle
vbtapps 248 FormsVBT applications, needs formsvbt
X11R4 128 | 2906 441 1057 | binding interfaces to the X11R4 libraries

The column “File Size” is the size (in kilobytes) of the compressed tar file. The colum “Build” indicates
the resources you need to build and install these pieces of sources: “disk” is the amount of disk space (in
kilobytes), “cpu” is the amount of user and system cpu time (in minutes). The column “Install” indicates
the amount of disk space that will be permanently used after the installation is done; if you want to keep
the sources around, you will need more space. These time and sizes have been measured on a DECstation
5000/200 running Ultrix 4.2; other architectures may have different requirements.

You need to build and install 1ibm3 to have a useful system, but all the other pieces are optional.
The m3make and doc archives are also contained in the boot archives.

Large archives are available in one piece (foo.tar.Z) as well as in pieces of 512 KB each (foo.tar.Z-01 and
so on). If your connection to gatekeeper is slow, you may want to get the smaller pieces and reassemble
them in a one piece archive at your site (using cat for example).

4.2 Getting SRC Modula-3
In the following, $ is the shell prompt and ftp> is the £tp prompt. To get SRC Modula-3:

1. Make sure that you have enough disk space using the tables above.

2. Create a fresh directory for the software and go there. Path names below are relative to that directory,
and it will be called the top-level directory:

$ mkdir top-level
$ cd top-level

3. Open an ftp connection with gatekeeper.dec.com [16.1.0.2]; give anonymous for the name and your
login id for the password:

$ ftp gatekeeper.dec.com
Connected to gatekeeper.dec.com.

Name (gatekeeper.dec.com): anonymous
Password (gatekeeper.dec.com:anonymous): your nameQyour machine

4. Change to the proper directory:
ftp> cd pub/DEC/Modula-3/release

5. Set the transmission type to binary:
ftp> type binary

6. Get the distribution bootstrap:
ftp> get boot.architeclure-version.tar.Z
7. Get 1ibm3 along with any other Modula-3 sources that you want:

ftp> get libm3-version.tar.Z
ftp> get

8. Close the connection:
ftp> quit
9. Uncompress and extract the files:

$ zcat boot.architecture—*.tar.Z | tar xpof -
$ zcat libm3-*.tar.Z | tar xpof -
$

The tar arguments specify the following options:

X extract the files from the tar file to the current directory

) restore files to their original modes

o override the original ownership, this makes you the owner of the
files

f use the following argument (e.g -) as the input file; - as the input

file means stdin

You can add the v option to see what is going on.

10. At this point you may delete the archives to save space (the disk requirements indicated above assume
that you do delete these files):

$ rm *.tar.Z

4.3 Installation procedure

1. Create a description of your system, m3make/ architecture/config, using the file m3make/model-configs/architecture
as a model.

2. Build and install the m3make system:
$ (cd m3make/architecture; make —-f ../src/Makefile all install)

You may need to tell your shell that new executables (m3make) are present after the install step, using
rehash, for example.

3. You may want to change chapter 7 of this document to describe your installation (see that chapter to
know how to proceed).

4. Build and install SRC Modula-3:
$ m3make -f m3makefile.boot all install

This moves the driver, the compiler and some other files to the directories specified in m3make/ architecture/config.
Again, you may need to tell your shell that new executables (m3) are present, using rehash, for example.

5. At this point, you should have successfully installed the Modula-3 compiler and driver. To check, type
$ m3 -\7?

The driver should list its configuration options.
6. You can now delete the bootstrap directories to conserve space:
$ rm -f driver compiler
(Note: if you are doing a port, don’t do that!)

7. Build and install the other libraries and tools. For each of the archives of Modula-3 source that you
copied, starting with 1ibm3:

$ m3make -f m3makefile.libm3 all install
$ m3make -f m3makefile.archive all install

These libraries and tools will be built using the installed system and should help detecting problems
in the installation. Note that the compiler, driver, doc and m3make packages shouldn’t need to be
recompiled, they are the same Modula-3 source that produced the C code for bootstrap.

4.4 Running the tests

SRC Modula-3 includes a collection of test programs. While these programs are intended to help the
developers of SRC Modula-3, you may want to look at them or run them. The tests are available in the
archive tests. If you’re interested, see the READUME file at the top-level of that archive.

Chapter 5

How to use the system

This section describes each of the tools in the SRC Modula-3 distribution and how to use them. Briefly, the
tools include a compiler, a linker, a pretty printer, and a line-based profiler. See also chapter 7 for tools and
hints that are local to your installation.

5.1 Compiling

To compile a Modula-3 program, invoke m3(1). This driver is much in the style of cc(1); the output is an
object file or an executable program, according to the options.

m3 parses the command line and invokes the compiler and linker as required. m3 tells the compiler where
to seek imported interfaces and where to find the Modula-3 runtime library. Arguments ending in .m3 or
.13 are assumed to name Modula-3 source files to be compiled. Arguments ending in .mo, .io or .o are
assumed to name object files, possibly created by other language processors, that are to be linked with the
object files created by m3. Arguments ending in .mc, .ic, or .c are assumed to name C source files to be
compiled. Arguments ending in .ms, .1is, or .s are assumed to name assembly language files to be translated
into object files by the assembler. Arguments starting with - specify compiler options. Other arguments are
assumed to name library files, and are simply passed along to the linker.

The source for a module named M is normally in a file named M.m3. The source for an interface named I
must be in a file named I.i3. The main program is the module that implements the interface Main.

There are options to compile without linking, stop compiling after producing C, emit debugger symbols,
generate profiling hooks, retain intermediate files, override search paths, select non-standard executables for
the various passes, and pass arguments to individual passes. For the full details, see the m3(1) man page.

In a source file, an occurrence of IMPORT Mumble causes the compiler to seek an interface named Mumble.
The compiler will step through a sequence of directories looking for the file Mumble.i3. It will parse the
first such file that 1t finds, which is expected to contain an interface named Mumble. If no file Mumble.i3
exists, or if the parse fails, the compiler will generate an error. The particular sequence of directories to be
searched is determined by the options passed to m3. See the m3(1) manual page for full details.

5.2 An example

Here’s a simple program composed of a main module, an imported interface and its implementation.
In the file Main.m3:

10

MODULE Main;
IMPORT 4;
BEGIN
4.DoIt ();
END Main.

In the file 4.13:

INTERFACE A;
PROCEDURE DoIt ();
END A.

In the file 4.m3:

MODULE A;
IMPORT Wr, Stdio;

PROCEDURE DolIt () =
BEGIN
Wr.PutText (Stdio.stdout, "Hello world.\n");
Wr.Close (Stdio.stdout);
END Dolt;

BEGIN
END 4.

If SRC Modula-3 is installed correctly, the command
m3 -make -why -o hello Main.m3 A.m3 4.i3

will compile the three compilation units and link them with the standard libraries. The result will be left in
the executable file named hello.

5.3 Maketfiles

Once installed, SRC Modula-3 provides m3make, a slightly enhanced version of plain make. The primary
benefit provided by m3make is that the operational description found in most makefiles is replaced by a
more declarative one. The result is that makefiles are smaller, simpler, and more portable. You’re not
required to use m3make, but we believe you will like it.

The m3makefile for the example above would be:

implementation (Main)
module (4)
program (hello)

See the m3make manpage for full details.

5.4 Language restrictions

With a few exceptions, SRC Modula-3 implements the Modula-3 language as defined in “Systems Program-
ming with Modula-3” ([14]).

11

Arithmetic checking.

SRC Modula-3 does not generate any special checking for integer arithmetic overflow or underflow. You get
whatever checking your C compiler gives you. We decided that the runtime checking was too expensive in a
compiler that was constrained to produce C. Depending on your machine, the FloatMode interface may be
used to control floating point exceptions.

Packed types.

Packed types are restricted. BITS n FOR T is treated as T everywhere except when applied to a field in a
record. In that case, the field is implemented by a bitfield of width n in a C struct. Otherwise, a Modula-3
field is implemented as a member of a C struct. Consequently, Modula-3 types that would require the C
field to span word boundaries are not accepted by SRC Modula-3.

Stack overflow checking.

SRC Modula-3 does not reliably detect thread stack overflows. Stacks are only checked for overflow on proce-
dure entry. No checking is done on external procedures. Thread stacks are allocated in fixed size chunks. The
required Thread interface has been augmented with the SizedClosure type to allow arbitrary sized stacks.
The default size can be adjusted with Thread.MinDefaultStackSize and Thread.IncDefaultStackSize.

Exception semantics.

SRC Modula-3 uses C’s setjmp/longjmp mechanism to unwind the stack when raising an exception. A
problem can occur: assignments may appear to be undone. For example, consider

TRY
i = 3;
P O;
EXCEPT E:
j = 1i;
END;

where P raises exception E. The compiler generates a setjmp at the beginning of the try statement. If the C
compiler allocates variable i to a register, the assignment of 3 may be lost during the longjmp and branch
that gets to the handler.

Method constants.

The language definition says that if T is an object type and m one of its methods, T.m denotes the procedure
value that implements that method and that this value is a constant. In SRC Modula-3, T.m denotes the
correct procedure constant, but since the compiler generates runtime code to locate the method, some uses
of the constant that the C compiler must resolve at link time will cause C errors. For example,

CONST P = T.m; BEGIN P (...)

will work, since no initialized C storage is allocated for P. But the following generates initialized storage and

will fail

CONST X = ARRAY [0..2] OF Proc { T.m, ..};

12

Similarly, although Modula-3 allows it, the following cannot be evaluated at compile time

CONST X = (T.m = MyProcedure);

5.5 Pragmas

SRC Modula-3 recognizes the pragmas described below.

<xEXTERNALx*>

The pragma <*EXTERNAL N:L*> may precede an interface or a procedure or variable declaration in an
interface. It asserts that the following entity is named “N” and implemented in language “L”. If “N” is
omitted, the external name is the Modula-3 name. The default and only recognized value for “L” i1s C. The
“:” 1s only required when specifying “L”. “N” and “L” may be Modula-3 identifiers or string literals.

The names of external procedures and variables are passed through to the C compiler unchanged. The types
of external vartables, the types of formal parameters, the types of results, and the raises clauses of external
procedures are all assumed to be correct and are not checked against their external implementation. Standard
calling conventions are used when calling external procedures.

Beginning an interface with <*EXTERNAL#> declares all of the procedures and variables in that interface
external.

For example:

<*EXTERNAL*> INTERFACE 0S;
VAR errno: INTEGER;
PROCEDURE exit (i: INTEGER);
END 0S.

allows importers of 0S to access the standard UNIX symbols errno and exit through the names 0S.errno
and 0S.exit respectively.

Alternatively, the following interface provides access to the same two symbols, but uses a more conventional
Modula-3 name for the procedure:

INTERFACE 0S;

<*EXTERNAL errno:C *> VAR errno: INTEGER;
<#EXTERNAL exit:C *> PROCEDURE Exit (i: INTEGER);
END 0S.

If several variables are declared within a single <*EXTERNAL#*> VAR declaration, they are all assumed to be
external.

The external pragma may optionally specify a name different from the Modula-3 name. For example:
INTERFACE Xt;

<*EXTERNAL " _XtCheckSubclassFlag'" *>
PROCEDURE CheckSubclassFlag (...);

defines a procedure named Xt.CheckSubclassFlag in Modula-3 and named _XtCheckSubclassFlagin the
generated C.

13

<*xINLINE*>

The pragma <*INLINE*> may precede a procedure declaration. The pragma is allowed in interfaces and
modules. SRC Modula-3 recognizes but ignores this pragma.

For example:

INTERFACE X;

<*INLINE*> PROCEDURE P (i: INTEGER);
<*INLINE*> PROCEDURE Q ();

END X.

declares X.P and X.Q to be inlined procedures.

<xASSERT*>

The pragma <*ASSERT expr*> may appear anywhere a statement may appear. It is a static error if “expr”
1s not of type BOOLEAN. At runtime “expr” is evaluated. It is a checked runtime error if the result is FALSE.

Assertion checking can be disabled with the —a compiler switch.

<*TRACEx*>

The pragma <*TRACE expr*> may appear at the end of any variable or formal declaration. This pragma will
generate tracing calls whenever the declared variable is modified.

The “expr” must evaluate to a procedure of two arguments. The first argument is the name of the traced
variable, a TEXT. The second argument is the traced variable. Note that any of the formal passing modes
may be used with the second argument.

For example:

MODULE M;
VAR x: Foo <*TRACE MyTrace.FooChanged#*>;

will cause
MyTrace.FooChanged ("M.x", x)

to be generated after each statement that modifies x. Variable aliasing is not tracked, so
WITH alias = x DO INC(alias) END

will not generate any tracing.

The pieces of Modula-3 grammar affected by <*TRACE expr*> are:

VariableDecl = IdList (":" Type & ":=" Expr) V_TRACE.

Formal = [Mode] IdList (":" Type & ":=" ConstExpr) V_TRACE.
ForSt = FOR Id V_TRACE ":=" Expr TO Expr [BY Expr] DO S END.
Handler = QualId {"," QualId} ["(" Id V_TRACE ")"] "=>" S.
TCase = Type {"," Type} ["(" Id V_TRACE ")"] "=>" S.
Binding = Id V_TRACE "=" Expr.

V_TRACE = ["<*" TRACE Expr "#>"].

14

The pragma <*TRACE stmt-list*> may appear immediately after any BEGIN. The specified “stmt-list” will be
inserted after each statement of the block started by the BEGIN. For example:

BEGIN <* TRACE INC(cnt); MyTrace(cnt) *>

i:=3;
j = 1i;
END;

will generate INC(cnt); MyTrace(cnt) after each of the assignment statements.

<*¥FATALx*>

The pragma <#*FATAL 1d-list*> may appear anywhere a declaration may appear. It asserts that the exceptions
named in “id-list” may be raised, but unhandled in the containing scope. If they are, it’s fatal and the
program should crash. Effectively, the <*FATAL*> pragma disables a specific set of “potentially unhandled
exception” warnings. If “id-list” is ANY, the pragma applies to all exceptions. The effects of the <*FATAL#*>
pragma are limited to its containing scope — they cannot be imported from interfaces.

For example:

EXCEPTION InternalError;
<*FATAL InternalError*>

at the top-level of a module M means that no warnings will be generated for procedures in M that raise but
don’t list InternalError in their RAISES clauses.

Similarly,

PROCEDURE X() RAISES {} =
BEGIN

<*FATAL ANY*> BEGIN
List.Walk (list, proc);
END;

END X;
specifies that although X raises no exceptions and List.Walk may, no warnings should be generated.

<xUNUSED*>

The pragma <*UNUSED*> may precede any declaration. It asserts that the entity in the following declaration
is not used and no warnings should be generated.

For example, the procedures that implement the default methods for an object may not need all of the actual
parameters:

PROCEDURE DefaultClose (<*UNUSED*> wr: Wr.T) =
BEGIN (* do nothing *) END DefaultClose;

15

<xOBSOLETEx*>

The pragma <*0BSOLETE#> may precede any declaration (e.g. <*OBSOLETE#> PROCEDURE P ();). A warning
is emitted in any module that references an obsolete symbol. This feature is used to warn clients of an evolving
interface that they are using features that will disappear in the future.

<*xNOWARN*>

The pragma <*NOWARN*> may appear anywhere. It prevents warning messages from being issued for the line
containing the pragma. It is probably better to use this pragma in a few places and enable all warnings with
the —w1 switch than to ignore all warnings.

<*xLINE*>

For the benefit of preprocessors that generate Modula-3 programs, the compiler recognizes a <*LINE ... *>
pragma, in two forms:

<*LINE number filename *>
<*LINE number *>

where number is an integer literal and filename is a text literal. This pragma causes the compiler to
believe, for purposes of error messages and debugging, that the line number of the following source line is
number and that the current input file is filename. If filename is omitted, it is assumed to be unchanged.
<*LINE ... *> may appear between any two Modula-3 tokens; it applies to the source line following the
line on which it appears. Here’s an example: <*LINE 32 "SourceLoc.nw'" *>.

<xPRAGMA*>

The pragma <*PRAGMA 1d-list*> may appear anywhere. It notifies the compiler that pragmas beginning with
the identifiers in “id-list” may occur in this compilation unit. Since the compiler is free to ignore any pragma,
the real effect of <*PRAGMA*> is to tell the compiler that pragmas it doesn’t implement are coming, but they
shouldn’t cause “unrecognized pragma” warnings.

5.6 Linking

SRC Modula-3 requires a special two-phase linker. You must link Modula-3 programs with m3.

The first phase of the linker checks that all version stamps are consistent, generates flat struct* declarations
for all opaque and object types, and builds the initialization code from the collection of objects to be linked.
The second phases calls 1d to actually link the program.

The information needed by the first phase i1s generated by the compiler in files ending in .ix and .mx.
Libraries containing Modula-3 code must be created using m3 -a. m3 will combine the .ix and .mx files
for the objects in the library into a new file ending in .ax. The .ix, .mx, and .ax files must reside in the
same directory as their corresponding .io, .mo and .a files. If m3 encounters a library without a .ax file, it
assumes that the library contains no Modula-3 code.

For every symbol X.Z exported or imported by a module, the compiler generates a version stamp. These
stamps are used to ensure that all modules linked into a single program agree on the type of X.Z. The linker
will refuse to link programs with inconsistent version stamps.

16

5.7 Runtime arguments

Command line arguments given to Modula-3 programs are divided in two groups. Those that start with
the characters @M3 are reserved for the Modula-3 runtime and are accessible via the RTParams interface (we
call those the runtime parameters). The others are accessible via the Params, ParseParams, and RTArgs
interfaces (these are the program arguments).

Three runtime parameters are recognized today; others are simply ignored.

e QM3nogc turns the garbage collector off.

e QM3showheap=name activates the logging of heap allocation and garbage collection events. The program
forks a process running the name program, and sends it these events as they occur. If =name is
ommitted, the showheap program is forked (it is part of the tools archive); this program displays the
status of the heap pages. See its man page for more details.

e QM3showthread=name activates the logging of thread switching events. The program forks a process
running the name program, and sends it these events as they occur. If =name is ommitted, the
showthread program is forked (it is part of the tools archive); this program displays the status of the
various threads. See its man page for more details.

5.8 Garbage Collection

A cruaial fact for clients of the garbage collector to know 1s that objects in the heap move. If all references
to a traced heap object are from other traced heap objects, the collector may move the referent. Hence, it
is a bad idea to hash pointer values. References from the stack or untraced heap into the traced heap are
never modified.

5.9 Debugging

Since an intermediate step of the Modula-3 compiler is to produce C code, you may use any debugger for
which your C compiler can produce debugging information; in most cases, this means dbx or gdb.

However, this mechanism has limitations: the C compiler generates source-level information that relates the
executable program to the intermediate C code, not to the Modula-3 source code. We attempted to reflect
as much as possible of the source-level Modula-3 information into the intermediate C code. But there are
still some shortcomings that you should know about.

Names

Global names (i.e. top-level procedures, constants, types, variables, and exceptions) are prefixed by their
module’s name and two underscores. For example, in an interface or module named X, the C name of a
top-level procedure P would be X__P. Note, there are two underscores between X and P.

Local names (e.g. of local variables and formal parameters) are preserved.

The compiler will issue a warning and append an underscore to any Modula-3 name that 1s a C reserved
word.

17

Types

Modula-3 is based on structural type equivalence, C is not. For this reason, the compiler maps all structurally
equivalent Modula-3 types into a single C type. These C types have meaningless names like _t1fc3a882.
The Modula-3 type names are equated to their corresponding C type. Unfortunately variables are declared
with the C type names. So, if you ask your debugger “what is the type of v7”, it will most likely answer,
“_t13e82b97”. But, if you ask “what is _t13e82b977” it will most likely give you a useful type description.
The table 5.1 indicates the C types corresponding to Modula-3 types.

Despite the fact that the compiler turns all object references into char#*, the linker generates useful type
declarations. These declarations are available under the type’s global name. For example, to print an object
o of type Wr.T, type print *(Wr__T)o. Note that if o was really a subtype of Wr.T, say TextWr.T, then you
must use print *(TextWr__T)o to see the additional fields. If the same type appears with two names in a
program, the linker arbitrarily picks one.

To print the null terminated string in a variable of type TEXT (or Text.T) named txt, type print *(char**)txt.
If you don’t know the type of a traced reference, you may be able to use the runtime information to
discover it. Given a reference r, print *(_refHeader*) (((char*)r)-4) will print its typecode x, and
print *_types[x] will print the corresponding typecell. A typecell includes a type’s Modula-3 name as a
C string (typecell.name). If the type doesn’t have a Modula-3 name, its internal is the concatenation of
“_t” and typecell.selfID in hex.

File names and line numbers

Due to liberal use of the #1ine mechanism of C, the Modula-3 file names and line numbers are preserved.
Your debugger should give you the right names and line numbers and display the correct Modula-3 source
code (if it includes facilities to display source code).

Note that uses of the <*LINE#*> pragma are propagated into the intermediate C code.

Debugger quirks

Most debuggers have a few quirks. dbx is no exception. We’ve found that having a .dbxinit file in your
home directory with the following contents prevents many surprises:

ignore SIGVTALRM
set $casesense = 1

The first line tells dbx to ignore virtual timer signals. They are used by the Modula-3 runtime to trigger
thread preemptions. The second line tells dbx that your input is case sensitive.

Procedures

Modula-3 procedures are mapped as closely as possible into C procedures. Two differences exist: “large”
results and nested procedures.

First, procedures that return structured values (i.e. records, arrays or sets) take an extra parameter. The
last parameter is a pointer to the memory that will receive the returned result. This parameter was necessary
because some C compilers return structured results by momentarily copying them into global memory. The
global memory scheme works fine until it’s preempted by the Modula-3 thread scheduler.

18

Modula-3

C

enumeration

INTEGER

subrange

REAL
LONGREAL
EXTENDED
ARRAY T OF T

ARRAY” OF T

RECORD ... END

BITS n FOR T

SET OF T

REF T
UNTRACED REF T

OBJECT ... END

PROCEDURE (): T

unsigned char, unsigned short or unsigned int depending on the num-
ber of elements in the enumeration.

int

char, short or int, possibly unsigned, depending on the base type of the
subrange. Subranges of enumerations are implemented by the same type as
the full enumeration. Subranges of INTEGER are implemented by the smallest
type containing the range. For example, the type [0..255] is mapped to
unsigned char and [-1000..1000] is mapped to short.

float

double

double

struct { tT elts[n] }, where tT is the C type of T and n is NUMBER(I).

struct { tT* elts; int size[n] }, where tT is the C type of T and elts
is a pointer to the first element of the array.

struct{ ... } with the same collection of fields as the original record.

Usually tT where tT is the the C type of T. When T is an ordinal type and
the packed type occurs within a record, it generates a C bit field.

struct { int elts[n] } where n is [NUMBER (T)/sizeof(int)].

tT* where tT is the C type of T.

ADDRESS, a typedef for char* or void* (depending on the system) defined
in M3Machine.h. Each use of an object reference 1s cast into a pointer of the
appropriate type at the point of use.

Usually tT *(proc) () where tT is the C type of T. If T is a record or array,

an extra VAR parameter is passed to the procedure which it uses to store the
return result.

Table 5.1: Type implementations

19

Second, nested procedures are passed an extra parameter. The first parameter to a nested procedure is a
pointer to the local variables of the enclosing block. To call a nested procedure from the debugger, pass the
address of the enclosing procedure’s local variable named frame.

When a nested procedure is passed as a parameter, the address of the corresponding C procedure and its
extra parameter are packaged into a small closure record. The address of this record is actually passed. Any
call through a formal procedure parameter first checks to see whether the parameter is a closure or not and
then makes the appropriate call. Likewise, assignments of formal procedure parameters to variables perform
runtime checks for closures.

<*EXTERNAL*> procedures have no extra parameters. except if they return large results??

Threads

There is no support for debugging threads. That is, there is no mechanism to force the debugger to examine
a thread other than the one currently executing. Usually you can get into another thread by setting a
breakpoint that it will hit. There is no mechanism to run a single thread while keeping all others stopped.

If your debugger allows you to call procedures in a stopped program, as both dbx and gdb do, then
print Thread__DumpEverybody() will produce a table listing the status of all threads.

5.10 Thread scheduling

This version of SRC Modula-3 has a more flexible scheduling algorithm than the previous versions. Here is
a rough explanation of its behaviour.

All threads are kept in a circular list. This list is modified only when new threads are created or when
threads exit; that is, the relative order of threads in this list is never modified.

When the scheduler comes into action, the list of threads is scanned starting with the thread following the
one currently running, until a thread that can execute 1s found:

e if it was preempted by the scheduler, it can execute
e if 1t is waiting for a condition or a mutex that is still held, it cannot execute

e if it has blocked because of a call to Time.Pause (or a similar procedure), it can execute iff the timeout
1s now expired

e if it has blocked because of a call to RTScheduler.I0Select (or a similar procedure), it can execute
iff the timeout is now expired or a polling select(2) returns a non-zero value.

If such a thread is found, 1t becomes active.

If no thread can execute, and there are no threads blocked in a Time.Pause or a RTScheduler.I0Select, a
deadlock situation is detected and reported. Otherwise, a combination of the file descriptors sets (OR of all
the file descriptors sets) and timeouts (MIN of all the timeouts) is formed, select(2) is called with those
arguments and the whole process of searching for an executable thread is redone. This ensure that the Unix
process does not consume CPU resources while waiting.

The scheduler is activated when the running thread tries to acquire a mutex which is locked, waits for a
condition, calls Time.Pause (or a similar procedure) with a future time, calls RTScheduler.I0Select (or a
similar procedure) with a non-zero valued timeout and no files are ready at the time of the call, or the time
allocated to the thread has expired (preemption).

20

Preemption is implemented using the Unix virtual interval timer. RTScheduler.SetSwitchingInterval
can be used to change the interval between preemptions. SRC Modula-3 no longer uses the real time interval
timer nor the profiling interval timer for thread scheduling; these are available to the program.
Because of the preemption implementation, Unix kernel calls will block the process (i.e. the Unix process
sleeps even though some threads could run). However, Time.Pause and RTScheduler.I0Select provide
functional equivalents of sigpause(2) and select(2) that do not cause the process to block.

5.11 Profiling

In addition to the usual profiling tools (e.g. see prof (1), gprof(1) and pixie(1)), SRC Modula-3 provides
support for line-based profiling.

To enable collection of data during the execution of programs, give the -Z option to the m3 command for
the compilation of the modules you want to examine and also for the linking of the program. To interpret
the result, run analyze_coverage(1).

Note that because of the extensive data collection performed by this mode of profiling, the execution time
of the program can be significantly larger when it is enabled; thus, simultaneous time profiling can produce
erroneous results. For the same reason, the profiling data file is rather large; furthermore, as it is augmented
by each execution of the program, you may want to compress it from time to time (see analyze_coverage(1)
for more details).

5.12 Pretty printing

SRC Modula-3 includes a pretty-printer for Modula-3 programs. Tt is accessible as m3pp(1). Read its man
page to find out how to use it.

5.13 Gnuemacs support

There is a mode to edit Modula-3 programs. To use it, you need to put in your .emacs file the following
lines:

(autoload ’modula-3-mode '"modula3'")
(setq auto-mode-alist
(append ’(("\\.ig$" . modula-3-mode)
("\\.mg$" . modula-3-mode)
("\\.i3%$" . modula-3-mode)
("\\.m3$" . modula-3-mode))
auto-mode-alist))

Your system administrator may have inserted these lines in the default macro files for your system.

There is also a program to build tags file for Modula-3 programs: m3tags; see the manpage for the details.
When the system is installed, a tag file for the public interfaces is built. To access it, you need in your
.emacs (or in the system initialization file) the line:

(visit-tags-table "LIB_USE/FTAGS")

where LIB_USE is the place where the Modula-3 libraries have been installed.

21

5.14 Keeping in touch

comp.lang.modula3 is a Usenet newsgroup devoted to Modula-3. There you will find discussions on the
language and how to use it, annoucements of releases (both of SRC Modula-3 and of other systems). Since
not everybody has access to Usenet, we also maintain a relay mailing list, to which we resend the articles
appearing in comp.lang.modula3. To be added to this list, send a message to m3-request@src.dec.com.
You may post articles to comp.lang.modula3 by sending them to m3@src.dec.com.

Reporting bugs. We prefer that you send bug reports to m3-request@src.dec.com. After we have
reviewed your report, we may post an article in comp.lang.modula3, describing the bug and a workaround
or a fix.

Needless to say, this implementation probably has many bugs. We are quite happy to receive bug reports.
We can’t promise to fix them, but we will try. When reporting a bug, please send us a short program that
demonstrates the problem.

22

Chapter 6

The libraries

SRC Modula-3 includes a large set of libraries, described in this chapter. It is intended that the interfaces
within the library be complete and self documenting.

The library foo 1s in the files LIB/1ibfoo.a and LIB/libfoo.ax, and the interfaces that are implemented
by this library are in the directory PUB; LIB and PUB depend on your local configuration, see chapter 7 for
the values of these parameters (by default, they are /usr/local/lib/m3 and /usr/local/include/m3).

Normally, the m3 driver knows the location of the public interfaces and archives. You just need to pass the
-1foo option to m3 to link with the library foo. Also, the driver automatically links with the m3 library.

The key to making Modula-3 successful requires designing, building and sharing libraries. You are encouraged
to send us useful modules or programs and we will include them in the next release as contributed software.
You can also announce the availability of your work on comp.lang.modula3.

Your system may have additional libraries; see chapter 7 or ask your system administrator.

6.1 The m3 library

The m3 library contains some basic interfaces and modules. This library is always included when linking
Modula-3 programs, and its interfaces are accessible using the default search path.

Conversion of representation:

Convert Basic binary/ASCII conversion of numbers
Fmt Formatting to Text.T
Scan Parsing from Text.T

Input/output is achieved using readers and writers:

23

R4 Basic operations on readers

UnsafeRd Faster version for non-concurrent access
RdClass To implement new classes of readers

Wr Basic operations on writers

Unsafelr Faster version for non-concurrent access
WrClass To implement new classes of writers

TextRd Readers that are connected to Text.Ts

TextWr Writers that are connected to Text.Ts

Stdio Readers and writers for standard files
FileStream Readers and writers connected to named files
UFileRdWr Readers and writers connected to file descriptors

Higher-level input/output:

AutoFlushWr buffered writers that flush automatically
Pkl reading and writing binary data structures

There is also a very primitive equivalent of stdio, which is needed by the low-levels of the runtime: SmallIO.

Fingerprints (64 bits CRC’s are built using polynomial arithmetic:

FPrint Compute the fingerprint of a Text.T
PolyBasis support for FPrint
Poly support for FPrint

There is a set of interfaces to provide standard access to and operations on basic types: Char, Boolean,
Cardinal, Integer, Real, LongReal, Address, Refany, Root, and Cast.

The m3 library has a few basic data structures:

List Lists of REFANYs

IntTable Tables of INTEGERs

RefTable Tables of REFANYs

STable Sorted tables, implemented by 2-3-4 trees
SIntTable STable applied to INTEGER

STextTable STable applied to Text.T

There is a set of interfaces that give access to the ANSI-C libraries. This collection is under construction.

M3toC support for Modula-3/C communication
Ctypes C-like names for types

Cstdarg obsolete

Cstdlib stdlib.h

Cstring string.h

There is a set of interfaces that give access to the runtime system. The Rep interfaces depend heavily on the
runtime implementation; other interfaces are more likely to be present (at least, similar functionalities) in
other systems.

24

RTException
RTMath
RTLink
RTScheduler
RTType
RTTypeRep
RTProc
RTProcRep
RTHeap
RTHeapRep
RTMisc
RTStack
RTThread

exception mechanism

basic math functions

program initialization

low-level access to the thread scheduler
type manipulation

more type manipulation

procedure manipulation

more procedure manipulation

heap allocation and garbage collection
additional control over the heap
miscellaneous support functions; runtime errors
low-level thread stack allocation
low-level thread switching

There 18 a set of interfaces giving access to the Unix system. These interfaces are machine-dependent, but
we tried to use the same names in all versions to make programs easier to port. Thus, it should be no more
difficult to port Modula-3 programs that use these interfaces than it is to port C programs.

In general, an interface regroups the definitions given by a system include file and the related functions.
Eventually, all of sections 2 and 3 should be available. Currently, we have the following interfaces:

Utypes
Uerror
Uipc
Umsg
Unetdb
Uprocess
Uresource
Usem
Ushm
Usignal
Utime
Uugid
Uutmp
Unix

Declarations of types name (sys/types.h)
Declarations of error codes (errno.h)
Inter-process communication (sys/ipc.h)
Inter-process messages (sys/msg.h)
Network database manipulation (netdb.h)
Process 1ds

Resources utilization (sys/resource.h)
Semaphores (sys/sem.h)

Shared memory (sys/shm.h)

Signals (signal.h)

Time manipulation (sys/time.h)

User and group ids

Login names (utmp.h)

Other functions (not yet organized in separate interfaces)

Some math-oriented interfaces:

Math
Point
Interval
Axis

Rect
Transform
Stat

sin, cos and friends
2-D integral points
Open integral intervals
horizontal /vertical

2-D integral rectangles
2-D transformations
simple statistics

Finally, various interfaces, including the mandatory ones.

25

Main Main program interface

Text Character strings

TextF Reveals to our friends what a Text.T is
Thread Control of concurrency

ThreadF Additional control for our friends

Time Time manipulation

Word Unsigned integer manipulation

Random Random numbers

RandomPerm

RandomReal

UID Generate unique identifiers
ParseParams Parsing of UNIX-style command lines
ParseShell Lower level support

Formatter Formatting of text, for example for pretty-printers
Filename File names manipulation

6.2 The data structures library

The library m3data provides generic data structures. The interfaces in that library are currently being
designed and the implementations need more testing. Your comments are welcome.

6.3 The X11R4 library

The library m3X11R4 contains binding interfaces for the X11R4 system. The interfaces are:

X11 Xlib-level functionalities
Xt X Toolkit Intrinsics

XtC

XtE

XtN

ItR

Xrm

Xmu

Xct

Xaw Athena Widget set

6.4 The Trestle library

The library m3ui contains the Trestle toolkit. It’s a powerful set of tools for building windowing applications.
A full description of Trestle can be found in the “Trestle Reference Manual” [12].

6.5 The FormsVBT library

The library m3vbtkit adds another layer of window building tools. A full description of FormsVBT can be
found in “The FormsVBT Reference Manual” [5].

26

6.6 The TclTk library

Tcl 1s an embeddable tool command language. Tk is an X11 toolkit based on the Tcl language. Both have
been developed by John Qusterhout at UC Berkeley.

For an introduction to Tcl and Tk you may wish to read two papers: “Tcl: An Embeddable Command
Language” | in the Proceedings of the 1990 Winter USENIX Conference, and “An X11 Toolkit Based on the
Tcl Language”, in the Proceedings of the 1991 Winter USENIX Conference.

The library Tc1Tk gives access to the Tcl and Tk libraries from Modula-3 programs, via the interfaces Tc1C
and TkC respectively.

27

Chapter 7

Local Guide

This chapter describes how SRC Modula-3 is installed at SRC, how to use it and how to contribute to it.

7.1 Your Environment

Find a DECstation (Pmax or 3max). Modula-3 runs on Vaxen, but almost nobody bothers. Modula-3
doesn’t run on Alphas, yet.

Before you work in Modula-3, login and make sure that your home directory contains the files listed below.
It’s important that you have these files in at least minimal working order. Beware! Getting everything
perfect can be a huge time sink.

.xsession Your .xsessionfileis run first, it selects your window manager and gets your X server initialized.
After the comments, around line 38, there’s a line that looks like:

set WINMGR = "tvtwm"

The window managers that are allowed are tvtwm, dxwm, and mwm. Today most people are using tvtwm.
Most window managers can be configured with a rc file. I have a file named .tvtwmrc that tvtwm
reads during startup. I don’t know exactly what the file does, nor what it could do. I suggest you copy
a version of the file from a friend and read the tvtwm man page.

.login Your .login file should begin by reading the system-defined .login file using the shell command:
source /proj/local/lib/system.login

This command will work on all our machines (Fireflies, VAX mainframes, DECstations). The file
it refers to figures out what kind of machine you are running on and sets your basic environment
accordingly. In particular, the programs m3, m3pp, m3make and their man pages should be on your
search paths.

Put your personal customizations after the source command given above.

.cshrc Similarly, your .cshrec file should begin with the line
source /proj/mips/lib/system.cshrc

and conclude with your personal customizations.

28

.X11Startup Your .X11Startup file is used to start a set of X applications each time you login. My
.X11Startup contains:

xmodmap /udir/kalsow/.xmodmaprc
xload -geometry 130x70-0+135 &
xclock -geometry 130x130-0+0 &

xterm -iconic -geometry '80x55" &
xterm -iconic -geometry '80x55" &
xmh -iconic —geometry '685x750" &
xrn -iconic —geometry '685x750" &

xmodmap 1s a program that can redefine the mapping of your keyboard. My .xmodmaprc file fixes the
brain damaged DECstation keyboard so that the escape key is in the right place and the shift lock is
disabled. If you do nothing, the mystery key labelled “F11” is your escape key. Here’s my .xmodmaprc
file:

! Caps_Lock —-> Control

' F1 -> Caps_Lock

]
remove Lock = Caps_Lock
keysym F1 = Caps_Lock
keysym Caps_Lock = Control_R
add Lock = Caps_Lock
add Control = Control_R
!

I key cap character (first unshifted, second shifted)
]

! 3 3 3 <

! .. , >

! < > ¢ -

! £ ESC ESC

quoteleft asciitilde
comma less

keysym less
keysym comma
keysym period = period greater
keysym quoteleft = Escape Escape

I also start a program that displays my system’s load average — xload, a clock, a few X terminals, my
mail reader — xmh, and my news reader — xrn.

.Xdefaults Your .Xdefaults file defines some of the ten bazillion options that make X applications so
much fun. My advice is to steal a copy from someone who’s screen looks OK. When you’re really
bored, diddle with your .Xdefaults. (You need to login again or run xdb to reload your .Xdefaults
file.)

7.2 Editing

Several people at SRC have spent some time doing various things to try to make Modula-3 programming in
gnuemacs and epoch more pleasant and productive. Unfortunately, it is more difficult than it should be to

29

find out about these efforts; you have to ask the right people, look at comments in various source files, read
the right bulletin boards, etc. The purpose of this section is to describe these packages as something like a
coherent whole.

Our editing czar says, “use epoch”. I don’t see any reason to disobey. Epoch is a version of gnuemacs that’s
been feature-ified to fit better with X. Otherwise, the two editors are very similar. They can even share the
same elisp code. As always, you should probably read its man page.

You’ll need a .emacs file to hold your personal configuration. The best way to get started is to copy this
file from someone you trust.

You may also have a .epoch file. It’s intended to hold epoch-specific elisp. Note, this file is not read
automatically. You must arrange to read it. Here’s the recommended recipe for invoking your .epoch file:

(if (boundp ’epoch::version)
(progn
(load "dot.emacs'" nil t)
(setq auto-raise-screen nil)))

The following gnuemacs elisp packages are in /proj/m3/pkg/gnuemacs/src and described below:

e modula3.el

This package defines modula-3-mode, an emacs “major mode” for editting Modula-3 source code. This
package has grown by accretion over a number of years, by a number of hands. It provides mechanisms
for formatting code and for inserting keywords or whole syntactic constructs.

e m3tags

Eric Muller has adapted the emacs tags facility to work for Modula-3. This allows one to quickly go
to the definition of a sytactic unit when the cursor is pointing at a use of that unit.

e lightbrite

If you want a little dash of color in your programming life, the lightbrite package can provide it, by
highlighting certain keywords and comments in different colors and/or fonts.

modula-3-mode

Gnuemacs Modula-3 mode has grown by accretion, by a number of hands over a number of years. It often
provides a couple of ways of accomplishing the same goal. People who modified the code to add new features
tried not to change the behavior observed by current users. In short, the code is something of a mess, and
there are a lot of variables you can set to get different behaviors. It might be a good 1dea to go for someone
to make editorial decisions so that there is only one way of doing each thing, and maybe call the result a
new mode.

Here is a list of the key things Modula-3 mode provides:

e Avoidance of typing:

If you don’t like typing a lot of uppercase keywords, there are two methods you can use to automatically
insert keywords or entire syntactic constructs. One is termed “aggressive”, the other “polite”. In
aggressive mode, various keystrokes starting with ~C are bound to functions that insert entire syntactic
constructs into your buffer; for instance, “C-b gives you a BEGIN/END pair, both at the current
indentation. In polite mode, there 1s ubiquitous completion of keywords, bound to the <TAB> key. For
example b<TAB> expands the b to BEGIN, provided the b appears in a context where BEGIN may be a
valid keyword. There are some fairly extensive rules governing the contexts in which a given keyword is

30

a valid completion; the net result is that it is seldom necessary to type more than one letter to get the
correct completion. If you get specify a non-unique prefix of a set of keywords, it chooses the first in
an ordering intended to capture frequency of use; it also presents the other choices, and typing <TAB>
repeatedly cycles through these choices.

¢ Indenting/pretty-printing

There are also two methods for pretty-printing code. The first is via invocation of m3pp. M-x m3pp-region
will pretty-print the code between mark and point. M-x m3pp-unit pretty prints the “unit” contain-
ing the cursor. A unit starts with a blank line followed by CONST, TYPE, VAR, PROCEDURE, EXCEPTION,
IMPORT, FROM, MODULE, or BEGIN, and it extends to the start of the next unit. If there is no such unit
around the cursor, the entire file is pretty-printed. Unfortunately, the m3pp-region and m3pp-unit
commands are not bound to keys. You can add the conventional binding for these commands by

adding:
?? help 77

to your .emacs file.

The other method of pretty-printing is a gnuemacs “electric” mode, where a key (<TAB> again; it serves
double duty) immediately indents the current line with respect to the previous line. Another pair of
features of the electric mode are “END-matching” and “END-completion”; if enabled, END-matching
blinks the cursor briefly at the construct matching an END, and END-completion fills in the name of the
procedure or module an END completes, or a comment with the name of the construct completed.

The two methods are not mutually exclusive; perhaps you like the way m3pp lines up columns in
declarations, but you also like to keep things indented while you type. You can use the electric mode
to get things close, then invoke m3pp when you’re done. Personally, I just use the electric mode.

e Finding files.

There are (you guessed it) two methods for quickly finding an interface. Both expect the point to
be on an interface name, and find the file for that interface by probing a search path. m3-path-find
file, bound to “C-"0-v, assumes the presence of an m3path file in the current directory, and finds the
file in another window. m3::show-interface (not bound to any key by default) uses the variable
m3: :defpath as the search path, and, if epoch is being used, displays the found file in a new screen
(i.e., window.)

Apparently, Steve Glassman has yet another variation on this theme, which knows enough about our
symbolic link conventions to allow finding the implementation of an interface, as well. It will be a good
thing to merge the good features of these three into one.

To use modula-3-mode, put the following lines in your .emacs file:

(setq auto-mode-alist

(append (list > ("\\.m3$\\VANLI3ENNINNLigd\\I\\.mg$" .
modula—-3-mode))
auto-mode-alist))

The auto-mode-alist says what mode you should enter when a file extension matches the given regular
expression.

(autoload ’modula-3-mode "modula3"
"A special mode for M3." t)

31

The autoload command tells emacs what elisp file to load to get the definition for a given function.

(setq completion-ignored-extensions
(append)(n‘mon II‘mXII Il‘mcll Il‘ioll II‘iXII)
completion-ignored-extensions))

When you find files, you would rather not be offered files with these extensions as possible completions.

(defun m3-mode-hook-function ()
(setq m3-abbrev-enabled ’polite)
(setq m3-electric-end ’all)
(setq m3-blink-end-matchers t))

(setq m3-mode-hook ’m3-mode-hook-function)

The m3-mode-hook variable specifies a function to run when you enter modula-3-mode.
The m3-mode-hook-function given above customizes the behavior of modula3-mode to:
e use polite abbrev mode. ’aggressive is the default and nil is legal.

e do all possible END-completion. ’proc-mod will match procedure and module names, nil is the default
and matches nothing.

e blink END-matchers. nil is the default value.

m3-tags

“Tags” 1s supposed to allow you to quickly find the definition of a given construct when the point is at a
use. Eric Muller is the local master of tags. The program m3tags builds tags for the public interfaces. To
use the tag database from epoch you need to add the line

(visit-tags-table "/proj/m3/lib.mips/FTAGS")

to your .emacs file.
INSERT how to use Steve Glassman’s “mpindez”.

lightbright

This is the stuff Dave Detlefs demonstrated at the 6/17/92 Center Meeting, which put Modula-3 keywords
in different colors and fonts, and comments in proportionally-spaced italics.

We don’t recommend using this package at yet: it requires a newer version of Epoch than the default, and
it applies uqiquitously across modes. However, if you must :-), run /udir/detlefs/bin/epoch, and add
the following lines in your .emacs:

;3;-—————— lightbright.el -----———--—-------------———

(defun make-style-with-font (font)
"Make a style with font FONT."
(let ((s (epoch::make-style)))

(set-style-font s font)

32

s))

(defun make-style-with-font-and-color (font color)
"Make a style with font FONT."
(let ((s (epoch::make-style)))
(set-style-font s font)
(set-style-foreground s color)

s))

(if (boundp ’epoch::version)
(progn
(load "lightbrite")
(setq brite: :touchup-threshold 200000)
(setq brite::comment-threshold 200000)
(setq-default brite::change-interval 6)

(setq red-style (make-style-with-font-and-color
"*helvetica-medium-r-normal—-—10%"
"red"))
(setq green-style (make-style-with-font-and-color
"*courier-medium-r-normal-—12*"
"blue"))
(setq yellow-style (make-style-with—font
"shelvetica-bold-r-normal--10%"))
(setq magenta-style (make-style-with-font
"shelvetica-medium-r-normal--10%"))
(setq comment-style (make-style-with-font
"ftimes-medium-i-normal-—12%"))
(setq yellow-underline-style (make-style-with-font
"shelvetica-medium-o-normal--12*"))
(setq red-underline-style (make-style-with-font
"shelvetica-bold-o-normal--12%"))

))

;3;-—————— end stuff for lightbright.el ----—————-—--"--"--------——

to do (i.e. Dave Detlefs’ wish list)

e General cleanup. Modula3.el needs a general pass of cleanup, elimination of redundant code, better
allocation of the scarse resource of keybindings, etc

e Identifier completion. Dave has an experimental m3-complete-identifier command, that constructs
the complete list of identifiers declared in the current file, and then uses the current word as a prefix
to pick out a set of possibilites. It is buggy, and too slow to use on even medium-sized files. He may
try to make it robust, fast enough, and more ambitious: completing record field names or second parts
of qualified names, etc.

e Epoch display of the call stack in debugging. It would be kind of neat if, while debugging, the buffers
on the source files for the call stack appeared as some sort of stack of windows.

33

7.3 Compiling

You should use m3make. The best advice for beginners is to copy an existing package that’s similar to the
one you want to create. You’ll probably find the following files:

./README - a top-level description created by m3create
./src/m3makefile - the input to m3make

./src/*.[im] [3g] - the Modula-3 sources of the program
./mips/*.[im] [ox] - the compiled objects for a DECstation
./vax/* - the compiled objects for a VAX

There’s a man page for m3make, at some point you should read it.

You can use epoch’s compile command to run m3make and then use the next-error facitility to quickly
move to the source lines containing errors.

The standard epoch M-x compile command will work with Modula-3 and m3make. Invoke this command in
a buffer whose current directory is the one containing your derived files (i.e. if your cursor is in a source file
then first visit ../mips). When you invoke this command, it presents the current compile command in the
minibuffer for your approval. The first time you run this, the command will be make -k. If you modify this
to m3make, that will become the new current command on subsequent makes. The results of the m3make will
be displayed in a buffer called *compilation*.

When a compile is finished, next—error (“X-¢) will parse the *compilation* buffer and find the first error
in the file, moving the current error to the top of the *compilation* buffer, and moving the point to the
line containing the error in the appropriate source buffer. When you invoke next-error again, it will go to
the start of the next line containing an error. The big advantage of using next-error is that uses emacs
“marker” facility to keep things straight if you edit the file to fix errors, changing the line numbers. Barring
drastic edits, next—error will still get you to the right line.

Mick Jordan has also defined some commands that let you use m3check in a shell window, and get about
the same next-error behavior. INSERT the details...

7.4 Debugging

Today you get your choice of debugger — either gdb or dbx. At the moment most SRCers prefer gdb, although
it can’t read DECstation core files.

with dbx

Like everything else, dbx will read a start-up file. It reads the file named .dbxinit in your home directory.
In that file you place any commands that you’d like executed each time you start the debugger. Here’s a
suggested .dbxinit file:

ignore 26

set $casesense = 1

set $printwide = 1

stop in RTException__NoHandler

alias typeof(r) "print (_types[(*#(int *)(r-4))//2]).name"
alias wide "set $printwide = (1-$printwide)"

alias threads '"call Thread__DumpEverybody()"

use src ../src /udir/XYZ/pkg/A/src /udir/XYZ/pkg/B/src

34

The first line tells dbx to ignore signal 26 — the thread switching timer. The second line tells dbx that all
input is case-sensitive. The third line tells dbx to print folded lines of output for large structures. The fourth
line sets a break point in the runtime routine that’s called for unhandled exceptions. The fifth line defines
a new command that examines runtime data structures and prints the type of a reference. The fifth line
defines a new command that toggles the folded output behavior. The sixth line defines a new command that
produces a listing of all threads. The last line gives dbx a list of directories to search when it’s looking for
source files.

with gdb

Like dbx and everything else, gdb will read a start-up file. It reads the file named .gdbinit in your home
directory. In that file you place any commands that you’d like executed each time you start the debugger.
Here’s a suggested .gdbinit file:

dir

dir /udir/steveg/b.e/mg/src
dir /udir/steveg/b.e/zeus/src
dir /udir/steveg/b.e/lego/src

define ss
nexti

x/1i $pc
end

define breaks
info breakpoints
end

break RTException__NoHandler

define threads
call Thread__DumpEverybody ()
end

The first set of lines gives gdb a search path for locating source files. The next set defines a single step
command. The third set defines a simple command to list the active breakpoints. The fourth sets a break
point in the runtime routine that catches unhandled exceptions. And the last set of lines defines a threads
command to list all threads.

from epoch

There are some advantages to debugging Modula-3 programs under epoch. You get

e Automatic display of the source file with the current line indicated when you stop at a breakpoint or
move around in the stack while the program is stopped.

e You can set a breakpoint at the current line in a source file using the “X-<space> command.

e Special commands take REF or OBJECT variables (or their pointer values) and print their types and the
values of the referents. (This feature depends on intimate knowledge of the SRC Modula-3 implemen-
tation.) The command ESC-p takes the word containing the current point as the variable or value to
print. ESC-r does the same thing with a record value.

35

These functions are built from gnuemacs’ gdb-mode and dbx-mode and are available in the m3-debug.el
elisp package. To use them, put these lines in your .emacs file:

(autoload ’run-m3-gdb "m3-debug" "" t)
(autoload ’run-m3-dbx "m3-debug" "" t)

You can then use M-x run-m3-gdb or M-x run-m3-dbx to start gdb or dbx, respectively, in inferior shells in
the appropriate modes.

7.5 Packages

We use the same package tools that everyone else at SRC is using. There are special variants of the commands
that make 1t a little simpler for Modula-3 users.

To get the Modula-3 package tools to work on your DECstation named foobaz, you must have a .rhosts
file in your home directory on bigtop. It should contain the line:

foobaz.pa.dec.com

To manipulate a Modula-3 package named foo, the last component of your working directory must be named
foo.

Briefly, here’s the available commands and what they do when issued in a directory named XYZ.
m3create — creates a new package named XYZ.

m3delete — deletes the package named XYZ.

m3get — acquires the lock and updates the current directory with the contents of the package XYZ.
m3setlock — acquires the lock on package XYZ.

m3unlock — unlocks the package XYZ.

m3ship — ships a copy of the current directory as the new contents of package XYZ.

m3compare — compares the current directory with the existing version of package XYZ.

For more details, see the man pages

7.6 Public Directories

All the basic Modula-3 software lives in packages. These packages live in subdirectories of /proj/m3/pkg.
The public files are exported to public directories:

symbol | public directory | decription
PUB /proj/m3/pub. cpu_type interfaces
LIB /proj/m3/1ib. cpu_type libraries

BIN /proj/{mips,ultrix}/bin programs

CATn /proj/man/cpu_type/man/catn | plain-text man pages

where cpu_type is either vax or mips, and n can vary from 1 to 8.

The Modula-3 compiler (m3) knows about the public directories. By default, it will search the current
directory and PUB for interfaces. It will also try to locate libraries specified in the -1 syntax in LIB. It will
systematically link your programs with -1m3 and -1m.

36

7.7 Package Organization
We have four kinds of packages:

e source packages: They contain Modula-3 sources and produce no derived objects. For an example, see
the text package.

e library packages: They usually contain a small number of source files, export a few interfaces to PUB
and export a single library containing all the objects to LIB. For example, the tcl package contains
the source files for the binding to Tcl. It exports Tc1lC.1i3 to PUB and libm3tcl.a to LIB.

e umbrella packages: It is inconvenient to work with a large number of small libraries. An umbrella
library collects a number of smaller libraries; it is essentially a list of source packages and it exports a
library containing all the objects of the smaller packages. An example is 1ibm3.a. This library collects
the contents of several source packages into a single large library.

e program packages: They contain a single program, exported to BIN, with its man page exported to
CAT1. For an example, see the solitaire or calculator package.

37

Chapter 8

Internals

This section contains a brief introduction to the internal structure of the compiler and runtime system.
This introduction is neither comprehensive nor tutorial; it is merely intended as a stepping stone for the
courageous.

8.1 A tour of the compiler

The compiler has undergone much evolution. It started as a project to build a simple and easy to maintain
compiler. Somewhere along the way we decided to compile Modula-3. Much later we decided to generate C.
In hindsight, Modula-3 was a good choice, C was at best mediocre.

The initial observation was that most compilers’ data structures were visible and complex. This situation
malkes it necessary to understand a compiler in its entirety before attempting non-trivial enhancements or
bug fixes. By keeping most of the compiler’s primary data structures hidden behind opaque interfaces, we
hoped to avoid this pitfall. So far, bugs have been easy to find. During early development, it was relatively
easy to track the weekly language changes.

The compiler is decomposed by language feature rather than the more traditional compiler passes. We
attempted to confine each language feature to a single module. For example, the parsing, name binding,
type checking and code production for each statement is in its own module. This separation means that
only the CaseStmt module needs to know what data structures exist to implement CASE statements. Other
parts of the compiler need only know that the CASE statement is a statement. This fact is captured by the
object subtype hierarchy. A CaseStmt.T is a subtype of a Stmt.T.

The main object types within the compiler are: values, statements, expressions, and types. “Values” is a
misnomer; “bindings” would be better. This object class include anything that can be named: modules,
procedures, variables, exceptions, constants, types, enumeration elements, record fields, methods, and pro-
cedure formals. Statements include all of the Modula-3 statements. Expressions include all the Modula-3
expression forms that have a special syntax. And finally, types include the Modula-3 types.

The compiler retains the traditional separation of input streams, scanner, symbol table, and output stream.

The compilation process retains the usual phases. Symbols are scanned as needed by the parser. A recursive
descent parser reads the entire source and builds the internal syntax tree. All remaining passes simply add
decorations to this tree. The next phase binds all identifiers to values in scopes. Modula-3 allows arbitrary
forward references so it is necessary to accumulate all names within a scope before binding any identifiers to
values. The next phase divides the types into structurally equivalent classes. This phase actually occurs in
two steps. First, the types are divided into classes such that each class will have a unique C representation.

38

Then, those classes are refined into what Modula-3 defines as structurally equivalent types. After the
types have been partitioned, the entire tree is checked for type errors. Finally, the C code is emitted. C’s
requirement that declarations precede uses means that the code is generated in several passes. First, the
types are generated during type checking. Then, the procedure headers are produced. And finally, the
procedure bodies are generated.

The compiler implementation is in the compiler directory. Within that directory the following directories
exist:

builtinOps ~ ABS, ADR, BITSIZE, ...
builtinTypes INTEGER, CHAR, REFANY, ...
builtinWord Word.And, Word.Or, ...

exprs +, -, [, ~, AND, OR, ...

misc main program, scanner, symbol tables, ...
stmts :=, IF, TRY, WHILE, ...

types ARRAY, BITS FOR, RECORD, ...

values MODULE, PROCEDURE, VAR, ...

8.2 A tour of the runtime

The runtime itself implements the garbage collector, Modula-3 startup code and a few miscellaneous func-
tions. The runtime exists in the 1ibm3/runtime directory.

The interface between the compiler and runtime system is embodied (and very sparsely documented) in
M3Runtime.h, M3Machine.h (an architecture-dependent file) and M3RuntimeDecls.h. Every C file generated
by the compiler includes these files.

The allocator and garbage collector are based on Joel Bartlett’s “mostly copying collector”. The best
description of his collector is in [1]. Since that paper, we’ve made a few modifications to support a growing
heap and to use extra information that the Modula-3 compiler generates.

Exceptions are implemented with setjmp and longjmp. The jump buffers and scope descriptors are chained
together to form a stack. The head of the chain i1s kept in ThreadSupport.handlers. There is a distinct
chain for each thread. When an exception is raised, the chain is searched. If a handler for the exception is
found, the exception is allowed to unwind the stack, otherwise a runtime error is signaled. To unwind the
stack, a longjmp is done to the first handler on the stack. It does whatever cleanup is necessary and passes
control on up the stack to the next handler until the exception is actually handled.

Reference types are represented at runtime by a “typecell”. Due to separate compilation, opaque types and
revelations, it is not possible to fully initialize typecells at compile time. Typecell initialization is finished at
link time. A typecell contains a type’s typecode, a pointer to its parent typecell, the size of the types referent
and method list if any, the type’s brand, the number of open array dimensions, the type’s fingerprint, and
procedures to initialize the typecell, initialize new instances of the type, print instances of the type and trace
the type for garbage collection.

Link time type elaboration occurs in several steps. First, all types are registered. That is, a global array
that points to all typecells is built. Next, the runtime verifies that all opaque types have been given concrete
representations. Then, the initialization of typecells is finished. Then, all types with the same brand and
fingerprint are identified with the same typecode. Finally, a check is made to ensure that distinct types have
distinct brands.

At the beginning of the execution of the program, all global variables are initialized, and the main bodies of
the modules are invoked. The skeletal code that ensures that every module is initialized is generated by the
linker part of the driver.

Other parts of the runtime, such as threads, are actually implemented in the base library.

39

Thread switching is implemented with setjmp and longjmp. A timer interrupt (signal) is used to cause
preemptive thread switching. The global variable ThreadSupport.self points to the currently running
thread. The integer ThreadSupport.inCritical is used by the runtime to prevent thread switching during
garbage collection and other “atomic” runtime operations.

8.3 Porting to another machine

Anyone who is interested in porting this compiler is encouraged! We would like to know how it goes. The
primary concerns when doing a port will be the size and alignment constraints of the target machine and
the runtime. We tried to avoid suspicious C constructs, but we doubt that we were completely successful.

The directions in this section are somewhat sparse. We tried to make the installation of SRC Modula-3
smooth, but it is another story to make the development of ports smooth. Please bear with us and tell us
what we can do to improve this section.

If you want to a port to an unsupported system you should:

e get the compiler and driver source archives (in addition to m3make that came with the boot archive
and 1ibm3 which you had to install anyway).

e decide on the name of the new architecture; in the rest, we assume that it 1s new
e describe the target machine for the compiler

e implement the machine-specific part of the base libraries for the new machine

e build a cross-compiler on a supported machine

o cross-compile (to C) the driver and the compiler

e finish the compilation of the driver and the compiler on the target machine

In the following, all the paths are relative to the directory in which you unpacked the archives (also known
as the top-level directory).

Describing the target machine The compiler has a small number of parameters that are used to describe
the target machine. These parameters are expressed in the interface compiler/src/new/Target.i3. Create
the directory compiler/src/newand build the file Target. i3, using the descriptions for the other machines
as models. In compiler/src/m3makefile, add the lines:

#if defined (TARGET_new)
sourcedir (../src/new)
#tendif

Porting the runtime and base libraries Some of the Modula-3 code (as well as very little pieces of
C) are machine-dependent. Of course, it may be that some code we thought to be machine-independent
will turn to have to be changed for your new architecture, so we cannot guarantee that the list below is
exhaustive. In general, look at what 1s done for the other machines, and find the most similar as a starting
point.

In 1ibm3/Csupport/src, add a directory new and put in it the files:

e m3makefile to describe the contents of the directory

40

e M3Machine.h which is included in every C file generated by the SRC Modula-3 compiler
e dtoa.c to configure ../generic/dtoa.h;look at that file for the things to configure.

e float.h if your system does not have one. You can build it using a program called enquire, which
can be found on the net.

In 1ibm3/C/src, add a directory new and put in it the files:

e m3makefile to describe the contents of the directory

e Csetjmp.i3 to describe the interface to setjmp, longjmp, _setjmp and _longjmp. Be careful to get
the size of the jmp_buf right.

e Cstdio.i3, essentially a Modula-3 translation of stdio.h
In 1ibm3/thread/src, add a directory new and put in it the files:

e m3makefile to describe the contents of the directory

e WildJmp.i3: this interface provides functions that are similar to _setjmp and _longjmp, but that do
not impose any restriction on what is possible. The DS3100 version 1s the simplest, because on that
architecture, _setjmp and _longjmp are just fine. The VAX version is the most complex, we had to
rewrite our own versions because longjmp requires that the stack be popped (remember the longjmp
botch message 7).

In 1ibm3/runtime/src, you can either reuse one of the StackInc-n component, or you may have to create
a new one (i.e., you need a different value of n). The dependency described there is for the benefit of the
garbage collector. At the beginning of a collection, the collector must find all the roots, that is, all the heap
objects that are referenced from outside the heap itself. The stacks contain such pointers, and the collector
scans them to find roots. However, the collector does not know the full structure of the stacks (frames,
argument lists and so on); rather, it just looks at the values that are there and make conservative decisions
by interpreting these values as possible pointers. For each stack, the collector initializes a pointer P to the
bottom of the stack; then it repeatedly tries to interpret the bits pointed by P as a pointer in the heap,
marks the root if the interpretation is successfull and advances P. The question is by how much P should
be advanced; if all entries in the stack are aligned at n-bytes boundaries, it is sufficient to increment P by n
bytes; a smaller value would be an overkill. We have found that some machines require n to be 2, and that
4 is enough for others.

In 1ibm3/float/src, add a directory new and copy the files that are in MODEL in that directory. The routines
in these modules provide access the floating point control (to set exceptions and so on). The version in MODEL
is a template, and most of the routines will fail (because of an <¥*ASSERT FALSE#*>) if executed. The DS3100
and SPARC directories are examples of implementations for IEEE machines, the VAX directory is an example
for non-IEEE machines. It is not essential that you implement the proper procedures right now: the versions
in MODEL are good enough for the compiler, the driver and simple test programs. But you will have to take
care of that at some point.

In 1ibm3/random/src, you can either reuse one of the directories VAX, IEEE-1e or IEEE-be, or create your
own on those models. The goal is to describe enough of the floating point representation for the random
number generator. There is probably some overlap with the 1ibm3/float stuff, we will take care of that at
some point.

In 1ibm3/unix/src, you will find a bunch of interfaces to the procedures of sections 2 and 3 of U**X. Not
everything is there, but we sometime dream to have a complete set; in other words, it’s quite a bit of work to
make sure that you have the proper descriptions, and of course, there is nothing from which these interfaces

41

could be mechanically derived. Fortunately, the driver and the compiler rely on very few of these procedures,
and any version is probably good enough for your machine. We suggest that you do the work only when you
find some problems (at least, wait until you get a basic port running).

The last thing is to reflect all these changes in 1ibm3/src/m3makefile. Add a bunch of lines:

#if defined (TARGET_new)

#endit
similar to those that are already there. You need to make a similar modification to compiler/src/m3makefile
and driver/src/m3makefile (sorry for the duplication, but it is difficult to avoid).

Creating a cross-compiler At the top level, type to the shell:
$ m3make cross NEW=new

After a while, you should get an executable compiler/cross-new/m3compiler.

Cross-compiling the driver and the compiler At the top level, type to the shell:

$ m3make bootstrapdriver NEW=new
$ m3make bootstrap_compiler NEW=new

At this point, you should in the same state as if we had built a boot archive for new and you had grabbed
it. If you cannot mount the file system that contains all the files on the new machine, create a boot archive:

$ m3make pack NEW=new

This creates a file boot files/boot. new-version.tar.Z, which you need to unpack on the new machine.
You can then proceed as for the first installation of SRC Modula-3(see the top level README).
Good Luck!

42

Bibliography

(1]

[10]

[11]

Joel F. Bartlett.

Compacting garbage collection with ambiguous roots.

WRL Research Report 88/2, Western Research Laboratory, Digital Equipment Corporation, Palo Alto,
February 1988.

A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin.
Synchronization primitives for a multiprocessor: A formal specification.
SRC report 20, System Research Center, Digital Equipment Corporation, Palo Alto, August 1987.

Andrew D. Birrell.
An introduction to programming with threads.
SRC report 35, System Research Center, Digital Equipment Corporation, Palo Alto, January 1989.

Gilad Bracha and William Cook.

Mixin-based inheritance.

In Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions; Buropean Conference on Object-Oriented Programmaing, pages 303-311, October 1990.

Marc H. Brown and James R. Meehan.
The formsvbt reference manual.
SRC report 77, System Research Center, Digital Equipment Corporation, Palo Alto, July 1992.

Mark R. Brown and Greg Nelson.
IO streams: Abstract types, real programs.
SRC report 53, System Research Center, Digital Equipment Corporation, Palo Alto, November 1989.

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson.
Modula-3 report (revised).
SRC report 52, System Research Center, Digital Equipment Corporation, Palo Alto, November 1989.

Luca Cardelli, James Donahue; Mick Jordan, Bill Kalsow, and Greg Nelson.
The modula-3 type system.

In Conference Record of the Sizteenth Annual ACM Symposium on Principles of Programming Languages
(POPL), pages 202-212, January 1989.

Sam Harbison.
Modula-3.
Byte, 15(12):385-392, November 1990.

Sam Harbison.
Safe programming with modula-3.

Dr. Dobb’s Journal, 17(10):88-96, October 1992.

Samuel P. Harbison.
Modula-3.
Prentice Hall, 1992.

43

[12] Mark S. Manasse and Greg Nelson.
Trestle reference manual.
SRC report 68, System Research Center, Digital Equipment Corporation, Palo Alto, December 1991.

[13] Mark S. Manasse and Greg Nelson.
Trestle tutorial.

SRC report 69, System Research Center, Digital Equipment Corporation, Palo Alto, May 1992.

[14] Greg Nelson, editor.
System Programming with Modula-3.
Prentice Hall, 1991.

44

