
SRC Modula-3

Version 2.07

Bill Kalsow

Eric Muller

Systems Research Center

Digital Equipment Corporation

130 Lytton Avenue

Palo Alto, CA 94301-1044

released: June 15, 1992

manual update: July 20, 1992

SRC Modula-3 Non-commercial License

SRC Modula-3 is distributed by Digital Equipment Corporation (\DIGITAL"), a corporation of

the Commonwealth of Massachusetts. DIGITAL hereby grants to you a non-transferable, non-

exclusive, royalty free worldwide license to use, copy, modify, prepare integrated and derivative

works of and distribute SRC Modula-3 for non-commercial purposes, subject to your agreement

to the following terms and conditions:

� The SRC Modula-3 Non-commercial License shall be included in the code and must be

retained in all copies of SRC Modula-3 (full or partial; original, modi�ed, derivative, or

otherwise):

� You acquire no ownership right, title, or interest in SRCModula-3 except as provided herein.

� You agree to make available to DIGITAL all improvements, enhancements, extensions, and

modi�cations to SRC Modula-3 which are made by you or your sublicensees and distributed

to others and hereby grant to DIGITAL an irrevocable, fully paid, worldwide, and non-

exclusive license under your intellectual property rights, including patent and copyright, to

use and sublicense, without limititation, these modi�cations.

� SRC Modula-3 is a research work which is provided \as is", and DIGITAL dis-

claims all warranties with regard to this software, including all implied war-

ranties of merchantability and �tness of purpose. In no event shall DIGITAL

be liable for any special, direct, indirect, or consequential damages or any dam-

ages whatsoever resulting from loss of use, data or pro�ts, whether in an action

of contract, negligence or other tortious action, arising out of or in connection

with the use or performance of this software.

Copyright
c

 1990 Digital Equipment Corporation

All Rights Reserved

VAX, DECstation and ULTRIX are trademarks of Digital Equipment Corporation.

UNIX is a trademark of AT&T Corporation.

SPARC and SunOS are trademarks of Sun MicroSystems.

Apollo and Domain/OS are trademarks of Apollo.

IBM and AIX are trademarks of International Business Machines Corporation.

RT and PS/2 are trademarks of International Business Machines Corporation.

HP, HP9000 and HP9000/300 are trademarks of Hewlett-Packard Company. HP-UX is Hewlett-

Packard's implementation of the UNIX operating system.

PostScript is a trademark of Adobe Systems Incorporated.

Contents

1 Introduction 1

2 License 3

3 History 4

4 Installation 6

4.1 What is available : 6

4.2 Getting SRC Modula-3 : 7

4.3 Installation procedure : 9

4.4 Running the tests : 9

5 How to use the system 10

5.1 Compiling : 10

5.2 An example : 10

5.3 Make�les : 11

5.4 Language restrictions : 11

5.5 Pragmas : 13

5.6 Linking : 16

5.7 Runtime arguments : 17

5.8 Garbage Collection : 17

5.9 Debugging : 17

5.10 Thread scheduling : 20

5.11 Pro�ling : 21

5.12 Pretty printing : 21

5.13 Gnuemacs support : 21

5.14 Keeping in touch : 22

6 The libraries 23

6.1 The m3 library : 23

6.2 The data structures library : 26

6.3 The X11R4 library : 26

6.4 The Trestle library : 26

6.5 The FormsVBT library : 26

6.6 The TclTk library : 27

i

7 Local Guide 28

7.1 Your Environment : 28

7.2 Editing : 29

7.3 Compiling : 34

7.4 Debugging : 34

7.5 Packages : 36

7.6 Public Directories : 36

7.7 Package Organization : 37

8 Internals 38

8.1 A tour of the compiler : 38

8.2 A tour of the runtime : 39

8.3 Porting to another machine : 40

ii

Chapter 1

Introduction

This document describes SRC Modula-3 and the terms under which it is distributed.

The distribution contains a Modula-3 compiler and runtime, a set of libraries, a coverage analyzer, a Modula-

3 pretty printer, and a small test suite of Modula-3 programs. The compiler generates C as intermediate

code.

This release is known to work on a variety of machines (see the table on page 6). We have not tested

the software in any other con�gurations. It may function correctly on other versions of Ultrix or on other

machines.

The compiler and runtime system was designed and implemented by Bill Kalsow and Eric Muller. Neither of

us view this as a �nished product. Nonetheless, we thought others might like to use it. The system should be

of interest to two camps: those interested in trying out Modula-3 and those interested in compiler hacking.

Other Documents

The bibliography at the end of this document contains some references related to Modula-3.

The Modula-3 language is described in \Systems Programming with Modula-3" [14], edited by Greg Nelson

and published by Prentice Hall. It should be available in book stores. Other chapters in this book describe

the thread mechanism and readers and writers.

Sam Harsion wrote \Modula-3" [9] and \Safe Programming with Modula-3" [10], overviews of Modula-3 and

\Modula-3" [11], a textbook for Modula-3.

To receive a SRC report on paper, contact:

SRC Report Distribution

Digital Equipment Corporation

130 Lytton Avenue

Palo Alto, CA 94301-1044

src-report@src.dec.com

Acknowledgments

Many people contributed to SRC Modula-3, and we would like to thank them. Below is a partial list of the

contributors.

1

We use the garbage collector developed by Joel Bartlett (DEC-WRL).

John Dillon (DEC-SRC) provided the original C version of thread switching.

Mark R. Brown and Greg Nelson (DEC-SRC) designed the readers and writers interfaces.

Jorge Stol� (DEC-SRC) and Stephen Harrison (DEC-WSE) were very patient alpha-testers. They gave

us invaluable bug reports and also translated some DEC-SRC Modula-2+ modules to Modula-3.

J�erôme Chailloux (ILOG) developed the X interfaces while visiting DEC-SRC. We also had numerous

discussions about the evolution of SRC Modula-3.

The \gatekeepers" (DEC-WRL), in particular Paul Vixie, helped with the distribution of SRC Modula-3.

David Goldberg (XEROX PARC) ported SRC Modula-3 to the SPARC machines.

Ray Lischner ported the system to the APOLLO machines.

Richard Orgass (IBM Rochester) ported the system to the IBM machines.

Piet van Oostrum (Utrecht University) ported the system to the HP series 9000/300 computers running

HP/UX 7.0.

Pat Lashley (KLA Instruments) contributed the lexer for pps.

R�egis Crelier (ETH) designed and implemented the pickles modules while he was a summer intern at SRC.

Mick Jordan (DEC-SRC) provided challenging programs to compile.

Norman Ramsey (Princeton University) has pushed the system into obscure corners and found many bugs

there.

R.J. Stroud and Dick Snow (University of Newcastle upon Tyne) provided the Encore Multimax port.

Dave Nichols (Xerox PARC) �xed and improved the pretty printer.

Greg Nelson and Mark Manasse (DEC-SRC) designed and implemented the Trestle window system.

Sam Harbison contributed the fieldlist interface.

Steven Pemberton (CWI) wrote the enquire program and made it available to the community.

The vbtkit software has been designed and implemented by a large number of people at SRC: Andrew

Birrell,Ken Brooks, Marc H. Brown, Mark R. Brown, Pat Chan, Luca Cardelli, John DeTre-

ville, Steve Glassman,Mark Manasse, Jim Meehan,Greg Nelson, Jorge Stol�,Mary-Claire van

Leunen.

FormsVBT is due to Jim Meehan and Marc H. Brown (DEC-SRC).

Thanks also to all the people who used SRC Modula-3 and reported bugs.

The various ports would have been impossible without the work of a number of people, who kindly made

their modi�cations available. However, most of the bugs you may �nd in these ports were introduced during

the �nal integration of these modi�cations and we are to be blamed for them.

2

Chapter 2

License

SRC Modula-3 is distributed under the terms of this license:

SRC Modula-3 Non-commercial License

SRC Modula-3 is distributed by Digital Equipment Corporation (\DIGITAL"), a corporation of

the Commonwealth of Massachusetts. DIGITAL hereby grants to you a non-transferable, non-

exclusive, royalty free worldwide license to use, copy, modify, prepare integrated and derivative

works of and distribute SRC Modula-3 for non-commercial purposes, subject to your agreement

to the following terms and conditions:

� The SRC Modula-3 Non-commercial License shall be included in the code and must be

retained in all copies of SRC Modula-3 (full or partial; original, modi�ed, derivative, or

otherwise):

� You acquire no ownership right, title, or interest in SRCModula-3 except as provided herein.

� You agree to make available to DIGITAL all improvements, enhancements, extensions, and

modi�cations to SRC Modula-3 which are made by you or your sublicensees and distributed

to others and hereby grant to DIGITAL an irrevocable, fully paid, worldwide, and non-

exclusive license under your intellectual property rights, including patent and copyright, to

use and sublicense, without limititation, these modi�cations.

� SRC Modula-3 is a research work which is provided \as is", and DIGITAL dis-

claims all warranties with regard to this software, including all implied war-

ranties of merchantability and �tness of purpose. In no event shall DIGITAL

be liable for any special, direct, indirect, or consequential damages or any dam-

ages whatsoever resulting from loss of use, data or pro�ts, whether in an action

of contract, negligence or other tortious action, arising out of or in connection

with the use or performance of this software.

Copyright
c

 1990 Digital Equipment Corporation

All Rights Reserved

NOTICE: There is also a commercial license. By signing and returning it, further rights to use and distribute

SRC Modula-3 are granted. This license is in doc/agreement.ps.

3

Chapter 3

History

Version 2.0 implements the twelve language changes (i.e. generics, IEEE
oating point interfaces, ...)

that are included in [14]. Version stamp checking was moved into the m3 driver, which also supports -make

mode and generates enough type declarations to make debugging tolerable. The compiler internals were

rearranged and many bugs were removed. Better code is produced.

Version 1.6 �xes many bugs that have been reported. It also introduces the SUN3, UMAX and ARM archi-

tectures. Some Unix interfaces have been added or modi�ed (Usocket, Udir, Uexec, Uerror). The names in

the Rd and Wr interfaces are now more coherent. The new Pkl interface allow input/output of binary data

structures. The runtime has been rewritten to be mostly in Modula-3; this allows for clean interfaces to the

runtime; some limitations have been removed (pro�ling; scheduling). The driver has been rewritten, so as

to support shared libraries (on IBMR2, by default); the syntax of some options has changed.

Version 1.5 supports �ve new architectures (AP300, AIX386, IBMR2, IBMRT and HP300). The driver has

been modi�ed to improve portability of user systems. The SRC Modula-3 libraries have been reorganized,

and of course known bugs have been �xed. New demonstration programs and games are included.

Version 1.4 is the second public release of SRC Modula-3. It uses the new features of version 1.3 and was

alpha-tested by several SRC clients. This version added <*UNUSED*> and <*OBSOLETE*> pragmas, simpli�ed

coverage pro�ling by having the compiler directly generate the counters, reduced the number of #line

directives in the generated C, added \map" procedures so that the garbage collector can e�ciently locate

global references, packed enumerations into smaller C types, and �xed several bugs.

Version 1.3 is for internal use only. This version serves to snapshot the massive editing that has taken

place since 1.2. This version �xed the variable renaming problems, made TEXT a REF ARRAY OF CHAR,

converted the text implementation to Modula-3, passed nested procedures as closures, used C initialization

where possible for constants and variables, added warning messages, and �xed many bugs.

Version 1.2 Thanks to the new technology introduced in 1.1, porting the compiler to other machines is

much easier. We have ported it to DECstation 3100 running Ultrix 3.1. A few bugs have been �xed. The

driver processes the options -D and -B in a slightly di�erent way.

The installation procedure is new, and we no longer furnish executables as the intermediate C �les are present

on the release. Because the intermediate C �les vary according to the target machine, there are separate

4

tar �les for each of the supported machines. However, each distribution contains all of the sources; only the

intermediate C �les di�er.

Version 1.1 This version is for internal use only. The main di�erence with Version 1.0 is the use of RCS

and the use of imake rather than the standard make.

Version 1.0 This version is the �rst public release of the SRC Modula-3 system. It contains a Modula-3

compiler and runtime, a core library, a coverage analyzer, a dependency checker, a Modula-3 pretty printer,

and a small test suite of Modula-3 programs. The compiler generates C as an intermediate code.

It is known to run on VAX Ultrix 3.1. We have not tested the software in any other con�gurations. The

software may function correctly on other versions of Ultrix, and if recompiled, may even work on other

machines.

5

Chapter 4

Installation

This chapter describes how to get and install the SRC Modula-3 system.

4.1 What is available

SRC Modula-3 is distributed via anonymous ftp from gatekeeper.dec.com. The distribution is in a set

of compressed tar �les in the directory named pub/DEC/Modula-3/release. The �les are of the form

archive-version.tar.Z; in the rest of the chapter, we will speak of the archive archive and forget the version

numbers.

The archives boot.architecture are used to build and install m3make, a driver and a compiler. These programs

are built from intermediate C �les that are architecture speci�c; you need to get the archive(s) corresponding

to the architecture(s) on which you want to install SRC Modula-3. The supported architectures are:

architecture Hardware Operating system Build Install

disk cpu (usr+sys)

(KB) (min) (KB)

AIX386 AIX/PS2

AP3000 Apollo DN4500 Domain/OS 10.2

ARM Acorn R260 RISC iX 1.21

DS3100 DECstation 5000/200 Ultrix 4.2 23170 8 + 7 2758

HP300 HP 9000/300 HP-UX 7.0

IBMR2 IBM RISC System/6000 AIX 3.1

IBMRT IBM RT IBM/4.3 (AOS 4.3)

NEXT NeXT

SPARC Sparcstation-1 SunOS 4.1.x

SUN3 Sun 3/? SunOS ?

UMAX Encore Multimax UMAX 4.3 (R4.1.1)

VAX VAX 8800 Ultrix 4.2

Each of these archives is about 4000 kilobytes. The column \Build" indicates the resources you need to build

the two programs: \disk" is the amount of disk space (in kilobytes), \cpu" is the amount of user and system

cpu time (in minutes). The column \Install" indicates the amount of disk space that will be permanently

used after the installation is done.

The other archives contain Modula-3 source �les for various libraries and programs.

6

File Build Install Contents

Name Size disk cpu (usr+sys)

(KB) (KB) (min) (KB)

bicycle 45 bitmaps of cards for games, needs trestle

compiler 408 11255 12 + 5 0 compiler sources

data 28 2693 2 + 1 856 some generic container types

demos 74 10446 4 + 1 0 a few demo programs, needs trestle and bicycle

driver 77 0 driver sources

doc 424 the documentation for SRC Modula-3

dpskit 112 binding interfaces to Display PostScript

dpsapps 12 applications using Display PostScript

formsvbt 112 FormsVBT, needs vbtkit

libm3 2160 20374 8 + 4 5742 base library

m3make 68 0 make for Modula-3

tcl 696 binding interface to Tcl

tests 472 0 \validation" tests

tools 272 1746 1 + 0 548 development tools, need trestle

trestle 2400 13245 14 + 3 4048 Trestle window system, needs X11R4

vbtkit 416 More VBTs, needs trestle

vbtapps 248 FormsVBT applications, needs formsvbt

X11R4 128 2906 4 + 1 1057 binding interfaces to the X11R4 libraries

The column \File Size" is the size (in kilobytes) of the compressed tar �le. The colum \Build" indicates

the resources you need to build and install these pieces of sources: \disk" is the amount of disk space (in

kilobytes), \cpu" is the amount of user and system cpu time (in minutes). The column \Install" indicates

the amount of disk space that will be permanently used after the installation is done; if you want to keep

the sources around, you will need more space. These time and sizes have been measured on a DECstation

5000/200 running Ultrix 4.2; other architectures may have di�erent requirements.

You need to build and install libm3 to have a useful system, but all the other pieces are optional.

The m3make and doc archives are also contained in the boot archives.

Large archives are available in one piece (foo.tar.Z) as well as in pieces of 512 KB each (foo.tar.Z-01 and

so on). If your connection to gatekeeper is slow, you may want to get the smaller pieces and reassemble

them in a one piece archive at your site (using cat for example).

4.2 Getting SRC Modula-3

In the following, $ is the shell prompt and ftp> is the ftp prompt. To get SRC Modula-3:

1. Make sure that you have enough disk space using the tables above.

2. Create a fresh directory for the software and go there. Path names below are relative to that directory,

and it will be called the top-level directory:

$ mkdir top-level

$ cd top-level

3. Open an ftp connection with gatekeeper.dec.com [16.1.0.2]; give anonymous for the name and your

login id for the password:

7

$ ftp gatekeeper.dec.com

Connected to gatekeeper.dec.com.

...

Name (gatekeeper.dec.com): anonymous

Password (gatekeeper.dec.com:anonymous): your name@your machine

...

4. Change to the proper directory:

ftp> cd pub/DEC/Modula-3/release

5. Set the transmission type to binary:

ftp> type binary

6. Get the distribution bootstrap:

ftp> get boot.architecture-version.tar.Z

7. Get libm3 along with any other Modula-3 sources that you want:

ftp> get libm3-version.tar.Z

ftp> get ...

8. Close the connection:

ftp> quit

9. Uncompress and extract the �les:

$ zcat boot.architecture-*.tar.Z | tar xpof -

$ zcat libm3-*.tar.Z | tar xpof -

$...

The tar arguments specify the following options:

x extract the �les from the tar �le to the current directory

p restore �les to their original modes

o override the original ownership, this makes you the owner of the

�les

f use the following argument (e.g -) as the input �le; - as the input

�le means stdin

You can add the v option to see what is going on.

10. At this point you may delete the archives to save space (the disk requirements indicated above assume

that you do delete these �les):

$ rm *.tar.Z

8

4.3 Installation procedure

1. Create a description of your system, m3make/architecture/config, using the �le m3make/model-configs/architecture

as a model.

2. Build and install the m3make system:

$ (cd m3make/architecture; make -f ../src/Makefile all install)

You may need to tell your shell that new executables (m3make) are present after the install step, using

rehash, for example.

3. You may want to change chapter 7 of this document to describe your installation (see that chapter to

know how to proceed).

4. Build and install SRC Modula-3:

$ m3make -f m3makefile.boot all install

This moves the driver, the compiler and some other �les to the directories speci�ed in m3make/architecture/config.

Again, you may need to tell your shell that new executables (m3) are present, using rehash, for example.

5. At this point, you should have successfully installed the Modula-3 compiler and driver. To check, type

$ m3 -\?

The driver should list its con�guration options.

6. You can now delete the bootstrap directories to conserve space:

$ rm -f driver compiler

(Note: if you are doing a port, don't do that!)

7. Build and install the other libraries and tools. For each of the archives of Modula-3 source that you

copied, starting with libm3:

$ m3make -f m3makefile.libm3 all install

$ m3make -f m3makefile.archive all install

These libraries and tools will be built using the installed system and should help detecting problems

in the installation. Note that the compiler, driver, doc and m3make packages shouldn't need to be

recompiled, they are the same Modula-3 source that produced the C code for bootstrap.

4.4 Running the tests

SRC Modula-3 includes a collection of test programs. While these programs are intended to help the

developers of SRC Modula-3, you may want to look at them or run them. The tests are available in the

archive tests. If you're interested, see the README �le at the top-level of that archive.

9

Chapter 5

How to use the system

This section describes each of the tools in the SRC Modula-3 distribution and how to use them. Brie
y, the

tools include a compiler, a linker, a pretty printer, and a line-based pro�ler. See also chapter 7 for tools and

hints that are local to your installation.

5.1 Compiling

To compile a Modula-3 program, invoke m3(1). This driver is much in the style of cc(1); the output is an

object �le or an executable program, according to the options.

m3 parses the command line and invokes the compiler and linker as required. m3 tells the compiler where

to seek imported interfaces and where to �nd the Modula-3 runtime library. Arguments ending in .m3 or

.i3 are assumed to name Modula-3 source �les to be compiled. Arguments ending in .mo, .io or .o are

assumed to name object �les, possibly created by other language processors, that are to be linked with the

object �les created by m3. Arguments ending in .mc, .ic, or .c are assumed to name C source �les to be

compiled. Arguments ending in .ms, .is, or .s are assumed to name assembly language �les to be translated

into object �les by the assembler. Arguments starting with - specify compiler options. Other arguments are

assumed to name library �les, and are simply passed along to the linker.

The source for a module named M is normally in a �le named M.m3. The source for an interface named I

must be in a �le named I.i3. The main program is the module that implements the interface Main.

There are options to compile without linking, stop compiling after producing C, emit debugger symbols,

generate pro�ling hooks, retain intermediate �les, override search paths, select non-standard executables for

the various passes, and pass arguments to individual passes. For the full details, see the m3(1) man page.

In a source �le, an occurrence of IMPORT Mumble causes the compiler to seek an interface named Mumble.

The compiler will step through a sequence of directories looking for the �le Mumble.i3. It will parse the

�rst such �le that it �nds, which is expected to contain an interface named Mumble. If no �le Mumble.i3

exists, or if the parse fails, the compiler will generate an error. The particular sequence of directories to be

searched is determined by the options passed to m3. See the m3(1) manual page for full details.

5.2 An example

Here's a simple program composed of a main module, an imported interface and its implementation.

In the �le Main.m3:

10

MODULE Main;

IMPORT A;

BEGIN

A.DoIt ();

END Main.

In the �le A.i3:

INTERFACE A;

PROCEDURE DoIt ();

END A.

In the �le A.m3:

MODULE A;

IMPORT Wr, Stdio;

PROCEDURE DoIt () =

BEGIN

Wr.PutText (Stdio.stdout, "Hello world.\n");

Wr.Close (Stdio.stdout);

END DoIt;

BEGIN

END A.

If SRC Modula-3 is installed correctly, the command

m3 -make -why -o hello Main.m3 A.m3 A.i3

will compile the three compilation units and link them with the standard libraries. The result will be left in

the executable �le named hello.

5.3 Make�les

Once installed, SRC Modula-3 provides m3make, a slightly enhanced version of plain make. The primary

bene�t provided by m3make is that the operational description found in most makefiles is replaced by a

more declarative one. The result is that makefiles are smaller, simpler, and more portable. You're not

required to use m3make, but we believe you will like it.

The m3makefile for the example above would be:

implementation (Main)

module (A)

program (hello)

See the m3make manpage for full details.

5.4 Language restrictions

With a few exceptions, SRC Modula-3 implements the Modula-3 language as de�ned in \Systems Program-

ming with Modula-3" ([14]).

11

Arithmetic checking.

SRC Modula-3 does not generate any special checking for integer arithmetic over
ow or under
ow. You get

whatever checking your C compiler gives you. We decided that the runtime checking was too expensive in a

compiler that was constrained to produce C. Depending on your machine, the FloatMode interface may be

used to control
oating point exceptions.

Packed types.

Packed types are restricted. BITS n FOR T is treated as T everywhere except when applied to a �eld in a

record. In that case, the �eld is implemented by a bit�eld of width n in a C struct. Otherwise, a Modula-3

�eld is implemented as a member of a C struct. Consequently, Modula-3 types that would require the C

�eld to span word boundaries are not accepted by SRC Modula-3.

Stack over
ow checking.

SRC Modula-3 does not reliably detect thread stack over
ows. Stacks are only checked for over
ow on proce-

dure entry. No checking is done on external procedures. Thread stacks are allocated in �xed size chunks. The

required Thread interface has been augmented with the SizedClosure type to allow arbitrary sized stacks.

The default size can be adjusted with Thread.MinDefaultStackSize and Thread.IncDefaultStackSize.

Exception semantics.

SRC Modula-3 uses C's setjmp/longjmp mechanism to unwind the stack when raising an exception. A

problem can occur: assignments may appear to be undone. For example, consider

TRY

i := 3;

P ();

EXCEPT E:

j := i;

END;

where P raises exception E. The compiler generates a setjmp at the beginning of the try statement. If the C

compiler allocates variable i to a register, the assignment of 3 may be lost during the longjmp and branch

that gets to the handler.

Method constants.

The language de�nition says that if T is an object type and m one of its methods, T.m denotes the procedure

value that implements that method and that this value is a constant. In SRC Modula-3, T.m denotes the

correct procedure constant, but since the compiler generates runtime code to locate the method, some uses

of the constant that the C compiler must resolve at link time will cause C errors. For example,

CONST P = T.m; BEGIN P (...) ...

will work, since no initialized C storage is allocated for P. But the following generates initialized storage and

will fail

CONST X = ARRAY [0..2] OF Proc { T.m, ..};

12

Similarly, although Modula-3 allows it, the following cannot be evaluated at compile time

CONST X = (T.m = MyProcedure);

5.5 Pragmas

SRC Modula-3 recognizes the pragmas described below.

<*EXTERNAL*>

The pragma <*EXTERNAL N:L*> may precede an interface or a procedure or variable declaration in an

interface. It asserts that the following entity is named \N" and implemented in language \L". If \N" is

omitted, the external name is the Modula-3 name. The default and only recognized value for \L" is C. The

\:" is only required when specifying \L". \N" and \L" may be Modula-3 identi�ers or string literals.

The names of external procedures and variables are passed through to the C compiler unchanged. The types

of external variables, the types of formal parameters, the types of results, and the raises clauses of external

procedures are all assumed to be correct and are not checked against their external implementation. Standard

calling conventions are used when calling external procedures.

Beginning an interface with <*EXTERNAL*> declares all of the procedures and variables in that interface

external.

For example:

<*EXTERNAL*> INTERFACE OS;

VAR errno: INTEGER;

PROCEDURE exit (i: INTEGER);

END OS.

allows importers of OS to access the standard UNIX symbols errno and exit through the names OS.errno

and OS.exit respectively.

Alternatively, the following interface provides access to the same two symbols, but uses a more conventional

Modula-3 name for the procedure:

INTERFACE OS;

<*EXTERNAL errno:C *> VAR errno: INTEGER;

<*EXTERNAL exit:C *> PROCEDURE Exit (i: INTEGER);

END OS.

If several variables are declared within a single <*EXTERNAL*> VAR declaration, they are all assumed to be

external.

The external pragma may optionally specify a name di�erent from the Modula-3 name. For example:

INTERFACE Xt;

<*EXTERNAL "_XtCheckSubclassFlag" *>

PROCEDURE CheckSubclassFlag (...);

...

de�nes a procedure named Xt.CheckSubclassFlag in Modula-3 and named _XtCheckSubclassFlag in the

generated C.

13

<*INLINE*>

The pragma <*INLINE*> may precede a procedure declaration. The pragma is allowed in interfaces and

modules. SRC Modula-3 recognizes but ignores this pragma.

For example:

INTERFACE X;

<*INLINE*> PROCEDURE P (i: INTEGER);

<*INLINE*> PROCEDURE Q ();

END X.

declares X.P and X.Q to be inlined procedures.

<*ASSERT*>

The pragma <*ASSERT expr*> may appear anywhere a statement may appear. It is a static error if \expr"

is not of type BOOLEAN. At runtime \expr" is evaluated. It is a checked runtime error if the result is FALSE.

Assertion checking can be disabled with the -a compiler switch.

<*TRACE*>

The pragma <*TRACE expr*> may appear at the end of any variable or formal declaration. This pragma will

generate tracing calls whenever the declared variable is modi�ed.

The \expr" must evaluate to a procedure of two arguments. The �rst argument is the name of the traced

variable, a TEXT. The second argument is the traced variable. Note that any of the formal passing modes

may be used with the second argument.

For example:

MODULE M;

VAR x: Foo <*TRACE MyTrace.FooChanged*>;

will cause

MyTrace.FooChanged ("M.x", x)

to be generated after each statement that modi�es x. Variable aliasing is not tracked, so

WITH alias = x DO INC(alias) END

will not generate any tracing.

The pieces of Modula-3 grammar a�ected by <*TRACE expr*> are:

VariableDecl = IdList (":" Type & ":=" Expr) V_TRACE.

Formal = [Mode] IdList (":" Type & ":=" ConstExpr) V_TRACE.

ForSt = FOR Id V_TRACE ":=" Expr TO Expr [BY Expr] DO S END.

Handler = QualId {"," QualId} ["(" Id V_TRACE ")"] "=>" S.

TCase = Type {"," Type} ["(" Id V_TRACE ")"] "=>" S.

Binding = Id V_TRACE "=" Expr.

V_TRACE = ["<*" TRACE Expr "*>"].

14

The pragma <*TRACE stmt-list*>may appear immediately after any BEGIN. The speci�ed \stmt-list" will be

inserted after each statement of the block started by the BEGIN. For example:

BEGIN <* TRACE INC(cnt); MyTrace(cnt) *>

i := j;

j := i;

END;

will generate INC(cnt); MyTrace(cnt) after each of the assignment statements.

<*FATAL*>

The pragma <*FATAL id-list*>may appear anywhere a declaration may appear. It asserts that the exceptions

named in \id-list" may be raised, but unhandled in the containing scope. If they are, it's fatal and the

program should crash. E�ectively, the <*FATAL*> pragma disables a speci�c set of \potentially unhandled

exception" warnings. If \id-list" is ANY, the pragma applies to all exceptions. The e�ects of the <*FATAL*>

pragma are limited to its containing scope | they cannot be imported from interfaces.

For example:

EXCEPTION InternalError;

<*FATAL InternalError*>

at the top-level of a module M means that no warnings will be generated for procedures in M that raise but

don't list InternalError in their RAISES clauses.

Similarly,

PROCEDURE X() RAISES {} =

BEGIN

...

<*FATAL ANY*> BEGIN

List.Walk (list, proc);

END;

...

END X;

speci�es that although X raises no exceptions and List.Walk may, no warnings should be generated.

<*UNUSED*>

The pragma <*UNUSED*> may precede any declaration. It asserts that the entity in the following declaration

is not used and no warnings should be generated.

For example, the procedures that implement the default methods for an object may not need all of the actual

parameters:

PROCEDURE DefaultClose (<*UNUSED*> wr: Wr.T) =

BEGIN (* do nothing *) END DefaultClose;

15

<*OBSOLETE*>

The pragma <*OBSOLETE*>may precede any declaration (e.g. <*OBSOLETE*> PROCEDURE P ();). A warning

is emitted in any module that references an obsolete symbol. This feature is used to warn clients of an evolving

interface that they are using features that will disappear in the future.

<*NOWARN*>

The pragma <*NOWARN*> may appear anywhere. It prevents warning messages from being issued for the line

containing the pragma. It is probably better to use this pragma in a few places and enable all warnings with

the -w1 switch than to ignore all warnings.

<*LINE*>

For the bene�t of preprocessors that generate Modula-3 programs, the compiler recognizes a <*LINE ... *>

pragma, in two forms:

<*LINE number filename *>

<*LINE number *>

where number is an integer literal and filename is a text literal. This pragma causes the compiler to

believe, for purposes of error messages and debugging, that the line number of the following source line is

number and that the current input �le is filename. If filename is omitted, it is assumed to be unchanged.

<*LINE ... *> may appear between any two Modula-3 tokens; it applies to the source line following the

line on which it appears. Here's an example: <*LINE 32 "SourceLoc.nw" *>.

<*PRAGMA*>

The pragma <*PRAGMA id-list*>may appear anywhere. It noti�es the compiler that pragmas beginning with

the identi�ers in \id-list" may occur in this compilation unit. Since the compiler is free to ignore any pragma,

the real e�ect of <*PRAGMA*> is to tell the compiler that pragmas it doesn't implement are coming, but they

shouldn't cause \unrecognized pragma" warnings.

5.6 Linking

SRC Modula-3 requires a special two-phase linker. You must link Modula-3 programs with m3.

The �rst phase of the linker checks that all version stamps are consistent, generates
at struct* declarations

for all opaque and object types, and builds the initialization code from the collection of objects to be linked.

The second phases calls ld to actually link the program.

The information needed by the �rst phase is generated by the compiler in �les ending in .ix and .mx.

Libraries containing Modula-3 code must be created using m3 -a. m3 will combine the .ix and .mx �les

for the objects in the library into a new �le ending in .ax. The .ix, .mx, and .ax �les must reside in the

same directory as their corresponding .io, .mo and .a �les. If m3 encounters a library without a .ax �le, it

assumes that the library contains no Modula-3 code.

For every symbol X.Z exported or imported by a module, the compiler generates a version stamp. These

stamps are used to ensure that all modules linked into a single program agree on the type of X.Z. The linker

will refuse to link programs with inconsistent version stamps.

16

5.7 Runtime arguments

Command line arguments given to Modula-3 programs are divided in two groups. Those that start with

the characters @M3 are reserved for the Modula-3 runtime and are accessible via the RTParams interface (we

call those the runtime parameters). The others are accessible via the Params, ParseParams, and RTArgs

interfaces (these are the program arguments).

Three runtime parameters are recognized today; others are simply ignored.

� @M3nogc turns the garbage collector o�.

� @M3showheap=name activates the logging of heap allocation and garbage collection events. The program

forks a process running the name program, and sends it these events as they occur. If =name is

ommitted, the showheap program is forked (it is part of the tools archive); this program displays the

status of the heap pages. See its man page for more details.

� @M3showthread=name activates the logging of thread switching events. The program forks a process

running the name program, and sends it these events as they occur. If =name is ommitted, the

showthread program is forked (it is part of the tools archive); this program displays the status of the

various threads. See its man page for more details.

5.8 Garbage Collection

A crucial fact for clients of the garbage collector to know is that objects in the heap move. If all references

to a traced heap object are from other traced heap objects, the collector may move the referent. Hence, it

is a bad idea to hash pointer values. References from the stack or untraced heap into the traced heap are

never modi�ed.

5.9 Debugging

Since an intermediate step of the Modula-3 compiler is to produce C code, you may use any debugger for

which your C compiler can produce debugging information; in most cases, this means dbx or gdb.

However, this mechanism has limitations: the C compiler generates source-level information that relates the

executable program to the intermediate C code, not to the Modula-3 source code. We attempted to re
ect

as much as possible of the source-level Modula-3 information into the intermediate C code. But there are

still some shortcomings that you should know about.

Names

Global names (i.e. top-level procedures, constants, types, variables, and exceptions) are pre�xed by their

module's name and two underscores. For example, in an interface or module named X, the C name of a

top-level procedure P would be X__P. Note, there are two underscores between X and P.

Local names (e.g. of local variables and formal parameters) are preserved.

The compiler will issue a warning and append an underscore to any Modula-3 name that is a C reserved

word.

17

Types

Modula-3 is based on structural type equivalence, C is not. For this reason, the compiler maps all structurally

equivalent Modula-3 types into a single C type. These C types have meaningless names like _t1fc3a882.

The Modula-3 type names are equated to their corresponding C type. Unfortunately variables are declared

with the C type names. So, if you ask your debugger \what is the type of v?", it will most likely answer,

_t13e82b97". But, if you ask \what is _t13e82b97?" it will most likely give you a useful type description.

The table 5.1 indicates the C types corresponding to Modula-3 types.

Despite the fact that the compiler turns all object references into char*, the linker generates useful type

declarations. These declarations are available under the type's global name. For example, to print an object

o of type Wr.T, type print *(Wr__T)o. Note that if o was really a subtype of Wr.T, say TextWr.T, then you

must use print *(TextWr__T)o to see the additional �elds. If the same type appears with two names in a

program, the linker arbitrarily picks one.

To print the null terminated string in a variable of type TEXT (or Text.T) named txt, type print *(char**)txt.

If you don't know the type of a traced reference, you may be able to use the runtime information to

discover it. Given a reference r, print *(_refHeader*)(((char*)r)-4) will print its typecode x, and

print *_types[x] will print the corresponding typecell. A typecell includes a type's Modula-3 name as a

C string (typecell.name). If the type doesn't have a Modula-3 name, its internal is the concatenation of

_t" and typecell.selfID in hex.

File names and line numbers

Due to liberal use of the #line mechanism of C, the Modula-3 �le names and line numbers are preserved.

Your debugger should give you the right names and line numbers and display the correct Modula-3 source

code (if it includes facilities to display source code).

Note that uses of the <*LINE*> pragma are propagated into the intermediate C code.

Debugger quirks

Most debuggers have a few quirks. dbx is no exception. We've found that having a .dbxinit �le in your

home directory with the following contents prevents many surprises:

ignore SIGVTALRM

set $casesense = 1

The �rst line tells dbx to ignore virtual timer signals. They are used by the Modula-3 runtime to trigger

thread preemptions. The second line tells dbx that your input is case sensitive.

Procedures

Modula-3 procedures are mapped as closely as possible into C procedures. Two di�erences exist: \large"

results and nested procedures.

First, procedures that return structured values (i.e. records, arrays or sets) take an extra parameter. The

last parameter is a pointer to the memory that will receive the returned result. This parameter was necessary

because some C compilers return structured results by momentarily copying them into global memory. The

global memory scheme works �ne until it's preempted by the Modula-3 thread scheduler.

18

Modula-3 C

enumeration unsigned char, unsigned short or unsigned int depending on the num-

ber of elements in the enumeration.

INTEGER int

subrange char, short or int, possibly unsigned, depending on the base type of the

subrange. Subranges of enumerations are implemented by the same type as

the full enumeration. Subranges of INTEGER are implemented by the smallest

type containing the range. For example, the type [0..255] is mapped to

unsigned char and [-1000..1000] is mapped to short.

REAL float

LONGREAL double

EXTENDED double

ARRAY I OF T struct { tT elts[n] }, where tT is the C type of T and n is NUMBER(I).

ARRAY

n

OF T struct f tT � elts; int size[n] g, where tT is the C type of T and elts

is a pointer to the �rst element of the array.

RECORD ... END struct{ ... } with the same collection of �elds as the original record.

BITS n FOR T Usually tT where tT is the the C type of T. When T is an ordinal type and

the packed type occurs within a record, it generates a C bit �eld.

SET OF T struct { int elts[n] } where n is dNUMBER (T)=sizeof(int)e.

REF T

UNTRACED REF T

tT* where tT is the C type of T.

OBJECT ... END ADDRESS, a typedef for char* or void* (depending on the system) de�ned

in M3Machine.h. Each use of an object reference is cast into a pointer of the

appropriate type at the point of use.

PROCEDURE (): T Usually tT *(proc)() where tT is the C type of T. If T is a record or array,

an extra VAR parameter is passed to the procedure which it uses to store the

return result.

Table 5.1: Type implementations

19

Second, nested procedures are passed an extra parameter. The �rst parameter to a nested procedure is a

pointer to the local variables of the enclosing block. To call a nested procedure from the debugger, pass the

address of the enclosing procedure's local variable named frame.

When a nested procedure is passed as a parameter, the address of the corresponding C procedure and its

extra parameter are packaged into a small closure record. The address of this record is actually passed. Any

call through a formal procedure parameter �rst checks to see whether the parameter is a closure or not and

then makes the appropriate call. Likewise, assignments of formal procedure parameters to variables perform

runtime checks for closures.

<*EXTERNAL*> procedures have no extra parameters. except if they return large results??

Threads

There is no support for debugging threads. That is, there is no mechanism to force the debugger to examine

a thread other than the one currently executing. Usually you can get into another thread by setting a

breakpoint that it will hit. There is no mechanism to run a single thread while keeping all others stopped.

If your debugger allows you to call procedures in a stopped program, as both dbx and gdb do, then

print Thread__DumpEverybody() will produce a table listing the status of all threads.

5.10 Thread scheduling

This version of SRC Modula-3 has a more
exible scheduling algorithm than the previous versions. Here is

a rough explanation of its behaviour.

All threads are kept in a circular list. This list is modi�ed only when new threads are created or when

threads exit; that is, the relative order of threads in this list is never modi�ed.

When the scheduler comes into action, the list of threads is scanned starting with the thread following the

one currently running, until a thread that can execute is found:

� if it was preempted by the scheduler, it can execute

� if it is waiting for a condition or a mutex that is still held, it cannot execute

� if it has blocked because of a call to Time.Pause (or a similar procedure), it can execute i� the timeout

is now expired

� if it has blocked because of a call to RTScheduler.IOSelect (or a similar procedure), it can execute

i� the timeout is now expired or a polling select(2) returns a non-zero value.

If such a thread is found, it becomes active.

If no thread can execute, and there are no threads blocked in a Time.Pause or a RTScheduler.IOSelect, a

deadlock situation is detected and reported. Otherwise, a combination of the �le descriptors sets (OR of all

the �le descriptors sets) and timeouts (MIN of all the timeouts) is formed, select(2) is called with those

arguments and the whole process of searching for an executable thread is redone. This ensure that the Unix

process does not consume CPU resources while waiting.

The scheduler is activated when the running thread tries to acquire a mutex which is locked, waits for a

condition, calls Time.Pause (or a similar procedure) with a future time, calls RTScheduler.IOSelect (or a

similar procedure) with a non-zero valued timeout and no �les are ready at the time of the call, or the time

allocated to the thread has expired (preemption).

20

Preemption is implemented using the Unix virtual interval timer. RTScheduler.SetSwitchingInterval

can be used to change the interval between preemptions. SRC Modula-3 no longer uses the real time interval

timer nor the pro�ling interval timer for thread scheduling; these are available to the program.

Because of the preemption implementation, Unix kernel calls will block the process (i.e. the Unix process

sleeps even though some threads could run). However, Time.Pause and RTScheduler.IOSelect provide

functional equivalents of sigpause(2) and select(2) that do not cause the process to block.

5.11 Pro�ling

In addition to the usual pro�ling tools (e.g. see prof(1), gprof(1) and pixie(1)), SRC Modula-3 provides

support for line-based pro�ling.

To enable collection of data during the execution of programs, give the -Z option to the m3 command for

the compilation of the modules you want to examine and also for the linking of the program. To interpret

the result, run analyze_coverage(1).

Note that because of the extensive data collection performed by this mode of pro�ling, the execution time

of the program can be signi�cantly larger when it is enabled; thus, simultaneous time pro�ling can produce

erroneous results. For the same reason, the pro�ling data �le is rather large; furthermore, as it is augmented

by each execution of the program, you maywant to compress it from time to time (see analyze_coverage(1)

for more details).

5.12 Pretty printing

SRC Modula-3 includes a pretty-printer for Modula-3 programs. It is accessible as m3pp(1). Read its man

page to �nd out how to use it.

5.13 Gnuemacs support

There is a mode to edit Modula-3 programs. To use it, you need to put in your .emacs �le the following

lines:

(autoload 'modula-3-mode "modula3")

(setq auto-mode-alist

(append '(("\\.ig$" . modula-3-mode)

("\\.mg$" . modula-3-mode)

("\\.i3$" . modula-3-mode)

("\\.m3$" . modula-3-mode))

auto-mode-alist))

Your system administrator may have inserted these lines in the default macro �les for your system.

There is also a program to build tags �le for Modula-3 programs: m3tags; see the manpage for the details.

When the system is installed, a tag �le for the public interfaces is built. To access it, you need in your

.emacs (or in the system initialization �le) the line:

(visit-tags-table "LIB_USE/FTAGS")

where LIB_USE is the place where the Modula-3 libraries have been installed.

21

5.14 Keeping in touch

comp.lang.modula3 is a Usenet newsgroup devoted to Modula-3. There you will �nd discussions on the

language and how to use it, annoucements of releases (both of SRC Modula-3 and of other systems). Since

not everybody has access to Usenet, we also maintain a relay mailing list, to which we resend the articles

appearing in comp.lang.modula3. To be added to this list, send a message to m3-request@src.dec.com.

You may post articles to comp.lang.modula3 by sending them to m3@src.dec.com.

Reporting bugs. We prefer that you send bug reports to m3-request@src.dec.com. After we have

reviewed your report, we may post an article in comp.lang.modula3, describing the bug and a workaround

or a �x.

Needless to say, this implementation probably has many bugs. We are quite happy to receive bug reports.

We can't promise to �x them, but we will try. When reporting a bug, please send us a short program that

demonstrates the problem.

22

Chapter 6

The libraries

SRC Modula-3 includes a large set of libraries, described in this chapter. It is intended that the interfaces

within the library be complete and self documenting.

The library foo is in the �les LIB/libfoo.a and LIB/libfoo.ax, and the interfaces that are implemented

by this library are in the directory PUB; LIB and PUB depend on your local con�guration, see chapter 7 for

the values of these parameters (by default, they are /usr/local/lib/m3 and /usr/local/include/m3).

Normally, the m3 driver knows the location of the public interfaces and archives. You just need to pass the

-lfoo option to m3 to link with the library foo. Also, the driver automatically links with the m3 library.

The key to makingModula-3 successful requires designing, building and sharing libraries. You are encouraged

to send us useful modules or programs and we will include them in the next release as contributed software.

You can also announce the availability of your work on comp.lang.modula3.

Your system may have additional libraries; see chapter 7 or ask your system administrator.

6.1 The m3 library

The m3 library contains some basic interfaces and modules. This library is always included when linking

Modula-3 programs, and its interfaces are accessible using the default search path.

Conversion of representation:

Convert Basic binary/ASCII conversion of numbers

Fmt Formatting to Text.T

Scan Parsing from Text.T

Input/output is achieved using readers and writers:

23

Rd Basic operations on readers

UnsafeRd Faster version for non-concurrent access

RdClass To implement new classes of readers

Wr Basic operations on writers

UnsafeWr Faster version for non-concurrent access

WrClass To implement new classes of writers

TextRd Readers that are connected to Text.Ts

TextWr Writers that are connected to Text.Ts

Stdio Readers and writers for standard �les

FileStream Readers and writers connected to named �les

UFileRdWr Readers and writers connected to �le descriptors

Higher-level input/output:

AutoFlushWr bu�ered writers that
ush automatically

Pkl reading and writing binary data structures

There is also a very primitive equivalent of stdio, which is needed by the low-levels of the runtime: SmallIO.

Fingerprints (64 bits CRC's are built using polynomial arithmetic:

FPrint Compute the �ngerprint of a Text.T

PolyBasis support for FPrint

Poly support for FPrint

There is a set of interfaces to provide standard access to and operations on basic types: Char, Boolean,

Cardinal, Integer, Real, LongReal, Address, Refany, Root, and Cast.

The m3 library has a few basic data structures:

List Lists of REFANYs

IntTable Tables of INTEGERs

RefTable Tables of REFANYs

STable Sorted tables, implemented by 2-3-4 trees

SIntTable STable applied to INTEGER

STextTable STable applied to Text.T

There is a set of interfaces that give access to the ANSI-C libraries. This collection is under construction.

M3toC support for Modula-3/C communication

Ctypes C-like names for types

Cstdarg obsolete

Cstdlib stdlib.h

Cstring string.h

There is a set of interfaces that give access to the runtime system. The Rep interfaces depend heavily on the

runtime implementation; other interfaces are more likely to be present (at least, similar functionalities) in

other systems.

24

RTException exception mechanism

RTMath basic math functions

RTLink program initialization

RTScheduler low-level access to the thread scheduler

RTType type manipulation

RTTypeRep more type manipulation

RTProc procedure manipulation

RTProcRep more procedure manipulation

RTHeap heap allocation and garbage collection

RTHeapRep additional control over the heap

RTMisc miscellaneous support functions; runtime errors

RTStack low-level thread stack allocation

RTThread low-level thread switching

There is a set of interfaces giving access to the Unix system. These interfaces are machine-dependent, but

we tried to use the same names in all versions to make programs easier to port. Thus, it should be no more

di�cult to port Modula-3 programs that use these interfaces than it is to port C programs.

In general, an interface regroups the de�nitions given by a system include �le and the related functions.

Eventually, all of sections 2 and 3 should be available. Currently, we have the following interfaces:

Utypes Declarations of types name (sys/types.h)

Uerror Declarations of error codes (errno.h)

Uipc Inter-process communication (sys/ipc.h)

Umsg Inter-process messages (sys/msg.h)

Unetdb Network database manipulation (netdb.h)

Uprocess Process ids

Uresource Resources utilization (sys/resource.h)

Usem Semaphores (sys/sem.h)

Ushm Shared memory (sys/shm.h)

Usignal Signals (signal.h)

Utime Time manipulation (sys/time.h)

Uugid User and group ids

Uutmp Login names (utmp.h)

Unix Other functions (not yet organized in separate interfaces)

Some math-oriented interfaces:

Math sin, cos and friends

Point 2-D integral points

Interval Open integral intervals

Axis horizontal/vertical

Rect 2-D integral rectangles

Transform 2-D transformations

Stat simple statistics

Finally, various interfaces, including the mandatory ones.

25

Main Main program interface

Text Character strings

TextF Reveals to our friends what a Text.T is

Thread Control of concurrency

ThreadF Additional control for our friends

Time Time manipulation

Word Unsigned integer manipulation

Random Random numbers

RandomPerm

RandomReal

UID Generate unique identi�ers

ParseParams Parsing of UNIX-style command lines

ParseShell Lower level support

Formatter Formatting of text, for example for pretty-printers

Filename File names manipulation

6.2 The data structures library

The library m3data provides generic data structures. The interfaces in that library are currently being

designed and the implementations need more testing. Your comments are welcome.

6.3 The X11R4 library

The library m3X11R4 contains binding interfaces for the X11R4 system. The interfaces are:

X11 Xlib-level functionalities

Xt X Toolkit Intrinsics

XtC

XtE

XtN

XtR

Xrm

Xmu

Xct

Xaw Athena Widget set

6.4 The Trestle library

The library m3ui contains the Trestle toolkit. It's a powerful set of tools for building windowing applications.

A full description of Trestle can be found in the \Trestle Reference Manual" [12].

6.5 The FormsVBT library

The library m3vbtkit adds another layer of window building tools. A full description of FormsVBT can be

found in \The FormsVBT Reference Manual" [5].

26

6.6 The TclTk library

Tcl is an embeddable tool command language. Tk is an X11 toolkit based on the Tcl language. Both have

been developed by John Ousterhout at UC Berkeley.

For an introduction to Tcl and Tk you may wish to read two papers: \Tcl: An Embeddable Command

Language", in the Proceedings of the 1990 Winter USENIX Conference, and \An X11 Toolkit Based on the

Tcl Language", in the Proceedings of the 1991 Winter USENIX Conference.

The library TclTk gives access to the Tcl and Tk libraries from Modula-3 programs, via the interfaces TclC

and TkC respectively.

27

Chapter 7

Local Guide

This chapter describes how SRC Modula-3 is installed at SRC, how to use it and how to contribute to it.

7.1 Your Environment

Find a DECstation (Pmax or 3max). Modula-3 runs on Vaxen, but almost nobody bothers. Modula-3

doesn't run on Alphas, yet.

Before you work in Modula-3, login and make sure that your home directory contains the �les listed below.

It's important that you have these �les in at least minimal working order. Beware! Getting everything

perfect can be a huge time sink.

.xsession Your .xsession �le is run �rst, it selects your windowmanager and gets your X server initialized.

After the comments, around line 38, there's a line that looks like:

set WINMGR = "tvtwm"

The window managers that are allowed are tvtwm, dxwm, and mwm. Today most people are using tvtwm.

Most window managers can be con�gured with a rc �le. I have a �le named .tvtwmrc that tvtwm

reads during startup. I don't know exactly what the �le does, nor what it could do. I suggest you copy

a version of the �le from a friend and read the tvtwm man page.

.login Your .login �le should begin by reading the system-de�ned .login �le using the shell command:

source /proj/local/lib/system.login

This command will work on all our machines (Fire
ies, VAX mainframes, DECstations). The �le

it refers to �gures out what kind of machine you are running on and sets your basic environment

accordingly. In particular, the programs m3, m3pp, m3make and their man pages should be on your

search paths.

Put your personal customizations after the source command given above.

.cshrc Similarly, your .cshrc �le should begin with the line

source /proj/mips/lib/system.cshrc

and conclude with your personal customizations.

28

.X11Startup Your .X11Startup �le is used to start a set of X applications each time you login. My

.X11Startup contains:

xmodmap /udir/kalsow/.xmodmaprc

xload -geometry 130x70-0+135 &

xclock -geometry 130x130-0+0 &

xterm -iconic -geometry "80x55" &

xterm -iconic -geometry "80x55" &

xmh -iconic -geometry "685x750" &

xrn -iconic -geometry "685x750" &

xmodmap is a program that can rede�ne the mapping of your keyboard. My .xmodmaprc �le �xes the

brain damaged DECstation keyboard so that the escape key is in the right place and the shift lock is

disabled. If you do nothing, the mystery key labelled \F11" is your escape key. Here's my .xmodmaprc

�le:

!

! Caps_Lock -> Control

! F1 -> Caps_Lock

!

remove Lock = Caps_Lock

keysym F1 = Caps_Lock

keysym Caps_Lock = Control_R

add Lock = Caps_Lock

add Control = Control_R

!

! key cap character (first unshifted, second shifted)

!

! , , , <

! . . , >

! < > ` ~

! ` ~ ESC ESC

!

keysym less = quoteleft asciitilde

keysym comma = comma less

keysym period = period greater

keysym quoteleft = Escape Escape

I also start a program that displays my system's load average { xload, a clock, a few X terminals, my

mail reader { xmh, and my news reader { xrn.

.Xdefaults Your .Xdefaults �le de�nes some of the ten bazillion options that make X applications so

much fun. My advice is to steal a copy from someone who's screen looks OK. When you're really

bored, diddle with your .Xdefaults. (You need to login again or run xdb to reload your .Xdefaults

�le.)

7.2 Editing

Several people at SRC have spent some time doing various things to try to make Modula-3 programming in

gnuemacs and epoch more pleasant and productive. Unfortunately, it is more di�cult than it should be to

29

�nd out about these e�orts; you have to ask the right people, look at comments in various source �les, read

the right bulletin boards, etc. The purpose of this section is to describe these packages as something like a

coherent whole.

Our editing czar says, \use epoch". I don't see any reason to disobey. Epoch is a version of gnuemacs that's

been feature-i�ed to �t better with X. Otherwise, the two editors are very similar. They can even share the

same elisp code. As always, you should probably read its man page.

You'll need a .emacs �le to hold your personal con�guration. The best way to get started is to copy this

�le from someone you trust.

You may also have a .epoch �le. It's intended to hold epoch-speci�c elisp. Note, this �le is not read

automatically. You must arrange to read it. Here's the recommended recipe for invoking your .epoch �le:

(if (boundp 'epoch::version)

(progn

(load "dot.emacs" nil t)

(setq auto-raise-screen nil)))

The following gnuemacs elisp packages are in /proj/m3/pkg/gnuemacs/src and described below:

� modula3.el

This package de�nes modula-3-mode, an emacs \major mode" for editting Modula-3 source code. This

package has grown by accretion over a number of years, by a number of hands. It provides mechanisms

for formatting code and for inserting keywords or whole syntactic constructs.

� m3tags

Eric Muller has adapted the emacs tags facility to work for Modula-3. This allows one to quickly go

to the de�nition of a sytactic unit when the cursor is pointing at a use of that unit.

� lightbrite

If you want a little dash of color in your programming life, the lightbrite package can provide it, by

highlighting certain keywords and comments in di�erent colors and/or fonts.

modula-3-mode

Gnuemacs Modula-3 mode has grown by accretion, by a number of hands over a number of years. It often

provides a couple of ways of accomplishing the same goal. People who modi�ed the code to add new features

tried not to change the behavior observed by current users. In short, the code is something of a mess, and

there are a lot of variables you can set to get di�erent behaviors. It might be a good idea to go for someone

to make editorial decisions so that there is only one way of doing each thing, and maybe call the result a

new mode.

Here is a list of the key things Modula-3 mode provides:

� Avoidance of typing:

If you don't like typing a lot of uppercase keywords, there are two methods you can use to automatically

insert keywords or entire syntactic constructs. One is termed \aggressive", the other \polite". In

aggressive mode, various keystrokes starting with ^C are bound to functions that insert entire syntactic

constructs into your bu�er; for instance, ^C-b gives you a BEGIN/END pair, both at the current

indentation. In polite mode, there is ubiquitous completion of keywords, bound to the <TAB> key. For

example b<TAB> expands the b to BEGIN, provided the b appears in a context where BEGIN may be a

valid keyword. There are some fairly extensive rules governing the contexts in which a given keyword is

30

a valid completion; the net result is that it is seldom necessary to type more than one letter to get the

correct completion. If you get specify a non-unique pre�x of a set of keywords, it chooses the �rst in

an ordering intended to capture frequency of use; it also presents the other choices, and typing <TAB>

repeatedly cycles through these choices.

� Indenting/pretty-printing

There are also twomethods for pretty-printing code. The �rst is via invocation of m3pp. M-x m3pp-region

will pretty-print the code between mark and point. M-x m3pp-unit pretty prints the \unit" contain-

ing the cursor. A unit starts with a blank line followed by CONST, TYPE, VAR, PROCEDURE, EXCEPTION,

IMPORT, FROM, MODULE, or BEGIN, and it extends to the start of the next unit. If there is no such unit

around the cursor, the entire �le is pretty-printed. Unfortunately, the m3pp-region and m3pp-unit

commands are not bound to keys. You can add the conventional binding for these commands by

adding:

?? help ??

to your .emacs �le.

The other method of pretty-printing is a gnuemacs \electric" mode, where a key (<TAB> again; it serves

double duty) immediately indents the current line with respect to the previous line. Another pair of

features of the electric mode are \END-matching" and \END-completion"; if enabled, END-matching

blinks the cursor brie
y at the construct matching an END, and END-completion �lls in the name of the

procedure or module an END completes, or a comment with the name of the construct completed.

The two methods are not mutually exclusive; perhaps you like the way m3pp lines up columns in

declarations, but you also like to keep things indented while you type. You can use the electric mode

to get things close, then invoke m3pp when you're done. Personally, I just use the electric mode.

� Finding �les.

There are (you guessed it) two methods for quickly �nding an interface. Both expect the point to

be on an interface name, and �nd the �le for that interface by probing a search path. m3-path-find

�le, bound to ^C-^O-v, assumes the presence of an m3path �le in the current directory, and �nds the

�le in another window. m3::show-interface (not bound to any key by default) uses the variable

m3::defpath as the search path, and, if epoch is being used, displays the found �le in a new screen

(i.e., window.)

Apparently, Steve Glassman has yet another variation on this theme, which knows enough about our

symbolic link conventions to allow �nding the implementation of an interface, as well. It will be a good

thing to merge the good features of these three into one.

To use modula-3-mode, put the following lines in your .emacs �le:

(setq auto-mode-alist

(append (list '("\\.m3$\\|\\.i3$\\|\\.ig$\\|\\.mg$" .

modula-3-mode))

auto-mode-alist))

The auto-mode-alist says what mode you should enter when a �le extension matches the given regular

expression.

(autoload 'modula-3-mode "modula3"

"A special mode for M3." t)

31

The autoload command tells emacs what elisp �le to load to get the de�nition for a given function.

(setq completion-ignored-extensions

(append '(".mo" ".mx" ".mc" ".io" ".ix")

completion-ignored-extensions))

When you �nd �les, you would rather not be o�ered �les with these extensions as possible completions.

(defun m3-mode-hook-function ()

(setq m3-abbrev-enabled 'polite)

(setq m3-electric-end 'all)

(setq m3-blink-end-matchers t))

(setq m3-mode-hook 'm3-mode-hook-function)

The m3-mode-hook variable speci�es a function to run when you enter modula-3-mode.

The m3-mode-hook-function given above customizes the behavior of modula3-mode to:

� use polite abbrev mode. 'aggressive is the default and nil is legal.

� do all possible END-completion. 'proc-mod will match procedure and module names, nil is the default

and matches nothing.

� blink END-matchers. nil is the default value.

m3-tags

\Tags" is supposed to allow you to quickly �nd the de�nition of a given construct when the point is at a

use. Eric Muller is the local master of tags. The program m3tags builds tags for the public interfaces. To

use the tag database from epoch you need to add the line

(visit-tags-table "/proj/m3/lib.mips/FTAGS")

to your .emacs �le.

INSERT how to use Steve Glassman's \mpindex".

lightbright

This is the stu� Dave Detlefs demonstrated at the 6/17/92 Center Meeting, which put Modula-3 keywords

in di�erent colors and fonts, and comments in proportionally-spaced italics.

We don't recommend using this package at yet: it requires a newer version of Epoch than the default, and

it applies uqiquitously across modes. However, if you must :-), run /udir/detlefs/bin/epoch, and add

the following lines in your .emacs:

;;;------- lightbright.el ---------------------------

(defun make-style-with-font (font)

"Make a style with font FONT."

(let ((s (epoch::make-style)))

(set-style-font s font)

32

s))

(defun make-style-with-font-and-color (font color)

"Make a style with font FONT."

(let ((s (epoch::make-style)))

(set-style-font s font)

(set-style-foreground s color)

s))

(if (boundp 'epoch::version)

(progn

(load "lightbrite")

(setq brite::touchup-threshold 200000)

(setq brite::comment-threshold 200000)

(setq-default brite::change-interval 6)

(setq red-style (make-style-with-font-and-color

"*helvetica-medium-r-normal--10*"

"red"))

(setq green-style (make-style-with-font-and-color

"*courier-medium-r-normal--12*"

"blue"))

(setq yellow-style (make-style-with-font

"*helvetica-bold-r-normal--10*"))

(setq magenta-style (make-style-with-font

"*helvetica-medium-r-normal--10*"))

(setq comment-style (make-style-with-font

"*times-medium-i-normal--12*"))

(setq yellow-underline-style (make-style-with-font

"*helvetica-medium-o-normal--12*"))

(setq red-underline-style (make-style-with-font

"*helvetica-bold-o-normal--12*"))

))

;;;------- end stuff for lightbright.el ---------------------------

to do (i.e. Dave Detlefs' wish list)

� General cleanup. Modula3.el needs a general pass of cleanup, elimination of redundant code, better

allocation of the scarse resource of keybindings, etc.

� Identi�er completion. Dave has an experimental m3-complete-identifier command, that constructs

the complete list of identi�ers declared in the current �le, and then uses the current word as a pre�x

to pick out a set of possibilites. It is buggy, and too slow to use on even medium-sized �les. He may

try to make it robust, fast enough, and more ambitious: completing record �eld names or second parts

of quali�ed names, etc.

� Epoch display of the call stack in debugging. It would be kind of neat if, while debugging, the bu�ers

on the source �les for the call stack appeared as some sort of stack of windows.

33

7.3 Compiling

You should use m3make. The best advice for beginners is to copy an existing package that's similar to the

one you want to create. You'll probably �nd the following �les:

./README - a top-level description created by m3create

./src/m3makefile - the input to m3make

./src/*.[im][3g] - the Modula-3 sources of the program

./mips/*.[im][ox] - the compiled objects for a DECstation

./vax/* - the compiled objects for a VAX

There's a man page for m3make, at some point you should read it.

You can use epoch's compile command to run m3make and then use the next-error facitility to quickly

move to the source lines containing errors.

The standard epoch M-x compile command will work with Modula-3 and m3make. Invoke this command in

a bu�er whose current directory is the one containing your derived �les (i.e. if your cursor is in a source �le

then �rst visit ../mips). When you invoke this command, it presents the current compile command in the

minibu�er for your approval. The �rst time you run this, the command will be make -k. If you modify this

to m3make, that will become the new current command on subsequent makes. The results of the m3make will

be displayed in a bu�er called *compilation*.

When a compile is �nished, next-error (^X-`) will parse the *compilation* bu�er and �nd the �rst error

in the �le, moving the current error to the top of the *compilation* bu�er, and moving the point to the

line containing the error in the appropriate source bu�er. When you invoke next-error again, it will go to

the start of the next line containing an error. The big advantage of using next-error is that uses emacs

\marker" facility to keep things straight if you edit the �le to �x errors, changing the line numbers. Barring

drastic edits, next-error will still get you to the right line.

Mick Jordan has also de�ned some commands that let you use m3check in a shell window, and get about

the same next-error behavior. INSERT the details...

7.4 Debugging

Today you get your choice of debugger { either gdb or dbx. At the moment most SRCers prefer gdb, although

it can't read DECstation core �les.

with dbx

Like everything else, dbx will read a start-up �le. It reads the �le named .dbxinit in your home directory.

In that �le you place any commands that you'd like executed each time you start the debugger. Here's a

suggested .dbxinit �le:

ignore 26

set $casesense = 1

set $printwide = 1

stop in RTException__NoHandler

alias typeof(r) "print (_types[(*(int *)(r-4))//2]).name"

alias wide "set $printwide = (1-$printwide)"

alias threads "call Thread__DumpEverybody()"

use src ../src /udir/XYZ/pkg/A/src /udir/XYZ/pkg/B/src

34

The �rst line tells dbx to ignore signal 26 { the thread switching timer. The second line tells dbx that all

input is case-sensitive. The third line tells dbx to print folded lines of output for large structures. The fourth

line sets a break point in the runtime routine that's called for unhandled exceptions. The �fth line de�nes

a new command that examines runtime data structures and prints the type of a reference. The �fth line

de�nes a new command that toggles the folded output behavior. The sixth line de�nes a new command that

produces a listing of all threads. The last line gives dbx a list of directories to search when it's looking for

source �les.

with gdb

Like dbx and everything else, gdb will read a start-up �le. It reads the �le named .gdbinit in your home

directory. In that �le you place any commands that you'd like executed each time you start the debugger.

Here's a suggested .gdbinit �le:

dir

dir /udir/steveg/b.e/mg/src

dir /udir/steveg/b.e/zeus/src

dir /udir/steveg/b.e/lego/src

define ss

nexti

x/i $pc

end

define breaks

info breakpoints

end

break RTException__NoHandler

define threads

call Thread__DumpEverybody()

end

The �rst set of lines gives gdb a search path for locating source �les. The next set de�nes a single step

command. The third set de�nes a simple command to list the active breakpoints. The fourth sets a break

point in the runtime routine that catches unhandled exceptions. And the last set of lines de�nes a threads

command to list all threads.

from epoch

There are some advantages to debugging Modula-3 programs under epoch. You get

� Automatic display of the source �le with the current line indicated when you stop at a breakpoint or

move around in the stack while the program is stopped.

� You can set a breakpoint at the current line in a source �le using the ^X-<space> command.

� Special commands take REF or OBJECT variables (or their pointer values) and print their types and the

values of the referents. (This feature depends on intimate knowledge of the SRC Modula-3 implemen-

tation.) The command ESC-p takes the word containing the current point as the variable or value to

print. ESC-r does the same thing with a record value.

35

These functions are built from gnuemacs' gdb-mode and dbx-mode and are available in the m3-debug.el

elisp package. To use them, put these lines in your .emacs �le:

(autoload 'run-m3-gdb "m3-debug" "" t)

(autoload 'run-m3-dbx "m3-debug" "" t)

You can then use M-x run-m3-gdb or M-x run-m3-dbx to start gdb or dbx, respectively, in inferior shells in

the appropriate modes.

7.5 Packages

We use the same package tools that everyone else at SRC is using. There are special variants of the commands

that make it a little simpler for Modula-3 users.

To get the Modula-3 package tools to work on your DECstation named foobaz, you must have a .rhosts

�le in your home directory on bigtop. It should contain the line:

foobaz.pa.dec.com

To manipulate a Modula-3 package named foo, the last component of your working directory must be named

foo.

Brie
y, here's the available commands and what they do when issued in a directory named XYZ.

m3create { creates a new package named XYZ.

m3delete { deletes the package named XYZ.

m3get { acquires the lock and updates the current directory with the contents of the package XYZ.

m3setlock { acquires the lock on package XYZ.

m3unlock { unlocks the package XYZ.

m3ship { ships a copy of the current directory as the new contents of package XYZ.

m3compare { compares the current directory with the existing version of package XYZ.

For more details, see the man pages

7.6 Public Directories

All the basic Modula-3 software lives in packages. These packages live in subdirectories of /proj/m3/pkg.

The public �les are exported to public directories:

symbol public directory decription

PUB /proj/m3/pub.cpu type interfaces

LIB /proj/m3/lib.cpu type libraries

BIN /proj/fmips,ultrixg/bin programs

CATn /proj/man/cpu type/man/catn plain-text man pages

where cpu type is either vax or mips, and n can vary from 1 to 8.

The Modula-3 compiler (m3) knows about the public directories. By default, it will search the current

directory and PUB for interfaces. It will also try to locate libraries speci�ed in the -l syntax in LIB. It will

systematically link your programs with -lm3 and -lm.

36

7.7 Package Organization

We have four kinds of packages:

� source packages: They contain Modula-3 sources and produce no derived objects. For an example, see

the text package.

� library packages: They usually contain a small number of source �les, export a few interfaces to PUB

and export a single library containing all the objects to LIB. For example, the tcl package contains

the source �les for the binding to Tcl. It exports TclC.i3 to PUB and libm3tcl.a to LIB.

� umbrella packages: It is inconvenient to work with a large number of small libraries. An umbrella

library collects a number of smaller libraries; it is essentially a list of source packages and it exports a

library containing all the objects of the smaller packages. An example is libm3.a. This library collects

the contents of several source packages into a single large library.

� program packages: They contain a single program, exported to BIN, with its man page exported to

CAT1. For an example, see the solitaire or calculator package.

37

Chapter 8

Internals

This section contains a brief introduction to the internal structure of the compiler and runtime system.

This introduction is neither comprehensive nor tutorial; it is merely intended as a stepping stone for the

courageous.

8.1 A tour of the compiler

The compiler has undergone much evolution. It started as a project to build a simple and easy to maintain

compiler. Somewhere along the way we decided to compile Modula-3. Much later we decided to generate C.

In hindsight, Modula-3 was a good choice, C was at best mediocre.

The initial observation was that most compilers' data structures were visible and complex. This situation

makes it necessary to understand a compiler in its entirety before attempting non-trivial enhancements or

bug �xes. By keeping most of the compiler's primary data structures hidden behind opaque interfaces, we

hoped to avoid this pitfall. So far, bugs have been easy to �nd. During early development, it was relatively

easy to track the weekly language changes.

The compiler is decomposed by language feature rather than the more traditional compiler passes. We

attempted to con�ne each language feature to a single module. For example, the parsing, name binding,

type checking and code production for each statement is in its own module. This separation means that

only the CaseStmt module needs to know what data structures exist to implement CASE statements. Other

parts of the compiler need only know that the CASE statement is a statement. This fact is captured by the

object subtype hierarchy. A CaseStmt.T is a subtype of a Stmt.T.

The main object types within the compiler are: values, statements, expressions, and types. \Values" is a

misnomer; \bindings" would be better. This object class include anything that can be named: modules,

procedures, variables, exceptions, constants, types, enumeration elements, record �elds, methods, and pro-

cedure formals. Statements include all of the Modula-3 statements. Expressions include all the Modula-3

expression forms that have a special syntax. And �nally, types include the Modula-3 types.

The compiler retains the traditional separation of input streams, scanner, symbol table, and output stream.

The compilation process retains the usual phases. Symbols are scanned as needed by the parser. A recursive

descent parser reads the entire source and builds the internal syntax tree. All remaining passes simply add

decorations to this tree. The next phase binds all identi�ers to values in scopes. Modula-3 allows arbitrary

forward references so it is necessary to accumulate all names within a scope before binding any identi�ers to

values. The next phase divides the types into structurally equivalent classes. This phase actually occurs in

two steps. First, the types are divided into classes such that each class will have a unique C representation.

38

Then, those classes are re�ned into what Modula-3 de�nes as structurally equivalent types. After the

types have been partitioned, the entire tree is checked for type errors. Finally, the C code is emitted. C's

requirement that declarations precede uses means that the code is generated in several passes. First, the

types are generated during type checking. Then, the procedure headers are produced. And �nally, the

procedure bodies are generated.

The compiler implementation is in the compiler directory. Within that directory the following directories

exist:

builtinOps ABS, ADR, BITSIZE, ...

builtinTypes INTEGER, CHAR, REFANY, ...

builtinWord Word.And, Word.Or, ...

exprs +, -, [], ^, AND, OR, ...

misc main program, scanner, symbol tables, ...

stmts :=, IF, TRY, WHILE, ...

types ARRAY, BITS FOR, RECORD, ...

values MODULE, PROCEDURE, VAR, ...

8.2 A tour of the runtime

The runtime itself implements the garbage collector, Modula-3 startup code and a few miscellaneous func-

tions. The runtime exists in the libm3/runtime directory.

The interface between the compiler and runtime system is embodied (and very sparsely documented) in

M3Runtime.h, M3Machine.h (an architecture-dependent �le) and M3RuntimeDecls.h. Every C �le generated

by the compiler includes these �les.

The allocator and garbage collector are based on Joel Bartlett's \mostly copying collector". The best

description of his collector is in [1]. Since that paper, we've made a few modi�cations to support a growing

heap and to use extra information that the Modula-3 compiler generates.

Exceptions are implemented with setjmp and longjmp. The jump bu�ers and scope descriptors are chained

together to form a stack. The head of the chain is kept in ThreadSupport.handlers. There is a distinct

chain for each thread. When an exception is raised, the chain is searched. If a handler for the exception is

found, the exception is allowed to unwind the stack, otherwise a runtime error is signaled. To unwind the

stack, a longjmp is done to the �rst handler on the stack. It does whatever cleanup is necessary and passes

control on up the stack to the next handler until the exception is actually handled.

Reference types are represented at runtime by a \typecell". Due to separate compilation, opaque types and

revelations, it is not possible to fully initialize typecells at compile time. Typecell initialization is �nished at

link time. A typecell contains a type's typecode, a pointer to its parent typecell, the size of the types referent

and method list if any, the type's brand, the number of open array dimensions, the type's �ngerprint, and

procedures to initialize the typecell, initialize new instances of the type, print instances of the type and trace

the type for garbage collection.

Link time type elaboration occurs in several steps. First, all types are registered. That is, a global array

that points to all typecells is built. Next, the runtime veri�es that all opaque types have been given concrete

representations. Then, the initialization of typecells is �nished. Then, all types with the same brand and

�ngerprint are identi�ed with the same typecode. Finally, a check is made to ensure that distinct types have

distinct brands.

At the beginning of the execution of the program, all global variables are initialized, and the main bodies of

the modules are invoked. The skeletal code that ensures that every module is initialized is generated by the

linker part of the driver.

Other parts of the runtime, such as threads, are actually implemented in the base library.

39

Thread switching is implemented with setjmp and longjmp. A timer interrupt (signal) is used to cause

preemptive thread switching. The global variable ThreadSupport.self points to the currently running

thread. The integer ThreadSupport.inCritical is used by the runtime to prevent thread switching during

garbage collection and other \atomic" runtime operations.

8.3 Porting to another machine

Anyone who is interested in porting this compiler is encouraged! We would like to know how it goes. The

primary concerns when doing a port will be the size and alignment constraints of the target machine and

the runtime. We tried to avoid suspicious C constructs, but we doubt that we were completely successful.

The directions in this section are somewhat sparse. We tried to make the installation of SRC Modula-3

smooth, but it is another story to make the development of ports smooth. Please bear with us and tell us

what we can do to improve this section.

If you want to a port to an unsupported system you should:

� get the compiler and driver source archives (in addition to m3make that came with the boot archive

and libm3 which you had to install anyway).

� decide on the name of the new architecture; in the rest, we assume that it is new

� describe the target machine for the compiler

� implement the machine-speci�c part of the base libraries for the new machine

� build a cross-compiler on a supported machine

� cross-compile (to C) the driver and the compiler

� �nish the compilation of the driver and the compiler on the target machine

In the following, all the paths are relative to the directory in which you unpacked the archives (also known

as the top-level directory).

Describing the target machine The compiler has a small number of parameters that are used to describe

the target machine. These parameters are expressed in the interface compiler/src/new/Target.i3. Create

the directory compiler/src/new and build the �le Target.i3, using the descriptions for the other machines

as models. In compiler/src/m3makefile, add the lines:

#if defined (TARGET new)

source dir (../src/new)

#endif

Porting the runtime and base libraries Some of the Modula-3 code (as well as very little pieces of

C) are machine-dependent. Of course, it may be that some code we thought to be machine-independent

will turn to have to be changed for your new architecture, so we cannot guarantee that the list below is

exhaustive. In general, look at what is done for the other machines, and �nd the most similar as a starting

point.

In libm3/Csupport/src, add a directory new and put in it the �les:

� m3makefile to describe the contents of the directory

40

� M3Machine.h which is included in every C �le generated by the SRC Modula-3 compiler

� dtoa.c to con�gure ../generic/dtoa.h; look at that �le for the things to con�gure.

� float.h if your system does not have one. You can build it using a program called enquire, which

can be found on the net.

In libm3/C/src, add a directory new and put in it the �les:

� m3makefile to describe the contents of the directory

� Csetjmp.i3 to describe the interface to setjmp, longjmp, setjmp and longjmp. Be careful to get

the size of the jmp_buf right.

� Cstdio.i3, essentially a Modula-3 translation of stdio.h

In libm3/thread/src, add a directory new and put in it the �les:

� m3makefile to describe the contents of the directory

� WildJmp.i3: this interface provides functions that are similar to setjmp and longjmp, but that do

not impose any restriction on what is possible. The DS3100 version is the simplest, because on that

architecture, setjmp and longjmp are just �ne. The VAX version is the most complex, we had to

rewrite our own versions because longjmp requires that the stack be popped (remember the longjmp

botch message ?).

In libm3/runtime/src, you can either reuse one of the StackInc-n component, or you may have to create

a new one (i.e., you need a di�erent value of n). The dependency described there is for the bene�t of the

garbage collector. At the beginning of a collection, the collector must �nd all the roots, that is, all the heap

objects that are referenced from outside the heap itself. The stacks contain such pointers, and the collector

scans them to �nd roots. However, the collector does not know the full structure of the stacks (frames,

argument lists and so on); rather, it just looks at the values that are there and make conservative decisions

by interpreting these values as possible pointers. For each stack, the collector initializes a pointer P to the

bottom of the stack; then it repeatedly tries to interpret the bits pointed by P as a pointer in the heap,

marks the root if the interpretation is successfull and advances P . The question is by how much P should

be advanced; if all entries in the stack are aligned at n-bytes boundaries, it is su�cient to increment P by n

bytes; a smaller value would be an overkill. We have found that some machines require n to be 2, and that

4 is enough for others.

In libm3/float/src, add a directory new and copy the �les that are in MODEL in that directory. The routines

in these modules provide access the
oating point control (to set exceptions and so on). The version in MODEL

is a template, and most of the routines will fail (because of an <*ASSERT FALSE*>) if executed. The DS3100

and SPARC directories are examples of implementations for IEEE machines, the VAX directory is an example

for non-IEEE machines. It is not essential that you implement the proper procedures right now: the versions

in MODEL are good enough for the compiler, the driver and simple test programs. But you will have to take

care of that at some point.

In libm3/random/src, you can either reuse one of the directories VAX, IEEE-le or IEEE-be, or create your

own on those models. The goal is to describe enough of the
oating point representation for the random

number generator. There is probably some overlap with the libm3/float stu�, we will take care of that at

some point.

In libm3/unix/src, you will �nd a bunch of interfaces to the procedures of sections 2 and 3 of U**X. Not

everything is there, but we sometime dream to have a complete set; in other words, it's quite a bit of work to

make sure that you have the proper descriptions, and of course, there is nothing from which these interfaces

41

could be mechanically derived. Fortunately, the driver and the compiler rely on very few of these procedures,

and any version is probably good enough for your machine. We suggest that you do the work only when you

�nd some problems (at least, wait until you get a basic port running).

The last thing is to re
ect all these changes in libm3/src/m3makefile. Add a bunch of lines:

#if defined (TARGET new)

...

#endif

similar to those that are already there. You need to make a similarmodi�cation to compiler/src/m3makefile

and driver/src/m3makefile (sorry for the duplication, but it is di�cult to avoid).

Creating a cross-compiler At the top level, type to the shell:

$ m3make cross NEW=new

After a while, you should get an executable compiler/cross-new/m3compiler.

Cross-compiling the driver and the compiler At the top level, type to the shell:

$ m3make bootstrap driver NEW=new

$ m3make bootstrap compiler NEW=new

At this point, you should in the same state as if we had built a boot archive for new and you had grabbed

it. If you cannot mount the �le system that contains all the �les on the new machine, create a boot archive:

$ m3make pack NEW=new

This creates a �le boot files/boot.new-version.tar.Z, which you need to unpack on the new machine.

You can then proceed as for the �rst installation of SRC Modula-3(see the top level README).

Good Luck!

42

Bibliography

[1] Joel F. Bartlett.

Compacting garbage collection with ambiguous roots.

WRL Research Report 88/2, Western Research Laboratory, Digital Equipment Corporation, Palo Alto,

February 1988.

[2] A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin.

Synchronization primitives for a multiprocessor: A formal speci�cation.

SRC report 20, System Research Center, Digital Equipment Corporation, Palo Alto, August 1987.

[3] Andrew D. Birrell.

An introduction to programming with threads.

SRC report 35, System Research Center, Digital Equipment Corporation, Palo Alto, January 1989.

[4] Gilad Bracha and William Cook.

Mixin-based inheritance.

In Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and Applica-

tions; European Conference on Object-Oriented Programming, pages 303{311, October 1990.

[5] Marc H. Brown and James R. Meehan.

The formsvbt reference manual.

SRC report ??, System Research Center, Digital Equipment Corporation, Palo Alto, July 1992.

[6] Mark R. Brown and Greg Nelson.

IO streams: Abstract types, real programs.

SRC report 53, System Research Center, Digital Equipment Corporation, Palo Alto, November 1989.

[7] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson.

Modula-3 report (revised).

SRC report 52, System Research Center, Digital Equipment Corporation, Palo Alto, November 1989.

[8] Luca Cardelli, James Donahue, Mick Jordan, Bill Kalsow, and Greg Nelson.

The modula-3 type system.

In Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages

(POPL), pages 202{212, January 1989.

[9] Sam Harbison.

Modula-3.

Byte, 15(12):385{392, November 1990.

[10] Sam Harbison.

Safe programming with modula-3.

Dr. Dobb's Journal, 17(10):88{96, October 1992.

[11] Samuel P. Harbison.

Modula-3.

Prentice Hall, 1992.

43

[12] Mark S. Manasse and Greg Nelson.

Trestle reference manual.

SRC report 68, System Research Center, Digital Equipment Corporation, Palo Alto, December 1991.

[13] Mark S. Manasse and Greg Nelson.

Trestle tutorial.

SRC report 69, System Research Center, Digital Equipment Corporation, Palo Alto, May 1992.

[14] Greg Nelson, editor.

System Programming with Modula-3.

Prentice Hall, 1991.

44

