Building Algorithm Animations with Zeus (Draft)

Marc Najork*
February 26, 1993

1 Introduction

Zeus [1] is a system for animating algorithms which was developed by Marc H. Brown and others at Digital
Equipment’s System Research Center.

Zeus allows its user to run an algorithm and to observe it through several views. Algorithms and views
communicate by passing events back and forth. For this course, we only care about events passed from the
algorithm to the view. Such events are called output events.

A view is a visual representation that (hopefully) shows some of the internal state of the algorithm. Users
can provide (where “providing” means “programming”) as many views as they want. Most of the views are
graphical: they might show trees, lists, or arrays internal to the algorithm, and how they are modified!.
But a view can also be textual, and in fact, there is a textual standard view, called the Transcript View,
that shows all the events passed between algorithm and views. There are standardized ways to construct
two other textual views: a Code View, which shows the program code and highlights the command that is
just being executed, and a Data View, which shows the value of variables in a textual form. There are no
“standard” graphical views, but there is a rich set of graphics and animation libraries that makes it easy to
construct such views.

One of the design goals of Zeus is to make it easy to build new animations. This is achieved in several
ways:

e Algorithms and views are separated, and can to a certain extent be tested separately

e Events are described through a high-level Event Description Language, and some of the code for
algorithms and views 1s generated automatically from this event description.

e Zeus is written in Modula-3 [8, 5, 4], an object-oriented language, and subclassing is used extensively
to reuse and interface with existing code.

In the following, we will go through the moves required to build a simple animation for the Insertion Sort
algorithm. Building any animation involves three basic steps:

*Author’s address: Department of Computer Science, University of Illinois, 1304 West Springfield Avenue, Urbana, I, 61801,
e-mail: najork@cs.uiuc.edu

1Some of the “views” experimented with at DEC SRC are aural: sounds that indicate interesting events during the execution
of the algorithm.

=] Insertion sort: Sticks | =]

Fig. 1: The Sticks View of Sorting

1. Decide on what the interesting events should be, and write an Event Specification.

2. Write the algorithm you want to animate, and instrument it at the right places with procedure calls
that generate the right events.

3. Write a view that receives the events generated by the algorithm, and shows them in some way.

Steps 1 and 2 are usually quite straightforward (especially if you take a textbook algorithm). Step 3 is
what adds the spice to life: you have to decide on what a nice animation should look like, and figure out
how to bring it to the screen.

2 The Event Specification File

Suppose we want to animate the Insertion Sort algorithm, and we want to show the array to be sorted
as a row of sticks, such that the height of each stick indicates the value of the array element (the higher the
larger). Fig. 1 shows the view we are looking for.

We see that there are really two kinds of interesting events: an event that sets up the animation (let’s
call it Init) and an event that sets the value of a particular array element, i.e. the height of a particular
stick (let’s call it SetVal).

Here is our first cut at an event specification:

OUTPUT Init (N : INTEGER [Fmt.Int]);
OUTPUT SetVal (i : INTEGER [Fmt.Int]; val : INTEGER [Fmt.Int]);

“.evt”. Let’s assume this

Event specifications are contained in files, which have to end with the suffix
specification 1s in a file called Sort.evt. This file will be read by a preprocessor called m3zume, which
generates Modula—3 files from it. In the following, I will refer to the Event Specification file as the Zume file.

OUTPUT is a Zume keyword which indicates that the event we are describing is an output event, an event

passed from the algorithm to the views attached to it. Init is the name of this output event. The event

should clear the view, and set it up for a row of N sticks. N is of type INTEGER. SetVal is supposed to set
array element i to value val.

m3zume generates (among other things) the code for the Transcript View mentioned above. The Transcript
View gives us a textual log of all the events that are passed around. Hence we must supply a function that
converts the integer N into text. Luckily, Fmt, one of Modula—-3’s standard modules, already contains such a
function, namely Int. In general, if you specify an output event to be

OUTPUT EventName (x : T [Foo.TtoText]l; ---);

then the function TtoText, defined in the module Foo, should convert a value of type T to a value of type
TEXT.

This is the time for a little digression. As the name suggests, Modula—3 features the module-concept. A
module consists of an interface part and an implementation part?. Procedures defined in the implementation
part are exported to the outside world if their procedure header appears in the interface part. An interface
can also define types, constants, variables, etc., which are then available to outside clients as well. Interfaces
are not automatically visible to a client (i.e. another interface or module), they have to be explicitly imported.

Zume files also have to import the interfaces they rely on. The only exception here is the Fmt interface,
which 1s automatically imported, because almost every Zume file will use it. But suppose you wanted to
describe an event that sets up a graph structure in a view. You have already built a module Graph, which
exports T, the type of graphs, and ToText, a function that converts graphs to text. Your Zume file would
look something like this:

IMPORT Graph;

OUTPUT SetUpGraph (g : Graph.T [Graph.ToText]);

The DEC SRC implementation of Modula—3 also provides a tool called m3make, which is a simplification of
the Unix make mechanism. An m3makefile contains only the names of the modules etc. one wants to build,
but not the files they depend on. This information is inferred automatically. Another convention is that you
put your files into a subdirectory called src, and create a second subdirectory called SPARC if you work on
a Sun SparcStation, or IBMR2 if you work on an IBM RS/6000. Let’s assume your base directory for this
sorting animation is called sorting. By now, you would have the following files:

sorting/

sorting/src/
sorting/src/Sort.evt
sorting/src/m3makefile
sorting/SPARC

For now, our m3makefile for the sorting example contains just one line, namely the name (or, more precisely,
the prefix) of the Zume file Sort.evt:

zume (Sort)

When you run m3make from the base directory (!), all the temporary files (files created by m3zume, object
files, executables, etc.) will go to sorting/SPARC. This makes it easy to keep track of files. Let’s try it out:

2For a module Foo, the interface must be in a file Foo.i3, and the implementation must be in a file Foo .m3.

$ m3make

Building in SPARC
/delta/std/m3/bin/m3zume ../src/Sort
m3zume processing file ../src/Sort.evt...
m3zume creating SortAlgClass.i3...

m3zume creating SortAlgClass.m3...

m3zume creating SortViewClass.i3...
m3zume creating SortViewClass.m3...
m3zume creating SortIE.i3...

m3zume creating SortIE.m3...

m3zume creating SortTranscriptView.i3...
m3zume creating SortTranscriptView.m3...
m3zume creating SortTranscriptView.fv...
m3zume creating SortEventData.fv...
m3zume finished.

$ 1s -R

SPARC src

SPARC:

SortAlgClass.i3 SortIE.m3 SortViewClass.i3
SortAlgClass.m3 SortTranscriptView.fv SortViewClass.m3
SortEventData.fv SortTranscriptView.i3

SortIE.i3 SortTranscriptView.m3

src:

Sort.evt m3makefile

3 Instrumenting an Algorithm

Next, we have to supply the algorithm we want to animate, and instrument it with procedures that generate
output events.

The m3zume preprocessor has generated a module SortAlgClass from the Sort.evt file. The interface
of this module (i.e. the file sorting/SPARC/SortAlgClass.i3) exports a type T, the type of sorting algo-
rithms. We want to create a subtype (or subclass®) of this type, which shall be the class of insertion sort
algorithms. We thus create a new file, let’s say sorting/src/Sortilg.i3 (in the following, I will leave out
the sorting/src/ and sorting/SPARC/ prefixes, with the understanding that all the files we create are in
sorting/src/).

MODULE SortAlg;
IMPORT SortAlgClass;

TYPE
InsertionSort = SortAlgClass.T BRANDED OBJECT
a : ARRAY [0 .. 101] OF INTEGER;
I : INTEGER;
OVERRIDES
run := Run;
END;

3A “class” is called “object type” in Modula—3 terminology

BEGIN
END SortAlg.

This describes the implementation part of a module SortAlg, and defines the type InsertionSort to be a
subtype of SortAlgClass.T. InsertionSort adds two new fields to SortAlgClass.T, namely a, the array
we want to sort, and N, the used size of the array. It also overrides one of the methods defined in a superclass,
run, with a new procedure, Run. Consequently, we have to define this procedure next.

PROCEDURE Run (self : InsertionSort) RAISES {Thread.Alerted} =
VAR
j, v : INTEGER;
BEGIN
GetData (self);
WITH a = self.a, I = self.N DO
FOR i := 2 TO N DO
v := alil;
j =i
WHILE a[j - 1] > v DO
aljl := al[j - 11;
SortIE.SetVal (self, j, aljl);

DEC (j);
END;
aljl := v;
SortIE.SetVal (self, j, v);
END
END
END Run;

Run takes self, an InsertionSort object, and might raise an exception called Thread.Alerted. As a
matter of fact, Modula—3 supports multi-threading (i.e. parallelism), and Zeus uses this feature: algorithms,
views, and the central controller execute in independent threads. If you press the “Abort” button, the
central controller will notify the algorithm thread of this, the algorithm thread will raise an exception
Thread.Alerted, which will, thanks to the RAISES {Thread.Alerted} declaration, be passed on to the
caller of Run, who will handle it in some appropriate way.

Why does Run need to have the signature it has? Well, InsertionSort is a subtype of SortAlgClass.T,
which in turn is a subtype of Algorithm.T. The Algorithm interface looks like this (well, almost ...):

INTERFACE Algorithm;
IMPORT Thread, ZeusClass;
TYPE
T <: Public;
Public = ZeusClass.T OBJECT
METHODS
run () RAISES {Thread.Alerted};

END;

END Algorithm.

We see that the run method takes no arguments. The procedure associated with a method belonging to an
object type T always has one extra parameter (the first one), which must be of type 7. So, the Run procedure
associated with the run method of Algorithm.T takes an Algorithm.T, the Run procedure associated with
the run method of InsertionSort takes an InsertionSort.

The body of Run (the one above) is a straightforward implementation of insertion sort. The only two
interesting points are the calls to SortIE.SetVal. SortIE (which stands for “Sort-Interesting-Event”) is
one of the modules that have been automatically generated by m3zume from the Sort.evt file. A call to
SortIE.SetVal will pass the SetVal output event on to all views attached to the algorithm self.

Recall that we declared the SortVal output event as

OUTPUT SetVal (i : INTEGER [Fmt.Int]; val : INTEGER [Fmt.Int]);

Based on this, m3zume created the interface SortIE. i3 which contains the procedure declaration

PROCEDURE SetVal (initiator: Algorithm.T; i: INTEGER; val: INTEGER) RAISES {Thread.Alerted};

When Run calls SortIE.SetVal, it passes self, which is an InsertionSort, to initiator, which is an
Algorithm.T, 1.e. a supertype of InsertionSort.

Of course, the insertion sort algorithm needs some data to start out with. For now, we will just set
self.N to 20 and fill self.a with a random permutation of the numbers from 1 to 20. This is done in
GetData:

PROCEDURE GetData (self : InsertionSort) RAISES {Thread.Alerted} =

VAR
t : INTEGER;
BEGIN
WITH a = self.a, I = self.N DO
N := 20;

FOR i := 1 TO N DO
self.al[i] := i;

END;
FOR i := 1 TO N DO
WITH j = Random.Subrange (Random.Default, 1, i) DO
t := alil;
ali] := alj];
alj]l := t;
END;
END;

SortIE.Init (self, NW);
FOR i := 1 TO N DO
SortIE.SetVal (self, i, a[il);
END;
END;
END GetData;

GetData also sends the Init output event to all the attached views (cleaning them up), and sets up the
initial array representation by sending a SetVal event for each array element.

There is one more thing to do: we have to register the insertion sort algorithm with the central controller.
This is done by adding one line to the main body of the SortAlg implementation:

BEGIN
ZeusPanel .RegisterAlg (New, "Insertion sort", "Sort");
END SortAlg;

Sort is again the prefix of the Zume file Sort.evt. “Insertion sort” is an arbitrary string, that will be used in
the algorithm selection panel of the central controller. New is a procedure that returns a new InsertionSort.
We have to define this procedure:

PROCEDURE New (): Algorithm.T =
BEGIN
RETURN NEW (InsertionSort).init();
END New;

That leaves us with a consistent version of SortAlg.m3:

MODULE SortAlg;

IMPORT SortAlgClass, SortIE; (* derived from Sort.evt *)
IMPORT Algorithm, Random, Thread, ZeusPanel; (* predefined modules *)

TYPE
InsertionSort = SortAlgClass.T BRANDED OBJECT
a : ARRAY [0 .. 101] OF INTEGER;
I : INTEGER;
OVERRIDES
run := Run;
END;

PROCEDURE GetData (self : InsertionSort) RAISES {Thread.Alerted} =
VAR
t : INTEGER;
BEGIN
WITH a = self.a, I = self.N DO
N := 20;
FOR i := 1 TO N DO
self.al[i] := i;
END;
FOR i := 1 TO N DO
WITH j = Random.Subrange (Random.Default, 1, i) DO

t := alil;
ali] := alj];
alj]l := t;
EID;
EID;

SortIE.Init (self, NW);
FOR i := 1 TO N DO
SortIE.SetVal (self, i, a[il);
END;
END;
END GetData;

PROCEDURE Run (self : InsertionSort) RAISES {Thread.Alerted} =
VAR
j, v : INTEGER;
BEGIN
GetData (self);
WITH a = self.a, I = self.N DO
FOR i := 2 TO N DO

Completed

/ﬂ}'ﬁ Sessions GO STEP
[Json

ARGHYT

1.0000

Algorithm: | rtion sort

Algorithins Views

Cnoertion sort

T

— et for algorithm
Events

Fig. 2: The Central Control Panel

v := alil;

j =1

WHILE a[j - 1] > v DO
aljl := alj - 1]1;
SortIE.SetVal (self, j, aljl);

DEC (j);
END;
aljl := v;
SortIE.SetVal (self, j, v);
END
END
END Run;

PROCEDURE New (): Algorithm.T =
BEGIN

RETURN NEW (InsertionSort).init();
END New;

BEGIN

ZeusPanel .RegisterAlg (New, "Insertion sort",
END SortAlg.

"Sort");

We also have to supply an interface file Sortalg.i3:

INTERFACE SortAlg;
END SortAlg.

CLEAR | ¥ Aly

Feus Both

Fig. 3: The Transcript View

For a Modula—3 program, there is always one implementation part that contains the main program. The
body of the main program gets executed after all the bodies of the modules have been executed. Here is the
file Main.m3:

MODULE Main;
IMPORT Rsrc, SortBundle, ZeusPanel;

BEGIN
ZeusPanel.Interact (path := Rsrc.BuildPath(SortBundle.Get()));
END Main.

ZeusPanel.Interact pops up the central control panel and starts the user interaction. SortBundle is the
name of a module generated by m3make which contains resources, among them the description of the central
control panel.

We also have to update our m3makefile:

import_obj ($(ZEUSLIB))
bundle (SortBundle)
zume (Sort)

module (SortAlg)
implementation (Main)
program (Sort)

The program directive specifies a name for the executable. The import_obj directive tells m3make
where to look for object files when linking the entire program. implementation defines an implementation,
interface defines an interface, module defines both.

The bundle directive specifies a name for the module into which all resources are collected. We did not
supply any resources so far, but there are some resources behind the scene, for instance the central control
panel, so the directive is needed. Note that the name of the bundle is the same as the name used in Main.m3.

If we execute m3make at this point, it will construct a program Sort (which is located in the SPARC
directory). Running Sort will pop up the central control panel (Fig. 2). If we click onto the “Transcript
View” line in the view selection panel, a Transcript View pops up. Pressing the “Go” button starts the
algorithm, and generated output events are shown in the Transcript View (Fig. 3).

4 Building a Control Panel

So far, we have “hard-wired” the number of elements in the array into the GetData procedure. It would
be nice if we could change this number without having to recompile the entire application. In fact, we
really would like to have a graphical “widget” on the control panel that allows us to adjust this number.
Fortunately, the libraries and tools coming along with Modula—3 make this really easy.

First, we need to specify the way our input control panel should look like. Let’s assume we want to build
a panel that looks like the one shown in Fig. 4. The SRC Modula—3 environment includes a “widget system”
called FormsVBT, which uses a lisp-like language to describe control panels. Along with the language comes
formsedit, a “multi-view” editor that allows you to type in the lisp-description of a form in one window
and see the resulting form in another window. formsedit also provides a short on-line manual that covers
the FormsVBT language in more detail than we can provide here. The definitive guide to FormsVBT is [2].

i i
—|FV Result 1: ...orkfzeust| - | i

a

How many elements to sort?

= R op

Fig. 4: The Input Control Panel

The underlying metaphor of the FormsVBT language is based on TEX: “hboxes” (horizontal boxes) are
used to arrange elements horizontally, “vboxes” (vertical boxes) are used to arrange elements vertically.
“Glue” provides horizontal or vertical spacing of fixed size, “fill” acts as a glue of infinite stretchability.

There are various interactors: buttons, radio buttons, scrollers, numeric and text input devices, menus,
pop-up subwindows, etc. For our example, we only need two types of interactors: a text interactor that
allows us to show a text constant, and a numeric input device.

Here is the grammar of the fragment of FormsVBT we are using:

e = (Rim (Pen n) e) creates a space of width n around e
| (HBox €1 ---€,) shows e; - - - e, horizontally arranged from left to right
| (VBox €1 ---€,) shows e - - - e, vertically arranged from top to bottom
| (Glue n) create a space of width (if in an hbox) or height (if in a vbox) n
| Fill creates a space that has no width or height, but is infinitely stretchable
| (Text "foo") creates the text “foo”
| (Numeric %name) creates a numeric interactor with connector “name”

A connector is a string which is used by the application program to access and modify the value of an
interactor.

By convention, files containing FormsVBT expressions always end with “.fv”. Let’s assume that the
following expression, which describes the form shown in Fig. 4, is contained in a file Input.fv:

(Rim
(Pen 20)
(VBox
(Text "How many elements to sort?")
(Glue 5)

(HBox Fill (Numeric %data) Fill)))

This file 1s one of the ominous resources we mentioned above. We have to declare it in our m3makefile:

resource (Input.fv)
bundle (SortBundle)

Now we have to modify the SortAlg module to query the Input Control Panel before creating a new set of
random numbers.

10

= ZEUS Control Panel ==

Completed

4}!5 Sessions Qo STEP ARGHEYT

] Algorithin: | sort

Views

TACE AT Pt Mo

B —— et for algorithm

How many elements to sort?

= a0 dh

Events

Fig. 5: The new Central Control Panel

The first thing we have to do is to provide a field in the InsertionSort type to hold a FormsVBT. T object,
that is, the widget object created at runtime from the expression in Input.fv. But it turns out that there
is already such a field: InsertionSort is a subtype of Algorithm.T, and this object type provides a field
data, which can hold an object of type VBT.T or a subtype thereof (FormsVBT.T being one of them). Next,
we have to modify the procedure New to create a FormsVBT.T object whenever it creates an InsertionSort
object:

PROCEDURE New (): Algorithm.T =
BEGIN
RETURN NEW (InsertionSort, data := ZeusPanel.NewForm('Input.fv")).init();
END New;

And finally, we have to modify GetData to query the Input Control Panel for the value of the numeric
interactor before generating a new set of random numbers. We can query a numeric interactor by calling
the function FormsVBT.GetInteger and passing it the form the interactor is located in (i.e. self.data) and
the name of the connector, i.e. ""data", referring to the %data connector in Input.fv.

PROCEDURE GetData (self : InsertionSort) RAISES {Thread.Alerted} =
VAR
t : INTEGER;
BEGIN
WITH a = self.a, I = self.N DO
U := FormsVBT.GetInteger (self.data, 'data");

11

Of course, as we refer to the module FormsVBT, we have to add it to our import list.

If we now remake the Sort application, the input section of the Central Control Panel contains the Input
Control Panel. We can adjust the values by pressing the “+” and “~” buttons of the numeric interactor, or
by clicking and typing into its text field.

5 Building a Code View

Zeus provides an easy way to view the code of the algorithm as it is executed, with the current statement
being highlighted. Such a view is called a Code View. The code displayed in a code view is not the actual
code used to implement the algorithm, it does not have to be written in the same language, as a matter of
fact, it does not have to be written in any programming language at all. The “code” used by a code view is
a simple piece of text, containing a set of non-overlapping regions*. These regions are marked by a special
character and numbered by positive integers.

So, building a Code View involves two steps: first, we create the pseudo-code file, and then we instrument
our real code to highlight the appropriate regions in the pseudo-code.

Here is a pseudo-code file for insertion sort (let’s call it Insertion.pseudo):

@Insertion
PROCEDURE InsertionSort (a : ARRAY OF INTEGER) @=
VAR
j, v : INTEGER;
BEGIN
@1 FOR i := 2 TO LAST(a) DO®@
@2 v := a[i];e
@3 j :=1i;@
@4 WHILE alj - 1] > v Doe
@5 alj] := al[j - 11;e
@6 DEC (j);e@

END;
@7 al[j] := v;e
END;
END InsertionSort;
@Insertion

Next, we have to declare the code view whenever we create a new InsertionSort object. Algorithm.T,
the supertype of InsertionSort which also contained the data field, contains a codeViewus field. So we just
have to modify our procedure New as follows:

PROCEDURE New (): Algorithm.T =
BEGIN
RETURN NEW (InsertionSort,
data := ZeusPanel.NewForm("Input.fv"),
codeViews := List.Listl (List.List2 ("Modula-3 Code View", "Insertion.pseudo'))
).initQ);
END New;

4This turns out to be a slight limitation. Although we can build Code Views for “statement-oriented” languages like Pascal,
we cannot build them for “expression-oriented” languages like Lisp.

12

List.List1 constructs a one-element list, List.List2 a two-element list. codeViews expects a list of n
two-element lists. Each two-element list contains two values of type TEXT, the first one being an arbitrary
name that will appear in the View Selection Panel, and the second one being the name of the file that
contains the pseudo-code®.

Finally, we have to instrument the procedure Run with calls to highlight the right regions. This is done
as follows:

PROCEDURE Run (self : InsertionSort) RAISES {Thread.Alerted} =

PROCEDURE At (line: INTEGER) RAISES {Thread.Alerted} =
BEGIN
ZeusCodeView.Event (self, line);
END At;

VAR
j, v : INTEGER;
BEGIN
GetData (self);
ZeusCodeView.Enter (self, "Insertion");
WITH a = self.a, I = self.N DO
FOR i := 2 TO N DO

At(1);
At(2); v := alil;
At(3); j o= 1i;
WHILE a[j - 1] > v DO
At(4);
At (5); aljl := alj - 11;
SortIE.SetVal (self, j, aljl);
At(6); DEC (j);
END;
At(4);
At (7)) aljl := v;
SortIE.SetVal (self, j, v);
END
END
END Run;

The call to ZeusCodeView.Enter pops up a window on the section of the pseudo-code between the two
occurrences of @Insertion, and highlights the region between the first @Insertion and the following @.
Calling At(n) causes a call to ZeusCodeView.Event, which highlights the region between @n and @ in the
code view window.

After we have added List and ZeusCodeView to our import list, and updated our m3makefile by adding
a line

resource (Insertion.pseudo)

we can remake our application and run it again. Fig. 6 shows the Code View we have just constructed.

5The $1,000,000 question: How would you connect two Code Views to the algorithm?

13

=1 Insertion sort: Modula—3 Code View (=]
PROCEDURE InsertionSort {(a : ARRAY OF INTEGER) =

VAR
4, v : INTEGER;
BEGIN
FOR i := 2 TO LAST(a) DO
v = alil;

3 o= i
WHILE a[j - 1] > v DO

alil := alj - 11;
DEC (3);

END;

alil = w;

END InsertionSort;

Fig. 6: The Code View

6 Building a Graphical View

Both the Transcript View and the Code View are textual views. So how do we construct a graphical view?
Well, as it turns out, there is no straightforward recipe to do this. Each graphical view is different from the
next, and must be implemented slightly different. The SRC Modula—3 environment uses its own window
system, called Trestle [6, 7], which is implemented on top of X windows. On top of trestle is another
layer called the VBT layer [3] (VBT stands for “Virtual Bitmap Terminal”). A VBT is a Modula-3 object
which roughly represents a graphical entity — a window, a button, a scroller, a file browser, etc. VBT.T is
the topmost class in the class hierarchy of VBTs, and it has lots of subclasses: FormsVBT.T, the class of
forms objects which we used to build a control panel, GraphVBT.T, a VBT for displaying graph structures,
ListVBT.T, a VBT for displaying list structures, and so on.

For our particular example — a Sticks View for an array-based sorting algorithm — we use a VBT class
called RectsVBT. T, which allows its clients to display a set of colored rectangles.

First, we have to create a new module (let’s call it SticksView). We start with the implementation part
SticksView.1i3:

First we want to create a subclass of SortViewClass.T, which is the class of sort views and one of the
things that have been automatically created by m3zume. Recall that our Zume file looked like this:

OUTPUT Init (N : INTEGER [Fmt.Int]);
OUTPUT SetVal (i : INTEGER [Fmt.Int]; val : INTEGER [Fmt.Int]);

From this, m3zume generated the SortViewClass module, whose interface looks (almost ...) like this:
INTERFACE SortViewClass;

IMPORT View;

TYPE
T <: Public;
Public = View.T OBJECT

METHODS
oelnit (N: INTEGER);

14

oeSetVal (i: INTEGER; val: INTEGER);
END;

END SortViewClass.

So, SortViewClass.T is a subclass of View.T, and it introduces two new methods, oeInit and oeSetVal
(the oe stands for “output event”). We want to create a subclass of SortViewClass.T, add whatever fields
and methods we need, and override the two methods oeInit and oeSetVal with procedures that initialize
a Sticks View and that set the height of a particular stick.

TYPE
T = SortViewClass.T BRANDED OBJECT
rects : RectsVBT.T;

OVERRIDES
oelnit = Init;
oeSetVal := SetVal;
END;

rectsis aRectsVBT.T,a VBT that displays a set of colored rectangles. Next, we need to define the procedure
Init, which is connected to the oeInit method:

PROCEDURE Init (self: T; N: INTEGER) =

BEGIN
RectsVBT.SetWC (self.rects, 0.0, 0.0, FLOAT(N + 1), FLOAT(N + 1));
RectsVBT.Setll (self.rects, I);
WITH rgb = ColorName.ToRGB ("Blue"),
color = PaintOp.FromRGB (rgb.r, rgb.g, rgb.b) DO
FOR i := 1 TO N DO
RectsVBT.Color (self.rects, i, color);
END;
END;
END Init;

Init first sets the coordinate system of self.rects to range from 0 to N + 1 in both dimensions (we have
N sticks, whose height range between 1 and N, and we want to provide for some space around the borders).
Then it initializes self.rects to be able to hold up to N rectangles. Finally, it sets the color of each of

these rectangles to blue.

PROCEDURE SetVal (self: T; i: INTEGER; val: INTEGER) =
BEGIN
RectsVBT .Erase (self.rects, i);
RectsVBT.Position(self.rects, i,
FLOAT(i) - 0.5, 0.5,
FLOAT(i) + 0.5, FLOAT(val) + 0.5);
RectsVBT.Draw (self.rects, i);
END SetVal;

The procedure SetVal, which is connected to the oeSetVal method, is supposed to adjust the height of
stick 4. Tt does this by first erasing the stick from the window, then updating its coordinates (the lower left
corner being at (i — %, %) and the upper right corner being at (¢ + %, val + %), and the entire stick thus being
1 unit wide and vel units high), and finally redrawing the stick.

We also need a procedure that creates a new sticks view object:

15

PROCEDURE New (): View.T =

VAR

view := NEW(T, rects := NEW(RectsVBT.T).init());
BEGIN

RETURN SortViewClass.T.init (view, view.rects);
END New;

New creates a new T (a sticks view object) which contains a new RectsVBT.T, and then invokes the init
method of the superclass. This init method will install the new view in the window system, and will make
view.rects a child window of view.

Finally, we have to register the new view with the central controller. This is done with the same technique
we used to register our algorithm: We call ZeusPanel.RegisterView in the body of the module (recall that
executing a program means first executing the bodies of all modules contained in the program, and then
executing the main body).

BEGIN

ZeusPanel .RegisterView (New, "Sticks", "Sort");
END SticksView.

Sticks is an arbitrary string used in the View Selection Panel. Sort is the prefix of the Zume file Sort.evt.
Here is the file SticksView.m3 in its entirety:

MODULE SticksView;
IMPORT ColorName, PaintOp, RectsVBT, SortViewClass, View, ZeusPanel;
TYPE

T = SortViewClass.T BRANDED OBJECT
rects : RectsVBT.T;

OVERRIDES
oelnit = Init;
oeSetVal := SetVal;
END;

PROCEDURE Init (self: T; N: INTEGER) =
BEGIN
RectsVBT.SetWC(self.rects, 0.0, 0.0, FLOAT(N + 1), FLOAT(N + 1));
RectsVBT.Setll(self.rects, N);
WITH rgb = ColorName.ToRGB(''Blue'),
color = PaintOp.FromRGB(rgb.r, rgb.g, rgb.b) DO
FOR i := 1 TO N DO
RectsVBT.Color(self.rects, i, color);
END;
END;
END Init;

PROCEDURE SetVal (self: T; i: INTEGER; val: INTEGER) =
BEGIN
RectsVBT .Erase (self.rects, i);
RectsVBT.Position(self.rects, i,
FLOAT(i) - 0.5, 0.5,
FLOAT(i) + 0.5, FLOAT(val) + 0.5);
RectsVBT.Draw (self.rects, i);

16

END SetVal;

PROCEDURE New (): View.T =
VAR
view := NEW(T, rects := NEW(RectsVBT.T).init());
BEGIN
RETURN SortViewClass.T.init (view, view.rects);
END New;

BEGIN
ZeusPanel .RegisterView (New, "Sticks", "Sort");
END SticksView.

The interface part of the module (file SticksView.13) does not need to export anything:

INTERFACE SticksView;
END SticksView.

Finally, we have to update our makefile to account for the new module. Here is the final version of
m3makefile.

import_obj ($(ZEUSLIB))
resource (Input.fv)
resource (Insertion.pseudo)
bundle (SortBundle)

zume (Sort)

module (SortAlg)

module (SticksView)
implementation (Main)
program (Sort)

If we now remake the application and run it, we get the Sticks View shown in Fig. 1.

That concludes our introduction to the Zeus algorithm animation system. We omitted some minor details
(a more complete description of the FormsVBT language, construction of Data Views, exhaustive description
of the different classes of VBTs), but you should have gotten a basic understanding of the Zeus technology.
It might be a good idea to sit down and try out all the examples given here yourself, and to play around
with them. After that, the best way to learn how more complicated animations are done is by looking at the
code of existing animations. The Zeus system comes with a demo version, called mentor, that contains some
15 sample animations (all of which have been done in the course of two weeks by novices to the system!).
See if any of those animations contain elements that you might want to reuse! Good luck and have fun!!

References

[1] Marc H. Brown. Zeus: A System for Algorithm Animation and Multi-view Editing. Technical Report 75,
DEC Systems Research Center, February 1992.

[2] Marc H. Brown and James R. Meehan. The FormsVBT Reference Manual — Draft Version 2.1, January
1993. Technical Report, DEC Systems Research Center, in preparation. Available via anonymous ftp
from gatekeeper.dec.com.

17

[3] Marc H. Brown and James R. Meehan (editors). VBTkit Reference Manual — A Toolkit for Trestle.
Technical Report, DEC Systems Research Center, in preparation. Available via anonymous ftp from
gatekeeper.dec.com.

[4] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, G. Nelson. Modula—3 Language Definition.
In ACM SIGPLAN Notices, Vol. 27, No. 8, August 1992, pp. 15 — 42.

[5] Samuel P. Harbison. Modula—3. Prentice-Hall, 1992.

[6] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Technical Report 68, DEC Systems Re-
search Center, December 1991.

[7] Mark S. Manasse and Greg Nelson. Trestle Turtorial. Technical Report 69, DEC Systems Research Center,
May 1992.

[8] Greg Nelson (editor). Systems Programming with Modula-3. Prentice-Hall, 1991.

18

