116

Distributed Garbage Collection
for Network Objects

Andrew Birrell, David Evers, Greg Nelson,
Susan Owicki, and Edward Wobber

December 15, 1993

dlilgliltlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state
of the art in computer systems. From our establishment in 1984, we have
performed basic and applied research to support Digital’s business objec-
tives. Our current work includes exploring distributed personal computing
on multiple platforms, networking, programming technology, system mod-
elling and management techniques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by
building hardware and software prototypes and using them as daily tools.
Interesting systems are too complex to be evaluated solely in the abstract;
extended use allows us to investigate their properties in depth. This ex-
perience is useful in the short term in refining our designs, and invaluable
in the long term in advancing our knowledge. Most of the major advances
in information systems have come through this strategy, including personal
computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some
of it is in established fields of theoretical computer science, such as the
analysis of algorithms, computational geometry, and logics of programming.
Other work explores new ground motivated by problems that arise in our
systems research.

We have a strong commitment to communicating our results; exposing and
testing our ideas in the research and development communities leads to im-
proved understanding. Our research report series supplements publication
in professional journals and conferences. We seek users for our prototype
systems among those with whom we have common interests, and we encour-
age collaboration with university researchers.

Robert W. Taylor, Director

Distributed Garbage Collection for
Network Objects

Andrew Birrell, David Evers, Greg Nelson,

Susan Owicki, and Edward Wobber

December 15, 1993

Affiliations

David Evers is currently at the University of Cambridge Computer Labora-
tory. Susan Owicki is an independent consultant. This work was completed
while the authors were at the Systems Research Center.

(©Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any com-
mercial purpose. Permission to copy in whole or in part without payment
of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that
such copying is by permission of the Systems Research Center of Digital
Equipment Corporation in Palo Alto, California; an acknowledgment of the
authors and individual contributors to the work; and all applicable portions
of the copyright notice. Copying, reproducing, or republishing for any other
purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

Authors’ Abstract

In this report we present a fault-tolerant and efficient algorithm for dis-
tributed garbage collection and prove its correctness. The algorithm is a
generalization of reference counting; it maintains a set of identifiers for pro-
cesses with references to an object. The set is maintained with pair-wise
communication between processes, so no global synchronization is required.
The primary cost for maintaining the set is one remote procedure call when
an object reference is transferred to a new process for the first time. The dis-
tributed collector collaborates with the local collector in detecting garbage;
any local collector may be used, so long as it can be extended to provide
notification when an object is collected. In fact, the distributed collector
could be used without a local collector; in that case, the programmer would
insert explicit dispose commands to release an object. The algorithm was
designed and implemented as part of the Modula-3 network objects system,
but it should be suitable for a wide range of applications. It tolerates com-
munication and process failure, and can reclaim the space for objects held by
a crashed process. The algorithm balances functionality, performance, and
fault-tolerance in a way that makes it highly practical to use in implementing
distributed systems.

Contents
1 Introduction

2 The algorithm
2.1 Transmitting a network object 0.
2.2 Deleting a surrogateo
2.3 Communication failures
2.4 Process terminationo L oo,
2.5 Forgetting sequence numbers

3 Correctness of the algorithm
3.1 Safety o
3.2 LIVENeSS . . v v v i i e e e e e e e e e e

4 Related work
5 Summary
Acknowledgements

References

© o~ =1 v W

12

14

15

17

1 Introduction

Garbage collection is a valuable tool for programming distributed systems,
for all the reasons that apply to programs that run in a single address space.
In addition, network servers often issue shared resources, such as file locks, to
their clients; garbage collection can trigger recovery of these resources when
the associated storage is collected. Unfortunately, designing a distributed
collector that operates well is not a simple problem, and it is small wonder
that many algorithms have been proposed. This proliferation of algorithms
is in part due to conflicts between various aspects of an ideal collector; for
example, minimizing communication costs conflicts with fault-tolerance.

This report describes a distributed garbage collector that is fault-tolerant,
handling both process crashes and communication failures, and yet modest
in overhead costs. In particular, it collects objects reliably even if pro-
cesses holding references to them crash. This is essential for the support
of long-running servers, which could otherwise suffer from disabling leakage
of storage or other resources. The collector was designed to support a dis-
tributed programming paradigm called network objects [BNOW93], but it
should be suitable for a variety of distributed systems.

Network objects provide a means to incorporate remote procedure call
in an object-oriented programming style. An object consists of a data record
and a set of methods, or operations, that can be invoked on the object. A
network object is an object that can be shared by processes in a distributed
system. The process that allocated the network object is called its owner,
and the instance of the object at the owner is called the concrete object.
Other processes, known as clients may have references to the object. The
client and owner can run on different machines or in different address spaces
on the same machine. The roles of client and owner are specific to a partic-
ular object: the owner of one object may well be a client of another.

A client cannot directly read or write the data fields of a network object
to which it holds a reference, it can only invoke its methods. A reference in
the client program actually points to a surrogate object, whose methods per-
form remote procedure calls to the owner, where the corresponding method
of the concrete object is invoked. There is at most one surrogate for an
object in a process, and all references in the process point to that surrogate.

References for a network object may be marshaled from one process to
another during method invocation as arguments or results. A network object
is marshaled by transmitting its wire Rep, which consists of a unique identifier
for the owner process, plus the index of the object at the owner. Since

object indices are not reused in a process, the wireRep uniquely identifies
the object for all time. Note that the concrete object does not migrate.
Network objects may be passed from one client to another as well as from
the owner to a client.

The network object garbage collector is based on a generalization of ref-
erence counting. The owner of a shared object O maintains a set O.dirtySet
which contains identifiers for all the processes that have a surrogate for O.
The set is maintained by communication between processes. When a client
first receives a reference to a particular object, it makes a dirty call to the
owner and then creates a surrogate. When the surrogate is no longer reach-
able, as determined by the client’s local garbage collector, the client makes
a clean call and deletes the surrogate. When O.dirtySet is empty, the owner
can reclaim the memory for O, unless it is being used locally. The collector
thus preserves a key invariant: If there is a surrogate for object O at client
A, then A € O.dirtySet. (We shall see later that this invariant must be
modified slightly to deal with long-lasting communication failures.)

Note that the owner keeps not just a count of the references to an ob-
ject, but the identities of all processes with surrogates. This is helpful for
achieving fault-tolerance, because it allows the clean and dirty operations to
be idempotent. Moreover, it makes collection possible when a client process
terminates without making a clean call. The network object runtime at the
owner of an object detects termination of any client process; it can then
remove the client from any dirty sets in which it appears.

This distributed collector, like collectors that use simple reference counts,
is unable to collect cycles. Therefore, the programmer should either take
care not to form cycles or break them explicitly to allow for collection. The
cost of full cycle collection is quite high, as will be discussed in Section 4.
We are considering extending the algorithm to collect cycles that span a
small number of machines.

A number of properties are desirable in a distributed collector:

e It should collect all objects that are unreachable, and no others.

e It should tolerate process and communication failure, and deal grace-
fully with intermittent communication outages. In particular, process
failure should not cause objects to become uncollectable.

e It should be able to take advantage of an existing local collector run-
ning within a process. Ideally, it would be independent of the algo-
rithm used by the local collector.

e The presence of garbage collection should be transparent to the pro-
grammer. In particular, it should be possible to transmit object ref-
erences from client to client, and not just from the owner to a client.

e The overhead of garbage collection should not be too high. This means
avoiding excess inter-process communication and synchronization, and
allowing the collector to run in parallel with the computation.

Our collection algorithm comes close to meeting all of these goals. We
believe that the tradeoffs between conflicting goals have been made in ways
that make the collector very attractive for practical distributed programs.
In rare circumstances, communication failure may be interpreted as process
failure, and an object may be collected prematurely. If communication is
restored and an attempt is made to use the surrogate, the error will be de-
tected and reported. In this case, the goal of reclaiming space when a process
crashes conflicts with the goal of reclaiming only unreachable objects.

The algorithm described in this report has been implemented as part of
the network object system.

The remainder of this report is organized as follows. Section 2 describes
the algorithm in some detail, and Section 3 provides a proof of its correctness.
Section 4 compares our approach to others in the literature. Finally, section
5 summarizes our results.

2 The algorithm

Here we discuss our collection algorithm in detail. We start with a descrip-
tion of the data structures it requires.

Object table. Each process maintains an object table (see Figure 1), which
maps a wireRep w(0) to the local instance of the corresponding network ob-
ject O, if there is one. For the owner of an object (process Pin Figure 1) the
table contains a pointer to the concrete object. A concrete object must be
in the table whenever another process has a surrogate for it. To ensure this,
a concrete object is entered into its owner’s table when it is first marshaled;
it remains there until the distributed collector detects the deletion of its last
surrogate.

The object table also contains entries for all surrogates that exist in
the process. It maps the wireRep for a remote object to the unique local
surrogate for that object, if one exists (see Process Q in Figure 1). If the

object table object table

w(0) _ w(0) _| _ weak ref

—

concrete O surrogate for O I,

2

o.dirtySet ={Q, ...}

Process P: owner of O Process Q: a client of O

Figure 1: Object tables at owner and client processes

wireRep has been received but a surrogate has not yet been created, the
mapping yields NIL. Once the surrogate has been created (after a dirty call
to the owner) it is placed in the table.

The object table plays two key roles in garbage collection. First, it is
used to find the object referred to by an incoming wireRep; this is required
for method invocation, clean/dirty calls, and unmarshaling a transmitted
object. Second, the table’s references to concrete and surrogate objects are
central to the interaction with the local garbage collector. For a concrete
object, the reference keeps the object reachable, so that it will not be re-
claimed by the local collector. Since the object remains in the table until
the distributed collector detects that there are no remote references to it,
this guarantees that the object will not be collected prematurely.

For surrogates, however, the reference in the table is a weak ref, which
has quite a different effect. A weak ref does not keep its referent from being
collected by the local collector. However, when it is collected, a cleanup
routine associated with the weak ref is scheduled for execution. Thus a
surrogate becomes unreachable when there is no path to it except through
the object table. At this point the local collector replaces the weak ref in
the object table with a distinguished null weak ref value and schedules the

cleanup routine. As we shall see below, the cleanup routine for surrogates
causes the required clean call to the object’s owner. Weak refs provide
the interface between the local collector and the distributed collector. Any
local collection strategy is acceptable, so long as the collector can support
this interface or an equivalent one. Hayes [Hay92] discusses strategies for
implementing collector-based object cleanup.

Client Information. As already mentioned, a dirty set is maintained for
each object by its owner. The dirty set contains identifiers for all processes
that have surrogates for the object. When the dirty set becomes empty,
the object can be removed from its owner’s object table. The dirty set may
be maintained conservatively: it may sometimes contain processes that do
not have surrogates, so long as the collector guarantees to remove them
eventually. This conservative management is necessary for handling com-
munication failures. It also conveniently allows us to delay clean calls, which
can then be batched for better performance.

Dealing with communication failures requires us to keep further infor-
mation on client processes. Even with a reliable transport, failures and
multiple threads may cause calls to be delivered out of order, as described
in section 2.3. To deal with this, a sequence numberis attached to each clean
or dirty call. The sequence number must increase with each new operation
from the client. (Some authors use the term “timestamp” to refer to this
sort of sequence number.) Let seqno(O, P) be the largest sequence number
seen at ’s owner on a clean or dirty call for object O from process P. An
incoming operation will be performed only if its sequence number exceeds
this value; otherwise it has no effect.

It might appear that this use of sequence numbers forces us to retain
a sequence number for every process that has ever had a surrogate for an
object. In fact, in most cases we need keep sequence numbers only for clients
in the dirty set. The exact circumstances under which sequence numbers
must be retained are described in Section 2.5.

2.1 Transmitting a network object

In this section we discuss the steps involved in transmitting a network object
under normal operation; the treatment of communications failures is delayed
until Section 2.3.

Suppose process P marshals a network object O to process (), as an
argument or result of remote method invocation. P may be the owner of O,

or it may be a client that has a surrogate for O. In either case, P sends ()
the wireRep w(0). When w(0O) arrives, () looks it up in its object table to
see if there is a corresponding local object.

If @ finds either a surrogate or concrete object, that object is used as the
required argument or result. Note that if a client transmits a remote object
back to its owner, this use of the object table causes the owner to access the
concrete object; no surrogate is created.

If ¢ does not find an object in the table, there are two possibilities to
consider. First, w(O) may be in the table but mapped to a NIL reference.
In this case surrogate creation is under way, and the thread doing the un-
marshaling suspends itself until the surrogate is created or the attempt fails.
Alternatively, w(0O) may not be in the table, or it may be there with a null
weak ref indicating that a surrogate existed but had been collected. In this
case, the recipient must create a new surrogate. It first enters w(O) in the
table with a mapping to NIL, releases the lock on the table, and then makes
a dirty call to the owner of the object. Assuming no communication failures,
the owner receives the call and adds) to O’s dirty set. When the dirty call
returns,) creates a surrogate for O and enters it in the object table.

There is one more wrinkle to be considered in transmitting a network
object. This is the potential race condition between the dirty call from
client ¢) and a clean call from a client whose surrogate has been deleted. If
the clean call arrived first, and if it left O.dirtySet empty, then O might be
removed from its owner’s object table and its space reclaimed by the local
collector. When the dirty call arrives, the object will no longer be available.

To prevent this scenario, we make sure that O.dirtySet remains non-
empty while O is being transmitted. When the sending process P is O’s
owner, this is accomplished by putting P into O.dirtySet until an acknowl-
edgment from () indicates that the reference has been received. Since ¢
sends the acknowledgment after completing the dirty call, this guarantees
that O’s dirty set remains non-empty, and its memory is not collected. When
P is not the owner of O, it must have a surrogate for (. This surrogate is
kept reachable until (s acknowledgment is received. Since a reference to
the surrogate is on the stack during transmission, we simply ensure that
the transmitting procedure not return until acknowledgment from @ is re-
ceived. So long as this surrogate is reachable, the basic collector invariant
guarantees that Pis in O.dirtySet and O’s space will not be collected.

It appears that we may now require an extra acknowledgment during
method invocation. Just how much overhead is added? Recall that network
objects are transmitted as arguments or results of remote method invoca-

tions. When P marshals O as an argument, the method’s return serves as
the acknowledgment that transmission is complete; no additional message
is required. When P marshals O as a result, an explicit acknowledgment
must be sent when unmarshaling is finished. In this case the need for ac-
knowledgement results in an extra message. However, the thread that waits
for the acknowledgment is not on any critical path, so performance is not
seriously affected.

2.2 Deleting a surrogate

We now consider how surrogate deletion is treated in the normal case, and
once again delay the discussion of fault-handling until Section 2.3.

Collection of surrogates is the responsibility of the client’s local garbage
collector. When the client’s collector determines that a surrogate is un-
reachable, the object’s owner must be informed so that the client can be
removed from its dirty set. We have already mentioned how weak refs al-
low the distributed garbage collector to be informed of surrogate collection
S0 it can take this action. To recap, when the client’s collector determines
that the surrogate is not reachable (except from the weak ref in the client’s
object table), it prepares to reclaim the surrogate’s memory. However, it
first schedules a cleanup routine that was registered when the weak ref was
created and replaces the weak ref with a special null value.

When the cleanup routine begins execution, it checks the object table
to see if the entry for this object’s wireRep still has the special null weak
ref. If not, a new surrogate for the object will have been created (or will
be in the process of being created) and no cleanup action is required. But
if the null weak ref is still present, cleanup action is necessary. The object
table entry is removed, and the wireRep is put on a queue of objects to be
processed later by a cleaning demon. This demon is responsible for sending
clean calls to the owner. Delaying the clean calls allows them to be batched,
to reduce communication cost and improve performance. However, the clean
operation logically occurs when the cleanup routine puts the wireRep on the
demon’s queue, so its sequence number is generated at this time.

2.8 Communication failures

Although the garbage collector makes use of a reliable transport, it is still
possible for remote calls to fail because of temporary communication prob-
lems. We assume that a remote call returns with an indication of success

or failure. A successful return means that the remote operation was per-
formed. When failure is reported, however, it is impossible to tell whether or
not the remote operation was carried out. It is even possible that a message
was delayed in the communication system, and the remote operation will
be performed at some unpredictable future time. The distributed collection
algorithm must deal with failures of clean and dirty calls.

When a dirty call fails, no surrogate is created. It would not be safe to
create one, because the object’s owner may not have received the dirty call.
However, it is also possible that the owner did receive the dirty call, so the
object and a sequence number for the clean call are added to the cleanup
demon’s queue. Note that this may cause an unnecessary clean call, but
that does no harm. The effect of a clean call is to remove the client from
the object’s dirty set; if it is not in the set, the clean call is a no-op.

When a clean call fails, the cleanup demon merely leaves the request
on its queue, keeping the same sequence number. The clean call will be
repeated until it succeeds, or until the owner’s termination is detected.

2.4 Process termination

Processes that terminate, whether normally or abnormally, cannot be ex-
pected to notify the owners of all network objects for which they have surro-
gates. Therefore, the distributed collector must detect process termination
and update dirty sets accordingly. Various mechanisms may be used for
detecting termination; for example, when owner and client are running on
the same machine, the operating system can provide the information. Our
collector detects termination by having each process periodically ping the
clients that have surrogates for its objects. If the ping is not acknowledged
after sufficient time, the client is assumed to have terminated, and is re-
moved from all dirty sets at that owner. Thus a process that dies holding a
surrogate does not prevent an object from being collected.

Note that this method of detecting termination carries with it the risk
of mistaking a communication failure for process termination. If this oc-
curs, the collector may incorrectly reclaim the space for some object O even
though a surrogate still exists. Later, if communication is restored, the client
might try to invoke one of O’s methods. If this happens, the owner will be
able to detect the error, because there will be no entry for the wireRep w(0O)
in its object table. (This is why wireReps are not reused.) Thus the impact
on the client will be that the operation fails, as it would have failed had it
been attempted during the communication outage.

2.5 Forgetting sequence numbers

Earlier, we described how sequence numbers are used to detect and ignore
out-of-order operations. The straightforward implementation retains, for
each object O, the highest sequence number received from each process P
that has ever called in clean or dirty for O. Fortunately, a more space-
efficient implementation is possible. In most cases, P’s sequence number
can be dropped when P is removed from O’s dirty set. It is only when some
dirty call from P for O has failed that sequence number information must
be retained.

The reason is not hard to see. The algorithm must protect against two
potential errors: removing P from O’s dirty set because of a late clean call,
and adding P to O’s dirty set because of a late dirty call. Note that a late
clean call can do no harm when P is not in O’s dirty set.

Clean calls are generated asynchronously by P’s cleanup demon, and
may arrive at any time. Thus a sequence number must be retained when P
is in O’s dirty set, for protection from late clean calls. However, dirty calls
are synchronous with surrogate creation. No clean or dirty call with a later
sequence number will be generated until after the dirty call has returned.
Only if the dirty call reports failure is there a possibility that it will be
performed out of order at the owner. Thus if no dirty call for O from P
has ever failed, there is no need for protection from late dirty calls, and the
sequence number can be dropped when P is not in O’s dirty set. Recall that
when a dirty call fails, a cleanup request is added to the cleanup demon’s
queue. Clean calls scheduled as a result of failed dirty calls are flagged as
strong clean calls, while those scheduled as a result of surrogate deletion are
not. Once the owner receives a strong clean call, it retains seqno(O, P) until
P or the owner itself terminates.

3 Correctness of the algorithm

Ideally, a garbage collector should collect all storage that becomes unreach-
able (liveness), and nothing else (safety). In the network object system,
implementation considerations constrain us to accept a less than perfect
collector. A communication failure between an object’s owner and a client
may allow the object to be collected prematurely. And some objects that
are no longer reachable may not be reclaimed, either because they are part
of a cycle that spans multiple address spaces, or because a conservative local
collector fails to detect that a surrogate is unreachable. In this section we

state precisely what our distributed collector is intended to do and prove
that it meets this specification.

First, let us define some notation. Let nofail(P, ()) mean that process
P has never concluded that process) terminated. We will say that a surro-
gate exists at a client from the time of its creation (after a successful dirty
call) until the local collector determines that it is collectable; at this point
the object table entry receives a null weak ref, and the cleanup routine is

scheduled.

3.1 Safety

To demonstrate the safety of the algorithm, we show that if P has a surrogate
for O, and nofail(owner(0), P), then O is in its owner’s object table. The
proof relies on two invariants:

INVARIANT 1. If P has a surrogate for O, and nofail(owner(0), P), then
P e O.dirtySet.

INVARIANT 2. If O.dirtySet is not empty, then O is in its owner’s object
table.

It is easy to see that the two invariants together imply the desired safety
property. Initially, both invariants hold, since no surrogates exist and all
dirty sets are empty. To show that the collector’s actions preserve the in-
variants, we make use of two lemmas.

LeMMA 1. Suppose P makes a successful dirty call for O. Then as long
as the surrogate created as a result of that call exists, no dirty or clean call
for O will be initiated at P.

Proor. From the time the dirty call is initiated until the surrogate
becomes collectable, P’s object table entry for O contains either the NIL
reference or a weak ref to a surrogate. Before a dirty call is initiated during
object unmarshaling, or a clean call is initiated by the cleanup routine, the
state of the object table is checked. If it contains NIL or a non-null weak
ref, the clean or dirty call is not made.

LEMMA 2. Suppose P creates a surrogate after a successful dirty call
with sequence number sn. While the surrogate exists, seqno(O, P) = sn.

ProoFr. The successful dirty call sets seqno(O, P) := sn. By Lemma
1, no clean or dirty call with a sequence number later than sn is initiated
as long as the surrogate exists. Clean or dirty calls with earlier sequence
numbers may reach owner(0), but they will have no effect on seqno(O, P).

Now let us turn to the proof of the two invariants. To show that Invariant
1 is preserved, we must show:

10

e When a surrogate for O is created at P, P € O.dirtySet.
e When Pis removed from O.dirtySet, there is no surrogate for O at P.

For the first point, note that surrogate creation follows a successful dirty
call, which made P € O.dirtySet. By Lemma 1, no clean call with a greater
sequence number can occur between the dirty call and surrogate creation.
Thus P € O.dirtySet when the surrogate is created. For the second point,
consider a clean call with sequence number sn. At the time the clean call
was initiated, a test of P’s object table found that there was no surrogate
for O, and no outstanding dirty call. Suppose a surrogate exists when the
clean call is executed at (’s owner. The surrogate must have been created
after a successful dirty call with sequence number sn’ > sn. By Lemma 2,
seqno(0O, P) = sn’ > sn, and the clean call will have no effect on O.dirtySet.
To show that Invariant 2 is preserved, we need to show:

e When P is added to O.dirtySet, O is in its owner’s object table.
e When O is removed from its owner’s object table, O.dirtySet is empty.

The second is trivially true, since it is detection of an empty dirty set that
causes O to be removed from its owner’s object table. To see the first, note
that there are two ways that P may be added to O.dirtySet. The first occurs
when O is marshaled from its owner, and the owner is added to O.dirtySet;
in this case O was added to the object table (if not there already) as part
of the same marshaling operation. The other occurs as part of executing a
dirty call for O from P. For the dirty call to execute successfully, O must
be in its owner’s object table.

The combined effect of Invariants 1 and 2 is to guarantee that, so long
as communication between a client and the object’s owner has not failed,
the client will be able to invoke methods of O, because the owner will have
an object table entry for O, and that will protect O’s storage. In addition,
in the absence of communication failures, a dirty call will find the object in
its owner’s object table. This follows easily from a third invariant.

INVARIANT 3. While P is marshaling O, Pis in O.dirtySet.

Proor. If Pis the owner of O, P puts itself into O.dirtySet before it
marshals O and keeps itself there until an acknowledgment indicates that
marshaling is complete. If Pis a client, it must have a surrogate for O, and
it keeps that surrogate reachable until receiving the acknowledgment. By
Invariant 1, this implies P € O.dirtySet.

11

3.2 Liveness

In order to demonstrate that unreachable objects are eventually collected,
we show that if after some time there is no surrogate for O at P, and no
process marshals O to P, then eventually it remains true that P & O.dirtySet.

Proor or LivenEss. Consider the last dirty call initiated at P for O;
let its sequence number be sn. This dirty call either succeeded or failed.
If it succeeded, a surrogate was created. Since that surrogate no longer
exists, it was detected to be collectable, and a clean call with sequence
number sn’ > sn was enqueued at P. If it failed, a clean call was enqueued
immediately, also with sequence number sn’ > sn. Eventually P’s cleanup
demon will make a clean call to O’s owner, repeating it if it fails. If it is
ever received, the clean call will remove P from O.dirtySet. If not, there is
a long-lasting communication failure between P and (s owner. Eventually
this will cause O’s owner to conclude that P has terminated and remove P
from O.dirtySet.

It remains to be shown that P ¢ O.dirtySet remains true. The only
way P could be re-inserted in O.dirtySet is as the result of a dirty call. If
a dirty call arrives after the clean call with sequence number sn’ it must
be one that was reported as a failure, since successful calls are delivered
synchronously. P must have made a strong clean call in response to that
failure, so seqno(O, P) will be retained even when P ¢ O.dirtySet. Since
any dirty call from P for O has a sequence number less that sn/, its arrival
will not cause P to be added to O.dirtySet.

4 Related work

A variety of distributed collection algorithms have been presented in the
literature, some based on reference counting and others on tracing. We
consider each type in turn. It should be noted that some of these algorithms
can deal with objects that persist over process crashes and objects that can
migrate from one process to another. We have not attempted to extend our
approach to handle those situations, since network objects are not persistent
and do not migrate.

Among the reference-counting schemes are several with lower overhead
than the approach proposed here [Bev87, Gol89, Piq91, WW&7]. All can
transfer references with a single message—they don’t require a dirty call to
the object’s owner—but none can collect an object after a client terminates
while holding a reference to it. Each of the approaches has its own way of

12

avoiding the need for a dirty call. Weighted references [Bev87, WW&T] are
the simplest to describe. In this approach, each reference has an associated
integer weight. When the reference is transmitted to another process, part
of the weight goes with the newly-created reference, and part remains with
the original. When a reference is deleted, the owner is informed of its weight;
when the sum of deleted weights equals the starting weight, the object may
be collected. Note, however, that if a process crashes, the owner has no way
of knowing how much weight it held, and so cannot recover from the failure.

Shapiro et al. [SDP92] maintain much the same information as we do,
although their data structures are organized differently. For example, the
owner of an object has a data structure called a scion for each client holding
a reference to the object; the set of scions for an object plays much the
same role as our dirty set in making reference-count operations idempotent.
Shapiro et al. use sequence numbers to eliminate out-of-order calls, and thus
achieve better resiliency to communication errors than the weighted refer-
ence scheme. However, as with weighted references, they do not notify the
owner when an object is transferred. This makes it difficult to recover from
process failure. They sketch several possible extensions to handle process
failure, but do not work out the details.

In contrast, the scheme proposed by Mancini and Shrivastava [MS91]
deals explicitly with process failure. However, their model of object transfer
is somewhat less general than ours. In their approach, the owner is notified
when an object is transferred; however the notification is done by the sender,
before transmitting the reference. When the object is transferred from its
owner, this notification involves only a local procedure call rather than re-
mote communication. The tricky point in this approach is that the sender
might crash after notifying the owner but before sending the reference, leav-
ing the owner’s reference count too high. This is handled by maintaining
an unused bit at the owner for each client of an object; the bit is initially
true, and is set to false when the client invokes a method of the object. If
an object remains unused for a long time, the client is queried as to whether
it received the reference; if not, the reference count can be decremented.
There is a potential race condition between the query and the arrival of the
reference. It is dealt with by having the recipient reply “yes” to the query
if it has asked for a reference but not yet received it. Thus it is necessary
for the recipient to know the identity of the object it is about to receive.
This works in Mancini and Shrivastava’s programming model, because an
object is transferred only after a process has explicitly requested it. We do
not see how to apply this scheme in an environment like ours, where the

13

recipient typically cannot know in advance what object it will receive in a
remote invocation.

Tracing collectors, whether based on mark-and-sweep [Aug87, Der90,
HKS82, Hug85, L1.92, LL86, Sch89] or copying [Rud&6], can collect cycles,
a strong point in their favor. In the algorithms cited, garbage collection is
performed in parallel at all processes. During the tracing phase, processes
exchange information about the reachability of external references. The end
of the tracing phase is reached when no process has any untraced references.
Either a distributed termination detection algorithm or a centralized server
is typically used to determine when this point is reached.

These algorithms require co-operation among a potentially very large
set of processes: those in the transitive closure of the relation “share a
network object”. This is unacceptable in an environment where network
objects are used to implement services—for example, all processes that use
the same name server (at least) would be involved in a collection. Thus
tracing algorithms do not seem a realistic alternative for network objects.

However, we are considering supplementing the current network objects
collector with tracing, to collect cycles that span a fixed small number of
processes. Lang et al. [LQP92] propose a collector that operates on a process
group, collecting all cycles whose edges do not leave the group. Such an
approach should be feasible in the network objects system.

5 Summary

The ideal distributed collector would be safe (collecting only garbage), live
(collecting all garbage), efficient, and fault-tolerant, and it would impose no
burden on the programmer. The design of the network object collector is
based on a set of choices about the relative importance of these goals. For
example, our design has relatively low overhead (the primary overhead is one
remote procedure call on the receipt of a new object). Weighted references
have even lower overhead, but do not allow the collection of objects when a
process fails. By contrast, our design deals gracefully with process failure,
but risks the occasional collection of a reachable object when there is a long-
lasting communication failure. Our algorithm cannot recover cyclic garbage;
this can be viewed as a failure of liveness or a burden on the programmer
(who can ensure liveness by avoiding or breaking cycles). The alternative is
to use mark-and-sweep collection, and we know of no way to do this without
seriously reducing performance.

14

We believe that the set of choices embodied in our collector represents
a good balance for a wide range of programs, including client/server sys-
tems and distributed computations. In general, programming with network
objects is quite easy; in particular, the collector places no restrictions on
the transmission of objects between processes. The network objects system
has been in operation for over a year. Early users, who are primarily pro-
gramming client/server systems, find that it suits their needs well. Further
experience will allow us to evaluate its use in a wider range of applications.

Acknowlegements

Several of the ideas presented here originated in discussions with Andrew
Black, Rivka Ladin, and Butler Lampson. We would also like to thank
Cynthia Hibbard, Jim Horning, Sharon Perl, and Mike Schroeder, who con-
tributed to the presentation of this report.

15

16

References

[AugQ7]

[Bev87]

[BNOW93]

[Der90]

[GolR9]

[Hay92]

[HKS2]

[Hugs5]

[LLS6]

Lex Augusteijn. Garbage collection in a distributed environ-
ment. In PARLF ’87 — Parallel Architectures and Languages
Furope, pages 75-93. Springer-Verlag, June 1987.

D. 1. Bevan. Distributed garbage collection using reference
counting. In PARLF ’87 — Parallel Architectures and Languages
Furope, pages 176-187. Springer-Verlag, June 1987.

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wob-
ber. Network objects. In 14th ACM Symposium on Operating
Systems Principles, pages 217-230, December 1993.

Margaret H. Derbyshire. Mark scan garbage collection on
a distributed architecture. Lisp and Symbolic Computation,
3(2):135-170, April 1990.

B. Goldberg. Generational reference counting: A reduced-
communication distributed storage reclamation scheme. In STG-
PLAN Conference on Programming Languages Design and Im-
plementation, pages 313-321, June 19809.

Barry Hayes. Finalization in the collector interface. In Memory
Management International Workshop ITWMM 92, pages 277—
297. Springer-Verlag, September 1992.

Paul Hudak and Robert Keller. Garbage collection and task
deletion in distributed applicative processing systems. In ACM

Symposium on Lisp and Functional Programming, pages 168—
178, August 1982.

John Hughes. A distributed garbage collection algorithm.
In Functional Programming and Computer Architecture, pages
256-272. Springer-Verlag, September 1985.

Barbara Liskov and Rivka Ladin. Highly-available distributed
services and fault-tolerant distributed garbage collection. In 5th
ACM Symposium on the Principles of Distributed Computing,
pages 29-39, August 1986.

17

[LL92]

[LQP92]

[MS91]

[Piq91]

[Ruds6]

[Sch&9]

[SDP92]

[WWST]

Rivka Ladin and Barbara Liskov. Garbage collection of a dis-
tributed heap. In International Conference on Distributed Com-
puting Systems, 1992.

Bernard Lang, Christian Queinnec, and José Piquer. Garbage
collecting the world. In 10th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 39-49,
January 1992.

L. Mancini and S. K. Shrivastava. Fault-tolerant reference
counting for garbage collection in distributed systems. The
Computer Journal, 34(6):503-513, December 1991.

José Piquer. Indirect reference counting: A distributed garbage
collection algorithm. In PARLFE °91 — Parallel Architectures and
Languages Furope, pages 150-165. Springer-Verlag, June 1991.

Martin Rudalics. Distributed copying garbage collection. In
ACM Symposium on Lisp and Functional Programming, pages
364-372, August 1986.

Marcel Schelvis. Incremental distribution of timestamp packets:
A new approach to distributed garbage collection. In OOP-
SLA’89 Conference Proceedings, pages 37-48, October 1989.

Marc Shapiro, Peter Dickman, and David Plainfossé. Robust,
distributed, references and acyclic garbage collection. In 11th
ACM Symposium on Principles of Distributed Computing, pages
135-146, August 1992.

Paul Watson and Ian Watson. An efficient garbage collection
scheme for parallel computer architectures. In PARLE ’87 -
Parallel Architectures and Languages Furope, pages 432-443.
Springer-Verlag, June 1987.

18

	Abstract
	Contents
	1 Introduction
	2 The algorithm
	3 Correctness of the algorithm
	4 Related work
	5 Summary
	Acknowledgements
	References

