October 31, 1995

SRC Rt

Visual Oblig: A System for Building Distributed,
Multi-User Applications by Direct Manipulation

KrishnaBharat and Marc H. Brown

dliloli[tlall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy istotest thetechnical and practical value of our ideas by building hard-
ware and software prototypes and using them as daily tools. Interesting systemsare
too complex to be evaluated solely in the abstract; extended use allows ustoinvesti-
gate their propertiesin depth. This experience is useful in the short term in refining
our designs, and invaluable in the long term in advancing our knowledge. Most of
the major advances in information systems have come through this strategy, includ-
ing personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it
isin established fields of theoretical computer science, such asthe analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Robert W. Taylor, Director

Visual Oblig: A System for Building Distributed,
Multi-User Applications by Direct Manipulation

Krishna Bharat and Marc H. Brown

October 31, 1995

Original artwork by Jorge Solfi;
modified without permission by Krishna Bharat.

Publication History

This report appeared as “Building Distributed, Multi-User Applications by Direct
Manipulation,” in the Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST’94), November 1994, pages 71-81.

The accompany videotape appeared as “Building A Distributed Application Using
Visua Oblig,” in the Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI' 95), pages 415416 of the Conference Companion.

Author Affiliation

Krishna Bharat is a PhD student in the Graphics, Visualization, and Usability Cen-
ter of the College of Computing at the Georgia Institute of Technology. Krishna's
electronic mail addressiskb@c. gat ech. edu. The work described in this re-
port was performed while Krishna was supported by a research internship at SRC
during the summer of 1993.

©Digital Equipment Corporation 1995

Thiswork may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or par-
tial copiesinclude the following: anotice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, Califor-
nia; an acknowledgment of the authors and individual contributors to the work; and
all applicable portions of the copyright notice. Copying, reproducing, or republish-
ing for any other purpose shall require alicense with payment of fee to the Systems
Research Center. All rights reserved.

Abstract

This report describes Visual Oblig, a user interface development environment for
constructing distributed, multi-user applications. Applications are created by de-
signing the interface with a GUI-builder and embedding callback code in an in-
terpreted language, in much the same way as one would build a traditional (non-
distributed, single-user) application with amodern user interface development en-
vironment. The resulting application can be run from within the GUI-builder for
rapid turnaround or asastand-alone executable. The Visual Obliq runtime provides
abstractions and support for issues specific to distributed computing, such as repli-
cation, sharing, communication, and session management. We believe that the ab-
stractions provided, the simplicity of the programming model, the rapid turnaround
time, and the applicability to heterogeneous environments, make Visual Oblig avi-
able tool for authoring distributed applications and groupware.

Contents

8

9

Introduction

End-User Perspective
Interface-Designer Per spective
Client-Programmer Perspective
System Support

Run-Time Picture

The Extensible GUI Builder
Related Work

Summary

Acknowledgments

References

Appendix A: Application Built in Videotape

Appendix B: Visual Oblig Home Page

15

18

20

21

22

22

23

25

28

1 Introduction

The recent explosion in the quantity and quality of user-interface development en-
vironments is simplifying (and making more enjoyable!) the job of programming
the GUI part of an application. However, current tools address only single-site and
single-user applications. Distributed, multi-user applications are much more com-
plex. Pieces of such applications typicaly run in separate address spaces, often on
heterogeneous machines over a network. The pieces must communicate and syn-
chronize with each other, sharing and replicating data as needed, and handle users
a each site.

This report describes Visua Oblig, a user-interface development environment
for building multi-user applications. To afirst approximation, think of Visua Obliq
as a state-of-the-art user-interface development environment, such as Microsoft’s
Visual Basic, extended to handle distributed applications but without complicating
the programmer’s task.

Visual Obliq consists of a GUI-builder for interactively designing an interface,
and run-time support for handling distribution. The GUI-builder alows the user
to construct the interface in a standard direct manipulation fashion, and to attach
callback code to each widget. The callback code is written in an interpreted lan-
guage, and can access the Visua Obliq runtime library to handle issues specific to
distributed computing. The user who isbuilding the application can runthe applica
tion from within the GUI-builder, or can have the GUI-builder output a stand-alone
executable program. Figure 1 shows the Visual Oblig GUI-builder while creating
a shared-editor application.

We believe that the abstractions provided, the simplicity of the programming
model, the rapid turnaround time, and the applicability to heterogeneous environ-
ments, make Visual Oblig aviable tool for authoring distributed applications.

The organization of this report is as follows. The next three sections describe
the system from three perspectives: the end-user, the interface-designer, and the
client-programmer. The end-user is the person who runs a program built using Vi-
sual Oblig. The interface-designer is the person who uses the GUI-builder for in-
teractively designing the user interface. The client-programmer is the person who
actually writes the code for the application. The distinction between these three
people is primarily one of nomenclature. Because the GUI-builder integrates the
design and testing phases of application development, the interface-designer and
the client-programmer is often the same person.

Section 5 presents the infrastructure upon which our implementation is built.
Section 6 describes how distribution isimplemented, and Section 7 describes how
the system can be extended with more widgets. In the remaining sections, we re-

[@ B Visual Oblig Editor(1) - design

1]

(dir)

(din
Ul-builders.txt
bout-Tel-DP

Save

Initial Contents

File Edit Layout Code [InvITE: | |
. [l Visual Obliq Attribute Sheet |
Form Numeric Choice
Text — ol -
* A B General Attributes
Browser File Browser Name : | editzone Type :| textedit
Frame Boolean
Bg Color : 4| YeryLightYellow Rim = 0|
[® Shared Editor =]
Fg Color : 4| Black Border : = 1|4
Status message...
Font: .4 -*-helvetica-bold-#R-#120-%
This space is available for a small, negotiable fee.
Shadow : Flat| Raised| Lowered Ridged| Chiseled| None
® Video Viewer m Reshape : Center Pin| Scaled Horiz. Stretch | Vert. Stretch
Callback : Foreground Background Edit
. Attached Code
Local Remote :
Initial State : Active Passive| Dormant| Invisible| Apply
@ 54 Text Editor
ReadOnly Clip W Has Scrollbar
vopaper
pap From File :

] This space is available for a snall, negotiable fec.

Figure 1: The Visual Oblig GUI-builder.

view related efforts, and offer some concluding thoughts.

An accompanying videotape shows Visua Obliq in action, building the multi-
user text editor. The code that auser must write to implement this editor appearsin
Appendix A. Findly, Appendix B contains the Visual Obliq Home Page as of the
printing of this report.

2 End-User Perspective

Most prior work on groupware has focused on sharing a traditional single-user ap-
plication by replication at somelevel—the display, theinterface, or the whole appli-
cation. The degree of coupling and the level of replication may vary, but the func-
tionality provided at each siteisthe same. We call such applications homogeneous.
We address a larger class of distributed applications, heterogeneous applications,
wherein the functionality provided at each site may be different. In Visual Obliq,
the client-programmer can decide what goes on at each site.

A distributed application spans multiple siteslinked by anetwork. The program
code need exist only at the site where the application starts up, which is caled the
server-site. Thenit spreadsto siteswhere usersarelocated, called client-sites. Typ-
icaly the server-site is also a client-site.

Aninstance of adistributed program in execution is caled a session. Users at
various sitesmay join or leave asession from timeto time, whereasthe session itself
continues to exist until it is explicitly terminated. Each session has a name which
is of theform

<pr ogr am nane>@ser ver - si t e- nane>

A session is created when a program starts running at a server-site. Typically, this
happens by hitting the “Run” button in the GUI-builder, or by invoking an exe-
cutable that was output by the GUI-builder. The executable isashell script contain-
ing the code generated by the GUI-builder, prefixed by a one line shell command,

#!/ bin/vorun -r

Aswe shall discuss in Section 4, client-programmers write code in Obliq [5], an
interpreted language. Thevor un program isaversion of the Obliq interpreter with
various libraries pre-loaded for handling Visual Oblig's distribution.

Themost common way that auser joinsasession isby invitation by other mem-
bers. Userswishing to beinvited to a session must be running a Visual Oblig Agent
(VOA). TheVOA respondstoinvitations from other sites by displaying awindow at
the invitee's workstation (see Figure 2) that allows the user to accept or decline the

W MO o Doimam vies [} "
Fle Ophiar Aeigee Asooors

Eace: s Ths

De=prewi AL

l:[;i?

Tha Systems Hesearch Conler, o g A0 fuli- time
researchars, We wark in several s Spssic TG
rahwarking, programming lecin

We wan! our ideas and experiancy o] W producis and ko
il Sl Techrical problems, wh LR T T = barahion with
advanced devalopment and 01098 TicTacToe @ gilbodeccom FOF foF BChinica:

SHEC

. Finl;ﬂg_l':lirlg:i | J Accip! | [Feject]
whal's new al SHC
1 Fun Stusf
1 Full=bext searching: Digilals Web = Galeteeper anchiye
1 Gatewaya [M| - ELF - bboards — abwha - asgo - J-Video - man - linger -
athers)
® Hesaarch
M <¢

A prosect plane

by krishna @ iskisk.dec.com

1 SRC publcabions, {a%s. and patents
& Slafl

-------- o= o Ba | Canmee b

Figure 2: Inviting another user to join an existing session.

invitation. 1ssuing the actual invitation istheresponsibility of the client-programmer,
who would typically provide the end-user with adia og box to input the name of the
site where the invitation should be sent.

The other way that a user joins a session is on his own accord, having found
out about it somehow. For example, to join a session called Ti cTacToe at the
machine qi | bo. dec. com an end-user would issue the command

vorun -join TicTacToe@i | bo. dec. com

Although the system provides no access-control on userswishing tojoin an existing
session, an application may implement some policy of its own.

3 Interface-Designer Perspective

The GUI-builder is atool that integrates al stages of the development cycle. It a-
lows the interface-designer to graphically specify the interface, attach code at ap-
propriate places, and execute the resulting application within the environment for

4

testing and debugging. The GUI-builder can also output afile containing a stand-
alone application.

The interface-designer interactively designs a set of top-level windows called
formsusing the GUI-builder. Formscontain widgets and popup windows. Most im-
portantly, each widget can contain callback code that will beinvoked by the system
in response to end-user actions. When a session isin progress, multiple instances
of each form may exigt, at various sites. Thus, forms are both the unit of design and
the unit of distribution. This provides a simple and elegant conceptual model for
the client-programmer, and it is an important contribution of our system.

Figure 1 is a screen dump showing the GUI-builder in action. There are two
top-level windows: the design window (left) is for building the interface, and the
attribute sheet (right) is for manipulating properties of widgets.

The design window has a palette of widgets that may be used to compose the
interface, and a design area where the interface is embedded while it is being de-
signed. The interface-designer may have a number of design windows open while
designing a given application. Currently, the design palette contains the following
types of widgets (see Figure 3): browsers, buttons, choices, file browsers, forms,
frames, numeric fields, scollbars, static text, text editors, toggles, typein fields, and
video players. These widgets are common in modern GUIs, with the exception of
forms, frames, and video players. A form is either atop-level window or a popup-
window within some other form. A form may also have a menu bar. A menu bar
isaproperty of the form widget, not a separate widget. A frameis used to geomet-

(o] This is a Form. | am the Form’s Title
File Edit Layout Import
| | vieuaie |
| like EMACS, an XTerm or a -
The scrolling is optional, as
_lare line-wrapping and v Check Hark

‘Type in some text here.. |

| am a text editor. - -
| can be configured to look Visualize X

Textual Label: = 314 |=

- DS (dir) Lock ﬂ .
ile : LHCHI e
File : = Chcw

Figure 3: Widgets supported by Visual Oblig.

visualobliq

_(din

rically constrain the location of other widgets; it has no interactive behavior. The
video player isused to playback audio-visual input from a specified host. Section 7
describes how Visual Oblig can be extended with more widgets.

The user-interface of the GUI-builder issimilar to other GUI-builders. Thesize
and location of widgets are set in the design window; all other properties are spec-
ified in the attribute sheet. In the design window, a single-click is used to select a
widget, and a double-click causes the attribute sheet to be loaded with the selected
widget’s properties. Editing operations, such as cut and copy, apply to the selected
widget. Resizing and moving a widget are subject to the bounds of the frame or
form inwhich it lies. Moving aframe causes al of its children to move with it (in-
deed, thisisthe primary purpose of aframe). Resizing aframe or aform is further
congtrained to not clip any of its children. Finaly, there are ways to align, shape,
and distribute widgets under the same frame or form.

Thetop half of the attribute sheet window displays properties that are applicable
to al widgets. These properties mostly relate to the visua characteristics (e.g., font
and colors) and to how the callback code should be invoked (foreground or back-
ground, local or remote). Some widgets may not use some properties in any way
(e.0., ascrollbar doesn’'t usethe font information; aframe never invokes acallback),
and such properties are disabled appropriately. Thebottom half of the attribute sheet
has fields for widget-specific attributes. For example, the browser-specific proper-
tiesaretheinitial contents (aset of strings or afile containing text), aflag indicating
whether multiple selections are supported, theinitial selection, and acheck-box tog-
glefor indicating what type of mouse clicks should cause the callback to beinvoked
(e.g., on every down-click or only on the up-transition of a double-click). Figure 4
shows the attribute sheet and the popup dialogs that allows the interface designer to
select afont and a color.

A novel part of the Visual Obliq GUI-builder isthesimple, but expressive, model
for specifying a widget's behavior when its parent is reshaped at run-time. This
model isasimplification of Cardelli’s stretching model [4], with which we had con-
siderable experience using as interface-designers. Widgets may be thought of as
rectangular sheets of rubber, attached to their parent by one or more pins. The fol-
lowing settings are supported: pinned—a single pin at the center; scaled—pins at
thefour corners; vertical stretchy—pins at the top and bottom edges; and horizontal
stretchy—pins at the left and right edges. Each widget has adefault setting. For ex-
ample, buttons use pinned, text editors use scaled, and typein fields use horizontal
stretchy. The setting can be changed in the attribute sheet.

Thus far, we described the GUI-builder’s design mode. The GUI-builder aso
has modes corresponding to other phases in the application-devel opment process:
testing, building, and running.

(@ Visual Qbliq Attribute Sheet

Font : 4| -*-helvetica-bold-*R-*180-=
General Attributes

Name :| instrunents Type :| brouser Color Selection

i YeryYerySlightl]
g 51ight L

Bg Color : 4| SLightlyReddishSienna Rim
Fg Color : A| Black Border : =

Font: .A| -s-helvetica-bold-*R-%180-% 3
i YeryYeryYery

Shadow : Flat| Raised| Lowered Ridged| Chiseled| Mone

Reshape : Center Pin| Scaled Horiz. Stretch| Vert. Stretch
n
Callback : Foreground Background Ediy
. Attached Code
Local Remote : H
Initial State : Active Passive| Dormant| Invisible, Apply
Inherit Color Apply Cancel
]
Browser
Guick W Allow Multiple Selection
Edit Mode Add First Add After Delete PSP . LLEIAE § R I I | T b o e
EeleciMode Item to Insert :| cynbals =
Font Selection
Initial Contents
:t.r.‘unpet. . . . Tiry
s Times | Helvetica | Courier e
clarnet . . .
tuba Times |Helvetica Courier Medium
Times Helvetica | Courier Blg
Times | Helvefica | courier Huge
n
Inherit Font Use Fixed Font Apply Cancel
i
Initial Mantante

Figure 4: The attribute sheet of the Visual Obliq GUI-builder (left), and its popup
dialogs for sdlecting a color (top-right) and a font (bottom-right).

In the test mode, the user is allowed to interact with the interface without han-
dles over the widgets intercepting the input. No callbacks are invoked, but wid-
gets react to user input, menus are active and the resize model takes effect so the
interface-designer gets a pretty good idea of the look-and-feel of the interface.

In the build mode, the GUI-builder generates afile that can be executed. This
filehasthreelogical components: Thefirstisatextual description of theinterfacein
the FormsVBT language [2]. The second component isaprogram in the Obliq lan-
guage [5] that embeds the client-programmer’s callback code and builds the inter-
face from the description. The third part is a one-line shell command to invoke the
interpreter, as discussed in Section 2. The contents of this file, though textual, are
not intended to be viewed or edited by the client-programmer. Section 5 describes
the FormsVBT and Obliq languages, and the next section describes the facilities
available to the client programmer.

In the run mode, afileis not written disk. Instead, the contents of the file are
given to an Obliq interpreter that is linked into the GUI-builder, thereby provid-
ing rapid turnaround. As a convenience, the GUI-builder provides away to invite
other clientstojoin the current session. Thisisdone using thetypein field in the up-
per right of the design window. However, most applications provide such afacility
themselves; it is quite easy to implement, as we shall describe later.

4 Client-Programmer Per spective

The bulk of the code that a client-programmer writesiswidget callbacks. Callback
code isinvoked in response to user action in awidget. To support distributed and
heterogeneous applications, three other categories of code can also be specified:
form code, global code, and session-constructor customization code. These aredis-
cussed |ater.

All client code iswritten in Obliq [5], an interpreted language that supports dis-
tributed object-oriented computation. Section 5.1 describes the language in more
detail. The Obligcodethat isgenerated by the GUI-builder (and then fedto an Obliq
interpreter for execution) contains a complete Obliq program. However, client-
programmers never actually see the complete Obliq program; the various code frag-
ments, such as callbacks, are written in the appropriate parts of the GUI-builder’'s
attribute sheet window.

To get afeeling for coding in Visua Oblig, wefirst examine the callbacks for a
non-distributed application. Consider agame of Tic-Tac-Toe, asin Figure 5. There
are 11 widgets within aform: nine buttons comprising the game board, one static
text showing the string “ Current player:”, and a typein field. Initially al buttons

(@ Multi-Site Tic-Tac-Toe

? dave ?
@ Single-User Tic-Tac-Toe
? ? ? dave elissa elissa
? ? ? ? dad dave
2 2 2 Player:
RESET dad
Current player: X

Invite to play:

Figure5: A single-user, non-distributed game of tic-tac-toe (left), and a multi-user,
distributed version (right).

display a question mark. When one of the nine buttons is clicked for thefirst time,
that button’s label changes from a question mark to the string in the typein field.
Through the GUI-builder, the buttons were given the names b1, b2, ..., b9, the
typein field the namewho, and thetop-level formthenamet i ckt ack. Thetypein
field and the static text don't have callbacks; the callback for each button is similar.
It looks as follows for b5:

et curr = SELF. b5. get Text ();
if text_equal (curr, "?") then
| et sym = SELF. who. get Text () ;
SELF. b5. put Text (sym ;
end;

Although we haven't explained the syntax or semantics of Obliq, the callback code
is hopefully easy to follow.

Thevariable SELF isdefined by Visua Obliqto beahandleto theform-instance
in which the user clicked, causing the callback to be invoked. SELF isactualy an
object with fields for each widget in the form. For example, SELF. who refersto
thetypeinfield. Each widget in turnisan object, with methods to retrieve and mod-
ify its properties. For example, al typein widgets have aget Text method to re-

9

Client Y

Board[i]
Server Vides Board

Board

Client X
Board[il] .grabButton.makePasasive ()

Figure 6: Remotely accessing a widget.

trieve their contents. They also have methods put Text , get Font , put Font ,
and so on.

As mentioned before, the unit for distribution in Visua Obligisaform. Visual
Obliq crestes an array of handles to form-instances; each element of the array isa
handle to an instance running, typically at adistinct site in a separate address space.
Thearray isstored at the server-site. What makesthis strategy abig winisthat there
isasingle, global name-space, allowing one part of the distributed application to ac-
cess and modify objects in other parts, without caring about their physical location.
Such lacation transparency applies to the user-interface, and also to any additional
fields that the programmer may attach to the form. Consequently, both the state of
the form-instance and the widgets within it may be remotely accessed and manip-
ulated.

Figure 6 shows how location transparency can be used by one client-site to dis-
able a button at another client-site. The top level form is named Boar d, and the
array of handles to the form-instances is stored in an array named Boar d at the
server-site. There are two client-sites, and y. Client z can disable the button
named gr abBut t on on client y by the oneline

Board[i].grabButton. makePassi ve();

just by knowing that client-site y is the ith instance in the current session.

Let's now consider adistributed version of the Tic-Tac-Toe application, where
all sites are playing the same game (see Figure 5). The callback that changes the
button’s label needs to be changed to the following

10

I et curr = SELF. b5. get Text ();
if text_equal (curr, "?") then
| et sym = SELF. who. get Text ();
foreach f in ticktack do
f. b5. put Text (sym;
end
end;

in order to cause the labelsto change at all sites. (Thef or each statement iterates
through an array, setting the iteration variable to each successive e ement of the ar-
ray.) A new player can be added to the game by including atypein field in which a
player types the name of a site to be invited to join the game. The callback for the
new typein field, i nvi t ee, isquite simple:

| et destination = SELF.invitee.getText();
i nstal | At (destination);

Theprocedurei nst al | At isprovided by Visual Obliq to cause an application to
spread to another site. The effect of calling i nst al | At (si te) isfor the run-
time to contact the Visual Oblig Agent at the client-site si t e to popup a“You are
invited ...” message (see Figure 2. If the user declines, i nst al | At returnsfalse;
otherwise it returns true. Here the return value isignored. Most importantly, if the
user accepts the invitation, the Visual Oblig Agent will install a new copy of the
application at the client-site si t e, and the global array t i ckt ack, stored at the
session’s server-site, will grow by one element. Section 6 describes how this hap-
pens in more detail.

Although al code originates at the server-site and moves to the client-sites, the
display of the gameisnot the same at all sites! Inthissimple Tic-Tac-Toe example,
the contents of thewho typein field will probably be different (each user will typein
his own marker!), and the size of the window is under the user control at each site.
Of course, the colors, fonts, and other screen resources may be different, depending
on how the X server at each site resolvesthe resource requests. Ingeneral, asession
may be configured so that certain forms get instantiated at some sites and not at
others. For instance, in the distributed multi-user editor described in Appendix A,
the server-site has an instance of a*“moderator” form. This form allows the user at
the server-site to yank the “floor” from one participant and give it to another.

41 Other client-code

We now consider the ather types of code that the programmer can write. These pro-
vide client-programmers with awide-range of choices of distributed programming

11

techniques to work with. Visual Obliq takes care of inserting the code into the ap-
propriate places in the generated Obliq program.

411 Form code

The client-programmer can extend a form object with additional data-fields, pro-
cedures, and methods. It's important to understand that although a handle to each
form-instance is stored in an array of handles at the server-site, each instance itself
islocated at aclient-site. Each client-site is a separate address space, typically on a
separate machine. Thisisthetechnique used by the client-programmer to associate
“local code” with client sites. Any code associated with a form gets replicated in
each of itsinstances and is hence local to the site where itsinstance is created.

Data-fields, procedures and methods within a form-instance can be can be ac-
cessed remotely. When a data-field is accessed remotely, the data gets copied over.
Likewise, invoking a procedure which is part of aremote form-instance causes the
procedure to be copied over and executed locally. However, when a method of a
remote instance isinvoked it executes at the remote site. For example, if client-site
¢ were to execute

x = Dept Enps[5] . avgRai se(sal ary);

the code for procedure avgRai se would be copied from instance 5 to client-site
¢, and executed at client-site c. If avgRai se happened to be a method instead, it
would execute at the site where instance 5 resides.

4.1.2 Global code

The client-programmer can designate additional data-fields, procedures, and meth-
odsto be stored globally for the session, rather than on aper-form basis. Data-fields,
procedures, and methods respond to remote accesses as in the previous case. This
is where the client-programmer will place the “globa” (i.e., shared) portion of the
application code.

413 Session-Constructor Customization code

The GUI-builder generates a procedure called the session-constructor to engineer
the spread of the session from site to site. The session-constructor is executed at
each client-site when it joins the session, taking the local site-name as an argument,
and bootstraps the session at the site. The session-constructor is responsible for in-
stantiating the forms needed by the site initialy.

12

The default session-constructor creates one instance of each form that has been
designed in the GUI-builder. The client-programmer can edit the constructor to de-
cide how many instances of each form should be initially created at each site. For
heterogeneous applications, the session-constructor can be made conditional.

This procedure may be viewed as aticket that permits a site to join a session.
It is exported when invitations are extended, and may be imported from a known
purveyor, when admission to the session is desired.

4.2 Remote Callbacks

Earlier wedescribed how location transparency allows remote objectsto be accessed
asif they werelocal. Visua Obliq also makesit easy to write distributed callbacks.
The primary purpose of such distribution is load-sharing, and exploiting the hard-
ware (e.g., a supercomputer) or software (e.g. a database) of some particular ma-
chine.

As part of the attribute sheet, the client-programmer can specify that a callback
will be executed remotely and provide an Obliq expression that, when evaluated
at run-time, will designate an instance of aform (not necessarily the same type of
form!) where it should execute. Visua Obliq copies the callback to the remote in-
stance, and executes it there. References to SELF will still pertain to the instance
wherethe callback originated, and hence the semantics of the callback are unaltered.
If fields within the remote instance also need be accessed, they may be referenced
using the prefix REMOTE instead.

Since shipping acallback to aremote siteis not necessarily more expensive than
asingle remote reference, such remate callbacks provide an efficient alternative to
making multiple remote accesses.

4.3 Background Callbacks

The client-programmer can specify within the attribute sheet that a callback should
be executed in the background. Thiswill cause a separate thread to be forked in or-
der to execute the callback. This feature is orthogonal to remote execution. Back-
ground callbacks are useful when a callback is known to take along time and can
be executed asynchronously with other callbacks.

4.4 Synchronization

Although a global name-space simplifies distributed programming a great deal, it
does not address the issue of synchronization. Through the GUI-builder, it is pos-

13

sible to specify that each callback method should be executed mutually exclusive
of al other callbacks in the session. However, many other styles of protection and
serialization are possible, and may be implemented using Oblig's repertoire of syn-
chronization primitives.

For instance, here’'s away to make a callback conditionally execute. That is, it
will execute only if no other callback in the session, protected by the same lock, is
being executed. First, we add the following global code:

var Ness = { serialized,
| ocked => fal se,
Test AndSet Lock => net h(s)
i f not (s.Locked)

then s. Locked := true; true
el se fal se end
end,
Unl ock => net h(s)
s. Locked : = fal se
end

}

The code defines a new object, Ness, with a data field called | ocked, and two
methods. The keyword seri al i zed is an Oblig primitive to indicate that there
is a hidden mutex. The mutex will be acquired on entry to a method and released
upon completion. Then, we modify the callback call asfollows:

i f Ness. Test AndSet Lock() then

Ness. Unl ock();
end;

Thecodeindicated by the ellipsesis executed only if no other callback inthe session
is executing code protected by the Ness lock.

Given location transparency, implementing custom synchronization schemesis
no more complicated than in a single address-space.

45 Robustness

Failures are acommon cause of concern in distributed applications. Any remote ac-
cessiscapable of raising an exception, which could crash the session if not properly
handled. The Visua Obliq GUI-builder protects code it generates with exception-
handlers. The client-programmer is expected to do the same at some granularity.

14

5 System Support

In the previous section we presented Visual Oblig's programming model for dis-
tributed applications. The model makes many demands on the underlying system.
Data and code need to be copied and shared across address spaces, methods need
to be invoked on remote objects, and session-constructors must be made publicly
available. In this section we describe how the SRC Maodula-3 programming envi-
ronment supports the implementation.

5.1 Oblig and Network Objects

To quote Carddlli [5]: “Oblig is a lexically-scoped untyped interpreted language
that supports distributed object-oriented computation. An Oblig computation may
involve multiple threads of control within an address space, multiple address spaces
on amachine, heterogeneous machines over alocal network, and multiple networks
over the Internet. Obliq objects have state and are local to a site. Oblig compu-
tations, in the form of procedures, can roam over the network, while maintaining
network connections.”

In Obliq all entities are composed of constant values, which areimmutable, and
locations, which are mutable. When an entity is transmitted to a remote site, the
constant values within it are replicated, while locations within it are transmitted as
network references. Operations on a network reference will happen transparently
a the origina site. The fields and methods in an object are locations. So are the
elements in an array and variables in general. Thus, objects, arrays and variables,
for all practica purposes, remain rooted in the address space where they are created.
However, when aprocedureistransmitted, the code for the procedure iscopied over
to the remote site (because it is a constant) and gets run there, while variables in its
scope become network references. Thus, when a praocedure is transmitted in Obliq,
its scope gets transmitted as well. This permits the procedure to retain its original
semantics in the new address space.

We usethistechnique in Visual Obliqto spread the session from siteto site. Ob-
jects can beinstantiated in another address space by transmitting procedures which
construct them. Thisis how we instantiate forms at client-sites. We create them
using form construction procedures called form-constructors, transmitted from the
server-site. These procedures retain their scope in the client address space. At the
sametime they are able to acquire ahandle to the local scope, which ispassed in as
an argument called LOCAL. This enablesthem to get accessto local widget creation
and management code.

15

Visual Oblig

|
Oblig FormsVBT
Network
Objects Trestle
| Modula 3 |
| Ultrix | | Xlib |

Figure 7: The SRC Modula—3 programming environment.

Oblig's static scoping is heavily utilized in Visua Oblig. Objects take on the
scope of the procedures that create them. If the procedures that create a set of ob-
jects were transmitted from the same address-space, then the objects will share a
common scope. Thisis how we implement a global name-space in Visual Oblig.
Form-instancesinherit the scope of the form-constructors that create them, and hence
get access to the scope a the server-site. Instance arrays, form-constructors and
other forms of global code are placed in the initial, common scope at the server-
site, and are hence globally visible.

The Oblig distribution and data sharing mechanisms are built using the Modula-
3 Network Objects package. Network Objects[3] are special Modula-3 objects that
support remote access to fields and methods. Obliq uses a Network Object Daemon
to make object references publicly available. In Visua Obliq we use this mecha-
nism to makethe session-constructor publicly available. Any sitethat startsaVisua
Oblig must must also be running a Network Object Daemon, to make the session
public. Obliq has support for exception-handling and synchronization, which are
invaluable for building robust and deterministic distributed applications.

Oblig (and hence Visual Oblig) can serve as an embedded command language
for Modula-3. Further, Obliq is extensible, and Modula-3 types and packages can
be integrated as needed. One such extension isthe FormsVBT package.

5.2 FormsVBT and Trestle

FormsVBT [2] is a system for building graphical user interfaces. It consists of a
language for describing an application’s user interface, and a runtime library for
communicating between an application’s code and the user interface. (FormsVBT
provides a stand-alone application for constructing the user interface, akin to Vi-
sua Oblig's GUI-builder. This part of FormsVBT is not used by Visua Obliq.)

16

FormsVBT isimplemented in Modula-3 and uses the Trestle Ul toolkit [9] running
on X windows.

A user interface in FormsVBT is a hierarchical arrangement of components.
These include passive visual elements, basic interactors, modifiers that add inter-
active behavior to other components, and layout operators that organize other com-
ponents geometrically. Inthe FormsVBT language, the arrangement iswritten asa
symbolic expression (S-expression). The outermost expression is the form or top-
level component, and subexpressions are either properties that modify acomponent
or other, subordinate components.

The runtime library provides the communication between an application and
its user interface. There are procedures to convert an S-expression into a window
object, proceduresto register event-handlers that will beinvoked in response to user
actions, proceduresto retrieve and modify the values of the components, procedures
to change the appearance (and even the hierarchy) of the components, and so on.

Each component in FormsVBT isimplemented by awindow class, caled aVBT,
provided by Trestle. Most of the things that a programmer would want to do with
a component can be done via the FormsVBT interface. However, there may be
occasions when the programmer would like direct access to the underlying VBT.
FormsVBT provides such access.

The GUI showninFigure 2isdescribed by thefollowing FormsVBT S-expression:

(Shape (Wdth 350) (Height 400)
(VBox
(Rim (Pen 10) (BgColor "Black") (Color "White")
"Sessi on Request")

Fill
"You are invited to a session of"
Fill
"Ti cTacToe @qil bo. dec. cont
Fill
"by krishna @t sktsk. dec. cont
Fill
(HBox
Fill
(Button %accept (BgCol or "Pal eGeen") "Accept")
Fill

(Button % ej ect (BgColor "Pal eRed") "Reject")
Fill))))

Thetwo buttons have been given names so that callbacks can beregistered for them.

17

6 Run-TimePicture

Figure 8illustrates the spread of asession fromthesitenamedash. pa. dec. com
to two others.
Imagine that the user at ash. pa. dec. comtypes

vorun -r foo

The command vor un runs the Obliq interpreter with Visual Obliq support code
(inthefilevo-1i brary. obl) pre-loaded. The Oblig program in f 0o. obl is
loaded, creating the session f oo@sh. pa. dec. com Thefile f 0o. obl aso
causes the creation of a session-constructor and a form-constructor. The session-
congtructor is registered under the name f oo with the local Network Object Dae-
mon; it will be needed if aremote client-site wishes to join the session. The form-
congtructor is aprocedure that is used to build and install atop-level window from
the FormsV BT textual description. Thereisone form-constructor for each top-level
window defined in the application. In this case, there is asingle top-level window,
and it was given the name Boar d. The final step in the execution of f 00. obl is
the invocation of the session-constructor. The default session-constructor instan-
tiates a single form by invoking each form-constructor. The machine ash is now
both the server-site and a client-site.
At ancther site, bay. pa. dec. com the user types

vorun -join foo@sh. pa.dec. com

Thisvor un program is aversion of the Obliqg interpreter, with thevo-1i brary
already loaded. The- | oi n option usesaprocedureinthelibrary toimport arefer-
enceto the session-constructor named f 00, from the Network Object Daemon run-
ning on ash. pa. dec. com and executes the session-constructor. The session-
constructor causes the form-constructor procedure to be copied over and executed.
The form-constructor creates and initializes an Oblig object to manage the user-
interface. The object computes the S-expression for the its interface from the at-
tributes of itscomponents. Therest of theform-constructor convertsthe S-expression
into aVBT tree, attaches callbacks to the VBTs and ingtalls the tree in the window
system. A handleto thewindow object isadded atomically totheglobal array called
Boar d maintained at ash (the server-site), and the window object isinstalled in
the window system at bay.

Finaly, theuser at bay. pa. dec. cominteractswith the application and even-
tually performs an operation that invites the user at oak. cr | . dec. comto join
the session. This is brought about by invoking the built-in routine i nst al | At
fromacalback. Thei nst al | At procedure imports a handle to the Visua Obliq

18

Site #2 Net Obj Daemon
(Client) /_»voa@oak.crl.dec.com

Site #0

AVOA voa.obl (Server & Client)

vo-library .obl Net Obj Daemon

"foo@ash.pa.dec.com
BAY

Obliq Interpreter

)
foo.obl session
constructor

" « form
Board constructo}

oak

bay

vo-library .obl

vorun -join foo@ash

Obliq Interpreter

vo-library .obl
Obliq Interpreter

Legend
Import
Site #1 =xpor
(Client) Invoke ——»

Figure 8: An example scenario.

Agent (VOA), which is an Obliq object registered with the Network Object Dae-
mon running on oak. crl . dec. com Then, i nst al | At invokes a method on
this object, passing in the session-constructor for the application. The method pops
up an invitation window (shown in Figure 2) to find out if the user at oak wishesto

join the session. If the user agrees, the session-constructor (passed as a parameter
from bay) is executed as before.

19

7 TheExtensible GUI Builder

All widgets in Visual Obliq are built out of FormsVBT components. The widget
set in Visual Obliq isextensible and any composite FormsVBT object can be easily
integrated.

Here is the FormsVBT S-expression that defines a (smplified version of the)
Visual Oblig button widget named b:

(Bor der %bBorder (Pen 1)
(Button %
(TSplit =0
(Text 9%Text "Label™)
(Pi xmap Y%Pi xmap "/dev/null"))))

(The TSplit component is used to display exactly one of its children. Here, the
TSplit is used to decide whether to display some text or a pixmap in the button.)
A variant of this basic S-expression is used to generate the widget both at design-
time and at run-time.

At design-time, the GUI-builder will modify the S-expression to reflect the val-
ues that the user has specified for various attributes. Also, additional components
are wrapped-around the S-expression, in order to block mouse clicks and to support
moving and resizing widgets. At design-time, there is a property table associated
with each widget. The property table maps property namesto property values. This
information is copied into the attribute sheet when a user double-clicks on awidget;
it is updated from the attribute sheet when the user clicks " Apply”.

Specifically, only four elements are required to add a new component to Visual
Obliq:

1. A Modula-3 procedure for generating a FormsVBT S-expression for awidget
from a property table. For the widgets currently implemented in Visual Obliq,
this procedure has been implemented in atable-driven fashion. In each case, it
replaces place-holders in atemplate S-expression with values from the prop-
erty table.

2. A FormsVBT S-expression (for the bottom half of the attribute sheet) that con-
tains ways to modify widget-specific attributes.

3. Three Modula-3 procedures for interacting with the attribute sheet. Procedure
| oadAt t ri but es() copiesawidget’'sproperty tableinto the attribute sheet;
procedure checkAt t ri but es() validates data in the attribute sheet and
generate relevant error messages, and procedurecopyAt t ri but es() copies
attributes from the attribute sheet back into the widget's property table.

20

4. A widget-constructor, whichisan Obliq procedure, storedinvo- 1 i brary. obl .
Thisprocedureisinvoked each timethat anew instance of thewidget iscrested
in order to instantiate an object to manage the instance. The object thus cre-
ated provides the application programmer’s interface to the widget. For exam-
ple, the video player widget has methods pl ay(sour ce),cl ear (), and
vol une(| evel).

The first three elements are needed by the GUI-builder; the last element is needed
so that callback code can access the properties of the widget.

8 Related Work

There has been considerable work in CSCW in the area of multi-user applications,
or groupware. General purpose groupware systemscomein two flavors, application
sharing systems and groupwaretoolkits. The*Unofficia Yellow Pagesof CSCW” [8]
provides a comprehensive list of both sorts.

Application sharing systems alow a traditional single-user application to be
shared by replication at some level. Usualy it happens at the level of the display,
asin XTV [1], and Shared-X [6]. This conforms to our notion of homogeneous
applications.

Groupwaretoolkits such as Rendezvous[10] and GROUPKIT [11], on the other
hand, provide the flexibility needed to author heterogeneous groupware. These sys-
tems differ from Visual Obliq in the abstraction provided for distribution. In Ren-
dezvous the client-programmer makes use of a*“ sharing object” which the runtime
system is responsible for maintaining in a consistent state across address-spaces.
Slotsininterface components may be constrained to thosein sharing objectsto achieve
what-you-see-is-what-1-see. In GROUPKIT, messaging objects called “readers’
and “writers’ are used to provide the client-programmer with a message-passing
facility. We believe that the abstraction of Visua Oblig's “location transparency”
ismore powerful and simpler to use (sinceit istantamount to asingle address space)
than the abstractions found in contemporary groupware toolkits.

Fresco [7], currently under development, will allow the distribution of user in-
terface components using CORBA. GUI components will have IDL interfaces de-
fined for them so that they may be accessed remotely, alowing interface compo-
nents in different address spaces to be pieced together to form a GUI hierarchy.

The combination of Obliq and FormsVBT most closely resembles Tcl/Tk with
the Tcl-DP extension [12]. Obliq provides a cleaner framework for implementing
groupware than Tcl because the language inherently supports the notion of multiple
address-spaces, remote references and procedure migration. Visual Oblig could be

21

written using Tcl-DP rather than Obliq for writing callbacks, at the cost of simplic-
ity in the client-programmer’s model.

Visual Oblig could probably also use General Magic's Telescript rather than
Oblig, and MagicCap probably provides an environment much like that of Visual
Oblig's GUI-builder. Unfortunately, technical details about Genera Magic's sys-
tems are not public.

Finaly, we should point out that there are many interesting GUI-builders that
have been reported intheliterature, and many are available commercially. Wemod-
eled our GUI-builder on Microsoft’s Visual Basic.

9 Summary

Visual Oblig was implemented mostly during the summer of 1993, and is reason-
ably complete. Thus far, it has been used only for “hacking around” and building
toy applications. As the accompanying videotape verifies, simple (yet non-trivial)
distributed applications can be built in amatter of minutes.

Implementing distributed applications isnotorioudly difficult, and yet the popu-
larity and importance of collaborative toolsisgrowing. Given theright abstractions
the task of the programmer can be greatly smplified. We believe that abstractions
that mirror a user’'s mental model of a distributed application are bound to work
well. This was the goal behind developing Visual Oblig. The programmer is able
to design windows, specify how many instances should appear at each site, and how
they interact. For each type of window, the programmer can find out dynamically
how many instances there are, and access each one by name. The fact that thisis
happening in separate address-spaces is hidden.

Visual Obliq provides a stand-alone environment for creating distributed appli-
cations rapidly and simply. It isthefirst system that combines the convenience of a
GUI builder with a groupware toolkit, thereby providing groupware programmers
and distributed application programmers with an integrated “design-code-and-go”
solution.

Acknowledgments
We are indebted to L uca Cardelli for devel oping Oblig, for answering many (some-

times silly) questions, and offering lots of (always) sound advice. Paul McJones
helped improve the readability of this report.

22

References

[1] H. M. Abdel-Wahab, and M. A. Feit. XTV: A Framework for Sharing X Win-
dow Clients in Remote Synchronous Collaboration, Proceedings of the IEEE
Conference on Communications Software, pages 159-167, April 1991.

[2] Gideon Avrahami, Kenneth P. Brooks, Marc H. Brown. A Two-View Ap-
proach To Constructing User Interfaces. Computer Graphics, 23(3):137-146,
July 1989.

[3] Andrew D. Birrell, Greg Nelson, Susan Owicki, and Edward P. Wobber. Net-
work Objects. Proceedings of the 14th ACM Symposium on Operating System
Principles, pages 217-130, December 1993.

[4] Luca Carddli. Building User Interfaces by Direct-Manipulation. 1st Annual
ACM Symposiumon User Interface Software and Technol ogy, pages 152—166,
October 1988.

[5] Luca Cardelli. Oblig: A language with distributed scope. Research Report
122 Digital Equipment Corporation, System Research Center, Palo Alto, CA,
March 1994.

[6] P. Gust. Shared-X: X in aDistributed Group Work Environment, Second An-
nua X Technical Conference, January 1988.

[7] Mark Linton and Chuck Price. Building Distributed User Interfaces with
Fresco, Proceedings of the Seventh X Technical Conference Jan 1993, pages
77-87.

[8] P.S. Mam. The unOfficial Yellow Pages of CSCW. Classification of Coop-
erative Systems from Technological Perspective, University of Tromsg, to ap-
pear.

[9] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Technical Re-
port 68, Digital Equipment Corp, System Research Center, Palo Alto, CA, De-
cember 1991

[10] John F. Patterson, Ralph D. Hill, Steven L. Rohall, and W. Scott Meeks. Ren-
dezvous. An Architecture for Synchronous Multi-User Applications, CSCW
"90, October 1990, pages 317-327.

23

[11] Mark Roseman and Saul Greenberg. GROUPKIT—A Groupware Toolkit for
Building Realtime Conferencing Applications, CSCW '92, November 92,
pages 43-50.

[12] Brian C. Smith, Lawrence A. Rowe, and Stephen C. Yen. Tcl Distributed Pro-
gramming, Proceedings of the Tcl Conference, 1993.

24

Appendix A: Application Built in Videotape

The screen dump below shows a rudimentary multi-user editor constructed during
the accompanying videotape. Thewindow on theleft isthe shared editor; it appears
at dl client-sites. At any given time, at most one participant (i.e., auser at a client-
site) “owns the floor,” and this is the only person who is able to type into the text
editor; the text editor widget on every other participant’s form-instance is dormant.
The owner of the floor may relinquish the floor by clicking on the “Release” but-
ton. At that point, the floor can be grabbed by another participant by pressing the
“GRAB!"” hutton. The typein field labeled “Invite:” alows participants to invite
other usersinto the session.

Thewindow on theright isamonitor for amoderator, the user at the server-site.
The monitor window contains abrowser with alisting of participants. Whenever a
user grabsthefloor, the appropriate entry in the browser ishighlighted. Also, when-
ever an entry in the browser is selected by the moderator, the floor is yanked from
the current owner and givento the selected party. (The videotape tape does not show
the code necessary for supporting the monitor window.)

Thenamed widgetsin the shared-editor form (named MUE) are asfollows. gr ab
isthe“GRAB!” button; r el ease isthe”Release” button; i nvi t ee isthetypein

(@] Multi-User Editor =]
Floor grabbed by ash.pa.dec.com

{l| How does 8.15 sound? (@ Monitor =

lqilbo.pa.dec.
11 fine by me - mk {qilbo.pa.dec.com

1r : Eébay.pa.dec.cum
Jd> we need to pick up Bob joak.crl.dec.com
Invite:
GRAB! Release

Figure 9: MUE: A multi-user editor with monitor.

25

field; edi t or isthe text editor; and nsg is the status message at the top of the
form. All of the callbacks are set to be run mutualy exclusively. Initialy, edi t or
isdormant and r el ease ispassive. The monitor form is named Moni t or .

The calback for the “GRAB!” button does the following: The “GRAB!” but-
tons at al client-sites are disabled and the status messages at all client-sites are up-
dated appropriately. Also, the user who clicked onthe*“ GRAB!” button hashis” Re-
lease” button and text editor enabled, and the appropriate entry in the moderator’s
browser is selected to show who has the floor. Here is the actual Obliq callback
code:

foreach f in MJE do
f.grab. nakePassi ve();
f.nmsg. put Text("Floor grabbed by " & LOCAL. HOSTNANME)
end;
SELF. rel ease. makeActive();
SELF. edi t or. nakeActive();
Monitor[0].list.sel ect(LOCAL. HOSTNAME) ;

The callback for thetext editor copiesthe entire contents of the editor to al other
sites after every keystroke:

| et contents = SELF. editor.getText();
foreach f in MJE do
if not (f is SELF) then
f.editor. put Text (contents)
end
end;

The callback for the“Release” button causes the user’sinterface to return to the
initial state (the “Release” button is passive and the text editor is dormant), and the
“GRAB!” button is enabled on all client-sites. Also, the selection is removed from
the monitor’s browser, since there is no longer any participant who owns the floor.
Here isthe calback code:

foreach f in MJE do
f.grab. makeActive()
end;
SELF. r el ease. makePassi ve();
SELF. edi t or. nakeDor mant () ;
Monitor[0].list.desel ect (LOCAL. HOSTNAME) ;

The callback to invite anew user into the session is as follows:

| et destination = SELF.invitee.getText();
i nstal | At (desti nation);

26

Whenever a client-site starts up, it must be added to the moderator’s browser.
Thisis done through the following initialization code that is part of the MUE form:

Moni tor[0] .1 ist.add(LOCAL. HOSTNAME) ;

The monitor form has one widget, abrowser named| i st . Whenever the mod-
erator clicks on an element of the browser, the floor is yanked from the current
owner and given to the selected party. Here is the code to do that:

[et owner = SELF.|ist.getlndex();
| et ownerName = SELF.list.getEntry();
foreach f in MJE do
f.grab. nakePassi ve();
f.msg. put Text ("Fl oor given to "&owner Nane);
if (f.index is owner) then
f.rel ease. makeActive();
f.editor. makeActive();
el se
f.rel ease. makePassi ve();
f.editor. makeDor mant () ;
end
end;

Finally, the application’s session-constructor needsto install aMbni t or form
at the server-gite, in addition to the default action of installing an MJUE form at all
sitesin the session:

i f SERVERSI TE t hen Monitor New LOCAL) end;
MUENew(LOCAL) ;

The procedure Moni t or Newis the form-constructor for the Moni t or form, and
the procedure MUENew is the form-constructor for the MUE form.

27

Appendix B: Visual Oblig Home Page
http://ww. cc. gat ech. edu/ gvu/ peopl e/ Phd/ Kri shna/ VO VOHone. ht m

Visual Oblig Home Page

Project Description

The aim of the Visual Oblig project is to make building distributed multi-user applications as eas
building user applications using a conventional application builder.

applications to be designed, programmed (in the language Obliq), and executed from within it. The
for the dynamic migration of applications to new sites.

Center, during the summers of '93 and '94.

Documentation
Visual Obliq

Krishna Bharat and Marc H. Brown, " Building Distributed Multi-User Applications By Direct
Manipulation",Proc. ACM Symposium on User Interfaces Software and TechnMagiya Del

28

The Visual Oblig programming environment environment consists of an interactive application builder,
and a runtime system for distribution. The application builder is an integrated tool that allows disfributed

runtime system is responsible for connecting new users to sessions, and transmitting code to their site
when they join. Recently we added support for embedding Visual Oblig applications in the WWW, and

Most of the work was done while Krishna Bharat was a research intern at Digital, Systems Research

Rey, CA, Nov 1994, pp. 71-82.

Visual Obliq (Video)

Krishna Bharat and Marc H. Brown, " Building A Distributed Application Using Visual Obliqf,

To appear irCHI ‘95, Video Proceedings

The Oblig Programming Language

Luca Cardelli, " A Language with Distributed Scoptoc. of the 22nd Annual ACM Symposiu
on Principles of Programming Languag&sn 1995, pp. 286-297.

#« Embedding Visual Obliq Applications in WWW

Krishna Bharat and Luca Cardelli, " Distributed Applications in a Hypermedia Setting", To 4
in Proc. of the International Workshop on Hypermedia Dedigontpellier, June 1995.

Migratory Interactive Applications in Visual Obliq

Krishna Bharat and Luca Cardelli, " Migratory Applications" (postscript), To Appdmoia.
ACM Symposium on User Interfaces Software and Technd®it¢gburgh, PA, Nov. 1995.

Availability

Visual Obliq is included in the current Digital SRC, Modula-3 Distribution.

Members

Marc H. Brown, Digital, Systems Research Center

Luca Cardelli, Digital, Systems Research Center

Krishna Bharat, Graphics, Visualization and Usability Lab,
Georgia Tech

Copyright ©1995 Krishna Bharat - All rights reserved.

29

m

ppear

	Abstract
	Contents
	1 Introduction
	2 End-User Perspective
	3 Interface-Designer Perspective
	4 Client-Programmer Perspective
	5 System Support
	6 Run-Time Picture
	7 The Extensible GUI Builder
	8 RelatedWork
	9 Summary
	Acknowledgments
	References
	Appendix A: Application Built in Videotape
	Appendix B: Visual Obliq Home Page

