
October 31, 1995

SRC
Research
Report 130a

Visual Obliq: A System for Building Distributed,
Multi-User Applications by Direct Manipulation

Krishna Bharat and Marc H. Brown

d i g i t a l
Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed ba-
sic and applied research to support Digital’s business objectives. Our current work
includes exploring distributed personal computing on multiple platforms, network-
ing, programming technology, system modelling and management techniques, and
selected applications.

Our strategy is to test the technical and practical value of our ideas by building hard-
ware and software prototypes and using them as daily tools. Interesting systems are
too complex to be evaluated solely in the abstract; extended use allows us to investi-
gate their properties in depth. This experience is useful in the short term in refining
our designs, and invaluable in the long term in advancing our knowledge. Most of
the major advances in information systems have come through this strategy, includ-
ing personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it
is in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences. We seek users for our prototype systems among those with
whom we have common interests, and we encourage collaboration with university
researchers.

Robert W. Taylor, Director

Visual Obliq: A System for Building Distributed,
Multi-User Applications by Direct Manipulation

Krishna Bharat and Marc H. Brown

October 31, 1995

Original artwork by Jorge Stolfi;
modified without permission by Krishna Bharat.

Publication History

This report appeared as “Building Distributed, Multi-User Applications by Direct
Manipulation,” in the Proceedings of the ACM Symposium on User Interface Soft-
ware and Technology (UIST’94), November 1994, pages 71–81.

The accompany videotape appeared as “Building A Distributed Application Using
Visual Obliq,” in the Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI’95), pages 415–416 of the Conference Companion.

Author Affiliation

Krishna Bharat is a PhD student in the Graphics, Visualization, and Usability Cen-
ter of the College of Computing at the Georgia Institute of Technology. Krishna’s
electronic mail address is kb@cc.gatech.edu. The work described in this re-
port was performed while Krishna was supported by a research internship at SRC
during the summer of 1993.

c
Digital Equipment Corporation 1995

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or par-
tial copies include the following: a notice that such copying is by permission of the
Systems Research Center of Digital Equipment Corporation in Palo Alto, Califor-
nia; an acknowledgment of the authors and individual contributors to the work; and
all applicable portions of the copyright notice. Copying, reproducing, or republish-
ing for any other purpose shall require a license with payment of fee to the Systems
Research Center. All rights reserved.

Abstract

This report describes Visual Obliq, a user interface development environment for
constructing distributed, multi-user applications. Applications are created by de-
signing the interface with a GUI-builder and embedding callback code in an in-
terpreted language, in much the same way as one would build a traditional (non-
distributed, single-user) application with a modern user interface development en-
vironment. The resulting application can be run from within the GUI-builder for
rapid turnaround or as a stand-alone executable. The Visual Obliq runtime provides
abstractions and support for issues specific to distributed computing, such as repli-
cation, sharing, communication, and session management. We believe that the ab-
stractions provided, the simplicity of the programming model, the rapid turnaround
time, and the applicability to heterogeneous environments, make Visual Obliq a vi-
able tool for authoring distributed applications and groupware.

Contents

1 Introduction 1

2 End-User Perspective 3

3 Interface-Designer Perspective 4

4 Client-Programmer Perspective 8

5 System Support 15

6 Run-Time Picture 18

7 The Extensible GUI Builder 20

8 Related Work 21

9 Summary 22

Acknowledgments 22

References 23

Appendix A: Application Built in Videotape 25

Appendix B: Visual Obliq Home Page 28

1 Introduction

The recent explosion in the quantity and quality of user-interface development en-
vironments is simplifying (and making more enjoyable!) the job of programming
the GUI part of an application. However, current tools address only single-site and
single-user applications. Distributed, multi-user applications are much more com-
plex. Pieces of such applications typically run in separate address spaces, often on
heterogeneous machines over a network. The pieces must communicate and syn-
chronize with each other, sharing and replicating data as needed, and handle users
at each site.

This report describes Visual Obliq, a user-interface development environment
for building multi-user applications. To a first approximation, think of Visual Obliq
as a state-of-the-art user-interface development environment, such as Microsoft’s
Visual Basic, extended to handle distributed applications but without complicating
the programmer’s task.

Visual Obliq consists of a GUI-builder for interactively designing an interface,
and run-time support for handling distribution. The GUI-builder allows the user
to construct the interface in a standard direct manipulation fashion, and to attach
callback code to each widget. The callback code is written in an interpreted lan-
guage, and can access the Visual Obliq runtime library to handle issues specific to
distributed computing. The user who is building the application can run the applica-
tion from within the GUI-builder, or can have the GUI-builder output a stand-alone
executable program. Figure 1 shows the Visual Obliq GUI-builder while creating
a shared-editor application.

We believe that the abstractions provided, the simplicity of the programming
model, the rapid turnaround time, and the applicability to heterogeneous environ-
ments, make Visual Obliq a viable tool for authoring distributed applications.

The organization of this report is as follows. The next three sections describe
the system from three perspectives: the end-user, the interface-designer, and the
client-programmer. The end-user is the person who runs a program built using Vi-
sual Obliq. The interface-designer is the person who uses the GUI-builder for in-
teractively designing the user interface. The client-programmer is the person who
actually writes the code for the application. The distinction between these three
people is primarily one of nomenclature. Because the GUI-builder integrates the
design and testing phases of application development, the interface-designer and
the client-programmer is often the same person.

Section 5 presents the infrastructure upon which our implementation is built.
Section 6 describes how distribution is implemented, and Section 7 describes how
the system can be extended with more widgets. In the remaining sections, we re-

1

Figure 1: The Visual Obliq GUI-builder.

2

view related efforts, and offer some concluding thoughts.
An accompanying videotape shows Visual Obliq in action, building the multi-

user text editor. The code that a user must write to implement this editor appears in
Appendix A. Finally, Appendix B contains the Visual Obliq Home Page as of the
printing of this report.

2 End-User Perspective

Most prior work on groupware has focused on sharing a traditional single-user ap-
plication by replication at some level—the display, the interface, or the whole appli-
cation. The degree of coupling and the level of replication may vary, but the func-
tionality provided at each site is the same. We call such applications homogeneous.
We address a larger class of distributed applications, heterogeneous applications,
wherein the functionality provided at each site may be different. In Visual Obliq,
the client-programmer can decide what goes on at each site.

A distributed application spans multiple sites linked by a network. The program
code need exist only at the site where the application starts up, which is called the
server-site. Then it spreads to sites where users are located, called client-sites. Typ-
ically the server-site is also a client-site.

An instance of a distributed program in execution is called a session. Users at
various sites may join or leave a session from time to time, whereas the session itself
continues to exist until it is explicitly terminated. Each session has a name which
is of the form

<program-name>@<server-site-name>

A session is created when a program starts running at a server-site. Typically, this
happens by hitting the “Run” button in the GUI-builder, or by invoking an exe-
cutable that was output by the GUI-builder. The executable is a shell script contain-
ing the code generated by the GUI-builder, prefixed by a one line shell command,

#!/bin/vorun -r

As we shall discuss in Section 4, client-programmers write code in Obliq [5], an
interpreted language. The vorun program is a version of the Obliq interpreter with
various libraries pre-loaded for handling Visual Obliq’s distribution.

The most common way that a user joins a session is by invitation by other mem-
bers. Users wishing to be invited to a session must be running a Visual Obliq Agent
(VOA). The VOA responds to invitations from other sites by displaying a window at
the invitee’s workstation (see Figure 2) that allows the user to accept or decline the

3

Figure 2: Inviting another user to join an existing session.

invitation. Issuing the actual invitation is the responsibility of the client-programmer,
who would typically provide the end-user with a dialog box to input the name of the
site where the invitation should be sent.

The other way that a user joins a session is on his own accord, having found
out about it somehow. For example, to join a session called TicTacToe at the
machine qilbo.dec.com, an end-user would issue the command

vorun -join TicTacToe@qilbo.dec.com

Although the system provides no access-control on users wishing to join an existing
session, an application may implement some policy of its own.

3 Interface-Designer Perspective

The GUI-builder is a tool that integrates all stages of the development cycle. It al-
lows the interface-designer to graphically specify the interface, attach code at ap-
propriate places, and execute the resulting application within the environment for

4

testing and debugging. The GUI-builder can also output a file containing a stand-
alone application.

The interface-designer interactively designs a set of top-level windows called
forms using the GUI-builder. Forms contain widgets and popup windows. Most im-
portantly, each widget can contain callback code that will be invoked by the system
in response to end-user actions. When a session is in progress, multiple instances
of each form may exist, at various sites. Thus, forms are both the unit of design and
the unit of distribution. This provides a simple and elegant conceptual model for
the client-programmer, and it is an important contribution of our system.

Figure 1 is a screen dump showing the GUI-builder in action. There are two
top-level windows: the design window (left) is for building the interface, and the
attribute sheet (right) is for manipulating properties of widgets.

The design window has a palette of widgets that may be used to compose the
interface, and a design area where the interface is embedded while it is being de-
signed. The interface-designer may have a number of design windows open while
designing a given application. Currently, the design palette contains the following
types of widgets (see Figure 3): browsers, buttons, choices, file browsers, forms,
frames, numeric fields, scollbars, static text, text editors, toggles, typein fields, and
video players. These widgets are common in modern GUIs, with the exception of
forms, frames, and video players. A form is either a top-level window or a popup-
window within some other form. A form may also have a menu bar. A menu bar
is a property of the form widget, not a separate widget. A frame is used to geomet-

Figure 3: Widgets supported by Visual Obliq.

5

rically constrain the location of other widgets; it has no interactive behavior. The
video player is used to playback audio-visual input from a specified host. Section 7
describes how Visual Obliq can be extended with more widgets.

The user-interface of the GUI-builder is similar to other GUI-builders. The size
and location of widgets are set in the design window; all other properties are spec-
ified in the attribute sheet. In the design window, a single-click is used to select a
widget, and a double-click causes the attribute sheet to be loaded with the selected
widget’s properties. Editing operations, such as cut and copy, apply to the selected
widget. Resizing and moving a widget are subject to the bounds of the frame or
form in which it lies. Moving a frame causes all of its children to move with it (in-
deed, this is the primary purpose of a frame). Resizing a frame or a form is further
constrained to not clip any of its children. Finally, there are ways to align, shape,
and distribute widgets under the same frame or form.

The top half of the attribute sheet window displays properties that are applicable
to all widgets. These properties mostly relate to the visual characteristics (e.g., font
and colors) and to how the callback code should be invoked (foreground or back-
ground, local or remote). Some widgets may not use some properties in any way
(e.g., a scrollbar doesn’t use the font information; a frame never invokes a callback),
and such properties are disabled appropriately. The bottom half of the attribute sheet
has fields for widget-specific attributes. For example, the browser-specific proper-
ties are the initial contents (a set of strings or a file containing text), a flag indicating
whether multiple selections are supported, the initial selection, and a check-box tog-
gle for indicating what type of mouse clicks should cause the callback to be invoked
(e.g., on every down-click or only on the up-transition of a double-click). Figure 4
shows the attribute sheet and the popup dialogs that allows the interface designer to
select a font and a color.

A novel part of the Visual Obliq GUI-builder is the simple, but expressive, model
for specifying a widget’s behavior when its parent is reshaped at run-time. This
model is a simplification of Cardelli’s stretching model [4], with which we had con-
siderable experience using as interface-designers. Widgets may be thought of as
rectangular sheets of rubber, attached to their parent by one or more pins. The fol-
lowing settings are supported: pinned—a single pin at the center; scaled—pins at
the four corners; vertical stretchy—pins at the top and bottom edges; and horizontal
stretchy—pins at the left and right edges. Each widget has a default setting. For ex-
ample, buttons use pinned, text editors use scaled, and typein fields use horizontal
stretchy. The setting can be changed in the attribute sheet.

Thus far, we described the GUI-builder’s design mode. The GUI-builder also
has modes corresponding to other phases in the application-development process:
testing, building, and running.

6

Figure 4: The attribute sheet of the Visual Obliq GUI-builder (left), and its popup
dialogs for selecting a color (top-right) and a font (bottom-right).

7

In the test mode, the user is allowed to interact with the interface without han-
dles over the widgets intercepting the input. No callbacks are invoked, but wid-
gets react to user input, menus are active and the resize model takes effect so the
interface-designer gets a pretty good idea of the look-and-feel of the interface.

In the build mode, the GUI-builder generates a file that can be executed. This
file has three logical components: The first is a textual description of the interface in
the FormsVBT language [2]. The second component is a program in the Obliq lan-
guage [5] that embeds the client-programmer’s callback code and builds the inter-
face from the description. The third part is a one-line shell command to invoke the
interpreter, as discussed in Section 2. The contents of this file, though textual, are
not intended to be viewed or edited by the client-programmer. Section 5 describes
the FormsVBT and Obliq languages, and the next section describes the facilities
available to the client programmer.

In the run mode, a file is not written disk. Instead, the contents of the file are
given to an Obliq interpreter that is linked into the GUI-builder, thereby provid-
ing rapid turnaround. As a convenience, the GUI-builder provides a way to invite
other clients to join the current session. This is done using the typein field in the up-
per right of the design window. However, most applications provide such a facility
themselves; it is quite easy to implement, as we shall describe later.

4 Client-Programmer Perspective

The bulk of the code that a client-programmer writes is widget callbacks. Callback
code is invoked in response to user action in a widget. To support distributed and
heterogeneous applications, three other categories of code can also be specified:
form code, global code, and session-constructor customization code. These are dis-
cussed later.

All client code is written in Obliq [5], an interpreted language that supports dis-
tributed object-oriented computation. Section 5.1 describes the language in more
detail. The Obliq code that is generated by the GUI-builder (and then fed to an Obliq
interpreter for execution) contains a complete Obliq program. However, client-
programmers never actually see the complete Obliq program; the various code frag-
ments, such as callbacks, are written in the appropriate parts of the GUI-builder’s
attribute sheet window.

To get a feeling for coding in Visual Obliq, we first examine the callbacks for a
non-distributed application. Consider a game of Tic-Tac-Toe, as in Figure 5. There
are 11 widgets within a form: nine buttons comprising the game board, one static
text showing the string “Current player:”, and a typein field. Initially all buttons

8

Figure 5: A single-user, non-distributed game of tic-tac-toe (left), and a multi-user,
distributed version (right).

display a question mark. When one of the nine buttons is clicked for the first time,
that button’s label changes from a question mark to the string in the typein field.
Through the GUI-builder, the buttons were given the names b1, b2, . . . , b9, the
typein field the name who, and the top-level form the name ticktack. The typein
field and the static text don’t have callbacks; the callback for each button is similar.
It looks as follows for b5:

let curr = SELF.b5.getText();
if text_equal(curr, "?") then
let sym = SELF.who.getText();
SELF.b5.putText(sym);

end;

Although we haven’t explained the syntax or semantics of Obliq, the callback code
is hopefully easy to follow.

The variable SELF is defined by Visual Obliq to be a handle to the form-instance
in which the user clicked, causing the callback to be invoked. SELF is actually an
object with fields for each widget in the form. For example, SELF.who refers to
the typein field. Each widget in turn is an object, with methods to retrieve and mod-
ify its properties. For example, all typein widgets have a getText method to re-

9

Figure 6: Remotely accessing a widget.

trieve their contents. They also have methods putText, getFont, putFont,
and so on.

As mentioned before, the unit for distribution in Visual Obliq is a form. Visual
Obliq creates an array of handles to form-instances; each element of the array is a
handle to an instance running, typically at a distinct site in a separate address space.
The array is stored at the server-site. What makes this strategy a big win is that there
is a single, global name-space, allowing one part of the distributed application to ac-
cess and modify objects in other parts, without caring about their physical location.
Such location transparency applies to the user-interface, and also to any additional
fields that the programmer may attach to the form. Consequently, both the state of
the form-instance and the widgets within it may be remotely accessed and manip-
ulated.

Figure 6 shows how location transparency can be used by one client-site to dis-
able a button at another client-site. The top level form is named Board, and the
array of handles to the form-instances is stored in an array named Board at the
server-site. There are two client-sites, x and y. Client x can disable the button
named grabButton on client y by the one line

Board[i].grabButton.makePassive();

just by knowing that client-site y is the ith instance in the current session.
Let’s now consider a distributed version of the Tic-Tac-Toe application, where

all sites are playing the same game (see Figure 5). The callback that changes the
button’s label needs to be changed to the following

10

let curr = SELF.b5.getText();
if text_equal(curr, "?") then
let sym = SELF.who.getText();
foreach f in ticktack do
f.b5.putText(sym);

end
end;

in order to cause the labels to change at all sites. (The foreach statement iterates
through an array, setting the iteration variable to each successive element of the ar-
ray.) A new player can be added to the game by including a typein field in which a
player types the name of a site to be invited to join the game. The callback for the
new typein field, invitee, is quite simple:

let destination = SELF.invitee.getText();
installAt(destination);

The procedure installAt is provided by Visual Obliq to cause an application to
spread to another site. The effect of calling installAt(site) is for the run-
time to contact the Visual Obliq Agent at the client-site site to popup a “You are
invited . . .” message (see Figure 2. If the user declines, installAt returns false;
otherwise it returns true. Here the return value is ignored. Most importantly, if the
user accepts the invitation, the Visual Obliq Agent will install a new copy of the
application at the client-site site, and the global array ticktack, stored at the
session’s server-site, will grow by one element. Section 6 describes how this hap-
pens in more detail.

Although all code originates at the server-site and moves to the client-sites, the
display of the game is not the same at all sites! In this simple Tic-Tac-Toe example,
the contents of the who typein field will probably be different (each user will type in
his own marker!), and the size of the window is under the user control at each site.
Of course, the colors, fonts, and other screen resources may be different, depending
on how the X server at each site resolves the resource requests. In general, a session
may be configured so that certain forms get instantiated at some sites and not at
others. For instance, in the distributed multi-user editor described in Appendix A,
the server-site has an instance of a “moderator” form. This form allows the user at
the server-site to yank the “floor” from one participant and give it to another.

4.1 Other client-code

We now consider the other types of code that the programmer can write. These pro-
vide client-programmers with a wide-range of choices of distributed programming

11

techniques to work with. Visual Obliq takes care of inserting the code into the ap-
propriate places in the generated Obliq program.

4.1.1 Form code

The client-programmer can extend a form object with additional data-fields, pro-
cedures, and methods. It’s important to understand that although a handle to each
form-instance is stored in an array of handles at the server-site, each instance itself
is located at a client-site. Each client-site is a separate address space, typically on a
separate machine. This is the technique used by the client-programmer to associate
“local code” with client sites. Any code associated with a form gets replicated in
each of its instances and is hence local to the site where its instance is created.

Data-fields, procedures and methods within a form-instance can be can be ac-
cessed remotely. When a data-field is accessed remotely, the data gets copied over.
Likewise, invoking a procedure which is part of a remote form-instance causes the
procedure to be copied over and executed locally. However, when a method of a
remote instance is invoked it executes at the remote site. For example, if client-site
c were to execute

x = DeptEmps[5].avgRaise(salary);

the code for procedure avgRaise would be copied from instance 5 to client-site
c, and executed at client-site c. If avgRaise happened to be a method instead, it
would execute at the site where instance 5 resides.

4.1.2 Global code

The client-programmer can designate additional data-fields, procedures, and meth-
ods to be stored globally for the session, rather than on a per-form basis. Data-fields,
procedures, and methods respond to remote accesses as in the previous case. This
is where the client-programmer will place the “global” (i.e., shared) portion of the
application code.

4.1.3 Session-Constructor Customization code

The GUI-builder generates a procedure called the session-constructor to engineer
the spread of the session from site to site. The session-constructor is executed at
each client-site when it joins the session, taking the local site-name as an argument,
and bootstraps the session at the site. The session-constructor is responsible for in-
stantiating the forms needed by the site initially.

12

The default session-constructor creates one instance of each form that has been
designed in the GUI-builder. The client-programmer can edit the constructor to de-
cide how many instances of each form should be initially created at each site. For
heterogeneous applications, the session-constructor can be made conditional.

This procedure may be viewed as a ticket that permits a site to join a session.
It is exported when invitations are extended, and may be imported from a known
purveyor, when admission to the session is desired.

4.2 Remote Callbacks

Earlier we described how location transparency allows remote objects to be accessed
as if they were local. Visual Obliq also makes it easy to write distributed callbacks.
The primary purpose of such distribution is load-sharing, and exploiting the hard-
ware (e.g., a supercomputer) or software (e.g. a database) of some particular ma-
chine.

As part of the attribute sheet, the client-programmer can specify that a callback
will be executed remotely and provide an Obliq expression that, when evaluated
at run-time, will designate an instance of a form (not necessarily the same type of
form!) where it should execute. Visual Obliq copies the callback to the remote in-
stance, and executes it there. References to SELF will still pertain to the instance
where the callback originated, and hence the semantics of the callback are unaltered.
If fields within the remote instance also need be accessed, they may be referenced
using the prefix REMOTE instead.

Since shipping a callback to a remote site is not necessarily more expensive than
a single remote reference, such remote callbacks provide an efficient alternative to
making multiple remote accesses.

4.3 Background Callbacks

The client-programmer can specify within the attribute sheet that a callback should
be executed in the background. This will cause a separate thread to be forked in or-
der to execute the callback. This feature is orthogonal to remote execution. Back-
ground callbacks are useful when a callback is known to take a long time and can
be executed asynchronously with other callbacks.

4.4 Synchronization

Although a global name-space simplifies distributed programming a great deal, it
does not address the issue of synchronization. Through the GUI-builder, it is pos-

13

sible to specify that each callback method should be executed mutually exclusive
of all other callbacks in the session. However, many other styles of protection and
serialization are possible, and may be implemented using Obliq’s repertoire of syn-
chronization primitives.

For instance, here’s a way to make a callback conditionally execute. That is, it
will execute only if no other callback in the session, protected by the same lock, is
being executed. First, we add the following global code:

var Ness = { serialized,
locked => false,
TestAndSetLock => meth(s)
if not (s.Locked)
then s.Locked := true; true
else false end

end,
Unlock => meth(s)
s.Locked := false
end

}

The code defines a new object, Ness, with a data field called locked, and two
methods. The keyword serialized is an Obliq primitive to indicate that there
is a hidden mutex. The mutex will be acquired on entry to a method and released
upon completion. Then, we modify the callback call as follows:

if Ness.TestAndSetLock() then
...
Ness.Unlock();

end;

The code indicated by the ellipses is executed only if no other callback in the session
is executing code protected by the Ness lock.

Given location transparency, implementing custom synchronization schemes is
no more complicated than in a single address-space.

4.5 Robustness

Failures are a common cause of concern in distributed applications. Any remote ac-
cess is capable of raising an exception, which could crash the session if not properly
handled. The Visual Obliq GUI-builder protects code it generates with exception-
handlers. The client-programmer is expected to do the same at some granularity.

14

5 System Support

In the previous section we presented Visual Obliq’s programming model for dis-
tributed applications. The model makes many demands on the underlying system.
Data and code need to be copied and shared across address spaces, methods need
to be invoked on remote objects, and session-constructors must be made publicly
available. In this section we describe how the SRC Modula-3 programming envi-
ronment supports the implementation.

5.1 Obliq and Network Objects

To quote Cardelli [5]: “Obliq is a lexically-scoped untyped interpreted language
that supports distributed object-oriented computation. An Obliq computation may
involve multiple threads of control within an address space, multiple address spaces
on a machine, heterogeneous machines over a local network, and multiple networks
over the Internet. Obliq objects have state and are local to a site. Obliq compu-
tations, in the form of procedures, can roam over the network, while maintaining
network connections.”

In Obliq all entities are composed of constant values, which are immutable, and
locations, which are mutable. When an entity is transmitted to a remote site, the
constant values within it are replicated, while locations within it are transmitted as
network references. Operations on a network reference will happen transparently
at the original site. The fields and methods in an object are locations. So are the
elements in an array and variables in general. Thus, objects, arrays and variables,
for all practical purposes, remain rooted in the address space where they are created.
However, when a procedure is transmitted, the code for the procedure is copied over
to the remote site (because it is a constant) and gets run there, while variables in its
scope become network references. Thus, when a procedure is transmitted in Obliq,
its scope gets transmitted as well. This permits the procedure to retain its original
semantics in the new address space.

We use this technique in Visual Obliq to spread the session from site to site. Ob-
jects can be instantiated in another address space by transmitting procedures which
construct them. This is how we instantiate forms at client-sites. We create them
using form construction procedures called form-constructors, transmitted from the
server-site. These procedures retain their scope in the client address space. At the
same time they are able to acquire a handle to the local scope, which is passed in as
an argument called LOCAL. This enables them to get access to local widget creation
and management code.

15

Visual Obliq

FormsVBT

Trestle

Modula 3

Obliq

Network
Objects

Ultrix Xlib

Figure 7: The SRC Modula–3 programming environment.

Obliq’s static scoping is heavily utilized in Visual Obliq. Objects take on the
scope of the procedures that create them. If the procedures that create a set of ob-
jects were transmitted from the same address-space, then the objects will share a
common scope. This is how we implement a global name-space in Visual Obliq.
Form-instances inherit the scope of the form-constructors that create them, and hence
get access to the scope at the server-site. Instance arrays, form-constructors and
other forms of global code are placed in the initial, common scope at the server-
site, and are hence globally visible.

The Obliq distribution and data sharing mechanisms are built using the Modula-
3 Network Objects package. Network Objects [3] are special Modula-3 objects that
support remote access to fields and methods. Obliq uses a Network Object Daemon
to make object references publicly available. In Visual Obliq we use this mecha-
nism to make the session-constructor publicly available. Any site that starts a Visual
Obliq must must also be running a Network Object Daemon, to make the session
public. Obliq has support for exception-handling and synchronization, which are
invaluable for building robust and deterministic distributed applications.

Obliq (and hence Visual Obliq) can serve as an embedded command language
for Modula-3. Further, Obliq is extensible, and Modula-3 types and packages can
be integrated as needed. One such extension is the FormsVBT package.

5.2 FormsVBT and Trestle

FormsVBT [2] is a system for building graphical user interfaces. It consists of a
language for describing an application’s user interface, and a runtime library for
communicating between an application’s code and the user interface. (FormsVBT
provides a stand-alone application for constructing the user interface, akin to Vi-
sual Obliq’s GUI-builder. This part of FormsVBT is not used by Visual Obliq.)

16

FormsVBT is implemented in Modula-3 and uses the Trestle UI toolkit [9] running
on X windows.

A user interface in FormsVBT is a hierarchical arrangement of components.
These include passive visual elements, basic interactors, modifiers that add inter-
active behavior to other components, and layout operators that organize other com-
ponents geometrically. In the FormsVBT language, the arrangement is written as a
symbolic expression (S-expression). The outermost expression is the form or top-
level component, and subexpressions are either properties that modify a component
or other, subordinate components.

The runtime library provides the communication between an application and
its user interface. There are procedures to convert an S-expression into a window
object, procedures to register event-handlers that will be invoked in response to user
actions, procedures to retrieve and modify the values of the components, procedures
to change the appearance (and even the hierarchy) of the components, and so on.

Each component in FormsVBT is implemented by a window class, called a VBT,
provided by Trestle. Most of the things that a programmer would want to do with
a component can be done via the FormsVBT interface. However, there may be
occasions when the programmer would like direct access to the underlying VBT.
FormsVBT provides such access.

The GUI shown in Figure 2 is described by the following FormsVBT S-expression:

(Shape (Width 350) (Height 400)
(VBox
(Rim (Pen 10) (BgColor "Black") (Color "White")
"Session Request")

Fill
"You are invited to a session of"
Fill
"TicTacToe @ qilbo.dec.com"
Fill
"by krishna @ tsktsk.dec.com"
Fill
(HBox
Fill
(Button %accept (BgColor "PaleGreen") "Accept")
Fill
(Button %reject (BgColor "PaleRed") "Reject")
Fill))))

The two buttons have been given names so that callbacks can be registered for them.

17

6 Run-Time Picture

Figure 8 illustrates the spread of a session from the site named ash.pa.dec.com
to two others.

Imagine that the user at ash.pa.dec.com types

vorun -r foo

The command vorun runs the Obliq interpreter with Visual Obliq support code
(in the file vo-library.obl) pre-loaded. The Obliq program in foo.obl is
loaded, creating the session foo@ash.pa.dec.com. The file foo.obl also
causes the creation of a session-constructor and a form-constructor. The session-
constructor is registered under the name foo with the local Network Object Dae-
mon; it will be needed if a remote client-site wishes to join the session. The form-
constructor is a procedure that is used to build and install a top-level window from
the FormsVBT textual description. There is one form-constructor for each top-level
window defined in the application. In this case, there is a single top-level window,
and it was given the name Board. The final step in the execution of foo.obl is
the invocation of the session-constructor. The default session-constructor instan-
tiates a single form by invoking each form-constructor. The machine ash is now
both the server-site and a client-site.

At another site, bay.pa.dec.com, the user types

vorun -join foo@ash.pa.dec.com

This vorun program is a version of the Obliq interpreter, with the vo-library
already loaded. The -join option uses a procedure in the library to import a refer-
ence to the session-constructor named foo, from the Network Object Daemon run-
ning on ash.pa.dec.com, and executes the session-constructor. The session-
constructor causes the form-constructor procedure to be copied over and executed.
The form-constructor creates and initializes an Obliq object to manage the user-
interface. The object computes the S-expression for the its interface from the at-
tributes of its components. The rest of the form-constructor converts the S-expression
into a VBT tree, attaches callbacks to the VBTs and installs the tree in the window
system. A handle to the window object is added atomically to the global array called
Board maintained at ash (the server-site), and the window object is installed in
the window system at bay.

Finally, the user at bay.pa.dec.com interacts with the application and even-
tually performs an operation that invites the user at oak.crl.dec.com to join
the session. This is brought about by invoking the built-in routine installAt
from a callback. The installAt procedure imports a handle to the Visual Obliq

18

Obliq Interpreter

Obliq Interpreter

Obliq Interpreter

Site #2

Site #0

Site #1

(Server & Client)

Net Obj Daemon

Net Obj Daemon

(Client)

(Client)

vo-library .obl

foo.obl session
constructor

foo@ash.pa.dec.com

voa@oak.crl.dec.com

voa.obl

vo-library .obl

vo-library .obl

vorun -join foo@ash

Legend

Import

Export

Invoke

VOA

"Board" form
constructorash

oak

bay

Figure 8: An example scenario.

Agent (VOA), which is an Obliq object registered with the Network Object Dae-
mon running on oak.crl.dec.com. Then, installAt invokes a method on
this object, passing in the session-constructor for the application. The method pops
up an invitation window (shown in Figure 2) to find out if the user at oakwishes to
join the session. If the user agrees, the session-constructor (passed as a parameter
from bay) is executed as before.

19

7 The Extensible GUI Builder

All widgets in Visual Obliq are built out of FormsVBT components. The widget
set in Visual Obliq is extensible and any composite FormsVBT object can be easily
integrated.

Here is the FormsVBT S-expression that defines a (simplified version of the)
Visual Obliq button widget named b:

(Border %bBorder (Pen 1)
(Button %b
(TSplit =0
(Text %bText "Label")
(Pixmap %bPixmap "/dev/null"))))

(The TSplit component is used to display exactly one of its children. Here, the
TSplit is used to decide whether to display some text or a pixmap in the button.)
A variant of this basic S-expression is used to generate the widget both at design-
time and at run-time.

At design-time, the GUI-builder will modify the S-expression to reflect the val-
ues that the user has specified for various attributes. Also, additional components
are wrapped-around the S-expression, in order to block mouse clicks and to support
moving and resizing widgets. At design-time, there is a property table associated
with each widget. The property table maps property names to property values. This
information is copied into the attribute sheet when a user double-clicks on a widget;
it is updated from the attribute sheet when the user clicks ”Apply”.

Specifically, only four elements are required to add a new component to Visual
Obliq:

1. A Modula-3 procedure for generating a FormsVBT S-expression for a widget
from a property table. For the widgets currently implemented in Visual Obliq,
this procedure has been implemented in a table-driven fashion. In each case, it
replaces place-holders in a template S-expression with values from the prop-
erty table.

2. A FormsVBT S-expression (for the bottom half of the attribute sheet) that con-
tains ways to modify widget-specific attributes.

3. Three Modula-3 procedures for interacting with the attribute sheet. Procedure
loadAttributes()copies a widget’s property table into the attribute sheet;
procedure checkAttributes() validates data in the attribute sheet and
generate relevant error messages; and procedure copyAttributes()copies
attributes from the attribute sheet back into the widget’s property table.

20

4. A widget-constructor, which is an Obliq procedure, stored in vo-library.obl.
This procedure is invoked each time that a new instance of the widget is created
in order to instantiate an object to manage the instance. The object thus cre-
ated provides the application programmer’s interface to the widget. For exam-
ple, the video player widget has methods play(source), clear(), and
volume(level).

The first three elements are needed by the GUI-builder; the last element is needed
so that callback code can access the properties of the widget.

8 Related Work

There has been considerable work in CSCW in the area of multi-user applications,
or groupware. General purpose groupware systems come in two flavors, application
sharing systems and groupware toolkits. The “Unofficial Yellow Pages of CSCW” [8]
provides a comprehensive list of both sorts.

Application sharing systems allow a traditional single-user application to be
shared by replication at some level. Usually it happens at the level of the display,
as in XTV [1], and Shared-X [6]. This conforms to our notion of homogeneous
applications.

Groupware toolkits such as Rendezvous [10] and GROUPKIT [11], on the other
hand, provide the flexibility needed to author heterogeneous groupware. These sys-
tems differ from Visual Obliq in the abstraction provided for distribution. In Ren-
dezvous the client-programmer makes use of a “sharing object” which the runtime
system is responsible for maintaining in a consistent state across address-spaces.
Slots in interface components may be constrained to those in sharing objects to achieve
what-you-see-is-what-I-see. In GROUPKIT, messaging objects called “readers”
and “writers” are used to provide the client-programmer with a message-passing
facility. We believe that the abstraction of Visual Obliq’s “location transparency”
is more powerful and simpler to use (since it is tantamount to a single address space)
than the abstractions found in contemporary groupware toolkits.

Fresco [7], currently under development, will allow the distribution of user in-
terface components using CORBA. GUI components will have IDL interfaces de-
fined for them so that they may be accessed remotely, allowing interface compo-
nents in different address spaces to be pieced together to form a GUI hierarchy.

The combination of Obliq and FormsVBT most closely resembles Tcl/Tk with
the Tcl–DP extension [12]. Obliq provides a cleaner framework for implementing
groupware than Tcl because the language inherently supports the notion of multiple
address-spaces, remote references and procedure migration. Visual Obliq could be

21

written using Tcl–DP rather than Obliq for writing callbacks, at the cost of simplic-
ity in the client-programmer’s model.

Visual Obliq could probably also use General Magic’s Telescript rather than
Obliq, and MagicCap probably provides an environment much like that of Visual
Obliq’s GUI-builder. Unfortunately, technical details about General Magic’s sys-
tems are not public.

Finally, we should point out that there are many interesting GUI-builders that
have been reported in the literature, and many are available commercially. We mod-
eled our GUI-builder on Microsoft’s Visual Basic.

9 Summary

Visual Obliq was implemented mostly during the summer of 1993, and is reason-
ably complete. Thus far, it has been used only for “hacking around” and building
toy applications. As the accompanying videotape verifies, simple (yet non-trivial)
distributed applications can be built in a matter of minutes.

Implementing distributed applications is notoriously difficult, and yet the popu-
larity and importance of collaborative tools is growing. Given the right abstractions
the task of the programmer can be greatly simplified. We believe that abstractions
that mirror a user’s mental model of a distributed application are bound to work
well. This was the goal behind developing Visual Obliq. The programmer is able
to design windows, specify how many instances should appear at each site, and how
they interact. For each type of window, the programmer can find out dynamically
how many instances there are, and access each one by name. The fact that this is
happening in separate address-spaces is hidden.

Visual Obliq provides a stand-alone environment for creating distributed appli-
cations rapidly and simply. It is the first system that combines the convenience of a
GUI builder with a groupware toolkit, thereby providing groupware programmers
and distributed application programmers with an integrated “design-code-and-go”
solution.

Acknowledgments

We are indebted to Luca Cardelli for developing Obliq, for answering many (some-
times silly) questions, and offering lots of (always) sound advice. Paul McJones
helped improve the readability of this report.

22

References

[1] H. M. Abdel-Wahab, and M. A. Feit. XTV: A Framework for Sharing X Win-
dow Clients in Remote Synchronous Collaboration, Proceedings of the IEEE
Conference on Communications Software, pages 159–167, April 1991.

[2] Gideon Avrahami, Kenneth P. Brooks, Marc H. Brown. A Two-View Ap-
proach To Constructing User Interfaces. Computer Graphics, 23(3):137–146,
July 1989.

[3] Andrew D. Birrell, Greg Nelson, Susan Owicki, and Edward P. Wobber. Net-
work Objects. Proceedings of the 14th ACM Symposium on Operating System
Principles, pages 217–130, December 1993.

[4] Luca Cardelli. Building User Interfaces by Direct-Manipulation. 1st Annual
ACM Symposium on User Interface Software and Technology, pages 152–166,
October 1988.

[5] Luca Cardelli. Obliq: A language with distributed scope. Research Report
122 Digital Equipment Corporation, System Research Center, Palo Alto, CA,
March 1994.

[6] P. Gust. Shared-X: X in a Distributed Group Work Environment, Second An-
nual X Technical Conference, January 1988.

[7] Mark Linton and Chuck Price. Building Distributed User Interfaces with
Fresco, Proceedings of the Seventh X Technical Conference Jan 1993, pages
77–87.

[8] P. S. Malm. The unOfficial Yellow Pages of CSCW. Classification of Coop-
erative Systems from Technological Perspective, University of Tromsø, to ap-
pear.

[9] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Technical Re-
port 68, Digital Equipment Corp, System Research Center, Palo Alto, CA, De-
cember 1991.

[10] John F. Patterson, Ralph D. Hill, Steven L. Rohall, and W. Scott Meeks. Ren-
dezvous: An Architecture for Synchronous Multi-User Applications, CSCW
’90, October 1990, pages 317–327.

23

[11] Mark Roseman and Saul Greenberg. GROUPKIT—A Groupware Toolkit for
Building Realtime Conferencing Applications, CSCW ’92, November 92,
pages 43–50.

[12] Brian C. Smith, Lawrence A. Rowe, and Stephen C. Yen. Tcl Distributed Pro-
gramming, Proceedings of the Tcl Conference, 1993.

24

Appendix A: Application Built in Videotape

The screen dump below shows a rudimentary multi-user editor constructed during
the accompanying videotape. The window on the left is the shared editor; it appears
at all client-sites. At any given time, at most one participant (i.e., a user at a client-
site) “owns the floor,” and this is the only person who is able to type into the text
editor; the text editor widget on every other participant’s form-instance is dormant.
The owner of the floor may relinquish the floor by clicking on the “Release” but-
ton. At that point, the floor can be grabbed by another participant by pressing the
“GRAB!” button. The typein field labeled “Invite:” allows participants to invite
other users into the session.

The window on the right is a monitor for a moderator, the user at the server-site.
The monitor window contains a browser with a listing of participants. Whenever a
user grabs the floor, the appropriate entry in the browser is highlighted. Also, when-
ever an entry in the browser is selected by the moderator, the floor is yanked from
the current owner and given to the selected party. (The videotape tape does not show
the code necessary for supporting the monitor window.)

The named widgets in the shared-editor form (named MUE) are as follows: grab
is the “GRAB!” button; release is the “Release” button; invitee is the typein

Figure 9: MUE: A multi-user editor with monitor.

25

field; editor is the text editor; and msg is the status message at the top of the
form. All of the callbacks are set to be run mutually exclusively. Initially, editor
is dormant and release is passive. The monitor form is named Monitor.

The callback for the “GRAB!” button does the following: The “GRAB!” but-
tons at all client-sites are disabled and the status messages at all client-sites are up-
dated appropriately. Also, the user who clicked on the “GRAB!” button has his “Re-
lease” button and text editor enabled, and the appropriate entry in the moderator’s
browser is selected to show who has the floor. Here is the actual Obliq callback
code:

foreach f in MUE do
f.grab.makePassive();
f.msg.putText("Floor grabbed by " & LOCAL.HOSTNAME)

end;
SELF.release.makeActive();
SELF.editor.makeActive();
Monitor[0].list.select(LOCAL.HOSTNAME);

The callback for the text editor copies the entire contents of the editor to all other
sites after every keystroke:

let contents = SELF.editor.getText();
foreach f in MUE do
if not (f is SELF) then
f.editor.putText(contents)

end
end;

The callback for the “Release” button causes the user’s interface to return to the
initial state (the “Release” button is passive and the text editor is dormant), and the
“GRAB!” button is enabled on all client-sites. Also, the selection is removed from
the monitor’s browser, since there is no longer any participant who owns the floor.
Here is the callback code:

foreach f in MUE do
f.grab.makeActive()

end;
SELF.release.makePassive();
SELF.editor.makeDormant();
Monitor[0].list.deselect(LOCAL.HOSTNAME);

The callback to invite a new user into the session is as follows:

let destination = SELF.invitee.getText();
installAt(destination);

26

Whenever a client-site starts up, it must be added to the moderator’s browser.
This is done through the following initialization code that is part of the MUE form:

Monitor[0].list.add(LOCAL.HOSTNAME);

The monitor form has one widget, a browser named list. Whenever the mod-
erator clicks on an element of the browser, the floor is yanked from the current
owner and given to the selected party. Here is the code to do that:

let owner = SELF.list.getIndex();
let ownerName = SELF.list.getEntry();
foreach f in MUE do
f.grab.makePassive();
f.msg.putText("Floor given to "&ownerName);
if (f.index is owner) then
f.release.makeActive();
f.editor.makeActive();

else
f.release.makePassive();
f.editor.makeDormant();

end
end;

Finally, the application’s session-constructor needs to install a Monitor form
at the server-site, in addition to the default action of installing an MUE form at all
sites in the session:

if SERVERSITE then MonitorNew(LOCAL) end;
MUENew(LOCAL);

The procedure MonitorNew is the form-constructor for the Monitor form, and
the procedure MUENew is the form-constructor for the MUE form.

27

Appendix B: Visual Obliq Home Page
http://www.cc.gatech.edu/gvu/people/Phd/Krishna/VO/VOHome.html

Visual Obliq Home Page

Project Description
The aim of the Visual Obliq project is to make building distributed multi-user applications as easy as
building user applications using a conventional application builder.

The Visual Obliq programming environment environment consists of an interactive application builder,
and a runtime system for distribution. The application builder is an integrated tool that allows distributed
applications to be designed, programmed (in the language Obliq), and executed from within it. The
runtime system is responsible for connecting new users to sessions, and transmitting code to their site
when they join. Recently we added support for embedding Visual Obliq applications in the WWW, and
for the dynamic migration of applications to new sites.

Most of the work was done while Krishna Bharat was a research intern at Digital, Systems Research
Center, during the summers of ’93 and ’94.

Documentation

 Visual Obliq

Krishna Bharat and Marc H. Brown, " Building Distributed Multi-User Applications By Direct
Manipulation", Proc. ACM Symposium on User Interfaces Software and Technology, Marina Del

28

Rey, CA, Nov 1994, pp. 71-82.

 Visual Obliq (Video)

Krishna Bharat and Marc H. Brown, " Building A Distributed Application Using Visual Obliq",
To appear in CHI ‘95, Video Proceedings.

 The Obliq Programming Language

Luca Cardelli, " A Language with Distributed Scope", Proc. of the 22nd Annual ACM Symposium
on Principles of Programming Languages, Jan 1995, pp. 286-297.

 Embedding Visual Obliq Applications in WWW

Krishna Bharat and Luca Cardelli, " Distributed Applications in a Hypermedia Setting", To appear
in Proc. of the International Workshop on Hypermedia Design, Montpellier, June 1995.

 Migratory Interactive Applications in Visual Obliq

Krishna Bharat and Luca Cardelli, " Migratory Applications" (postscript), To Appear in Proc.
ACM Symposium on User Interfaces Software and Technology, Pittsburgh, PA, Nov. 1995.

Availability
Visual Obliq is included in the current Digital SRC, Modula-3 Distribution.

Members

 Marc H. Brown, Digital, Systems Research Center

 Luca Cardelli, Digital, Systems Research Center

 Krishna Bharat, Graphics, Visualization and Usability Lab,

Georgia Tech

Copyright ©1995 Krishna Bharat - All rights reserved.

29

	Abstract
	Contents
	1 Introduction
	2 End-User Perspective
	3 Interface-Designer Perspective
	4 Client-Programmer Perspective
	5 System Support
	6 Run-Time Picture
	7 The Extensible GUI Builder
	8 RelatedWork
	9 Summary
	Acknowledgments
	References
	Appendix A: Application Built in Videotape
	Appendix B: Visual Obliq Home Page

