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the art in computer systems. From our establishment in 1984 by Digital Equip-
ment Corporation (now Compaq), we have performed basic and applied research
to support the company’s business objectives. Our interests span scaleable systems
(including hardware, networks, distributed systems, and programming languages
and technology), the Internet (including the web, and internet appliances), and hu-
man/computer interaction.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting sys-
tems are too complex to be evaluated solely in the abstract; extended use allows us
to investigate their properties in depth. This experience is useful in the short term
in refining our designs, and invaluable in the long term in advancing our knowl-
edge. Most of the major advances in information systems have come through this
strategy, including personal computing, distributed systems, and the Internet.

We also perform complementary work of a more mathematical flavor. Some of it is
in established fields of theoretical computer science, such as the analysis of algo-
rithms, computational geometry, and logics of programming. Other work explores
new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and testing
our ideas in the research and development communities leads to improved under-
standing. Our research report series supplements publication in professional jour-
nals and conferences while our technical note series complements research reports
and journal/conference publication by allowing timely dissemination of recent re-
search findings. We seek users for our prototype systems among those with whom
we have common interests, and we encourage collaboration with university re-
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Abstract

The paper describes a mechanical checker for software that catches many com-
mon programming errors, in particular array index bounds errors, nil dereference
errors, and synchronization errors in multi-threaded programs. The checking is
performed at compile-time. The checker uses an automatic theorem-prover to rea-
son about the semantics of conditional statements, loops, procedure and method
calls, and exceptions. The checker has been implemented for Modula-3. It has
been applied to thousands of lines of code, including mature systems code as well
as fresh untested code, and it has found a number of errors.





0 Introduction

The authors of this paper were still children when the leading lights of comput-
ing declared that the world faced a “software crisis”. While hardware improved
every year, software was mired in complexity, and programming was expensive,
error-prone, and grueling. But these gloomy observations didn’t stop the software
industry, which proceeded to grow its revenues and profits dramatically, and which
has sustained that growth with continuous innovation. Was the software crisis a
false alarm?

Not really. Although profitable, writing software is still expensive, error-prone,
and grueling. Innovation in the software industry has mostly been confined to find-
ing new things to do with software, and has not found many new ways to produce
software. It is still common to see software disasters in which millions of dollars
are spent writing a program that is abandoned before release, because the imple-
mentors simply can’t get it to work. The tragic failure to establish software as a
reliable engineering discipline is painfully clear from studies such as Leveson and
Turner’sInvestigation of the Therac-25 accidents[31].

Although revenues and profits have grown, figures from economic consulting
firm DRI/McGraw-Hill indicate that during a recent period of generally rising pro-
ductivity, productivity in the software industry has actually fallen [10]. These com-
putations may not be entirely accurate—since it is difficult to correct for inflation—
but it seems safe to say that software productivity has not kept pace with pro-
ductivity in other areas of the computing industry such as hardware. In fact, we
would claim that the growth of the software industry has defied the stagnation of
programming technology only because of the tailwind created by the million-fold
improvement in price/performance of CPUs over the last thirty years.

As the information revolution moves out of its infancy, and we in the engi-
neering community assume the responsibility of delivering on its vast promises,
from robots to knowbots, it is insufficiently considered that our progress would be
enormously accelerated if programming technology advanced on anything like the
same curve as microprocessors.

Many silver bullets have been heralded as the solution to the software crisis.
If you have a software problem, Structured Programming with PL/I is the answer!
The Object-Oriented Revolution will bring mass production methods to software
and make program fragments into inexpensive reusable reliable commodities! Pro-
gram verification will eliminate all errors! Programming in natural language will
eliminate the need for arcane languages; end users will express their requirements
directly to the computer, and programming as a profession will wither away! None
of the dreams behind these slogans has been fulfilled.

We believe that programming and its difficulties are here to stay. Instead of
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silver bullets, we advocate the strategy of studying the engineering practices of
today’s best programmers and developing practical tools that improve the process,
without expecting to change its essential nature.

This paper describes a particular research project based on this strategy: the
Extended Static Checker (called ESC), a programming tool that catches errors at
compile time that ordinarily are not caught until runtime, and sometimes not even
then. Examples are array index bounds errors, nil dereferences, and deadlocks andThe refinement of tech-

niques for the prompt dis-
covery of error serves
as well as any other as
a hallmark of what we
mean by science.
— J. Robert Oppenheimer.

race conditions in multi-threaded programs. The tool is useful because the cost of
an error is greatly reduced if it is detected early in the development process. The
tool is intended to be like a type-checker or like the C toollint [23]: its warnings
are intended to be interpreted by the author of the program being checked.

The checker is implemented using the technology of program verification. The
program is annotated with specifications; the annotated program is presented to a
“verification condition generator”, which produces logical formulas that are prov-
able if and only if the program is free of the particular class of errors under consid-
eration, and these formulas are presented to an automatic theorem-prover.

This sounds like program verification, but it is not: firstly because we don’t try
to prove that a program does what it is supposed to do, only to check for certain
specific types of errors; secondly because we are interested in failed proofs only,
not in successful ones. A crucial point is that failed proofs are more useful than
successful ones, since they warn the programmer of possible errors. In addition to
being more useful, ESC is more feasible than full-scale program verification. For
example, an unsound full-scale program verifier is an oxymoron, but the amount
of unsoundness to tolerate in a static checker is a matter of engineering judgment:
nobody expects a type-checker or a lint tool to findall errors; its utility is deter-
mined by the number of errors it finds weighed against the cost of running the tool.
Similarly, since we are not promising that ESC will find all errors, we are free to
declare that some kinds of errors are out of the tool’s range.

This idea of extended static checking is not new. The first Ph.D. thesis that we
know of that addressed the idea was by Dick Sites a quarter of a century ago [44],
and the problem has held its own as a Ph.D. thesis topic ever since. But the research
prototype checkers that have been implemented over the decades have made too
many simplifying assumptions. They may not handle dynamically allocated data or
object-oriented programming; they may not handle concurrency; they may require
the source for the entire program in order to check any part of it; they may require
the user to guide the theorem-prover or to provide complicated loop invariants.
Such simplifying assumptions are a way of separating concerns, which can help to
focus on particular aspects of the problem, thus gaining depth of insight. Indeed,
our work builds on the deep insights produced by many earlier researchers, but
our ESC project has followed a complementary mode of research, in which every
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effort is made to produce and test a realistic artifact. This complementary mode of
research can often reveal surprises.

Most previous checking tools were tested only on small programs written by
the tool implementors themselves. In contrast, our plan was to run our checker
on significant pieces of the Modula-3 runtime system. By tackling realistic pro-
grams written by others (or in some cases, by ESC project members before the
ESC project was launched), we hoped to learn the answers to the following ques-
tions:

• Could we generate verification conditions for such “systems programs”?

• Would we be able to turn failed verifications into specific error messages?

• How much of a burden would it be to write the necessary annotations?

• To what extent could we automate the theorem-proving task?

In summary, we were determined to stress-test an idea that had long been in gesta-
tion.

Our checker handles multi-threaded multi-module object-oriented programs.
Our checker works on Modula-3 programs [40], but the techniques would work
for any language in which address arithmetic is restricted, including Java, Ada,
Oberon, and FORTRAN. Indeed, as this paper goes to press, a follow-on project
has replicated the technology in a tool for Java.

Our checker performs modular checking: you can use it to check selected
modules of a program without checking the entire program. Since modern pro-
gramming is inconceivable without libraries, we consider modular checking to be
essential.

The checker also allows you to check for selected classes of errors; for exam-
ple, it is often useful to check for deadlocks and race conditions without checking
for array index bounds errors.

When the checker produces spurious warnings, there are a variety of ways
to suppress them, that is, to get the checker to ignore the spurious warnings and
continue to report real errors. A type-checker is a Nean-

derthal program verifier:
it isn’t very smart, but it’s
hardy and it’s friendly.

— Jim Morris.

Although our checker is a research prototype, with plenty of rough edges, we
feel that it demonstrates the promise of the technology more clearly than previous
checkers: ESC catches errors that no type-checker could possibly catch, yet it feels
to the programmer more like a type-checker than a program verifier. The specifi-
cations required are statements of straightforward facts like inequalities, the error
messages are specific and accurate with respect to source position and error type,
and the theorem-proving is carried out behind the scenes automatically.
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SPEC 〈procedure or method name〉 ( 〈formal parameter names〉 )
MODIFIES 〈list of variables〉
REQUIRES 〈precondition〉
ENSURES〈postcondition〉

Figure 0: Procedure specification syntax.

Our main goal for this paper is to convey to the reader what it feels like to use
a checker that operates in this intermediate level between type-checking and verifi-
cation. Therefore, the paper consists largely of two examples. After the examples,
we describe at a rather general level some of the novel aspects of our checker, but
we have relegated many details to other papers.

1 The specification language

In this section, we lay the groundwork for the examples that form the heart of
the paper by briefly introducing ESC’s specification language. The design of the
specification language reflects the structure of well-designed programs.

One pillar of program structure isprocedural abstraction, in which a com-
pound operation is named and parameterized and used by the rest of the program
as though it were an elementary operation.

Procedural abstraction makes static analysis difficult, so difficult that many
static analysis methods described in the literature apply only to programs with-
out procedures, and many practical compilers perform no inter-procedural analysis
at all, even if they perform extensive intra-procedural analysis. The reason for
this is that the authors of compilers and other tools have not wanted to rely on
specifications, but inter-procedural analysis fundamentally requires dealing with
specifications, whether supplied by the programmer or inferred by the tool.

To perform inter-procedural analysis, ESC relies on programmer-supplied spec-
ifications of the form illustrated in Figure 0. Pre- and postconditions are formulas
in a first-order theory that includes the Modula-3 built-in operators.

A procedure specification is a contract between the implementer and the client:
the client contracts to call the procedure in a state where the precondition is true,
and the implementer contracts (a) to modify no variable except those in theMODI-
FIES list, and (b) to return only in a state satisfying the postcondition. Thus when
checking the body of the procedure, ESC assumes that the precondition is true
initially, and checks that when the procedure returns the postcondition is true and
only those variables in theMODIFIES clause have been modified. Conversely,
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SPEC VARv : 〈type〉
SPEC REPv = 〈concrete representation〉

Figure 1: Data abstraction syntax.

when checking a client, ESC checks that the precondition is true at the point of
call, and assumes that the call respects both the postcondition and theMODIFIES
clause.

For example, here are a Modula-3 declaration and ESC specification of a sim-
ple random number generator:

VAR seed: INTEGER;
PROCEDURE Rand(n: INTEGER): INTEGER;
<* SPEC Rand(n)

MODIFIES seed
REQUIRES 0 < n AND seed # 0
ENSURES 0 <= RES AND RES < n AND seed’ # 0 *>

The example also illustrates several other points. First, for a variable listed in the
MODIFIES clause (such asseed ), occurrences in the postcondition can be un-
primed or primed (seed’ ). A primed occurrence denotes the value of the variable
in the post-state, while an unprimed occurrence denotes the value of the variable
in the pre-state. Second, the reserved nameRES is used to denote the result of
the procedure, if any. Third, Modula-3 pragma brackets,<* *> , surround the
ESC annotations to distinguish them from ordinary Modula-3. Fourth,x # y is
Modula-3 syntax to assert that the values ofx andy are different.

Another pillar of program structure isdata abstraction, in which a collection of
program variables (orconcrete variables) are considered conceptually to represent
a singleabstract variable. The abstract variable is used by clients for reasoning
about the semantic effect of operations on the abstraction, and the concrete vari-
ables are used by the implementation to operate efficiently on the state.

For example, the abstract value of a complex numberz could be represented
concretely in terms of two floating point Cartesian coordinatesz.x andz.y; alterna-
tively the same abstraction might be represented in terms of the polar coordinates
z.r andz.theta. Generally, the module structure of a program is arranged so that the
concrete representation of an abstraction is invisible (that is, out of scope) within
the modules that use the abstraction (itsclients) [42].

Figure 1 shows the ESC syntax for declaring an abstract variable and specifying
its representation(also known as itsabstraction function). For example,
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<* SPEC VAR a: INTEGER *>
VAR c: INTEGER;
<* SPEC REP a = c*c *>

declares an abstract integer variablea, a concrete integer variablec , and specifies
that the square ofc representsa.

We haven’t described the whole specification language, but we have described
enough to give the first example.

2 An elementary application of Modula-3 writers

Both of the two extended examples in this paper use Modula-3’s standard I/O li-
brary, which is designed around the key abstraction of a monitored object-oriented
buffered stream. In particular, areader is an input stream and awriter is an out-
put stream. Each stream object contains a buffer and methods for managing the
buffer. Different stream subclasses override the methods in different ways, so that,
for example, a file reader refills the buffer from the disk and a network reader refills
the buffer from the network. Class-independent code can be common to all sub-
classes; for example,Wr.PutInt writes the ASCII representation of an integer
into a writer’s buffer. The Modula-3 design is described in Chapter 6 of Nelson’s
Modula-3 book [40], the original design is described by Stoy and Strachey [46].
We describe various aspects of the relevant interfaces as we need them for our
examples.

For each type of stream, the Modula-3 I/O library provides two interfaces, a
basic interface for simple clients, and an advanced interface that offers additional
functionality (in particular, access to the buffer structure) at the price of additional
complexity.

The basic writer interface. Our first example uses only the basic writer interface
Wr, which is presented in Figure 2. Here is a translation of Figure 2 from Modula-3
into English. The writer class is given the global nameWr.T , whereWr is the
name of the interface andT is by convention the principal type declared in the
interface. The class is declared as an opaque object type, publicly known only
to be a subtype of the built-in classROOT. (In Modula-3, classes correspond to
object types.) The actual declaration of the representation type is hidden in the
advanced interface, and is invisible to clients of the basic interface. The procedures
PutChar , PutText , andClose have the given signatures and specifications
(TEXT is Modula-3’s predeclared string type). (The actual interface has eleven
procedures instead of three, but these are representative. The interested reader can
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INTERFACE Wr;

TYPE T <: ROOT;

<* SPEC VAR valid: MAP T TO BOOLEAN *>
<* SPEC VAR state: MAP T TO ANY *>

PROCEDURE PutChar(wr: T; ch: CHAR);

<* SPEC PutChar(wr, ch)
MODIFIES state[wr]
REQUIRES valid[wr] *>

PROCEDURE PutText(wr: T; txt: TEXT);

<* SPEC PutText(wr, txt)
MODIFIES state[wr]
REQUIRES valid[wr] AND txt # NIL *>

PROCEDURE Close(wr: T);

<* SPEC Close(wr)
MODIFIES valid[wr] *>

END Wr.

Figure 2: The (simplified) writer interface.
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find the ESC-annotated version of the full interface referenced from the Extended
Static Checking homepage on the Web [9].)

A U-valued fieldf declared in a classT corresponds semantically to a map
from T to U. Thus the declarations ofvalid and state can be thought of as
BOOLEAN-valued andANY-valued fields of writers. Although Modula-3 uses the
syntaxx.f to denote thef field of an objectx , the annotation language uses the
syntaxf[x] whenf is abstract.

The specifications for the writer interface fall into a common pattern that we
call thestate/validity paradigm. In this paradigm, there are two abstract variables,
valid andstate . The idea is thatvalid[wr] represents the condition that
wr is a properly-initialized valid writer, andstate[wr] represents all other state
of wr (for example, its contents and position). If we were doing full-scale pro-
gram verification, there would be pages of specifications aboutstate ; but since
we are doing extended static checking only, there is almost nothing to say about
state , except to specify that some procedures may modify it. (Not even the type
of state is relevant, so we use the special ESC typeANY.) In the state/validity
paradigm, specifications become very stylized. A typical procedure or method op-
erating on a writerwr (like PutChar ) has the specification

MODIFIES state[wr]
REQUIRES valid[wr]

Becausevalid does not appear in theMODIFIES list, this specification implies
the preservation of validity.

Often a few procedures will have some additional annotations—for example,
PutText requires that its text argument be non-NIL —but for simple interfaces
the stylized specifications of the state/validity paradigm are the lion’s share of what
has to be written for an ESC verification.

The text writer interface. Figure 3 illustrates thetext writer interface, a particu-
lar writer subclass that occurs in our example. A text writer is a writer that doesn’t
do any output; it just stores everything that has been written in an internal buffer
and provides a procedureGetText that returns the contents of the buffer as a
TEXT.

BecauseTextWr.T is a subclass ofWr.T , the specification variablesvalid
andstate apply to text writers, and are used in the specification of the text writer
interface. The methodinit initializes a text writer (establishesvalid’[twt] )
and returns it (establishesRES=twt ). The specification is entirely typical for ini-
tialization methods in the state/validity paradigm. Similarly, the specification of
GetText is typical of the state/validity paradigm, with one additional postcondi-
tion conjunctRES # NIL.
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INTERFACE TextWr;
IMPORT Wr;

TYPE T <: Wr.T OBJECT
METHODS

init(): T
END;

<* SPEC T.init(twr)
MODIFIES Wr.valid[twr], Wr.state[twr]
ENSURES Wr.valid’[twr] AND RES=twr *>

PROCEDURE GetText(twr: T): TEXT;

<* SPEC GetText(twr)
MODIFIES Wr.state[twr]
REQUIRES Wr.valid[twr]
ENSURES RES # NIL *>

END TextWr.

Figure 3: The text writer interface.
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1 PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
2 VAR twr := NEW(TextWr.T); BEGIN
3 FOR i := 1 TO NUMBER(a) DO
4 Wr.PutText(twr, a[i])
5 END;
6 RETURN TextWr.GetText(twr)
7 END ArrayCat;

Figure 4: The first (erroneous) version of the example program uses a text writer
twr to accumulate the growing concatenation of the elements ofa.

Example. Our first example program is the kind of elementary programming
exercise that might be assigned to students first learning to program with output
streams, and we have seeded our program with elementary errors. The problem is
to program a procedure that takes an array of texts as an argument and returns a
single text containing the concatenation of all the texts in the array. This could be
done rather straightforwardly by repeatedly calling the Modula-3 binary concate-
nation operationText.Cat , but doing so leads to a performance trap, since with
most implementations of text concatenation, the total cost in time of this simple
approach can be proportional to the square of the length of the final result. A good
way to avoid this quadratic cost is to use a text writer, which leads us to the proce-
dureArrayCat shown in Figure 4. The procedure allocates a text writer, writes
the elements of the array to the writer in order, and finally retrieves and returns a
text containing everything that was written. (This approach avoids the quadratic
cost if text writers are well-implemented.)

Running ESC on theArrayCat procedure of Figure 4 produces a warning
about an array index bounds error:

array index bounds error, line 4:
Wr.PutText(twr, a[i] )

(The exact format of an ESC error message is identical to that of a compiler error
message; in this paper, we use italics and underlining to convey the same infor-
mation.) The error message also includes a so-called “error context” which is a
long list of atomic formulas that characterize the situation in which the error can
occur. Because it is long, we won’t show the error context here, but we remark that
a study of the context reveals that it implies the formulai=NUMBER(a) , which
is in fact the condition in which the array bounds error can occur: in Modula-3,
open arrays are indexed from 0, but theFORloop was written as though they were
indexed from 1. Correcting the error in one natural way produces the following
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improved program:

1 PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
2 VAR twr := NEW(TextWr.T); BEGIN
3 FOR i := 0 TO NUMBER(a)-1 DO
4 Wr.PutText(twr, a[i])
5 END;
6 RETURN TextWr.GetText(twr)
7 END ArrayCat;

This version of the loop eliminates the warning about the array bounds error. But
now ESC complains about this program as follows:

precondition failed, line 4:
Wr.PutText( twr, a[i])

A study of the error context reveals that it implies the formulaNOT valid[twr] .
That is, ESC has detected and warned about the failure to initializetwr (the pro-
gram allocated the text writer, but failed to initialize it). To correct this error,
we add a call to theinit method, which requires inserting the seven characters
“ .init() ”:

1 PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
2 VAR twr := NEW(TextWr.T).init(); BEGIN
3 FOR i := 0 TO NUMBER(a)-1 DO
4 Wr.PutText(twr, a[i])
5 END;
6 RETURN TextWr.GetText(twr)
7 END ArrayCat;

This correction eliminates both of the previous warnings, but ESC gives one more
warning:

precondition failed, line 4:
Wr.PutText( twr, a[i])

A study of the error context shows that theTEXTargument toPutText is equal
to NIL , which is forbidden by the precondition ofPutText but not ensured by
ArrayCat , which blindly passesa[i] , whether or not it isNIL . This error forces
a rethinking of the design forArrayCat : what should we do aboutNIL entries
in theTEXTarray? Two designs come immediately to mind: to ignoreNIL s or to
forbid NIL s. Either design is easy to get through ESC. In the design whereNIL s
are ignored, the procedure is recoded as follows:
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PROCEDURE ArrayCat(a: ARRAY OF TEXT): TEXT =
VAR twr := NEW(TextWr.T).init(); BEGIN

FOR i := 0 TO NUMBER(a)-1 DO
IF a[i] # NIL THEN Wr.PutText(twr, a[i]) END

END;
RETURN TextWr.GetText(twr)

END ArrayCat;

and of course ESC, which understandsIF statements, is perfectly happy with this
version. In the design whereNIL s are forbidden, the specification forArrayCat
is strengthened with a quantified precondition:

<* SPEC ArrayCat(a)
REQUIRES (ALL [i: INTEGER]

0 <= i AND i < NUMBER(a)
IMPLIES a[i] # NIL ) *>

ESC is perfectly happy with this design, too: the stronger precondition suppresses
the error message. Furthermore, ESC will enforce the stronger precondition wher-
everArrayCat is called.

We would like to make several comments about this example.
First, although careful specifications were required for the writer and text writer

interfaces, the beginning programmer was able to make use of ESC without writing
any specifications for his program at all. No preconditions or loop invariants were
required inArrayCat . We think that this is as it should be: anybody qualified
to design the interfaces of a stream library understands preconditions and postcon-
ditions and abstractions at some level, and will find an explicit notation for their
design decisions to be a useful tool rather than a burden. On the other hand, many
simple errors in programs can and should be identified by reading the unannotated
erroneous program; to require a loop invariant in order to checkArrayCat seems
pedagogical and heavy-handed.

Second, the reader should be aware that, although we have concentrated in this
example on the checking of a client of the I/O system, we have in fact also used
ESC to check the implementation of text writers. In the implementation, a rep-
resentation declaration is made to give the concrete meaning ofvalid[twr] in
terms of the concrete fields oftwr . And this representation is used by ESC when
checking the body of procedures likePutText andGetText , that require valid-
ity as a precondition and whose implementations depend on the concrete meaning
of validity.

A third remark that this example allows us to make is that it is up to the user
to choose a point on the continuum between full functional-correctness verification
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and minimal extended static checking. For example, it is in fact true that initializing
a text writer leaves its contents empty, but our specifications did not reflect this
truth. If we wanted to, we could reflect this by strengthening the postcondition of
init along the following lines:

<* SPEC T.init(twr)
MODIFIES Wr.valid[twr], Wr.state[twr]
ENSURES Wr.valid’[twr] AND RES=twr

AND Wr.state’[twr] = "" *>

(This would also require changing the type of the state of a writer fromANYto
SEQ[CHAR]. Also, the notation"" is not actually correct for the empty character
sequence.) It would be easy to concoct an artificial example in which this stronger
specification would be essential for some ESC verification. For example, the ab-
sence of array bounds errors in some client might depend on the fact that a newly
initialized text writer is empty. But this is a slippery slope. Ifinit ’s effect on
the state is specified fully, why notPutChar ’s as well? Without discipline, you
can quickly slide into the black hole of full correctness verification. Luckily, our
experience has been that many ESC verifications can be successfully completed
with almost no specifications at all about the contents and meanings of abstract
types, other than the specification of validity. You can go a long way just relying
on the state/validity paradigm: that is, the specifications for each procedure record
accurately how the procedure affects and requires validity, but all other side effects
are swept under the ample rug ofMODIFIES state[wr] . We believe this is a
key reason why ESC verifications can be more cost effective than full correctness
verifications.

3 An advanced application of readers

In this section, we will describe the use of ESC on a more sophisticated program,
WhiteSpace.Skip . The example is also a short client program of the Modula-3
I/O system, but differs in several ways from the example in the previous section.
A rather minor difference is that this program is a client of input streams rather
than output streams. A more important difference is that in this example, we will
pay attention to the synchronization protocol that is designed into both readers and
writers. In the previous example, we omitted synchronization in order to simplify
the exposition. Another important difference is that in this section we will see a
program that uses the advanced interface to deal with the buffer structure of the
stream, instead of exclusively using the procedures in the basic interface.
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PROTECT v BY mu shared variablev is not to be accessed without
holding the lockmu

PROTECT f BY SELF for every objectt , shared fieldt.f is not to be
accessed without holding the lockt

LL set of locks held by the current thread
sup supremum (maximum) in the programmer-

declared locking order

Figure 5: Locking-level syntax. The second form ofPROTECTcan be used only
whenf is a field declared in a subclass ofMUTEX.

How ESC checks for synchronization errors. Our experience has been that
many synchronization errors are failures to acquire locks (causing race conditions)
or acquiring locks out of order (causing deadlocks). Therefore, we have designed
the ESC annotation language to catch these simple errors; Figure 5 shows the syn-
tax. The programmer declares which locks protect which shared variables and
which locks can or must be held on entry to various procedures. The programmer
also declares a partial order in which threads are allowed to acquire locks. ESC
checks that shared variables are never accessed without holding the lock that pro-
tects them, and also checks that threads acquire locks in strictly increasing order
(Modula-3 features non-reentrant locks). This doesn’t prove correctness—more
expensive techniques like monitor invariants would be required for that—but it
does catch many common errors.

The locking order on mutexes is denoted by “<”, and the programmer specifies
it using a general facility for adding axioms to an ESC verification:SPEC AXIOM.
For example, the Modula-3 window system is based on an object called aVBT.
VBTs are arranged in trees, and can be locked only from a leaf of the tree toward
the root, not vice versa. This rule is declared in theVBT interface as follows:

<* SPEC AXIOM (ALL [v: VBT.T] v < v.parent) *>

Axioms about the locking order arise only in subtle situations. In particular, the
example we are about to present acquires only one reader lock at a time, so we
don’t need to declare axioms about the locking order.

The basic reader interface. Figure 6 shows the basic Modula-3 interfaceRd,
including its ESC specifications. The only new features of Figure 6 relate to con-
currency. The synchronization protocol designed into readers is highly stylized,
we call it themonitored-object paradigm: An object is treated like a monitor in
that mutual exclusion is provided for threads operating on the object via procedure
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INTERFACE Rd;
IMPORT Thread;
EXCEPTION EndOfFile; Failure(TEXT);

TYPE T <: MUTEX;

<* SPEC VAR valid: MAP T TO BOOLEAN *>
<* SPEC VAR state: MAP T TO ANY *>

PROCEDURE GetChar(rd: T): CHAR
RAISES {EndOfFile, Failure, Thread.Alerted};

<* SPEC GetChar(rd)
MODIFIES state[rd]
REQUIRES valid[rd] AND sup(LL) < rd *>

PROCEDURE EOF(rd: T): BOOLEAN
RAISES {Failure, Thread.Alerted};

<* SPEC EOF(rd)
MODIFIES state[rd]
REQUIRES valid[rd] AND sup(LL) < rd *>

PROCEDURE UnGetChar(rd: T);

<* SPEC UnGetChar(rd)
MODIFIES state[rd]
REQUIRES valid[rd] AND sup(LL) < rd *>

PROCEDURE Seek(rd: T; n: CARDINAL)
RAISES {Failure, Thread.Alerted};

<* SPEC Seek(rd, n)
MODIFIES state[rd]
REQUIRES valid[rd] AND sup(LL) < rd *>

END Rd.

Figure 6: The (simplified) basic reader interface.
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calls and method calls. The mutual exclusion is achieved by locking the object it-
self, whose type is a subtype ofMUTEX, Modula-3’s predeclared mutual exclusion
semaphore type. Acquiring the lock is equivalent to entering the monitor.

The text of the interface in Figure 6 reflects the monitored-object paradigm in
two ways. First,Rd.T is declared to be an opaque subtype not ofROOTbut ofMU-
TEX. Second, the monitor entry procedures have the extra preconditionsup(LL)
< rd , which reflects the requirement that they be called from a state in which it is
legal to acquire the lockrd .

The advanced reader interface. The basicRd interface is the one used by most
simple clients, but it is insufficient for more sophisticated clients. For example,
since it hides the buffer and the method for refilling the buffer, it is insufficient for
clients that implement new classes of readers. Figure 7 shows theRdrRep inter-
face, which provides the specifications needed for more sophisticated clients. With
theRdrRep interface we get beyond the boiler-plate ESC specification paradigms,
and start to put the specification language through its paces.

The interface begins by revealing the representation of the typeRd.T , which
is opaque in the basic interface. The representation is an object type containing a
buff field, which is a reference to an array of characters. The Modula-3 keyword
BRANDEDsubstitutes name equivalence for Modula-3’s default structural equiva-
lence for types. In addition to thebuff field, Rd.T also contains several integer
and boolean fields. The integer fields determine the active portion of the buffer,
according to a convention illustrated in Figure 8. The boolean fields are irrelevant
for this example. The full interface contains several methods, but we show only the
seek method, since the others are irrelevant for our example.

TheSPEC PROTECTannotation specifies that the fields of a reader are pro-
tected by the reader itself; that is, a thread is not allowed to read or write any of the
reader’s fields unless it has acquired the reader lock. This annotation is typical of
the monitored-object paradigm.

Next we come to the specification ofseek . This method is responsible for
performing the class-specific computation involved in repositioning the buffer: the
call rd.seek(n) repositions the buffer so that byte numbern of the source of
the reader is present in the buffer. In particular,rd.seek(rd.hi) will advance
to the next buffer of data (sincerd.hi is the index of the first byte that is be-
yond the current buffer of data). The method returnsSeekResult.Ready if the
repositioning is successful; ifn is beyond the end of the reader, it returnsSeekRe-
sult.Eof . (If dontBlock is set and theseek method can’t do its job without
risking blocking, it is allowed to returnSeekResult.WouldBlock . But that
isn’t relevant for this example.)
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INTERFACE RdrRep;
IMPORT Rd, Thread;

TYPE
SeekResult = {Ready, WouldBlock, Eof};
CharRefArray = BRANDED REF ARRAY OF CHAR;

REVEAL Rd.T = MUTEX BRANDED OBJECT
buff: CharRefArray;
st, lo, cur, hi: CARDINAL;
seekable, intermittent: BOOLEAN

METHODS
seek(n: CARDINAL; dontBlock := FALSE): SeekResult

RAISES {Rd.Failure, Thread.Alerted}
END;

<* SPEC PROTECT
Rd.T.buff, Rd.T.st, Rd.T.lo, Rd.T.cur, Rd.T.hi,
Rd.T.seekable, Rd.T.intermittent

BY SELF *>

<* SPEC Rd.T.seek(rd, n, dontBlock)
MODIFIES Rd.state[rd]
REQUIRES Rd.valid[rd] AND sup(LL) = rd *>

<* SPEC DEPENDS Rd.valid[rd: Rd.T] ON
rd.st, rd.lo, rd.cur, rd.hi, rd.buff *>

<* SPEC REP Rd.valid[rd: Rd.T] IFF
{NonNil: rd # NIL} AND
{BuffNonNil: rd.buff # NIL} AND
{LoBeforeCur: rd.lo <= rd.cur} AND
{CurBeforeHi: rd.cur <= rd.hi} AND
{BuffAmple: rd.st+rd.hi-rd.lo <= NUMBER(rd.buffˆ)} *>

<* SPEC DEPENDS Rd.state[rd: Rd.T] ON
rd.st, rd.lo, rd.cur, rd.hi, rd.buff, rd.buffˆ,
rd.seekable, rd.intermittent *>

END RdrRep.

Figure 7: The (simplified) advanced reader interface.
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Figure 8: Reader representation.

The ESC specification of theseek method is much simpler than the informal
functional specification. The specification is the standard one for a monitored ob-
ject in the state/validity paradigm. The only new point to notice is that the locking-
level precondition issup(LL)=rd instead ofsup(LL)<rd . This reflects the
design decision thatseek is a so-called internal monitor method (to be called
from within the monitor) rather than a monitor entry method (to be called from
outside the monitor).

The SPEC DEPENDSannotations can be ignored for now; they will be ex-
plained in Section 5.

The SPEC REPdeclaration specifies the concrete representation of the ab-
stract variablevalid[rd] . Clients of the basicRd interface care whether readers
are valid, but don’t care what validity means in concrete terms; clients ofRdrRep
do care, since they have access to the reader’s concrete representation. Thus this
interface is an appropriate place to declare this representation. TheSPEC REP
declaration forRd.valid declares that a reader is valid if it is non-nil, its buffer
is non-nil, itslo , cur , andhi fields are in ascending order, and its buffer’s size
is ample. The conjuncts of the formula are labeled; these labels are optional, but
including them allows ESC to make its error messages more useful. Figure 8 illus-
trates these conditions.

TheRdrRep interface is fairly subtle. Instead of the simple idiom ofvalid
andstate , it exercises many of the features of ESC’s specification language. This
is because the interface must carefully balance the requirements of simple clients,
subclass implementations, and the class-independent implementation. Designing
such a critical interface is inherently difficult. We believe that any programmer
who is skilled enough to do a good job designing theRdrRep interface will not be
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intimidated by the specification language.

Example. Behind our next example there is a story. A student working in our
laboratory as a research intern had written a parser, and when his parser was slow,
he complained to one of the authors (Nelson) that the Modula-3 input library was
inefficient. Nelson asked the intern to measure the performance more carefully and
figure out where the time was going.

The intern reported back the next day that “you wouldn’t believe it, but almost
all the time is going into skipping white space in the lexer!”. Nelson said he did
believe this report, and asked how the lexer skipped white space. The answer was:

MODULE WhiteSpace;
IMPORT Rd, Thread;

CONST WhiteChars =
SET OF CHAR {’ ’, ’\t’, ’\n’, ’\r’};

PROCEDURE Skip(rd: Rd.T) RAISES {Rd.EndOfFile,
Rd.Failure, Thread.Alerted} =

VAR ch: CHAR; BEGIN
REPEAT

ch := Rd.GetChar(rd)
UNTIL NOT ch IN WhiteChars;
Rd.UnGetChar(rd)

END Skip;

BEGIN
END WhiteSpace.

Nelson suggested to the intern that instead of making a monitor entry call per
character, it would be more efficient to importRdrRep and skip the white space
directly in the buffer itself. The intern resisted, protesting “Isn’t that a violation of
abstraction? I can’t believe thatyou, Greg Nelson, of all people, would violate ab-
straction by pawing over the grotty buffer!”. Nelson made an appropriate response,
and the intern implemented a new version. Later, he reported back cheerfully, “I
tried your idea and it worked! And you’re right, it’s much faster!”. But the intern
complained that theRdrRep interface was confusing and requested that Nelson
check over his code.

Nelson has a vivid memory of the intern’s program: it is listed in Figure 9.
The procedure consists of a single loop. The loop begins by testingrd.cur <
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1 MODULE WhiteSpace;
2 IMPORT Rd, RdrRep, Thread;

4 CONST WhiteChars =
5 SET OF CHAR {’ ’, ’\t’, ’\n’, ’\r’};

7 PROCEDURE Skip(rd: Rd.T)
8 RAISES {Rd.Failure, Thread.Alerted} =
9 BEGIN

10 LOOP
11 IF rd.cur < rd.hi THEN
12 IF rd.buff[rd.cur] IN WhiteChars
13 THEN INC(rd.cur)
14 ELSE RETURN
15 END
16 ELSIF Rd.EOF(rd)
17 THEN RETURN
18 ELSE Rd.Seek(rd, rd.cur)
19 END
20 END
21 END Skip;

23 BEGIN
24 END WhiteSpace.

Figure 9: The intern’s attempt at writing an efficient procedure that skips white
space.
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rd.hi . If the test succeeds, the current character is present in the buffer, and
it can be tested for whiteness and skipped if necessary. If the testrd.cur <
rd.hi fails, the procedure has exhausted the current buffer without finding a non-
white character. In this case, the loop uses the callRd.Seek(rd, rd.cur)
to advance to the next buffer, after testing that there is another buffer via the call
Rd.EOF(rd) .

This all occurred before ESC was written, so the errors in the intern’s code
were found and removed by other means. But today we can run ESC on the code.
Running it produces, first, the following error message:

nil dereference error, line 11:
IF rd.cur < rd.hi THEN

This warning is boring; it is just ESC’s way of saying that it can’t do much useful
checking unless you provide it with a specification. Of course the client is not
supposed to callWhiteSpace.Skip(rd) if rd is NIL , or for that matter ifrd
is not valid. So to get rid of this spurious error, we add to the interface the typical
specification

<* SPEC Skip(rd)
MODIFIES Rd.state[rd]
REQUIRES Rd.valid[rd] *>

And now running ESC produces a more interesting error:

race condition reading shared field, line 11:
IF rd.cur < rd.hi THEN

This warning is useful: the program erroneously reads (and in fact also writes)
shared data fields without holding the lock that protects them.

It is not surprising that the intern made this error. Programmers who are not
experienced at concurrent programming have a regrettable tendency to ignore all
the comments about concurrency in an interface they are using, and since casual
testing rarely reveals these errors, they do not surface until much later.

To fix the race condition, we must either require that the reader be locked on
entry to the procedure, or else we must lock the reader inside the procedure. The
later fix is preferable, since it makesWhiteSpace.Skip a monitor entry pro-
cedure, just likeGetChar or EOF. Therefore, let us fix the error by bracketing
the body of the procedure withLOCK rd DO ... END . At the same time, we
change the precondition to be as follows:

REQUIRES Rd.valid[rd] AND sup(LL) < rd
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(If we had forgotten to addsup(LL) < rd to the precondition, ESC would warn
of a possible deadlock at theLOCK rd, since the verifier can’t prove that it is legal
to lock rd on entry to the procedure.)

Now the checker gets one line further before it complains:

array index bounds error, line 12:
IF rd.buff[rd.cur] IN WhiteChars

The intern has confused stream indexes with buffer indexes. The indexrd.cur
is a stream index and could be enormous. Looking at Figure 8, we see that the
correction is to substitute

rd.buff[rd.st+rd.cur-rd.lo]

for rd.buff[rd.cur] . It is interesting to note that the array index bounds error
in ArrayCat that was detected in Section 2 was an off-by-one error, which could
have been detected by many ad-hoc techniques. But the bounds error inWhiteS-
pace.Skip is not an off-by-one error; it is caused by a confusion over data struc-
ture invariants. We believe that the theorem-proving and verification methods used
by ESC are necessary to catch such errors.

It may be a bit surprising that such a blatant error was not revealed by the
intern’s testing. Presumably, he tested his code only on standard disk files (where
st is 0) and only on files that were smaller than the 8 KB reader buffers of the
standard library. Within the first buffer, stream indexes and buffer indexes agree.

The next error from the checker is

precondition failed, line 16:
ELSIF Rd.EOF( rd)

It is unfortunately common to introduce a deadlock when correcting a race con-
dition, and this is just what we did above when we locked the reader on en-
try to WhiteSpace.Skip . The checker is warning us that the attempt to call
Rd.EOF(rd) from within the procedure would self-deadlock. The warning mes-
sage is “precondition failure”, since the locking-level requirement forRd.EOF is
specified in its precondition.

To fix this deadlock, we observe that the procedure is somewhat inconsistent:
the top of the loop is coded in the style of a client of the advanced interfaceRdr-
Rep, for example by directly accessing the fields of the reader, but the bottom half
is coded in the style of a client of the basic interfaceRd, for example by calling the
operationsRd.EOF andRd.Seek . The correction is to code the bottom of the
loop in the same style as the top, by calling theseek method directly. Instead of
theEOFandSeek procedure calls in
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ELSIF Rd.EOF(rd)
THEN RETURN
ELSE Rd.Seek(rd, rd.cur)

END

we invoke theseek method onrd :

ELSIF rd.seek(rd.cur) = RdrRep.SeekResult.Eof THEN
RETURN

END

After this correction, the checker finds no more errors.
This concludes our second example. In the next few sections of the paper, we

describe at a high level some of the crucial aspects of the design of our checker.

4 Tool architecture: A bird’s eye view

Figure 10 shows a diagram of the major modules of our checker. The verification
condition generator parses and type-checks an annotated program and produces a
logical formula called the verification condition. This condition is valid if the pro-
gram is consistent with its annotations and free of the errors in Figure 11. The
condition is submitted to an automatic theorem-prover, just like in program verifi-
cation, but unlike in program verification, we have no interest in the case where the
theorem prover succeeds. Instead, the tool post-processes theorem-prover failures
into meaningful error messages.

The checker is programmed in Modula-3. To parse and type-check Modula-3,
it uses the Olivetti Modula-3 front-end toolkit, designed and implemented by Mick
Jordan [24]. Not counting the toolkit, the verification condition generator is 34000
lines of code and the theorem-prover is 26000 lines of code. The system is available
from the ESC home page on the Web [9].

5 Generalized data abstraction

An important property of our checker is that it works on individual modules; you
don’t need to provide it with a complete program. The checker reasons about
procedure calls and method calls using specifications, not implementations. The
basic idea of reasoning about procedure calls using preconditions, postconditions,
andMODIFIES clauses has been understood for several decades, but we found
that the basic idea that works so well on the examples in the program verification
literature did not work on the standard Modula-3 libraries.

23
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Figure 10: Block diagram of the ESC tool.

array bounds error accessing protected variable
NIL dereference without a lock
subrange error acquiring locks out of order
narrow fault (type-cast error) precondition violation
functional procedure fails to return a value postcondition violation
exception not inRAISES clause program invariant violation
CASEvalue handled by no arm MODIFIES clause violation
TYPECASEvalue handled by no arm
divide orMODby zero

Figure 11: Errors reported by ESC.
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The problem is not that the libraries use unsafe code or low-level tricks; the
problem is that they use patterns of data abstraction that are richer than those treated
in the literature. It turned out to be a major problem to design a checker that al-
lows modular checking and supports the patterns of data abstraction that are used
in modern object-oriented designs. In this overview paper, we have space only
to sketch the kinds of difficulties and hint at our solutions; for a fuller treatment,
we refer the reader to our companion paperAbstraction and specification revis-
ited [30].

A basic dilemma. In writing specifications for a multi-module program, we face
a fundamental dilemma. Specifications require that procedure declarations include
a list of what variables can be modified by a call to the procedure. But in a properly
modularized program, the variables modified by a procedure are usually private to
the implementation, and are not in scope at the point of declaration of the proce-
dure.

Solution: abstraction. The solution to the dilemma is data abstraction. The
specification describes the side effects of the procedure in terms that are of use
to its clients, that is, in terms of abstract variables. The concrete variables that
are used to represent the abstract variables can be confined to the private scope of
the implementation. Generally the representation function is private to the same
implementation scope.

Using data abstraction to solve the basic dilemma has several important conse-
quences.

Downward closure. The first consequence of using data abstraction is that ab-
stract variables can appear inMODIFIES lists; and that the meaning of an abstract
variable in aMODIFIES list is that the license to modify the abstract variable im-
plies the license to modify the concrete variables that represent it. For example,
consider the implementation ofRd.GetChar :

PROCEDURE GetChar(rd: Rd.T): CHAR
RAISES {EndOfFile, Failure, Thread.Alerted} =

VAR res: CHAR; BEGIN
LOCK rd DO

IF rd.cur = rd.hi THEN
IF rd.seek(rd.cur) = RdrRep.SeekResult.Eof

THEN RAISE EndOfFile
END

END;
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res := rd.buff[rd.st + rd.cur - rd.lo];
INC(rd.cur);
RETURN res

END
END GetChar;

Obviously, this modifiesrd.cur , but rd.cur does not occur in theMODIFIES
list of GetChar (see the listing of theRd interface in Figure 6). Why doesn’t the
checker complain? Becauserd.cur is part of the representation of the abstract
variablestate[rd] , whichGetChar is allowed to modify.

Thus theMODIFIES list

MODIFIES state[rd]

of GetChar is “downward closed” to

MODIFIES state[rd], cur[rd], ...

where the ellipses stand for the other concrete variables representingstate[rd] .
The checker does not complain about the updates tord.cur in GetChar because
the MODIFIES list is closed before the verification condition is generated. (The
reader may wonder how the checker knows which variables are part of the repre-
sentation ofstate[rd] ; this is explained below.)

Protecting related abstractions. The second consequence of using data abstrac-
tion is that postconditions must be strengthened to “protect related abstractions”.
To see this, consider the question: what preventsGetChar from destroying the
validity of its reader? Sincevalid[rd] does not occur in theMODIFIES list
of GetChar , callers (and our checker when reasoning about a caller) will trust
thatGetChar preserves validity. ButGetChar is allowed to modify the state of
the reader, and thereby, through downward closure, is also allowed to modify the
representation of the state, which includes concrete variables that are part of the
representation ofvalid . Thus the license to modify the state threatens to modify
validity. Evidently, the omission ofvalid from theMODIFIES list must impose
on the implementor the obligation of proving that the changes to the state are such
thatvalid[rd] is unchanged. Indeed, our checker strengthens the postcondition
of GetChar with the conjunctvalid’[rd] = valid[rd] , so that if validity
is destroyed, the checker will complain.

Here is another (more contrived) example. If two abstract variablesa andb
both are represented in terms of two concrete variablesc andd, then in a scope
wherea, b, c , andd are all visible,

26



MODIFIES a

is desugared into

MODIFIES a, c, d
ENSURES b’ = b

That is,c andd are included because of downward closure, and the related ab-
stractionb is protected from change by adding it to the postcondition.

In a scope wherea andb are visible butc andd are not visible, the original
MODIFIES list

MODIFIES a

remains unchanged after downward closure and protection of related abstractions.

Soundness lost. Both the downward closure and the protection of related ab-
stractions are reflected in the checker’s semantics of data abstraction as rules for
desugaring specifications. The desugaring depends on which variables represent
which other variables. The knowledge of this representation information is differ-
ent in different scopes, and therefore the desugaring is different in different scopes.
This is frightening, since it raises the possibility that after desugaring, the speci-
fication used in reasoning about the calls to a procedure can be different from the
specification used in checking its implementation. Thus, it is no longer clear that
checking the modules individually ensures that the composite program is free of
errors.

In fact, it is easy to see that without imposing additional conditions, we have no
hope of sound modular checking. For example, suppose thatc is part of the repre-
sentation of an abstract variablea, that botha andc are visible in some scope, and
that no declaration in the scope gives any clue of the connection between the vari-
ables. Then the checker has no chance of reasoning correctly about the program,
since modifications ofc may affecta, and modifications ofa (via procedure calls)
may affectc , and neither side effect can be expected by the checker.

The rep-visibility requirement. A simple way to restore soundness is to impose
the following requirement, which we might call therep-visibility requirement:

Wheneverc is part of the representation of an abstract variablea, and
both a andc are visible in some scope, then the representation ofa
must also be visible in that scope.
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The classic treatment of data abstraction by C.A.R. Hoare implicitly imposes this
requirement, since it requires that the representation and all its concrete variables
be declared together [18].

Unfortunately, we found many examples in the Modula-3 libraries where the
rep-visibility requirement is too strong. As one simple example, in the scope
of RdrRep (and ofWhiteSpace.Skip ) the concrete variables that represent
Rd.state are visible, but the representation itself is not. Furthermore, it would
be very awkward to place a representation declaration forstate[rd] in this
scope, for two reasons. First, since we are doing ESC verification only, we don’t
want to get bogged down in the complexities of the state. We would prefer never
to declare the representation ofstate[rd] at all. Second, even if we were doing
full-scale verification, the representation of the state of a reader is subclass-specific,
so not all variables that are part of the representation are in scope, but the scope
RdrRep is class-independent. (The infeasibility of the rep-visibility requirement
is also manifest from the more detailed example in our companion paperAbstrac-
tion and specification revisited[30].)

Explicit dependencies. We therefore introduce a new specification language con-
struct, DEPENDS, which is a way of specifying that one variable is part of the
representation of another, without giving the actual representation. In the case of
readers, we write

DEPENDS Rd.state[rd: Rd.T] ON
rd.st, rd.lo, rd.cur, rd.hi, rd.buff, rd.buffˆ

in interfaceRdrRep . Thus we commit the design decision that these concrete vari-
ables are part of the representation ofstate[rd] , while deferring the decision
of what the representation is.

The depends-visibility requirement. Armed with DEPENDS, we weaken the
rep-visibility requirement to thedepends-visibility requirement:

Wheneverc is part of the representation of an abstract variablea, and
botha andc are visible in some scope, then the dependency ofa on
c must also be visible in that scope.

Sketch of the rest of the story. We hope this section has given the reader a
flavor of the issues we have wrestled with in trying to produce a sound modular
checker. Summarizing briefly, practical systems programs use information hiding
in ways that make it problematical to generate verification conditions in a sound
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and modular fashion. A key ingredient of our solution to the problem is the explicit
declaration of dependencies. In the full story, there are several kinds of dependency
declarations, and different requirements are imposed on different kinds of depen-
dencies. For the details, we refer the reader to our companion paperAbstraction
and specification revisited[30].

One problem in this area that stumped us is a form of rep exposure that we call
abstract aliasing. We have been unable to design a statically enforceable program-
ming discipline for avoiding this problem. Our best efforts are described in our
companion paperWrestling with rep exposure[4]. In the meantime, we take the
view that it is the programmer’s responsibility to avoid abstract aliasing.

6 Verification condition generation

More than half of the code in our checker is devoted to the task of translating
the annotated Modula-3 into the verification condition (VC) to be presented to the
theorem-prover. This task is governed by the classic laws of Hoare logic [17], but
the demands of our checker require some novel approaches. As usually expounded,
Hoare logic provides a framework for checking a hand-constructed proof of some
program property. Such a proof typically requires invariants at many control points,
but we want VC generation to be totally automatic. Therefore, we translate the
annotated Modula-3 into a version of Dijkstra’s guarded commands [7, 39], and
then use their weakest-precondition equations to generate the VC. This approach
provides a better foundation for an automatic tool, since weakest preconditions
have more of a calculational flavor than Hoare logic.

Our theorem-prover has a novel feature that allows our checker to report spe-
cific error messages: any subformula of the theorem-prover input can belabeled.
If the prover finds a counterexample, it emits the set of labels of relevant subfor-
mulas that are false in the counterexample. The implementation of this feature will
be described in our companion paperAn automatic theorem-prover for program
checking[5]. The VC generator uses this feature by labeling the proof obligations
in the VC corresponding to each possible error. The name of the label encodes
the source position and error type. This makes it straightforward to translate failed
proofs into specific error messages.

The translation of Modula-3 control structures into guarded commands is quite
straightforward, but the effect of the type system on the translation is more inter-
esting. Like pre- and postconditions, type declarations contain declarative infor-
mation about the program. Our checker uses this information. Thus, the effective
precondition of a procedure is itsREQUIRESclause conjoined with the precondi-
tion implicit in the procedure declaration. For example, the effective precondition
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assumed on entry to the body of

PROCEDURE P(x: CARDINAL);

must imply 0 ≤ x, since the type system guarantees this. Slightly more subtly,
consider the procedure

PROCEDURE Q(t: T);

where the typeT contains aCARDINAL:

TYPE T = OBJECT val: CARDINAL; link: T END;

The effective precondition assumed on entry to the body ofQ must imply 0 ≤
t.val, 0 ≤ t.link.val, 0 ≤ t.link.link.val, etc. (as far as these are defined).
Since ESC’s theorem-prover is for the untyped predicate calculus, we took the
expedient, if inefficient, approach of encoding Modula-3’s type system in untyped
first-order logic. For example, the extra precondition assumed for the body of
Q(t) is IsT(t) , whereIsT is axiomatized in the first-order language of the
theorem-prover. We spare the reader the full complexity of the axiomatization, but
here’s a simplified version:

(∀ t :: IsT(t) ⇒ t = NIL ∨ (IsCARDINAL(t.val) ∧ IsT(t.link)) )

(∀ x :: IsCARDINAL(x) ⇒ 0 ≤ x )

Similarly, the extra precondition assumed for the body ofP(x) above isIsCAR-
DINAL(x) . The language-enforced condition that variables have values of their
declared types is important not only for assumed preconditions but also for other
parts of the program, including assumed postconditions,TYPECASEand NAR-
ROW, and loops. For a full account of this subject for a language smaller than
Modula-3, see Leino’sEcstatic: An object-oriented language with an axiomatic
semantics[29].

Semantic correctness is only half the battle: Logically equivalent forms of the
verification condition can cause the heuristic search done by the theorem-prover to
perform different patterns of case analyses, which can have dramatic performance
consequences. Although there seems to be no way to guarantee that the theorem-
prover will not choose a disastrously slow pattern of case analyses, luckily we have
found a few straightforward heuristics that seem to prevent this in practice. This
often neglected issue is in fact a crucial aspect of VC generation. For the details of
some of the heuristics, see our companion paperAn automatic theorem-prover for
program checking[5].
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7 The theorem-prover

We did our first experiments using the Larch prover [12]. Since this prover requires
human guidance to find a proof, the programmer had to guide the prover through
a proof, and an error would be revealed by the failure of the process. Damien
Doligez found a locking error in auto-flush writers using this prover, but for mere
mortals it is too laborious to be practical.

Therefore, we wrote our own theorem-prover, which is designed to be totally
automatic, and which is powered by automatic decision procedures for the func-
tions and predicates that are important in programming (in particular, equality and
arithmetic). The overall structure of the theorem-prover follows the design in the
Ph.D. thesis of one of the authors (Nelson) [37]. Another important requirement
that shaped the design of the theorem-prover is that failed proofs lead to compre-
hensible error messages. In particular, the prover is refutation-based: to prove a
verification conditionVC, the prover attempts to satisfy¬VC. In full-scale pro-
gram verification, the failure to satisfy¬VC implies thatVC is valid and the pro-
gram meets its specification; in an ESC verification, the satisfaction of¬VC gives
an error context for the original program. The systematic exhaustive search tech-
niques are identical, although the purpose is different.

By far the most time-consuming part of running the checker is the backtracking
search in the theorem-prover. We find that the checker is usually between five and
fifty times slower than the compiler. This is too slow to use routinely with every
compilation, but it is fast enough to be useful. (Hardware designers have learned
that it is worthwhile to run simulations and design checkers, even if they are so
slow they have to be run overnight. We think that ESC can offer the same benefits,
but for software instead of hardware. As another point of comparison, many good
programming teams make use of code reviews, in which a committee studies a
program line by line. Overnight ESC runs are cheap by comparison.) We have
sometimes found it irritating that the time taken by the prover is unpredictable.

The input to our prover is a formula of the untyped first-order predicate cal-
culus, with equality and function symbols, quantifiers, arithmetic, and McCarthy’s
storeandselectfunctions [35]. Quantifiers are handled by a heuristic matcher that
exploits equalities and can be guided by user-supplied “trigger” terms. The details
of the theorem-prover design will be described in a companion paper [5].

8 Soundness considered harmful

As we have mentioned several times, failed proofs are turned into error messages.
But what if the proof of the verification condition succeeds? In this case the tool has
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nothing useful to report, and its output is “Sorry, can’t find any more errors”. We
have found in demonstrating the tool that people laugh at this message, but we want
to be absolutely clear that in this case we do not claim to have rigorously proved
the absence of all errors, since our tool’s verification engine has some sources of
unsoundness that are included by design. Two of these are:

• There are some kinds of errors that we do not try to find: it is the program-
mer’s responsibility to avoid them. These include arithmetic overflow and
abstract aliasing (see [30, 4]).

• Although it is possible to use the checker with loop invariants, we generally
use neither programmer-supplied nor inferred loop invariants (see Section 9),
and in this mode we generate a precondition for the loop that is weaker than
the true infinite limiting precondition. That is, the verification condition
generation is unsound.

We don’t view these unsoundnesses as problems, since there are plenty of er-
rors that the checker can find. We think it important to use engineering judgment
to decide which kinds of errors are worth checking for, based on the different costs
and benefits of each kind of check. To categorically require that the tool be sound
means that it must catch all kinds of errors, which avoids a difficult cost-benefit
tradeoff by retreating to a mathematical idealization. This is nothing more than
a breach of engineering responsibility. (Interestingly enough, our theorem-prover
is sound, as far as we know; it has been in VC generation that we have found it
valuable to leave some kinds of errors to the programmer.)

9 Loops

An important point to notice about the two extended examples we showed in previ-
ous sections is that the programmer is not required to supply loop invariants. ESC
implements three techniques that greatly reduce, or completely eliminate, the need
for programmer-supplied loop invariants.

The first technique infers a loop invariant by static analysis of the loop body,
using a version of the abstract interpretation method of Cousot and Cousot [3]. We
thank Franc¸ois Bourdoncle for help with the design and implementation of this part
of ESC.

The second technique (“loop modification inference”, or LMI) guesses a loop
invariant by strengthening the part of the enclosing procedure’s postcondition that
comes from theMODIFIES clause.

The third technique (“even weaker precondition”, or ewp) eliminates the need
for loop invariants by considering only those computations in which the loop is
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executed a bounded number of times (in particular, 0 or 1 times). This apparently
crude technique is remarkably effective in practice. Of course, it is not sound.
In fact, it is a good example of the wonderful liberation we get by dropping the
shackles of soundness.

The user can activate these techniques using a command-line switch. (The ab-
stract interpretation switch is no longer supported.) The accounts of the two exam-
ples in this paper assumed the ewp technique. The checking of the readers/writers
package described in Section 10 was performed using each of the three techniques,
but when using LMI, the checking resulted in three spurious warnings.

10 Experience

In this section, we report on our experience using the checker. Looking over our
experiments, we find that we used the checker to perform three different levels
of verification: ESC verifications (which check the absence of the errors listed in
Figure 11), locking-level verifications (which check the absence of deadlocks and
race conditions only), and functional-correctness verifications (which are like ESC
verifications but also check functional correctness). These levels of verification
are denoted by ESC, LL, and F in Figure 12. Each of these levels of verification
also checks the program to be consistent with its annotations. (We say “check”
instead of “prove” since, as explained in Section 8, the VC generator leaves certain
errors to the programmer to avoid.) Averaged over the 20000 source lines, the
annotation overhead was a 13.6% increase in the number of lines. We find this to
be a reasonable price to pay for the additional checking.

In the standard Modula-3 I/O library, we have done an ESC verification of
the class-independent readers code as well as all the standard reader subclasses.
We have done a locking-level verification of most of the class-independent writers
code, and an ESC verification of several writer subclasses. The annotated code is
available from the ESC home page [9]. This exercise did not uncover any errors in
the I/O library, but it taught us many things about data abstraction that are described
in Section 5 and our companion papers [30, 4].

We have done two experiments in which we turned the checker on its own
source code. One of the more complicated modules in our checker isSimplex ,
the part of the automatic theorem-prover that reasons about linear inequalities.
A straightforward but very detailed module in our checker isParseSpec , the
recursive-descent parser for the annotation language. We have done ESC veri-
fications of bothSimplex and ParseSpec . The specifications we wrote for
ParseSpec ensured not only the absence of errors but also the proper shape of
the parse trees constructed. This is more than ESC verification but less than func-
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tional correctness, so we list it as ESC+ in Figure 12. We did not find errors in the
well-exercisedSimplex module, but we found several inParseSpec .

Most of our verifications have been of mature code. To test ESC on unde-
bugged code, two of the authors (Leino and Nelson) teamed up with Rajit Manohar
to write a new writer class,PrettyWr , a writer that formats its output stream by
judicious insertion of line breaks and indentation, and forwards the result to an-
other writer. This is a short but tricky program; it took the three of us two days
to design and code. ESC found four errors (a violation of the validity invariant, a
failure to declare an exception that needed to be propagated, a self-deadlock, and
the access to a shared field without holding the protecting lock). After fixing the
errors and proceeding to test the program, we found two more errors: an infinite
recursion (which is an error within the range of the ESC techniques, but not han-
dled by our current checker), and a failure to format correctly caused by missing
an assignment to a boolean (which was beyond the scope of our experiment, since
we didn’t try to annotate for functional correctness).

In another experiment to run ESC on fresh code, Leino teamed up with Cormac
Flanagan to write a program that generates and prints random mazes. ESC found
no errors in the first version, which also performed without error when it was tested.
Shortly thereafter, Leino introduced an optimization, and with it an initialization
error, which ESC reported.

We conclude from these experiments that in fresh code, ESC can catch a sub-
stantial fraction of the errors that are ordinarily detected by debugging.

The Modula-3 windowing library, Trestle, is highly concurrent and requires
careful synchronization. Allan Heydon has done a locking-level verification of the
Trestle Tutorial [34], in which he discovered a latent bug. This latent bug would
have been difficult to find by testing, since it would strike only in Trestle imple-
mentations in which selection values were communicated lazily between address
spaces. While the Trestle specification was designed to allow lazy communica-
tion of selection values, all Trestle implementations to date communicate selection
values eagerly.

One of the authors (Leino) had been working on supporting free-hand anno-
tations in an on-line document viewing system, and in the course of this work
he extended the Trestle library with a module (calledCubicPath ) that converts
polygonal paths into smooth cubic splines. He applied ESC to this module, but
found no errors.

In addition to the I/O library, we have done ESC verifications of other parts
of the standard Modula-3 libraries [20]. Most of this code is mature and well
exercised and we found only one error. In a recent addition to the library, the
genericSequence module, we found the following glaring error: instead ofi
:= i MOD n , the code read
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Package files l.o.c. l.o.a. l.o.a./l.o.c. checking level

Readers/writers 14 2495 470 0.188 ESC/LL
OS 3 674 75 0.111

Simplex 3 2157 184 0.085 ESC
ParseSpec 2 2559 793 0.309 ESC+

List 1 110 23 0.209
PrettyWr 3 411 115 0.279 ESC
Maze 5 403 93 0.230 ESC

Rand 1 24 12 0.500
Trestle Tutorial 28 2201 169 0.076 LL

Trestle 27 6736 346 0.051
CubicPath 2 633 110 0.173 ESC

Path 1 179 22 0.122
Sequence 3 587 185 0.315 F
Text 3 381 103 0.270 F

Fmt 1 296 17 0.057
TOTAL 97 19846 2717 0.136

Figure 12: Packages checked by ESC, showing for each package the number of
files, lines of code (l.o.c.), lines of annotation (l.o.a.), proportion of annotation
lines to code lines, and the level of verification performed. Indented rows show
interfaces outside the package that were annotated in order to check the package.

IF n <= i THEN i : = i - n END

where there was a possibility ofi being as large as2*n . This error had not been
exposed by testing. Later, we extended the annotations inSequence to perform a
functional-correctness verification, but this did not reveal any more errors. We also
did a functional-correctness verification of theText module. Figure 12 presents
some statistics about the verifications mentioned in this section. Not surprisingly,
it shows that the ratio of annotation lines to code lines is noticeably higher for
functional-correctness verification.

In several ESC verifications described above, it was necessary to annotate some
of the interfaces used. For example, in checking theCubicPath module, it was
necessary to specify thePath interface. In checking the readers/writers package
and the Trestle Tutorial, it was necessary to specify a number of interfaces, but we
don’t list their names individually. Figure 12 includes statistics on the annotations
of these imported interfaces.

In a rather different sort of experiment, one of the authors (Detlefs) and George
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Necula have used ESC to reason about dynamic reachability in linked structures.
Their hope was to replace garbage collection with explicit deallocation statements,
and to check by ESC that the explicit deallocations are all safe, thus combining
the safety of garbage collection with the efficiency of explicitly managed storage.
They succeeded with several modest-sized programs involving linear lists, but the
reasoning required about reachability was very expensive. Perhaps this approach
can become practical, but not without some more work.

11 The tarpit of creeping aspirations

In this section, we record a cautionary note suggested by our experience.
Two important features of our annotation language areNOWARNandASSUME.

Adding the annotationNOWARNL to a line suppresses any errors of typeL associ-
ated with that line. The annotationASSUMEP lets the programmer take responsi-
bility that P holds at the point of the annotation. These are useful when ESC emits
a spurious warning. UsingNOWARNandASSUMEcan feel like defeat, and there is
a temptation to work harder, adding specifications to convince the theorem-prover
that the warning is indeed spurious. The problem is that you may spend hours or
days persuading the checker of the validity of a piece of code that was never re-
ally in any doubt to begin with. We call this the problem of creeping aspirations.
Well-trained scientists are particularly susceptible to the problem.

As an example of the danger of creeping aspirations, the ESC verification of the
maze-generating program depends on the fact that it is an invariant of the union-
find data structure that the number of equivalence classes is positive. No doubt
ESC could be dragged through a proof of this fact, but the reader who looks at this
example on the Web [9] will find the line

<* SPEC ASSUME 0 < t.numClasses *>

which illustrates the more pragmatic approach that we advocate.
Of course theNOWARNand ASSUMEfeatures are unsound, but that doesn’t

bother us. On the contrary, we are convinced that these features are essential to
make a checker useful.

12 Related work

We don’t know of any system as semantically thorough and automatic as ours, but
many systems have solved pieces of the puzzle.

Full-scale, but not automatic, program verifiers include the early systems of
James King [26, 25] and Peter Deutsch [6], the Stanford Pascal Verifier [32], the
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Gypsy Verification Environment [14] for developing programs by iterative refine-
ment of specifications, the Penelope [15] verification system for a subset of Ada,
and the coalgebra-based Java verifier LOOP [22].

Automatic static checkers that are based on conventional compiler flow analy-
sis rather than program verification are not as semantically thorough as our checker,
because, for example, they ignore the semantics of conditional statements. Check-
ers of this kind include LCLint [8], which checks C programs annotated with a
version of Larch/C [16]; Daniel Jackson’s Aspect, a novel system that warns of
CLU procedures that fail to update the (representation of the abstract) variables
they are specified to modify [21]; Nicholas Sterling’s static race analysis tool War-
lock [45]; and Joseph Korty’s Sema, a Lint-like tool for detecting deadlocks in a
semaphore-based Unix kernel [27].

Our approach is perhaps closest to that of Steve German’s Runcheck veri-
fier [13]. German seems to have been the first to have given up full-scale cor-
rectness verification in order to achieve a more automatic tool. While German’s
work was mostly for integer and integer array programs, we have exercised our
tool on realistic concurrent object-oriented multi-module programs. Another early
tool influenced by German’s work is the Ford Pascal-F Verifier [36].

The earliest and most forthright exposition known to us of the goal we are
pursuing is the conclusion of Dick Sites’s thesis [44].

We agree with the widespread view that if a tool is to be popular, it must some-
how spare its users the burden of annotating every loop with an invariant. This
view has stimulated a large body of work on automatic inference of program in-
variants, including the pioneering work of Wegbreit [48] and the systematic theory
of abstract interpretation introduced by Cousot and Cousot [3]. Three interesting
program checkers based on abstract interpretation are Franc¸ois Bourdoncle’s Pas-
cal checker Syntox [1], Alain Deutsch’s Ada checker [47], and Cormac Flanagan’s
Scheme checker MrSpidey [11]. As explained in Section 9, we implemented and
experimented with a version of abstract interpretation for finding loop invariants,
but our experience led us to the conclusion that it is better to do without loop in-
variants altogether, rather than to synthesize them.

The goal of improving programming productivity is served also by better tools
supporting traditional testing and runtime checking. It is plausible that a system-
atic, disciplined use of a dynamic checker like Eraser [43] would do as well as
ESC at detecting race conditions and deadlocks. Also in the area of detecting race
conditions is the Cilk tool Nondeterminator-2 [2], which is based on an intriguing
combination of static and dynamic checking, but which works only for fork/join
synchronization, not for locks.
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13 Conclusion

The formal undecidability of most questions of static analysis have led most pro-
grammers to conclude that in reviewing code for errors, only a human programmer
can take accurate account of the semantics of tests and updates to data structures:
that type-checking and data flow analysis are the upper limit of semantic analysis
compatible with automation. Our most general conclusion is that this widely-held
pessimistic view is mistaken: by adopting the technology of program verification
while leaving behind its most quixotic goals, it is possible to build a checker that
achieves an unprecedented combination of automatic operation with semantically
accurate analysis.

At a more specific level, we found positive answers to several of the specific
questions that we were investigating:

• We are able to generate verification conditions for realistic systems pro-
grams, but doing so required us to introduce two new techniques: the locking-
level annotations for handling concurrency and theDEPENDSannotation for
reconciling data abstraction with information hiding.

• We are able to turn failed proofs into specific error messages. The major
work required for this was in the theorem-prover.

• The annotation burden is minimal. Most of the annotations are straight-
forward inequalities or other conditions that an experienced programmer
will record anyway, in English comments if not in the checker’s annotation
language. Programmer-supplied loop invariants are not required for useful
checking.

• The theorem-proving can be carried out automatically, with no user guid-
ance. Although ESC is not as easy to use as a type-checker, it feels more like
a type-checker than a program verifier.

On the other side of the ledger, the theorem-prover is too slow to use the
checker routinely with every build. Also, the unpredictability of the performance
is annoying.

From a mathematical or methodological point of view, the most interesting
outcome of our project is the theory of dependencies sketched in Section 5, be-
cause this theory seems to point the way to sound modular reasoning about object-
oriented systems. Thus this theory increases our understanding of how to structure
large programs, but it is more subtle and complicated than we would wish.

Today’s best engineering organizations produce software by starting with de-
sign methods that (in principle) yield programs that are correct by construction,
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and then following up with a disciplined testing effort. We are optimistic that this
engineering process could be improved by carefully including some amount of ex-
tended static checking.
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