638

Trestle Reference Manual

Mark S. Manasse and Greg Nelson

December 1991

diijgliltiall

Systems Research Center
130 Lytton Avenue
Palo Alto, California 94301

Systems Research Center

DEC's business and technology objectives require a strong research program. The Systems
Research Center (SRC) and three other research laboratories are committed to filling that need.

SRC began recruiting its first research scientists in 1984 — their charter, to advance the state of
knowledge in all aspects of computer systems research. Our current work includes exploring
high-performance personal computing, distributed computing, programming environments,
system modelling techniques, specification technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real systems so that we
can investigate their properties fully. Complex systems cannot be evaluated solely in the abstract.
Based on this belief, our strategy is to demonstrate the technical and practical feasibility of our
ideas by building prototypes and using them as daily tools. The experience we gain is useful in
the short term in enabling us to refine our designs, and invaluable in the long term in helping us
to advance the state of knowledge about those systems. Most of the major advances in
information systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our systems
research. Some of this work is in established fields of theoretical computer science, such as the
analysis of algorithms, computational geometry, and logics of programming. The rest of this
work explores new ground motivated by problems that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained through
pursuing these activities. The Company values the improved understanding that comes with
exposing and testing our ideas within the research community. SRC will therefore report results
in conferences, in professional journals, and in our research report series. We will seek users for
our prototype systems among those with whom we have common research interests, and we will
encourage collaboration with university researchers.

Robert W. Taylor, Director

Trestle Reference Manual
Mark S. Manasse and Greg Nelson
December, 1991

© Digital Equipment Corporation 1991

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted for
nonprofit educational and research purposes provided that all such whole or partial
copies include the following: a notice that such copying is by permission of the Systems
Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgment of the authors and individual contributors to the work; and all
applicable portions of the copyright notice. Copying, reproducing, or republishing for
any other purpose shall require a license with payment of fee to the Systems Research
Center. All rights reserved.

Authors’ abstract

This is a reference manual for Trestle, a Modula-3 toolkit for the X window system.
Trestle is a collection of interfaces structured around a central abstract type: a “virtual
bitmap terminal” or VBT, which represents a share of the workstation’s screen,
keyboard, and mouse—a thing comparable to the viewers, windows, or widgets of other
systems.

Trestle is included in SRC Modula-3 version 2.0, which is available via public ftp.

Trestle includes a fairly standard set of interactors, including menus, buttons, “container”
classes that provide overlapping or tiled subwindows, and “leaf” windows that display
text or other data. This reference manual also specifies the interfaces that allow you to
create your own window classes. Knowledge of X is not required.

A Trestle window is an object whose behavior is determined by its methods. For
example, a window's response to a mouse click is determined by calling its mouse
method. This is fast becoming the standard architecture for toolkits, but Trestle carries it
further than most. For example, you can change the way a Trestle window paints by
overriding its paint method; this is useful for sophisticated effects like groupware.

Trestle provides a novel strategy for writing applications that are independent of the type
of display screen they are running on. For example, it is easy to write a Trestle
application that can be moved back and forth between a color display and a monochrome
display where the application will look good on both.

Contents

1 Introduction 1
2 The VBT interface 7
2.1 Thepublicmethods. 7
2.2 Screensanddomains. 8
2.3 Lockinglevel 8
24 ScreenTypes 9
25 Splitsandleaves 10
2.6 Timestamps, modifiers, mouse buttons, and cursor positions. . . 10
27 Themousemethod. 12
2.8 Themousefocusrule. 12
2.9 Thepositonmethod L. 13
2.10 Tracking the cursor by settingcages 14
2.11 Thekeymethod. 16
2.12 Theredisplay method. 17
2.13 Thereshapemethod 18
2.14 Therescreenmethod. 19
2.15 Therepaintmethod. 19
2.16 Aboutpaintingingeneral. L 20
2.17 Scrolling (copying one part of the screen to another). 21
2.18 Paintingtextures L 22
2.19 Filling and stroking paths. 24
2.20 Paintingpixmaps 25
2.21 Paintingtext. 26
2.22 Synchronization of paintingrequests 29
2.23 Screencapture 30
2.24 Controllingthe cursorshape. 30
225 Selections. 31
2.26 Acquiring and releasing selection ownership. 32
2.27 The miscellaneous method. 32
2.28 Sending miscellaneouscodes. 34
2.29 Circumventingevent-time 34
2.30 Communicating selectionvalues 34
2.31 Theread andwritemethods. 36
2.32 Controllingthe shapeofaVvBT. 37
2.33 Putting propertiesonaVvBT 37
2.34 Discardinga VBT 38

The Trestle interface 39

3.1 Windowphcement 41
3.2 Enumerating and positioningscreens. 42
3.3 Reading pixelsfromascreen 43
3.4 Checkingonrecenbputactivity L. 43
3.5 Connectingtoawindowsystem. 44
Splits 45
4.1 The Splitinterface. 45
4.2 The ZSplitinterface. L a7
4.2.1 Insertingchildren. L. 48
4.2.2 Moving, lifting, and lowering children 49
4.2.3 Mapping and unmapping children. 50
424 Gettingdomains 50
4.2.5 Moving children when the parent is reshaped 51
4.3 The HVSplitinterface. 53
4.3.1 Insertingchildren. L. 55
4.3.2 Adjusting the divisionofspace. 56
4.4 The PackSplitinterface. 57
45 The TSplitinterface. 59
Filters 60
5.1 TheFilterinterface 60
5.2 The BorderedVBTinterface 60
5.3 TheRigidVBTinterface. 62
5.4 The HighlightVBT interface. 63
55 The TranslateVBT interface 64
56 Buttons 65
5.7 Quickbuttons 66
58 MenuButtons.o 67
59 AnchorButtons 68
Some useful Leaf VBTs 71
6.1 The TextvBTinterface 71
6.2 The TextureVBTinterface 72
6.3 TheHVBarinterface 73
Resources 75
7.1 ThePaintOpinterface. 75
7.2 TheCursorinterface 79
7.3 ThePixmapinterface. 80
7.4 TheFontinterface. 81
7.5 ThePaletteinterface 82
7.6 The ScreenTypeinterface 84

10

7.7 Screen-dependent painting operations
7.7.1 Obtaining handles fromtheoracle.
7.7.2 Thehandleobject

7.8 Screen-dependentcursors.
7.8.1 Obtaining handles fromtheoracle.
7.8.2 Thehandleobject

7.9 Screen-dependentpixmaps
7.9.1 Obtaining handles fromtheoracle.
79.2 Thehandleobject
7.9.3 Therawrepresentation.

7.10 Screen-dependentfonts L.
7.10.1 Obtaining handles fromtheoracle.
7.10.2 Fontattributeso
7.10.3 Registeringfonts.
7.10.4 Thehandleobject
7.10.5 Therawrepresentation.

7.11 Colormaps

Geometry interfaces

8.1 TheAxisInterface.,
8.2 ThePointinterface
8.3 Thelntervalinterface.
8.4 TheRectinterface.,
8.5 TheRegioninterface
8.6 ThePathinterface
8.7 The Trapezoidinterface

Implementing your own splits

9.1 TheVBTClassinterface
9.1.1 Specifications of the splitmethods
9.1.2 Specifications oftheupmethods
9.1.3 Getting and setting the state ofaVBT.
9.1.4 Procedures for activating the down methods of a VBT. . .
9.1.5 Procedures for activating the up methods of a VBT

9.2 TheFilterClassinterface

9.3 The ProperSplitinterface.

Implementing your own painting procedures

10.1 The Batchinterface.
10.2 The BatchUtilinterface.
10.3 The PaintPrivateinterface

11 Miscellaneous interfaces
11.1 The VBTTuninginterface. .
11.2 The TrestleComm interface

12 History and Acknowledgments
References

Index

139
139
139

140

141

143

1 Introduction

This reportis a programmer’s reference manual for Trestle, a Modula-3 window system
toolkit.

Trestle has been implemented over two underlying window systems: X [5] and
the native Firefly window system developed at SRC [6]. Other implementations are
possible, but at present the only widely available implementation is Trestle-on-X.

To use Trestle-on-X, you need a Modula-3 compiler and an X server for your
system. The Trestle code is an application library layered on top of Xlib, the standard
X client library. Trestle applications obey X's ICCCM protocol for cooperating with
the window manager and other applications, so you can use your favorite window
manager and mix Trestle applications freely with other X applications.

The reference manual is self-contained but non-tutorial; you would do well to read
theTrestle Tutoriafirst (Chapter 7 of [4]). We assume you are familiar with Modula-3
[1, 2, 4].

The Trestle abstraction A Trestle.T is a connection to a window system. The
window system is assumed to have a keyboard, a pointing device, and one or more
display screens. For example, in Trestle-on-Xrastle.T is implemented by a
connection to an X server.

Each screen is a raster display, whose image is stored in a frame buffer containing a
rectangular array of pixels. Changing the contents of a frame buffer is gadiating,
since it changes the image displayed to the user. The different screens can be of
different types (e.g., color or black and white).

Trestle imposes ahv-coordinate system on each display screen, in which the
h coordinate increases from left to right and theoordinate increases from top to
bottom. TheTrestle interface allows you to determine the number of screens and
also their types, dimensions, and the positions of their coordinate origins.

We will call the pointing device the mouse, although it might be a stylus or other
instrument. The mouse generally has one or more buttons that the user can click down
and up.

The system displays eursor, a small arrow or other image that points at some
pixel of some screen. By moving the mouse the user can move the cursor around the
screen or from one screen to another. Applications can change the shape of the cursor
to convey information to the user.

The completdrestle interface is described in Section 3.

The VBT abstraction. The key abstraction in Trestle is the “virtual bitmap terminal”
or VBT. A VBT represents a share of the keyboard, mouse, and disp\&83%s are
comparable to the windows, widgets, and viewers of other systems.

An application is generally organized as a treeMBTs, with the rootVBT
representing the top-level application window. The internal nodes are calletBTs
or parentVBTs: they divide their screens between one or more clds according
to some layout depending on the class of split. At the leaves of the tr&Basethat
contain no subwindows.

2 1 INTRODUCTION

A typical application consists of a number of |a&8Ts whose behavior is specific
to that application, together with some more I¢&fTs that provide buttons, scrollbars,
and other “interactors”, all held together by a tree of splits that define the geometric
layout. A split with only one child is called fiter. For example, 8orderedVBT is
a filter that adds a border around the child’s screen. A split that can have more than
one child is called groper split For example, amVSplit is a split in which the
children are laid out horizontally or vertically.

Sections 4, 5, and 6 describe Trestle’s built-in proper splits, filters, and leaves.

To obtain a share of a Trestle display, an application crea&sTand “installs” it
with the procedur@&restle.Install , which allocates some portion of some display
to theVBT, within which the application can paint. TMBT is said to benstalledand
is called atop-level whdow The size and position of top-level windows depends on
the arguments tdrestle.Install and on the whim of the window manager.

A VBTimposes ahv -coordinate system on its screen. Atop-le¥BIl's coordinate
system need not be the same as the coordinate system of the screen on which it is
installed. The translation between the two coordinate systems can be determined
through theTrestle.ScreenOf procedure.

In a split VBT, the translation between the parent and child coordinate systems
depends on the class of the split. Trestle provides one filt@anélateVBT) whose
sole purpose is to position the child coordinate system origin at the northwest corner of
the child’s domain, since this is convenient for some applications. All the other built-in
splits make the child coordinate system agree with the parent coordinate system, since
this is usually the most convenient.

Information flows through &/BT in two directions. Painting commands travel
from the leaves of the tree towards the root. Events like mouse clicks and cursor
positions travel from the root towards the leaves.VBT is an object with methods
for handling events; to deliver an event t&/BT, the system invokes the appropriate
method. Thev/BTinterface in Section 2 specifies the event-handling methods and the
painting procedures.

The screen of ¥BTisforgetful that is, its contents can be lost at any time, at which
point the system activates itspaint method, which is expected to repaint what has
been lost. Similarly, the height, width, and coordinate origin MBT’s screen can
change at any time, in which case the system activatesstepe method. Finally,
the type of the pixels in BTs screen can change (e.g., from color to monochrome),
in which case the system activatesridéscreen method. These events reflect the fact
that the user of the window system can expose portions of a top-level window, reshape
top-level windows, and move top-level windows from one display to another.

Selections and event-time From the user’s point of view, a selection is a highlighted
occurrence of text or other data that can be made in a window via some gesture, such
as sweeping with the mouse. Selections are supported to make it easy for users to cut
and paste text and other data between windows. A particular selection is always in at
most one window at a time, hamely the “owner” of the selection. If a selectionisin no
window at all, its owner iNIL .

From the programmer’s point of view, the selection ownen'8a-valued variable
shared between all applications. The procedtB&.Acquire is used to acquire a
selection. Whenever\@BT acquires a selection, the previous owner is notified, so that
it can take down any highlighting or other feedback. ArBT can own a selection,
not just a top-level window.

The procedure¥BT.Read andVBT.Write are used to read or write the value
of the selection. Calls tRead andWrite are implemented by locating the selection
owner (which could be in the same address space as the calRab or Write ,
or in a different address space) and activatingeted or write method, which is
responsible for doing the work. The selection values communicateely and
Write can be of any type that can be pickled (see Section 33ystems Programming
with Modula-3[4]); in particular, they can be of typeEXT.

The VBTto which user keystrokes are directed is calledkgoard focusSome
window managers define the focus to be the window containing the cursor; other
window managers move the focus in response to mouse clicks. Trestle applications
work with either kind of window manager.

Trestle classifies the keyboard focus as a selection, since it is a §Bralalued
variable that can be acquired and released. If you want to receive keystrokes, you must
acquire the focus. If this succeeds, ytwsld provide some feedback to the user, for
example by displaying a blinking caret. (Even if the window manager is identifying
the top-level window containing the focus, you should still let the user know which
subwindow contains the focus.) When you are notified that you have lost the focus,
you should take down the feedback.

It is also possible to send any selection owner a “miscellaneous code”, which
will be delivered by activating thenisc method in the owner. For example, the
way that Trestle notifies a window that it no longer owns a selection is by sending
it a miscellaneous code of typest . Miscellaneous codes are also used for other
purposes; for example, to notify windows that they have been deleted.

The event-time protocol There are many potential race conditions involving selec-
tions. For example, suppose that the user clicks in windpexpecting it to acquire

the keyboard focus. But windowis slow—perhaps it is paging or blocked in a call to

a server that is being debugged—and does not respond. So the user clicks in another
window B, which acquires the keyboard focus, and types away. A few minutes later,
window A comes to life and grabs the keyboard focus. Suddenly and unexpectedly the
user’s typing is redirected ta instead ofB. Similar race conditions can occur with
selections other than the keyboard focus—for example, you select a file name, then
activate adelete command by clicking, then wonder how long you must wait before

it is safe to make another selection.

Trestle uses thevent-time protocdb deal with these race conditions. This means
that Trestle keeps track of tleairrent event timewhich is the timestamp of the last
keystroke, mouseclick, or miscellaneous code that has been delivered wBany
Attempts to read, write, or acquire a selection must be accompanied by a timestamp,
and if this timestamp does not agree with the current event time, the attempt fails. This

4 1 INTRODUCTION

guarantees that onlyBTs that are responding to the user’s latest actionazaress the
selections.

When Trestle activates a window’s method to deliver it an event, it generally
waits for the method to return before it delivers any events to any other windows.
This gives the window a fair chance to use the time stamp in the evextcess the
selections. However, if the method takes an unreasonably long time—more than a
few seconds—Trestle may give up on the window and start delivering events to other
windows anyway.

As a consequence, if you must do a long-running computation in response to a user
event, then you should fork the computation in a separate thread and return from the
method promptly, to avoid delaying the user, who may want to click in another window.
You should also do any operations that reqaiceessing the selections from the main
thread before the method returns, since an event-time operation in the forked thread
will fail if the user has continued typing or clicking during the forked computation.

The geometry interfaces The interfacesAxis , Point , Rect , Region , Trape-
zoid , andPath are explained in Section 8. In brigfxis.T.Hor andAxis.T.Ver
name the horizontal and vertical coordinate axeRopiat.T (or simply apoint) is a
pair of integers representing a point in the plan®Rext.T is a rectangle of points
whose sides are parallel to the coordinate axeRegion.T is an arbitrary set of
points represented as a sorted array of rectanglésm@ezoid.T is a set of points
bounded by two horizontal lines and two lines with arbitrary slopes; dPatlaT is
a path in the plane represented by a sequence of straight and curved segments.

Resources A pixmapis a rectangular array of pixels. Bitmapis a pixmap in which
the pixels are one bitdeep. For example, a large pixmap could represent a photographic
image; a small bitmap could represent a cursor shape. Trestle also uses a pixmap to
represent the infinite texture that results from tiling the plane with translations of the
pixmap. Thus whether a pixmap represents an infinite texture or a bounded image
depends only on the context in which it is used.

A fontis a typeface suitable for painting text.

A painting operatioris an operation code for changing the values of pixels in the
frame buffer of a display screen.

Pixmaps, cursor shapes, fonts, and painting operations are collectively called
resources Resources come in boHtreen-independerind screen-dependerfibrms.
A screen-independent resource varies with the screentype to produce a similar effect on
alltypes of screens. Forexample, two important screen-independent painting operations
arePaintOp.Fg andPaintOp.Bg , which set pixels to a screen’s foreground and
background colors. In contrast, a screen-dependent resource is useful only on a
particular screentype. Ifitis used oWV8T with the wrong type of screen, the system
won't crash, but the effect will be non-deterministic—a screen-dependent painting
operation that blackens a pixel on a black-and-white screen might set a 24-bit pixel to
chartreuse on a true-color screen.

Screen-independent resources are convenient, but screen-dependent resources are
sometimes necessary for exploiting the capabilities of specific display hardware.

The screen-independent resource types are d@itkeahp.T , Cursor.T ,Font.T
and PaintOp.T . The interfaces where these types are defined also provide proce-
dures for generating useful resources. For exanpdéntOp.FromRGB will pro-
duce a screen-independent painting operation that sets a pixel to a particular color;
Font.FromName will produce a screen-independent font given the name of the
typeface.

The corresponding screen-dependent resourceSarn®ixmap.T , ScrnCur-
sor.T , ScrnFont.T , andScrnPaintOp.T . The interfaces where these types are
defined also specify the representations of the raw values—the layout of pixmaps in
memory, the attributes of fonts, and similar details that all sane people prefer to avoid.

Converting a screen-independent resource into the corresponding screen-dependent
resource for a particular type of screen is caliesblvingthe resource. ThRalette
interface will give you a screen-independent resource if you give it a closure for
resolving the resource. You can therefore usdPilette interface to construct your
own screen-independent resources. For example, you could prodBem&dp.T
Font. T) pair that produces red Times Roman text on a color display and black italic
text on a black-and-white display; orRixmap.T that selects between a low and a
high resolution bitmap depending on the screen resolution.

The closure for resolving the resource will be invoked automatically when a top-
level window moves to a new screentype for the first time. The closure will be passed
an argument of typ&creenType.T , which represents a type of display screen. A
ScreenType.T determines the depth of the screen’s pixels (e.g., one or eight), the
method for associating a color with a pixel value (e.g., color-mapped or true-color), the
set of allowed operations on its pixels, and the repositories for screen-dependent fonts,
cursors, and pixmaps that can be used on the screen.

Implementing your own splits. Mostapplications can be builtby using Trestle’s built-

in splits and leaves, together with one or more M&fs specific to the application. If

you are programming a more sophisticated application, you may want to augment the
built-in splits with some of your own. Section 9 introduces the irstegt that allow

you to do this.

To implement a leak/BT, you only have to supply methods to handle the events
that flow down the tree (from the root to the leaves). To implement a\épIit you
also have to supply methods to handle the information that flows up the tree, such
as painting commands or commands to change the cursor shapeVBTi@&ass
interface declares these methods and presents their specifications.

Very few splits override the method for painting, since the default behavior, which
is to clip to the child’s domain and relay the painting to the parent, is usually what is
desired. But some splits do override this method: for exampleZ8pdit , whose
child windows are allowed to overlap one another, has a paint method that clips its
children’s painting to the visible parts of their domains. And the top level window has a
painting method that translateéBT painting commands into X painting commands and
relays them to the X server. The interfa@sgch , BatchUtil ,andPaintPrivate
reveal the details necessary to override painting methods.

6 1 INTRODUCTION

The remainder of the reference manual consists of complete Modula-3acesrf
printed in typewriter font and interspersed with commentary printed in roman font.
Some of the commentary is in the form of “pseudo-Modula-3” program fragments,
which are also printed in typewriter font.

The Trestle release that accompanies SRétiia-3 version 2.0 contains several
interfaces that are not documented in this reference manual. For example, the
VTextVBT interface provides editable textBTs and theTrestleAux interface
allows you to set window manager parameters and do strange things to top-level
windows. The specifications for these intarés are directly in the dtlula-3 interface
files.

2 The VBT interface

A VBT.T (or simply aVBT) is the basic window abstraction of the Trestle system.

INTERFACE VBT,

IMPORT Word, Axis, Point, Rect, Region, Trapezoid,
Path, Pixmap, Cursor, Font, PaintOp, ScrnPixmap;

2.1 The public methods

A VBT is represented as an object with a private prefix and twelve public methods,
which define the way th&BT responds to events. Here are the type declarations that
reveal the public methods, whilermoeding the private prefix:

TYPE
T <: Public;
Public = Prefix OBJECT
METHODS
<* LL.sup = mu *>
mouse(READONLY cd: MouseRec);
position(READONLY cd: PositionRec);
redisplay();
misc(READONLY cd: MiscRec);
key(READONLY cd: KeyRec);
discard();
<t LL.sup = mu.SELF =*>
reshape(READONLY cd: ReshapeRec);
rescreen(READONLY cd: RescreenRec);
repaint(READONLY rgn: Region.T);
shape(ax: Axis.T; n: CARDINAL): SizeRange;
<t LL.sup <= mu *>
read(sel: Selection; tc: CARDINAL): Value
RAISES {Error};
write(sel: Selection; val: Value; tc: CARDINAL)
RAISES {Error};
END;
Prefix <: ROOT;

For example, if the user reshapes a window, Trestle will call the window's reshape
method; if the user exposes some part of the window, Trestle will call the window'’s
repaint method. The remainder of th8T interface specifies the methods in detail.
The pragmas aboul are explained in the section on locking level, below.

You should never call ¥BTs methods directly. Th¥BTClass interface provides
wrapper procedures that call the methods indirectly.

8 2 THE VBT INTERFACE

2.2 Screens and domains

Every VBT has ascreenthat associates a pixel value with each integ#icka point.
We writev[p] to denote the value of the pixel at poinof the screen of theBT v.
Changing the pixel values in\8BT's screen is callegainting

The part of avBTs screen that is visible to the user—or that would be visible if
other windows weren’t in the way—is called tHemainof the VBT:

PROCEDURE Domain(v: T): Rect.T; < * LLsup < v *>
Return the rectangular extent of the visible pan 8fscreen.

The domain is an arbitrary rectangle: it can be empty, the coordinate origin can be
anywhere inside or outside it, and it does net@ssarily correspond to the position of
the window on the physical display screen.

Whenv is reshapedDomain(v) changes from one rectangle to another. During
this transformation Trestle tries to save the old screen until the new screen is fully
repainted: thus in the midst of reshapinfp] can be useful for some poimoutside
Domain(v) . At other times, Trestle keeps track gp] only for pointsp inside
Domain(v)

The pragmd.L.sup < v isexplained in the next section.

2.3 Locking level

The global mutexnuserializes operations that affect the tre&/8fTs:

VAR mu: MUTEX;

In addition, everyBT includes a private mutex that serializes operations orVBie
itself. The private mutex of BTis revealed in th&BTClass interface, not in this
interface.

The order in which a thread is allowed to acquire these locks is called the “locking
order”. It is defined by these two rules:

¢ The globalmuprecedes everyBT.
o EveryVBTprecedes its parent.

The “locking level” of a thread, otL for short, is the set of locks that the thread
has acquired. The expressibh.sup denotes the maximum of the lockslih. (The
locking order is partial, butL.sup will be defined for any thread in a correct program,
since threads acquire locks in ascending order.)

Each procedure declaration in the Trestle system includes a pragma specifying the
locking level at which a thread can legally call the procedure. For example, the pragma
LL.sup < v ontheDomain procedure allows a thread to cBlbmain with no locks,
or with mulocked, or with descendants ef locked, but forbids calling it with any
otherVBTs locked.

2.4 ScreenTypes 9

Similarly, eachpublic data field and method of an object has a locking level. In
both cases, a locking level pragma applies to all the fields or methods between it and
the next pragma. These pragmas may contain the special ideBEfi€ which refers
to the object itself.

The locking level for a method is identical to the locking level for a procedure: it
specifies the locking level at which a thread can legally call the method. For example,
whenever thenouse, position ,redisplay ,misc , key, ordiscard methods of
aVBTare called, the locking level satisfiek.sup = mu .

The locking level for a writable data field is of the form

LL >= {mul, ..., muN}.

This specifies that in order to write the field, a thread must hold all of the locks
throughmuN As a consequence, a thread can read the field if it holds any of the locks.

(In a locking level pragma, the ordering symbuts, <=, <, and> are overloaded
to denote either set containment or lock order, depending on context. For example,
>= {mu, v} indicates that the thread has bathandv locked, whileLL.sup <=
muindicates that all locks held by the thread preceuen the locking order.)

A data field may also be comment&@DNST meaning that it is readonly after
initialization and therefore can be read with no locks at all.

There is one more special notation related to locking levelgBa v can hold a
“share” of the global lockny its share is denoted byu.v. This is explained in the
section of this interface that specifies tkshape method.

All the procedures in the Trestle system restore the caller’s locking level when they
return. For example, callinpomain(v) has no net effect on a thread'’s locking level.

2.4 ScreenTypes

Pixel values are integers. The color associated with a pixel value is determined
in some manner that depends on #weentypeof the VBT. A value st of type
VBT.ScreenType represents a screentype:

TYPE
ScreenType <: ScreenTypePublic;
ScreenTypePublic = OBJECT (* CONS¥)
depth: INTEGER,;
color: BOOLEAN;
res: ARRAY Axis.T OF REAL
END;

The integerst.depth is the number of bits per pixel in screens of tygte. The
booleanst.color is TRUEIf the pixels are coloredFALSE if they are black and
white or gray-scale. The array.res gives the horizontal and vertical resolution of
the screen in pixels per millimeter for desk-top displays, or in visually equivalent units
for other displays.

10 2 THE VBT INTERFACE

The screentype of a newly-allocate®T is NIL ; it becomes nomNIL only when
theVBTis connected to a window system.

Here are two procedures for reading the screentype\tBBaand for converting
distances to screen coordinates:

PROCEDURE ScreenTypeOf(v: T): ScreenType;
<t LLsup < v *>

Return the screentype of

PROCEDURE MMToPixels(v: T; mm: REAL; ax: Axis.T)

: REAL; < * LLsup < v *>

Return the number of pixels that correspondhtomillimeters ornv'’s screentype
in the axisax, or return0 if v's screentype i8lIL .

TheScreenType interface reveals more details, for example, about color maps.

2.5 Splits and leaves

User interfaces are usually constructed from a tr&é83fs whose root is the “top-level
window” known to the window manage¥BTs are classified into two main subtypes
based on their positions in the tree:

TYPE
Split < T;
Leaf <: T;

PROCEDURE Parent(v: T): Split; < * LLsup < v *>
Returnv’s parent, olNIL if v has no parent.

A Split (also called a parettBT) divides its screen up among its children according
to some layout policy that depends on the class of split. Each pixel of the parent
screen represents a pixel of one of the cMRITs, which is said to control that pixel.

For example, overlapping windows are provided by a class of split calEgpét

for which the children are ordered bottom to top, and each pixdl of the parent
domain is controlled by the top-most child whose domain inclydes

See theSplit interface for common operations on splits (e.g., enumerating
children).

A Leaf is aVBTin which the twelve public methods make theaf ignore all
events, be indifferent about its shape, and do nothing when discarded. It is provided as
a starting point: you can define a useful subtypéedf by overriding the methods
that are relevant to the new class.

Almost all subtypes o¥/BT are subtypes of eith&@plit orLeaf .

2.6 Timestamps, modifiers, mouse buttons, and cursor positions

The following types are used in several of the event methods:

2.6 Timestamps, modifiers, mouse buttons, and cursor positions 11

TYPE
TimeStamp = Word.T,;

Modifier =
{Shift, Lock, Control, Option,
ModO, Modl, Mod2, Mod3,
MouselL, MouseM, MouseR,
MouseO, Mousel, Mouse2, Mouse3, Mouse4};

Button = [Modifier.MouseL..Modifier.Mouse4];
Modifiers = SET OF Modifier;
ScreenlD = INTEGER;

CursorPosition = RECORD

pt: Point.T;

screen: ScreenlD;

gone, offScreen; BOOLEAN;
END;

CONST
Buttons = Modifiers{FIRST(Button)..LAST(Button)};

Trestle has an internal unsigned clock register that is incremented every few millisec-
onds. When Trestle reports a mouse or keyboard evenMBTait also reports the
value of the clock register when the event occurred, which is calletirtfestampof
the event. Timestamps serve as unique identifiers for the associated events. Also,
the absolute time interval between two events can be computed by subtracting their
timestamps withiVord.Minus and multiplying byTrestle.TickTime() , which
is the absolute interval between clock ticks.

A few keys on the keyboard are defined torbedifiers like Shift , Control
andOption . When Trestle reports a mouse or keyboard evenMBR it also reports
the set of modifier keys and buttons that were down when the event occurred. Thus
the application can distinguish shifted mouse clicks from unshifted mouse clicks, for
example.

The modifierShift is reported if either of the keyboard’s shift keys is down;
similarly for Control andOption . The modifierLock is reported if the lock key
is locked down. If the keyboard has a key labelleck but this key does not have
mechanical alternate action, then the modifieck reflects the simulated state of the
lock key (that is, alternate presses of the lock key turn the modifier on or off). Trestle
does not define whether it reports up and down transitions for lock keys while the
modifier is set.

Some Trestle servers interpret other keys as modifiers: the type defimitiom-
modates up to four additional modifieMpd0 throughMod3.

The mouse buttons are reported as modifiers. The naming of the first three buttons
assumes a three-button mouse; in general it is assumed that there are at most eight
buttons.

12 2 THE VBT INTERFACE

When Trestle reports a mouse position event Y84 v, it also reports a valuep
of typeCursorPosition . The pointcp.pt is the position of the cursor; the integer
cp.screen identifies the screen of the window system where the event occurred,;
and cp.offScreen is TRUEIf the position is on a different screen than and
FALSE otherwise. Ifcp.offScreen is FALSE, thencp.pt is in v’'s coordinate
system, otherwisep.pt is in the coordinate system ap.screen . The boolean
cp.gone is TRUEIf v doesn't control the positioop.pt , andFALSEIf it does. If
cp.offScreen is TRUE then so iscp.gone . A position is controlled by &BT
w if a mouse-click at that position would ordinarily be deliveredao All positions
controlled by a/BT are in its domain; every pixel in the domain of a split is controlled
by at most one child of that split. You should think of the positions controlled by a
VBT as the visible positions in its domain.

2.7 The mouse method

Trestle calls &/BTs mouse method to report mouse clicks. The method will be called
with LL.sup = mu , and takes an argument of typmuseRec.

TYPE MouseRec = RECORD
whatChanged: Button;
time: TimeStamp;
cp: CursorPosition;
modifiers: Modifiers;
clickType: ClickType;
clickCount: INTEGER;

END;

ClickType =
{FirstDown, OtherDown, OtherUp, LastUp};

The method call.mouse(cd) indicates that the mouse buttod.whatChanged
went down or up at timed.time and cursor positiond.cp .

The fieldcd.clickType is FirstDown if the button went down when no other
buttons were downQtherDown if it went down when some other button(s) were
already downlastUp if it went up when all other buttons were up, a@therUp if
it went up when some other button(s) were still down.

The fieldcd.modifiers reflects the state of the modifiers (either just before or
just after the button transition; it is not specified which).

If cd.clickType is FirstDown ,thencd.cp.gone will be FALSE

The field cd.clickCount is the number of preceding tratisns of the button
that were near in time and space. For exampliekCount=3 on the final up
transition of a double click. Some Trestle implementations have auxilliary auesf
that allow you to set the amount of time and mouse motion allowed.

2.8 The mouse focus rule

A split relays mouse clicks to whichever child of the split controls the pixel at the

2.9 The position method 13

position of the click—more or less. If this rule were applied blindly, a child could
receive a down-click and never receive the cqroggling up-click, which would make

it impossible to program many user interfaces tmaive dragging. Therefore the
actual rule is more complicated.

Each splitsp contains a variablenouseFocus(sp) , which records the child of
the split that has received a tréien of type FirstDown but not yet received a
subsequent transition of typpastUp . If there is no such childnouseFocus(sp) is
NIL . The splitsp relays theMouseRec cd by the “mouse focus rule™:

IF some chilcch controlscd.cp THEN

w = ch;

w.mouse(cd)
ELSE

w = NIL
END;

IF cd.clickType = ClickType.FirstDown THEN
mouseFocus(sp) = w
ELSE
IF mouseFocus(sp) # NIL AND mouseFocus(sp) # w THEN
cd.cp.gone = TRUE;
mouseFocus(sp).mouse(cd)
END;
IF cd.clickType = ClickType.LastUp THEN
mouseFocus(sp) := NIL
END
END

The mouse focus is guaranteed to receive all buttonitrans until the last button
comes up, no matter where it occurs.

2.9 The position method

Trestle calls &/BTs position method to report cursor positions. The method will be
called withLL.sup = mu , and takes an argument of typesitionRec

TYPE PositionRec = RECORD
cp: CursorPosition;
time: TimeStamp;
modifiers: Modifiers;

END;

The method call.position(cd) indicates that at the timed.time the cursor
positionwasd.cp and the set of modifiers keys that were down w@sodifiers
The next section explains how to control the delivery of cursor positions.

14 2 THE VBT INTERFACE

2.10 Tracking the cursor by setting cages

EveryVBT v contains a fieladage(v) , which represents a set of cursor positions. As
long as the cursor’s position is insiglés cage, Trestle won't report the positionto

As soon as the cursor’s position moves outsidge(v) , Trestle reports the position

to v, after first resetting’s cage to contain all cursor positions. Resetting the cage
inhibits further reporting of cursor positions: to continue tracking, the position method
must set a new cage.

TYPE
Cage = RECORD
rect: Rect.T;
inOut: InOut;
screen: ScreenlD;
END;
INnOut = SET OF BOOLEAN;
CONST

AllScreens: ScreenlD = -1;
The cagecg contains the cursor positiap if
e cp.pt isincg.rect ,

e cp.gone isincg.inOut ,and

¢ eithercg.screen = AllScreens or cg.screen = cp.screen
Trestle imposes the restriction on cages thatgicreen = AllScreens , then
cg.rect must beRect.Full or Rect.Empty , and if cg contains no cursor

positions, then it must be equal as a recor&ngptyCage (which is declared below).
For example, here are some useful cages:

CONST

GoneCage =

Cage{Rect.Full, INnOut{TRUE}, AllScreens};
InsideCage =

Cage{Rect.Full, INnOut{FALSE}, AllScreens};
EverywhereCage =

Cage{Rect.Full, INOut{FALSE, TRUE}, AllScreens};
EmptyCage =

Cage{Rect.Empty, InOut{}, AllScreens};

GoneCage contains all cursor positions that are “gone”; set it oiBir to wait for

the cursor to be over a position controlled by YH&T. The cagdnsideCage is the

complement ofSoneCage: it contains all positions that théBT controls. The cage

EverywhereCage contains all cursor positions, aftinptyCage contains none.
Here is the procedure for setting the cage dBT:

2.10 Tracking the cursor by setting cages 15

PROCEDURE SetCage(v: T; READONLY cg: Cage);
<t LLsup < v *>

Setcage(v) to the intersection afage(v) withcg.

In the usual cas&etCage is called fromv’s position method, at which poinrts cage

is EverywhereCage and therefore the intersection just comes outgo In unusual

cases, it will be found that intersecting the new cage with the old is what is required.
The procedureCageFromPosition is helpful for tracking the cursor continu-

ously. By settingCageFromPosition(cp) in response teach cursor padson cp,

you can track the cursor as long as it moves within yBT. There are two additional

optional boolean arguments: settimgckOutside allows you to track the cursor

over the whole screen containing tii8T,; settingtrackOffScreen allows you to

track the cursor even onto other screens:

PROCEDURE CageFromPosition(

READONLY cp: CursorPosition;

trackOutside, trackOffScreen: BOOLEAN := FALSE)

. Cage; < * LL arbitrary *>
CageFromPosition(cp) returns the cage that contains only the position
cp, or GoneCage if either cp.gone or cp.offScreen /s TRUEand the
corresponding argument is not.

More preciselyCageFromPosition is equivalent to:

IF NOT cp.gone OR
trackOutside AND NOT cp.offScreen OR
trackOffScreen
THEN
RETURNthe cage containing only the positicp
ELSIF cp.offScreen AND trackOutside THEN
RETURN Cage{Rect.Full, INnOut{FALSE, TRUE}, cp.screen}
ELSE
RETURN GoneCage
END

Finally, the following two procedures are occasionally useful:

PROCEDURE Outside(
READONLY cp: CursorPosition; READONLY c: Cage)
: BOOLEAN; <* LL arbitrary * >

Return whether the positiap is outside the cagey .
PROCEDURE CageFromRect(READONLY r: Rect.T;

READONLY cp: CursorPosition): Cage; < * LL arbitrary *>
ReturnCage{r, InOut{cp.gone}, cp.screen}

16 2 THE VBT INTERFACE

The effect ofSetCage(v, CageFromRect(r, cp)) is to suspend cursor positions
as long as the cursor stays inside the rectangied has the same valuegiine ascp
does. This is useful when sweeping text selections, for example.

Splits relay cursor positions to their children. If several of the children are tracking
the cursor at the same time, the order in which positions are relayed to the different
children can be important. The order is determined by the following rule, which
specifies the way a spbp forwards aPositionReccd to its children (the variable
current(sp) is the child that controls the last cursor position seesppy

IF some chilcch controlscd.cp THEN

w = ch
ELSE

w = NIL
END;
goneCd := cd;

goneCd.cp.gone := TRUE;

IF w # current(sp) THEN
Deliver(current(sp), goneCd)

END;

FOR all ch other tharwandcurrent(sp) DO
Deliver(ch, goneCd)

END;

IF w # NIL THEN Deliver(w, cd) END;

current(sp) = w

where

Deliver(v, cd) =
IF Outside(cd.cp, cage(v)) THEN
cage(v) := EverywhereCage;
v.position(cd)
END

A split maintains its cage to be a subset of the intersection of its children’s cages, so
that it will receive any cursor p@fons that it owes its children.

2.11 The key method

Trestle calls &BTs key method to report keystrokes. The method will be called with
LL.sup = mu , and takes an argument of tygeyRec.

TYPE
KeyRec = RECORD
whatChanged: KeySym;
time: TimeStamp;
wentDown: BOOLEAN;

2.12 The redisplay method 17

modifiers: Modifiers;
END;

KeySym = INTEGER;

CONST
NoKey: KeySym = 0;

The method call.key(cd) indicates that the kegd.whatChanged went up or
down at timecd.time . The boolearcd.wentDown is true if the key went down;
false if it went up. The seatd.modifiers reflects the state of the modifiers (either
just before or just after the transition; it is not specified which).

A KeySymrepresents a symbol on a key of the keyboard. For example, there are
separat&KeySyms for upper and lower case letters. The inéedsLatinlKey and
KeyboardKey specify theKeySym codes for many symbols that occur on standard
keyboards. These intexfes are shipped with SRC Trestle but are not included in the
printed version of the reference manual. The codes are chosen to agree with the X
Keysym codes (see X Window System, Scheifler et al., [5] Appendix E).

If the keyboard, like most keyboards, has two symbols on some of the keys, then
the KeySym for the down transition and later up transition might be different. For
example, if the user pushes the left shift key, thenzliekey, and then releases the
keys in the same order, Trestle would report these four transitions:

left shift down modifiers = {} or {Shift}
Z down, modifiers = {Shift}

left shift up, modifiers = {} or {Shift}

z up, modifiers = {}

Although the same physicalz key went down and up, the down transition is reported
for thezZ KeySymand the up transition is reported for th&eySym.

The constaniNoKey is simply an unuselleySymcode.

To get Trestle to deliver keystrokes to/8T, you make thé/BT the owner of the
keyboard focus by calling the procediBT.Acquire

2.12 The redisplay method

A typical VBT has a “display invariant” that defines what its screen looks like as a
function of its state. When the state changes, the display invariant is reestablished by
updating the screen.

When a series of changes are made, each of which invalidates the display invariant,
it is undesirable to update the screen after every change. For example, if the border
width and the border texture ofBorderedVBT both change, it is better not to paint
the intermediate state.

Therefore, Trestle keeps track of a set\@Ts that have been “marked for
redisplay”. Procedures that invalidat&BTs display invariant mark thgBT instead
of updating the screen directly. Trestle automatically schedules a calltexriikplay
method of every marked window (unless the window’s screentyl#.i3. The method

18 2 THE VBT INTERFACE

takes no arguments: the caltedisplay() must reestablisk’s display invariant.
It will be called withLL.sup = mu .

The default redisplay method forlaeaf calls the reshape method with an empty
saved rectangle.

There are several procedures related to redisplay:

PROCEDURE Mark(v: T); <* LLsup < v *>
Mark v for redisplay.

PROCEDURE IsMarked(v: T): BOOLEAN; < * LL.sup < v *>
ReturnTRUEIf v is marked for redisplay.

PROCEDURE Unmark(v: T); <* LL.sup < v *>
If v is marked for redisplay, unmark it.

A marked window is automatically unmarked when it is redisplayed, reshaped, or
rescreened. Thus thénmark procedure is rarely needed.

2.13 The reshape method

Trestle calls &/BTs reshape method to report changes in its domain. The method will
be called withLL.sup = mu.v (as explained below), and takes an argument of type
ReshapeRec .

TYPE ReshapeRec = RECORD
new, prev, saved: Rect.T;
marked: BOOLEAN

END;

The method call.reshape(cd) indicates that the domain ef has changed from
cd.prev tocd.new . The rectangled.saved is the subset of the previous domain
that Trestle has preserved for the client in case it is of use in painting the new domain.
This is the only case in which Trestle tries to save portions@B&'s screen outside

its domain. After the reshape method returns, Trestle will generally forget the old parts
of the screen. The boolead.marked indicates whethey was marked when it was
reshaped; in any case,is automatically unmarked as it is reshaped.

If new = Rect.Empty then the window is no longer visible (for example, this
happens when the window is iconized). Any background threads that are painting
should be stopped, since their efforts are useless.

The default reshape method fot.aeaf calls therepaint method to repaint the
whole new domain.

When the reshape method is calledjis locked, and it will remain locked until the
method returns. However, Trestle may laok and then reshape, repaint, or rescreen
severalVBTs concurrently, so you can’t assume that an activation of your reshape
method excludes the activation of anotk@&Ts reshape, repaint, or rescreen method.

2.14 The rescreen method 19

This locking level will be referred to ass share oimu and writtermu.v . Holding
muis logically equivalent to holdinghu.v for everyv. Consequentlynu.v < mu
in the locking order. Holdingnu.v does not suffice to call a procedure that requires
muto be locked; on the other hand you cannot lagkwhile holdingmu.v , since this
would deadlock.

2.14 The rescreen method

Trestle calls &/BTs rescreen method to report changes to its screentype. The method
will be called withLL.sup = mu.v , and takes an argument of tyBescreenRec .

TYPE RescreenRec = RECORD
prev: Rect.T,
st: ScreenType;
marked: BOOLEAN;

END;

The method calv.rescreen(cd) indicates that the screentypewhas changed to
cd.st and that its domain has changed frothprev to Rect.Empty . (Typically

the VBT will be reshaped to a non-empty domain on the new screentype.) It is
possible thatd.st=NIL . The booleartd.marked indicates whether was marked
when it was rescreened; in any cagas automatically unmarked as it is rescreened.
VBT.Leaf.rescreen reshapes to empty.

2.15 The repaint method

Trestle calls &/BTs repaint method to report that part of its screen has been exposed
and must be repainted. The method will be called wittsup = mu.v , and takes
an argument of typRegion.T .

There are some subtleties if you are scrolling (that is, copying bits from one part of
the screen to another) at the same time that Trestle is activating your repaint method.
To explain them we will become more formal and precise.

EveryVBT v has a “bad regionbad(v) . For each poinp that is inDomain(v)
and notinbad(v) ,the pixelv[p] isdisplayed tothe user; thatisyik[p] denotes
what is actually visible at pixgd, then we have the basic invariant

vis[p] = V[p] forall p controlled byv and outsidebad(v)

Trestle can expanigad(v) atany time, as though cosmic rays had damaged the pixels.

Wheneverbad(v) contains pixels that are controlled by Trestle will callv’s
repaint method by settinexposed(v) (the “exposed region” of) to include all such
pixels, and then executing the following code:

< bad(v) := the set differencebad(v) - exposed(v);
FOR pin exposed(v) DO v|[p] := vis[p] END >;

v.repaint(exposed(v));

exposed(v) = the empty set

20 2 THE VBT INTERFACE

That is, as a pixab is removed fronbad(v) and added texposed(v) ,the screen
v[p] is changed tovis[p] , so that the basic invariant is maintained. You can
imagine that the cosmic ray’s damage has now reaefd , not justvis[p] . The
angle brackets indicate that the shrinkingati(v) and the damaging afp] occur
atomically, so that the basic invariant is maintained. (In particular, the basic invariant
is true whenever you call the procedMBT.Scroll , where you can find more about
the bad region and the exposed region.)

Sometimes it is convenient to do all painting from the repaint method; in which
case the following procedure is useful:

PROCEDURE ForceRepaint(v: T; READONLY rgn: Region.T);

<t LLsup < v *>

Setbad(v) := Region.Join(rgn, bad(v)) . If the resultingbad(v) is
non-empty, schedule an activatiomds repaint method.

2.16 About painting in general

Trestle’s painting procedures all follow the same pattern. The arguments to the
procedure specify:

¢ a destination which is a set of pixels in &BTs screen. For example, the
destination could be a rectangle, a trapezoid, a shape bounded by a curved path,
or a region.

e asource which is conceptually an infinite array of pixels, not necessarily of the
same depth as those on the screen. For example, the source could be a texture, a
text string in some font, an explicit bitmap or image, orW#BT's screen itself.

¢ anoperation which is a function that takes a destination pixel value and a source
pixel value and produces a destination pixel value. For example, the operation
could be planewis®OR

The effect of the painting procedure is to apply the operation to each pixel in the
destination region. That is, if is the VBT, the effect of the painting procedure is to

setv[p] := op(v[p], s[p]) for each poinp in the destination, wherep is the
operationy[p] is the pixel at poinp of v’'s screen, and[p] is the source pixel at
pointp.

Two useful operations afeaintOp.Bg andPaintOp.Fg , defined by

PaintOp.Bg(d, s)
PaintOp.Fg(d, s)

the screen’s background pixel
the screen’s foreground pixel

These operations ignore their arguments; theyeaeh destination pixel to a constant
value, regardless of its previous value or the source value. The actual background and
foreground pixels vary from screentype to screentype; you can thiBigais white
andFg as black (unless you prefer video-reversed screens).

Another useful operation BaintOp.Copy , defined by

2.17 Scrolling (copying one part of the screen to another) 21

PaintOp.Copy(d, s) = s

For examplePaintOp.Copy can be used to paint an eight-bit pixmap source on an
eight-bit pixmap screen. It would be an error to BsentOp.Copy with a one-bit
source and an eight-bit screen—the system wouldn’t crash, but anything could happen
to the destination pixels.s

For more painting operations, see #a&ntOp interface.

2.17 Scrolling (copying one part of the screen to another)

PROCEDURE Scroll(

v: Leaf;

READONLY clip: Rect.T;

READONLY delta: Point.T;

op: PaintOp.T := PaintOp.Copy); < * LLsup < v *>
Translate a rectangle ofs screen bydelta and use it as a source for the
operatiorop applied to each destination pixel in the clipping rectandjfe .

The Scroll procedure uses’s screen as source. It can therefore be used to
copy pixels from one part of’'s screen to another. Any operation can be used for
combining the translated pixels with the destination pixels, but the operation defaults
to PaintOp.Copy

The source rectangle can be computed fidim by subtractingdelta . More
preciselyScroll(v, clip, delta, op) is equivalent to:

for each pair of pointg, g such that

p isin clip,

p = q + delta ,and

g isin Domain(v)
simultaneously assign

vlp] = op(vlp], vlal);

if g isinexposed(v) andp is not,

orif g isinbad(v)
then addp to bad(v)

By “simultaneously” it is meant that the paws g are enumerated in an order so that
no destination pixel of an early pair corresponds to a source pixel of any later pair.
Recall the bad region andkeosed regiorbad(v) andexposed(v) from the
description of the repaint method.
If you do all your painting from within theepaint ,reshape , andredisplay
methods, then you can ignore the subtleties involvindgttfv) andexposed(v)
But if you have any asynchronous threads that 8aloll , you have to be careful.
For example, suppose you do all your painting from a concurrent worker thread, and
arrange for your repaint and reshape methods to simply add entries to the worker
thread’s queue recording the painting that must be done. Then you must be careful to
avoid the following sequence of events:

22 2 THE VBT INTERFACE

o The worker thread removes from its work queue an item indicating that it must
repaint some regiof, and determines that the best way to do this is to scroll some
other regiorB.

e Therepaint method is activated with exposed regiBnit addsB to the work
gueue and returns. As it returns, the system sets/BiEs bad and exposed
regions to be empty. (See the description ofrépmint method.)

o The worker thread copies the garbage fidinto A.

Eventually the worker thread will get around to repaintB)dut the damage ta
will never be repaired.

To avoid this race condition, the repaint method should convey the bad region to the
worker thread by a separate communication path, rather than simply put it the ordinary
work queue. The worker thread can thus avoid using bad bits as the source of scroll
operations.

Of course it is possible for the scrolling to happen afterrpaint method is
called but before the method has conveyed the bad region to the worker thread. There
is no way to prevent this sequence of events, but there is no need to, either: in this case
the source of the scroll operation will be in the exposed region (sincespiant
method has not yet returned), and therefore (by the specification above) the call to
Scroll will expand the bad region. This will eventually lead to the repaint method
being activated a second time, repairing the damage.

In short, in order to allow concurrent painting, we do not clear the exposed region
until therepaint method returns, and we specify that a scroll fromia bad(v) or
exposed(v) toap thatis notinbad(v) invalidates the destination.

Notice that a scroll fronexposed(v) to exposed(v) does not invalidate the
destination. This allows the repaint method to paint a portioexpbsed(v) and
then scroll that portion to other partsefposed(v) —unusual, but legal.

2.18 Painting textures

This section describes procedures for texturing rectangles, regions, and trapezoids.

PROCEDURE PaintTexture(
v: Leaf;
READONLY clip: Rect.T;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T;
READONLY delta := Point.Origin); < * LLsup < v *>

Paint the rectanglelip with the texturesrc+delta using the operatioop.

A textureis an infinite periodic pixmap. A texturet is represented by a pixmap
src with a finite non-empty rectangular domddomain(src) ;the rule is thatxt

is the result of tiling the plane with translates of the pixmap . Using the convenient
procedureRect.Mod we can state this rule astxt[p] = src[Rect.Mod(p,
Domain(src))]

2.18 Painting textures 23

The texturesrc+delta is the translation of the textusec by the vectodelta
Putting this all togetherPaintTexture(v, clip, op, src, delta) is
equivalent to:

for each pair of pointg, g such that
p isin clip and
p = q + delta
assign
v[p] := op(v[p], src[Rect.Mod(g, Domain(src))]).

Note that settinglelta to Point.Origin causes the texture to be aligned in an
absolute coordinate system independent of the domain of the window (which helps to
make textures in different windows match), while setting it to the northwest corner of
v’'s domain causes the texture to be aligned in the window’s coordinate system (which
allows a window to be reshaped by scrolling the old domain into the new).
If src 'sdomain is empty, the effect is undefined but limited to the clipping region.
The default paint operation for PaintTexturéBigFg, defined by

PaintOp.BgFg(d, 0) = the screen’s background pixel
PaintOp.BgFg(d, 1) the screen’s foreground pixel

This paint operation is only appropriatesitc is one-bit deep; the effect is to copy the
source to the destination, interpreting 0 as background and 1 as foreground.

PROCEDURE PaintTint(
v: Leaf;
READONLY clip: Rect.T;
op: PaintOp.T); < * LLsup < v *>

Paint the rectanglelip with the texturéPixmap.Solid using the operation

op.
For examplePaintTint(v, clip, PaintOp.Bg) paintsclip with the back-
ground color, andPaintTint(v, clip, PaintOp.Fg) paintsclip with the

foreground color.

PROCEDURE PolyTint(

v: Leaf;

READONLY clip: ARRAY OF Rect.T;

op: PaintOp.T); < * LLsup < v *>
Paint each rectangtdip[i] in order with the textur@ixmap.Solid using
the operatiomp.

PROCEDURE PolyTexture(
v: Leaf;
READONLY clip: ARRAY OF Rect.T;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T;

24 2 THE VBT INTERFACE

READONLY delta := Point.Origin); < * LLsup < v *>
Paint each rectangltdip[i] in order with the texturerc+delta using the
operatiorop.

PROCEDURE PaintRegion(
v: Leaf;
READONLY rgn: Region.T;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T := Pixmap.Solid;
READONLY delta := Point.Origin); < * LLsup < v *>

Paint the regiomgn with the texturesrc+delta using the operatioap.

PROCEDURE PaintTrapezoid(
v: Leaf;
READONLY clip: Rect.T;
READONLY trap: Trapezoid.T;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T := Pixmap.Solid;

READONLY delta := Point.Origin); < * LLsup < v *>
Paint the intersection afip andtrap with the texturesrc+delta using the
operatiorop.

2.19 Filling and stroking paths

Trestle also supports PostScript-like graphics operations [3]:

TYPE
WindingCondition = {Odd, NonZero};
EndStyle = {Round, Butt, Square};
JoinStyle = {Round, Bevel, Miter};

PROCEDURE Fill(

v: Leaf;

READONLY clip: Rect.T;

path: Path.T;

wind := WindingCondition.NonZero;

op: PaintOp.T := PaintOp.BgFg;

src: Pixmap.T := Pixmap.Solid;

READONLY delta := Point.Origin); < * LLsup < v *>
Paint the intersection afip and the region entwined Ipath with the texture
src+delta using the operationp.

The pointp is entwined bypath if the winding number opath aroundp satisfies the
winding conditionwind . To ensure that the winding number is defined even for the
points on the path, the path is regarded as translated northmy west by?, wheree

is infinitesimal.

2.20 Painting pixmaps 25

PROCEDURE Stroke(
v: Leaf;
READONLY clip: Rect.T;
path: Path.T;
width: CARDINAL = O;
end := EndStyle.Round;
join := JoinStyle.Round;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T := Pixmap.Solid;
READONLY delta := Point.Origin); < * LLsup < v *>

Paint the intersection dflip and the stroke determined pgath , end, and
join with the texturesrc+delta using the operatioap.

The exact results dtroke are different on different Trestle implementations. The
approximate specification is like PostScript:

If end = Round andjoin = Round , the path is drawn by a circular brush of
diameterwidth that traverses the path.

If end = Butt , then the ends of unclosed trails in the path are stroked by a line
segment of lengtlwidth centered and perpendicular to the path in the neighborhood
of the endpoint. liend = Square , the path is extended at the endpoint by a straight
line segment of lengtlvidth/2 tangent to the path and a butt end is drawn.

If join = Bevel , the joint between two patches is constructed by uSing
endstyles for them and then filling the triangular notch that remainsjoirf =
Miter ,then instead of just filling the triangular notch, the outer edges of the two lines
are extended to meet at a point, and the resulting quadrilateral is filled.

If width = 0 , join isignored andcend determines whether the final endpoint
of an open subpath should be drawn:eifd is Butt , the final endpoint is omitted,
otherwise it is drawn.

Finally, there is a convenience procedure for stroking a path containing a single
straight line segment:

PROCEDURE Ling(
v: Leaf;
READONLY clip: Rect.T;
p, q: Point.T;
width: CARDINAL := O;
end := EndStyle.Round;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T := Pixmap.Solid;
READONLY delta := Point.Origin); < * LLsup < v *>

Like Stroke applied to the path containing the segm@rd)
2.20 Painting pixmaps

The following procedure paints a pixmap without replicating it into an infinite texture:

26 2 THE VBT INTERFACE

PROCEDURE PaintPixmap(
v: Leaf;
READONLY clip: Rect.T := Rect.Full;
op: PaintOp.T := PaintOp.BgFg;
src: Pixmap.T;
READONLY delta: Point.T); < * LLsup < v *>

Translate the pixmaprc by delta and paint it on the screen of using the
operatiorop and clipping to the rectangtdip

More preciselyPaintPixmap(v, clip, op, src, delta) is equivalent to

for each pair of pointg, g such that
p isin clip,
g isin Domain(src) ,and
p = q + delta,

assign
v[p] := op(v[p]. src[q])

Since &Pixmap.T is a screen-independent resource, you can't read its domain without
specifying thevBTit is to be used on:

PROCEDURE PixmapDomain(v: T; pix: Pixmap.T): Rect.T;
<t LLsup < v *>

Return the domain gfix on the screentype of

It is also possible to paint screen-dependent pixmaps:

PROCEDURE PaintScrnPixmap(
v: Leaf;
READONLY clip: Rect.T := Rect.Full;
op: PaintOp.T := PaintOp.Copy;
src: ScrnPixmap.T;
READONLY delta: Point.T); < * LLsup < v *>

Like PaintPixmap , but with a screen-dependent pixmap instead of a
screen-independent pixmap.

If src does not have an appropriate screentypevfahe effect of the procedure is
undefined but limited to the clipping region.

Because Trestle batches painting operations, the pixamapgnust be regarded as
stillin use aftelPaintScrnPixmap returns. If you wish to free the pixmap by calling
src.free() , You should first calV/BT.Sync(v)

2.21 Painting text

The text painting procedures take an optional array of displacements, whose entries
have the following type:

2.21 Painting text 27

TYPE
DeltaH = [-512 .. 511];
Displacement =
RECORD index: CARDINAL; dh: DeltaH END;

A displacement! causes all characters whose index in the tegtirmlex or greater
to be displaced.dh pixels to the right. The first character has in@dexThed.index
values in an array of displacements mushbe-decreasing.

PROCEDURE PaintText(
v: Leaf;
READONLY clip: Rect.T := Rect.Full;
READONLY pt: Point.T;
fnt: Font.T := Font.BuiltIn;
t: TEXT;
op: PaintOp.T := PaintOp.TransparentFg;
READONLY dI := ARRAY OF Displacement{});
<t LLsup < v *>
Paint the text onto the screen aof, starting at positiopt , using the fonfnt ,
the operatiomp, and the displacement ligt .

The arguments tBaintText must satisfy at least one of the following two conditions:

o the background operation is transparent; thadpgp, 0) = p for any pixelp,
or

¢ the font is self-clearing (see below) add is empty.

If neither condition is true, the effect BhintText isimplementation-dependent, but
is confined to the clipping rectangle.

TheScrnFont interface defines the properties of fonts. Here we introduce names
for the properties needed to expl@&aintText . If f is a font ancth is a character,
then

e printWidth(ch, f) is the printing width ofch; that is, the amount to
increment the reference point wheim is printed in fonff ;

¢ bits(ch, f) is the bitmap forch in f , which is positioned witkeh 's reference
point at the origin;

e height(ch, f) is the height okth above the baseline; that is, the number of
rows of bits(ch, f) whosev-coordinate is at most zero; an@pth(ch,
fnt) is the number of rows ddits(ch, f) whosev-coordinate exceeds zero;

e ascent(f) anddescent(f) are the logical extent df above and below the
baseline. Some characters may extend higher or lower.

A font is self-clearingif

e each character’s height and depth equal the font’s ascent and descent, and

28 2 THE VBT INTERFACE

e each characterjzrintWidth equals the width of its bitmap and each character’s
reference point is at the west boundary of its bitmap €ach character’s
printWidth equals the negative of the width of its bitmap and each character’s
reference pointis at the east boundary of its bitmap).

The call toPaintText is equivalent to the following loop:

rp = pt;
i = 0;
LOOP
IF dl # NIL THEN
FOR j := 0 TO HIGH(dI") DO
IF dl[j].index = i THEN INC(rp.h, dI[j].dh) END
END
END;

IF i = Text.Length(t) THEN EXIT END;
PaintPixmap(v, clip, op, bits(t[i], fnt), rp);
rp.h := rp.h + PrintwWidth(t[i], fnt);
=i+ 1
END
The following two procedures are useful for computing the sizes of texts. Since fonts
are screen-independent, they take\Bd whose screentype is to be used:

PROCEDURE BoundingBox

(v: Leaf; txt: TEXT; fnt: Font.T): Rect.T;

<t LLsup < v *>
Return the bounding box of the taxt if it were painted at the origin on the
screen of.

More precisely, let be the smallest rectangle that contains the bounding boxes of the
characters ofxt if txt were painted ow in the fontfnt with txt ’'s reference point

at the origin. TherBoundingBox returns a rectangle with the same horizontal extent
asr , but whose height and depth are the maximum height and depth of any character
in the font.

PROCEDURE TextWidth
(v: Leaf; txt: TEXT; fnt: Font.T): INTEGER,;
<t LLsup < v *>
Return the sum of the printing widths of the characternstn in the fontfnt .

TextWidth returns the displacement of the reference point that would ocaur if
were painted on in fontfnt . It may differ from the width oBoundingBox(txt,
fnt) , since the printing width of the last character can be different from the width of
its bounding box, and the reference point for the first character might not be at the left
edge ofixt 's bounding box.

You can paint characters out of an array instead THEAT:

2.22 Synchronization of painting requests 29

PROCEDURE PaintSub(
v: Leaf;
READONLY clip: Rect.T := Rect.Full;
READONLY pt: Point.T;
fnt: Font.T := Font.Builtln;
READONLY chars: ARRAY OF CHAR;
op: PaintOp.T := PaintOp.TransparentFg;
READONLY dI := ARRAY OF Displacement{});
<t LLsup < v *>

Like PaintText applied to the characters eéhars .

2.22 Synchronization of painting requests

To improve painting performance, Trestle combines painting commands into batches,
and sends them to the server a batch at a time.

Most applications can ignore the batching, but the procedures in this section can be
of use in applications where the timing of paint operations is critical.

For example, when replacing one line of text with another in a non-self-clearing
font, the old text must be erased before the new text is painted. If the painting command
that erases the old text happens to fall at the end of a batch, there may be a delay of
several milliseconds between the time it affects the screen and the time the following
paint text command affects the screen, which can produce an undesirable flickering
effect. The chances of this happening can be greatly reduced by enclosing the two
commands in group, using the following two procedures:

PROCEDURE BeginGroup(v: Leaf; sizeHint: INTEGER := 0);
<t LLsup < v *>

Begin a group of painting commands.

PROCEDURE EndGroup(v: Leaf); < * LL.sup < v *>

End the current group of painting commands.

If a group of painting commands are bracketed BpginGroup and EndGroup ,
Trestle will try to avoid introducing delays between the commands, such as might
otherwise be introduced by batching. Trestle assumes that you will generate the
painting commands and tlndGroup in rapid succession.

Increasing the value gizeHint may improve atomicity, at the cost of throughput.
The maximum useful value dofizeHint is the total size in bytes of the painting
commands in the group, which you can compute using the inteFfaicePrivate

PROCEDURE Sync(v: Leaf); < * LLsup < v *>

Wait until all painting commands issuedvgrior to the call taSync have been
executed.

30 2 THE VBT INTERFACE

2.23 Screen capture

PROCEDURE Capture(
v: T;
READONLY clip: Rect.T;
VAR (*out *) br: Region.T)
: ScrnPixmap.T; < * LLsup < v *>

Return a pixmap containing the partws screen in the rectangfect .

The screentype of the result will be the same as the screentypeBdcause &BTs
screen is forgetful, it may be impossible to read the requested region. In thisrcase
is set to contain all positions of pixels that were not copied. Naturally, Trestle makes
br as small as it can. If none of the bits are available, the result maijlbe

2.24 Controlling the cursor shape

EveryVBT v contains a fiel&ursor(v) , which is set with the following procedure:

PROCEDURE SetCursor(v: T; cs: Cursor.T);
<t LLsup < v *>

Sefcursor(v) focs.

A split displays the cursor of its mouse focus, or of its current child if its mouse focus
isNIL . Only if the cursor of the relevant child @ursor.DontCare or if there is no
relevant child does the split display its own cursor.

To be more precise, the shape of the cursor over the top level winddsv
determined by the following recursive procedure:

GetCursor(v) =
IF NOT ISTYPE(v, Split) THEN
RETURN cursor(v)
ELSE
IF mouseFocus(v) # NIL THEN
cs = GetCursor(mouseFocus(v))
ELSIF current(v) # NIL THEN
cs = GetCursor(current(v))
ELSE
cs
END;
IF cs = Cursor.DontCare THEN
RETURN cursor(v)
ELSE
RETURN cs
END
END

Cursor.DontCare

2.25 Selections 31

2.25 Selections

Trestle maintains an internal table of named selections, which initially contains several
selections of general use, and which can be extended by users:
TYPE Selection = RECORD sel: CARDINAL END;

PROCEDURE GetSelection(name: TEXT): Selection;
<* LL arbitrary *>

Return the selection with the given name, creating ieifessary.

PROCEDURE SelectionName(s: Selection): TEXT;
<* LL arbitrary *>

Return the name used to createor NIL if s is unknown.

VAR (CONSY¥)

NilSel: Selection (* = GetSelection("NilSel") *);
Forgery: Selection (* = GetSelection("Forgery") *);
KBFocus: Selection (:= GetSelection("KBFocus") *);
Target: Selection (* = GetSelection("Target") *);
Source: Selection (* = GetSelection("Source") *);

NilSel andForgery are reserved for Trestle’s internal use. The owné¢®focus
(the keyboard focus) is theBTthat receives keystrokes.
We offer the following suggestions for the use of target and source selections:

¢ The target selection. If text, this should be underlined black or reverse video. The
selection gesture should not require modifiers like shift or control.

e The source selection. If text, this should be underlined gray. The source gesture
should be a modified version of the gesture for making the target selection.

An operation like “copy” should replace the target selection with the value of the
source selection.

The following exception declaration provides for the errors that can occur in dealing
with selections.

EXCEPTION Error(ErrorCode);

TYPE ErrorCode =
{EventNotCurrent, TimeOut, Uninstalled, Unreadable,
Unwritable, UnownedSelection, WrongType};

Explanation of error codes:

o EventNotCurrent : Raised by attempts to access a selection with an event time
that is not current.

32

2 THE VBT INTERFACE

TimeOut : If you attempt to read or write a selection, and the selection owner’s
method does not return for an unreasonably long time, then Trestle stops waiting
and raises this exception.

Uninstalled : Raised by event-time operations on uninstall&d's; that is, on
VBTs none of whose ancestors have been connected to a window system by one
of the installation procedures in tieestle interface.

Unreadable ,Unwritable : Raised by attemptstoread an unreadable selection,
or write an unwritable selection.

UnownedSelection : Raised by attempts to read, write, or deliver miscellaneous
codes to the owner of an unowned selection.

WrongType : Raised by attempts to read or write a selection with a type not
supported by the selection owner.

2.26 Acquiring and releasing selection ownership

PROCEDURE Acquire(
v: T;
s: Selection;
t: TimeStamp)
RAISES {Error}; < * LLsup < v *>

Makev the owner of selection, provided that is the current event.

If Acquire(v, s, t) is successful, the previous owner of the selection will receive a
miscellaneous code of typ@st (even ifthe owner ig). The window system affected

is the one to whiclv is connected. The possible error codesErentNotCurrent
andUninstalled

PROCEDURE Release(v: T; s: Selection);

<t LLsup < v *>

If the current owner o$ is v, then a.ost code is queued for delivery toand
the owner o6 becomesNIL

The window system affected is the one to whicls connectedRelease is a no-op
if the current owner is not or if v is not installed.

2.27 The miscellaneous method

Trestle calls &/BTs misc method to deliver miscellaneous codes. The method will
be called with_.L.sup = mu , and takes an argument of typliscRec .

Trestle maintains an internal table of named miscellaneous code types, which

initially contains several types of general interest, and which can be extended by users.

TYPE MiscRec = RECORD
type: MiscCodeType;

2.27 The miscellaneous method 33

detail: MiscCodeDetail;

time: TimeStamp;

selection: Selection;
END;

MiscCodeType = RECORD typ: CARDINAL END;
MiscCodeDetail = ARRAY [0 .. 1] OF INTEGER;

PROCEDURE GetMiscCodeType(name: TEXT): MiscCodeType;
<* LL arbitrary *>

Return the MiscCodeType with the given name, creating iéffassary.

PROCEDURE MiscCodeTypeName(type: MiscCodeType): TEXT;
<* LL arbitrary *>

Return the name used to createor NIL if s is unknown.

CONST
NullDetail = MiscCodeDetail {0, ..};

VAR (* CONSY¥)
Deleted: MiscCodeType;
Disconnected: MiscCodeType;
TakeSelection: MiscCodeType;
Lost: MiscCodeType;
Trestlelnternal: MiscCodeType;

These “variables” are really constants for the following codes:

GetMiscCodeType("Deleted")
GetMiscCodeType("Disconnected")
GetMiscCodeType("TakeSelection™)
GetMiscCodeType("Lost")
GetMiscCodeType("Trestlelnternal”)

The method calv.misc(cd) sendsv the misc code relevant tm.selection as
part of the eventd.time . The meaning of theype anddetail fields is up to the
application, except for the following.

A Deleted code is delivered to a top-level window when it is explicitly deleted
from its server, either by a user command to the window manager or under program
control. A Disconnected code is delivered to a top-level window when it is
disconnected from its server, either because the server crashed or because the network
connection was lost. AakeSelection code is delivered to a top-level window
when the user has gestured that it would like the window to acquire the indicated
selection; most often the keyboard focus. (The nature of the gesture is between the
user and the window manager. Many applications also acquire the keyboard focus in
response to mouse clicks.) st code withselection = s will be delivered to
a window when it loses ownership sf TrestleInternal codes are reserved for
the implementation.

34 2 THE VBT INTERFACE

The timestamp in alrakeSelection code is the timestamp for the current
event and is therefore valid for event-time operations. The timestanipsléted ,
Disconnected ,andLost codes are not. The selection field is relevantast and
TakeSelection codes; itisirrelevant ibeleted andDisconnected codes.

2.28 Sending miscellaneous codes

You can send a miscellanous code to the owner of a selection by using the following
procedure:

PROCEDURE Put(
v: T;
s: Selection;
t: TimeStamp;
type: MiscCodeType;
READONLY detail := NullDetail)
RAISES {Error}; < * LLsup < v *>

Create aMiscRec with the given fields and enqueue it for delivery to the owner
of selectiors, ift is the current event-time.

The window system affected is the one to whiclis connected. The possible error
codes areEventNotCurrent , Uninstalled , andUnownedSelection . If the
selection is unowned it is possible that thet will be silently ignored.

2.29 Circumventing event-time

The following procedure offers an escape from the event-time protocol. For example,
a long-running thread that has no idea what the current event time is can forge a
miscellaneous code to itself and use its timestamp to acquire the keyboard focus. (Your
users may not like it if you do this.)

PROCEDURE Forge(
v: T;
type: MiscCodeType;
READONLY detail := NullDetail)
RAISES {Error}; < * LLsup < v *>

Create aMliscRec with the givertype anddetail fields, with selection field
Forgery , and with a newly created timestamp and enqueue it for delivery to

The timestamp will be valid for event-time operations (provided that it is used
promptly). Forging codes that have meaning to the window manager (&glei@d

code) could have unexpected effects if they are delivered to installed windows or their
descendants. The only possible error codérimstalled

2.30 Communicating selection values

When you read the value of a Trestle selection you get a result oftgioe :

2.30 Communicating selection values 35

TYPE
Value <: Value_Public;
Value_Public =
OBJECT METHODS toRef(): REFANY RAISES {Error} END;

Call thetoRef method to convert thé¢alue into aREFANY
The simplest way to construcilue is with the following procedure:

PROCEDURE FromRef(r: REFANY): Value;

<t LL.sup <= mu *>

Return avalue v such that.toRef() is equal to the result of pickling and
unpicklingr .

On a system without pickles, the valuenust have typ@EXT. If r does not have type
TEXT, any exceptions raised by pickling lead to checked run-time errors.

Using FromRef leads to synchronous transmission of selection values—that is,
the value is transferred as part of the callRead or Write . To get asynchronous
behavior, allocate your owkalues and override theoRef method. Trestle will
transmit thevValue to the other application, and only when that application calls the
toRef method will yourtoRef method be called.

ThetoRef method in avalue will be called withLL.sup <= mu . ThetoRef
method can raise the errtinreadable if, for example, the address space of the
selection owner has been destroyed. It can also raise theWrmorgType if the
underlyingREFANYtannot be represented in the address space calling the method,; this
can only happen with nomEXTselections.

The procedur®eady tests whether a value is synchronous or asynchronous:

PROCEDURE Ready(v: Value): BOOLEAN; < * LL.sup <= mu *>

ReturnTRUEIf calling v.toRef() will return quickly, returnFALSEIf calling
v.toRef() might be slow or block.

Finally, here are the procedures for reading and writing selections:

PROCEDURE Read(
v: T;
s: Selection;
t: TimeStamp;
tc: INTEGER = -1)
. Value
RAISES {Error}; < * LL.sup <= mu *>

Return the value of selecticsas a reference of tyge , if t is the current
event-time.

If tc = -1 ,Read uses the typecode fOIEXT. The window system affected is the one
towhichv is connected. ThEBFocus selection is always unreadable. If the selection
owner’s read method is erroneous, calling thRef method of the returnedalue

36 2 THE VBT INTERFACE

may produce a reference with a typecode other thanThe possible error codes are
EventNotCurrent , Uninstalled , Unreadable , WrongType, TimeOut , and
UnownedSelection

PROCEDURE Write(
v: T;
s: Selection;
t: TimeStamp;
val: Value;
tc: INTEGER = -1)
RAISES {Error}; < * LL.sup <= mu *>

Replace the selectios with the valuev, which encodes a reference with
typecoddc , assuming Is the current event-time.

If tc = -1 , Write uses the typecode foFEXT. The window system affected is
the one to whichv is connected. Thé&BFocus selection is always unwritable.
The possible error codes aBventNotCurrent , Uninstalled , Unwritable
TimeOut , andWrongType .

2.31 The read and write methods

Trestle calls &/BTs read and write methods txcess any selections that it owns. The
method will be called with.L.sup <= mu (see below).
The signature of the read method is

(s: Selection; tc: CARDINAL): Value RAISES {Error}

Trestle callsv.read(s, tc) wheneverv is the owner of selectios and some
application passes andtc to Read. The method should return the value of
the selection, or rais&rror(Unreadable) if for some reason the value cannot
be delivered, oiError(WrongType) if the selection cannot be converted to the
requested type. The methods will be called viithsup <= mu ; in fact, if the caller

of Read is in the same address spatk,for the method call is the same Bk for the
caller ofRead, elseLL for the method call i§} .

The signature of the write method is

(s: Selection; val: Value; tc: CARDINAL)
RAISES {Error}

Trestle callsv.write(s, val, tc) wheneverv is the owner of selectios and

some application passes val , andtc to Write . The method should replace the
selection with the value ofal , or raise the exception with error cotbawritable

if for some reason the selection is not writable, or with error cattengType if

the selection cannot be written with the requested type. Trestle does not enforce
any consistency betweea and the typecode of the refereneal.toRef() . For
example, ifval.toRef() is NIL , the meaning could be determined toy. The
locking level is the same as for the read method.

2.32 Controlling the shape of a VBT 37

While a read or write method is active in a descendant of an installed window,
Trestle will block the delivery to that window of any mouse or key events, misc codes,
or cursor positions. If the computations are long, it is therefore preferable to do them
asynchronously, to avoid blocking the user.

2.32 Controlling the shape of a VBT

The preferred shape of\&BTis represented by a pair of records of tygieeRange
one for each axis:

TYPE SizeRange = RECORD lo, pref, hi;: CARDINAL END;

CONST DefaultShape =
SizeRange{lo := 0, pref ;= 0, hi := 99999},

If a VBTs preferred shape in the axix is theSizeRange sh , then the desirable
sizes for thevBTin axisax range fromsh.lo tosh.hi-1 , and its preferred size is
sh.pref

A SizeRange sh isillegal unlessh.lo <= sh.pref < sh.hi

When a parenVBT divides its screen up between its children, it tries to satisfy its
children’s shape requirements, which it finds by calling the children’s shape method.

The signature of the shape method is

(ax: Axis.T; n: CARDINAL): SizeRange

The behavior of the shape method depends on whethés zero. The call
v.shape(ax, 0) returns the preferred shape foin theax axis, assuming nothing
is known about its size in the other axis.nif0, the callsh := v.shape(ax, n)
returns the preferred shape foin theax axis assuming that's size in the other axis
isn. When the method is calletlL.sup = mu.v

It is a checked runtime error for a shape method to return an illegal size range. A
common error is to return an illegal size range veithio = sh.hi

The child must notassume that its shape requirement is satisfied, since, for example,
the requirements of a split’s children can be inconsistent.

The defaulshape method for a_eaf returnsDefaultShape

When the preferred shape o¥/8BT changes, you should callewShape:

PROCEDURE NewShape(v: T);
<* LL.sup >= mu.v AND LL.sup < v * >
Notify v's parent that its preferred size range may have changed.

Typically, the parent will mark itself, and any change will take effect at the time of
the next redisplay. Notice that the locking level alloMswShapeto be called from a
reshape orrescreen method;itcan also be called from a thread thatrhakcked.

2.33 Putting properties on a VBT

Associated with each widow is a “property set”, which is a set of non-niated
references.

38 2 THE VBT INTERFACE

PROCEDURE PutProp(v: T; ref: REFANY); < * LLsup < v *>

Addref tov's property set, replacing any existing reference of the same type
asref . This is a checked runtime erronéf isNIL .

PROCEDURE GetProp(v: T; tc: INTEGER): REFANY;

<t LLsup < v *>

Return the element of's property set with typecode , or NIL if no such
element exists.

PROCEDURE RemProp(v: T; tc: INTEGER); < * LL.sup < v *>
Remove the element with typecotde fromv's property set, if one exists.

2.34 Discarding a VBT

It is good form to calVBT.Discard(v) whenv is about to be garbage-collected:
PROCEDURE Discard(v: T); < * LL.sup = mu *>
Prepare for and ca¥l.discard()

The discard method will be called with..sup = mu , and takes no argument. The
method should perform any class-dependent cleanup thatis needed. The default discard
method is a no-op.

END VBT.

39

3 The Trestle interface

TheTrestle interface providesroutines for connecting to window systems; installing,
decorating, and moving top-level windows, and performing related operations.

INTERFACE Trestle;

IMPORT VBT, Rect, Point, Region, ScrnPixmap,
TrestleComm;

TYPE
T <: ROOT;

A Trestle.T identifies an instance of a window system. All the routines in this
interface that take @restle. T accept the valudlIL , which represents the default
window system obtained by callir@onnect(NIL)

PROCEDURE Install(
v: VBT.T;
applName: TEXT := NIL;
inst: TEXT := NIL;
windowTitle: TEXT := NIL;
iconTitle: TEXT := NIL;
bgColorR: REAL := -1.0;
bgColorG: REAL = -1.0;
bgColorB: REAL := -1.0;
iconWindow: VBT.T := NIL;
trsl: T := NIL)

RAISES {TrestleComm.Failure}; < * LL.sup <= VBT.mu *>

Initiate the installation o as a decorated top-level window of the window
systemtrs/

Install may return before the installation is completénstall is a checked
runtime error ifv is not detached, or i is in the process of being installed. The
position of the window on the screen depends on the window manager.

The textapplName is the application name; it defaults to the application name
from the process environment.

The textinst distinguishes windows with the same application name. For
example, a text editor might use the full path name of the file being edited as the
instance. The default is the value of the environment varidbSTANCE

Trestle does not require that the p@pplName, inst) be unique, but session
management tools will work more smoothly if it is.

The textwindowTitle will be placed in the widow’s title bar when the window
is noticonic. It defaults to the concatenatiorapplName , a space, anithst , or just
to applName if inst isNIL.

The icon for the window will contain the textonTitle together withicon-
Window (if it is not NIL). For exampleiconWindow might be a smalBitmapVBT .

40 3 THE TRESTLE INTERFACE

Some window managers ignamnWindow . The default foiiconTitle isinst
orapplName if inst isNIL.

The triplebgColorR , bgColorG , bgColorB specify the red, green, and blue
components of the background color for the window and icon titles. If they are
defaulted, the window manager’s default background color will be used,; if they are not
defaulted they should be betwee® and1.0 . Some window managers ignore the
background color.

An installed window’'s maximum, minimum, and preferred size will be reported to
the window manager, initially and whenever they change. HowevStalaleVBT
filter is inserted aboveach installed widow, so that a new preferred size will not be
reported if the window's current size satisfies the new max and min constraints. Use
StableVBT.Disable to force a new preferred size.

It is a checked runtime error if eithgror iconWindow is already installed.

Installing awindow inserts one or morefilters above it, includiftighlightvBT
aStableVBT , and filters that make screen-independent resources work.

PROCEDURE AwaitDelete(v: VBT.T); < * LL = {} =*>

Wait until v is deleted or disconnected from whatever window system it is
installed on.

AwaitDelete will not return until after theDeleted or Disconnected code has
been delivered and processed by the window. It is a noepsfalready deleted or is
not installed.

PROCEDURE Delete(v: VBT.T); < * LL.sup = VBT.mu *>
Deletev from wherever it is installed.

Delete automatically releases any selections owned loy any ofv’s descendants.
BeforeDelete(v) returns, lost codes will be delivered for any such selections. If
v owned the mouse focus, will also receive a synthesized mouse titios of type
LastUp . Thenv will receive aDeleted code, and finallyDelete will return. At

this pointv is disconnected and can be re-installed.

PROCEDURE Decorate(
v: VBT.T;
instance: TEXT := NIL;
windowTitle: TEXT := NIL;
iconTitle: TEXT := NIL;
bgColorR: REAL := -1.0;
bgColorG: REAL = -1.0;
bgColorB: REAL := -1.0;
applName: TEXT := NIL;
iconWindow: VBT.T := NIL)

RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Change the decorations ofto the given values

3.1 Window pacement 41

Any parameter that is defaulted will not be changed, unless v has Atesrhed
since it was last decorated, in which case the default value is computebhsiaih
Decorate is a noop ifv is not an installed decorated window.

PROCEDURE GetDecoration(v: VBT.T;
VAR instance, windowTitle, iconTitle, appIName: TEXT;
VAR bgColorR, bgColorG, bgColorB: REAL;
VAR iconWindow: VBT.T): BOOLEAN; < * LL.sup = VBT.mu *>

If v is decorated, fetch’s decorations, and returfnRUE Otherwise, return
FALSE

3.1 Window placement

PROCEDURE Attach(v: VBT.T; trsl: T := NIL)
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Attachv to the window systertrsl , leaving it invisible.

Attach is like Install , except (1) the locking level is different, (2) the attachment
is completed beforattach returns, (3) the window becomes undecorated, and (4) the
window remains invisible until you cadverlap , Iconize , or MoveNear. Before
calling one of these, most clients will want to cBkcorate

PROCEDURE Overlap(
v: VBT.T;
id: ScreenlD;
READONLY nw: Point.T)
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Move the northwest corner ofto the poinihw on the screeid .
If v is undecorated, this produces a window with no title bar or border, and the user

will probably not be able to move, iconize or delete the window; this is a bad idea
unless you're implementing pop-up or pull-down menus.

PROCEDURE Iconize(v: VBT.T)
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Make the window become iconic.

PROCEDURE MoveNear(v, w: VBT.T)
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Move the window to be near the window.
The exact effect oMoveNear depends on the window managerwifs NIL or is not

installed wherer is, thenMoveNear will attempt to bringv to the attention of the
user; in particular, ifr is an overlapping window; will be brought to the top; it is

42 3 THE TRESTLE INTERFACE

an icon, it will be deiconized; i is in the invisible state produced Bytach , it will
be opened in some visible place.

Overlap , Iconize , and MoveNear are all no-ops ifv is not installed. The
effects oflconize andMoveNear are undefined for undecorated windows.

PROCEDURE InstallOffscreen(
v: VBT.T;
width, height: CARDINAL;
preferredScreenType: VBT.ScreenType)
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Givev a domain with the given dimensions in the off-screen memory of the
window system to which it is attached.

InstallOffscreen rescreensy to preferredScreenType , or something as
much like it as supported for off-screen windows. The windownust be in the
floating state produced bAttach . The usual purpose is to paint enand then use
VBT.Capture to retrieve the contents of its screen as a pixmap. You should delete
v when you are done with it. Until is deleted, you should not pass it@werlap ,
Iconize ,MoveNear or InstallOffscreen

3.2 Enumerating and positioning screens

A window system may have multiple screens. Each screen is identified by an integer.

TYPE ScreenlD = INTEGER;
CONST NoScreen: ScreenlD = -1;

TYPE ScreenOfRec = RECORD
id: ScreenliD;
g: Point.T;
trsl: T;
dom: Rect.T
END;

PROCEDURE ScreenOf(
v: VBT.T; READONLY p: Point.T)
: ScreenOfRec; < * LLsup < v *>

Return information about whexeis installed.
If v is an installed window then aftees := ScreenOf(v, p) we have
e res.id isthelD of the screen currently containing

e res.q Iisthe pointin screen coordinates that corresponds to thepainindow
coordinates;

e res.trsl is the window system on whichis installed; and

e res.dom is the domain of the screens.id

3.3 Reading pixels from a screen 43

The pointp need not be in the domain of If v is not installed, themes.trsl
will be NIL, res.id will be NoScreen , and the other fields will be arbitrary. If
the window manager is moving between screens whe&treenOf is called, then
res.id willbe NoScreen andres.dom andres.q will be arbitrary.

TYPE

Screen = RECORD
id: ScreenlD;
dom: Rect.T;
delta: Point.T;
type: VBT.ScreenType

END;

ScreenArray = REF ARRAY OF Screen;

PROCEDURE GetScreens(trsl: T := NIL): ScreenArray
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Return an array of descriptors of the screens of the window sytssém.

For eachScreen s in the returned array, the rectangiglom is the domain of the

VBT at the root of the screen. The screens all lie in a global coordinate system, within
which the user moves the cursor. The painh screen coordinates corresponds to the
pointp+s.delta in global coordinates. (Some window systems don't support this;
in which cases.delta will be set toPoint.Origin for all screens.) The value
s.type is the screentype of the screen’s r®8T. GetScreens returnsNIL if the
window system has no screens.

3.3 Reading pixels from a screen

PROCEDURE Capture(

id: ScreenlD;
READONLY clip: Rect.T;
VAR (* out *) br: Region.T;
trsl: T := NIL)
: ScrnPixmap.T

RAISES {TrestleComm.Failure};

<* LL.sup = VBT.mu *>

Read the contents ofip from screerid of trsl

Capture(id, clip, br, trsl) islike VBT.Capture(r, clip, br) ,where
r is theVBTat the root of screeid of the window systenirs|

3.4 Checking on recent input activity

PROCEDURE AllCeded(trsl: T := NIL): BOOLEAN
RAISES {TrestleComm.Failure}; < * LL.sup = VBT.mu *>

Return whether there is pending input fronsl

44 3 THE TRESTLE INTERFACE

If a program call\liCeded(t) andTRUEis returned, then there are no mouse clicks

or keystrokes on their way to any top-level windows installed by the program Bor
example, when the VT100 terminal emulator has observed a key-down and waited for
half a second and observed no key-up and concludes that it should go into auto-repeat
mode, it verifies thaAllCeded returnsTRUEt0 make sure that the up transition is not

on its way, to avoid erroneously entering auto-repeat mode.

PROCEDURE TickTime(trsl: T := NIL): INTEGER;
<* LL.sup <= VBT.mu *>

Return the number of microseconds p8&T. TimeStamp , in events reported to
VBTs connected to the window systarsl!

3.5 Connecting to a window system

PROCEDURE Connect(inst: TEXT := NIL): T
RAISES {TrestleComm.Failure}; < * LL.sup <= VBT.mu *>

Connect to the window system narmiedt .

In general, the format and interpretationmdt are implementation-dependent. Here
are the rules when using an X server:

If inst is NIL, it defaults to the value of the environment variaBDESPLAY,
unless this variable is undefined, in which case it default8 to

The syntax ofnst should be:

<machine name>(":" | "::;")<number>("" | "." <number>)

where<machine name> is an arbitrary string of characters (possibly empty) and
<number> is a non-negative decimal integer. It denotes an X seageording to the
rules on page 27 of the second editiorxodVindow Systenty Scheifler et. al., Digital
Press, 1990 [5].

For example,nemesia:0 denotes the first window system on the machine
nemesia ,and:0 denotes the first window system on the machine callingnect .

The exception is raised if the designated window system doesn'’t exist or cannot be
connected to.

END Trestle.

45

4 Splits
4.1 The Splitinterface

The Splitinterface provides the functionality that is common to all splits; for example,
enumerating and deleting children.

This interface is for clients of splits; see thBTClass and ProperSplit
interfaces for informationk@out implementing your own split classes.

INTERFACE Split;
IMPORT VBT, Point, Rect;
TYPE T = VBT.Split;
EXCEPTION NotAChild;

A Split.T is a VBT that divides its screen up between one or more cliids.
The children of a split are ordered; they can be enumerated witBube andPred
procedures:

PROCEDURE Succ(v: T; ch: VBT.T): VBT.T
RAISES {NotAChild}; < * LL >= {VBT.mu} *>

Return the child ot that follows the childth .
The successor dfllL is the first child; the stcessor of the last child iNIL ; the

successor dfliL is NIL if there are no children. The exceptidlotAChild is raised
if ch is not a child ofv.

PROCEDURE Pred(v: T; ch: VBT.T): VBT.T
RAISES {NotAChild}; < * LL >= {VBT.mu} *>

Return the child of that precedes the chitdh .

More preciselyPred(v,ch) = x iff Succ(v,x) = ch . All of Trestle’s standard
splits implemenBucc andPred in constant time.

PROCEDURE NumChildren(v: T): CARDINAL,;
<* LL >= {VBT.mu} =*>

Return the number of children of

PROCEDURE Nth(v: T; n: CARDINAL): VBT.T;
<* LL >= {VBT.mu} =*>

Return the child ot with indexn.

More preciselyNth(v, n) is the child ofv with n predecessors, &1L if v has at
mostn children. Warning: for Trestle’s standard splfsh requires time proportional

to n, so it would be wasteful to enumerate the children by calling it repeatedly; use
Succ instead.

46 4 SPLITS

PROCEDURE Index(v: T; ch: VBT.T): CARDINAL
RAISES {NotAChild}; < * LL >= {VBT.mu} *>

Return the index o¥’s child ch.

Index(v, ch) is the valuen such thatNth(v, n) = ch . Index(v, NIL)
equalsNumChildren(v)

PROCEDURE Locate(v: T; READONLY pt: Point.T): VBT.T;
<* LL.sup = VBT.mu *>

Return the child ot that controls the poimt , or NIL if there is no such child.

PROCEDURE Delete(v: T; ch: VBT.T) RAISES {NotAChild};
<* LL.sup = VBT.mu *>

Delete the chilah of the splitv, detactch, and markv for redisplay.

PROCEDURE Replace(v: T; ch, new: VBT.T)
RAISES {NotAChild}; < * LL.sup = VBT.mu *>

Replace chila&h of v with new, detactch (which must not baNIL), and mark
v for redisplay.

PROCEDURE Insert(v: T; pred, new: VBT.T)
RAISES {NotAChild}; < * LL.sup = VBT.mu *>

Addnew as a child ok following pred .

Some split classes can accomodate ortypanded number of children (for example,
filters). If Insert(v, pred, new) is applied to a spliv that cannoaccomodate

an additional child, thepred (or the original first child, ifored = NIL) is deleted

from the split and discarded. The precise semantics are defined by the individual splits.
Insert raisesNotAChild if pred isn'ta child ofv, and is a checked run-time error

if newisn’t detached.

PROCEDURE Move(v: T; pred, ch: VBT.T)
RAISES {NotAChild}; < * LL.sup = VBT.mu *>

Move childch ofv to follow pred . Bothch and (if nonNIL) pred must be
children ofv.

PROCEDURE AddChildArray(v: T;
READONLY new: ARRAY OF VBT.T);
<* LL.sup = VBT.mu *>

Insert the noMNIL elements ohew at the end of the s list of children.
AddChildArray is equivalent to

pred := Pred(v, NIL);
FOR i ;= 0 TO LAST(new) DO
IF new[i] # NIL THEN

4.2 The ZSplit interface a7

InsertAfter(v, pred, newfli]);
pred := newli]
END
END

PROCEDURE AddChild(v: T;
v0, vl1, v2, v3, v4, v5, v6, v7, v8, v9: VBT.T := NIL);
<* LL.sup = VBT.mu *>

Add the given children te.
AddChild is equivalentto

AddChildArray(v,
ARRAY OF VBT.T{vO, v1, ..., v9})

END Split.

4.2 The ZSplitinterface

A ZSplit. T is a parent window with overlapping child windows.

Each child has a stacking order given (conceptually) rycaordinate. A pixel
of the parent’s screen that is in the domain of more than one child is controlled by
whichever of these children is highest in theoordinate. The portions of the domains
of the children that extend outside the parent domain will be clipped.

Split.Succ enumerates the children from top to bottom.

The bottom child is called thizackground An initial background can be specified
when theZSplit is created; usually it remains the background throughout the life of
thezSplit . Usually the background has the same domain as the parent, and therefore
controls all pixels that are not controlled by any other child. In the unusual case that
the background child has a domain different from the parent domain, there may be
some parent pixels that are not controlled by any child. Z8glit will ignore these
pixels when asked to repaint.

The shape of @Split is the shape of its background child (if it has no children its
shape is the default shape fow&8T). When the preferred shape of a non-background
child changes, théSplit reshapes the child to its new preferred shape, preserving its
offset which is the vector between the northwest corners of the parent and child.

INTERFACE ZSplit;
IMPORT VBT, Rect, Split, Point;

TYPE
T <: Public;
Private <: Split.T;
Public = Private OBJECT METHODS
<* LL <= VBT.mu *>

48 4 SPLITS

init(bg: VBT.T := NIL;
saveBits := FALSE;
parlim: INTEGER = -1): T
END;

The callv.init(...) initializesv as azSplit

It is only legal to call thenit method for a newly-allocatedSplit (as in the
definition of the procedurlewbelow) or from theinit method of a subclass. This
restriction applies to all thmit methods in Trestle, although it will not be repeated
for each one.

The ZSplit will be given the initial background childdg if bg#NIL ; it will
be given no children ibg=NIL . If bg is nonNIL it will be mapped initially. If
saveBits is TRUE the split will try to save the children’s old bits when reformatting;
if the children don’t use them anyway, it is faster todaveBits default toFALSE
The value ofparlim is the minimum area of a child for which a separate thread will
be forked to reshape or repaint it; if iti$, it is set to an appropriate default (see the
VBTTuning interface).

PROCEDURE New(
bg: VBT.T := NIL;
saveBits := FALSE;
parlim: INTEGER := -1)
T, < * LL <= VBT.mu *>

New(...) Is equivalent tNEW(T).init(...)

4.2.1 Inserting children

The defaulSplit.Insert call is rarely useful for ZSplit : itinserts the new child

at the parent’s northwest corner, unmapp&aglit. AddChild is even less useful,
since it adds children as the background, which is almost certainly not what you want.
The following procedures are more useful for inserting children irg8alit

PROCEDURE InsertAfter(

v: T;

pred, ch: VBT.T,

READONLY dom: Rect.T;

alsoMap: BOOLEAN := TRUE) RAISES {Split.NotAChild};
<* LL.sup = VBT.mu *>

Insertch as a new child o¥ with domaindom, and markv for redisplay.
The new child is inserted immediately after (that is, belpwad ; if pred=NIL the

new child is inserted first (that is, on top). If the height or widtllofmdoes not satisfy
ch’s size contraints, then the height and width of the child are projected into range; its

4.2 The ZSplit interface 49

offset is preserved. This is a checked runtime errohifs not detached. lilsoMap
is TRUE ch is mapped, otherwise it is unmapped.

It is occasionally useful to insert a new child below all existing children except the
background, in which case the following procedure is handy:

TYPE Altitude = {Top, Bot};

PROCEDURE Insert(
v: T;
ch: VBT.T;
READONLY dom: Rect.T;
alt ;= Altitude.Top;
alsoMap: BOOLEAN := TRUE); < * LL.sup = VBT.mu *>

Insertch at the top ifalt = Altitude.Top ; insertch just above the
background ialt = Altitude.Bot

That is,Insert is equivalent to

IF alt = Altitude.Top THEN

pred := NIL
ELSE

pred := Split.Pred(v, Split.Pred(v, NIL))
END;

InsertAfter(v, pred, ch, dom, alsoMap)

Finally, instead of providing the new child’s domain it can be useful to provide only
the northwest corner and let the child’s domain be determined by its shape constraints:

PROCEDURE InsertAt(

v: T;

ch: VBT.T;

nw: Point.T;

alt ;= Altitude.Top;

alsoMap: BOOLEAN := TRUE); < * LL.sup = VBT.mu *>
Insertch with its preferred shape and its northwest corngnvat Thealt and
alsoMap parameters are interpreted asrigert

4.2.2 Moving, lifting, and lowering children

PROCEDURE Move(ch: VBT.T; READONLY dom: Rect.T);
<* LL.sup = VBT.mu *>

Change the domain eh to bedomand markch'’s parent for redisplay.

If the height or width oilomdo not satisfych 's size constraints, then they are projected
into range, preserving the northwest cornedofn. The stacking order ath is not
changed.Move is a checked runtime error ¢h’s parent is not &@Split . Note that
this has nothing to do witBplit.Move , unlike the next procedure.

50 4 SPLITS

PROCEDURE Lift(ch: VBT.T; alt := Altitude.Top);

<* LL.sup = VBT.mu *>

Lift ch to the top or lower it to be just above the background, dependirajton
Lift s equivalentto:

v = VBT.Parent(ch);
IF alt = Altitude.Top THEN

pred = NIL
ELSE

pred := Split.Pred(v, Split.Pred(v, NIL))
END;

Split. Move(v, pred, ch)
4.2.3 Mapping and unmapping children

You canunmapa child of azSplit , which reshapes the child to be empty after
recording the child’s shape and offset. When you latapthe child, the recorded

shape and offset are restored. An unmapped child is rescreened when the parent is
rescreened, and its recorded shape and offset are updated when the parent is reshaped,
just like the domains of the mapped children.

PROCEDURE Unmap(ch: VBT.T); <* LL.sup = VBT.mu *>
If ch is mapped, unmap it and mark its parent for redisplay.

PROCEDURE Map(ch: VBT.T); <* LL.sup = VBT.mu *>
If ch is unmapped, map it and mark its parent for redisplay.

PROCEDURE IsMapped(ch: VBT.T): BOOLEAN;
<* LL.sup = VBT.mu *>

ReturnTRUEIf ch is mapped andFALSEf ch is unmapped.
Map, Unmap andisMapped are checked runtime errorsci 's parent is not ZSplit

4.2.4 Getting domains

PROCEDURE GetDomain(ch: VBT.T): Rect.T;
<* LL.sup = VBT.mu *>

Return the effective domain oh.

The effective domain is the same as the normal domain, except (1) if the parent has
been marked for redisplaggetDomain returns the domain thah will receive when

the redisplay happens, or (2) if the domain of the pareReist.Empty , GetDomain

returns the domainh would receive if the parent were reshaped to its thast-empty
domain, or (3) if the child is unmappeetDomain returns the domain the child
would have if it were mapped.

4.2 The ZSplit interface 51

GetDomain is a checked runtime error if the parentobf is not azZSplit

PROCEDURE GetParentDomain(v: T): Rect.T;
<* LL.sup = VBT.mu *>

Return the last non-empty value wflomain , or Rect.Empty if v.domain
has always been empty.

4.2.5 Moving children when the parent is reshaped

You can supply procedures to control what happens to the children wiSpla

is reshaped. If you don't supply a procedure, the default behavior is as follows: the
initial background child is always reshaped to have the same domain as the parent. The
other children are reshaped so as to preserve their shape and their offsets (even if this
makes them extend outside the parent domain). The rule is different if the parent is
reshaped t&Rect.Empty : in this case th&Split records its children’s shapes and
offsets and reshapes them alRect.Empty . When theZSplit is later reshaped to

a non-empty domain, it reshapes the initial background child to have the same domain
as the parent, and restores the saved dimensions and offsets of the other children.

In the unusual case that the initial background child is deleted, subsequent
background children do not automatically inherit the special reshaping behavior of the
initial background child.

To override the default behavior, uSetReshapeControl

PROCEDURE SetReshapeControl(
ch: VBT.T;
rc: ReshapeControl); < * LL.sup = VBT.mu *>

Set the reshape control object for the chifdto berc .

TYPE ReshapeControl = OBJECT METHODS
apply(ch:VBT.T; READONLY old, new, prev: Rect.T)
: Rect.T < * LL.sup = VBT.mu.ch *>

END;

SetReshapeControl arranges that whenever th8plit parentv of ch is reshaped
from domainold to domainnew, then if the previous domain @h is prev , the new
domain ofch will becomerc.apply(ch, old, new, prev) (if this rectangle
doesn't satisfych’s size constraints, its height and width will be projected into range,
preserving its offset).

These methods of thReshapeControl objects may be called concurrently for
different children. (This is why the apply method has only a shanB3f.mu.) The
stacking order is not changed by reshaping.

When azSplit child is replaced bplit.Replace , the new child inherits the
old child’s reshape control object.

SetReshapeControl is a checked runtime error if the parentaf is not a
ZSplit

52 4 SPLITS

If the ZSplit is reshaped tdRect.Empty , it will reshape its children to
Rect.Empty without calling their reshape control methods. Similarly, if the parent is
subsequently reshaped to its original rectangle, it will restore the children’s previous
domains without calling the methods.

One useful reshape control method provided by this interfaGa#nReshape |,
in which some set of the child’s west, east, north, and south edges are “chained” to the
corresponding edges of the parent. Chaining an edge means that the distance between
the child edge and the corresponding parent edge will be preserved. For example, if
both the west and east edges are chained, then the child’s horizontal extent will be
inset into the parent’s horizontal extent by fixed amounts on both sides. For another
example, suppose that the the east edge is chained and the west edge is not. In this
case the distance between the east edges of the child and parent will be preserved, but
the west edge of the child will move so as to preserve the width of the child. The north
and south edges control the vertical extent in a similar manner.

TYPE
Ch = {W, E, N, S};
ChainSet = SET OF Ch;
ChainReshapeControl = ReshapeControl OBJECT
chains: ChainSet

OVERRIDES
apply := ChainedReshape
END;

VAR (* CONSY¥)
NoChains, WChains, EChains, WEChains, NChains,
WNChains, ENChains, WENChains, SChains,
WSChains, ESChains, WESChains, NSChains,
WNSChains, ENSChains, WENSChains: ChainReshapeControl;

The “variables” above are constants for the following reshape control objects:

NEW(ChainReshapeControl, chains := ChainSet{}),
NEW(ChainReshapeControl, chains := ChainSet{Ch.W}),

NEW/(ChainReshapeControl,
chains := ChainSet{Ch.W,Ch.E,Ch.N,Ch.S})

PROCEDURE ChainedReshape(
self: ChainReshapeControl;
ch: VBT.T;
READONLY oldParentDomain, newParentDomain,
oldChildDomain: Rect.T): Rect.T;

4.3 The HVSplit interface 53

Return the rectangle that results from chaining each edgelfrthains
to the corresponding edge of the parent domain, and leaving the other edges
unconstrained.

If both edges in a dimension are chained, the offset and extent of the child will both
vary to satisfy the chain constraints; if one edge is chained, the offset will vary and the
extent will be fixed; if both edges are unchained, the offset and the extent will both be
fixed.

For example, the default behavior for the initial background child/EENSChains,
and the default behavior for all other childrenA#&NChains.
One final reshape control method is sometimes useful:

PROCEDURE ScaledReshape(
self: ReshapeControl;
ch: VBT.T;
READONLY oldParentDomain, newParentDomain,
oldChildDomain: Rect.T) : Rect.T;

Return the integer approximation to the rectangle that results from scaling the
old child domain to occupy the same relative position of the changing parent
domain.

VAR (* CONS¥) Scaled: ReshapeControl;
This “variable” is really a constant for the following reshape control object:

NEW(ReshapeControl, apply := ScaledReshape)

END ZSplit.
4.3 The HVSplitinterface

An HVSplit.T is a parent window that splits its screen into a row or column of child
windows, depending on trexisof the split.

If the axis is horizontalSplit.Succ ~ enumerates the children from west to east;
if the axis is vertical, it enumerates them from north to south.

An HVSplit can beadjustableor unadjustablea property that affects the way its
space is divided between its children.

Thesizeof a child is the extent of its domain in the axis of split, tress-sizds
its extent in the other axis. For example, for a vertical split, a child’s size is its height
and its cross-size is its width.

The children of anHVSplit all have the same cross-size as the parent. To
determine the sizes of the children, tH&'Split begins by computing the range of
desirable sizes and the preferred size for each childliyg#s shape method, passing
the method the cross-size, so that, for example, the height of a child of a vertical split
can depend on its width. At this point there are several cases.

54 4 SPLITS

If the sum of the minimum sizes of the children is greater than the size of the parent,
then the split is said to baverfull. In this case the children are considered in order and
given their minimum sizes, as long as there is room. The first child that doesn't fit is
given all the space that’s left, and the remaining children are given size zero.

If the splitis not overfull, then the children are stretched according to the TeX model
of boxes and glue. The details depend on whether the splitis adjustable or unadjustable.
For an adjustable spliach child’'sstretchabilityis its maximum desirable size minus
its current size, and itshrinkabilityis its current size minus its minimum desirable
size. If the size of the parent is increased by some ami@utiten the sizes of the
children are increased by amounts that totaX &md are proportional to the children’s
stretchabilities. Similarly, if the size of the parent is decreased by some aidhen
the sizes of the children are decreased by amounts that totadntd are proportional
to the children’s shrinkabilities.

For a non-adjustable split, all the children’s sizes are first set to their preferred
sizes, and then they are stretched or shrunk the same as an adjustable split. Thus for a
non-adjustable spl#ach redistribution of space depends only on the children’s shape
methods, not on their current sizes.

A non-adjustable split is best if the layout can be controlled purely by stretchability
and shrinkability. If the layout is also changed under user or program control, an
adjustable split is required. For example, in a column of editable text windows, you
should make the vertical split adjustable, since if the user makes one window big, and
then the parent changes size slightly, you do not want the big window child to snap
back to being small. On the other hand if you are using a horizontal split to center a
ButtonVBT between two stretchyextureVBTs , you should make it unadjustable,
since in this case you always want to compute the division of space from the children’s
original shapes.

If the sum of the maximum sizes of the children is less than the size of the parent,
the split is said to beinderfull There are no special rules for the underfull case: the
TeX stretching algorithm is used without change. This produces a state in which the
children are stretched larger than their maximum sizes.

A splitisinfeasiblef it is overfull or underfull, andfeasibleotherwise.

The shape of aklVSplit is computed as follows: its maximum, minimum, and
preferred sizes are obtained by adding up the corresponding values of its children.
The cross-size range is the intersection of the cross-size ranges of its children (if
this intersection is empty, the children’s maximum cross-sizes are increased until the
intersection is non-empty). The preferred cross-sizer 6§ the maximum of the
preferred cross-sizes of its children, projected irgocross-size range.

INTERFACE HVSplit;
IMPORT VBT, Split, Axis, Rect, Interval;

TYPE
T <: Public;
Private <: Split.T;

4.3 The HVSplit interface 55

Public = Private OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(hv: Axis.T;

saveBits := FALSE;

parlim := -1;

adjustable := TRUE): T
END;

The callv.init(...) initializesv as anHVSplit with axishv and no children.

If saveBits is TRUE the implementation will try to save the children’s old bits
when reshaping; if the children don’t use them anyway, it is faster tealatBits
default toFALSE The value ofparlim is the minimum area of a child for which
a separate thread will be forked teshape or repaint ;ifitis -1, itis set to an
appropriate default (see tMBTTuning interface).

PROCEDURE New(
hv: Axis.T;
saveBits := FALSE;
parlim := -1;
adjustable := TRUE): T;
<* LL.sup <= VBT.mu *>

New(...) Is equivalent ttNEW(T).init(...)

PROCEDURE AxisOf(v: T): Axis.T;
<* LL.sup = VBT.mu *>

Return the axis o¥.

4.3.1 Inserting children

See theSplit interface to insert and reorder children.

PROCEDURE Cons(
hv: Axis.T;
chO, chl, ch2, ch3, ch4,
ch5, ch6, ch7, ch8, ch9: VBT.T := NIL;
saveBits := FALSE;
parlim = -1;
adjustable := TRUE): T; < * LL.sup = VBT.mu *>

Create arHVSplit with axishv and childrerch0, chl,
Cons is equivalent to the following:

result := New(hv, saveBits, parlim, adjustable);
Split. AddChild(result, ch0, chil, ..., ch9);
RETURN result

56 4 SPLITS

PROCEDURE ConsArray(
hv: Axis.T;
READONLY ch: ARRAY OF VBT.T;
saveBits := FALSE;
parlim = -1;
adjustable := TRUE): T; < * LL.sup = VBT.mu *>

Create arHVSplit with axishv and childrerch[0] , ch[1] ,
ConsArray ignores anNILs inthe arraych. It is equivalent to:

VAR result := New(hv, saveBits, parlim, adjustable);
BEGIN

Split. AddChildArray(result, ch);

RETURN result
END

4.3.2 Adjusting the division of space

Thedivision point after a childs the sum of the sizes of all children up to and including
the child.

PROCEDURE Adjust(v: T; ch: VBT.T; totsz: INTEGER)
RAISES {Split.NotAChild}; < * LL.sup = VBT.mu *>

Change the sizes of the childrenwko that the division point afteth is as
close tatotsz as possible, and markfor redisplay.

Adjust respects the size constraints on the children, and resizes children near the
division point in preference to children far from the division point. For example, a
sufficiently small adjustment will be made by resizing oaly and its successor. An
adjustment large enough to make one of these childraatrits max or min size will
also resize the neighbor of that child, and so forth.

Adjust is a no-op if the split is infeasible or non-adjustable.

PROCEDURE FeasibleRange(v: T; ch: VBT.T): Interval.T
RAISES {Split.NotAChild}; < * LL.sup = VBT.mu *>

Return the interval of feasible positions for the division point atter
PROCEDURE AvailSize(v: T): CARDINAL;

<* LL.sup = VBT.mu *>

Return the largest size of a child that can be insertedvntathout makingv
infeasible.

If the splitis infeasibleAvailSize returns O andFeasibleRange returnsthe empty
interval. Both procedures assume the total size available is the total of all child sizes.

END HVSplit.

4.4 The PackSplit interface 57

4.4 The PackSplitinterface

A PackSplit. T is a parent window whose children are packed into multiple rows or
columns, depending on tlaisof the split.

If the axis is horizontal, the children are packed into rows from west to east, moving
south to a new row when the current row fills up. This is the normal style used in
placing words in a paragraph.

If the axis is vertical, the children are packed into columns from north to south,
moving east to a new column when the current column fills up. This is the normal style
used in placing paragraphs in a newspaper article.

A PackSplit always gives its children their preferred height and width, even if
this makes them extend outside the parent domain (in which case they will be clipped).

If the axis is horizontal, the children in any given row have their north edges
aligned, and all children that are first in their row have their west edges aligned with the
west edge of the parent. A child will be horizontally clipped if its requested horizontal
size exceeds the parent’s horizontal size; in this case the child will be alone in its row.

If the axis is vertical, the children in any given column have their west edges
aligned, and all children that are first in their column have their north edge aligned with
the north edge of the parent. A child will be vertically clipped if its requested vertical
size exceeds the parent’s vertical size; in this case the child will be alone in its column.

Thesizeof a window is the extent of its domain in the axis of ®eckSplit ; its
cross-sizas its extent in the other axis.

The range of desirable sizes and the preferred sizeRackSplit are just the
default for aVBT. The shape method uses the size to determine the cross-size that is
just large enough to pack in all the children at their preferred sizes, and returns as its
range of desirable cross-sizes a singleton interval containing only this cross-size.

INTERFACE PackSplit;
IMPORT VBT, PaintOp, Pixmap, Axis;

TYPE

T <: Public;

Private <: VBT.Split;

Public = Private OBJECT METHODS
<* LL.sup <= VBT.mu *>
initthv := Axis.T.Hor;

hgap, vgap := 1.5;
txt: Pixmap.T := Pixmap.Solid;
op: PaintOp.T := PaintOp.Bg;
nwAlign := FALSE;
saveBits := FALSE): T

END;

The callv.init(...) initializesv as an empty packsplit with axis .

58 4 SPLITS

For a horizontaPackSplit , hgap is the gap to leave between children in each row;
vgap is the gap to leave between rows. For a vertRatkSplit , vgap is the gap

to leave between children in each colurhgap is the gap to leave between columns.
The gaps are specified in millimeters.

The area not covered by children is painted using the painting opergtiand the
texturetxt+delta , wheredelta is the origin unles&wAlign is set toTRUE in
which casedelta will be set to the northwest corner of

If saveBits is TRUE the implementation will try to save the children’s old
bits when reshaping; if the children don’t use the old bits, it is more efficient to let
saveBits default toFALSE

PROCEDURE New(
hv := Axis.T.Hor;
hgap, vgap := 1.5;
txt: Pixmap.T := Pixmap.Solid;
op: PaintOp.T := PaintOp.Bg;
nwAlign := FALSE;
saveBits := FALSE): T; < * LL.sup <= VBT.mu *>

New(...) Is equivalent tNEW(T).init(...)
PROCEDURE Set(

v: T;

txt: Pixmap.T;

op: PaintOp.T := PaintOp.BgFg;

nwAlign := FALSE); < * LL.sup = VBT.mu *>
Change the texture displayed byand markv for redisplay.
PROCEDURE Get(

v: T;

VAR txt: Pixmap.T;

VAR op: PaintOp.T;

VAR nwAlign: BOOLEAN

); < * LL.sup = VBT.mu *>

Fetch the texture displayed by

PROCEDURE AxisOf(v: T): Axis.T; < * LL.sup <= VBT.mu *>
Return the axis o¥.

PROCEDURE HGap(v: T): REAL; <* LL.sup <= VBT.mu *>
Return thehgap ofv.

PROCEDURE VGap(v: T): REAL; <* LL.sup <= VBT.mu *>
Return thesgap ofv.

END PackSplit.

4.5 The TSplit interface 59

4.5 The TSplitinterface

A TSplit. T is a parent window that giving its entire screen to one child at a time.
The child being displayed is called therrent child The current child can biIL , in
which case th&Split ignores all events.

INTERFACE TSplit;
IMPORT VBT, Split;

TYPE

T <: Public;

Private <: Split.T;

Public = Private OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(fickle := TRUE): T

END;

The callv.init(fickle) initialize v as an empty Split

If fickle is TRUE then the shape of will be the shape of its current child, or
a VBT's default shape if the current child ML . If fickle is FALSE, then in each
axis the size range of will be the intersection of the size ranges of its children (if
this intersection is empty, the children’s maxsizes are increased until the intersection is
non-empty). The preferred size wfis the the maximum of the preferred sizes of its
children, projected intg’s size range. I/ has no children, its shape i3/8Ts default
shape.

PROCEDURE SetCurrent(v: T; ch: VBT.T)

RAISES {Split.NotAChild}; < * LL.sup = VBT.mu *>
Set the current child of to bech and markv for redisplay.

PROCEDURE GetCurrent(v: T): VBT.T; < * LL.sup = VBT.mu *>
Return the current child of.

PROCEDURE Cons(ch0, chl, ch2, ch3, ch4: VBT.T := NIL;
fickle := TRUE): T; < * LL.sup = VBT.mu *>
Create a Split with childrench0, chl,
Cons is equivalent to

v = NEW(T).init(fickle);

Split.AddChild(v, ch0O, chl, ch2, ch3, ch4);

IF chO # NIL THEN SetCurrent(v, ch0) END;
RETURN v

END TSplit.

60 5 FILTERS

5 Filters
5.1 The Filter interface

A Filter.T isaSplit.T with at most one child.

INTERFACE Filter;
IMPORT Split, VBT,;

TYPE
T <: Public;
Public = Split.T OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(ch: VBT.T): T

END;
The callv.init(ch) initializesv as a filter with chilcch and returny.
Split.Move on a filter is a noop.Split.Insert replaces the child, if any, and
detaches it.

PROCEDURE Child(v: T): VBT.T;
<* LL.sup = VBT.mu *>

Return the child of, or NIL if there is no child.
Filter.Child(v) is equivalent tsplit.Succ(v, NIL)

PROCEDURE Replace(v: T; ch: VBT.T): VBT.T;

<* LL.sup = VBT.mu *>

Replacev’s child by ch, detach and returm’s old child, and markv for
redisplay.

Filter.Replace is similar toSplit.Replace , except that it returns the old child
instead of taking the old child as an argument, anahifis NIL it is similar to
Split.Delete

END Filter.

5.2 The BorderedVBT interface

A BorderedVBT.T is a filter whose parent’'s screen consists of the child’'s screen
surrounded by a border. The parent’s shape is determined from the child’s shape by
adding the border size.

INTERFACE BorderedVBT;
IMPORT VBT, Filter, PaintOp, Pixmap;

5.2 The BorderedVBT interface 61

TYPE
T <: Public;
Public = Filter. T OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(ch: VBT.T;
size: REAL := Default;
op: PaintOp.T := PaintOp.BgFg;
txt: Pixmap.T := Pixmap.Solid): T
END;

The callv.init(...) initializesv as aBorderedVBT with child ch and marksy
for redisplay.

The border size is given in millimeters. The border will be painted in the
untranslated texturt using the paint ojpp.

CONST Default = 0.5;

PROCEDURE New(
ch: VBT.T;
size: REAL := Default;
op: PaintOp.T := PaintOp.BgFg;
txt: Pixmap.T := Pixmap.Solid)
T, < * LL.sup <= VBT.mu *>

New(...) Is equivalent ttNEW(T).init(...)

PROCEDURE SetSize(v: T; newSize: REAL);
<* LL.sup = VBT.mu *>

Change the size of the border ofto newSize millimeters and marks for
redisplay.

PROCEDURE SetColor(
v: T;
op: PaintOp.T;
txt := Pixmap.Solid);
<* LL.sup = VBT.mu *>
Change thep andtexture ofv and markv for redisplay.
PROCEDURE Get(
v: T;
VAR size: REAL;
VAR op: PaintOp.T;
VAR txt: Pixmap.T); < * LL.sup = VBT.mu *>

Fetchv'’s parameters.

END BorderedVBT.

62 5 FILTERS

5.3 The RIigidVBT interface

A RigidVBT.T isafilter whose size range is set explicitly, independently of its child’s
size range. In spite of its name, it size range does not have to be fixed to a single value.

All dimensions in this interface are specified in millimeters.

INTERFACE RIigidVBT;
IMPORT VBT, Filter, Axis;

TYPE
T <: Public;
Public = Filter. T OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(ch: VBT.T; sh: Shape): T
END;
TYPE
SizeRange = RECORD lo, pref, hi: REAL END;
Shape = ARRAY Axis.T OF SizeRange;
The callv.init(...) initializesv as a rigidvBTwith child ch and shapeah.
A RigidvVBT.SizeRange is like aVBT.SizeRange , but in millimeters instead
of pixels, usingREALs instead oINTEGERS, and the range i$o..hi] instead of
[lo..hi-1]

PROCEDURE New(ch: VBT.T; sh: Shape): T;
New(...) Is equivalent tNEW(T).init(...)

PROCEDURE FromHV(
ch: VBT.T;
hMin, vMin: REAL;
hMax, vMax, hPref, vPref: REAL = -1.0) : T;
<* LL.sup <= VBT.mu *>

Return aRigidVBT with child ch and the given shape.

If hMax or hPref are defaulted, they are assumed to be the sameMias, and
similarly for vMax, vPref andvMin . That is,FromHVis equivalent to:

IF hMax = -1.0 THEN hMax := hMin END;
IF vMax = -1.0 THEN vMax := vMin END;
IF hPref = -1.0 THEN hPref := hMin END;
IF vPref = -1.0 THEN vPref := vMin END;

RETURN New(ch,
Shape{SizeRange{h, hMax, hPref},
SizeRange{v, vMax, vPref}})

END RigidVBT.

5.4 The HighlightVBT interface 63

5.4 The HighlightVBT interface

A HighlightVBT.T s a filter that highlights a rectangular outline over its child.

The parent screen is obtained from the child screen by texturing an outline inset in
a rectangle, using an inverting painting operation.

The parent keeps its screen correct as the child paints. Since the parent screen is
always correct, it never needs to mark itself for redisplay.

INTERFACE HighlightVBT,;
IMPORT VBT, Rect, Point, Filter, Pixmap, PaintOp;

TYPE
T <: Public;
Public = Filter. T OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(ch: VBT.T;
op: PaintOp.T := PaintOp.TransparentSwap;
txt: Pixmap.T := Pixmap.Gray;
READONLY delta := Point.T{h := 0, v .= 1}): T
END;

The callv.init(ch, ...) initializesv as aHighlightVBT with child ch and the
given parameters, and retums

The highlight rectangle is initially empty. The filter brings up the highlight by
calling

VBT.PaintTexture(v, highlight region op, txt, delta)

and brings down the highlight the same way; therefore the painting operation must be
its own inverse for the filter to work correctly.

The default values for the texture and delta are such that the highlightwill be visible
over white, black, or the standard gray texture. (If deltaw@)® instead 0{0,1) ,
the highlight would look fine over white or black but would be barely noticeable over
standard gray.)

PROCEDURE New(

ch: VBT.T;

op := PaintOp.TransparentSwap;

txt: Pixmap.T := Pixmap.Gray;

READONLY delta := Point.T{(h := 0, v = 1}) T
<* LL.sup <= VBT.mu *>

New(...) Is equivalent ttNEW(T).init(...)

PROCEDURE Find(v: VBT.T): T; < * LL.sup = VBT.mu *>

Return the lowest (possibly improper) ancestov dffat is aHighlightVBT.T
orNIL ifthere isn't one.

64 5 FILTERS

PROCEDURE SetRect(
v: VBT.T;
READONLY rect: Rect.T;
inset: CARDINAL := 2);
<* LL.sup = VBT.mu *>

Set the rectangle and insetf@hd(v) to the given values.

The inset is given in pixels, not in millimeters.

PROCEDURE SetTexture(
v: VBT.T;
txt: Pixmap.T;
READONLY delta := Point.Origin;
op := PaintOp.TransparentSwap);
<* LL.sup = VBT.mu *>

Set thext , delta , andop of Find(v) to the given values.

PROCEDURE Get(

v: VBT.T;

VAR rect: Rect.T;

VAR inset: CARDINAL;

VAR txt: Pixmap.T;

VAR delta: Point.T;

VAR op: PaintOp.T);: BOOLEAN; < * LL.sup = VBT.mu *>
Fetch the parameters for thtighlightVBT abovev, and returriTRUE If v
has no such ancestor, rettfFALSE

PROCEDURE Invert(v: VBT.T,;
READONLY r: Rect.T;
inset: CARDINAL); < * LL.sup = VBT.mu *>

Highlight the outline inset into the rectanglewith widthinset , using a solid
texture.

Invert operates offind(v) . Itis equivalent to:

SetTexture(v, Pixmap.Solid);
SetRect(v, r, inset)

SetRect ,SetTexture ,andlnvert are no-ops ifFind(v) isNIL.

END HighlightVBT.

5.5 The TranslateVBT interface

A TranslateVBT.T s a filter that maintains a translation between the coordinate
systems of the child and parent such that the child’s coordinate system has its origin

5.6 Buttons 65

at the northwest corner of the child domain. The child camNke, in which case the
TranslateVBT ignores all events.

INTERFACE TranslateVBT;
IMPORT VBT, Filter;
TYPE T <: Filter.T;

The callv.init(ch) initializesv as aTranslateVBT with childch.

PROCEDURE New(ch: VBT.T): T; < * LL.sup <= VBT.mu *>
New(...) Is equivalent ttNEW(T).init(...)

END TranslateVBT.

5.6 Buttons

A ButtonVBT.T s a filter with an associated action procedure that is called when the
user clicks on the button or makes some other appropriate gesture.

Different subtypes oButtonVBTs invoke the action procedure on different user
gestures, but aButtonVBTs have the three methogse , post , andcancel . They
all interpret user gestures in such a way that the sequence of calls will be in the regular
expression

((pre cancel) | (pre action post)) *

The minimum, maximum, and preferred size oBattonVBT are all equal to the
minimum size of its child, in each axis.

INTERFACE ButtonVBT;
IMPORT VBT, Filter, PackSplit, PaintOp;

TYPE
T <: Public;
Public = Filter. T OBJECT (* CONSY)
action: Proc
METHODS
<* LL.sup = VBT.mu *>
pre();
post();
cancel();
<* LL.sup <= VBT.mu *>
init(ch: VBT.T;
action: Proc;
ref: REFANY := NIL): T;
END;

66 5 FILTERS

Proc =
PROCEDURE(self: T; READONLY cd: VBT.MouseRec);
<* LL.sup = VBT.mu *>

The callv.init(...) initializesv with child ch and action proaction and adds
ref tov’s property set if it is noNIL . The action procedure can access (if it is
notNIL) by callingVBT.GetProp .

The mouse and position methods oBattonVBT.T call thepre method on a
down click, and then call theancel method if the user chords by clicking another
mouse button or if the user moves the mouse out of the button. Otherwise they call the
action procedurgroc if the user releases the mouse button.

The defaultpre method highlights the button, the defaplbst and cancel
methods unhighlight it. Consequently there should b#ghlightYBT somewhere
above the button. Sindgestle.Install automatically insertsHighlightvVBT
you usually don’t have to worry about this.

The action procedure is a field rather than a method in order to allow buttons with
different action procedures to share their method suites.

PROCEDURE New(
ch: VBT.T;
action: Proc;
ref: REFANY := NIL): T; < * LL.sup = VBT.mu *>

New(...) Is equivalent tNEW(T).init(...)

PROCEDURE MenuBar(
ch0, chl, ch2, ch3, ch4, ch5,
ch6, ch7, ch8, ch9: VBT.T := NIL;
op: PaintOp.T := PaintOp.Bg)
. PackSplit.T; < * LL.sup = VBT.mu *>
Return aPackSplit with the given children, left-justified, and with its
background painted witbp.

MenuBar is convenient for building a horizontal row of buttons. If the row fills up,
the extra buttons will wrap to the next line.

END ButtonVBT.

5.7 Quick buttons

A QuickBtnVBT.T is a button that activates immediately on down-clicks. Quick
buttons are useful for boolean toggles and radio buttons.

A QuickBtnVBT has itspre , action ,andpost methods called on every mouse
click of typeFirstDown inits domain. Itxancel method is never called. Its default
pre andpost methods are no-ops.

5.8 Menu Buttons 67

INTERFACE QuickBtnVBT;
IMPORT ButtonVBT, VBT,
TYPE T <: ButtonVBT.T;

The callv.init(ch, action, ref) initializesv as a quick button with childh
and action proceduraction , and addsef tov’s property setifitis noNIL .

PROCEDURE New(
ch: VBT.T;
action: ButtonVBT.Proc;
ref: REFANY := NIL): T; < * LL.sup = VBT.mu *>

New(...) Is equivalent ttNEW(T).init(...)

END QuickBtnVBT.

5.8 Menu Buttons

A MenuBtnVBT.T is a button suitable for the items in pop-up and pull-down menus.
When the cursor rolls into a menu button, gfre method is called and the button
is readied If it receives a mouse trait®n of type LastUp while it is readied, the
action andpost methods are called. Theancel method is called if the cursor
leaves the button or the user chords with the mouse while the button is readied .

INTERFACE MenuBtnVBT;
IMPORT ButtonVBT, VBT,
TYPE T <: ButtonVBT.T;

The callv.init(ch, action, ref) initializesv as a menu button with chilch
and action proceduraction , and addsef tov’s property setifitis noNIL .

PROCEDURE New(
ch: VBT.T; action: ButtonVBT.Proc;
ref: REFANY := NIL): T; < * LL.sup = VBT.mu *>

New(...) Is equivalent ttNEW(T).init(...)
PROCEDURE Textltem(

name: TEXT; action: ButtonVBT.Proc;
ref: REFANY := NIL): T; < * LL.sup = VBT.mu *>

Return a menu button that displays the texine.
Textltem is a convenience procedure for making a menu button witlexaVBT

child. The borders are initialized to make the button suitable for stacking into a menu
using a verticaHVSplit . More preciselyTextltem is equivalent to:

68 5 FILTERS

New(TextVBT.New(name, 0.0, 0.5, 3.0, 0.5),
action, ref)

END MenuBtnVBT.

5.9 Anchor Buttons

An AnchorBtnVBT.T is a button that activates a pull-down menu when you click on
it or roll into it from another anchor button.
Associated with each anchor buttoms

e b.menu , the menu to be activated,

e b.hfudge andb.vfudge , dimensions in millimeters that control where the
menu is popped up,

e b.n, a count of the number aSplit ancestors ob to skip when looking for
theZSplit to insert the menu into.

A down click on an anchor buttdnactivatest by:
o calling the methodb.pre() , and then

¢ inserting the windovib.menu so that its northwest cornerlishfudge millime-
ters to the right ant.vfudge millimeters below the southwest cornertof The
menu will be inserted into theéb(n)th ZSplit ancestor ob (counting the first
ZSplit ancestor as zero), or as an undecorated top-level windoWwat at most
b.nZSplit ancestors.

The anchor button will beehctivated when it gets another mouse transition or when
the user rolls the mouse over a sibling anchor button, in which case the sibling will
be activated. Two anchor buttons are siblings if they have the same “anchor parent”.
The anchor parent is specified when the anchor button is created; Mlit ishen the
normal parent is used as the anchor parent. When an anchor butescisvdted, its
cancel method is called and its menu is deleted frorm$yglit

The defaulipre method highlights the anchor button; the defaalicel method
unhighlights it.

In the common case in which the user down-clicks on the anchor, rolls over the
menu, and up-clicks on one of the items, the upclick will be delivered to the item
first, which will invoke the appropriate action, and then will be delivered to the anchor
button (since the anchor button has the mouse focus), which will delete the menu.

A HighlightvBT is automatically inserted over the menu when it is inserted,
and discarded when the menu is deleted. This allows the menu items to highlight
themselves without interfering with the highlighting of the anchor button.

The action procedure anghost method of an anchor button are never called.
Thepre andcancel methods can be overridden; for example,phee method could

5.9 Anchor Buttons 69

prepare the menu before it is inserted. This is the reason the menu field is revealed in

the type declaration.

The same menu can be associated with several anchor buttons, provided that only

one of them is active at a time.

INTERFACE AnchorBtnVBT;
IMPORT ButtonVBT, VBT, ZSplit, Point;

TYPE
T <: Public;
Public = ButtonVBT.T OBJECT
menu: VBT.T
METHODS =< LL.sup <= VBT.mu *>
init(ch: VBT.T;
menu: VBT.T;
n: CARDINAL := 0O;
anchorParent: VBT.T := NIL;
hfudge, vfudge := 0.0;
ref: REFANY := NIL): T
END;
The callv.init(...) initializes the button with the given attributes, and adafs

to v’s property set if it is noNIL . This includes a call t@uttonVBT.T.init(v,
ch) .
You must not change the menu while thechorBtnVBT is active.

PROCEDURE New(
ch: VBT.T;
menu: VBT.T;
n: CARDINAL := 0O;
anchorParent: VBT.T := NIL;
hfudge, vfudge := 0.0;
ref: REFANY := NIL): T; < * LL.sup <= VBT.mu *>

New(...) Is equivalent ttNEW(T).init(...)

PROCEDURE SetParent(v: T; p: VBT.T);

<* LL.sup = VBT.mu *>

Set the anchor parent ofto bep. If v is active, this is a checked runtime error.

PROCEDURE GetParent(v: T): VBT.T; < * LL.sup = VBT.mu *>
Return the anchor parent of

PROCEDURE Set(v: T; n: CARDINAL; hfudge, vfudge: REAL);

<* LL.sup = VBT.mu *>

Set the attributes of. If v is active, this is a checked runtime error.

70

PROCEDURE Get(v: T; VAR n: CARDINAL;

5 FILTERS

VAR hfudge, vfudge: REAL); < * LL.sup = VBT.mu *>

Fetch the attributes of.

PROCEDURE IsActive(v: T): BOOLEAN; <
ReturnTRUEIf and only ifv is active.

END AnchorBtnVBT.

* LLsup = VBT.mu *>

71

6 Some useful Leaf VBTs
6.1 The TextVBT interface

A TextVBT.T is aVBTthat displays a text string.

The minimum size of @extVBT isjust large enough to display its text (surrounded
by any margins that were supplied when TrextVBT was created), except that if its
text is empty its minimum size is just large enough to display the t€xtts preferred
size is the same as its minimum size, and its maximum size is very large.

INTERFACE TextVBT;
IMPORT VBT, Font, PaintOp, Rect;

TYPE
T <: Public;
Public = VBT.Leaf OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(txt: TEXT;
halign, valign: REAL := 0.5;
hmargin: REAL := 0.5;
vmargin: REAL := 0.0;
fnt: Font.T := Font.Builtin;
bgFg: PaintOp.ColorQuad := NIL): T
END;

The callv.init(...) initializesv as aTextVBT that displays the tex«t in the
fontfnt , and returny.

The text will be painted withbgFg’s foreground; the background will be painted
with bgFg’s background. IfbgFg is NIL these default toPaintOp.Fg and
PaintOp.Bg . The text should not contain any newline characters: it will be treated
as a single line. Ihalign = 0.0 , the west boundary of the text will be indented by
the givenhmargin (in millimeters) from the west boundary of thBT; if halign
= 1.0, the east boundary of the text will be inside the east boundary of Bieby
the givenhmargin ; for other values ohalign , the horizontal position of the text
is computed by linear interpolation. In particulaglign = 0.5 centers the text
horizontally. The vertical position is determinedyargin andvalign in a similar
way.

Control-left-click in the text sets the source selection to be a readonly version of
the text. Thus you can copy the text out of arextVBT .

PROCEDURE New(
txt: TEXT;
halign, valign: REAL := 0.5;
hmargin: REAL := 0.5;
vmargin: REAL := 0.0;
fnt: Font.T := Font.Builtln;

72 6 SOME USEFUL LEAF VBTS

bgFg: PaintOp.ColorQuad := NIL) : T;
<* LL.sup <= VBT.mu *>

New(...) Is equivalent tNEW(T).init(...)

PROCEDURE Put(v: T; txt: TEXT); < * LLsup < v *>
Change the text displayed byto betxt and markv for redisplay.

PROCEDURE Get(v: T): TEXT; < * LLsup < v =*>
Return the text displayed by v.
PROCEDURE SetFont(
v: T;
fnt: Font.T;
bgFg : PaintOp.ColorQuad := NIL);
<* LL.sup = VBT.mu *>

Setv’s font andbgFg to the given values and mavkfor redisplay. IfbgFg is
defaultedPaintOp.bgFg s used.

PROCEDURE GetFont(v: T): Font.T; < * LL.sup = VBT.mu *>
Returnv'’s font.

PROCEDURE GetQuad(v: T): PaintOp.ColorQuad;

<* LL.sup = VBT.mu *>

Returnv’s color quad.

PROCEDURE GetTextRect(v: T): Rect.T;

<* LL.sup = VBT.mu *>

Return the current bounding rectanglevcs text.

END TextVBT.

6.2 The TextureVBT interface

A TextureVBT.T is aVBTthat displays a texture, possibly colored. Its preferred and
minimum sizes are zero and its maximum size is very large, in each axis.

INTERFACE TextureVBT;
IMPORT VBT, PaintOp, Pixmap;

TYPE
T <: Public;
Public = VBT.Leaf OBJECT METHODS
<* LL.sup <= VBT.mu *>
init(op: PaintOp.T := PaintOp.BgFg;

6.3 The HVBar interface 73

txt: Pixmap.T := Pixmap.Solid;
nwAlign: BOOLEAN := FALSE): T
END;

The call v.init(...) initializes v as aTextureVBT displayingtxt with the
painting operatiomp.

The domain ofv will be painted using the painting operatiop and the texture
txt+delta ,wheredelta isthe origin unlesawAlign is set toTRUE in which case
delta will be set to the northwest corner of

PROCEDURE New(
op: PaintOp.T := PaintOp.BgFg;
txt: Pixmap.T := Pixmap.Solid;
nwAlign: BOOLEAN := FALSE): T; < * LL.ssup <= VBT.mu =*>

New(...) Is equivalent ttNEW(T).init(...)

PROCEDURE Set(
v: T;
op: PaintOp.T := PaintOp.BgFg;
txt: Pixmap.T := Pixmap.Solid;
nwAlign: BOOLEAN := FALSE);
<* LL.sup = VBT.mu *>

Changer s texture and mark it for redisplay.

PROCEDURE Get(
v: T;
VAR op: PaintOp.T;
VAR txt: Pixmap.T;
VAR nwAlign: BOOLEAN); < * LL.sup = VBT.mu *>

Fetchv’s texture.

END TextureVBT.

6.3 The HVBar interface

An HVBar.T is an adjustable bar that allows a user to adjust the division of space
between the children of anVvSplit

An HVBar must be a child of arVSplit . When the user pushes a mouse button
over the bar, the cursor changes shape and the outline of the bar is highlighted. The
highlight follows the cursor as long as the button is down. When the button comes up,
the bar callHVSplit. Adjust to move the bar to the currently highlighted position.
If the user tries to move the bar outside the range of positions that are consistent with
the size constraints of the children of the pat@iSplit , the highlighted bar will not
follow the cursor. If the user chords while dragging, then adjusting mode is cancelled.

74 6 SOME USEFUL LEAF VBTS

The bar has methods that you can override that are cabeti time the bar is
moved, or continuously during adjustment.

In order for the bar to highlight correctly, some ancestor oHN&plit on which
it is installed must be &lighlightvBT . SinceTrestle.Install automatically
inserts aHighlightvBT over top-level windows, you usually don’t have to worry
about this.

INTERFACE HVBar;
IMPORT VBT, PaintOp, Pixmap, TextureVBT,;

TYPE

T <: Public;

Public = TextureVBT.T OBJECT METHODS
<+ LL = VBT.mu *>
pre(READONLY cd: VBT.MouseRec);
post(READONLY cd: VBT.MouseRec);
during(n: INTEGER);
<* LL <= VBT.mu *>
init(size: REAL := DefaultSize;

op: PaintOp.T := PaintOp.BgFg;
txt: Pixmap.T := Pixmap.Gray): T
END;

The callv.init(...) initializesv as arHVBar with the given properties and returns
v. This includes callin@ extureVBT.T.init(v, op, txt) .

The argumensize gives the number of millimeters that the bar will occupy in the
parentHVSplit

An adjusting batb calls b.pre(cd) when it begins adjusting in response to a
mouse clickcd . It callsb.during(k) each time the mouse moves during dragging,
wherek is the coordinate that tHe (i.e., west or north) edge of the bar would move
to if dragging were stopped at that instant. Finally, the bar bafisst(cd) when it
stops adjusting in response to an upclick or chatd TheHVSplit will be adjusted
(but not redisplayed) befotepost(cd) s called.

The defaultpre andduring methods highlight the position the bar would move
to if dragging were stopped. The defapitst method removes the highlighting.

CONST
DefaultSize = 2.5;

PROCEDURE New(

size := DefaultSize;

op := PaintOp.BgFg;

txt := Pixmap.Gray): T; < * LL.sup <= VBT.mu *>
New(...) Is equivalent tNEW(T).init(...)

END HVBar.

75

7 Resources

In this section we introduce resources (painting operations, cursors, pixmaps, and
fonts). We willintroduce the screen-independent forms first, then the screen-dependent
forms.

A screen-independent resource is represented as an integer, which is simply an
index into a table called a “palette”. Unless you are re-implementing Trestle over
a new window system, you can ignore the palette and treat the integers as opaque
values that serve only to distinguish one resource from another. To prevent one kind
of screen-independent resource from being confused with another, the integers are
wrapped into one-componenet records.

A few screen-independent resources predefined which means that constant
integers are assigned to them in the public interface. Each interface that defines
a screen-independent resource declares a subrang®typefined that contains
the integers that are predefined. These types will be handy when we get to the
screen-dependent resources; until then you can ignore them.

7.1 The PaintOp interface

A PaintOp.T is a screen-independent painting operation.

A painting operationop takes a source pixed and a destination pixed and
produces a new valugp(d, s) forthe destination pixel.

A painting operation that ignores the source pixel is callédtalf op is a tint, we
just writeop(d) instead ofop(d, s) . If the effect of a tint is to set the destination
pixel to some fixed value independent of its initial value, then the tint is said to be
opague

The lockinglevelid L.sup <= VBT.mu forall of the procedures in this interface.

INTERFACE PaintOp;

TYPE
T = RECORD op:INTEGER END; Predefined = [0..16];

CONST
Bg = T{O};
Fg = T{1}
Transparent = T{2};
Swap = T{3};

Copy = T{4},

Bg, Fg, Transparent ,andSwap are Trestle’s four basic tints.

Bg sets the destination pixel to the screen’s background cdigrsets it to
the screen’s foreground colofransparent is the identity function;Swap is a
self-inverting operation that exchanges the foreground and background pixels. More

76 7 RESOURCES

precisely, consider a particular screentype anddeix andfgpix be the foreground
and background pixel for that screentype. Then for any mixel

Bg(d) bgpix
Fg(d) = fgpix

Transparent(d) = d

Swap(bgpix) = fgpix
Swap(fgpix) = bgpix
Swap(Swap(d)) = d
Swap(d) # d

The operatiorCopy copies source to destination:
Copy(d, s) = s

Copy is not a tint, and should be used only when the source pixels are of the same
screentype as the destination pixels (for example, igh.Scroll , or when painting
a pixmap of the same type as the screen).

CONST
BgBg = Bg;
BgFg = T{5};

BgTransparent = T{6};
BgSwap = T{7};

FgFg = Fg;

FgBg = T{8};
FgTransparent = T{9};
FgSwap = T{10};

TransparentTransparent = Transparent;
TransparentBg = T{11};

TransparentFg = T{12};
TransparentSwap = T{13};

SwapSwap = Swap;
SwapBg = T{14};
SwapFg = T{15};
SwapTransparent = T{16};

The sixteen operations above all have names of the ¥ormvhereX andY are one of
the four basic tints. They are defined by the rule:

XY(dest, source) =
IF source = 0 THEN X(dest) ELSE Y(dest) END

For exampleBgFg can be used to paint a one bit deep source interpreting zeros as
background and ones as foreground.

7.1 The PaintOp interface 77

Obviously these sixteen painting operations should be used only with one-bit deep
sources. However, not all one-bit deep sources are of the same screentype: for
example, different screentypes might have different rules for representing bitmaps. To
accomodate this unfortunate fact of life, we associate with every screesttygether
screentypest.bits , which is the type of bitmap sources appropriatedor The
depth ofst.bits is always one. If the depth at is one, then it is possible (but not
certain) thast.bits = st . When using one of sixteen operations above MB&
with screentypet , the source must have tygebits . You will be happy to recall
that this will be taken care of automatically if you use screen-independent bitmaps and
fonts.

Next there is a procedure for generating colored painting operations.

TYPE
Mode = {Stable, Normal, Accurate};
BW = {UseBg, UseFg, Uselntensity};

PROCEDURE FromRGB(

r, g, b: REAL;
mode := Mode.Normal;
gray := -1.0;

bw := BW.Uselntensity): T;
Return a tint that will set a pixel to the colfrg,b)

The values , g, andb should be in the rangg0 to 1.0 ; they represent the fractions
of red, green, and blue in the desired color.

Thegray argument controls what the tint will do on a gray-scale displagrdf/
is between zero and one, it specifies the intensity of the tingra§ is defaulted to
-1, then the tint will use the intensity of the colfirg,b)

The bw argument controls what the tint will be on a monochrome displaywlis
UseBg or UseFg, then the tintwill beBg or Fg, respectively. IbwisUselntensity
then the tint will beFg if r, g, andb are all zero (that is, if the color is black), aBd
otherwise.

The mode argument is relevant on color and gray-scale displays. When the total
number of pixel colors desired by all of the applications that are runningesis the
number of available colors, then some applications’ colors will change (usually in an
unpleasantly random way).

To reduce the likelihood that your color will change randomly (at the cost of
fidelity), setmode to Stable . To increase the fidelity of the pixel to the specified
intensities (at the cost of increased danger of random change)pdeto Accurate
For example, an icon window should use stable colors; a color editor should use
accurate colors.

PROCEDURE Pair(op0, opl: T): T;

Return an operatioop such thatop(d,0) = op0(d) andop(d,1) =
opl(d) .

78 7 RESOURCES

For example,
Pair(FromRGB(1.0,1.0,1.0), FromRGB(1.0,0.0,0.0))

will paint a bitmap with zeros as white and ones as red.

PROCEDURE SwapPair(op0, opl: T): T;
Return an operation that swaps the pixels painteady andopl .
SwapPair requires thabp0 andopl be opaque, that is, they must set the destination

to particular pixels (sayix0 andpix1l). Then the tintop returned bySwapPair
satisfies:

op(pix0) = pix1
op(pix1) = pix0
op(op(p)) = p forany pixel p
For exampleSwap = SwapPair(Bg, Fg)
Sometimes it is handy to collect several related painting operations into a single object:
TYPE
ColorQuad = OBJECT

bg, fg, bgFg, transparentFg: T
END;

PROCEDURE MakeColorQuad(bg, fg: T): ColorQuad;
ReturnColorQuad{bg,fg,Pair(bg,fg),Pair(Transparent,fg)}

TYPE
ColorScheme = ColorQuad OBJECT
swap, bgTransparent, bgSwap, fgBg, fgTransparent,
fgSwap, transparentBg, transparentSwap,
swapBg, swapFg, swapTransparent: T,
END;

PROCEDURE MakeColorScheme(bg, fg: T): ColorScheme;

Return the fifteen painting operations other thaansparent that can be
made by combiningg, fg , andTransparent , usingSwapPair andPair .

In MakeColorQuad andMakeColorScheme ,bg andfg should be tints.

VAR (* CONS¥) bgFg: ColorScheme;

This “variable” is really a constant fdlakeColorScheme(Bg, Fg)

END PaintOp.

7.2 The Cursor interface 79

7.2 The Cursor interface

A Cursor.T is a screen-independent specification of a cursor shape. The call
VBT.SetCursor(v, cs) sets the cursor of to becs.
Thelockinglevelid L.sup <= VBT.mu forall of the procedures in this interface.

INTERFACE Cursor;
IMPORT Pixmap, Point;
TYPE T = RECORD cs: INTEGER END; Predefined = [0..2];

CONST
DontCare = T{0};
TextPointer = T{1};
NotReady = T{2};

You should setCursor.DontCare ~ when you don’t care about the cursor shape;
Cursor.TextPointer when the cursor is to be used for editing text, atwt-
sor.NotReady to indicate that the application is not receptive to useui.

TYPE Raw = RECORD
planel, plane2: Pixmap.Raw;
hotspot: Point.T;
colorl, color2, color3: RGB;
END;
BW = {UseBg, UseFg, Uselntensity};
RGB = RECORD

r, g, b: REAL;

gray = -1.0;

bw := BW.Uselntensity
END;

A Rawrepresents a cursor with explicit offset, bitmaps, and colors.

Theplanel andplane2 are depth-1 pixmaps. They must have the same bounding
rectangle, and the hotspot must lie within the bounding rectangle or on its east or south
edge. If the hotspot is illegal, it will be moved to the closest legal position.

The cursor’s hotspot is kept on top of the mouse’s location on the screen. The
cursor’s image tracks the mouse relative to the hotspot. For example, if the hotspot is
(0, 0), the (0, 0) bit of the cursor’s image will be located over the mouse’s location.
The remainder of the cursor will appear to the south and east.

The color of each pixel in the cursor’s image is determined from the qneing
bits inplanel andplane2 (pl andp2):

pl =0, p2 = 0 => transparent
pl =0, p2 =1 => colorl
pl =1, p2 = 0 => color2
pl =1, p2 =1 => color3

80 7 RESOURCES

The colors for the cursor are matched as closely as possible to the selection of cursor
colors that the screentype supports. If the screentype allows only two colors for the
cursor, then the pixels that would have beetor3 will be colorl . Thegray and

bw values control the color on gray-scale and monochrome dispdagsrding to the

same rule used iRaintOp.FromRGB .

PROCEDURE FromRaw(READONLY r: Raw): T;
Return a cursor that looks likeon all screens.

If the screentype does not suppoi$ colors or sizefFromRaw will clip or convert
colors as necessary. On a screentype that does not allow user-defined cursors, the
cursor returned bfromRawwill behave likeDontCare .

PROCEDURE FromName(READONLY names: ARRAY OF TEXT): T,

Return the first available cursor of those named in the araayes.
The entries ofhames are cursor names as specified in 8B@nCursor interface,
possibly containing wild card characters. On any particular screentyyen-
Name(names) iterates througimames in order and returns an arbitrary match from
the first name that matches anything. If no name has any matches, it 2tumi@Gare .
Standard X screentypes supportthe cursors namédfimdow Systetoy Scheifler
et. al. [5] Appendix B. Therefore, for example,

FromName(ARRAY OF TEXT{"XC_Arrow"})

returns a cursor that behaves like the X arrow cursor on X screentypes, and like
DontCare on screentypes that have no cursor naX€dArrow .

END Cursor.

7.3 The Pixmap interface

A Pixmap.T is a screen-independent specification of a pixmap. Many procedures
interpretPixmap.Ts as textures, by tiling the plane with translated copies of the
pixmap. There are three predefined pixmaps:

Thelockinglevelig L.sup <= VBT.mu forall of the proceduresin thisinterface.

INTERFACE Pixmap;
TYPE T = RECORD pm: INTEGER END; Predefined = [0..2];

CONST
Solid = T{0};
Empty = T{1};
Gray = T{2};

Solid represents a pixmap of all ondsmpty represents a pixmap of all zeraSray
represents a checkerboard of ones and zeros.

7.4 The Font interface 81

The domains of these pixmaps may vary from screentype to screentype, but they
will always be non-empty.

When used on a screentype, they will have typest.bits (see thePaintOp
interface).

TYPE Raw <: ROOT;
A Pixmap.Raw represents a pixmap as a packed array of pixels. SdnePixmap
interface reveals the representation.

PROCEDURE FromBitmap(bits: Raw): T;

Return a pixmap that looks likgts on all screens.
FromBitmap causes a checked runtime error if the depthitf is not one. On a
screentypet , it will have typest.bits

END Pixmap.

7.4 The Font interface

A Font.T isa screen-independent specification of atypeface. There is one predefined
Font.T , which yields the built-in font of the screentype.
The lockinglevelid L.sup <= VBT.mu forall of the procedures in this interface.

INTERFACE Font;
TYPE T = RECORD fnt: INTEGER END; Predefined = [0..0];
CONST Builtin = T{0};

PROCEDURE FromName(READONLY names: ARRAY OF TEXT): T,
Return the first available font of those named in the anayes.

The entries ohames are font names as specified in tBernFont interface, possibly
containing wild card characters. On any particular screentiymmName(names)
iterates throughames in order and returns an arbitrary match from the first name that
matches anything. If no name has any matches, it returns the built-in font.

Standard X screentypes give fonts long “names” that encode their properties, so
with X it is almost always desirable to include wild-card characters in the names. For
example,

FromName(
ARRAY OF TEXT{"-*-times-medium-r- *ok-x-107- %"}

will return a font that, on an X server containing the standard fonts, is some Times
Roman medium-weight unslanted font sized 10 to 10.9 points, and behaves like
Font.Builtln on any screentye that doesn’t have a font whose name matches the
pattern.

END Font.

82 7 RESOURCES

7.5 The Palette interface

The Palette interface allows you to implement your own screen-independent re-
sources by registering a closure to produce an appropriate screen-dependent resource
for any given screentype.

INTERFACE Palette;

IMPORT VBT, ScreenType, PaintOp, Cursor, Pixmap, Font,
ScrnPaintOp, ScrnCursor, ScrnPixmap, ScrnFont;

Translating a screen-independent resource into its screen-dependent form is called
resolvingthe resource. Here are the closure types for resolving resources:

TYPE
OpClosure = OBJECT METHODS
<* LL.sup <= VBT.mu *>
apply(st: VBT.ScreenType): ScrnPaintOp.T;
END;

CursorClosure = OBJECT METHODS

<* LL.sup <= VBT.mu *>

apply(st: VBT.ScreenType): ScrnCursor.T;
END;

PixmapClosure = OBJECT METHODS

<* LL.sup <= VBT.mu *>

apply(st: VBT.ScreenType): ScrnPixmap.T;
END;

FontClosure = OBJECT METHODS

<* LL.sup <= VBT.mu *>

apply(st: VBT.ScreenType): ScrnFont.T;
END;

When anapply method is calledst # NIL . If the method returnsliL , then some
default screen-dependent resource will be used; for example, the built-in font or the
transparent painting operation.

The following procedures produce screen-independent resources from closures:

PROCEDURE FromOpClosure(cl: OpClosure): PaintOp.T;
<* LL.sup <= VBT.mu *>

Return aPaintOp.T that behaves likel.apply(st) onst .

PROCEDURE FromCursorClosure
(cl: CursorClosure): Cursor.T; < * LL.sup <= VBT.mu *>

Return aCursor.T that behaves likel.apply(st) onst .

PROCEDURE FromPixmapClosure

7.5 The Palette interface 83

(cl: PixmapClosure): Pixmap.T; < * LL.sup <= VBT.mu *>

Return aPixmap.T that behaves likel.apply(st) onst .

PROCEDURE FromFontClosure(cl: FontClosure): Font.T;
<* LL.sup <= VBT.mu *>

Return aFont. T that behaves likel.apply(st) onst .

If your apply method that resolves a resource needs to resolve some other resource, you
should use one of the following procedures to do so. In all casesjust be norNIL .

PROCEDURE ResolveOp(st: VBT.ScreenType; op: PaintOp.T)
: ScrnPaintOp.T;

Resolveop for st .

PROCEDURE ResolveCursor(st: VBT.ScreenType;
cursor: Cursor.T): ScrnCursor.T;

Resolvecursor for st .

PROCEDURE ResolvePixmap(st: VBT.ScreenType;
pixmap: Pixmap.T): ScrnPixmap.T;

Resolvepixmap for st .

PROCEDURE ResolveFont(st: VBT.ScreenType; font: Font.T)
: ScrnFont.T;

Resolvefont for st .

If you create a cycle of screen-independent resources each of which tries to resolve the
next resource in the cycle, then the program will deadlock.

To implement screen-independent resources, every screentype inclpdietta
which is a table of screen-dependent resources appropriate for that screentype. Most
clients don’t need to worry about the palette, but if you are implementvBTeclass
that translates to some other window system—Iike X or Microsoft Windows—here is
the procedure for building the palette in the screentype for a top-level window:

PROCEDURE Init(st: VBT.ScreenType);
<* LL.sup = VBT.mu.v *>

Initialize st s palette, if it is not already initialized, by resolving all screen-
independent resources fetr and storing the results.

END Palette.

84 7 RESOURCES

7.6 The ScreenType interface

A ScreenType.T represents a class of screens that have a common pixel depth, a
common set of operations on the pixels, and common repositories for cursors, pixmaps,
and fonts.

When the screentype oMBT changes, any screen-dependent resources for the old
screentype become useless. The application must use the new screeoitsple’s
to look up resources that are valid for the new screentype. This is all handled
automatically if you use screen-independent resources that are predefined or defined
by somebody else. But you will need to use this interface if you are implementing your
own screen-independent resources.

INTERFACE ScreenType;

IMPORT ScrnCursor, VBT, ScrnColorMap, ScrnFont,
ScrnPaintOp, ScrnPixmap;

TYPE T = VBT.ScreenType;
REVEAL VBT.ScreenType <: Public;

TYPE

Public = VBT.ScreenTypePublic OBJECT (* CONS¥)
bg, fg: ScrnPaintOp.Pixel;
bits: T;
op: ScrnPaintOp.Oracle;
cursor: ScrnCursor.Oracle;
pixmap: ScrnPixmap.Oracle;
font: ScrnFont.Oracle;
cmap: ScrnColorMap.Oracle;

END;

For a screentypst , the valuest.bg andst.fg are the pixel values that represent
the user’s default background and foreground colorston If the screen is color-
mapped, these are appropriate for the default colormap. For applications doing simple
painting,bg is logical white andg is logical black. Depending on the screen and user
preferences, the actual colors that the user sees might be different.

The screentypest.bits is the screentype for 1-bit deep pixmap sources for
painting on screens of typst . It is guaranteed thatt.bits.bits=st.bits ,
st.bits.fg=1 , andst.bits.bg=0

The oraclest.op , st.font ,st.cursor ,andst.pixmap contains methods
that provide screen-dependent resources appropriast feffor example st.font
has a method that will look up fonts by name.

If st.cmap # NIL , st is a color-mapped screen, which means that the color of
a pixel is determined by looking up its value in a table. The color map can be either
readonly or writable.

END ScreenType.

7.7 Screen-dependent painting operations 85

7.7 Screen-dependent painting operations

INTERFACE ScrnPaintOp;
IMPORT TrestleComm, PaintOp;

A ScrnPaintOp.T is a painting operation that is valid for some particular screentype.

If op is aScrnPaintOp.T valid for screentypst , thenop maps a source pixel
s and destination pixeal to a result pixebp(d, s) . It will be used in a painting
operation that setd := op(d, s) . Bothd andop(d, s) have typest , ands
either has typst orst.bits . (Thetypest.bits is the screentype for one-bit deep
sources that can be used with.) For example, in a copy operatios has typest ,
while in painting a bitmaps has typest.bits

A ScrnPaintOp.Oracle is meaningful only as thep field of some screentype
st . It provides methods to genereiereenPaintOp.T sthat are valid fost .

A tintis a paintop that is independentxf If op is a tint, we writeop(d) instead
of op(d, s) . (Even inthe case of a tint, the typeofnust best.bits ; otherwise
the result of applying the tintis undefined.)

7.7.1 Obtaining handles from the oracle

TYPE
Pixel = INTEGER;
Oracle = Private OBJECT
METHODS
<t LL.sup <= VBT.mu *>
opaque(pix: Pixel): T
RAISES {Failure, TrestleComm.Failure};
bgfg(bg, fg: T): T
RAISES {Failure, TrestleComm.Failure};
swap(p,q: Pixel): T
RAISES {Failure, TrestleComm.Failure};
transparent(): T
RAISES {Failure, TrestleComm.Failure};
copy(): T
RAISES {Failure, TrestleComm.Failure};
builtin(op: PaintOp.Predefined): T;
END;
Private <: ROOT;

EXCEPTION Failure;

Forascreentypst , thefieldst.op isanOracle whose methods satisfy the following
specifications:
The method call

op := st.op.opaque(pix)

86 7 RESOURCES

setsop to a tint such thabp(p) = pix for anyp. The method call

op := st.op.bgfg(bg, fg)

setsop to a tint such thabp(p, 0) = bg(p) andop(p, 1) = fg(p) , for any
p, if bg andfg are tints. The method call

op := st.op.swap(p, q)

setsop to a tint such thabp(p)=q , op(q)=p , and for anyx, op(op(x))=x . The
method call

op := st.op.transparent()

setsop to a tint such thabp(p) = p for anyp. The method call

op := st.op.copy()

setsop to a painting operation such that(p, q) = q foranyp andg. The method
call

st.op.builtin(op)

returns the operation valid fat that corresponds to the predefined screen-independent
operatiorPaintOp.T{op}

The exceptiorfFailure s raised if the screentype cannot provide the requested
painting operation. For all the methodd,.sup <= VBT.mu .

TYPE
PlaneWiseOracle = Oracle OBJECT
METHODS =< LL.sup <= VBT.mu *>
planewise(
READONLY mask: ARRAY OF BOOLEAN;
opl, op2: T): T
RAISES {Failure, TrestleComm.Failure};
END;

If a screentype’sop oracle is aPlaneWiseOracle (which you can test with
TYPECASE, then you can use itslanewise method to define painting operations
by their effects on each bit pibi®n of the destination pixel. Lgt[i] denote bii of
pixel p. AssumingNUMBER(mask) = st.depth ,the method call

op := st.op.planewise(mask, bitOps)
setsop so that ford ands of screentypeat andi in [0..st.depth-1] ,

IF mask[i] THEN

op(d, s)i] = opi(d(i], sfi])
ELSE

op(d, s)i] = op2(d[i], sfi])
END

7.7 Screen-dependent painting operations 87

The method may raideailure if it does not support a particular combinatioropfl ,
op2, andmask.

The convenience procedu@nstructPlanewiseOp can be used to construct a
painting operation from an array of boolean functions represented by the enumeration
by BitOp :

TYPE
BitOp = {
Zero, (* 0 %)
And, (* dest AND src *)
NotAnd, (* (NOT dest) AND src *)
Src, (* src *)
AndNot, (* dest and (NOT src) *)
Dest, (* dest *)
Xor, (* dest XOR src *)
Or, (* dest OR src *)
Nor, (* (NOT dest) AND (NOT src) *)
Equal, (* dest XOR (NOT src) *)
Invert, (* NOT dest *)
NotOr, (* (NOT dest) OR src *)
NotSrc, (* NOT src *)
OrNot, (* dest OR (NOT src) *)
Nand, (* (NOT dest) OR (NOT src) *)
One}; (*1x)

PROCEDURE ConstructPlanewiseOp(

pwo: PlaneWiseOracle;

READONLY bitOps: ARRAY OF BitOp): T
RAISES {Failure, TrestleComm.Failure};
<t LL.sup <= VBT.mu *>

Return the painting operation that applf@&Op[i] to planei of the source
and destination.

If NUMBER(bitOps) = st.depth then ConstructPlanewiseOp usespwo to
construct and return an operatiop such that fors andd of screentypest andi in
[0 .. st.depth-1] ,

op(d, s)[i] = bitOps[il(d[i], sli])

The procedure may raisailure if the screentype does not support a particular array
bitOps .

7.7.2 The handle object
TYPE

T <: Public;
Public = OBJECT id: INTEGER; pix: Pixel := -1 END;

88 7 RESOURCES

If pisaT, thenp.id is an identifier whose interpretation depends on the screentype.
If p was created by a caéit.op.opaque(pix) , thenp.pix = pix ; otherwise
p.pix = -1

END ScrnPaintOp.

7.8 Screen-dependent cursors

A ScrnCursor. T is a handle on a cursor shape that is valid for some particular
screentype, called thewner of the handle. Some handles have names; others are
anonymous. A named handle is valid forever. The cursor referenced by an anonymous
handle will be garbage-collected when all handles to it have been dropped.

INTERFACE ScrnCursor;

IMPORT Point, ScrnPixmap, TrestleComm, Cursor;
EXCEPTION Failure;

VAR DontCare: T;

TYPE Raw = Cursor.Raw;

See theCursor interface for the raw representation of a cursor shape as a pair of
bitmaps, color information, and hotspot offset.

7.8.1 Obtaining handles from the oracle

TYPE
Oracle = Private OBJECT (*CONS¥)
width, height: INTEGER,;
METHODS
<* LL.sup <= VBT.mu *>
load(READONLY r: Raw; nm: TEXT := NIL): T
RAISES {TrestleComm.Failure};
list(pat: TEXT; maxResults: CARDINAL := 1)
: REF ARRAY OF TEXT
RAISES {TrestleComm.Failure};
lookup(name: TEXT): T RAISES {TrestleComm.Failure};
builtin(cs: Cursor.Predefined): T;
END;
Private <: ROOT;

For a screentypst , the fieldst.cursor is anOracle that produces cursors owned
by st :

The integerst.cursor.width andst.cursor.height are the dimensions
in pixels of the largest cursor image that the screenstpsupports. Larger images
will be cropped; smaller images will be padded.

7.8 Screen-dependent cursors 89

The method call
st.cursor.load(r, nm)

allocates and returns a cursor handlewned byst whose contents are equal to
r. If nm # NIL, c receives the namem, and any cursor handle owned by that
previously had the nam@mbecomes anonymous.

The method call

st.cursor.list(pat, maxResults)

returns the names of all cursors owneddty that match the patterpat . The list
of results may be truncated to lengttexResults . A * matches any number of
characters and amatches a single character.

The method call

st.cursor.lookup(name)

return the cursor handle owned iy with the given name, dXIL if no cursor has this
name.
The method call

st.cursor.builtin(cs)

returns the screen-dependent cursor validstorthat corresponds to the predefined
screen-independent curgoarsor.T{cs}
The locking level for all methods isL.sup <= VBT.mu .

7.8.2 The handle object

TYPE
T <: Public;
Public = OBJECT (*CONS¥)
id: INTEGER
METHODS
<* LL.sup <= VBT.mu *>
localize(): Raw
RAISES {TrestleComm.Failure, Failure};
unload() RAISES {TrestleComm.Failure};
END;

If cs is aScrnCursor.T ,thencs.id is an identifier whose interpretation depends
on the screentype that owrs. The method calts.localize() returns a raw
cursor equal to the one on whick is a handle, and the method cedl.unload()
causegs to become anonymous.

END ScrnCursor.

90 7 RESOURCES

7.9 Screen-dependent pixmaps

A ScrnPixmap.T is a handle on a rectangular array of pixels that is valid for use on
a particular screentype, called tbernerof the handle. Some handles have names;
others are anonymous. A named handle is valid forever; the pixmap referenced by an
anonymous handle will be garbage-collected when all handles to it have been dropped.

INTERFACE ScrnPixmap;

IMPORT Point, Rect, Word, TrestleComm, Pixmap;
EXCEPTION Failure;

TYPE Raw = Pixmap.Raw;

The raw representation of a pixmap is revealed at the end of this interface.

7.9.1 Obtaining handles from the oracle

TYPE
Oracle = Private OBJECT
METHODS

<* LL.sup <= VBT.mu *>
load(READONLY r: Raw; nm: TEXT := NIL): T

RAISES {TrestleComm.Failure};
list(pat: TEXT; maxResults: CARDINAL := 1)

: REF ARRAY OF TEXT RAISES {TrestleComm.Failure};
lookup(name: TEXT): T RAISES {TrestleComm.Failure};
builtin(pm: Pixmap.Predefined): T;

END;
Private <: ROOT;

For a screentypst , the fieldst.pixmap isanOracle that produces pixmaps owned
by st .

The method callst.pixmap.load(r, nm) allocates and returns a pixmap
handlep owned byst whose contents are equalito The depth of must either be
1 orst.depth , otherwise there is a checked runtime erronrf # NIL, p receives
the namenm, and any pixmap handle owned by that previously had the nanmmen
becomes anonymous.

The method calt.pixmap.list(pat, maxResults) returns the names of
all pixmaps owned byt that match the patterpat . The list of results may be
truncated to lengtimaxResults . A * matches any number of characters ane a
matches any single character.

The method calkt.pixmap.lookup(name) return the pixmap with the given
name, oNIL if no pixmap has this name.
The method calit.pixmap.builtin(pm) returns the screen-dependent pixmap

valid for st that corresponds to the predefined screen-indepeiibentp. T{pm}

7.9 Screen-dependent pixmaps 91

The locking level for all methods isL.sup <= VBT.mu .
7.9.2 The handle object

TYPE
T <: Public;
Public = OBJECT (*CONS¥)
id: INTEGER;

depth: INTEGER;
bounds: Rect.T
METHODS
<* LL.sup <= VBT.mu *>
localize(READONLY rect: Rect.T): Raw
RAISES {TrestleComm.Failure};
unload() RAISES {TrestleComm.Failure};
free() RAISES {TrestleComm.Failure}
END;

If pmis aScrnPixmap.T ,thenpm.id is an identifier whose interpretation depends
on the screentype that owpsn The fieldpm.depth is the number of bits in each
pixel of pm andpm.bounds is the rectangular extent pfm

The method calpm.localize(rect) returns araw pixmap equal to arectangualr
subpixmap of the one on whigmis a handle. The bounds of the raw pixmap returned
bylocalize isRect.Meet(rect, pm.bounds)

The method calpm.unload() causepmto become anonymous.

Pixmaps consume large amounts of memory. The methoprodilee() releases
the memory associated with the pixmap. You must make sure th@Ba# usingpm
have finished painting before you free it. After a calfrme , the pixmap bounds and
contents are arbitrary.

7.9.3 The raw representation

A raw pixmap allows the client to directly locate and modify the bits of the pixmap.
The following procedure produces a new raw pixmap:

PROCEDURE NewRaw(dpth: INTEGER,;
READONLY bnds: Rect.T): Raw;
<* LL arbitrary *>

Allocate and return a raw pixmap with the given depth and bounds.

The initial contents of the pixmap returned RgwRaware undefined.
Here is the representation of a raw pixmap:

REVEAL Pixmap.Raw <: Raw_Public;

TYPE
Raw_Public = OBJECT
depth: INTEGER,;

92 7 RESOURCES

bounds: Rect.T;

pixels: REF ARRAY OF Word.T;

offset: INTEGER;

bitsPerPixel: INTEGER;

wordsPerRow: INTEGER;

pixelOrder: ByteOrder;

westRounded: INTEGER;
METHODS

get(READONLY pt: Point.T): Pixel;

set(READONLY pt: Point.T; pix: Pixel);

Ssub(READONLY rect: Rect.T): Raw;
END;

Pixel = Word.T;
ByteOrder = {MSBFirst, LSBFirst};

The methods provide the easiest way to operate on a raw pixmap, and we will explain
them first. Letpmbe aScrnPixmap.Raw , then:
The method call

pm.get(pt)

returns the pixel value at the poipt in the pixmap. The result is undefinedpif is
not inpm.bounds .
The method call

pm.set(pt, pix)

sets the pixel value at the poipt of the pixmappmto the valuepix . It is a noop if
pt is notinpm.bounds .
The method call

pm.sub(rect)

returns a pixmap whose bounds &ect.Meet(rect, pm.bounds) and whose
contents are shared wigmis.

It is also possible to bypass the methods andess the data in the raw pixmap
directly. Here is the specification for the internal layout of pixels in a raw pixmap:

A valuepmof typePixmap.Raw is a rectangular subregion of a larger rectangular
pixmap, which we shall call theurround The surround is a word-aligned pixmap,
stored in raster-scan order by rows. Pixels do not cross word boundaries. More
precisely, the westmost pixel in each row of the surd is always a pixel whose
h-coordinate is a multiple gbixelsPerword (which is equal toNord.Size DIV
pm.bitsPerPixel). The eastmost pixel in each row of the sumnd is always a pixel
whoseh-coordinate modulgixelsPerWord is congruent topixelsPerWord-

1. Hence, the number of pixels in each row of the sumd is a multiple of
pixelsPerWord . The valuepm.wordsPerRow is the number of words that are
needed to store one row of the surround.

7.9 Screen-dependent pixmaps 93

The valuepm.bitsPerPixel might be greater thapm.depth ; for example, a
twelve-bit deep pixmap might be stored with sixteen bits per pixel.

The pixels of the surround are stored in the arpay.pixels . Each row is
represented ipm.wordsPerRow adjacent words; the first of these words stores the
westmostpixelsPerWord pixels of the row, the following word stores the adjacent
pixelsPerWord pixels, and so on until the last word, which stores the eastmost
pixelsPerWord pixels.

The order in which pixels are packed into words is indicatefdrbypixelOrder
In this discussion, bid is the least significant bit and bi¥ord.Size - 1 isthe most
significant bit of a word.

If pm.pixelOrder = LSBFirst , the bits of the pixels are as follows (where
bpp is pm.bitsPerPixel):

pixel 0: bits 0..bpp-1
pixel 1: bits bpp..2 *bpp-1

pixeli : bits i *bpp..(i+1) *bpp-1

If pm.pixelOrder = MSBFirst ,the pixels are stored in reverse order, so that pixel
i occupies the same bits as pipetelsPerWord-i-1 occupies fot SBFirst

A Word.Extract of the bits indicated above, from the correct word, gives the
pixel's value. If the word size does not contain an integral number of pixels, the unused
bits in the word have undefined values.

The pixmappmitself is a rectangular region selected from the surround; the value
pm.bounds , of typeRect.T , specifies the domain gfm The valuepm.offset
specifies where ipm.pixels the words containing the pixels pfncan be found. In
particular, the northwestern-most bitmh, the bit with coordinates

h = pm.bounds.west and v = pm.bounds.north,

is stored in wordom.pixels[pm.offset] . The pixel is thgpm.bounds.west
MOD pixelsPerWord) 'th pixel of the word. Its bits can be found by the earlier
formulas.

The general formula for the word containing the pixel with positiprv is

pm.pixels[
(v - pm.bounds.north) * pm.wordsPerRow +
(h - pm.westRounded) DIV pixelsPerWord) + pm.offset].

Here is another useful formula. The surround rectangle must be at least wide enough
to contain the subrectangfen.bounds , even after we have rounded the west edge

of pm.bounds westward to the next word boundary and rounded the east edge of
pm.bounds eastward to the next word boundary. As a result, we have the inequality:

pm.wordsPerRow >=
((pm.bounds.east - 1) DIV pixelsPerWord) -
(pm.bounds.west DIV pixelsPerWord) + 1

94 7 RESOURCES

Finally, the valugom.westRounded is provided for convenience; it is equal to
bounds.west - (bounds.west MOD pixelsPerWord),

that is, the western boundary moved west to the nearest word boundary.

END ScrnPixmap.

7.10 Screen-dependent fonts

A ScrnFont.T is a handle on a typeface that is valid for some particular screen-
type, called theowner of the handle. All handles have names, which are highly
conventionalized strings encoding the size, style, and other properties of thadgypef

INTERFACE ScrnFont;
IMPORT ScrnPixmap, Rect, TrestleComm, Font;
EXCEPTION Failure;

7.10.1 Ohbtaining handles from the oracle

TYPE
Oracle = Private OBJECT
METHODS

<* LL.sup <= VBT.mu *>
list(pat: TEXT; maxResults := 1):

REF ARRAY OF TEXT RAISES {TrestleComm.Failure};
match(

family: TEXT;

pointSize: INTEGER := 120;

slant; Slant := Slant.Roman;

maxResults: CARDINAL := 1;

weightName: TEXT := AnyMatch;

version; TEXT = "";

foundry: TEXT := AnyMatch;

width; TEXT := AnyMatch;

pixelsize: INTEGER := AnyValue;

hres, vres: INTEGER := ScreenTypeResolution;

spacing: Spacing := Spacing.Any;

averageWidth: INTEGER := AnyValue;

charsetRegistry: TEXT := "ISO8859";

charsetEncoding: TEXT := "1")
: REF ARRAY OF TEXT RAISES {TrestleComm.Failure};
lookup(name: TEXT): T

7.10 Screen-dependent fonts 95

RAISES {Failure, TrestleComm.Failure};
builtin(f: Font.Predefined): T;
END;
Private <: ROOT;

For a screentypst , the fieldst.font is anOracle that produces font handles
owned byst .
The method call

st.font.list(pat, maxResults)

returns the names of all fonts owned bl that match the patterpat . The list
of results may be truncated to lengttexResults . A * matches any number of
characters and amatches a single character.

The arguments to th@atch method specify various font attributes, as explained
below. The method call

st.font.match(...)

returns the names of all font handles ownedsbythat match the specifications. The
list of results may be truncated to the lengtlaxResults . If no fonts match the
specifications, the result will be eithigiL or an empty array. PassidgiyMatch for a
text attribute, oAnyValue for an integer attribute, allows any value for that attribute.
For text attributes, partial text matches are also possibtematches any number of
characters and matches a single character.

The method call

st.font.lookup(name)

returns the font handle owned by with the given name. Generalhame should be
one of the names returned by tist or match method.
The method call

st.font.builtin(f)

returns the screen-dependent font valid §or that corresponds to the predefined
screen-independent foRbnt. T{f}
The locking level for all methods isL.sup <= VBT.mu .

7.10.2 Font attributes

The arguments to a font oracle list method specify font attributes whose full speci-
fications are the “X Logical Font Description Conventions Version 1.3”, an MIT X
Consortium Standard which can be found in Part \NXdiVindow Systery Scheifler
and Gettys [5]. Here they are described in brief.

The argumentamily specifies the family of the typeface. To find out what fonts
your X server has, run thesfonts program. Most servers support the families
Courier ,Helvetica ,andTimes, among others.

96 7 RESOURCES

The argumenpointsize s ten times the font’s size in points; e.g., 120 for a
standard 12-point font.
The argumenslant is an element of the following enumeration type:

TYPE
Slant = {Roman, lItalic, Oblique, Reverseltalic,
ReverseOblique, Other, Any};

whose elements have the following interpretations:
Roman Upright letters in a roman style.
Italic : Clockwise slanted letters in an italic style.
Oblique : Clockwise slanted letters in a roman style.
Reverseltalic : Counter clockwise slanted letters in an italic style.
ReverseOblique : Counter clockwise slanted letters in a roman style.
Other : None of the above
Any: Any of the above (includin@ther).

The argumentveightName is the foundry’'s name for the font's weight; e.g.,
Bold , DemiBold , or Medium.

The argumentersion specifies the version of thé Logical Font Description
Conventionghat describes the format of a font’s name. If the argument is omitted,
Version 1.3 is assumed. (Version 1.3 is the only version as these words are written.)

The argumentoundry specifies the X registered name for the font's foundry, e.g.,
Adobe, B&H Bitstream ,DEC

The argumenwidth specifies the foundry’s name for the font's width; e.g.,
Normal or Condensed .

The argumenpixelsize specifies the size of the font in pixels. The size in points
depends on the vertical resolution of the device: A pixelsize of 20 could represent a
20-point font at 75 pixels per inch or a 10-point font at 150 pixels per inch.

The argumentBres andvres specify the horizontal and vertical screen resolution
for which the font is designed, in pixels per inch.

The argumenspacing is an element of the following enumeration:

TYPE Spacing =
{Proportional, Monospaced, CharCell, Any};

whose elements have the following meaning:
Proportional : Character widths vary.
Monospaced : Character widths are constant.
CharCell : Fontis self-clearing, as defined in tki8T interface.

Any: Any of the above.

7.10 Screen-dependent fonts 97

The argumenaverageWidth specifies the un-weighted arithmetic mean of the
widths of all glyphs in the font, measured in tenths of a pixel.

The argumentsharsetRegistry andcharsetEncoding are the X names of
the font's character set and encoding scheme; E@8859 and1 for ISO Latin-1
fonts. See Appendix G of [5].

CONST
AnyMatch = " *";
AnyValue = -1;
ScreenTypeResolution = -2;

PassingAnyMatch as an argument to thist method matches any text value
for the corresponding attribute, adhyValue matches any integer value. Passing
ScreenTypeResolution for hres or vres matches fonts whose horizontal and
vertical resolutions agree with the screentype that owns the font.

7.10.3 Registering fonts

Some screentypes allow the client to register fonts. The client registers the font's strike
(bits) and metrics (description) with ti&rikeOracle . The name of the font is
implied by the attributes in the metrics, so fi# andlookup methods will find
client-registered fonts.

TYPE
StrikeOracle = Oracle OBJECT
METHODS
<t LL.sup <= VBT.mu *>
load(strike: Strike; metrics: Metrics): T
RAISES {Failure, TrestleComm.Failure};
END;

The method calét.font.load(strike, metrics) creates a font owned st
with the given strike and metrics and returns a handle to it.
Themetrics argument must define all of the initial fields of the font metrics record:

family , pointSize , ...,isAscii , anddefaultChar . The valuesninBounds
andmaxBounds must be provided ifharMetrics isNIL ; otherwise ifprintwWidth
is AnyValue , theload method will compute them froroharMetrics . If any of

the remaining fields have the valbayValue ,theload method will compute them.
7.10.4 The handle object

TYPE
T <: Public;
Public = OBJECT (*CONS¥)
id: INTEGER,;

metrics: Metrics
END;

98

7 RESOURCES

TYPE StrikeFont = T OBJECT
METHODS =< LL.sup <= VBT.mu *>
strike(): Strike RAISES {TrestleComm.Failure}
END;

TYPE Strike = OBJECT
METHODS =< LL.sup <= VBT.mu *>
glyph(ch: INTEGER): ScrnPixmap.T;
END;

If f isaScrnFont.T ,thenf.id is an identifier whose interpretation depends on the
screentype that owrfs andf.metrics are the metrics fof . If in additionf is a
StrikeFont , thenf.strike() returnsf ’s strike. The screentype of the strike’s
pixmaps will be the screentype that owins

If str isaStrike ,thenstr.glyph(ch) is the pixmap for the charactehn . This

will be empty except for characters in the rarjgefirstChar..m.lastChar] ,
wheremis the metrics (see below) for the font of whistn is the strike.

PROCEDURE BoundingBox(txt: TEXT; fnt: T): Rect.T;
<* LL arbitrary *>
Return the smallest rectangle that contains the bounding boxes of the characters
oftxt If txt were painted in the forfht with txt s reference point at the
origin.
PROCEDURE BoundingBoxSub(
READONLY txt: ARRAY OF CHAR,
fnt: T): Rect.T,
<* LL arbitrary *>

Like BoundingBox but takes an array instead or&XxT.

PROCEDURE TextWidth(txt: TEXT; fnt: T): INTEGER,;

<* LL arbitrary *>

Return the sum of the printing widths of the characternstn in the fontfnt .

7.10.5 The raw representation

TYPE
CharMetric = RECORD
printWidth: INTEGER;
boundingBox: Rect.T;
END;
CharMetrics = REF ARRAY OF CharMetric;

Theprintwidth of a character is the displacement to the next character’s reference
point.

The boundingBox of a character is the smallest rectangle with sides parallel to

the axes that contains the glyph of the character placed with its reference point at (0,0).

7.10 Screen-dependent fonts 99

TYPE

Metrics = OBJECT (* CONS¥)
family: TEXT;
pointSize: INTEGER,;
slant: Slant;
weightName: TEXT;
version: TEXT;
foundry: TEXT,;
width: TEXT;
pixelsize: INTEGER,;
hres, vres: INTEGER;
spacing: Spacing;
averageWidth: INTEGER,;
charsetRegistry: TEXT,;
charsetEncoding: TEXT;
firstChar, lastChar: INTEGER;
charMetrics: CharMetrics;
selfClearing: BOOLEAN;
rightKerning, leftKerning: BOOLEAN;
isAscii: BOOLEAN;
defaultChar: INTEGER;
minBounds, maxBounds: CharMetric;

METHODS =< LL arbitrary *>
intProp(name: TEXT; ch: INTEGER := -1): INTEGER

RAISES {Failure};
textProp(name: TEXT; ch: INTEGER := -1); TEXT
RAISES {Failure};
END;

The fields fromfamily to charSetEncoding in the Metrics object specify the
attributes that were defined for thmokup method. A value of or Any in one of
these fields means that the corresponding attribute is unknown.

The integersfirstChar and lastChar are the indices of the first and last
characters defined in the font.

The arraycharMetrics specifies the metrics of the individual characters. The
metrics for charactech are incharMetrics[ch-firstChar] . If all characters
have the samerintwidth and boundingBox , then these values are stored in
minBounds andmaxBounds and thecharMetrics field iSNIL .

The flag selfClearing indicates whether the font is self-clearing, as defined
in the VBT interface, and the two kerning flags indicate the present of right and left
kerning in the font.

The flagisAscii indicates that character codes 32-126 (base 10) have their
normal ASCII meanings.

The integedefaultChar is the code for the recommended character to display
in the place of a character that isn’t defined for the font.

100 7 RESOURCES

The rectanglesninBounds.boundingBox and maxBounds.boundingBox
contain the meet and join, respectively, of the bounding boxes of all characters in
the font when they are positioned with their reference points at (0, 0). The values
minBounds.printWidth and maxBounds.printWidth are the minimum and
maximum printing widths for all characters in the font.

The method calm.intProp(nm) returns the integer value of the font attribute
namednm, or raisesFailure if this attribute is not defined fan The method call
m.intProp(nm, ORD(ch)) returns the integer value of the font attribute named
for the charactech, or raisedrailure if this attribute is not defined foim, ch) .
ThetextProp method is similar.

The set of attributes returned by the metrics methods depend on the font. Fonts
that are owned by X screentypes support the attributes defined in ParWiridow
Systenfop. cit); we recommend that other fonts support them too. (To read an X font
attribute whose type is an X atom, use teetProp method, which returns the name
of the atom.)

END ScrnFont.

7.11 Color maps

A ScrnColorMap.T is a handle on a colormap that is valid for some particular
screentype, called thewner of the handle. Some handles have names; others are
anonymous. A named handle is valid forever. The colormap referenced by an
anonymous handle will be garbage-collected when all handles to it have been dropped.

Every colormap has depth the pixel values defined by the color map are in
the range[0..(2"depth)-1] . Every color-mapped screentype defines a set of
preferredcolors that cover the spectrum reasonably densely. Some preferred colors are
designated astable

Clients can allocate pixels out of a color map as read-only shared entries or as
writable exclusive entries. The implementation maintains reference counts on the
read-only entries so that an entry can be freed when it is no longer allocated to any
client.

INTERFACE ScrnColorMap;
IMPORT TrestleComm;

7.11.1 Obtaining handles from the oracle

TYPE
Oracle = Private OBJECT
METHODS

<* LL.sup <= VBT.mu *>
standard(): T RAISES {TrestleComm.Failure};

7.11 Color maps 101

new(name: TEXT := NIL; preLoaded := TRUE): T
RAISES {TrestleComm.Failure, Failure};

lookup(name: TEXT): T
RAISES {TrestleComm.Failure};

list(pat: TEXT; maxResults: CARDINAL := 1)
: REF ARRAY OF TEXT RAISES {TrestleComm.Failure}

END;
Private <: ROOT;

EXCEPTION Failure;

Every color-mapped screentype contains a fielt.cmap of typeOracle , which
hands out colormaps owned bl :
The method call

st.cmap.standard()

returns the default colormap owned by. This is the colormap that a top-level
window will initially have when it is rescreened # . Initially, the stable colors are
allocated read-only with a reference count of one.

The method call

st.cmap.new(name, preLoaded)

creates and returns a new colormap ownesdtbwith the given name. IfreLoaded
is true, the stable colors are initially allocated read-only; otherwise nothing is allocated
initially.
The method call
st.cmap.lookup(name)

returns the colormap owned by with the given name, adIL if no colormap has this
name.
The method call

st.cmap.list(pat, maxResults)

returns the names of colormaps owneddbythat match the patterpat . The list
of results may be truncated to lengttexResults . A * matches any number of
characters and amatches any single character.

7.11.2 The handle object

TYPE

T <: Public;

Public = OBJECT (*CONSY¥)
depth: INTEGER,;
readOnly: BOOLEAN;
ramp: Ramp;

METHODS

102 7 RESOURCES

<* LL.sup <= VBT.mu *>
fromRGB(rgh: RGB; mode := Mode.Normal): Pixel
RAISES {Failure, TrestleComm.Failure};
read(VAR res: ARRAY OF Entry)
RAISES {TrestleComm.Failure};
write(READONLY new: ARRAY OF Entry)
RAISES {Failure, TrestleComm.Failure};
new(dim: CARDINAL): Cube RAISES
{Failure, TrestleComm.Failure};
free(READONLY ch: Cube)
RAISES {TrestleComm.Failure};
END;
Mode = {Stable, Normal, Accurate};
Ramp = RECORD
base: INTEGER;
last, mult: ARRAY Primary OF INTEGER,;
END;
Primary = {Red, Green, Blue};
Cube = RECORD lo, hi: Pixel END;
Pixel = INTEGER;
RGB = RECORD r, g, b: REAL END;
Entry = RECORD pix: Pixel; rgb: RGB END;

The fieldcm.depth is the depth otm, andcm.readOnly is TRUEif cmcannot be
written. The fieldcm.ramp defines a three dimensional lattice of colors preallocated
in cm, as follows.

If cm.ramp.base is-1, the lattice of preallocated colors is empty.

If cm.ramp.base is not-1, then the pixel value

base + r *mult[Red] + g =*multfGreen] + b *mult[Blue]

represents the coldr/last[Red], g/last[Green], b/last[Blue]) ,forr
in the rangg0..last[Red]] , g in the rangd0..last[Green]] , andb in the
rangel0..last[Blue]]

An RGBrepresents the color with the given blend of red, green, and blue. Each
of the numbers is in the rand6.0..1.0] ; thus the triple(0.0, 0.0, 0.0)
specifies black. In case of a gray scale display, only themponent is relevant.

The method call

cm.fromRGB(rgb, mode)

extends the read-only portion ofn with a new entry whose value is neagb and
returns the pixel of the new entry. If the read-only portiorcofalready contains an
entry whose value is neagb , that entry’s pixel is returned. Theode argument
controls how near the new entry’s value will bet , as follows. Ifmodeis Stable ,
the new entry’s color is the nearest stable colomgto . If mode is Normal , the new
entry’s color is the nearest preferred colorrgth . If mode is Accurate , the new

7.11 Color maps 103

entry’s color is the nearest coloritgb that the hardware supports. The method raises
Failure if a new entry is required but the colormap is full.
For each entrg in the arrayres , the method call

cm.read(res)

setse.rgb to the color incmof the pixele.pixel
The method call

cm.write(new)

changes the value a@fm at p to bergb , for each paifp, rgb) in the arraynew,
assuming all these pixels are writable. Otherwise the method raiskese . The
arraynew must be sorted.

The method call

cm.new(dim)

extends the writable portion @ with a set of2%™ new entries whose pixels form
a cube, and returns the cube. The method rdisdisre if the free entries of the
colormap do not contain a cube of the given dimension.

A Cube cb represents a set of pixels by the following rule: a pigés in cb if
Word.And(lo, pix) = lo andWord.Or(hi, pix) = hi

The method calem.free(cb) deallocates from the writable portion of each
entry whose pixel is in the culmb , assuming all of these pixels are allocated.

END ScrnColorMap.

104 8 GEOMETRY INTERFACES

8 Geometry interfaces

Most programs that use windows need to perform geometric calculations with integer
lattice points. Such calculations can easily become obscure and error-prone. This
section provides a set of geometry interfaces that help make them easier to read and
write.

The interfaces are namekis , Point , Interval , Rect, Region , Path , and
Trapezoid . The locking level is arbitrary for all procedures in these interfaces.

8.1 The Axis Interface

Axis.T.Hor andAxis.T.Ver are Trestle’s names for the horizontal and vertical
axes.Axis.Other exchangesior andVer .

INTERFACE Axis;

TYPE T = {Hor, Ver};

CONST Other = ARRAY T OF T {T.Ver, T.Hor};
END AXxis.

8.2 The Point interface

A Point.T is a pair of integers representing a position in the planet Ifs a point,
thenpt.h is the distance ot to the right of the coordinate origin, apdv is the
distance opt below the coordinate origin. That is, the coordinate system is related
to the Cartesian coordinate system by the equdtiorv) = (x, -y)

INTERFACE Point; IMPORT AXis;

TYPE T = RECORD h, v: INTEGER END;
CONST Origin = T{0, 0};

PROCEDURE Add(READONLY p, q: T): T;
ReturnT{p.h + qg.h, p.v + q.v}

PROCEDURE Sub(READONLY p, g: T): T;
ReturnT{p.h - q.h, p.v - q.v}

PROCEDURE Minus (READONLY p: T): T,
ReturnT{-p.h, -p.v}

PROCEDURE Mul(READONLY p: T; n: INTEGER): T;
ReturnT{p.h * n, p.v * n}

8.3 The Interval interface 105

PROCEDURE Div(READONLY p: T; n: INTEGER): T;
ReturnT{p.h DIV n, p.v DIV n}

PROCEDURE Mod(READONLY p: T; n: INTEGER): T;
ReturnT{p.h MOD n, p.v MOD n} .

PROCEDURE Scale(READONLY p: T; num, den: INTEGER): T;
ReturnDiv(Mul(p, num), den)

PROCEDURE Min(READONLY p, q: T): T;
ReturnT{MIN(p.h, q.h), MIN(p.v, q.v)}

PROCEDURE Max(READONLY p, g: T): T,
ReturnT{MAX(p.h, q.h), MAX(p.v, q.v)}

PROCEDURE MoveH(READONLY p: T; dh: INTEGER): T;
ReturnT{p.h+dh, p.v}

PROCEDURE MoveV(READONLY p: T; dv: INTEGER): T;
ReturnT{p.h, p.v+dv}

PROCEDURE MoveHV(READONLY p: T; dh, dv: INTEGER): T;
ReturnT{p.h+dh, p.v+dv}

PROCEDURE Transpose(READONLY p: T; ax := Axis.T.Ver): T;
If ax = Hor then returmp else returm{p.v, p.h}
For examplePoint. Transpose(pt, ax).h is theax component opt .

PROCEDURE DistSquare(READONLY p, g: T): INTEGER;
Return the square of the Euclidean distance betyesmlq.

END Point.

8.3 The Interval interface

An Interval. T is a contiguous set of integers. An interaatontains an integer if
alo <= n AND n < ahi

We impose the restriction that if an interval contains no integers, then it must be equal
as a record ttnterval.Empty

INTERFACE Interval;
TYPE T = RECORD lo, hi: INTEGER END;

106

8 GEOMETRY INTERFACES

CONST
Empty = T{0, 0};
Full = T{FIRST(INTEGER), LAST(INTEGER)};

PROCEDURE FromBounds(lo, hi: INTEGER): T;
Iflo >= hi then returrEmpty, else returit{lo, hi}

PROCEDURE FromAbsBounds(n, m: INTEGER): T;
ReturnFromBounds(MIN(n,m), MAX(n,m))

PROCEDURE FromBound(lo: INTEGER; s: CARDINAL): T;
ReturnFromBounds(lo, lo+s)

PROCEDURE FromSize(s: CARDINAL): T;
ReturnFromBounds(0, s)

PROCEDURE Move(READONLY a: T; n: INTEGER): T;
ReturnFromBounds(a.lo+n, a.hi+n)

PROCEDURE Inset(READONLY a: T; n: INTEGER): T,
If a is empty then returEmpty, else returrFromBounds(a.lo + n, a.hi

-n).

PROCEDURE Change(READONLY a: T; dlo, dhi: INTEGER): T;

If a is empty then returfEmpty, else returrFromBounds(a.lo + dlo,
a.hi + dhi)

PROCEDURE Join(READONLY a, b: T): T;
Return the smallest interval containing batandb.

PROCEDURE Meet(READONLY a, b: T): T;
Return the largest interval contained in botfacdndb.

PROCEDURE Project(READONLY a: T; n: INTEGER): INTEGER;

Return the element a&f that is closest ta. This is a checked runtime erroraf
is empty.

PROCEDURE Mod(n: INTEGER; READONLY a: T): INTEGER;

Return the member & whose distance from is a multiple ofSize(a) . This
is a checked runtime errordfis empty.

PROCEDURE Size(READONLY a: T): CARDINAL;
Returna.hi - a.lo

PROCEDURE Middle(READONLY a: T): INTEGER;

8.4 The Rect interface 107

Return(a.hi + a.lo) DIV 2

PROCEDURE Center(READONLY a: T; n: INTEGER): T;

If a is empty then returBmpty, else returb such thatize(b) = Size(a)
andMiddle(b) = n

PROCEDURE ISEmpty(READONLY a: T): BOOLEAN;
Return whethea is empty.

PROCEDURE Member(n: INTEGER; READONLY a: T): BOOLEAN;
Return whethen is in a.

PROCEDURE Overlap(READONLY a, b: T): BOOLEAN;
Return whethea andb have any element in common.

PROCEDURE Subset(READONLY a, b: T): BOOLEAN;
Return whethea is contained irb.

END Interval.

8.4 The Rect interface

A Rect.T isa set of points lying in a rectangle with its sides parallel to the coordinate
axes. The directions of the screen are named after the compass points, with north at
the top. A rectangleect contains a poinpt if

pt.h isin [rect.west .. rect.east - 1] AND
pt.v isin [rect.north .. rect.south - 1]

We impose the restriction that if a rectangle contains no points, then it must be equal
as a record t&®ect.Empty

INTERFACE Rect;
IMPORT AXxis, Interval, Point;
TYPE T = RECORD west, east, north, south: INTEGER END;

CONST
Empty = T{0,0,0,0};
Full = T{FIRST(INTEGER), LAST(INTEGER),
FIRST(INTEGER), LAST(INTEGER)};

PROCEDURE FromEdges(w, e, n, s: INTEGER): T,
Ifw >= eorn >= s returnEmpty, else returri{w,e,n,s}

PROCEDURE FromAbsEdges(hl, h2, v1, v2: INTEGER): T,

108

8 GEOMETRY INTERFACES

Return

FromEdges(MIN(h1,h2), MAX(h1,h2),
MIN(v1,v2), MAX(v1,v2))

PROCEDURE FromCorners(READONLY p, q: Point.T): T;
ReturnFromAbsEdges(p.h, q.h, p.v, q.v)
PROCEDURE FromCorner(

READONLY p: Point.T;
hor, ver: CARDINAL): T;

ReturnFromEdges(p.h, p.h+hor, p.v, p.v+ver)

PROCEDURE Fromintervals
(READONLY hor, ver: Interval.T): T;

ReturnFromEdges(hor.lo, hor.hi, ver.lo, ver.hi)

PROCEDURE FromPoint(READONLY p: Point.T): T;
Return the rectangle whose only element.is

PROCEDURE FromsSize(hor, ver. CARDINAL): T;
ReturnFromCorner(Point.Origin, hor, ver)

PROCEDURE Add(READONLY r: T; READONLY p: Point.T): T,
Return

FromEdges(r.west+p.h, r.east+p.h,
r.north+p.v, r.south+p.v)

PROCEDURE Sub(READONLY r: T; READONLY p: Point.T): T;
ReturnAdd(r, Point.Minus(p))
PROCEDURE Change

(READONLY r: T; dw,de,dn,ds: INTEGER): T;
If r is empty returEmpty , else return the rectangfeomEdges(r.west+dw,
r.east+de, r.north+dn, r.south+ds)
PROCEDURE Inset(READONLY r: T; n: INTEGER): T;
ReturnChange(r, n, -n, n, -n)

PROCEDURE Transpose(READONLY r: T; ax := Axis.T.Ver): T;

If r is empty or ifax = Axis.Hor , then returrr, else returnr{r.north,
r.south, r.west, r.east}

PROCEDURE Join(READONLY r, s: T): T;

8.4 The Rect interface 109

Return the smallest rectangle containing botnds.

PROCEDURE Meet(READONLY r, s: T): T;
Return the largest rectangle contained in roinds.

PROCEDURE HorSize(READONLY r: T): CARDINAL;
Returnr.east - r.west

PROCEDURE VerSize(READONLY r: T): CARDINAL;
Returnr.south - r.north

PROCEDURE Middle(READONLY r: T): Point.T;

Return Point. T{(r.west+r.east) DIV 2, (r.north+r.south)
DIV 2} .

PROCEDURE Center(READONLY r: T; READONLY p: Point.T): T,
If r is empty then returrEmpty else return a rectangle such that
Congruent(r, s) andmiddle(s) = p

PROCEDURE NorthWest(READONLY r: T): Point.T;

ReturnPoint. T{r.west,r.north}

PROCEDURE NorthEast(READONLY r: T): Point.T;
ReturnPoint. T{r.east,r.north}

PROCEDURE SouthWest(READONLY r: T): Point.T;
ReturnPoint. T{r.west,r.south}

PROCEDURE SouthEast(READONLY r: T): Point.T;
ReturnPoint. T{r.east,r.south}

PROCEDURE Project(READONLY r: T;
READONLY p: Point.T): Point.T;

Return the element af that is closest tp. This is a checked runtime errorrif
is empty.

TYPE Partition = ARRAY [0..4] OF T,

PROCEDURE Factor(

READONLY r, s: T;

VAR (*out *) f: Partition;

dh, dv: INTEGER) ;
Partitionr into 5 piecesf[0]..f[4] wheref[2] = Meet(r,s) , and the
other rectangles ifi partition the set differences .

110 8 GEOMETRY INTERFACES

The order off is such that ifi<j thenf[i] translated by any positive multiple of
(dh,dv) doesn'tintersectj . (Only the signs ofih anddv affect the order, not
their magnitude.)

PROCEDURE Mod(READONLY p: Point.T;
READONLY r: T): Point.T;

Return the element of whose distance from in each axis is a nitiple of the
size ofr in that axis. This is a checked runtime error ifs empty.

PROCEDURE ISEmpty(READONLY r: T): BOOLEAN;
Return whether is empty.

PROCEDURE Member(READONLY p: Point.T;
READONLY r: T): BOOLEAN;

Return whetherp isinr.

PROCEDURE Overlap(READONLY r, s: T): BOOLEAN;
Return whether ands have any element in common.

PROCEDURE Subset(READONLY r, s: T): BOOLEAN;
Return whether is contained irs.

PROCEDURE Congruent(READONLY r, s: T): BOOLEAN;

Return whether ands are congruent, that is, whether they have the same height
and wid'th.

END Rect.

8.5 The Region interface

A Region.T represents a set of integer lattice points.

INTERFACE Region;
IMPORT Rect, Point, Axis;

TYPE
T = RECORD r: Rect.T; p: P := NIL END;

P <: REFANY;

If rg is aregion, themg.r is the smallest rectangle containing all pointsgn and
rg.p isthe private representation of the region as a sorted array of disjoint rectangles.

CONST
Empty = T{Rect.Empty, NIL};

8.5 The Region interface 111

Full = T{Rect.Full, NIL};

PROCEDURE FromRect(READONLY r: Rect.T): T;
Return the region containing the same points.as

PROCEDURE FromRects(READONLY ra: ARRAY OF Rect.T): T;
Return the region containing all points in any rectangleaof

PROCEDURE ToRects(READONLY rg: T): REF ARRAY OF Rect.T;
Returns a list of disjoint rectangles that partitign

The callToRects(Empty) produces an array of length zero.

PROCEDURE FromPoint(READONLY p: Point.T): T;
Return the region containing exactly the pqgint

PROCEDURE BoundingBox(READONLY rg: T): Rect.T;

Return the smallest rectangle containing all the pointggfthis is equivalent
torg.r

PROCEDURE Add(READONLY rg: T; READONLY p: Point.T): T;
Return the translation @ byp.

That is,Add(rg, p) containgt if and only ifrg containsPoint.Sub(pt, p)

PROCEDURE Sub(READONLY rg: T; READONLY p: Point.T): T;
ReturnAdd(rg, Point.Minus(p))

PROCEDURE AddHV(READONLY rg: T; dh, dv: INTEGER): T;
ReturnAdd(rg, Point. T{dh,dv})

PROCEDURE Inset(READONLY rg: T; n: INTEGER): T;
Return the region inset inftg by n.

That is, ifn is non-negativelnset(rg, n) contains a poinpt if all points within
distancen of pt are contained img . If n is non-positive]nset(rg, n) contains
a pointpt if some point within distancen of pt is inrg. For the purposes of
this definition, pointg andq are “within distancen” if both ABS(p.h-g.h) and
ABS(p.v-q.v) are at mosh. (If n is zero, both definitions givimset(rg, n) =

rg .)
PROCEDURE PlaceAxis(READONLY rg: T;
n: INTEGER; hv: Axis.T): T;
Return the retraction afy by n along thehv axis.

That is, letrect equalRect.FromSize(1, ABS(n)) if hv is Axis.T.Ver or
Rect.FromSize(ABS(n), 1) if hv is Axis.T.Hor . If n is non-negative, then

112 8 GEOMETRY INTERFACES

PlaceAxis(rg, n, hv) contains a poinpt if the rectangleRect.Add(pt,
rect) iscontaineding . If n is negative, thelaceAxis(rg, n, hv) contains
a pointpt if Rect.Add(pt, rect) contains some pointirg .

PROCEDURE Place(READONLY rg: T; h, vi INTEGER): T;

Return the retraction afy by h along the horizontal axis and bwyalong the
vertical axis.

More preciselyPlace(rg, h, v) is defined by the expression

PlaceAxis(PlaceAxis(rg, h, Axis.T.Hor), v, Axis.T.Ver)

PROCEDURE Join(READONLY rg, rgP: T): T;

Return the union of the points g andrgP .

PROCEDURE JoinRect(READONLY r: Rect.T;
READONLY rg: T): T;

Return the union of the points mandrg .

PROCEDURE JoinRegions(READONLY rg: REF ARRAY OF T): T;
Return the union of all the regionsig .

PROCEDURE Meet(READONLY rg, rgP: T): T;

Return the intersection o andrgP .

PROCEDURE MeetRect(READONLY r: Rect.T;
READONLY rg: T): T;

Return the intersection of the pointsrirandrg .

PROCEDURE Difference(READONLY rg, rgP: T): T;
Return the set of points iry and not inrgP .

PROCEDURE SymmetricDifference(READONLY rg, rgP: T): T;
Return the set of points in exactly onergf andrgP .
PROCEDURE MaxSubset(READONLY r: Rect.T;
READONLY rg: T): Rect.T;
Return a large rectangular subset@fcontainingr , or returnEmpty if r is not
asubsetofg .
PROCEDURE Equal(READONLY rg, rgP: T): BOOLEAN;
Return whetherg andrgP contain the same points.

PROCEDURE IsEmpty(READONLY rg: T): BOOLEAN;
Return whetherg is empty.

8.6 The Path interface 113

PROCEDURE IsRect(READONLY rg: T): BOOLEAN;

Return whetherg is a rectangle, that is, whether it contains all the points in its
bounding box.

PROCEDURE Member(READONLY p: Point.T;
READONLY rg: T): BOOLEAN;

Return whethep isinrg .

PROCEDURE SubsetRect(READONLY r: Rect.T;
READONLY rg: T): BOOLEAN;

Return whether is contained ing .

PROCEDURE Subset(READONLY rg, rgP: T): BOOLEAN;
Return whetherg is contained ingP .

PROCEDURE OverlapRect(READONLY r: Rect.T;
READONLY rg: T): BOOLEAN;

Return whether andrg have any point in common.

PROCEDURE Overlap(READONLY rg, rgP: T): BOOLEAN;
Return whetherg andrgP have any point in common.

END Region.

8.6 The Path interface

A Path.T is a sequence of straight and curved line segments, suitable for stroking or
filling.
A segmentis a directed arc in the Cartesian plane determined by two cubic
polynomialsh(t) ,v(t) ,wheret ranges over the interval of real numbgds 1]
The segment is said &iartat (h(0), v(0)) andendat (h(1), v(1)) . If hand
v are linear functions of , then the segment Isear: it consists of a line segment. If
h andv are constant functions of, then the segment degenerate it consists of a
single point.
The segments of a path are grouped into contigsoibgathswhich can beopen
or closed Within a subpatheach segment starts where the previous segment ends. In
a closed subpath, the last segment ends where the first segment starts. (This may also
happen for an open subpath, but this coincidence does not make the subpath closed.)
The current pointof a path is the endpoint of the last segment of its last subpath,
assuming this subpath is open. If the path is empty or if the last subpath is closed, the
current point is undefined.

INTERFACE Path;

114 8 GEOMETRY INTERFACES

IMPORT Point;
TYPE T <: ROOT;
The callNEW(Path.T) creates an empty path.

PROCEDURE Reset(path: T);
Setpath to be empty.

PROCEDURE MoveTo(path: T; READONLY p: Point.T);

Extendpath with a new degenerate segment that starts and emuls &his
begins a new subpath.

PROCEDURE LineTo(path: T; READONLY p: Point.T);

Extendpath with a linear segment that starts at its current point and enals at

PROCEDURE CurveTo(path: T; READONLY q, r, s: Point.T);
Extendpath with a curved segment that starts at its current point and ergls at
CurveTo adds a curve that starts from the current poinpath in the direction of

g, and ends as coming from the direction of . More precisely, lep be the current
point of path and leth(t) andv(t) be the cubic polynomials such that

(h(0), v(0)) = p
(h(1), v(1)) = s
(h'(0), v(0)) = 3 * (- p
(h'(1), v(1)) = 3 *(s-1)

(where the primes denote differentiation with respedttoThenCurveTo adds the
segmenih(t), v(t)) for t between zero and one. This is called hezierarc
determined by, q, r, ands.

PROCEDURE Close(path: T);

Add a linear segment to create a closed loopdth .

More precisely, lep be the current point gfath , and letq be last point opath that
was added by a call thloveTo (thusq is the startpoint of the first segment of the last
subpath ofpath). Close adds a linear segment fropto g and marks the sequence
of segments from to the end of the path as a closed subpath.

PROCEDURE ISEmpty(p: T): BOOLEAN;

ReturnsTRUEIf p is empty.

PROCEDURE IsClosed(p: T): BOOLEAN;
ReturnsTRUEIf p is empty or the last subpath pfis closed.

PROCEDURE CurrentPoint(p: T): Point.T;

8.6 The Path interface 115

Returns the current point f

LineTo , CurveTo , Close , andCurrentPoint are checked runtime errors if the
path has no current point.

EXCEPTION Malformed;
TheMalformed exception is raised when a procedure detects a malformed path.

PROCEDURE Translate(p: T; READONLY delta: Point.T): T
RAISES {Malformed};

The result of translating by delta

TYPE
MapObject = OBJECT METHODS
move(READONLY pt: Point.T);
line(READONLY ptl, pt2: Point.T);
close(READONLY ptl, pt2: Point.T);
curve(READONLY ptl, pt2, pt3, pt4: Point.T)
END;

PROCEDURE Map(path: T; map: MapObject)
RAISES {Malformed};
Apply the appropriate method afap to each segment phth .

That is, for each segmeatof path , in order,Mapexcecutes the following:

IF s isalinear segmen{p, q) THEN
IF s was generated bjMoveTo THEN
(* p=4*)
map.move(p)
ELSIF s was generated byineTo THEN
map.line(p, q)
ELSE (* s was generated byClose *)
map.close(p, q)
END
ELSE (* s isacurved segmenfp, g, r, s) *)
map.curve(p, q, I, S)
END

Mapraises the exception if it is passed a malformed path.

PROCEDURE Copy(p: T): T;
Returns a newly allocated path with the same contents as

PROCEDURE Flatten(p: T): T RAISES {Malformed};

Return a path likep but with curved segments replaced by yginal
approximations.

END Path.

116 8 GEOMETRY INTERFACES

8.7 The Trapezoid interface

A Trapezoid. T represents a set of points lying in a quadrilateral whose north and
south edges are horizontal and whose west and east edges have arbitrary non-horizontal
slopes. For example, a diagonal line can be represented as a tall skinny trapezoid.

INTERFACE Trapezoid;
IMPORT Point;

TYPE
T = RECORD
vlo, vhi: INTEGER;
ml, m2: Rational;
pl, p2: Point.T;
END;
Rational = RECORD n, d: INTEGER END;

For a trapezoidr ,

e tr.vlo and tr.vhi are thev coordinates of its north and south edges,
respectively;

e trml1 andtr.m2 are the slopes of its west and east edges, respectively, as
(delta v) / (delta h) . A denominator of zero represents an infinite
slope; i.e., a vertical edge. A numerator of zero is illegal.

e tr.pl andtr.p2 are points on the infinite lines that extend the west and east
edges, respectively.

Trapezoids are closed on the north and west edges, open on the south and east
edges, closed on the northwest corner, and open on the other corners.
A Rationalq represents the rational numizen/qg.d

END Trapezoid.

117

9 Implementing your own splits

This section defines the information needed to implementVigWclasses, especially
split classes and filter classes. Most VBT leaf classes can get by with the information
in theVBTinterface.

Events that flow down the tree &fBTs, like mouse clicks and repaint events,
are relayed via the methods described in WBT interface. To relay the event, the
parent method recursively activates the appropriate child method. However, the parent
should not activate the child method directly; it should use one of the procedures in
this interface to activate the child method indirectly.

A typical down method of &/BT v has the formv.method(args) and has
locking levelVBT.mu or VBT.mu.v , as explained in thgBT interface.

Information also flows up the tree ofBTs; for example, painting commands
and commands to set the cursor shape and cage. This information is also relayed
via methods, which we call “up” methods. For example, when a ctiidof
a parentp changes its cursor, Trestle notifies the parent by calling the method

p.setcursor(ch) . This method is expected to read the child’s cursor and take
appropriate action based on the class of the split.
A typical up method call has the forparent.method(child, args) and

has locking levelL.sup = child

Notice that the up methods come from the parent, not the child. This is convenient,
since it is the parent that defines the class of split. However, it means théBiT'a
parent isNIL , then there are no up methods, so that painting on it (for example) is a
noop. This produces a wrinkle at the address space boundaryBifhat we call the
root of the tree actually has a parent whose only purpose is to supply up methods for
communicating across the address space boundary.

The procedures in the split interface for inserting, deleting, and enumerating
children are also implemented via methods, which we call “split” methods. For
example Split.Succ(v, ch) is implemented by calling.succ(ch)

9.1 The VBTCIlass interface

TheVBTClass interface specifies the up methods, the split methods, and the wrapper
procedures by which a parent activates a child’s down methods.

In general, to implement a split or filter you override the down methods, up
methods, and split methods of the parent. However, usually you will be able to inherit
the majority of the methods from existing classes, and only have to override a few
of them. We mention several groups of methods that in most cases you will want to
inherit rather than reimplement.

The two down methods

VBT.Split.mouse
VBT.Split.position

together with the two up methods

118 9 IMPLEMENTING YOUR OWN SPLITS

VBT.Split.setcage
VBT.Split.setcursor

conspire to implement the mouse-cage semantics described Bthanterface for
delivering mouse clicks and cursor positions and for setting the cursor shape. They
work for anyVBT.Split , and there is almost never any reason to override them. As
a far-fetched example of when you would override them, imagine a filter that converts
shifted left button clicks to right button clicks.

Although you probably won't want to override these methods, you will have to help
them a bit. They cache the results of theate method, and therefore require that
you callVBTClass.LocateChanged = whenever the geometry of your split changes
in a way that affects the locate method.

The up methods

VBT.Split.acquire
VBT.Split.release
VBT.Split.put
VBT.Split.forge
VBT.Split.readUp
VBT.Split.writeUp

implement the event-time semantics described in\{B& interface. They simply
recurse up the tree ofBTs. At the root the recursive calls reachv8T in which
these methods are overridden to make the appropriate X calls. There is rarely any
reason to override these methods. As an example of when you might want to override
them, imagine keeping track of whiafBT in your application last held the keyboard
focus. You could do this by introducing a filter whoseguire method recorded the
information before recursing on the parent.

Keystrokes and miscellaneous codes can skip levels of the tree when they are
delivered. For example, associated with each top-levetaiv is a filter much like
the one just described, which keeps track of which of #sahdants are selection
owners. This filter forwards keystrokes and lost codes directly to the appropriate
owner, bypassing the intermediate windows in the tree.

The up methods

VBT.Split.paintbatch
VBT.Split.capture
VBT.Split.sync

implement painting, painting synchronization, and screen capture. syiife and
capture methods recurse up the tree in the obvious way. @dietbatch method
also recurses up the tree, but in a less obvious way.

It would be too inefficient to call a method for every painting command; therefore
the class-independent painting code groups painting commands into batches and hands
them to the method a batch at a time. For example,ptiietbatch ~ method of
aZSplit clips the batch of painting commands to the visible portion of the child’s
domain and then executes the clipped operations on itself.

9.1 The VBTClass interface 119

Painting on the vast majority 0fBTs can be implemented simply by clipping to
their domain and then relaying the painting to their parent. To speed up this common
case, everyWBT has ashort-circuitbit. If this bit is set then Trestle doesn'’t call the
VBTSs paintbatch method at all; it just clips to thgBTs domain and paints on its
parent. Typically the onlyBTs whose short-circuit bits are not set are the BT
and thos&Split children that are overlapped by other children or that extend outside
the parent’s domain.

If the short-circuit bits are set on all théBTs fromv to the root, then the class-
independent painting code will relay batches of painting commands\frimnthe root
without activating any methods. Tipaintbatch method at the root translates the
batch of painting commands into the appropriate X operations.

The default methodvBT.Split.paintbatch sets the short-circuit bit and
recurses on the parent. In the unlikely event that you want to override this method,
the interfacesBatch , BatchUtil , and PaintPrivate define the representation
of painting commands in batches. You could for example overriding the paintbatch
method to implement a class BT that paints into a raw pixmap in your address
space.

To speed up painting, Trestle does not rely on garbage collection for paintbatches:
you must free them explicitly.

You almost never need to implement the split methsuts , pred , move, nth ,
index , andlocate ; on the other hand you must be careful to inherit them from
the right place. There are two main subtypesv&T.Split , filters and “proper”
splits, and they have different suites of split methods. The implementations of the split
methods for filters are

Filter.T.succ
Filter.T.pred
Filter.T.move
Filter.T.nth
Filter.T.index
Filter.T.locate

These are all quite trivial procedures, since a filter has at most one child. If you declare
a split as a subtype ¢filter.T , you inherit these methods automatically.

Most proper splits are subtypesmxfoperSplit. T , which keeps the childrenin a
doubly-linked list. For exampl&Splits ,HVSplits ,TSplits , andPackSplits
are all subtypes dProperSplit. T . The methods

ProperSplit.T.succ
ProperSplit.T.pred
ProperSplit.T.move
ProperSplit.T.nth
ProperSplit. T.index
ProperSplit.T.locate

120 9 IMPLEMENTING YOUR OWN SPLITS

implement the split methods using the doubly-linked list. If you declare a split as a
subtype ofProperSplit. T , You inherit these methods automatically.

INTERFACE VBTClass;

IMPORT VBT, Trestle, Axis, Point, Rect, Region,
ScrnCursor, ScrnPixmap, Cursor, Batch;

Before we get to the up methods and the split methods, there is more to be revealed
aboutVBTs in general:

REVEAL
VBT.Prefix <: Prefix;

TYPE Prefix =

MUTEX OBJECT =< LL >= {VBT.mu, SELF} *>
parent: VBT.Split := NIL;
upRef: ROOT := NIL;
domain: Rect.T := Rect.Empty;
st: VBT.ScreenType := NIL;

METHODS =< LL.sup = SELF *>
getcursor(): ScrnCursor.T,;
<* LL.sup = VBT.mu *>
axisOrder(): Axis.T;

END;

FromVBT.Prefix <: Prefix it follows VBT.T <: Prefix ; hence everwBT
is aMUTEXobject, and has the above fields and methods. The complete revelation for
the typeVBT.T is private to Trestle.

The fieldsv.parent , v.domain , andv.st recordv’s parent, domain, and
screentype.

The objectv.upRef is used by the methods efparent to store information
specific to the childv. For example, ifv.parent is aZSplit , thenv.upRef
contains a region representing the visible pan gbointers to the children before and
afterv, and other information. In a filtey.upRef is usuallyNIL , since when there
is only one child, all the state can be stored in data fields directly in the parent object.

If v.parent isNIL,then sois.upRef .

The locking level comment on the data fields means that in order to write one of the
fieldsv.parent ,v.upRef ,v.domain ,orv.st ,athread must have bo¥fBT.mu
andv locked. Consequently, in order to read one of the fields, a thread must have
eitherVBT.mu (or a share o¥/BT.mu) or v locked. Thus the fields can be read either
by up methods or by down methods.

The callv.getcursor() returns the cursor that should be displayed ayehat
is, the cursor that was callégketCursor(v) in theVBTinterface. It is almost never
necessary to override thyetcursor method, since leaves and splits have suitable
default methods.

9.1 The VBTClass interface 121

TheaxisOrder method determines whether it is preferable to fiXgr's height
first or its width first. For example, a horizontal packsplit would rather have its width
fixed before its range of heights is queried, since its height depends on its width.
In general, ifv’s size range in axisx affects its size range in the other axis (and
not vice-versa), thew.axisOrder() should returnax. The default is to return
Axis.T.Hor

Next we come to the specifications of the split methods and the up methods:

REVEAL VBT.Split <: Public;

TYPE Public = VBT.Leaf OBJECT
METHODS

(* The split methods *)

<* LL >= {VBT.mu, SELF, ch} * >

beChild(ch: VBT.T);

<* LL.sup = VBT.mu *>

replace(ch, new: VBT.T);

insert(pred, new: VBT.T);

move(pred, ch: VBT.T);

locate(READONLY pt: Point.T;
VAR (*OUT) r: Rect.T): VBT.T;

<x LL >= {VBT.mu} =*>

succ(ch: VBT.T): VBT.T,;

pred(ch: VBT.T): VBT.T;

nth(n: CARDINAL): VBT.T;

index(ch: VBT.T): CARDINAL;

(* The up methods *)

<* LL.sup = ch =*>

setcage(ch: VBT.T);

setcursor(ch: VBT.T);

paintbatch(ch: VBT.T; b: Batch.T);

sync(ch: VBT.T);

capture(ch: VBT.T; READONLY rect: Rect.T;
VAR (*out *) br: Region.T) : ScrnPixmap.T;

screenOf(ch: VBT.T; READONLY pt: Point.T)
. Trestle.ScreenOfRec;

<* LL.sup < SELF AND LL >= {ch, VBT.mu.ch} *>

newShape(ch: VBT.T);

<* LL.sup = ch =*>

acquire(ch: VBT.T; w: VBT.T; s: VBT.Selection;
ts: VBT.TimeStamp) RAISES {VBT.Error};

release(ch: VBT.T; w: VBT.T; s: VBT.Selection);

122 9 IMPLEMENTING YOUR OWN SPLITS

put(ch: VBT.T; w: VBT.T; s: VBT.Selection;
ts: VBT.TimeStamp; type: VBT.MiscCodeType;
READONLY detail := VBT.NullDetail)
RAISES {VBT.Error};

forge(ch: VBT.T; w: VBT.T; type: VBT.MiscCodeType;
READONLY detail := VBT.NullDetail)
RAISES {VBT.Error};

<* LL.sup <= VBT.mu *>

readUp(ch: VBT.T; w: VBT.T; s: VBT.Selection;
ts: VBT.TimeStamp; tc: CARDINAL) : VBT.Value
RAISES {VBT.Error};

writeUp(ch: VBT.T; w: VBT.T; s: VBT.Selection;
ts: VBT.TimeStamp; val: VBT.Value; tc: CARDINAL)
RAISES {VBT.Error};

END;

Notice that avBT.Split is a subtype of &BT.Leaf . That is, everyWBT.Split

is also avVBT.Leaf , and therefore the painting operations in Y&T interface can be
applied to splits. This fact is revealed here rather than in/Bi€interface to prevent
clients of VBT from accidentally painting on $ips. To do so is almost certainly a
mistake—it is the responsibility of the split’s implementation to paint on the parent as
necessary to keep its screen up to date.

9.1.1 Specifications of the split methods

The first group of methods implement the behavior in$pét interface:

The method calv.beChild(ch) initializesch.upRef as appropriate for a child
of v. The method can assume tledt is non-nil and has the same screentype as
When the method is calledl. >= {VBT.mu, v, ch}

When declaring a subtyp&T of a split typeS, thebeChild method forST will
ordinarily callS.beChild(v, ch) , Which in turn will callS’s supertype’®eChild
method, and so on. Only one of the methods should allocatepgRef , but all of
them may initialize different parts of it. Two rules make this work. First, the type of
theupRef for children of ST splits should be a subtype of the type of thERef for
children ofS splits. Second, if @eChild method findsh.upRef is NIL andNIL
is not appropriate for the type, the method should allocatapRef ; otherwise it
should narrowch.upRef to the appropriate type and initialize it.

For example,HVSplit.T is a subtype ofProperSplit.T . Hidden in the
HVSplit module is a typeHVSplit.Child , which represents the per-child in-
formation needed by aRrlVSplit . The typeHVSplit.Child is a subtype of
ProperSplit.Child . The methodHVSplit.beChild(hv, ch) allocates a
newHVSplit.Child , stores it inch.upRef |, initializes the part of it that is specific
to HVSplit , and then call$roperSplit.beChild(hv, ch) , Which initializes

9.1 The VBTClass interface 123

the part ofch.upRef that is common to all proper splits, and then calls its supertype’s
beChild method, and so on.

The chain of calls eventually ends with a callA8T.Split.beChild , which
causes an error ¢h is not detached or ifh’s screentype differs from, and otherwise
setsch.parent tov and markss for redisplay.

The method callv.replace(ch, new) simply implements the operation
Split.Replace(v, ch, new) , and the call’.replace(ch, NIL) implements
Split.Delete(v, ch) . Before calling the method, the generic codeSinlit

marksv for redisplay, checks thath is a child ofv and thatnew is detached, and
rescreensew to the screentype of.

Similarly, the method call.insert(pred, new) implements the operation
Split.Insert(v, pred, new) . Before calling the method, the generic code in
Split marksv for redisplay, checks thatred is NIL or a child ofv and thatnew
is detached, and rescreemsw to the screentype of. A split that can only contain
a limited number of children may detach and discard the previous child to implement
insert

The callv.move(pred, ch) implementsSplit.Move(v, pred, ch) . Be-
fore calling the method, the generic code verifies iral andch are children ofv
(or NIL, in the case opred), and avoids the call ifred = ch orv.succ(pred)
= ch.

When thereplace ,insert , or move method is calledLL.sup = VBT.mu .
The default methods are equal XdL ; so every split class must arrange to override
these methods, usually by inheriting them fr&itter or from ProperSplit

The method calls.succ(ch) ,v.pred(ch) ,v.nth(n) ,andv.index(ch)
implement the corresponding operations in 8pit interface. In all caseg,L >=
{VBT.mu} .

The default method/BT.Split.succ is NIL ; so every split class must ar-
range to override the method, usually by inheriting them frBitter or from
ProperSplit . The default method¥BT.Split.pred , VBT.Split.nth , and
VBT.Split.index are implemented by repeatedly calling thec method.

The method cal.locate(pt, r) returns the child of that controls the position
pt , or NIL if there is no such child. The method also set® a rectangle containing
pt such that for all pointg in the meet of anddomain(v) ,v.locate(q, ...)
would return the same result adocate(pt, ...) . The split implementation
is expected to make as large as possible, so that clients can avoid caltiogte
unnecessarily. When the method is caligd will be in domain(v) . When the locate
method is called,.L.sup = VBT.mu .

If v inherits themouse, position , setcursor , or setcage methods from
VBT.Split , then you must calLocateChanged(v) whenever any operation on
the split invalidates a rectangle-child pair returned previously.lmgate

PROCEDURE LocateChanged(v: VBT.Split);
<* LL.sup = VBT.mu *>

Clear any cached results of theeate method.

124 9 IMPLEMENTING YOUR OWN SPLITS

The default metho&/BT.Split.locate(v, pt, r) enumerates’s children in
succ order and returns the first chilch whose domain containst . It setsr to a
maximal rectangle that lies inside the domaincbf and outside the domains of all
preceding children. If no child contaimd , it returnsNIL and sets to a maximal
rectangle that lies inside the domainwfnd outside the domains of all its children.
This is suitable if the children don’t overlap or if whenever two children overlap, the
top one appears earlier succ order.

9.1.2 Specifications of the up methods

So much for the split methods; here now are the specifications of the up methods. In
all casesch is a child ofv.

The method call.setcage(ch) is called by the system whenevel's cage
is changed. It is called withL.sup = ch . The default method implements the
behavior described in théBTinterface.

The method call’.setcursor(ch) is called by the system whenever the result
of ch.getcursor() might have changed. It is called with..sup = ch . The
default method implements the behavior described invB€interface.

The method cal.paintbatch(ch, b) is called to paint the batdhof painting
commands onr’s child ch. The procedure can assume that the batch is not empty and
that its clipping rectangle is a subsetobf's domain. It is responsible for ensuring that
b is eventually freed, which can be achieved by calling passit@Batch.Free or
by passind to another paintbatch method, which will inherit the obligation to free the
batch. Apaintbatch method is allowed to modify the batch. The default method
clips the batch tah's domain, paints the batch on the parent, anddesshortcircuit
bit. The method is called withL.sup = ch

The method call’.sync(ch) implementsvBT.Sync(ch) . When the method
is called, ch’s batch will have been forced. The default method simply applies
VBT.Sync to the parent. When the method is called;s batch isNIL andLL.sup
= ch.

The method callv.capture(ch, r, br) implementsVBT.Capture(ch,

r, br) . The default method recurses on the parent. When the method is called,
batch isNIL , r is a subset o€h’s domain, and.L.sup = ch

The method call.screenOf(ch, pt) implementdrestle.ScreenOf(ch,
pt) . The default method recurses on the parent. When the method is tallsdp
= ch.

The method calv.newShape(ch) signals thath'’s size range, preferred size, or
axis order may have changed. The default recurses on the parent. When the method is
called,LL.sup < v AND LL >= {ch, VBT.mu.ch}

The remaining methods implement event-time operations for a descendent (not
necessarily a direct child) of the window In all casesch is a child ofv andwis a
descendant ath.

Theacquire ,release ,put,andforge methods implementthe corresponding
procedures from theBTinterface. For example,put(ch, w, s, ts, cd) im-

9.1 The VBTClass interface 125

plementsVBT.Put(w, s, ts, cd.type, cd.detail) . When these methods
are calledL.L.sup = ch .

Similarly, thereadUp andwriteUp methodsimplementthe proceduxsT.Read
andVBT.Write . When these methods are called,sup <= VBT.mu .

9.1.3 Getting and setting the state of a VBT

PROCEDURE Cage(v: VBT.T): VBT.Cage; < * LL >= {v} *>
Return v's cage.

TYPE
VBTCageType = {Gone, Everywhere, Rectangle};

PROCEDURE CageType(v: VBT.T): VBTCageType;
<x LL >= {v} =*>

Returnv’s cage’s type.
CageType(v) returns Gone if Cage(v) = VBT.GoneCage , Everywhere if

Cage(v) = VBT.EverywhereCage , andRectangle otherwise. It is more effi-
cient thanCage.

PROCEDURE GetCursor(v: VBT.T): Cursor.T,;
< LL >= {v} =*>
Returncursor(v)

PROCEDURE SetShortCircuit(v: VBT.T); < * LL >= {v} *>
Set the short-circuit property of

PROCEDURE ClearShortCircuit(v: VBT.T); < * LL >= {v} =*>
Clear the short-ciruit propery of.
If v's short-circuit property is on, painting onwill be implemented by clipping to its
domain and painting on its parent.

The next three procedures are equivalent to the corresponding proceduis in
except they have a different locking level:

PROCEDURE PutProp(v: VBT.T; ref: REFANY);
<x LL >= {v} =*>

PROCEDURE GetProp(v: VBT.T; tc: INTEGER): REFANY;
< LL >= {v} =*>

PROCEDURE RemProp(v: VBT.T; tc: INTEGER);

< LL >= {v} =*>

In implementing a splitit is sometimegecessary to read a child’s bad region; in which
case the following procedure is useful:

126 9 IMPLEMENTING YOUR OWN SPLITS

PROCEDURE GetBadRegion(v: VBT.T): Region.T;
<x LL >= {v} =*>
Return v's bad region, that is, the join bdd(v) andexposed(v)

For the convenience of split implementors, eve€BT has a “newshape” bit which is
set by a call to/BT.NewShape. For example, the redisplay or shape method of a split
can test these bits to determine which of its children have new shapes.

PROCEDURE HasNewShape(v: VBT.T): BOOLEAN;
<t LLsup < v *>
Return the value of 's newshape bit.

PROCEDURE ClearNewShape(v: VBT.T); < * LLsup < v *>
Clearv’s newshape bit.

9.1.4 Procedures for activating the down methods of a VBT

PROCEDURE Reshape(
v: VBT.T;
READONLY new, saved: Rect.T);
<* LL.sup >= VBT.mu.v AND LL.sup <= VBT.mu * >

Prepare for and call’'s reshape method.
That is,Reshape changev.domain and then schedules a call to
v.reshape(VBT.ReshapeRec{v.domain, new, saved})

It should always be called instead of a direct call to the method, since it establishes
essential internal invariants before calling the method. The bits isethed argument
must remain valid until the method returns. It is all right $aved to be larger than
v’'s old domain;Reshape will clip it to v's old domain before calling the method. It
is illegal to reshape a detache@Tto have a hon-empty domain.
For example, theeshape method ofBorderedVBT usesvVBTClass.Reshape
to reshape its child.

PROCEDURE Rescreen(v: VBT.T; st: VBT.ScreenType);
<* LL.sup >= VBT.mu.v AND LL.sup <= VBT.mu * >
Prepare for and call’'s rescreen method.

That is,Rescreen executes

prev := v.domain;

v.domain := Rect.Empty;

v.st = st;
v.rescreen(VBT.RescreenRec{prev, st}).

For example, to determine how large a menwould be if it were inserted into a
ZSplitz ,you can't simply callGetShapes(m) , since in general the screentypemof

9.1 The VBTClass interface 127

could be different from the screentypezgfand the shape can depend on the screentype.
But you can calVBTClass.Rescreen(m, z.st) followed by GetShapes(m) .

PROCEDURE Repaint(v: VBT.T; READONLY badR: Region.T);
<* LL.sup >= VBT.mu.v AND LL.sup <= VBT.mu * >

JoinbadR intov'’s bad region and then prepare for and eds/repaint method.

PROCEDURE Position(v: VBT.T,;
READONLY cd: VBT.PositionRec);
<* LL.sup = VBT.mu *>

Prepare for and call’s position — method.

PROCEDURE Key(v: VBT.T; READONLY cd: VBT.KeyRec);
<* LL.sup = VBT.mu *>

Prepare for and call’'s key method.

PROCEDURE Mouse(v: VBT.T; READONLY cd: VBT.MouseRec);
<* LL.sup = VBT.mu *>

Prepare for and call’s mouse method.

PROCEDURE Misc(v: VBT.T; READONLY cd: VBT.MiscRec);
<* LL.sup = VBT.mu *>

Prepare for and call’s misc method.

The following two procedures schedule calls to the down methods without making the
calls synchronously. They are useful when you hold too many locks to call a down
method directly. For example, whenZsplit child scrolls bits that are obscured,
the locking level of theoaintbatch ~ method precludes calling thepaint method
directly; but a call can be scheduled wibrceRepaint

PROCEDURE ForceEscape(v: VBT.T); < * LL.sup >= {v} *>

Enqueue a cage escapeygtme for delivery tov.

PROCEDURE ForceRepaint(v: VBT.T,;

READONLY rgn: Region.T; deliver := TRUE);

<* LL.sup >= {v} * >

Joinrgn intov'’s bad region, and possibly schedule a call ®repaint method.
VBTClass.ForceRepaint is like VBT.ForceRepaint , except that it has a differ-
ent locking level, and ifleliver is FALSEthen no thread will be forked to deliver

the bad region—in this case the caller has the obligation to deliver the bad region soon,
either by calling-orceRepaint with deliver = TRUE , or by callingRepaint .

PROCEDURE Redisplay(v: VBT.T); < * LL.sup = VBT.mu *>

If v is marked for redisplay, then unmark it and prepare for and call
v.redisplay()

128 9 IMPLEMENTING YOUR OWN SPLITS

PROCEDURE GetShape(v: VBT.T; ax: Axis.T; n: CARDINAL;
clearNewShape := TRUE): VBT.SizeRange;
<* LL.sup >= VBT.mu.v AND LL.sup <= VBT.mu * >

Prepare for and call’'s shape method.

GetShape causes a checked runtime error if the result of the shape method is invalid.
If clearNewShape is TRUE GetShape calls ClearNewShape(v) before it calls
the method.

PROCEDURE GetShapes(v: VBT.T; clearNewShape := TRUE):
ARRAY Axis.T OF VBT.SizeRange;
<* LL.sup >= VBT.mu.v AND LL.sup <= VBT.mu * >

Return the shapes ofin both axes.

GetShapes calls the shape method wfin each axis, using the order determined by
v.axisOrder() , and returns the array of the resulting size rangesledrNew-
Shape is TRUE GetShapes callsClearNewShape(v) before it calls the method.

GetShapes is convenient if both the height and width preferences of the child can
be accomodated—for example, when inserting a top levetlaiv orZSplit child.

PROCEDURE Detach(v: VBT.T); < * LL.sup = VBT.mu *>

Setv.parent andv.upRef to NIL; setv's domain to empty, enqueue a
reshape to empty, and clea’s shortcircuit bit.

9.1.5 Procedures for activating the up methods of a VBT

The following six procedures are like the corresponding proceduresVBhiaterface,
except that they have a different locking level:

PROCEDURE SetCage(v: VBT.T; READONLY cg: VBT.Cage);
<* LL.sup = v *>

PROCEDURE SetCursor(v: VBT.T; cs: Cursor.T);
<* LL.sup = v *>

PROCEDURE Acquire(
v: VBT.T;
s: VBT.Selection;
t: VBT.TimeStamp)
RAISES {VBT.Error}; < * LLsup = v *>

PROCEDURE Release(v: VBT.T; s: VBT.Selection);
<* LL.sup = v *>

PROCEDURE Put(
v: VBT.T;
s: VBT.Selection;
t: VBT.TimeStamp;

9.2 The FilterClass interface 129

type: VBT.MiscCodeType;
READONLY detail := VBT.NullDetail)
RAISES {VBT.Error};
<* LL.sup = v *>

PROCEDURE Forge(
v: VBT.T;
type: VBT.MiscCodeType;
READONLY detail := VBT.NullDetail)
RAISES {VBT.Error};
<* LLsup =v *>

Finally, here is a procedure for executing a batch of painting command¥Bit:a
PROCEDURE PaintBatch(v: VBT.T; VAR b: Batch.T);
<t LLsup < v *>
Execute the batch of painting commands ow, freeb, and seb to NIL .
The interpretation o is described in th&atch andPaintPrivate interfaces. If
b.clipped is erroneously set tbRUE thenPaintBatch may execute the batched

painting commands without clipping thembtalip , but it will not paint outsider’s
domain.

END VBTClass.
9.2 The FilterClass interface

The FilterClass interface reveals the representation of a filter. If you are
implementing a subtype @filter. T, you can imporFilterClass to gain access
to the child field.

INTERFACE FilterClass;
IMPORT Filter, Split, VBT;
REVEAL Filter.T <: Public;

TYPE Public =
Filter.Public OBJECT < * LL >= {SELF, VBT.mu} *>
ch: VBT.T
END;

Afilter f is a split with the single chilflch , or with no children iff.ch=NIL

The beChild method initializesch and callsSplit. T.beChild . Thesucc,
pred , nth , index , andlocate methods use theh field in the obvious way. The
misc , key, read , write , reshape , shape, andaxisOrder methods forward to
the child.

END FilterClass.

130 9 IMPLEMENTING YOUR OWN SPLITS

9.3 The ProperSplit interface

A ProperSplit.T is a type ofVBT.Split that contains a circularly-linked list
of its children. All of Trestle’s built-in splits that are not filters are subclasses of
ProperSplit

INTERFACE ProperSplit;

IMPORT VBT, VBTClass, Split;

TYPE

T <: Public;

Public = VBT.Split OBJECT
<* LL >= {SELF, VBT.mu} *>
lastChild: Child := NIL

END;

Child = OBJECT
<* LL >= {SELF.ch.parent, VBT.mu} *>
pred, succ: Child := NIL;
ch: VBT.T

END;

If ch is a child of aProperSplit.T , thench.upRef must be of typeProp-
erSplit.Child , andch.upRef.ch must equakh. Thesucc andpred links
represent a doubly-linked list of the children. Téwcc links are circular; thepred
links are linear. The parentlastChild field is is NIL if there are no children;
otherwise it points to the last child Bucc order.

The locking level comments imply that to write any of the links, a thread must have
bothVBT.mu and the parent locked.

If v is aT, the callv.beChild(ch) setsch.upref to NEW(Child) ifitis
NIL . In any case it setsh.upref.ch := ch and callsvBT.Split.beChild(v,
ch) .

The following procedures are useful for implementing subtypé&saperSplit. T
PROCEDURE Insert(v: T; pred: Child; newch: VBT.T);
<* LL >= {VBT.mu, v, newch} * >
Insertnewch as a new child aftgered , and markv for redisplay.

The childnewch must be detached and of the appropriate screentype. It dat b
indicate insertion at the head of the ligisert calls thebeChild method ohewCh.

PROCEDURE Prelnsert(v: T; pred, ch: VBT.T): Child
RAISES {Split.NotAChild}; < * LL.sup = VBT.mu *>

Rescreemrh to havev's screentype (if necessary), cause a checked runtime error
if ch is attached, rais8plit.NotAChild if pred is non-nil and not a child
ofv, and finally returrpred.upRef , orNIL if pred isNIL .

9.3 The ProperSplit interface 131

PROCEDURE Move(v: T; pred, ch: Child);
<x LL >= {VBT.mu, v} *>

Movech in the list of children so that it followpred and markv for redisplay.

PROCEDURE Delete(v: T; ch: Child);
<* LL >= {VBT.mu} AND LL.sup < v *>

Removech from the list of children, detacth.ch , and markv for redisplay.

END ProperSplit.

132 10 IMPLEMENTING YOUR OWN PAINTING PROCEDURES

10 Implementing your own painting procedures
10.1 The Batch interface

A Batch.T is a data structure containing a sequencé/BT painting commands.
Batches are untraced: they must be extiallocated and freed using the procedures
in this interface.

INTERFACE Batch;
IMPORT Word;
TYPE T <: ADDRESS;

PROCEDURE New(len: INTEGER := -1): T;
Allocate a batch containing at ledsh Word. Ts

If len = -1 ,the number ofWord.T sinthe result willbé/BTTuning.BatchSize
Initially the clip and scroll source afeect.Empty

PROCEDURE Free(VAR ba: T);
Returnba to the free list and séta = NIL .

Free(ba) is achecked runtime erroriifa is NIL .

END Baitch.

10.2 The BatchUtil interface

This interface provides operations to clip and translate a batch of painting commands.
It is useful to those who are implementing window classes with customized painting
behavior.

Don't apply these procedures to a batch whose contents are concurrently being read
or written.

INTERFACE BatchUtil;

IMPORT Batch, Rect, Point, PaintPrivate;
PROCEDURE GetLength(ba: Batch.T): CARDINAL;
Return the number df/ord. Ts in use inba.

PROCEDURE Copy(ba: Batch.T): Batch.T;

Allocate and return a new batch initialized with a copypaf

Every entry in a batch has a clipping rectangle; there is also a clipping rectangle for
the batch as a whole. The effective clipping rectangle for a painting operation is the
intersection of its clipping rectangle with its batch’s clipping rectangle.

10.2 The BatchUtil interface 133

PROCEDURE GetClip(ba: Batch.T): Rect.T;
Returnba's clipping rectangle.

TYPE ClipState = {Unclipped, Clipped, Tight};

PROCEDURE GetClipState(ba: Batch.T): ClipState;

Returnba’s clipping state.
If GetClipState(ba) is Clipped then the clipping rectangle of every painting
operation irba is a subset oGetClip(ba) . If GetClipState(ba) isTight then
GetClip(ba) isequal to the join of the clipping rectangles of the painting operations

in ba. If GetClipState(ba) is Unclipped , there is no particular relationship
betweerba'’s clipping rectangle and the clipping rectangles of the entriésin

PROCEDURE Meet(ba: Batch.T; READONLY clip: Rect.T);
Setba’s clipping rectangle t&ect.Meet(GetClip(ba), clip)

If the assignment is non-trivial, this will change the clip stateato beUnclipped

PROCEDURE Clip(ba: Batch.T);
Apply ba’s clipping rectangle to each operation.

That is, if GetClipState(ba) is Unclipped , then for each painting operation in
ba, Clip replaces the clipping rectangle of the operation with the meet of the rectangle
andGetClip(ba) ,and sets the clipstate bé to Clipped

PROCEDURE Tighten(ba: Batch.T);
Achieveba.clipped = Tight without changing the effect dfa.

That is, Tighten(ba) is equivalent toClip(ba) followed by assigning tda’s
clipping rectangle the join of the resulting clipping rectangles of the entriba.in

PROCEDURE Translate(ba: Batch.T;
READONLY delta: Point.T);

Translateba by delta

That is, for each painting operationlia, translate the target of the painting operation
by delta . This always involves translating the clipping rectangle of the operation
by delta . It also addsdelta to thedelta components of all textures and to
the reference point ofextComs . It adjusts thepl, p2, vlo , andvhi fields of
TrapComs. The relative displacement of a stireg command is not affected; that is,
both the source and target of the scroll are translatetelig . The clipping rectangle

of the batch is also translated.

PROCEDURE ByteSwap(ba: Batch.T);

Convert all text painting operations ba to have the same byteorder as
PaintPrivate.HostByteOrder

134 10 IMPLEMENTING YOUR OWN PAINTING PROCEDURES

PROCEDURE Succ(ba: Batch.T,;
cptr: PaintPrivate.CommandPtr)
. PaintPrivate.CommandPtr;

Return the pointer to the entry ba that follows the one pointed to lgptr .

Succ(ba, NIL) returns the first entry irba; Succ(ba, cptr) = NIL when
cptr is the last entry ifba. To visit each entry in the batdya, use a loop like this:

cptr := BatchUtil.Succ(ba, NIL);
WHILE cptr # NIL DO
CASE cptr.command OF ... END;
cptr := BatchULtil.Succ(ba, cptr)
END

ThePaintPrivate interface explains the format of the entries.

END BatchUtil.

10.3 The PaintPrivate interface

This interface defines the layout of entries in paint batches.

INTERFACE PaintPrivate;
IMPORT Rect, Point, Trapezoid, Word;

TYPE
PaintOp = INTEGER;
Pixmap = INTEGER,;
Font = INTEGER;

In a paint batchPaintOps , Pixmaps , andFonts are represented by integers in a

screentype-dependent way. During rescreening an old batch might find its way to a
screen of the wrong type, causing garbage to be painted; but the garbage will be painted

over with the correct pixels promptly.

TYPE

PaintCommand = {RepeatCom, TintCom, TextureCom,
PixmapCom, ScrollCom, TrapCom, TextCom,
ExtensionCom};

PackedCommand = BITS 32 FOR PaintCommand;

FixedSzCommand =
[PaintCommand.RepeatCom..PaintCommand.TrapCom];

ByteOrder = {MSBFirst, LSBFirst};

PackedByteOrder = BITS 32 FOR ByteOrder;

VAR (* CONSY)
HostByteOrder: ByteOrder;

10.3 The PaintPrivate interface 135

There are eight types of entries; each of which begins with a word containing a
PaintCommand that indicates which type of entry it is.

Entries of typeTintCom , TextureCom , PixmapCom, ScrollCom , TrapCom,
and TextCom are used to implement théBT operationsPaintTint , PaintTex-
ture , PaintPixmap ,Scroll ,PaintTrapezoid ,andPaintText/PaintSub

A RepeatCom entry in a batch indicates that the preceding entry is to be re-executed
with its clipping rectangle changed to that of RepeatCom entry. For example, these
are used for implementinBolyTint , PolyTexture , andPaintRegion . There
are some restrictions on wharepeatCom entries can occur.

ExtensionCom entries can be used to implement additional painting operations
beyond those that are built into Trestle.

Some of the entries are fixed size; that is, the size of the entry is determined by
their type. The following array gives the sizes of the fixed-size commands:

CONST

WS = BYTESIZE(Word.T);

ComSize =
ARRAY FixedSzCommand OF INTEGER
{(BYTESIZE(CommandRec) + WS-1) DIV WS,
(BYTESIZE(TintRec) + WS-1) DIV WS,
(BYTESIZE(PixmapRec) + WS-1) DIV WS,
(BYTESIZE(PixmapRec) + WS-1) DIV WS,
(BYTESIZE(ScrollRec) + WS-1) DIV WS,
(BYTESIZE(TrapRec) + WS-1) DIV WS},

ComSize[c] equals the size iword.T s of a paint batch entry for the command

TYPE
CommandRec =
RECORD command: PackedCommand; clip: Rect.T END;
CommandPtr = UNTRACED REF CommandRec;
RepeatPtr = CommandPtr;

We define &Rec and aPtr type for each kind of batch entry.

Every batch entry is a “pseudo-subtype” ad€ammandin the sense that its record
type hasCommandRea@s a prefix.

A repeat command has no other fields besides the command identifier itself and the
clipping rectangle. HenceRepeatPtr is simply a pointer to £ommandRec

All of the batch entries that are not repeat commands contRiai@Op . They
are all pseudo-subtypes of the followiRgc andPtr types:

PaintRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp

END;

136 10 IMPLEMENTING YOUR OWN PAINTING PROCEDURES

PaintPtr = UNTRACED REF PaintRec;

The following four entry types correspondfaintTint , PaintPixmap , Scroll
andPaintTrapezoid operations.

TintRec = RECORD
command: PackedCommand;

clip: Rect.T;
op: PaintOp
END;

TintPtr = UNTRACED REF TintRec;

PixmapRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp;
delta: Point.T;
pm: Pixmap
END;
PixmapPtr = UNTRACED REF PixmapRec;
TexturePtr = PixmapPtr;

ScrollRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp;
delta: Point.T;
END;
ScrollPtr = UNTRACED REF ScrollRec;

Itisillegal foraScrollRec to be directly followed in a batch byRepeat command.

TrapRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp;
delta: Point.T;
pm: Pixmap;
pl, p2: Point.T;
ml, m2: Trapezoid.Rational;
END;
TrapPtr = UNTRACED REF TrapRec;

If tr isaTrapRec ,thentr.pl andtr.p2 are points that are on the extensions of
the west and east edges of the trapezoid,tand andtr.m2 are the slopes of the
west and east edges. The slopes are giveidelsa v) / (delta h) . A zero
denominator represents an infinite slope; i.e., a vertical edge. A zero numerator is
illegal.

10.3 The PaintPrivate interface 137

The entries that are not fixed-size are pseudo-subtypéar&zRec , which contains
asize field with the number ofWord.T ’sin the entire entry.

VarSzRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp;
szOfRec: INTEGER;
END;
VarSzPtr = UNTRACED REF VarSzRec;

PaintText andPaintSub operations result in the following entry type, in which
commandwill equal TextCom:

TextRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp;
szOfRec: INTEGER;
byteOrder: PackedByteOrder;
clipped: BITS BITSIZE(Word.T) FOR BOOLEAN;
refpt: Point.T;
fnt: Font;
txtsz, disz: INTEGER;

(* dl: ARRAY [0..dIsz-1] OF VBT.Displacement *)
(* chars: ARRAY [0..txtsz-1] OF CHAR *)
END;

TextPtr = UNTRACED REF TextRec;

In a TextRec , the booleartlipped must be set iboundingbox(text) is not

a subset of the batchddip . A TextRec can be directly followed in a batch by a
Repeat onlyif clipped isSTRUEThedl andchars fields are declared in comments
since Modula-3 does not allow a record to contain a variable-sized array; they must
be accessed using address arithmetic. chaes field will be padded out so that the
TextRec ends on a word boundary.

ThebyteOrder field defines the byteorder of the characters. (Since paint batches can
be transported across address spaces and merged, the byte order could be different for
different records in a paint batch.)

ExtensionRec = RECORD
command: PackedCommand;
clip: Rect.T;
op: PaintOp;
szOfRec: INTEGER;

138 10 IMPLEMENTING YOUR OWN PAINTING PROCEDURES

delta: Point.T;

pm: Pixmap;

fnt: Font;

subCommand: INTEGER;

(* extensionData: ARRAY OF CHAR *)

END;
ExtensionPtr = UNTRACED REF ExtensionRec;

An ExtensionRec canbe usedtoimplement painting operations that exploit rendering
primitives that may be available on some particular implementation. Extension
commands get RaintOp , adelta , apm and afnt “for free”; they can also put
whatever data they need into the rest of the extension data part of the record. The field
szOfRec is the number o¥Word.Ts in the extension record, including the extension
data. When alixtensionRec istranslated, it'slip anddelta fields are translated
automatically; its extension data is unaffected.

PROCEDURE CommandLength(p: CommandPtr): INTEGER;
Return the length in words of the command emtry

END PaintPrivate.

139

11 Miscellaneous interfaces
11.1 The VBTTuning interface

This interface defines values that can be changed to maximize Trestle’'s performance
on particular systems.

INTERFACE VBTTuning;
IMPORT Word;

CONST
BatchSize: CARDINAL = 325;
BatchLatency: CARDINAL = 50000;
HVParlim: CARDINAL = 100000;
ZParlim: CARDINAL = 100000;
ResumeLength: CARDINAL = 1;
CombineLimit: CARDINAL
= (BatchSize * ADRSIZE(Word.T)) DIV 2;

The valueBatchSize is the number oWord.T 'sin a standard painting batch.

The valueBatchLatency is the number of microseconds before a paint batch is
automatically forced.

The valuesHVParlim and ZParlim are the default minimum child areas (in
pixels) for whichZzSplit and HVSplit will fork separate repaint or reshaping
threads.

Resumelength is the size that a queue of paint batches must shrink to before a
cross-address space filter will unblock a thread that painted into an overfull queue. It
must be at least 1.

The valueCombineLimit is the number of addressable units (e.g., bytes) in a
batch beyond which Trestle will not consider combining another batch into it.

END VBTTuning.

11.2 The TrestleComm interface

INTERFACE TrestleComm;

EXCEPTION Failure;
Raised when communication to the window server fails.

END TrestleComm.

140 12 HISTORY AND ACKNOWLEDGMENTS

12 History and Acknowledgments

“There are lots of interesting problems in window systems”, said Butler Lampson to
Greg Nelson in April, 1984; and he was right. Nelson was enticed into the design
meetings for the new window system for the Firefly multiprocessor at SRC. In 1984
most of the discussions were about what came to be called the event-time protocol, and
besides Lampson and Nelson the main participants were Mark R. Brown, Jim Horning,
and Lyle Ramshaw. Mark Brown and Greg Nelson wrote the first version of the VBT
interface.

Mark Manasse joined SRC in 1985, and he and Nelson finished the design and
implementation of the first version of Trestle (then called Trellis), which they shipped
for use at SRC on December 315935.

Trestle evolved for five years, improving under feedback from the projects that built
upon it, notably Luca Cardelli’'s Dialog Editor, Mark R. Brown'’s Ivy text editor, Marc
H. Brown’s FormsVBT system, Patrick Chan’s session manager Rooms, and a number
of applications built by Andrew Birrell. Bob Ayers’s Facade system spurred the Trestle
team into performance work that otherwise might never have been undertaken.

In 1990 and 1991, Steve Glassman, Mark Manasse, and Greg Nelson overhauled
Trestle to make it into the portable Modula-3 X toolkit described in this reference
manual. We are grateful to the Modula-3 export sites that used the alpha-test version
of the system released in January 1991; special thanks for the helpful feedback from
Dave Goldberg, Norman Ramsey, Jim Meehan, and Marc H. Brown. Finally, we thank
Patrick Chan, James Mason, and Jim Horning, who carefully read the entire reference
manual and made many helpful suggestions.

REFERENCES 141

References

[1] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and
Greg Nelson. Modula-3 Report (revised). Research Report 52, Digital Systems
Research Center, November 1989.

[2] Sam Harbison.Programming with Modula-3 Prentice Hall, Englewood Cliffs,
New Jersey, 1991.

[3] Adobe Systems IncorporatefostScript Language Reference Manuatidison-
Wesley, 1985.

[4] Greg Nelson, editor. Systems Programming with Modula-3Prentice Hall,
Englewood Cliffs, New Jersey, 1991.

[5] Robert W. Scheifler, James Gettys, and Ron NewmakVindow System, 2nd ed.
Digital Press, 1990.

[6] CharlesP. Thacker and Lawrence C. Stewart. Firefly: a multiprocessor workstation.
IEEE Transactions on Computef?7(8):909-920, August 1988.

142 REFERENCES

Index

Acquire Bg

in VBTClass , 128 in PaintOp , 75

in VBT, 32 BgBg
Add in PaintOp , 76

in Point , 104 BgFg

in Rect , 108 in PaintOp , 76

in Region , 111 BgSwap
AddChild in PaintOp , 76

in Split ,47 BgTransparent
AddChildArray in PaintOp , 76

in Split ,46 bitmaps, introduced, 4
AddHV BitOp

in Region , 111 in ScrnPaintOp
Adjust BorderedVBT interface60-61

in HVSplit ,56 BoundingBox
AllCeded in Region , 111

in Trestle ,43 in ScrnFont , 98
Altitude BoundingBoxSub

in ZSplit , 49 in ScrnFont , 98
AnchorBtnVBT interface,69-70 Builtln
AnyMatch in Font , 81

in ScrnFont , 97 Button
AnyValue in VBT, 11

in ScrnFont , 97 Buttons
Attach in VBT, 11

in Trestle ,41 ButtonVBT interface 65-66
AvailSize BW

in HVSplit ,56 in Cursor ,79
AwaitDelete in PaintOp , 77

in Trestle , 40 ByteOrder
Axis interface, 104 in PaintPrivate ,134
AXxisOf in ScrnPixmap , 92

in HVSplit ,55 ByteSwap

in PackSplit ,58 in BatchUtil ,133
bad region, 19, 21 Cage
batch (of painting commands), 29 in VBTClass , 125
Batch interface, 132 in VBT, 14
BatchUtil interface,132-134 CageFromPosition
BeginGroup in VBT, 15

in VBT, 29 CageFromRect

143

144

in VBT, 15
cages (for cursor tracking), 14
CageType

in VBTClass , 125
Capture

in Trestle ,43

in VBT, 30
CARDINAL

in VBTTuning , 139
Center

in Interval , 107

in Rect , 109
Ch

in ZSplit ,52
ChainedReshape

in ZSplit ,52
ChainReshapeControl

in ZSplit ,52
ChainSet

in ZSplit ,52
Change

in Interval ,106
CharMetric

in ScrnFont , 98
CharMetrics

in ScrnFont , 98
Child

in Filter , 60

in ProperSplit ,130
ClearNewShape

in VBTClass , 126
ClearShortCircuit

in VBTClass , 125
Clip

in Batchutil ,133
ClipState

in BatchUtil ,133
Close

in Path , 114
ColorQuad

in PaintOp , 78
ColorScheme

in PaintOp ,78
CommandLength

INDEX

in PaintPrivate ,138

CommandPtr

in PaintPrivate ,135
CommandRec

in PaintPrivate ,135
ComSize

in PaintPrivate ,135
Congruent

in Rect , 110
Connect

in Trestle ,44
Cons

in HVSplit , 55

in TSplit , 59
ConsArray

in HVSplit , 56

ConstructPlanewiseOp

in ScrnPaintOp , 87
coordinate system of a VBT, 2
coordinate system of screen, 1

coordinate translation from parent to

child, 2

Copy

in BatchUtil ,132

in PaintOp , 75

in Path , 115
Cube

in ScrnColorMap , 102
CurrentPoint

in Path , 114
cursor, 1
Cursor interface,79-80
cursor shape, how to change, 30
CursorClosure

in Palette , 82
CursorPosition

in VBT, 11
cursor tracking, 14
CurveTo

in Path , 114
cut buffer, 2

Decorate
in Trestle , 40

INDEX

Default

in BorderedVBT , 61
DefaultShape

in VBT, 37
DefaultSize

in HVBar, 74
Delete

in ProperSplit ,131

in Split , 46

in Trestle , 40
DeltaH

in VBT, 27
Detach

in VBTClass , 128
Difference

in Region , 112
Discard

in VBT, 38
discard method, 38
Displacement

in VBT, 27
DistSquare

in Point , 105
Div

in Point , 105
Domain

in VBT, 8
DontCare

in Cursor , 79

Empty

in Interval ,106

in Pixmap , 80

in Rect , 107

in Region , 110
EmptyCage

in VBT, 14
EndGroup

in VBT, 29
EndStyle

in VBT, 24
Entry

in ScrnColorMap , 102
Equal

in Region , 112
ErrorCode
in VBT, 31

event time protocol, introduced, 4

EverywhereCage

in VBT, 14
exposed region, 19, 21
ExtensionPtr

in PaintPrivate ,138
ExtensionRec

in PaintPrivate ,137

Factor

in Rect , 109
FeasibleRange

in HVSplit ,56
Fg

in PaintOp , 75
FgBg

in PaintOp , 76
FgFg

in PaintOp , 76
FgSwap

in PaintOp , 76
FgTransparent

in PaintOp , 76
Fill

in VBT, 24
filter, 2
Filter interface, 60
FilterClass interface, 129
Find

in HighlightvBT , 63
FixedSzCommand

in PaintPrivate ,134
Flatten

in Path , 115
Font

in PaintPrivate ,134
Font interface, 81
FontClosure

in Palette , 82
fonts, introduced, 4
ForceEscape

146

in VBTClass , 127
ForceRepaint

in VBTClass , 127

in VBT, 20
Forge

in VBTClass , 129

in VBT, 34
Free

in Batch , 132
FromAbsBounds

in Interval ,106
FromAbsEdges

in Rect , 107
FromBitmap

in Pixmap , 81
FromBound

in Interval ,106
FromBounds

in Interval ,106
FromCorner

in Rect , 108
FromCorners

in Rect , 108
FromEdges

in Rect , 107
FromFontClosure

in Palette , 83
FromHV

in RigidVBT , 62
FromName

in Cursor , 80

in Font , 81
FromOpClosure

in Palette , 82
FromPoint

in Rect , 108

in Region , 111
FromRaw

in Cursor , 80
FromRect

in Region , 111
FromRects

in Region , 111
FromRef

in VBT, 35

FromRGB

in PaintOp , 77

FromSize

Full

inInterval , 106
in Rect , 108

in Rect , 107
in Region , 111

INDEX

geometry interfaces, irdduced, 4

Get

in AnchorBtnVBT , 70
in BorderedVBT ,61
in HighlightvBT , 64
in PackSplit ,58

in TextVBT , 72

in TextureVBT ,73

GetBadRegion

in VBTClass , 126

GetClip

in BatchUtil ,133

GetClipState

in BatchUtil ,133

GetCurrent

in TSplit , 59

GetCursor

in VBTClass , 125

GetDecoration

in Trestle ,41

GetDomain

inzSplit , 50

GetFont

in TextVBT , 72

GetLength

in BatchUtil ,132

GetMiscCodeType

in VBT, 33

GetParent

in AnchorBtnVBT , 69

GetParentDomain

inzSplit , 51

GetProp

in VBTClass , 125

INDEX

in VBT, 38
GetQuad

in TextVBT , 72
GetScreens

in Trestle ,43
GetSelection

in VBT, 31
GetShape

in VBTClass , 128
GetShapes

in VBTClass , 128
GetTextRect

in TextVBT , 72
GoneCage

in VBT, 14
Gray

in Pixmap , 80

HasNewShape

in VBTClass , 126
HGap

in PackSplit ,58
HighlightvBT interface,63—64
HorSize

in Rect , 109
HVBar interface, 74
HVSplit interface 54-56

ICCCM, 1
Iconize
in Trestle ,41
Index
in Split ,46
Init
in Palette , 83
init method, rules for calling, 48
InOut
in VBT, 14
input or keyboard focus, 31
Insert
in ProperSplit ,130
in Split ,46
in ZSplit , 49
InsertAfter

in ZSplit ,48
InsertAt

in ZSplit ,49
Inset

in Interval ,106

in Rect , 108

in Region , 111
InsideCage

in VBT, 14
Install

in Trestle ,39
installing a top level window, 2
InstallOffscreen

in Trestle ,42
Interval interface, 105-107
Invert

in HighlightvBT , 64
IsActive

in AnchorBtnVBT , 70
IsClosed

in Path , 114
ISEmpty

in Interval , 107

in Path , 114

in Rect , 110

in Region , 112
IsMapped

in ZSplit ,50
IsMarked

in VBT, 18
IsRect

in Region , 113

Join

in Interval ,106

in Rect , 108

in Region , 112
JoinRect

in Region , 112
JoinRegions

in Region , 112
JoinStyle

in VBT, 24

147

148 INDEX

Key in Rect , 109

in VBTClass , 127 in Region , 112
key method, 16 MeetRect
keyboard focus, 31 in Region , 112
keyboard focus, introduced, 3 Member
KeyRec inInterval , 107

in VBT, 16 inRect , 110
KeySym in Region , 113

in VBT, 17 MenuBar

in ButtonVBT , 66

Leaf MenuBtnVBT interface 67—68

in VBT, 10 Metrics
leaf VBT, introduced, 1 in ScrnFont , 99
Lift Middle

in ZSplit ,50 inInterval ,106
Line in Rect , 109

in VBT, 25 Min
LineTo in Point , 105

in Path , 114 Misc
LL (Locking Level), 8 in VBTClass , 127
Locate misc method, 32

in Split , 46 MiscCodeDetail
LocateChanged in VBT, 33

in VBTClass , 123 MiscCodeType

in VBT, 33

MakeColorQuad MiscCodeTypeName

in PaintOp ,78 in VBT, 33
MakeColorScheme MiscRec

in PaintOp ,78 in VBT, 32
Map MMToPixels

in Path , 115 in VBT, 10

in ZSplit ,50 Mod
MapObject inInterval , 106

in Path , 115 in Point , 105
Mark in Rect , 110

in VBT, 18 Mode
marking for redisplay, 17 in PaintOp , 77
Max in ScrnColorMap , 102

in Point , 105 Modifier
MaxSubset in VBT, 11

in Region ,112 Modifiers
Meet in VBT, 11

in BatchUtil ,133 Mouse

in Interval ,106 in VBTClass , 127

INDEX

mouse, 1
MouseRec
in VBT, 12
mouse focus, 13
Move
in Interval ,106
in ProperSplit ,131

in Split , 46

in ZSplit , 49
MoveH

in Point , 105
MoveHV

in Point , 105
MoveNear

in Trestle ,41
MoveTo

in Path , 114
MoveV

in Point , 105
Mul

in Point , 104
New

in AnchorBtnVBT , 69

in Batch , 132

in BorderedVBT , 61

in ButtonVBT , 66

in HVBar, 74

in HVSplit ,55

in HighlightvBT , 63

in MenuBtnVBT, 67

in PackSplit ,58

in QuickBtnVBT , 67

in RigidVBT , 62

in TextvBT , 71

in TextureVBT ,73

in TranslateVBT , 65

in ZSplit ,48
NewRaw

in ScrnPixmap , 91
NewShape

in VBT, 37
NorthEast

in Rect , 109

149

NorthWest

in Rect , 109
NotReady

in Cursor ,79
Nth

in Split ,45
NullDetail

in VBT, 33
NumChildren

in Split ,45

OpClosure

in Palette , 82
Oracle

in ScrnColorMap , 100

in ScrnCursor , 88

in ScrnFont , 94

in ScrnPaintOp , 85

in ScrnPixmap , 90
Origin

in Point ,104
Other

in Axis , 104
Outside

in VBT, 15
Overlap

in Interval , 107

in Rect , 110

in Region , 113

in Trestle ,41
OverlapRect

in Region , 113

PackedByteOrder

in PaintPrivate ,134
PackedCommand

in PaintPrivate ,134
PackSplit interface 57-58
paint batch, 29
PaintBatch

in VBTClass , 129
PaintCommand

in PaintPrivate ,134
painting operation code, introduced, 4

150

PaintOp

in PaintPrivate ,134
PaintOp interface,75-78
PaintPixmap

in VBT, 26
PaintPrivate interface,134-138
PaintPtr

in PaintPrivate ,136
PaintRec

in PaintPrivate ,135
PaintRegion

in VBT, 24
PaintScrnPixmap

in VBT, 26
PaintSub

in VBT, 29
PaintText

in VBT, 27
PaintTexture

in VBT, 22
PaintTint

in VBT, 23
PaintTrapezoid

in VBT, 24
Pair

in PaintOp ,77
palette, 83
Palette interface82—-83
Parent

in VBT, 10
parent VBT, introduced, 1
Partition

in Rect , 109
Path interface,113-115
Pixel

in ScrnColorMap ,102

in ScrnPaintOp , 85

in ScrnPixmap , 92
Pixmap

in PaintPrivate ,134
Pixmap interface,80-81
PixmapClosure

in Palette , 82
PixmapDomain

INDEX

in VBT, 26
PixmapPtr

in PaintPrivate ,136
PixmapRec

in PaintPrivate ,136
pixmaps, introduced, 4
Place

in Region , 112
PlaceAxis

in Region , 111
PlaneWiseOracle

in ScrnPaintOp , 86
Point interface,104-105
pointing device, 1
PolyTexture

in VBT, 23
PolyTint

in VBT, 23
Position

in VBTClass , 127
PositionRec

in VBT, 13
Pred

in Split ,45
Predefined

in Cursor , 79

in Font , 81

in PaintOp , 75

in Pixmap , 80
Prefix

in VBTClass , 120

in VBT, 7
Prelnsert

in ProperSplit ,130
Primary

in ScrnColorMap , 102
Private

in HVSplit , 54

in PackSplit ,57

in ScrnColorMap , 101

in ScrnCursor , 88

in ScrnFont , 95

in ScrnPaintOp , 85

in ScrnPixmap , 90

INDEX 151

in TSplit ,59 race conditions in the user interface, 3
in ZSplit , 47 Ramp
Proc in ScrnColorMap , 102
in ButtonVBT , 66 Rational
Project in Trapezoid ,116
in Interval ,106 Raw
in Rect , 109 in Cursor ,79
proper split, 2 in Pixmap , 81
ProperSplit interface,130-131 in ScrnCursor , 88
property set, of window, 37 in ScrnPixmap , 90
Public Read
in AnchorBtnVBT , 69 in VBT, 35
in BorderedVBT , 61 read method, 36
in ButtonVBT , 65 reading a selection (introduction), 3
in FilterClass 129 reading the screen, 30
in Filter , 60 Ready
in HVBar, 74 in VBT, 35
in HVSplit , 55 Rect interface,107-110
in HighlightVBT , 63 Redisplay
in PackSpIit 57 in VBTClass , 127

redisplay method, 17

inP Split ,130 e
N rroperspl Region interface,110-113

in RigidVBT , 62

. Release
in ScreenType , 84)
! P in VBTClass , 128
in ScrnColorMap , 101 .
. in VBT, 32
in ScrnCursor , 89
in ScrnFont , 97 RemProp
. L in VBTClass , 125
in ScrnPaintOp , 87 .
.) in VBT, 38
in ScrnPixmap , 91 .
Repaint

in TSplit , 59
in TextvBT , 71
in TextureVBT ,72

in VBTClass , 127
repaint method, 19

: RepeatPtr

in VBTClass , 121 in PaintPrivate , 135

in VBT, 7 Replace

inZSplit , 47 in Filter , 60
Put _ in Split ,46

in TextVBT ,72 Rescreen

in VBTClass , 128 in VBTClass , 126

in VBT, 34 rescreen method, 19
PutProp RescreenRec

in VBTClass , 125 in VBT, 19

in VBT, 38 Reset

in Path , 114

QuickBtnVBT interface, 67 Reshape

152 INDEX

in VBTClass , 126 screentypes, introduced, 5

reshape method, 18 ScrnColorMap interface, 100-103
ReshapeControl ScrnCursor interface,88—89
in ZSplit ,51 ScrnFont interface 94-100
ReshapeRec ScrnPaintOp interface 85-88
in VBT, 18 ScrnPixmap interface 90-94
ResolveCursor Scroll
in Palette , 83 in VBT, 21
ResolveFont ScrollPtr
in Palette , 83 in PaintPrivate ,136
ResolveOp ScrollRec
in Palette , 83 in PaintPrivate ,136
ResolvePixmap Selection
in Palette , 83 in VBT, 31
resources, introduced, 4 SelectionName
RGB in VBT, 31

in Cursor ,79
in ScrnColorMap ,102
RigidVBT interface, 62

Scale

in Point , 105
ScaledReshape

in ZSplit ,53
Screen

in Trestle ,43
ScreenArray

in Trestle ,43
ScreenlD

in Trestle ,42

in VBT, 11, 14
ScreenOf

in Trestle ,42
ScreenOfRec

in Trestle ,42
ScreenType

in VBT, 9
ScreenType interface, 84
ScreenTypeOf

in VBT, 10
ScreenTypePublic

in VBT, 9

ScreenTypeResolution
in ScrnFont , 97

selections, introduced, 2
Set

in AnchorBtnVBT , 69

in PackSplit ,58

in TextureVBT ,73
SetCage

in VBTClass , 128

in VBT, 15
SetColor

in BorderedVBT ,61
SetCurrent

in TSplit , 59
SetCursor

in VBTClass , 128

in VBT, 30
SetFont

in TextVBT , 72
SetParent

in AnchorBtnVBT , 69
SetRect

in HighlightvBT , 64
SetReshapeControl

inZSplit ,51
SetShortCircuit

in VBTClass , 125
SetSize

in BorderedVBT ,61
SetTexture

INDEX

in HighlightvBT , 64
Shape

in RigidVBT , 62
Size

in Interval , 106
SizeRange

in RigidVBT , 62

in VBT, 37
Slant

in ScrnFont , 96
Solid

in Pixmap , 80
source selection, 31
SouthEast

in Rect , 109
SouthWest

in Rect , 109
Spacing

in ScrnFont , 96
Split

in VBT, 10
Split interface 45-47
split VBT, introduced, 1
Strike

in ScrnFont , 98
StrikeFont

in ScrnFont , 98
StrikeOracle

in ScrnFont , 97
Stroke

in VBT, 25
Sub

in Point , 104

in Rect , 108

in Region , 111
Subset

in Interval , 107

in Rect , 110

in Region , 113
SubsetRect

in Region , 113
Succ

in BatchUtil ,134

in Split ,45

Swap

in PaintOp , 75
SwapBg

in PaintOp , 76
SwapFg

in PaintOp , 76
SwapPair

in PaintOp , 78
SwapSwap

in PaintOp , 76
SwapTransparent

in PaintOp , 76
SymmetricDifference

in Region , 112
Sync

in VBT, 29

target selection, 31
Textltem

in MenuBtnVBT, 67
TextPointer

in Cursor ,79

TextPtr

in PaintPrivate ,137
TextRec

in PaintPrivate ,137
TexturePtr

in PaintPrivate ,136
textures, introduced, 4

TextureVBT interface,72-73

TextVBT interface,71-72

TextWidth

in ScrnFont , 98
TickTime

in Trestle ,44
Tighten

in BatchUtil ,133

153

time interval between events, 11

TimeStamp

in VBT, 11
TintPtr

in PaintPrivate ,136
TintRec

in PaintPrivate ,136

154

top level window, 2

ToRects

in Region , 111
Translate

in BatchUtil ,133

in Path , 115
TranslateVBT interface, 65
Transparent

in PaintOp , 75
TransparentBg

in PaintOp , 76
TransparentFg

in PaintOp , 76
TransparentSwap

in PaintOp , 76
TransparentTransparent

in PaintOp , 76
Transpose

in Point , 105

in Rect , 108
Trapezoid interface, 116
TrapPtr

in PaintPrivate ,136
TrapRec

in PaintPrivate ,136

Trestle abstraction, introduced, 1

Trestle interface,39-44
TrestleComm interface, 139
TSplit interface, 59

Unmap

in ZSplit ,50
Unmark

in VBT, 18

Value

in VBT, 35
VarSzPtr

in PaintPrivate ,137
VarSzRec

in PaintPrivate ,137
VBT abstraction, introduced, 1
VBTinterface,/—38
VBTCageType

INDEX

in VBTClass , 125
VBTClass interface,120-129
VBTTuning interface, 139
VerSize

in Rect , 109
VGap

in PackSplit ,58

WindingCondition
in VBT, 24
Write
in VBT, 36
write method, 36
writing a selection (introduction), 3
WS
in PaintPrivate ,135

Xlib, 1

ZSplit interface 47-53

	Abstract
	Contents
	1 Introduction
	2 The VBT interface
	3 The Trestle interface
	4 Splits
	5 Filters
	6 Some useful Leaf VBTs
	7 Resources
	8 Geometry interfaces
	9 Implementing your own splits
	10 Implementing your own painting procedures
	11 Miscellaneous interfaces
	12 History and Acknowledgments
	References
	Index

