75

Zeus. A System for Algorithm
Animation and Multi-View Editing

Marc H. Brown

February 14, 1992

Systems Research Center

DEC's business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting its first research scientistsin 1984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technol ogy, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real

systemssothat we caninvestigatetheir propertiesfully. Complex systemscannot be
evaluated solely in the abstract. Based on thisbelief, our strategy isto demonstrate
thetechnical and practical feasibility of our ideas by building prototypes and using
them as daily tools. The experience we gain is useful in the short term in enabling
ustorefine our designs, and invaluablein thelong termin hel ping usto advance the
state of knowledgeabout those systems. M ost of themajor advancesininformation
systems have come through this strategy, including time-sharing, the ArpaNet, and
distributed personal computing.

SRC & so performs work of a more mathematical flavor which complements our
systemsresearch. Some of thiswork isin established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of thiswork explores new ground motivated by problems
that arise in our systems research.

DEC hasastrong commitment to communi cating the results and experience gained
through pursuing these activities. The Company val uestheimproved understanding
that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director

©Digital Equipment Corporation 1992

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in wholeor in part without payment of feeis granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individua contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shal require a license with payment of fee
to the Systems Research Center. All rights reserved.

Abstract

Algorithm animation is a form of program visualization that is concerned with
dynamic and interactive graphical displaysof aprogram’s fundamental operations.
This paper describes the Zeus algorithm animation system. Zeus is noteworthy
for its use of abjects, strong-typing, and parallelism. Also of interest is how the
system can be used for building multi-view editors.

Review by Jim Meehan

In many applications, it is at least asimportant to observe a program’s progress as
it isto obtain afina result, if indeed there is any. The Zeus system described in
this paper provides support for watching and hearing a program in action, through
severa different views. The programmer animating an application provides a
description of the application’sfundamental operations, called “interesting events.”
Whenever an interesting event occurs, each view updatesitsvisua or aural display
appropriately. The Zeus system exploits Modula’'s object-inheritance, lightweight
threads, and compile-time type-checking, so the programmer can take advantage
of the predefined classes and methods to construct a sophisticated and efficient
animation quickly and easily.

1 Introduction

Algorithm animation systemsprovidefacilitiesfor usersto view andinteract withan
animated display of an algorithm, and for programmersto devel op such animations.
For users, the system provides ways to control the data given to agorithms, the
ensemble of views, and the execution of algorithms. For programmers, the system
provides support to make producing an animation of an algorithm almost as easy
as producing atextual trace of it.

The common approach to animating algorithms specified in high-level proce-
dural languages was pioneered in BALSA [4]. Briefly, the approach is as follows:
An algorithm is annotated with markers that identify its fundamental operations
that are to be displayed. These annotations, caled interesting events, can have
parameters that typically identify program data. Each view controls some screen
real estate and is notified when an event happens in the algorithm. A view is
responsible for updating its graphical display appropriately based on the event.
Views can aso propagate information from the user back to the algorithm.

This paper describes the Zeus algorithm animation system. We began devel-
oping the system in the summer of 1988, and the system has been stable and in
use for the last three years. In addition to animating algorithms from the domains
of computational geometry, operating systems, hardware design, distributed span-
ning trees, and communication protocols, Zeus is the conceptual framework for
FormsEdit, a multi-view editor for building graphical user interfaces [1]. Zeusis
noteworthy for its use of objects, strong-typing, and paralelism. Also, Zeus has
allowed us to explore the use of color and sound, previously uncharted areas in
algorithm animation[3]. A videotape of some algorithm animationsthat have been
developed using Zeusis available [5].

All client code (as well as the system itself) is implemented in an in-house
dialect of Modula-2, tail ored for building | arge, i ntegrated, obj ect-based, concurrent
programs. However, since that language is not distributed, we shall, for the sake
of illustration, present the examplesin Modula-3[7, 9].

The next section describes the facilities that Zeus offers to a user. Following
that, we describe how a programmer views the system and we give an example of
how an algorithm and aview are actually coded using Zeus. Next, we present the
essentials of the system implementation. The fina section describes how Zeus can
be used for building multi-view editors.

2 TheUser’s Perspective

When the user invokesaZeus application, the control panel showninFig. 1 appears
in awindow on the screen. The control panel providesthe user with configuration
and interpretive facilities.

The configuration facilities let the user select which agorithm to run, which
views to open, and which data to give to the selected algorithm. Each view
will appear in its own window, which is installed into the workstation’s window
manager. The contents of the Data subwindow are specific to each agorithm, and
Zeus provides many defaults for giving data. Other configuration facilities et the
user write a snapshot of the state of the system to afile (e.g., the locations of view
windows, data values for the selected algorithm), and restore the system from a
previously created snapshot.

The interpretive facilities allow starting, stopping, and single-stepping an a-
gorithm. The user can aso control the speed of theanimation. Zeus's “interpreter”
is special-purpose and works in terms of the interesting events generated by the
algorithm. For instance, the user's command to single-step causes Zeus to alow
the algorithm to advance until the next event is generated.

By intention, Zeus's runtime facilities are minimal. The specific features we
chose to implement are those we felt would be most important for our expected
users, based on our experiences using BALSA and BALSA-I [2], where consid-
erable effort was devoted to the user interface. For instance, had we expected that
Zeus would be used in a classroom setting, as the BALSA systemswere, then we
would have implemented “scripts’: high-level recordings of a user’s session that
can bereplayed.

2.1 Utility Views

A novel feature of Zeus is that it can generate some utility views automatically
based on the set of interesting events that the agorithm generates. Two of these
views appear in the animation of Selection sort shown in Fig. 2.

The Transcript view contains a typescript that displays each interesting event
as a symbolic-expression as it is generated. Actually, the editable part of the
typescript contains a Lisp “read-eval-print” loop, with preloaded functions whose
names are the events. When a function is invoked, the system behaves as if the
algorithm or aview had caused the event to be generated.

A second view that Zeus provides automatically isthe Control Panel. Thisview

BA via Coordinated Traversal

Figure 1: The Zeus control panel.

has buttons corresponding to each interesting event, with appropriate graphical
widgets for specifying each parameter. Clicking on a button causes an event to be
generated with the specified parameter values.

These views have proven to be extremely valuable for debugging both ago-
rithms and views. Indeed, one can develop (and debug) aview before — and even
without ever — implementing an agorithm!

3 The Programmer’s Per spective

To a programmer, Zeus can be thought of as a domain-independent framework for
associating multiple client-defined views with a set of client-defined interesting
events, generated by a client program called the algorithm. Each view is an
animated picture portraying the events as they are generated by the algorithm.

For example, the canonical view of a sorting agorithm (see Fig. 2) shows
the elements being sorted as a row of sticks, where the height of each stick is
proportional to the value of the corresponding element in the array. When the
algorithm exchanges the values of two array elements, and it generates the event
“exchange” In response to the exchange interesting event, the view changes the
height of the sticks corresponding to the two array elements being swapped.

3.1 Interesting Events

Interesting events are specified as procedure signatures. Zeus's preprocessor,
Zume, reads a file containing event specifications and generates definitions of a-
gorithm and view classes (we' |l usetheterms*” class’ and “object” interchangeably).
Zume also generates the utility views described in Section 2.1, and procedures for
dispatching events between algorithms and views, as we shall see.

Toafirst approximation, aview object isasubclassof awindow, with additional
methods to process events generated by the algorithm. Similarly, an agorithm is
a window subclass (typically never seen on the screen) with additional methods
to process events that views may generate. Recall, that aview typically generates
events in response to a user gesture. Actualy, views and agorithms are both sub-
classes of aZeus class—awindow that has been subclassed to support agorithm
animation and multi-view editing.

Hereisthefile of event specifications that many elementary sequentia sorting
algorithms use:

Sticks

- Transcript -

119 57}
123 08)
67 59}
o7 B0y
138 61}
143 62)

Figure 2: Animation of Selection sort.

EVENTS Sort;

ALGDATA
a: ARRAY [1..100] OF Key;
N: CARDI NAL;

QUTPUT I nit (N CARDI NAL);

QUTPUT Set Val (i:CARDI NAL; ol d: Key);
QUTPUT SwapElts (i,]: CARDI NAL);
FEEDBACK ChangeVal (i : CARDI NAL; new: Key) ;

The name following the keyword EVENTS is used for naming the objects and files
that Zume generates. The ALGDATA keyword specifies data fields for the sorting
algorithms class that will be generated. The keyword OQUTPUT indicates an event
that will flow from the algorithm to all views, and FEEDBACK is used for events
that flow from aview to an algorithm.

Here are the definitions, generated by Zume, of the procedures that dispatch
these events between algorithms and views:

| NTERFACE Sort | E;

PROCEDURE I nit (nme:SortAl g.T; N CARDI NAL);

PROCEDURE Set Val (me: SortAlg.T; i:CARDI NAL; ol d: Key);
PROCEDURE SwapElts (me: SortAlg.T; i,]j: CARDI NAL);
PROCEDURE ChangeVal (me: SortView. T; i:CARDI NAL; new: Key);

Theagorithmisannotated with callsto thefirst three routines, passing an identifier
of itself as the first parameter to each. When one of these procedures is called,
it invokes a method on each view that is designated to respond to the event. In
a similar way, views may be annotated with calls to ChangeVal , typically in
response to user gestures. The body of ChangeVal invokes the corresponding
method on the agorithm. The implementation of these dispatching routines is
discussed in Section 4.

The flow of events between the algorithm and views appearing in Fig. 2 isas
follows:

Control Panel
View

Transcript
View

Selection
Sort

SortlE

Sticks
View

Dots
View

AN

Output events flow from left to right; feedback events from right to left. Each
box represents a module: those in white are generated by Zume based on the
contents of the event specifications, whereas those in gray are implemented by a
programmer animating an algorithm. We'll look at the implementation of Seletion
sort in Section 3.3 and the Sticks view in Section 3.4. Theremainder of this section
describes the class hierarchy leading to the implementations of Seletion sort and
the Sticks view.

3.2 Basc Classes

The class hierarchy for the views and algorithmsin the animation of Selection sort
appearing in Fig. 2 isasfollows:

ROOT
Win|dow
Ze|us
Algorithm \ View
SortAlg SortView
SelectionSort ControlPanel Sticks Transcript

Dots

The ROOT object is part of the Modula-3 language; it is the basis of all objects.
The W ndow object isawindow that can be installed on a screen. The contents of
windows are maintained by W ndow subclasses. TheZeus classisawindow with
methods that Zeus needs for multi-view event processing. The Al gori t hmand
Vi ew subclasses are domain-independent; they are subclassed in domain-specific
ways. TheSort Al g and Sor t Vi ew subclasses are generated by Zume from the
specifications of the sorting eventswe saw in Section 3.1. Subclassesof Sor t Al g

are sorting agorithms that have been instrumented for animation; subclasses of
Sor t Vi ew are the views that are meaningful for displaying sorting algorithms.
Four such views appear in Fig. 2.

The definition of the Zeus classis as follows:

| NTERFACE Zeus;
TYPE T = Wndow. T OBJECT METHODS
init();
di spose();
startrun();
endrun();
configure(z: T; deleted: BOOLEAN);
shapshot (W.T);
restore(Rd. T);
END;

Thei ni t method is used to perform any initialization that must happen exactly
once—before any other use of a Zeus object. The di spose method is called
when the object is no longer needed. For instance, a view is no longer needed
when the view window is deleted by the user from the window manager; an
algorithm is no longer needed when the user changes which agorithm to run.
The di spose method should release any resources it has. The startrun
method is called whenever the user starts the algorithm; this is a handy way
for views to reinitialize their displays. The endr un method is called when the
algorithm finishes, possibly because the user explicitly aborted the execution using
the “Abort” button. The endr un method makesit easy for an agorithm to clean
up after itself, without concern for whether it terminated normally or prematurely
(viathe “Abort” button). The conf i gur e method is invoked whenever a view
is deleted or added. Occasionaly, it is useful for the algorithm or other views to
know which views are currently on the screen and available to the user. Finally,
thesnapshot andr est or e method are used to implement the snapshot facility
mentioned in Section 2.

The Al gori t hmclass is a subclass of the Zeus class with two additional
methods. Ther un isinvoked when the user starts an algorithm by clicking on the
“Go” button in the Zeus control panel. The dat a isinvoked when the user clicks
onthe“Data’ button in the control panel. Here is the definition:

| NTERFACE Al gorithm

TYPE T = Zeus. T OBJECT METHODS
run();
dat a();

END;

The r un method typicaly collects the data specified by the user and then starts
generating events. It iswhat one typically thinks of as “the algorithm.” The dat a
method typically displays a dialog that lets the user specify datato be given to the
algorithm. Examples of such dialogs appear in the Data subwindows in Figs. 1
and 2.

The methods that are inherited from the Zeus class have the following typical
behaviors: The i nit method fills in the initial values of the dialog, and the
di spose method releases al resources used by the data dialog or the algorithm.
The snapshot and r est or e methods cause the values of interactors in the
data dialog to be saved or restored. Thest art r un, endr un, and conf i gur e
methods do nothing. Finaly, keep in mind that although an algorithm is, by
inheritance, also awindow, it istypicaly not installed into the window manager.

The algorithm class Sort Al g, generated by Zume from the event file, is
a domain-specific subclass of Al gorit hm It contains data fields specified as
ALCGDATA information in the event specifications, and methods to process each
feedback event. Here isthe definition:

| NTERFACE Sort Al g;
TYPE T = Algorithm T OBJECT
a: ARRAY[1..100] OF Key;
N CARDI NAL;
VETHODS
f eChangeVal (i : CARDI NAL; new: Key);
END;

Thef eChangeVal methodwill beinvoked whenaview interpretsauser’ sgesture
to mean that the value of a key being sorted should change. The algorithm is not
told which view is initiating the change, because an agorithm’s response to a
message that a key’s value has changed is independent of the view in which the
user gestured.

Theimplementationof Sor t Al g would provide default methodsfor al of the
Al gor i t hmmethods. These methodswould support a dialog with ways to enter
a set of integers to be sorted.

The Vi ew class is simply a subclass of the Zeus class with no additional
methods:

| NTERFACE Vi ew;
TYPE T = Zeus. T OBJECT END;

10

Of the methodsinherited from theZeus class, only thesnapshot andr est or e
methods have interesting defaults. The default snapshot method records the
screen location of itswindow. Viewsthat allow user interaction to control viewing
parameters, that is, information that is not given to the algorithm but is local to
the view, must override the default snapshot method to also encode the current
parameters set by the user. Ther est or e procedure istheinverse of the snapshot
procedure.

Although the Vi ew and Zeus objects may appear to be equivaent, they are
not the same data typesin Modula-3. The Zeus system exploitsthe fact that it can
use language features to distinguish Vi ew from Al gor i t hm subclasses of the
Zeus class.

Theview classSor t Vi ew, generated by Zumefrom theevent file, isasubclass
of Vi ew, with additional methodsto process each output event:

| NTERFACE Sort Vi ew;

TYPE T = View. T OBJECT METHODS
oelnit (N CARDI NAL);
oeSet Val (i: CARDINAL; old: Key);
oeSwapElts (i, j: CARDI NAL);

END;

These methods will be invoked as the algorithm runs and events are generated.
Thus, aview is essentially a window with two additional sets of procedures.

One set is common to al Zeus views (i.e., the Zeus class), and the other set is

common to all views of aparticular algorithm (e.g., the Sor t Vi ew class).

3.3 Algorithms

Let's consider the elementary sorting agorithm Selection sort. It is a subclass
of the Sort Al g. T class we have examined, with ther un and f eChangeVal
methods overridden:

MODULE Sel ecti onSort;
TYPE T = SortAl g. T OBJECT OVERRI DES

run := Run;
f eChangeVal := FEChange;
END;

Ther un method can be copied amost verbatim from any textbook:

11

PROCEDURE Run(self: T) =
VAR m n: |INTEGER; t: Key;
BEG N
Get Dat a(sel f);
W TH a=sel f.a, N=self.N DO

FORi :=1 TON1 DO
mn:=i;
FORj :=i+1 TON DO
IF a[j] <a[mn] THEN mn :=j END
END;
t :=a[mn]; a[nmn] :=a[i]; a[i] :=t;
Sortl| E. SwapElts(self, i, mn);
END;
END;
END Run;

Thecal to Sort | E. SwapEl t s iswhat we referred to earlier as “annotation of
an agorithm with ‘interesting events.’ ” The call to Sort | E. SwapEl t s will
cause the oeSwapEl t s method on each view to be invoked in order to update
the displays; the actua implementation of Sor t | E. SwapEl t s is generated by
Zume.

The f eChangeVal method is aso instructive to examine. This method is
invoked whenever a view interprets a user gesture to change the value of a key.
This procedure changes the specified element, and then broadcaststo all viewsthat
akey’s value has been changed:

PROCEDURE FEChange(sel f: T;

view SortView T; i: CARDI NAL; new. Key) =
BEG N
WTH a=self.a, N=self.N, old=a[i] DO
a[i] := new,
Sortl E. SetVal (self, i, old);
END;

END FEChange;

(Inamulti-threaded environment such asZeus, it ispossiblethat FEChangeVal
will be called while the Run method is executing. Zeus simplifies client code by
following areader/writer locking scheme: aview may only generate an event when
it holds the write-lock, and the agorithm may not generate an event unlessit has
aread-lock. Note that this scheme alows a multi-threaded agorithm to generate
eventsin parallel.)

12

Of course, changing the value of data elements while a program is underway
may be a dicey proposition. It would certainly cause Selection sort to perform
incorrectly! On the other hand, editing the underlying data from within views is
the essence of multi-view editors, as we shall explorein Section 5.

3.4 Views

A difficult part of animating an algorithmiscreating views. (Overall, the hardest—
but most enjoyable—part is deciding what the view should ook and sound like in
order to convey interesting information!) Some systems, such as TANGO [10],
provide a powerful two-dimensional graphics package. TANGO and other systems
[6, 8] allow users to graphically demonstrate how views should ook and behave.

Zeus does not have any sophisticated graphics packages or specially built
graphical editors. However, Zeus does alow the a gorithm animator to graphically
demonstrate how aninstance of an object used by aview shouldlook, and doeshave
some rudimentary library procedures to interpolate changes of object parameters
over time. Theeditor for defining objectsisthe FormsV BT user-interface develop-
ment environment [1]. Although FormsVBT was originally designed for “dialog
boxes,” it is genera-purpose and completely (and very easily) extensible. Thus,
one can quickly incorporate new widgets that are appropriate as building blocks
for views. Fig. 3 shows aview from Fig. 4 being constructed using FormsVBT.

Another way that Zeus hel ps programmers create views stemsfrom the fact that
Zeus'sviewsare true objects. First, the standard types of behavior like saving state
and installing in the window system are provided by inheritance. Sophisticated
views can customize this behavior, whereas simple views need not be concerned at
all. The algorithm animation system does not dictate along list of rulesfor how a
view must behave, as do other systems. Second, itiseasy to subclass and compose
views. For example, in Fig. 4, the Back-to-Back Stem (All) view is composed of
seven instances of the same view.

Finaly, views can be programmed directly. For instance, the Sticks view in
Fig. 2 is coded by subtyping Sor t Vi ew and using the Rect sVBT window class
to maintain a collection of rectangles. Here is the definition of the St i cksVi ew
object that implements the the Sticks view:

13

FY Graphics: ODStats,fv)

Fi Resulb: HDStats,fv §
T TR

=

i Bk o i
Bk
Hin [Herus Cancel | [Find Position
THode
{ (Rim {Pen 10}
HBox
(WBox
{HBox {(Text (Width 50} (Hargin 42 RightAlign "Opt"}
(TextArea X0ptimalRatiol (Width 70)»
(Glue B)
Border
{Thermo {Color "Red"} ¢BgColor "White"}
AlptinalRatiol (Min 0.3 (Hax 3.023%
(Glue 42
{HBox {Text {MWidth 50} {Margin 4} RightAlign "Spin"}
(TextArea XRluaysSpinRatiol (Width 70)»
{Glue B)
Border
{Thermo {Color "Blue"r (BeColor "White":
#AlyausSpinRatio? (Min 0.2 (Max 3,300
(Glue 47
{HBox {Text {Width 50} {Margin 4} RightAlign "Block"}
iTextArea ZRluaysBlockRatiol (MWidth 7003
iGlue B2

Figure 3: Constructing a view graphically using a multi-view editor.

14

Back-to-hack Stem {(alll

: fi
i b

Figure 4. Multiple views of multiple algorithms.

15

TYPE SticksView = SortView T OBJECT
rects: RectsVBT. T,
OVERRI DES
init :=1nit;
oelnit := CElNit;
oeSet Val := OESet;
oeSwapElts : = CESwap;
END;

The |l ni t method creates a new Rect sVBT object, stores a handle to it in the
Sti cksVi ewaobject, andinstallsitintheSt i cksVi ewwindow. Thethreeevent
processing methods are straightforward calls to entry points in the Rect sVBT
module. Here is one of the events:

PROCEDURE OESwap(self: T; i,j: CARDINAL) =
BEG N
W TH a=Zeus. Get Al g(sel f).a DO
Rect sVBT. Set (sel f.rects, i, a[i], 0, i, i+l);
Rect sVBT. Set (sel f.rects, j, a[j], 0, j, j+1);
END
END CESwap;

The parametersto Rect sVBT. Set arethe handleto the window class, an unique
identifier of the rectangle, and its north, south, east and west coordinates.

It is safe for a view's method to access a sequentia agorithm’s data fields
because Zeus stops the current algorithm thread from running while an event isin
progress. A multi-threaded algorithm might have other threads modifying its data
fieldswhilean event in onethread isin progress, so viewsmust be careful to acquire
an appropriate lock from the algorithm before accessing the algorithm’s data
Another complication that arises in a multi-threaded window system (regardless
of whether or not the algorithm itself is multi-threaded) concerns repaint requests
issued by the window manager. The view, as a subclass of awindow, must handle
repaint requestswhenever issued. Theview’srepaint method must be careful either
to not use the algorithm’s data (since the algorithm may be running concurrently),
or coordinate alocking scheme with the algorithm.

16

4 System | mplementation

The Zeus system comprises the control panel, event-dispatching, and the default
methods for agorithm and view classes. We have already seen the gist of the
default algorithm and view classes.

Theimplementation of the configuration aspects of the control panel isstraight-
forward. Most of the commands (e.g., Snapshot) just invoke the appropriate Zeus
method (e.g., thesnapshot method) on the algorithm and current set of views.

The implementation of the control panel’s interpretive commands is tricky,
primarily because user commands happen asynchronously while the agorithm
is running. The “Go” button (hidden by the pull-down menu in Fig. 1) causes
the algorithm’s r un method to be invoked in a separate thread. This thread is
terminated when the user invokes the “Abort” button. The “Step” command is
implemented by setting the Zeus variable st epFl ag to betrue; this variable will
be checked by the event-dispatching code. The* Step” command also awakensthe
algorithm thread, in case it is currently stopped and must be advanced. Finadly,
whenever the program is stopped, the “Go” button is replaced by a “Resume”
button. The “Resume” button is implemented by awakening the algorithm thread,
but without setting the st epFl ag.

Zeus event-dispatching isimplemented by the bodies of the event procedures
generated by Zume. In the case of an event sent from the algorithm to the views,
the event forks a thread for each view, and the thread invokes the appropriate
method. After al views have completed, the message dispatcher returns to the
algorithm—unless the st epFl ag has been set. In that case, the flag is cleared,
and thea gorithm slegps until awakened astheresult of theuser issuinga“ Resume”
or “Step” command.

17

Here's pseudo-code of the SwapElts implemention:

PROCEDURE SwapElts(al g: SortAlg. T; i,j: CARDI NAL) =
BEG N
FOREACH vi ew I N Zeus. Get Vi ewLi st (al g) DO
FORK vi ew. oeSwapEl ts(i, j);
END;
wait for all threads to join
| F Zeus. st epFl ag THEN
Zeus. st epFl ag : = FALSE;
sl eep until awakened
END;
END SwapElts;

The actual code is slightly more complicated for two reasons. First, because user-
events can happen concurrently with event-dispatching, access to the list of views
and the step flag must be protected by alock. Second, if any of the forked view
methods raises an exception, this must be caught and reported back to the caller.
Unlike events in other event-based algorithm animation systems (notably
BALSA and TANGO), events in Zeus are strongly typed. This makesit isim-
possible for an agorithm to invoke an event with the wrong number or types of
parameters; likewise, it is impossible for a view to respond to an event without
retrieving the correct number and types of parameters. A discussion of the benefits
and costs of strong type-checking is beyond the scope of this paper, but after expe-
riencing both types of systems, we are strong proponents of strong type-checking.

4.1 Zume Preprocessor

The Zume preprocessor plays an important role in the Zeus system: it generates
class definitions, bodies of the event procedures, and various utility views.

It has been important that Zume be flexible in what it can generate. We
achieve flexibility by driving Zume from the file of event definitions and various
template files. A template file is expanded using the event procedure signatures.
For example, the actua template for an event is as follows:

18

MODULE #(_ALGNAME) | E;
#{
PROCEDURE #(_EVENT_) (
al g: #(_ALGNAME)Alg.T;
#(_ARGNAME) : #(_ARGTYPE) ; #])=
BEG N
FOREACH vi ew I N Zeus. Get Vi ewLi st (al g) DO
FORK vi ew. oe#(_EVENT_) (#[#(_ARGNAME), #]);
END;
wait for all threads to join
| F Zeus. st epFl ag THEN
Zeus. st epFl ag : = FALSE;
sl eep until awakened
END;
END #(_EVENT_);
#}
END #(_ALGNAMVE) | E.

Zume used this template, along with the file of sorting events, to generate the
body for SwapEl t s we saw above.

The initia version of Zume was written using Unix’s awk, sed, and trans (an
in-house, awk-like filter). The shell script was about 80 lines long and consisted
of about a dozen calls each to sed, awk, and trans.

Unfortunately, text manipulation of template files aoneis not rich enough to
generate the Control Panel view, because that view must know the base type of
each parameter in order to use atype-specific widget for displaying the parameter’s
value. Zume was subsequently reimplemented in Modulaand linked with the type
system of our existing compiler tools.

5 Multi-View Editing

Zeus can be used for building multi-view editors. In a multi-view editing system,
the “algorithm” maintains the data structures that are shared among al “views’
(i.e, theeditors). Each view interprets user gestures and initiates feedback events
to the agorithm; the agorithm updates the common data structures and sends
output events to all views. Each view, including the view in which the user
initiated the editing action, updatesitself in responseto the output events. Although
the agorithm’s r un method is never invoked, it is still important to maintain a

19

distinction between an “agorithm” and a “view” to ensure the proper directional
flow of events.

Based on this framework, we implemented FormsEdit, a multi-view editor for
creating user interfacesintheFormsV BT system (seeFig. 3). Therearetwo editable
views: The Graphicsview on the left isadirect-manipul ation graphical editor, and
the Text view at the lower right uses a conventional text editor to display and edit
the s-expression underlying the user interface in the graphics view. Changesin
one editor are reflected simultaneously in the other editor. The Result view in the
upper right showsthe user interface asit will look at runtime, with proper reaction
to mouse and keyboard activity, aswell as proper sizing and stretching. The result
view isupdated as the user edits either the graphics or text view. Editing the result
view does not change the underlying s-expression.

FormsEdit is organized around one central data structure, a parse tree. This
tree represents an s-expression, having one node for each component in the s-
expression. The “agorithm” (i.e., the ParseTree module) maintains the parse tree
and communicatesall tree changesto theviews as output events. A change request,
arising from user action in either of thetwo editable views, isissued by afeedback
event from the editor to the parse tree module. This module makes the change to
the tree itself, then generates an output event. In parallel, each view updates its
local data structures and redisplays itself appropriately.

The following block diagram shows how the information flows between the
modulesin FormsEdit:

Text FEEDBACK FEEDBACK | Graphics
View Parse VIS
Tree
OUTPUT OUTPUT
Result
OuUTPUT View

It is important to realize that the modules do not actually call each other as the
arrows in the diagram above suggest. Rather, modules are annotated with events,
and the body of the event routine (generated by hand, not by the Zume preprocessor,

20

for historical reasons) invokes a method on each editor (for output events) or on
the parse tree modul e (for feedback events).

Because the modul esgenerate eventsrather than calling other modulesdirectly,
new editors, or multipleinstances of the sameeditor, can be added without changing
any of the existing editors or the algorithm module. In FormsEdit, for example, it
might be convenient to run with multipleinstances of the Result view.

Finally, it isimportant for the view initiating the editing action to report error
conditions, even though it may be the agorithm or another view that detects
the error. This is handled by appropriate bookkeeping in the event dispatching
procedure.

6 Conclusion

Systems for agorithm animation have matured significantly in the last decade.
Zeus contributes to this evolutionary path a practical system whose design and
implementation are quite simple. Simplicity is achieved primarily by exploiting
modern programming technologies, such as objects, type-checking, and threads.

Constructing animations in Zeus appears to be as easy and straightforward as
in any other agorithm animation system. Objects make it easy to reuse views,
and to build sophisticated views by composing and subclassing other views. The
graphical editor helps to construct new views. Although it contains no support
for specification of incremental transformations, we haven’t felt hindered by this
in practice. Zeus events are strongly typed, thereby eliminating a large class
of common programming errors. Typed events allow the automatic creation of
event-generating views.

Inspired by how well-suited Zeus has turned out to be for building amulti-view
editor application, we look forward to discovering even more uses for algorithm
animation systems.

Acknowledgments

Ken Brooks and John Hershberger implemented the Zume preprocessor. John and
Lyle Ramshaw improved the clarity of this paper.

21

References

[1]

[2]

(3]

[4]

(3]

6]

[7]

(8]

(9]

[10]

Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A two-view
approach to constructing user interfaces. Computer Graphics, 23(3):137—
146, July 1989.

Marc H. Brown. Exploring algorithms using BALSA-II. IEEE Computer,
21(5):14-36, May 1988.

Marc H. Brown and John Hershberger. Color and sound in agorithm ani-
mation. In Proc. IEEE 1991 Workshop on Visual Languages, pages 10-17,
October 1991. An expanded version of this paper is available as Research
Report 76afrom DEC Systems Research Center, 130 Lytton Ave,, Palo Alto,
CA 94301.

Marc H. Brown and Robert Sedgewick. A system for agorithm animation.
Computer Graphics, 18(3):177-186, 1984.

Marc H. Brown, ed. An anthology of algorithm animations using Zeus.
Research Report Videotape 76b, DEC Systems Research Center, 130 Lytton
Ave,, Palo Alto, CA, September 1991. A segment entitled “An Introduction
to Zeus: Audio Visudlization of Some Elementary Sequential and Paralel
Sorting Algorithms” is part of the CHI *92 video program.

Robert A. Duisberg. Visua programming of program visuaizations. In
Proc. Conf. on Visual Languages, August 1987.

Sam Harbison. Modula—3. Prentice-Hall, Englewood Cliffs, NJ, 1992.

Esa Helttula, Aulikki Hyrskykari, and Kari-Jouko Raiha. Graphica specifi-
cation of algorithm animations with Aladdin. In Proc. of the 22nd Hawaii
Int’'l. Conf. on System Sciences, pages 892—901, January 1989.

Greg Nelson, ed. Systems Programming with Modula—3. Prentice-Hall,
Englewood Cliffs, NJ, 1991.

John T. Stasko. Tango: A framework and system for algorithm animation.
|EEE Computer, 23(9):27-39, September 1990.

22

	Abstract
	1 Introduction
	2 The User’s Perspective
	3 The Programmer’s Perspective
	4 System Implementation
	5 Multi-View Editing
	6 Conclusions
	Acknowledgments
	References

