84

Graphical Fisheye Views of Graphs

Manojit Sarkar and Marc H. Brown

March 17, 1992

Systems Research Center

DEC's business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting itsfirst research scientistsin 1984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technol ogy, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems cannot
be evaluated solely in the abstract. Based on this belief, our strategy is to demon-
strate the technical and practical feasibility of our ideas by building prototypes and
using them as daily tools. The experience we gain is useful in the short term in
enabling us to refine our designs, and invaluable in the long term in helping usto
advance the state of knowledge about those systems. Most of the major advances
in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC & so performs work of a more mathematical flavor which complements our
systemsresearch. Some of thiswork isin established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of thiswork explores new ground motivated by problems
that arise in our systems research.

DEC hasastrong commitment to communi cating the resul ts and experience gained
through pursuing these activities. The Company values the improved understand-
ing that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professiona journas, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director

Graphical Fisheye Views of Graphs
Manojit Sarkar and Marc H. Brown
March 17, 1992

uuuuuuuuuu

Publication History

A preliminary version of this report will appear in the Proceedings of the ACM
S GCHI '92 Conference on Human Factorsin Computing Systems, May 1992.

Author Affiliation

Manojit Sarkar is currently a Ph.D. candidate at Brown University. The bulk of
the work described here was performed while he was supported by a research
internship from SRC during the summer of 1991. Subsequent work has been
supported in part by ONR Contract NO0014—91-3-4052, ARPA Order 8225.

Copyright and Reprint Permissions

(©Digital Equipment Corporation 1992

Thiswork may not be copied or reproduced in wholeor in part for any commercial
purpose. Permission to copy in whole or in part without payment of feeis granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
Cdlifornia; an acknowledgment of the authors and individua contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shal require alicense with payment of fee
to the Systems Research Center. All rightsreserved.

Abstract

A fisheye cameralensisavery wide angle lens that magnifies nearby objectswhile
shrinking distant objects. It is a valuable tool for seeing both “local detail” and
“global context” simultaneously. This paper describes a system for viewing and
browsing graphs using a software analog of afisheye lens. We first show how to
implement such a view using solely geometric transformations. We then describe
a more general transformation that alows hierarchical or structured information
about the graph to affect the view. Our general transformation is a fundamental
extension to previous research in fisheye views.

Contents

8

9

I ntroduction
Terminology
A Formal Modd

An Implementation Strategy

41 Computing Position
42 ComputingSize
43 ComputingDetail
44 Computing Visual Worth
45 MappingEdgeso

Another Implementation Strategy

The Prototype System

6.1 Implementation
6.2 ResponseTime.
63 SystemNotes

Generalized Fisheye Views
Related Work

Summary

Acknowledgments

References

About the Title Page

12

15
16
17
17

18

19

22

22

23

24

List of Figures

OCO~NOOUTDA,WNPEP

R e =
o wNPkFPO

A graph with 134 verticesand 338edges 2
Afisheyeviewof Fig. 1 3
Afisheyeviewof Fig. 1 4
Afisheyeviewof Fig. 1 4
Afisheyeviewof Fig. 1 5
Afisheyeviewof Fig. 1 5
Anundistorted nearly-symmetricgraph 7
Cartesian fisheye views of the nearly-symmetricgraphinFig.7 . . 9
Anoutlineof theUnited States 12
A cartesian fisheye view of theUSA mapinFig.9. 13
A polar fisheyeview of theUSA mapinFig.9 13
Polar fisheye views of the nearly-symmetricgraphinFig.7 14
The control panel of our prototypesystem.. 15
A graph with 100 verticesand 124 edges 20
A graphical fisheyeviewof Fig. 14 21

A generdlized fisheyeviewof Fig. 14 21

1 Introduction

Graphswith hundredsof verticesand edgesare common in many areas of computer
science, such as network topology, VLSI circuits, and graph theory. There are
literally hundreds of algorithms for positioning nodes to produce an aesthetic and
informative display [1]. However, once a layout is chosen, what is an effective
way to view and browse the graph on a workstation?

Displayingall theinformation associated with the vertices and edges (assuming
it can even fit on a screen) shows the globa structure of the graph, but has the
drawback that details are typically too small to be seen. Alternatively, zooming
into apart of the graph and panning to other parts does show local details but loses
the overal structure of the graph. Researchers have found that browsing alarge
layout by scrolling and arc traversing tends to obscure the global structure of the
graph [6]. Using two or more views— one view of the entire graph and the other
of a zoomed portion — has the advantage of seeing both local detail and overal
structure, but has the drawbacks of requiring extra screen space and of forcing the
viewer to mentally integrate the views. The multiple view approach also has the
drawback that parts of the graph adjacent to the enlarged area are not visible at al
in the enlarged view(s).

This paper explores a fisheye lens approach to viewing and browsing graphs.
A fisheye view of agraph shows an area of interest quite large and with detail, and
shows the remainder of the graph successively smaller and in less detail. Thus,
a fisheye lens seems to have dl the advantages of the other approaches without
suffering from any of the drawbacks.

A typical graph is displayed in Figure 1, and fisheye versions of it appear in
Figures 2—6. In the fisheye view, the vertex with the thick border is the current
point of interest to the viewer. We call this point the focus. In our prototype
system, a viewer selects the focus by clicking with a mouse. As the mouse is
dragged, the focus changes and the display updates in real time. The size and
detail of avertex in the fisheye view depend on the distance of the vertex from the
focus, a preassigned importance associated with the vertex, and the values of some
user-controlled parameters. All figures in this paper are screen dumps of views
generated by our prototype system.

Our work extends Furnas's pioneering work on fisheyeviews[4, 5] by providing
a graphical interpretation to fisheye views. We introduce layout considerations
into the fisheye formalism, so that the position, size, and level of detail of objects
displayed are computed based on client-specified functions of an object’s distance

AN
l'..*ﬂ_. H" "‘ e
BT el
i e T B i o

Figure 1: A graph with 134 vertices and 338 edges. The vertices represent major cities
in the United States, and the edges represent paths between neighboring cities. (Typicaly,
the edges would be annotated with the distance and driving time between the cities.) The
a priori importance value assigned to each vertex is proportional to the population of the
corresponding city. Fisheye views of thisgraph appear in Figures2—6

from the focus and the object’s preassigned importancein the global structure. In
Furnas's original formulation of the fisheye view, acomponent is either present in
full detail or is completely absent from the view, and there is no explicit control
over the graphical layout.

The next section defines the terminol ogy and conventionsused in the remai nder
of this paper. In Section 3 we present a formal model for generating graphical
fisheye views. Section 4 describes the strategy we used to implement the formal
model, and Section 5 describes asecond implementation strategy that we explored.
Section 6 describes our prototype system. In Section 7, we describe generalized
fisheye views (of the sort that Furnas described), and show how an implementation
of our forma model can be used for creating generalized fisheye views. In the
remaining sections, we review related efforts, and offer some thoughts on future
directions.

Springield

Figure 2: A fisheye view of the graph in Figure 1. The focusison St. Louis. (The values
of the fisheye parametersare d = 5,¢ = 0, ¢ = 0, VWeutoff = 0; the meanings of these
parameters are explained in Sections 4 and 6.)

2 Terminology

A graph consists of vertices and edges. The initial layout of the graph is called
the normal view of the graph, and its coordinates are called normal coordinates.
Vertices are graphically represented by shapes whose bounding boxes are square
(chosen arbitrarily). Each vertex hasaposition, specified by itsnormal coordinates,
and a size which is the length of a side of the bounding box of the vertex. Each
vertex is aso assigned a number to represent its relative importance in the global
structure. Thisnumber is called the a priori importance, or the API, of the vertex.

An edge is represented by either a straight line from one vertex to another, or
by aset of straight line segments to simulate curved edges. An edge consisting of
multiple straight line segments is specified by a set of intermediate bend points,
the extreme points being the coordinates of its corresponding vertices.

The coordinates of the graph in the fisheye view are called the fisheye coordi-
nates. The viewer’s point of interest is called the focus; it is a point in the normal
coordinates. Each vertex in thefisheye view isdefined by itsposition, size, and the

[
innea n
= Detrait Hew
— el Fhi
Chicago s
53l Dt
om
Cal Washi
|
Do Cincinnati
Top Kan
5. Lowis Lo
spri
W
e Has
b Oklahom e
AMianta

Dalla

Haus

Figure3: A fisheyeview of thegraphin Figure 1, with lessdistortionthanin Figure2. The

values of thefisheye parametersared = 2, ¢ = 0.5, ¢ = 0.5, VWcutoff = 0.

Fo Mo
Bo o Ninnea,
B
Fie
i fia
Detr e
o
] Chica
Salt Lake City
ch
Ely Ho
o s
Denver Cn
0a
st St.L
= L
Lib
Los
g Okish
A
Dall
Hau it
Hi

Figure 4: A fisheye view of the graph in Figure 1, with the focus on Salt Lake City. The
level of distortionisthe same asin Figure 3; only the location of the focus has changed.

The values of the fisheye parametersare d = 2, ¢ = 0.5, ¢ = 0.5, VWecutoff = 0.

Minnea

Denve

20 Okizho

Detroit

Ih

Cirncinrati

Atlanta

New W

Washingt

Miami

Figure 5: A fisheye view of the graph in Figure 1. Compare this to Figure 3, with
the same distortion and the same focus. Here, the important vertices are larger than in
Figure 3, but the unimportant ones are smaller. The values of the fisheye parameters are
d=2,¢=0.75,e=0.75 VWcutoff = 0.

Minnea

Om

Derve
Tap || Kan

Wi Spri

Oklahom

Dalla

Hauz

Chicago

Detrait

5t. Louis

Me

Cal

Cincinnati

Lo

Mant

Atlanta

Figure 6: A fisheye view of the graph in Figure 1, with unimportant vertices eliminated.
Compare thisto Figure 3, with the same values of the fisheye parameters, except for the
value at which unimportant vertices are eliminated. The values of the fisheye parameters

aed =2,¢c=05,e¢ = 0.5 VWcutoff = 0.2.

amount of detail to display. Finally, each vertex infisheye view isassigned avisual
worth, or VW, computed based on its distance to the focus (in normal coordinates)
and itsa priori importance.

3 A Formal Modd

Generating a fisheye view involves magnifying the vertices of greater interest
and correspondingly demagnifying the vertices of lower interest. In addition, the
positionsof al verticesand bend points must a so berecomputedin order to allocate
more space for the magnified portion so that the entire view still occupies the same
amount of screen space.

Intuitively, the position of a vertex in the fisheye view depends on its position
in the normal view and its distance from the focus. The size of a vertex in the
fisheye view depends on its distance from the focus, its size in the normal view,
and its APIl. The amount of detail displayed in avertex in turn depends on its size
in the fisheye view. We now formalize these concepts.

The position of vertex » in the fisheye view is a function of its position in
normal coordinates and the position of the focus f:

Pfeye(va f) = fl(Pnorm(v)v Pno?“m(f)) (1)

The size of a vertex in the fisheye view is a function of its size and position in
normal coordinates, the position of the focus, and its API:

Sfeye(vv f) = fZ(Snorm(v)v Pnorm(v)v Pnon(f)7 API(U)) (2)

The amount of detail to be shown for a vertex depends on the vertex’'s size in the
fisheye view and the maximum detail that can be displayed:

DTLjeye(v, f) = Fa(Sseye(0,), DT Linaw(v)) 3)

Finally, thevisual worth of avertex depends on the distance between the vertex and
the focus in normal coordinates (found by examining the positions of the vertex
and the focus in normal coordinates) and on the vertex’s API:

WW(v, f) = Fa(Prorm (), Paorm(f), API(v)) (4)

Onehasto choosethefunctions 71, F», F3, F4 appropriately to generate useful
fisheye views. Readers familiar with Furnas's work will notethat our fundamental
contributions are the existence of arbitrary functions 1, F», and F3. In the next
section, we present the set of functionswe used in our prototype system.

Figure 7: An undistorted nearly-symmetric graph. This graph will be a useful basis for
understanding the fisheye transformationsin Sections 4 and 5.

4 An Implementation Strategy

Generating fisheye views is a two step process. First we apply a geometric trans-
formation to the norma view in order to reposition vertices and magnify and
demagnify areas close to and far away from the focus respectively. Second, we
use the API of vertices to obtain their fina size, detail, and visua worth.

4.1 Computing Position

Transforming apoint P,,,,, from normal coordinatesto fisheye coordinates, using
focus position Py,.,s, requires usto implement the function 7 in Equation 1. We
map the z and y coordinates independently as follows:

Dnormm
Pfeye = <g () Dmaavm + Pfocusmv

Do,
G () Do + i) ®
where . (d+ 1 o
dez +1

Here, D,,..., iSthehorizontal distance between the boundary of the screen and
the focus in normal coordinates, and D,,,,,, IS the horizontal distance between
the point being transformed and the focus, aso in normal coordinates. We divide
Diorm, BY Dopas, SO that the argument to G is normalized to be between 0 and
1. Multiplying the results of G by D,,,., unnormalizes the “fisheye distance,”
so that adding the position of the focus (which is the same in normal and fisheye
coordinates) yields the fisheye coordinates. The meanings of D45, and Dyorim,
are similar, in the vertical dimension.

The constant d in function G iscalled the distortion factor. The function G(z)
is monotonically increasing and continuous for 0 < = < 1 with G(0) = 0, and
G(1) = 1. Thederivativeof G(z) is

L dt1
g(x)—m (7)

Thisindicates that for large values of d the slope of the plot of x versus G(z) near
x = Oisvery large. Thisresultsin high magnification. The plot has avery small
dope near z = 1 which causes high demagnification. A graph of G(z) for d = 0
and d = 5isasfollows:

i ' e I T T e :
|

i A [

i | |

[B

6% =0 w1 | a=s o
5 | : :

i I :

: : | |

| | :

O E 0] ;
0 X 1 0 X \ 1

magnification demagnification

When d = 0, thenormal and thefisheye coordinates of every point are thesame. In
our prototype system, the user can interactively modify the value of d. The effect
of atering d on the fisheye view can be seen by comparing Figure 2 to Figure 3,
and Figure 7 to the columns of imagesin Figure 8.

We call the mapping in Equation 6 the cartesian transformation. Later, we
show a dlightly different transformation called the polar transformation.

$: - 1333
: - paa
*04 -
ol .
! o
0l § Ty
- o
1oe =/. pas
=84 3/. pas
[L 3/. s
a8d [
fyy 7 as
e : e
% 217
L bae
::“2' 2440 4 o 404
SEETE 4 = 5 5 = = & =&

.95
-8
.y
.95

'3
-
-8
-

brd

-4

5

i il
H peteee—e—e ¢

Figure 8: Fisheye views of the nearly-symmetric graph from Figure 7 using a cartesian
mapping. Theleft column uses afocusin the northwest, and the right column uses a focus
in the southeast. The distortion increases from top to bottom: In thetop row d = 1.46, in
themiddlerow d = 2.92, and in the bottom row d = 4.38. Note that the thickness of each
edge varieswith the sizes of the verticesit joins.

4.2 Computing Size

While computing size, the square shape of the bounding boxes of the verticesis
preserved. The size mapping function 7, in Equation 2 is implemented in two
steps. The first step uses the geometric transformation just found in order to
compute the geometric size Sy, (v, f) by ignoring »’s API. This mapping has
the special property that if no two verticesin the normal view overlapped, no two
vertices in the transformed view overlap. The second step then uses Sycom (v, f)
and »'s APl to complete the implementation of F,. However, the vertices may
overlap after the second step.

The geometric size of avertex is found by comparing the fisheye coordinates
of the vertex with apoint that is on the perimeter of the vertex’s bounding box. To
be precise, let’s call thelength of aside of the bounds box of the undistorted vertex
Snorm, and introduce another parameter s, called the vertex-size scale factor, that
the user will be able to control in our prototype system. We take a point that is
s Snorm /2 away from the center of the vertex in the direction away from the
focus, and transform it to () s, using 1 in Equation 5. (Because magnification
decreases as we move away from the focus, taking a point farther away from the
focusrather than closer to thefocusis conservative. It ensuresthat verticesthat do
not overlap in the normal view do not overlap in the fisheye view either.)

Now, the geometric sizeissimply

Sgeom =2 rnin(|62feyem - Pfey6$|) r@feyey - Pfeyey)

The minimum function keeps the bounding box square. The factor of 2 converts
back into the length of aside.
Finally, the function > in Equation 2 isimplemented by

Steye = Sgeom(c - APIT)° (8)
where the coefficient ¢ and exponent e are constants. In our prototype system, the

user can interactively control the values of ¢, e, and aso s. Figures 3 and 5 show
the effects of varying these parameters.

4.3 Computing Detail

We implemented function 73 asfollows:
DT Lyeye(v, f) = Min(DT Ly 5(v), S feye(v, f)) 9
where « is aconstant.

10

4.4 Computing Visual Worth

We implemented function 7, asfollows:

\/\N(vvf):ﬁsfeye(vvf)—l"y (10

where ¢ and v are constants.

Although our prototype system does not | et the user control the values of «, 3,
and v, the user can control the minimum level of visual worth that is necessary in
order for avertex to be displayed. Compare Figure 5 with Figure 6.

45 Mapping Edges

Straight line edges of the normal view are mapped to straight line edges in the
fisheye view automatically when vertices at their end pointsget mapped. The edges
with intermediate bend points are mapped by mapping each bend point separately.
Figure 8 demonstratesthe effect of cartesian transformations on asymmetric graph.
Notein particular that parallelism between linesisnot preserved, except for vertical
and horizontal lines.

Unfortunately, mapping just the end points of edges may lead to edges that
intersect in the fisheye view but not in the normal view. This artifact is quite
noticeabl e in the border between Washington and Idaho in Figure 11. Fortunately,
this problem is easily circumvented by mapping a large number of intermediate
points on each straight line segment individually. Mapping many points on each
edgewouldresultin curved lineswith the property that if the edgesdid not intersect
in the normal view, the edges will not intersect in the fisheye view. However,
mapping a very large a number of points may not be computationally feasible for
real time response.

As we noted, our mapping has the property that all the vertical and horizontal
lines remain vertical and horizontal after the transformation. Because of this
property, our transformations are well-suited for graphs with edges consisting of
mostly horizontal and vertical line segments, for example VLS circuits.

11

5 Another Implementation Strategy

Early users of our prototype system commented that transformations seemed some-
what unnatural, especially when applied to familiar objects, such as maps. Our
framework allows us to address this complaint by using domain-specific transfor-
mations.

Consider for instance, the non-fisheyeview of amap of the United States shown
in Figure 9 and a corresponding fisheye view in Figure 10. A more natural fisheye
view of such a map might be to distort the map onto a hemisphere, asis donein
Figure 11. To do so, we developed a transformation based on the polar coordinate
system with the origin at the focus. In this transformation, a point with normal
coordinates (7., ,) is mapped to the fisheye coordinates (7 s, §) where

(d _I_ 1) 7;,norm
dTnorm _]_nai (11)

Tmaz

Tfeye = Tmax

Here, r,,.. is the maximum possible value of r in the same direction as 6.
Note that remains unchanged by this mapping. Figure 12 shows the polar
transformations on the nearly-symmetric graph from Figure 7. It isinstructive to
compare these mappings with the cartesian transformations of the same nearly-
symmetric graph in Figure 8.

Figure9: An outlineof the United States

12

Figure10: A cartesian transformation of Figure9. Thefocusisat the point where Missouri,
Kentucky, and Tennessee mest.

Figure 11: A polar transformation of Figure 9. Asin Figure 10, the focusis at the point
where Missouri, Kentucky, and Tennessee meet. Notice the infelicity in northern Idaho.
The crossing lines result from the fact that the database represents the western edge of
Idaho as a single segment a ong the state of Washington; the eastern edge comprises many
small segments. This problem would go away if our system mapped every point in each
edge, or had the database represented the western edge of Idaho by multiple small (and
colinear) segments. See Section 4.5 for more details.

13

LI Z S RN
;;f;‘zf**.t‘:::::!iii AN
L/

==_,fﬁ§x"33========; '/f;., " W
='¢f () .Q‘”"}ﬂl ',/ il E\\
amestiiin b i
‘EV’. cae o o ool zf‘:“ ===
LT ErIrE A e 2 21!
RLTSIIRS S S o
E“ J ‘:-‘ I G i o l‘, J Y e st
o e o iy

$

,"

EeH

L)

i

by

W P M- P o
e e e e %+ & & 4
> ¥ ;r Ful
3

RN

Figure 12: Fisheye views of the nearly-symmetric graph from Figure 7 using a polar
mapping. As in Figure 8, the left column uses a focus in the northwest, and the right
column uses a focus in the southeast. The distortion increases from top to bottom: In the
top row d = 1.46, in the middle row d = 2.92, and in the bottom row d = 4.38. The
thickness of each edge varies with the sizes of the verticesit joins.

14

Another factor contributing to the perceived unnaturalness of the fisheye view
is that the shapes of vertices remain undistorted and edges remain straight lines
(ignoring bend points). We could remedy this by mapping many points on the
outline of the vertex, and mapping a large number of intermediate points for the
edges, thus alowing the vertices and edges to become curved. However, in our
prototype system, we chose not to do so, in order to achieve real time performance.

6 ThePrototype System

Our system displays a fisheye view of a user-specified graph, and updates the
display in red time as the user moves the focus by dragging with the mouse.
The graph is displayed in one top-level window and the control panel, shown in
Figure 13, is displayed in another top-level window. The control panel has sliders
and numerictypein boxesthat allow the user to control of the value of thedistortion
factor d in Equation 6, the coefficient ¢, exponent e, and vertex scaling factor s
in Equation 8, and a cutoff point at which vertices and their incident edges should
no longer be displayed. The coefficient ¢, the exponent e, and the vertex scaling
factor s control the effect of the API of the vertices on the non-geometric part
of the transformation, while d affects the geometric part of the transformation.
The combined effect of these parameters on the graph in Figure 1 isillustrated in
Figures 2— 6.

Fisheye Style Parameters
Type: @& Graphical O Semantic Vertex Size
o

Mapping: @ Cartesian O Polar

Distortion
API Coefficient

Shape: O Rectangular @& Circular
1.45600
Interior: ® Hollow (Solid APl Expanent

Details: & On @ Off

Vertex Style

VW Cutoff 0.57

Data File: | spackages/fishey DagData

Figure 13: The control panel of our prototype system.

15

6.1 Implementation

The prototypeisimplemented in an event-driven style. Each time the user moves
the mousewhilethe buttonisheld down, the function GetFocus returnsthe position
of the mouse:

loop
f = GetFocus()
if f# fOld then
foreach v ¢ V
eval Preye(v, f), Steye(v, f)s DT Leye(v, f)
endfor
foreach e ¢
if not straightLine(e) then
foreach bp ¢ bendPointg(¢)
mapPoint(bp, f)
endfor
endif
endfor
foreach v ¢ V
evd VW(v, f)
endfor
foreach e ¢ £
if VW(e.v1) > VWeutoff and
VW(e.vz) > VWeutoff then
repaint edge between e.v1 and e.v»
endif
endfor
sort V' in order of VW
foreach v ¢ V' in nondecreasing order of VW
if VW(v) > VWeutoff then
repaint vertex »
endif
endfor
Jod =1
endif
endloop

16

The system normally ensures that the location of the focusis the samein both
normal and fisheye coordinates. However, when the cursor is within the boundary
of avertex, the vertex becomes the focus vertex and the view is not updated until
the cursor exits the vertex. Since the size of the focus vertex is usudly large,
exiting the focus vertex causes arelatively large shrinkagein the size of the focus
vertex and also arelatively large variation in the fisheye view. In particular, since
the entry and exit events happen at two different distances from the center of the
focus vertex, without careful coding an exit event causes the most recent focus
vertex to shift away by a large distance from the cursor in a jerky motion. One
approach to solving this problem isto force the cursor to be positioned just outside
the boundary of the most recent focus vertex on each exit event.

Sorting the verticesin order of their visua worth produces avery useful order.
First, if the position of two verticesare in conflict, their VW can be used to resolve
the conflict in favor of displaying the vertex with higher VW. Second, the order
can be used to maintain the real time response of the system, as we shall discuss
below.

6.2 Response Time

Our prototype system is able to maintain real time response on a DECstation 5000
for graphs of up to about 100 vertices and about 100 horizontal or vertical edges.
Computing fisheye views takes an insignificant amount of time compared to the
time required for painting. Real time response cannot be maintained for graphs
with significantly larger number of vertices and edges. Performance aso suffers
when the percentage of edges that are neither horizontal nor vertical isincreased.

Analternative“inner loop” isto display “approximate” fisheye views by paint-
ing only afixed number of vertices and edges, irrespective of the size of the graph.
Each time there is a new focus, quickly compute the new fisheye view for al
vertices, but repaint only those nodes and edges which will give the best approx-
imation to the perfect fisheye view. Nodes with highest change in their VW and
nodeswith highest current VW are good candidates. One can takea suitablemix of
these two typesof nodes, aswell asal the associated edges. Each update operation
will then involve erasing and painting afixed number of nodes and edges.

6.3 System Notes

The prototypeisimplemented using Modula-3 and Trestle, aportable X-toolkit [8].
This project was the first Trestle application to be written, beyond the handful of

17

small examplesin the distribution package.> A number of features that we needed
for real time animation (e.g., fast double buffering), and aesthetic drawings (e.g.,
curved lines) were not functional when the prototype system was devel oped during
the summer of 1991.

7 Generalized Fisheye Views

Our work follows from the generalized fisheye views by Furnas [4, 5]. Furnas
gave many compelling arguments describing the advantages of fisheye views, and
performed anumber of experimentsto validate hisclaims. The essence of Furnas's
formalism isthe “degree of interest” function for an “object” relative to the “focal
point” in some “structure.” Our notion of “visual worth” (see Equation 4) isnearly
identical to Furnas's degree of interest. The difference is that we have (thus far)
described distance as the Euclidean distance separating two vertices in a graph,
whereas Furnas defined the distance function as an arbitrary function between two
objectsin astructure. Our system supports generalized fisheye views by recoding
thedistancefunction used explicitly in Equation 4 and implicitly by Equations 1-3.

For instance, consider the graph in Figure 14 and the graphical fisheye view
of it in Figure 15. The distance between vertices is their Euclidean distance. A
vertex isdisplayed only if itsvisual worth isabove somethreshold, and itsposition,
size, and level detail are computed using Equations 1, 2, and 3, respectively. A
“generalized” fisheye view of that same graph, with the same focus, is shown in
Figure 16. Here, the API is as before, but the distance function not geometrical;
it is the length of the shortest path between a vertex and the vertex defining the
focus, as proposed by Furnas[5]. Noticethat in the generalized fisheye view, each
nodeis either displayed or omitted; there isno explicit way to vary size and level
of detail.

Furnas raised the question of multiple foci [5], but left it unanswered. Our
framework can be extended to multiple foci. For instance, a simplistic approach
would be to divide the screen-space among al the foci using some criteria, and
then apply the transformation independently on each portion of the screen.

A Modula-2 version of Trestle that doesn’t use the X-toolkit has been operational for a number
of yearsat DEC SRC; it has many non-trivial clients.

18

8 Reated Work

Furnas cites a delightful 1973 doctoral thesis by William Farrand [3] as one of
the earliest uses of fisheye views of information on a computer screen. The thesis
suggests transformations similar to our cartesian and polar transformations, but
provides few details.

At CHI '91, Card, Mackinlay, and Robertson presented two views of structured
information that have fisheye properties. The perspective wall [7] maps a wide
2-dimensional layout into a 3-dimensional visualization. The center panel shows
detail, while the two side panels, receding in the distance, show the context.
The cone tree [9] displays a tree with each node the apex of a cone, and the
children of the node positioned around the rim of the cone. The fact that the tree
is beautifully rendered in 3D, including shadows and transparency, provides the
basic fisheye property of showing local information in detail (because when it is
close to the synthetic camera rendering the scene it is large), while also showing
the entire context (because of transparency and shadows). It would be interesting
to experimentally compare cone trees and generalized graphical fisheye views as
techniques for visualizing hierarchical information.

It may be fruitful to combine fisheye views with other techniques for viewing
extremely large data. For example, related nodes can be combined to form cluster
nodes, and the member nodes of a cluster node can be thought of as the detail of
the cluster node[2]. The amount of detail to be shown can then be computed using
the framework we have presented in this paper. In situationswhere theinformation
associated with the nodes is very large, one can use fisheye views as a navigation
tool while the actual information in nodes can be displayed in separate windows.

19

@ SoE

Figure14: A graphwith 100 vertices and 124 edges. All edges point downwards. The API
of each vertex isrelated toitsdisplay level (e.g., theroot has the highest API of 8, node 33
has an API of 4, and node 86 has an API of 2).

20

Figure 16: A generalized fisheye view of Figure 14. The focusis the vertex labeled 48.

21

9 Summary

Thefisheyeview isapromising techniquefor viewing and browsing structures. Our
major contribution isto introduce layout considerationsinto the fisheye formalism.
Thisincludesthe position of items, aswell asthe size and level of detail displayed,
as afunction of an object’s distance from the focus and the object’s preassigned
importance in the global structure. A second contribution is the notion of a
normal coordinate system, thereby alowing layout to be viewed as distortions of
some normal structure. As we pointed out, our contributions apply to generalized
fisheye views of arbitrary structures (by changing theinterpretation of “distance”),
in addition to graphs.

It isimportant to realize that we do not claim that a fisheye view isthe correct
way to display and explore a graph. Rather, it is one of the many ways that are
possible. Discovering and quantifying the strengths and weaknesses of fisheye
views are challenges for the future.

Acknowledgments

Jorge Stolfi helped with variousideas concerning geometric transformations. Steve
Glassman, Bill Ka sow, Mark Manasse, Eric Muller, and Greg Nelson extricated us
from numerous Modula-3 and Trestle entanglements. Mike Burrows and Lucille
Glassman helped to improve the clarity of this presentation. Finally, George
Furnas provided us with a wealth of information that improved many aspects of
our prototype system and also of this paper.

22

References

[1]

[2]

(3]

[4]

(5]

6]

[7]

(8]

(9]

Peter Eades and Roberto Tamassia. Algorithms for drawing graphs: An an-
notated bibliography. Technical Report CS-89-90, Department of Computer
Science, Brown University, Providence, RI, 1989.

Kim M. Fairchild, Steven E. Poltrok, and George W. Furnas. SemNet: Three-
dimensional graphic representations of large knowledge bases. In Cognitive
Science and Its Applications for Human Computer Interaction, pages 201—
233, 1988.

William Augustus Farrand. Information display in interactive design. Ph.D.
Thesis, Department of Engineering, UCLA, Los Angeles, CA, 1973.

George W. Furnas. Thefisheyeview: A new look at structured files. Technical
Memorandum 82-11221-22, Bell Laboratories, 1982.

George W. Furnas. Generalized fisheye views. In Proc. ACM SIGCHI '86
Conf. on Human Factorsin Computing Systems, pages 1623, 1986.

Tyson R. Henry and Scott E. Hudson. Interactive graph layout. In Proc. ACM
S GGRAPH, SIGCHI Symposiumon User Interface Softwareand Technol ogy,
pages 55-65, 1991.

Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective
wall: Detail and context smoothly integrated. In Proc. ACM SIGCHI 91 Conf.
on Human Factorsin Computing Systems, pages 173-179, April 1991.

Greg Nelson, Editor. Systems Programming with Modula-3. Prentice Hall,
Englewood Cliffs, NJ, 1991. Chapter 7 describes the Trestle window system.

George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone Trees:
Animated 3D visudlizations of hierarchical information. In Proc. ACM
SGCHI 91 Conf. on Human Factors in Computing Systems, pages 189—
194, April 1991.

23

About the Title Page

The images on the title page are views of a graph representing the Paris Metro
system. The vertices in the graph are the stations, and the edges are the routes
between stations. All imagesarescreen dumpsfrom the prototype system described
in this paper.

The upper-left image is a norma view of the Metro; the other images are
fisheye views of the Metro. In all graphs, the a priori importance (API) assigned
to each station is the number of connecting stations.

In the upper-right image, the sizes of verticesvary according to the API of each
station. The focus is the Montparnasse-Bienvenue station, displayed as a hollow
circle. The user selects afocus by clicking with the mouse.

In the lower-right image, the vertices that are close (using Euclidean distance)
to the focus station are magnified, and those far away are shrunk. In addition, the
locations of al vertices are changed dlightly in order to give the larger vertices
more space.

In the lower-left image, the focus station is changed to be Republique, and
the representation of the vertices is changed to one that displays the name of the
station, space permitting.

Of course, a series of static snapshots cannot not do justice to an interactive
system: You need to use your imagination to visualize how the upper-right image
smoothly transformed into the lower-right image, as the user moved a slider con-
trolling the amount of “distortion” from 0 to 2. Visualize aso how the lower-right
image smoothly transformed into the lower-left image, as the user dragged the
mouse from Montparnasse-Bienvenue to Republique.

Technical details (the meanings of which isexplained in Section 4): In all images,
¢ = 0.3, ¢ = 0.3, and VWecutoff = 0. In the upper images, d = 0. In the lower
images, d = 2. All transformations are polar.

24

	Abstract
	Contents
	List of Figures
	1 Introduction
	2 Terminology
	3 A Formal Model
	4 An Implementation Strategy
	5 Another Implementation Strategy
	6 The Prototype System
	7 Generalized Fisheye Views
	8 Related Work
	9 Summary
	Acknowledgments
	References

