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Abstract

F<: isahighly expressive typed A-calculus with subtyping. This paper describes an
implementation of F<: (extended with recursive types), and documents the algorithms
used. Using this implementation, one can test F<: programs and examine typing deriva-
tions.

To facilitate the writing of complex F<: encodings, we provide a flexible syntax-ex-
tension mechanism. New syntax can be defined from scratch, and the existing syntax can
be extended on the fly. It is possible to introduce new binding constructs, while avoiding
problems with variable capture.

To reduce the syntactic clutter, we provide a practical type inference mechanism that
is applicable to any explicitly typed polymorphic language. Syntax extension and typein-
ferenceinteract in useful ways.
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1. Introduction

F<: isatyped A-calculus with subtyping. It is intended to capture the essence of subtyping and, to
some extent, of object-oriented programming [Cardelli, et al. 1991; Curien, Ghelli 1991]. The F<: calculus was
designed to be as small as possible, so that it could be studied formally. Its small size also happens to facili-
tate implementation; during its construction it was possible to explore some advanced techniques that
should be useful for larger languages.

This paper describes the F-sub program, which is an implementation of F<: . (We assume a superficia
familiarity with the latter.) Using this program, one can typecheck and evaluate F<: expressions and defini-
tions, and examine typing and subtyping derivations. In order to keep the critical typing code clean and cor-
rect, the implementation is very minimal and supports only the basic constructs of F<:. This minimality,
while having some pragmatic disadvantages, allows us to describe the fundamental algorithmsin full detail
in terms of an operational semantics that is faithful to the actual program code.

The operational semantics is described in the Appendix in layers of increasing complexity, the final
layer corresponding closely to actual program code. The first layer corresponds to the typechecking algo-
rithm for pure F<:. Then, other features are added: (a) de Bruijn indices, (b) partial type inference for sec-
ond-order types, and (c) a new technique for integrating recursive types with second-order polymorphic
types.

Apart from the typing agorithms, another aspect of the implementations should be of general interest.
The extensible syntax mechanism we have implemented should be useful in other mechanized formal sys-
tems that need to define mathematical notation on the fly, such as theorem provers, proof checkers, and
symbolic algebra systems. In these systems, one wishes to minimize the number of constructs in order to
keep the difficult core algorithms clean and manageable. In the case of F-sub, we wish to keep the typing
code simple by not providing basic data structures and control structures, requiring instead that they be en-
coded as A-terms. The drawback of this approach is that after a few levels of encoding even simple pro-
grams become quite unreadable. To improve readability of the encodings, the F-sub system supports a very
flexible syntax-extension mechanism based on an LL (1) parser. One can define entirely new grammars, or
enrich the existing F-sub grammar. In particular, one can define new binding constructs and their associated
meaning, while avoiding problems with variable capture.

The F-sub system consists of about 10,000 lines of Modula-3 code [Nelson 1991], equally partitioned
between a reusable parsing package and F-sub proper. The implementation is portable to any computer
running Modula-3, that is to almost any computer running a standard C compiler [Kalsow, Muller FTP].
Program sources and binaries for standard architectures are freely available [Cardelli FTP].

2. Overview

The syntax of F-sub types and terms s given below, informally. As ageneral convention, term-related
names begin with alower-case |etter, while type-related names begin with an upper-case letter.

AB::= types
X type variables
Top the biggest type
A >B function spaces
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Al (X<:AB bounded quantification

{ A grouping
ab::= terms
X term variables
top the canonical member of Top
fun(x: A b functions
b( a) applications
fun( X<: A b polymorphic functions
b(: A type applications
{ a} grouping
When loaded, the F-sub system displaysits ‘- ' prompt, at which one can write a term like ‘'t op’,

followed by a semicolon. The system answers by inferring the type of the term and evaluating it. The an-
swers given by the system areindicated by ‘o

- top;
o top : Top
In general, a the ‘- ' prompt one can write a phrase, always terminated by a semicolon. There are

several kinds of phrases. The one above is a term phrase, while the one shown below is a type phrase; this
is always preceded by a colon and causes the evaluation of atype:
- :Top;
o . Top
Type definition phrases, introduced by ‘Let * and term definition phrases, introduced by ‘I et ’, allow
one to bind types and terms to variables:
Let Id = ALl (X) X->X
o Let Id < Top = <ld>
- :ld;
oo<ld>

- let id: Id = fun(X) fun(x:X) x;

oD let id: <ld> = <id>

- id;

<id>: <ld>
The system produces some answers in angle brackets, as an abbreviation, to avoid printing excessive de-
tails. If aterm or atype has been given a name in a definition, then that term or typeis printed asits given
name in angle brackets. This printing heuristic has no effect on typing or evaluation.

Once afunction like ‘i d’ is defined, it can be applied to types and terms. A type application has the
form‘a(: A)’' (notethe*: ’); aterm application hastheform‘a( b) '.

-id(:rd);
{fun(x:<ld>)x} : {<ld>><ld>}
- id(:1d)(id);

o <id>: <ld>
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- id(:1d->Id);
o {fun(x:<ld>-><ld>)x} : {{<ld>><ld>}->{<ld>><]d>}}

The evaluator does not perform reductions inside functions:

- fun(x:1d) id(:1d)(x);
o {fun(x:<ld>)<id>(:<ld>)(x)} : {<ld>><ld>}

As you may notice from the printed output, curly brackets, instead of parentheses, are used to group
syntax:

- {fun(x: Top) x}(top);
o top : Top

Programs can be stored in files. For example we can prepare afile called ' Test . f sub’ containing the
Church encoding of booleans:

Let Bool = Al (X) X->X->X;

let true: Bool = fun(X) fun(x:X) fun(y:X) x
fal se: Bool = fun(X) fun(x:X) fun(y:X) vy;

We can then load thisfile into the system by aload phrase:
- |l oad Test;

According to the encoding of booleans above, a conditional of theform‘i f x then fal se el se
true end’ iswritten as:

x(:Bool) (fal se)(true)

It is possible, however, to define a more familiar syntax for conditionals by a syntax extension, as fol-
lows.
A syntax phrase introduces a new grammar or, in this example, modifies the existing one:

- synt ax
ternmBase ::= ...
[ "if" term1 "then" term2 "else" term3
"giving" type_4 "end" ]
=> _1(:_4(_2)(_3);

To understand this example, one must first know that ‘t er nrBase’, ‘t er mi, and ‘'t ype’ are some of
the syntactic categories of F-sub given in Appendix C (a‘t er nBase’ isa‘t er mi except for the right-re-
cursive syntax of applications). Here we wish to modify the syntax of ‘'t er mBase’ by taking its existing
definition (indicated by *. . . ) and adding conditional expressions. By this mechanism we truly modify the
recursive definition of terms; meaning that conditional expressions can be nested.

The grammar of conditionalsis given above as a sequence (in square brackets) of keywords and num-
bered ‘t er mi and ‘'t ype’ grammars. The numbers are used in the action part of the grammar (following
‘=>"), where the relevant pieces of the input are reassembled into the encoding of conditionals shown ear-
lier.

With the extended grammar we can write, for example:
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- let not =
fun(x: Bool)
if x then false else true giving Bool end;
l et not : {<Bool >-><Bool >} = <not>

As another example of syntax extensions, we can define let terms (as opposed to the top-level-only
‘| et definitions), translating them into functions and applications:

- synt ax
ternBase ::= ...
[ "let" termde_ 1 ":" type 2 "=" term3

"in" term4 "end" ]
=> {fun(_1:_2)_4}(_3);

In this example we are creating a new binding construct. Thisis reflected by the use of ‘f un(_1: " in
the action part. Here* 1’ referstoa‘t er ml de’, which is the F-sub grammar for a term identifier. Note
that ' 4’ isinside the scope of ‘_1’, producing the expected variable capture. (Unwanted variable captures
are carefully avoided.) To try this out, we need to wrap the let-expressions in brackets to avoid confusion
with let-phrases:

- {let x: Bool = true in not(x) end};
<fal se> : <Bool >

In general, aterm action (preceded by ‘=>") can be any F-sub term, possibly containing pattern vari-
ables‘ _n'. Similarly, atype-action (preceded by ‘: >) can be any F-sub type, possibly containing pattern
variables. An action can be appended to any piece of grammar. The pattern variables‘_n’ can similarly be
appended to any piece of grammar, using parentheses ‘(’,') ’ for grouping if necessary. After the definition
of asyntax extension for terms or types, the new syntax can be used in the action parts of later grammars.

As an exercise, one could now try to define the syntax of existential types ‘Sone( X<: A) B, giving
the translation into universal types ‘Al | (Y) { Al | ( X<: A) B- >Y} - >Y". For more complex tasks one
should first read section 3.3 on Actions. (Exercise hints. One has to modify ‘t ypeBase’, and capture a
‘t ypel de’ andtwo ‘t ype’s. The symbol for type actionsis': >’, not ‘=>". To see what the parser pro-
duces, write‘do ShowPar si ng On;'.)

3. Syntax extension

In this section we describe a notation for grammars and its use in defining syntax extensions. This no-
tation is used also in Appendix C to describe the formal syntax of F-sub.

3.1 Grammars

Our meta-notation for grammars is slightly non-standard. Moreover, its meaning is tightly associated
with a particular parser (recursive descent). The reason for these peculiarities is that the same notation is
used also for the syntax-extension facility within the language.

Terminal symbols are called tokens; the most important kinds of tokens are identifiers ‘ob1’, delim-
iters*) ’, and quoted strings ‘" abc" ’. The identifiers can be either alphanumeric ‘ob1’ or symbolic ‘- >'.
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Moreover, identifiers are split into keyword and non-keyword classes; keywords are not legal variable
names in binding constructs. See Appendix B for the full lexical details.
A grammar description g is one of the following constructions:

X

ide

"fun”

string

[91 - 9l

{91 - 9}

(91" 9)

An identifier x represents a non-terminal grammar symbol, which must be bound to a
grammar description. Parsing X is the same as parsing the associated description.

The constant ide denotes a non-keyword identifier token. Parsing this succeeds when
the next input token is a non-keyword identifier.

A non-empty quoted string denotes the keyword or delimiter token given in quotes.
Parsing this succeeds when the next input token is the given keyword or delimiter.

The constant string denotes a quoted-string token. Parsing this succeeds when the
next input token is a quoted string.

Square brackets denote a sequence of grammars. Parsing this succeeds if parsing
each g; in sequence succeeds. Parsing [] always succeeds.

Curly brackets denote a choice of grammars. Parsing this succeeds if parsing one of
the g;'s succeeds when trying them left to right. Parsing {} alwaysfails. (If one of the
g;'s fails after successfully parsing an input token, then the entire parsing fails, but
this can happen only if the grammar isnot LL(1).)

This iteration construct is equivalent to the grammar [g; X] where x ::= {[g, X] []}.
However, the parsing of (g; * g,) can build |eft-associative parse-trees (in conjunc-
tion with actions), which are not otherwise representable by a non-left-recursive
grammar.

A complete grammar has the form:

X = 0p e

X, 1= Oy

where n>1, the x; are distinct, and any x occurring in one of the g; is one of the x;. Moreover, the grammar
must be non-left-recursive and LL (1) (where 1 refers to one token, not one character). The grammar so de-
fined is the one defined by x;.

As an example, here is a non-ambiguous grammar for untyped A-terms:

lambda ::= { ide func appl }
func::=["["ide"." lambda "]" ]
appl ::=[ "(" lambda lambda ")" ]

Suppose now we wish to change the syntax of application from ‘(ab)’ to ‘a(b)’. The grammar becomes left-
recursive, but this problem can be eliminated by distinguishing between simple terms and complex terms as
shown below. The resulting grammar is LL (1), and the recursive-descent parser resolves any ambiguity:

lambda ::=[ smplearg]
arg::={[pararg] []}
simple::= { ide func par}
func::=[ "fun" ide"." lambda ]
par ::= [ “ (" lambda ")" ]
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The grammar above parses A-terms, but because of the way left-recursion was eliminated, application asso-
ciates to theright (that is, a(b)(c) parse as <a<(b)(c)>> instead of <<a(b)>(c)>), which complicates further
processing. This problem can be solved by the iteration operator ‘*’, which intentionally associates to the
left. The grammar of A-terms should then be expressed as follows:

lambda ::= (simple* par )
simple::= { ide func par}
func::=[ "fun" ide"." lambda ]
par ::= [ “ (" lambda")" ]
Implementation-specific warning: when used in the syntax-extension facility, non-LL(1) grammars
will typically cause parsing failures, and left-recursive grammars will cause non-termination. This is a
property only of the current implementation; grammars could be analyzed to detect these situations.

3.2. Syntax

A syntax extension can be used to define a completely new grammar, or to modify an existing one.
There are two forms; a syntax term, and a (top-level) syntax phrase. We have seen examples of syntax
phrases earlier. Here we start with syntax terms, which have the form:

syntax Xqi:=g; ... Xy :=g,in ... end

The allowed forms for the g;'s were explained in the previous section. The resulting grammar (x ) is then
used to parse the span of the grammar, which isthe input stream after ‘i n’. If this parsing is successful, the
keyword ‘end’ is expected, and then the current grammar reverts to the one that was active before entering
the syntax term.

The result of parsing asyntax term ‘s’ isa‘t er m according to the basic F-sub syntax of terms (that
is, where all the syntax extensions have been expanded). The expansion of asyntax term ‘s’ intoa‘t er ni
isdirected by the actionsthat are defined in ‘ s’; if no action is specified, ‘s’ expandssimply to ‘'t op’. For
example, we define below a grammar with two possible parses, the keywords ‘one’ and ‘t wo’, and no ac-
tions. (We use outer brackets to avoid confusing a syntax term with a syntax phrase.)

- {syntax x::={"one" "two"} in one end};
o top : Top

A quoted identifier like ‘" one" ' is automatically made into a keyword in the relevant span. Keywords are
inherited from outer spansto inner spans. (Hence the built-in F-sub keywords may conflict with syntax ex-
tensions.)

A top-level syntax phrase is a syntax term wherethepart ‘i n ... end’ ismissing; its spanisthere-
mainder of the top-level session (but see Section 4).

A syntax phrase does not normally affect the immediate top-level syntax. That is, the non-terminal
‘phr ase’ givenin Appendix C keeps being used for parsing at the‘- ' prompt.

But if the ‘'t opl evel ' keyword is used, then the first non-terminal of the given grammar is adopted
as the new top-level syntax, and the built-in F-sub syntax is completely bypassed:

- syntax toplevel x::={"one" "two"};
- one
top : Top
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- two
o top : Top

Note that we are now stuck with ‘x’ asthe top-level syntax; see Section 4 for recovering from this situation.

Instead of defining a completely new grammar we can extend an existing one. In particular, we can
extend the existing F-sub grammar described in Appendix C. Useful starting points for extension are
‘ternmBase’ and‘t ypeBase’ (butuse‘term and ‘t ype’ on the right-hand side of *: : ="). See Ap-
pendix C for other non-terminals that can be extended; these are marked public.

To extend anon-terminal * x” bound to agrammar ‘ g, write:

X 1i= ... g
In this case ‘x” becomes equivalent to the choice ‘{ g; g,} . In particular, ‘x: : =. .. {}  has no effect,
while‘x: : =...[]  makes‘x’ optional. For example:
- {syntax ternmBase::= ... {"one" "two"}
in {fun(x: Top)one}(two) end};
o top : Top

The final topic of this section is how to add infix operators. This is achieved by extending grammars
that begin with an iteration construct, as opposed to extending arbitrary grammars as shown above.

To extend the iteration part of anon-terminal ‘ x’ bound to an iteration grammar ‘( g¢* g,) ’ write:

X ii= ... % g3
Then ‘x’ becomes equivalent to theiteration *( g*{ g> g3}) .

In Appendix C we provide a non-terminal ‘t er nOper ’ as a suitable place for attaching infix opera-
tors. This‘t er mOper ' isaniteration based on ‘t er mAppl . The latter is another iteration that parses ap-
plications, andisinturn based on ‘t er nBase’. Finally, ‘t er rBase’ terms are those simple terms that do
not have pieces of syntax “hanging off to the right”. Given this structure, one can attach infix operators to
‘t er mOper ’ that will have lower precedence than application.

The following iteration extension introduces ‘+' as a left-associative infix operator over

‘termOper’s:

termOper ::= ... * [ "+" termAppl ]
achieving theequivalent of ‘ternOper ::= ( termAppl * [ "+" termAppl ] ).
The following iteration extension introduces ‘-’ as a right-associative infix operator over
‘termOper’s:
termOper ::= ... * [ "-" termDper ]
achieving theequivalent of ‘ternOper ::= ( termAppl * [ "-" ternOper ] )’.

Similarly, ‘t ypeOper’ and ‘t ypeBase’ can be used for new infix type operators (there is no
‘t ypeAppl ’). The syntax of ‘t ype’ in Appendix C implies that these operators will have higher prece-
dence than ‘- >'.
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3.3. Actions

Actions can be attached to grammars. They describe the terms that are to be generated during parsing
of syntax extensions. By using ‘g_n’ in a grammar, one specifies that the result of parsing ‘ g’ should be
stored in the pattern variable * _n’. Pattern variables are then used in actions * a’; the grammars ‘ g=>a’ and
‘g: >a’ specify, respectively, that the parsing of ‘g’ should generate the term or type described by ‘a’.

We now describe the rules of expansion. The expansion generated by a (successfully parsed) grammar
is defined asfollows:

Grammar Expansion

X the expansion generated by the grammar bound to  x.

i de t op.

L t op.

string t op.

[91.-9i t op.

{9;,..9,} the expansion generated by the successful g;.

(91* 99 the expansion generated by either g, if g; aoneis successful, or by the
last g,if [ g1 95 ... 95] issuccessful.

g=>a the expansion generated by the term pattern a (see below).

g: >a the expansion generated by the type pattern a (see below).

gn t op, but in addition the expansion generated by g isstored in_n.

(g,*_ngy the expansion generated by ( g, * g) , but at each iteration
the latest expansion is also stored in _n.

A pattern variable ‘_n’ (with n non-negative) is defined when an occurrence of ‘g_n’ is parsed suc-
cessfully. The range of definition of a pattern variable ' _n’ is aways confined within aclause ‘ x: : =g’. In
addition, a pattern variable defined in a branch of a choice is confined to that branch, and one defined in the
‘g, of ‘(g * g, isconfinedto’g,’ . Errorsare given on attempts to define a pattern variable twice, or to
use one that is not currently defined.

An action * &' may contain the pattern variables' _n’ that are defined where ‘a’ appears. Note that an
action‘a’ in‘g=>a’ can access pattern variables defined outside * g’ in the surrounding grammar; this abil-
ity greatly increases the expressive power of actions. An action may also contain ordinary program vari-
ables bound in the surrounding scope.

An action appearing after ‘=>" can be any term pattern. Thisis, recursively, either a‘t er ni (including
any syntax extension of ‘t er ni) or one of the following patterns:

n
f un( _n: type-pattern) term-pattern

f un( _n<: type-pattern) term-pattern
f un( _n) term-pattern

The expansion generated by aterm pattern is the result of instantiating the term pattern with the expan-
sions stored in the pattern variables ' _n’ that occur init.

Similarly to term patterns, an action appearing after ‘: >’ can be any type pattern, which is, recursively,
either a‘t ype’ or one of the following patterns:
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n
Al | (_n<: type-pattern) type-pattern
Al | (_n) type-pattern

We are careful to avoid variable capture when patterns are instantiated. Considering ‘f un( .... A) b’
binders (the others are handled similarly), we have the typical situations:

D fun(x: A x(_1) 2 fun(_1: Ax(_2)

In‘fun(x: A)’ situations, including example (1), the variable ‘X’ is consistently renamed so that it does
not capture other variables named ‘x’ when the pattern isinstantiated. In ‘f un( _1: A) ’ situations, variable
capture on instantiation is normally desired, but only for certain subexpressions. In example (2) we never
want the variable that replaces ‘1’ to capture ‘x’, but we always want the variable that replaces ‘1’ to
capture the similarly named variables in the term that replaces‘_2’. The genera situation is handled by two
separate renaming environments during instantiation; one for resident bound variables (*x’, in (1)) and one
for intruding bound variables (the ones replacing ‘1’ in (2)). Different subexpressions of the pattern are
renamed according to the appropriate environment. Variables that are free in an action and bound in the
top-level environment are allowed, but may produce error messages later when in risk of being captured.

3.4. How it isdone

The implementation of syntax extensions is really quite simple, when properly organized. Grammars
are stored in tables associating non-terminal names to grammar descriptions; this association can be
changed dynamically to extend existing non-terminals. Grammar descriptions include client “action proce-
dures’ to be invoked during parsing to build the abstract syntax trees. no intermediate parse trees are built,
resulting in very efficient parsing. Intermediate parsing results are kept on a stack, accessed by (the equiva-
lent of) pattern variables.

A simple recursive-descent parser interprets these grammar tables blindly, dispatching on the various
cases of grammar descriptions and calling the action routines when indicated. The action routines attached
to the built-in syntax of grammars build grammars. The action routines attached to the syntax of actions,
invoke an external “Act” interface to instantiate patterns. Nothing in this parser and syntax-extension ma-
chinery is specific to the implementation of F-sub; in fact, it could be and has been reused for other lan-
guages.

The built-in F-sub syntax is just a grammar table, so that it can be modified like any other grammar.
The only parsing code specific to F-sub is provided in the implementation of the interface “Act”, used by
the parser to instantiate the pattern variables within term and type patterns. This module is responsible for
preventing variable captures, and hence must be aware of the scoping structures of the language at hand.

The sophisticated hiding and sharing of information needed to separate the parser from the rest of the
system, isrealized viathe Modula-3 partially-opaque-types mechanism.

We now discuss in more detail how actions are instantiated so that variable capture is avoided. The ba-
sic technique is described in the simplified context of a A-calculus with A-patterns. The technique is then
instatiated three timesin F-sub, for ‘Al | ( X<: A)’, ‘fun( X<: A)’,and ‘f un( x: A) ’ binders.

A pattern p is described by the following data structure:

pP=X|AX.p|pp |X|Ax.p
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where the pattern variables x (correspondingto ‘_n’ in F-sub) are distinct from the ordinary variables x.
We use renamings p mapping (non-pattern-) variables to (non-pattern-) variables, and instantiations T,
mapping pattern-variables to patterns. Here are the corresponding data structures and related operations:

x¢dom(p")
x¢dom(Tr)

pP=¢|xX-yp

=€ |Xp,Tt

dom(p): domain
dom(e) = ¢
dom(x —y,p) = {x} Odom(p)

dom(T):

dom(e) =g

dom(x — p,m) = {x} Odom(m)
p(x): lookup
g(x) =X
(Z<yP)X) =p(X) (z#X)
(x<y.p)(X) =y

restriction

ex=¢
(Zey,p)\X=z<y,p\x (z#X)
(X<y.p)x=p

p\x:

rng(p): range
rng(e) = ¢
rng(x —y,p) = {y}Irng(p)

rng(T):
rng(e) = ¢
rng(x — p,m) = { p} Crng(m)
T(X):
g(x) =x
Z-pmX) =1(xX) (z7X)
(X =p, (X)) =p
TiX:
eXx=¢
(Z—pmM\Xx=z—pmx (z#X)
X—pmMXx=T

With these operations, we can define the notions of free variables (FV), pattern variables (PV), and

binding pattern variables (BPV) of a pattern.

FV(p):
FV(x) ={x}
FV(Ax.p) = FV(p) - {x}
FV(pp)=FV(p) O FV(p)
FV(x)=¢
FV(Ax. p) =FV(p)

PV(p):
PV(X) =g
PV(Ax.p) = PV(p)
PV(pp) =PV(p) O PV(p)
PV(x) = {x}
PV(AX. p) ={x} O PV(p)

BPV(p):
BPV(X) = ¢
BPV(Ax.p) = BPV(p)
BPV(p p) = BPV(p) U BPV(p)
BPV(x) =g
BPV(Ax. p) ={x} 0 BPV(p)

Free variables and pattern variables are then extended to renamings and instantiations.

FV(p):
FV(p) = rng(p)
FV (m):
FV(m) = U{FV(p) | pe mg(m }

PV(p):
PV(p)=¢
PV (T):
PV(m) = U{PV(p) | pe mg(m) }

Finally, we define the effect of applying renamings and instantiations to patterns.

plpl:
X[p] = p(x)
(AX.p)[p] =AX".p[X « X",p\X]
(pP)IP] = plp] PP]
x[p] =x
(Ax.p)[p] =Ax.p[p]
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p[Ty: assuming xeBPV(p) O m(x) isavariabley

p[r] = ple; &; 1
x[p; p'; T = x[p]
(Ax.p)[p; P’ T = AX.p[X ~X',p\X; p'; 10 X¢FV(p), X¢[p; p5 T
(pP)[p; P51 = plp; P 1 Plp; P4 11
x[p; 5 1 =T(X)[P]
(Ax.p)lp; P T =Ay". p[p; T(x) ~ y',p\(x); T Y'EFV(p), y'élp; o5
where x ¢ [p; p5 1 < x ¢ FV(mUdom(p)Urng(p’)Lidom(p)Urng(p).
Inp[p; p'; 14, we use p to rename the bound variables found in p, and we use p' to rename the variables
found in the range of Ttthat are placed in binding positions.

We now discuss these definitions and the reasons for their side-conditions.

Although eventually we must obtain a ground pattern (free of pattern variables) for evaluation, we
cannot require that every pattern instantiation immediately produces a ground pattern. This is because, in
order to define new syntax extensions in terms of old ones, extended syntax may appear in actions. For ex-
ample, consider the syntax extensionsand actions‘[ x "+" y] => plus(x)(y)'and‘[x "avg" V]
=> div(y+x) (two)’'. When parsing the latter action we have a non-ground instantiation of
‘di v(y+x) (two) " to‘di v(plus(y) (x))(two)’.Only later, when‘one avg three’ismet, we
obtain aground pattern ‘di v( pl us(tree) (one)) (two)’.

However, we cannot allow arbitrary non-ground instantiations. Of course, we cannot replace a binding
pattern variable with, for example, a A-abstraction. But in addition, it seems we cannot replace a binding
pattern variable with another pattern variable; otherwise we could write: (AXAY.XY)[X—ZY~2ZE] =
(Az.Az.zz), which causes a pattern-variable capture. This justifies the restriction (xeBPV(p) O 1(x) isa
variabley) in the definition of p[1]. Note that binding pattern variables cannot be a-converted because they
are “visible from the outside”.

The informal idea that “there are no variable captures’ should be formalized by showing that the re-
naming or instantiation of a-equivalent patterns produces a-equivalent patterns, and by deriving expected
properties of substitutions. We leave this for future work.

3.5. Related work on syntax extension

Griffin [Griffin 1988] has enumerated desirable properties of notational definitions and has studied
their formalization. Our distinction between normal A’s and pattern-A’s seems to remain implicit in his
work. Unlike Griffin, who translates to combinator forms that then reduce to the desired programs, we
synthesize those programs directly. (Griffin would handleour ‘| et x=a in b end’ example by trans-
lating to ‘LET( Ax. b) (a)’ for an appropriate combinator ‘LET’.) Moreover, while Griffin discusses ab-
stract translations, we provide a specific grammar definition technique and an efficient parsing algorithm.
Parsing is efficient because it is LL(1) and because it avoids the creation of intermediate parse trees, pro-
ducing directly abstract syntax trees that do not require normalization.

Bove and Arbilla [Bove, Arbilla 1992] discuss how to use explicit substitutions to implement syntax
extensions. Thisis an elegant idea that we could perhaps have adopted, but we managed to work with ordi-
nary substitutions over de Bruijn indices. Asin the previous case, their work does not describe a parsing al-
gorithm, but is theoretically well developed.
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Some language implementations, like CAML and SML, integrate a Y ACC or similar parser generator
that allows them to introduce new syntax [Mauny, Rauglaudre 1992]. If the new syntax is to be mixed with
the old one, the new syntax must be quoted in some way. Instead, we can freely intermix new and old syn-
tax without special quotations.

Hygienic macros [Kohlbecker, et al. 1986] share many of the same goals as our syntax extensions;
however, these macros account only for macro calls and not for liberally introducing new syntax. Hygienic
macros employ a multiple-pass time-stamping algorithm to prevent variable capture; this algorithm is, at
least operationally, different from our single-pass multiple-environment algorithm. We do not handle quota-
tion and antiquotation in the style of Lisp.

Finally, our syntax extension mechanism guarantees termination of parsing, even when our “macros’
are recursively defined. This property does not hold for many macro mechanisms that are computationally
powerful.

4. Mock-modules and save-points

A crude modularization mechanism is provided as an aid to the interactive loading and reloading of
definitions. Separate compilation is not agoal.

To facilitate loading and reloading thefile, say, ‘One. f sub’ containing F-sub definitions, one should
start that file with the following phrase (the module name must be the same as the file name):

nodul e One;

If thisfile relies on definitions contained in files‘Two. f sub’ and ‘Thr ee. f sub’ (which should in turn
start with the lines ‘nodul e Two; ’ and ‘nodul e Thr ee;’ respectively) then ‘One. f sub’ should
start with the phrase :

nodul e One inport Two Thr ee;

Then the variables defined inside Two and Thr ee become available within One.
A reload phrase can be issued at the top-level to load or to force reloading a module. (‘l oad’, which
was briefly discussed in section 2, will not reload a module that is aready |oaded.):

- rel oad One;

Themeaning of ‘r el oad One;’ issimply to read the Unix file*. / One. f sub’. A quoted string can
also be placed after ‘r el oad’, in which case the indicated file name is used without modification.

The intent of reloading a (file containing a) module, is to backtrack to the point in time when that
module was first loaded. All the intervening top-level definitions (including syntax extensions) are re-
tracted. When reloading a module, only the imported modules that are not already present are reloaded; in
particular, a module imported through two different import pathsis loaded once.

The precise behavior of this module mechanism is now described in terms of some lower-level primi-
tives that handle save-points. In contrast to module phrases, which are mostly useful when used within files,
save-points may be useful also when interacting at the top-level. For example, they are available even when
the top-level syntax has been clobbered by the syntax extension mechanism.

A save-point is arecord of the complete state of the system at a given point in time.

- save that;
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This phrase creates a save-point called, in this case, ‘t hat ', recording the state of the system at the mo-
ment it isissued. Named save-points are stacked.
Later, one can issue the phrase:

- restore that;

which resets the system back to ‘t hat * save-point, possibly obliterating top-level definitions aswell asin-
tervening save-points with different names. The save-point ‘t hat ’ is, however, maintained.
A special save-point exists in the beginning; the phrase:
- restore;
restores the system to itsinitial condition just after start-up.
- establish that;
This phrase is equivalent to ‘save t hat;’, if a save-point called ‘t hat ' does not exist, and to
‘restore that;’,if asave-point caled ‘t hat ' doesexist.
- load that;

Thisisequivalentto ‘r el oad t hat ;' (that is, just reading the file) if a save-point called ‘'t hat ' does
not exist, but isano-op if asave-point called ‘'t hat ' already exists.

We can now describe the precise meaning of ‘nodul e’ phrases. A module of the form:
nodul e One inport Two Three;
issimply treated as the sequence:
| oad Two; | oad Three; establish One;

where the ‘| oad’ phrases may end up establishing the corresponding modules because of module phrases
in the loaded files.

5. Top-level phrases

The top-level phrasesfall into several classes. We have described mock-modules, save-points and |oad-
ing in Section 4. We now expand on the definition and evaluation phrases sketched in Section 2. Moreover,
we discuss judgment phrases and command phrases.

All the phrases that involve types or terms are elaborated as follows. The parsing phase expands the
syntax extensions. Then, a scoping phase expands type definitions, converts identifiers to de Bruijn indices,
and detects unbound identifiers. Next, a checking phase verifies the typing correctness of types and terms.
Then, an evaluation phase normalizes terms. Finally, aprinting phase prints the results; identifiers with the
same name but different de Bruijn indices are decorated in different ways. If an error occurs in one of these
phases, the file name (if any) and the line position of the error is reported.

Each phrase is elaborated in the context of the previous top-level phrases.

« A typedefinition phrase has the form:

- Let Xi<tA = Bl .. X<t Ay = By
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where the bounds ‘<: A’ can be omitted, with ' 4’ defaulting to ‘Top’. Each ‘A, ¢’ and ‘B, 1" isin the
scopeof ‘ X;" ... * X’ and of dl the previous top-level definitions. Type definitions are fully expanded before
typechecking.

o A termdefinition phrase has the form:

- let xqii Ay = by..Xxpi Ay = bps

where the domains‘: A’ can be omitted, with ‘4’ being inferred from * b;’. Each ‘A, 1" and ' b;;.1 isinthe
scopeof ‘x4¢" ... ‘x;" and in the scope of al the previous top-level definitions.
o A typephrase hasthe form:

- A
which resultsin checking the type * A" with respect to the current top-level definitions.
o A termphrase has the form:
-
which resultsin checking and evaluating the term * a’ with respect to the current top-level definitions.

o Anenvironment E (often called also a context or an assignment) is a possibly empty sequence of ei-
ther type variables with abound (* X<: A') or term variables with adomain (‘ x: A’). Each variableisin the
scope of the environment to its left and in the scope of the top-level definitions.
« A judgment is one of the four formal statements axiomatized in Appendix D, each involving an envi-
ronment. Each of the four statements has a corresponding phrase, as follows.

An environment judgment phrase has the form:

- judge env E

where the environment * E isin the scope of the previous top-level definitions (and similarly for the follow-
ing judgments).
A type judgment phrase has the form:

- judge type E |- A
A subtype judgment phrase has the form:
- judge subtype E |- A< B
Finally, aterm judgment phrase has the form:
- judge term E |- a A

If the correctness of one of these judgments is established, asimple ‘ok’ is printed. It isinformative to
turn on tracing (as described bel ow) when elaborating judgments.

« A command phrase isused to switch on and off various options. It has the form:
- do conmmand argunent;

One can get alist of all the available commands by writing:
- do;

and one can find out about an individual command by writing:
- do conmand,
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The command ‘do Ver si on;’ printsthe current version of the system.

After issuing the command ‘do ShowPar si ng On; ' the result of parsing each phrase is printed.
Thisisuseful for debugging syntax extensions.

After issuing the command ‘do ShowVar | ndex On; ’ the de Bruijn indices of variables are printed
along with the variables.

The command ‘do Quanti fi er Subt ypi ng X' switches between the undecidable F<: rule for
guantifier subtyping (X = Least Bound), the decidable Fun rule [Cardelli, Wegner 1985] (X =
Equal Bounds) and a decidable rule proposed by Giuseppe Castagna (X = TopBound).

After issuing the command ‘do TraceType On;’, each call to the type routine of Appendix E is
traced. Similarly, ‘do TraceSubt ype On;’ and‘do TraceTer m On;’ correspond to the sub and
termroutines.

Some other commands are used for system debugging and are not documented here.

6. Typeinference by “argument synthess’

In pure F-sub one has to write down an often overwhelming amount of type information. Thisis al-
ready evident when encoding something as simple as pairing constructs. For example, through syntax ex-
tensions we can define a cartesian product operator ‘A*B’ as'Al | ( C) { A- >B- >C} - >C (see Appendix
A), dong with the operations:

pair: Al (A A I (B)A- >B->A*B
fst: All (A A I (B)A*B->A
snd: Al (A)A | (B) A*B->B
To create and manipulate simple pairs we have to write, for example;
- let a = pair(Bool)(Top)(true)(top); (* the pair (true,top) *)
- fst(Bool)(Top)(a); (* the first conponent of pair a *)

A tripleisalready quite a challenge:

- pair(Bool) (Top*Bool ) (true)(
pai r (Top) (Bool)(top)(false)); (* the triple (true,top,false)*)

What is worse, we cannot even define a syntax extension of the form, for example, ‘ a, b’ for pairs, because
the type arguments must be provided somehow.

Fortunately, a form of type inference is available. To enable it, we append question marks ‘' ?’ to the
type parameters that we would like to omit (loosely following [Pollack 1990]). For example, the polymor-
phic identity could be written:

- Let Id = Al (X?)X->X;
- let id: Id = fun(X?)fun(x:X)x;

Then, the type arguments corresponding to question-mark parameters must be omitted:

- id(top); (* instead of id(:Top)(top) *)
top : Top
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In this situation, we say that the type parameter ‘X' of ‘I d’ isstripped, to compensate for the missing type
argument, and that the argument is later synthesized.

A type quantifier is stripped by introducing a fresh unification variable that may be instatiated later, or
never; a unification algorithm is responsible for the synthesis of the argument. Type parameters are stripped
if and only if they appear at the beginning of the type of aterm identifier (that is, not an arbitrary term): we
found this restriction useful both for the inference algorithm and in understanding how inference behavesin
actual programs. Here is a situation where stripping occurs, and a unification variable is exposed in the
printed result:

- id;
o {fun(x: X?)x} : {X?->X?}
If needed, we can prevent stripping by placing an exclamation mark after aterm identifier:

- id!y

o <id>: <ld>
This option is useful, for example, if we want to pass the (unstripped) polymorphic identity as an argument
to another term.

Going back to pairs, we can now rewrite our primitives so that they admit type inference:

pair: Al (A?) Al (B?)A->B->A*B

fst: Al (A?)A | (B?)A*B->A

snd: Al (A?)Al | (B?) A*B->B
This allows us to write triples a bit more compactly, by omitting the type arguments:

- pair(true)(pair(top)(false)); (* the triple (true,top,false) *)

But, what is more important, we can now put syntax extensions to work and define asimple ‘a, b’ nota-
tion:

- synt ax
termOper ::= ... * 1
[ "," termOper_2 ] => pair(_1)(_2);
- true,top,fal se; (* the triple (true,top,false) *)

We are finally able to write pairs in a convenient notation, by the interplay of type inference and syntax ex-
tensions.

We conclude this section with some general remarks about this form of type inference; details of the
algorithm are in Appendix F.

The types ‘Al | ( X?<: A) B and ‘Al | ( X<: A) B areincomparable. A type ‘Al | ( X?<: Top) B is
stripped to ‘' B where * X' istreated as a fresh unification variable. Instead, atype ‘Al | ( X?<: A) B witha
non-' Top’ bound is stripped simply to * B{ X~ A}".

When an occurrence of * X' bound by an ‘ X?’ appears nested within other quantifiers, it must not be in-
stantiated in a way that will cause variable captures. To this end, we used first-order unification under a
mixed prefix [Miller (to appear)]. For a practical example of where this matters, see the Existentials section
in Appendix A. As an ad-hoc example, consider the following term where a type parameter is omitted in
the application of f :
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- fun(f: ALY {A T (WW>Y}->Y) f(fun(2)fun(z:2) 2z);

o Type error. Type inference rank check: instantiation type for
Y? contains a (different) variable Z that is bound deeper
t han the Y? binder:
Z(=W (last input line, char 46)
Error detected (last input line, char 51)

If ordinary unification is used instead of mixed-prefix unification, we match Al | (W W >Y? against
Al | (2) Z- >Z, causing the unification of Y? with Z. Hence the whole term above acquires the type:

(A (YD) {A I (WW>Y}->Y} -> Z

where the final Z (which is unified with Y) has escaped its scope and remains unbound. We can then
provide the following argument for the term above, obtaining a term that has the escaped Z asits type:

fun(Y?)fun(g: All (WW>Y)g(Top) (top)

After typechecking an entire top-level phrase, some of the unification variables used for type inference
may remain undetermined. We choose to tolerate this situation in term-phrases (‘ a; '), but we report an er-
ror in term-definition-phrases (‘| et ...; ").

We believe that our type inference algorithm is essentially the same as the one used in LEGO [Pollack
1990] and a first-order version of the one used in ELF [Pfenning 1989] (although we have no detailed
knowledge of those implementations). We believe the algorithm is sound, but is not complete, particularly
because we are using unification in a subtyping context. As a heuristic, this inference algorithm works ex-
ceedingly well.

7. Recursion

In this section we describe an extension of F-sub with recursive types and recursive values. The inte-
gration of recursion with subtyping in afirst-order system is studied in [Amadio, Cardelli 1991]. The ideas
described there should work in a second-order system such as F<: . However, here we take a simpler ap-
proach to recursive types, to minimize their interference with second-order types and type inference tech-
niques.

The main idea is that the isomorphism between a recursive type ‘Rec( X) B’ and its unfolding
‘B{ X~Rec( X) B}’ ismade explicit in the syntax of terms. In first approximation, we have:

unfold : Rec(X) B-> B{X—Rec(X) B

fold . B{X~Rec(X) B} ->Rec(X) B
More precisely, we extend the syntax of F-sub asfollows:

AB::= ... types as before, plus:
Rec( X) B recursive types

ab .= ... terms as before, plus:
fold(: A (b) fold b into an element of the recursive type A
unf ol d( b) unfold an element b of arecursive type
rec(x:Ab recursive terms
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Since the isomorphism is explicit, we do not have ‘Rec( X) B =‘ B{ X—Rec( X) B}'. Instead, two re-
cursive types are equal only if their respective ‘Rec’ binders are found in corresponding positions. Given
this restriction, the recursive subtyping algorithm becomes much simpler (while remaining non-trivial). The
central type rule for recursive subtyping is unchanged, but the auxiliary judgment and rules having to do
with type equality [Amadio, Cardelli 1991] are dropped. The type rules and algorithms are described in Ap-
pendix G.

As asimple use of recursive types, let us define the type of untyped lambda-terms, and some standard
combinators.

Let V = Rec(V) V->V;

let lam {V->V}->V = fun(f:V->V) fold(:V)(f)
app: V->{V->V} fun(f:V) fun(a:V) unfold(f)(a);

let i: V = lan(fun(x:V)Xx)
» V= lam(fun(x:V) lam(fun(y:V) x))
V = lam(fun(x:V) lamfun(y:V) lam(fun(z:V)
app(app(x) (z)) (app(y)(2)))));
let y: V =rec(y:V) lan(fun(f:V) app(f)(app(y)(f)));

With abit of syntax extension one can eliminatethe ‘| anmi and ‘app’ clutter (see Appendix A).
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Appendices
Appendix A. Examples

| dentity

Thisisthefile‘l d. f sub’. It defines the polymorphic identity in such a way that its type parameter
can be omitted.

nodul e |d;
Let Id = Al (X?) X->X;
let id: Id = fun(X?) fun(x:X) x;

Unit
Thisisthefile‘Uni t. f sub’. ‘Uni t ’ isthe encoding of a datatype with asingle element ‘uni t . It

is essentially the same as the polymorphic identity, but because of the intended use of ‘uni t ', type infer-
enceisnot desirable.

nmodul e Unit;
(* Defines:
Unit = Al (X)X->X
unit: Unit
*)
Let Unit = AIT(X) X->X;
let unit: Unit = fun(X) fun(x:X) x;

Booleans

Thisisthefile ‘Bool . f sub’. Thisis the encoding of a data type with two elements, ‘t r ue’ and
‘f al se’. Also provided are two subtypes of ‘Bool ' containing one element each. Standard boolean opera-
tors are defined. The syntax of terms is extended with two keywords ‘t r ue’ and ‘f al se’, with condi-
tionals, and with two infix operators.

nodul e Bool ;

(* Defines:
Bool = All (X) X->X->X
True, False <: Bool
true, false: Bool
tt: True
ff: Fal se
not: Bool - >Bool
and, or, _/\_, _\/_: Bool->Bool->Bool
if _then _ else _ end

*)

Let Bool (X) X->X->X
True (X) X->Top->X
Fal se = Al (X) Top->X->X;

let true: Bool = fun(X) fun(x:X) fun(y:X) x
false: Bool = fun(X) fun(x:X) fun(y:X) vy;
let tt: True = fun(X) fun(x:X) fun(y:Top) x
ff: False = fun(X) fun(x:Top) fun(y:X) vy;

All
All

let cond = fun(X?) fun(b:Bool) b(:X);
(* Bool, true, and false are turned into keywords *)
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synt ax
typeBase ::= ...
"Bool " :> Bool

ternBase ::= ...
{ "true" => true
"false" => fal se
["if" term1 "then" term2 "else" term3 "end" ]
=> cond(_1)(_2)(_3) }

l et not: Bool->Bool =
fun(x:Bool) if x then false else true end
and: Bool - >Bool - >Bool =
fun(x: Bool) fun(y: Bool)
if x then y else false end
or: Bool - >Bool - >Bool =
fun(x: Bool) fun(y: Bool)
if x then true else y end;

synt ax
termOper ::= ... *_1
{ [ "/\\" termAppl _2 ] => and(_1)(_2)
[ "\\/" termAppl 2] => or(_1)(_2) }

Products

Thisisthe file ‘Pr oduct . f sub’. It defines a cartesian product operator, extending the syntax of
types, and a pairing operator, extending the syntax of terms. Syntax extensions and type inference interact
in this situation, so that pairs can be constructed simply by infixinga“, ’.

nodul e Product;

(* Defines:
A*B = ALl (O {A->B->C->C
_,_ Al(A?) AI(B?) A->B->A*B
pair: Al (A?) Al (B?) A->B->A*B
fst: Al (A?) Al (B?) A*B->A
snd: Al (A?) Al (B?) A*B->B

*

)

synt ax

typeQoer ::= ... *_1
["*" typeOper_2]

> AI(O {_1-> 2->C->C

let pair: Al (A?) All(B?) A->B->A*B =
fun(A?) fun(B?) fun(a:A) fun(b:B)
fun(Q fun(p: A->B->C) p(a)(b);
let fst: Al (A?) Al (B?) A*B->A =
fun(A?) fun(B?) fun(p: A*B) p(:A) (fun(a: A fun(b:B)a);
let snd: Al (A?) Al (B?) A*B->A =
fun(A?) fun(B?) fun(p: A*B) p(:B)(fun(a: A fun(b:B)b);
synt ax
ternQper ::= ... *_1
["," ternOper_2] => pair(_1)(_2)

Sums
Thisisthefile*Sum f sub’. It defines a disjoint union operator, extending the syntax of types, and a
‘case’ construct extending the syntax of terms. Notethat ‘case’ introduces local bindings.

nmodul e Sum

(* Defines
A+B = ALl (O {A->C->{B->C}->C
inl: Al(A?) Al (B?) A->A+B
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inr: Al (A?) All(B?) B->A+B
sum Al (A?) AI(B?) Al (C?) A+B->{A->C}->{B->C}->C
case term
inl(ide:type) term
inr(ide:type) term
end,
*)
synt ax
typeQoer ::= ... *_1
[ "+" typeQper_2 ]
> Al (O {_1->C->{_2->C->C

let inl: Al(A?) Al (B?) A->A+B =
fun(A?) fun(B?) fun(a:A)
fun(Q fun(f:A->C fun(g:B->C f(a);
let inr: Al (A?) Al (B?) B->A+B =
fun(A?) fun(B?) fun(b:B)
fun(Q fun(f:A->C fun(g:B->C) g(b);
let sum Al (A?) Al (B?) Al (C?) A+B->{A->C->{B->C}->C =
fun(A?) fun(B?) fun(C?)
fun(s: A+B) fun(f: A->C) fun(g: B->0)
s(: 9 (f)(9);

synt ax
ternBase ::= ...
["case" term1
“Ift" "(" termde_2 ":" type_ 3 ")" term4
"rht" "(" termde_5 ":" type_6 ")" term7
"end"]

=> sun(_1)(fun(_2:_3)_4)(fun(_5:_6)_7)

Tuples
Thisisthefile ‘Tupl e. f sub’. It defines type tuples asiterated cartesian products ending with ‘ Top’,
so that alonger tuple type is a subtype of a shorter tuple type. Note that the previously defined syntax for
cartesian productsis used here to provide a further syntax extension. Tuple values are iterated pairings end-
ing with ‘t op’.
nodul e Tupl e
i mport Product;

(* Defines:
Tupl e(type ... type)
tuple(term... term
*
)
synt ax
typeBase ::= ...
[ "Tuple" "(" typeTuple_1 ")" ] :> _1
typeTuple ::=
{ [ type_1 typeTuple_ 2 ] :> 1 * _2
[] :> Top }
synt ax
ternBase ::= ...
[ "tuple" "(" termTuple_1 ")" ] => _1
termluple ::=
{[ terml1 termluple. 2] == 1, _2
[1 =>top}

Page 23



Inductive Lists

Thisisthefile‘l ndLi st . f sub’. It defines‘Li st ( A) ' data types encoded by inductive definitions
(that is, without using recursion over types). Syntax extensions are used here to simulate a third-order oper-
ator (‘Li st ) within asecond-order language: ‘Li st ( A) ’ isasecond-order type only for afixed ‘A’. Note
that the action for ‘Li st ’ usesalocal variable ‘L’ that must be kept distinct from any variable that may ap-
pear in a parameter to ‘Li st ’; thisis taken care of by the action instantiation algorithm. The syntax of
terms is extended with a case construct and a convenient way of building lists of many elements; again,
syntax extensions and type inference interact in interesting ways.

nodul e | ndLi st
i mport Bool ;
(* Defines:
List(A) = Al (L) L->{A>L->L}->L,
nil: Al(A?) List(A),
cons: Al (A?) A->List(A)->List(A),
null: Al (A?) List(A)->Bool,
hd: Al (A?) List(A)->A->A
tl: Al (A?) List(A)->List(A
caselList term
nil() term
cons(ide:type ide:type) term
end,
list(term... term
*)
synt ax
typeBase ::= ...
[ "List" "(" type_1 ")" ]
> ALT(L) L->{_1->L->L}->L

let nil: Al(A?)List(A) =
fun(A?)fun(L)fun(n:L)fun(c: A->L->L)n;
let cons: Al (A?)A->List(A)->List(A) =
fun(A?)fun(hd: A)fun(tl:List(A))
fun(L)fun(n:L)fun(c: A->L->L)
c(hd) (t1(:L)(n)(c));
let iterList: Al (A?)AIl (B?) List(A)->B->{A->B->B}->B =
fun(A?)fun(B?)fun(l:List(A))
fun(n: B)fun(c: A->B->B)

I(:B)(n)(c);

synt ax
ternBase ::= ...
{ "nil" =>nil

"cons" => cons

["caseList" term1

"nil" (" ")" term2

"cons" "(" termde_3 ":" type_4 termide_5 ":" type_ 6 ")" term7
"end"]

=> jterList(_1)(_2)(fun(_3:_4)fun(_5:_6)_7) }

let null: Al (A?)List(A)->Bool =
fun(A?)fun(l:List(A))
caselList |
nil() true
cons(hd: A tl:Bool) false
end,
let hd: Al (A?)List(A)->A->A =
fun(A?)fun(l:List(A))fun(a: A
caselList |
nil() a
cons(hd: A tl:A) hd
end;
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let tl: AIl(A?)List(A)->List(A) =
fun(A?)fun(l:List(A))
caseli st |
nil() nil
cons(hd: A tl:List(A)) tl
end;

synt ax
ternBase ::= ...
[ "list" "(" termList_1 ")" ] => _1
ternList ::=
{ [ term1 ternmList_2 ] => cons(_1)(_2)
[1 =>nil }

Recursive Lists

Thisisthe file ‘RecLi st . f sub’. It provides the same constructions as ‘| ndLi st . f sub’, except
that lists are encoded via recursive types. Note how the operators provided here encapsulate the folding and

unfolding of recursion, so that they need not be used directly.

nodul e ReclLi st
i mport Bool ;
(* Defines:
List(A) = Rec(L) Al (O GC>{A->L->C->C,
nil: Al (A?) List(A),
cons: Al (A?) A->List(A)->List(A),
null: Al (A?) List(A)->Bool,
hd: Al (A?) List(A)->A>A
tl: Al (A?)List(A)->List(A),

caseList term
nil() term
cons(ide:type ide:type) term
end,
list(term... term
*)
synt ax
typeBase ::= ...
[ "List" "(" type_1 ")" ]
> Rec(L) AI(CQ C>{_1->L->C->C

let nil: AI(A?)List(A) =
fun(A?)
fold(:List(A))(fun(Qfun(n:Cfun(c: A->List(A)->C)n);

let cons: Al (A?)A->List(A)->List(A) =
fun(A?)fun(hd: A)fun(tl:List(A))
fold(:List(A))(fun(Qfun(n:Cfun(c: A->List(A)->Cc(hd)(tl));

let recList: Al (A?) Al (B?) B->{A->List(A)->B}->List(A)->B =
fun(A?) fun(B?) fun(n:B) fun(c:A->List(A)->B)
fun(l:List(A) unfold(l)(:B)(n)(c);

synt ax
ternBase ::= ..
{ "nil" =>ni
"cons" => cons
["caseList" term1

"nil" (" ")" term2
"cons" "(" termde_3":"type_4 termde_5":"type_ 6 ")" term7
"end"]

=> recList(_2)(fun(_3:_4)fun(_5:_6)_7)(_1)
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let null: Al (A?)List(A)->Bool =
fun(A?)fun(l:List(A))
caseli st |
nil() true
cons(hd: A tl:List(A)) false
end;

let hd: Al (A?)List(A)->A->A =
fun(A?)fun(l:List(A))fun(a: A
caseli st |
nil() a
cons(hd: A tl:List(A)) hd
end;

let tl: Al (A?)List(A)->List(A =
fun(A?)fun(l:List(A))
caselList |
nil() nil
cons(hd: A tl:List(A)) tli
end,

synt ax
ternBase ::= ...
[ "list" "(" ternList_1 ")" ] => _1
ternList ::=
{ [ term1 ternList_2 ] => cons(_1)(_2)
[1 =>nil }

Existentials

Thisisthefile‘Somne. f sub’. Bounded and unbounded existential quantifiers are encoded in terms of
universal quantifiers. Syntax is provided which is analogous to the built-in syntax for universal quantifica-
tion.

nodul e Sone;

(* Defines
Sore(i de)type, Sone(ide<:type)type
pack ide<:type=type as type with termend
open termas ide<:type ide:type in termend

*)
(* easy version:
synt ax
typeBase ::= ...
[ "Some" "(" typelde_1 "<:" type_2 ")" type_3 ]
> AL(V?) {Al(_1<:_2) 3 ->V} ->V
;)
(* sone interesting pattern-variable manipulation: *)
synt ax
typeBase ::= ...
[ "Sonme" "(" typelde_1
{ ["<t" type_2 ")" type_3 ]
> ALL(V?) {All(_1<:_2) 3->V ->V
[")" type_3 ]
> AL(V?) {AI(1) 3->V} ->V
} _4
] :>_4
synt ax
ternBase ::= ...
{ [ "pack" typelde_1 "<:" type_2 "=" type_3 "as" type_4

"with" term5 "end" ]
=> fun(V?) fun(f:Al(_1<:_2)_4->V) f(:_3)(_5)
[ "open" term1 "as" typelde_2 "<:" type_3 termde_4 ":" type_ 5
"in" term6 "end" ]
=> _1(fun(_2<:_3)fun(_4:_5)_6)}
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(* Exanpl e:
| oad Bool; |oad Product;

Let Spec = Sone(X<:Bool) X*{X->Bool};

let inpl: Spec =
pack X<: Bool =True as X*{X->Bool }
with tt, fun(x:True)true end,
open inpl as X<:Bool p: X*{X->Bool }
in snd(p)(fst(p)) end;

Note: trying to extract fst(p) rightfully causes a type-inference
rank-check, which woul d not be captured by the normal first-order
uni fication algorithm

*)

Untyped A-terms
Thisisthefile'Scot t . f sub’. It usesrecursive types to encode the untyped A-calculus.
nodul e Scott;

(* Defines
V = V->V
\x e untyped | anbda
e.e untyped application
i,k,s,y: V the usual conbinators
*
)
Let V = Rec(V) V->V,
synt ax
ternBase ::=

["\\" termde_1 term2]
=> fold(:V)(fun(_1:V)_2)
ternQper ::= ... *_1
["." termAppl _2]
=> unfold(_1)(_2);

let i =\x X
k =\x \y x
s =\x \y \z {x.z}.{y. z}
y = \f {\x f.{x.x}}.{\x f.{x.x}};

(* Note: the evaluator is eager; k.i.{y.i} will diverge. To fix this, use:

nodul e Scott
inmport Unit;

Let V = Rec(V) {Unit->V}->V,

synt ax
ternBase ::= ...
{ ["@ termde_1]
=> 1(unit)
["\\" termde_1 term2]
=> fold(:V)(fun(_1:Unit->V)_2) }
ternQper ::= ... *_1
["." termAppl _2]
=> unfol d(_1) (fun(u: Unit)_2);

let i =\x @;

let k =\x \y @&;

let s =\x\y\z {&. @}.{@. @};

let y =\f {\x @.{@& @&}}.{\x @.{@& @&}};
koi.{y.i};

*)
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Appendix B. Lexicon

The ASCII characters are divided into the following classes:

Blank HT LF FF CR SP

Reserved "t~

Delimiter (), A I R N A

Special #3 %&* + -/ . <=>@\ M|

Digit 0123456789

Letter ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijkl mnopgr stuvwxyz

Ilegal all the others

Moreover:
- a StringChar is either
- any single character that is not an lllegal character or oneof ** *,*" ", ‘\".

- one of the pairs of characters‘\ ' *, ‘\ " ", ‘\ \ ",
- aComment is, recursively, a sequence of non-lllegal characters and comments
enclosed between *(*" and **) ’.

From these, the following lexemes are formed:

Space a sequence of Blanks and Comments.

AlphaNum a sequence of Letters and Digits starting with a Letter.

Symbol a sequence of Specials.

Char asingle StringChar enclosed between two *' ’.

String a seguence of StringChars enclosed between two " .

Int a sequence of Digits, possibly preceded by asingle minussign ‘~’.
Delimiter asingle Delimiter character.

A stream of characters is split into lexemes by always extracting the longest prefix that is a lexeme.
Note that Delimiters do not stick to each other or to other tokens even when they are not separated by
Space, but some care must be taken so that Symbols are not inadvertently merged.

A token is either a Char, String, Int, Delimiter, Identifier, or Keyword. Once a stream of characters has
been split into lexemes, tokens are extracted as follows.
- Space lexemes do not produce tokens.
- Char, String, Int, and Delimiter lexemes are also tokens.
- AlphaNum and Symbol lexemes are Identifier tokens, except when they have been
explicitly declared to be keywords, in which case they are Keyword tokens.
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Appendix C. Syntax

The predefined keywords are:
For grammar definitions:
char end ide in int string syntax ::= => :> * =
For F-sub proper:

Al Let Rec Top fold fun judge let rec top unfold :

+  Thegrammar of phrasesisasfollows.

phrase ::= (* public*)
{m

[ "Let " typeBinding "; " ]

["l et" termBinding "; " ]

[":"type™; "]
[term™; "]
[ synDecl *; "]

["judge" {["env" env]
[ Ilt ypell mv II| - n type]
["subt ype" env"| - " type"<: " type]
["ternfenv”| -"term": " type]
} II; II]
["rel oad" { idestring} "; "]

["restore"{ide[]}";"][{ "save" "establish""l oad"} ide";"

[ "nodul e"ide{ "i mport "ideList}"; "]
["do" { [ide{ide[]}][1} " "]

}
ideList ::=

{[ideideList] []}
typeBinding ::=

{ [ide{ ["<:"type][]} "="typetypeBinding] ] }
termBinding ::=

{[ide{[": "type][]} "="termtermBinding] [] }

env =
{[ide{["<:"type] [":"type]} ][]}

+ Thegrammar of types and termsis as follows.

pvar ::=
["_"int]
binder ::=
{ idepvar}
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type ::= (* public*)
[ typeOper { [ "->"type[] ]} ]

typeOper ::= (* public, hook for client infixes *)
(typeBase*_1{})

typelde ::= (* public*)
ide
typeBase ::= (* public*)

{ typelde pvar "Top"

["ALL" (" binder { *2" [} { ["<: " type] [1} ) " type]
["Rec" "("ide") " type]

["{" type"}" 1}
term ::= (* public*)
termOper
termOper ::= (* public, hook for client infixes *)

(termAppl *_1{})

termAppl ::= (* public*)
(termBase* 1
{0 {[""type] term} ") "]

"1"1) (* "I" must follow an identifier or keyword *)
termlde ::= (* public*)
ide
termBase ::= (* public*)

{ termide pvar "t op"
["fun""(" binder { [": " type] ["<: " type] ["?" {["<:"type][]} ][]} ") " term]
["fold""("" "type™)""("term") "]
["'unfol d""("term™) "]
["rec""("ide": "type") " term]
["{" tem"}" ]
synTerm}

+  Thegrammar of syntax extensionsis as follows. Note that the grammar for synTerm cannot be
written down precisely in this notation.
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synDecl ::=

["syntax" { "t opl evel "[]} grammar ]
synTerm ::=

[ "synt ax" grammar "i n" ... "end" ]
grammar ::=

clauseSeq

clauseSeq ::=
[ide": : =" extends gramExp { clauseSeq[] } ]



extends ::=
(e e {pvar 03 03 0)
gramExp ::=
[ gramExpBase
{["=>"term]
[":>"type]
pvar
[1}1]
gramExpBase ::=
{ idestring"i de""i nt" "char" "string"
["[ " gramExpList"] "]
["{" gramExpList "} ]
["(" gramExp{ ["*"{ pvar[] } gramExp] ]} ") "1}
gramExpList ::=
{ [ gramExp gramExpList ] [] }
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Appendix D. Typing rules

These are the typing rules of F-sub, as described in [Cardélli, et al. 1991].

Environments

(Env g) (Env x) (Env X)
E - Atype X ¢ dom(E) E - Atype X ¢ dom(E)

Et g env FE,x: Aenv FE X<: Aenv
Types

(Type X) (Type Top) (Type - >) (Type Al l')

FE X< AFE env FEenv EF Atype E F Btype E,X<: AF Btype

E,X<: AFE F Xtype E Top type E - A-> Btype EFAI(X<: ABtype
Subtypes

(Subrefl) (Sub trans) (Sub X) (Sub Top)

E I Atype EFA<' B EFB<:C FE X<: AFE enw E - Atype

EFA< A EFA< C E X< AE FX< A EFA<: Top

(Sub - >) (SUb AT

EFA< A El B<: B EFA< A E.X<: A" -B<: B

EFA->B < A->8B EFAI(X<:AB < Al(X< A)B
Terms

(Subsumption) (Termx) (Termt op)

EFa: A EFA< B FE,x: AFE env FEenv

Era: B Ex: AE Fx: A EFtop: Top
(Term fun) (Termappl)
E,x: A-b: B Er-b: A->B Ela A
Erfun(x: Ab : A->B Er-FHa : B
(Termfun2) (Termappl2)
E,X<: A-b: B EFb: Al (X<: AB EFA< A
EFfun(X<:Ab : Al(X<: AB EFH:A) : BX~A}
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In preparation for the typing agorithms, these are the same type rules expressed with de Bruijn indices.
The notation eA stands for either : Aor <: A Liftingis Al,, and substitution is B{i — A ; the latter isto be
invoked as B{1 — A.

Al =AY M =n (n<j); M =n+i (n>j); Top!! =Top

(A->B) = Al -> gl (Al (< ABM =AIl (< AlHBH*™

Wi - @=n (n<i); nmn-qg=c.,; ni-G=n-1(n>i); Top{i - G=Top
(A->Bfi - =Ai - G->Bi+1-G; Al (<AB{i « G=Al (< Ai -« Q)Bi+1- G

Environments

(Env g) (Env x) (Env X)
EF Atype EF Atype

Et g env FE, Aenv FE<: Aenv

Types

(Type X) (Type Top) (Type - >) (TypeAl | )
FE < A€A .. €A ev FEenv E. Al Btype E,<: Al Btype

E,<: A€A, ,,...€A F ntype E+ Top type E+ A-> Btype EFA | (<: ABtype

Subtypes
(Sub refl) (Sub trans) (Sub X) (Sub Top)
E Atype E-A<: B EFB<:C FE <! A€A,,,...€A ewv E - Atype
EFA< A EFA<C E,<: A€A,,,...eA Fn<: Al EFA<: Top
(Sub - >) (SUbAl'L)
EFA' < A E: A" -B<! B EFA<A E,< A FB< B
EFA->B < A ->B EFAl(<:AB <: Al(<:A)B
Terms
(Subsumption) (Termx) (Termt op)
Ela: A EFA< B FE: A€A ... €A env FEenv
Era: B E; A€A ,...eA Fn: Al E+top: Top
(Termfun) (Termappl)
E;, A-b: B EFb: A->B Eta A
EFfun(: Ab : A->B EFHa : B
(Termfun2) (Termappl2)
E,<: AR b: B EFb:Al(<: AB EFA <A
EFfun(<:Ab : Al(< AB EFH:A) @ Bl-A}
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Appendix E. Typing algorithm

The parsing phase eliminates all the syntax extensions. A scoping phase converts variables to de Bruijn
indices, and checks that all variables are properly bound. (Variables in type contexts should be bound by
type binders, while variables in term contexts should be bound by term binders.) The scoping phase also
expands all the top-level type definitions. Therefore, only the following data structures have to be consid-
ered for typechecking (where n=1):

PreType

S5T= n| Top| S>T| Al(<:9T
PreTerm

ab= nj| top| fun(:9b | b(a) | fun(<:9 b | b(:9
Env

E= ¢| E<A| E:A

Type
AB= n| Top| A>B| Al(<AB

The following algorithms are expressed in the form of deterministic labeled transition systems [Plotkin
1981]. (They can be read much as Prolog programs.) Each kind of “arrow” defines a (functional) relation.
The name of the relation is on top of the arrow, the main parameters are on the left, additional parameters
are below, and results are on the right. The main parameters are, by convention, the ones subject to struc-
tural induction. The signature of each relation is given in a box, and includes parameter names as com-
ments; the notation a:A(=b) means that b is the default value of the parameter a, when that parameter is
omitted.

There is adirect correspondence between each relation and a recursive procedure in the implementa-
tion code, and between each rule and a case branch in the implementation code.

To preserve al the internal invariants, we assumed that type and term are the top-level algorithms, and
that they are started with an empty environment. Typechecking failure is (implicitly) represented as a
“stuck” condition of the transition system.

What follows is the now well known sound and complete algorithm for F-sub [Curien, Ghelli 1991].
Giorgio Ghelli has shown that this algorithm diverges in some situations where it should fail, and Benjamin
Pierce has further shown that the type system of Appendix D is undecidable [Pierce 1992].

Lift increases indices above a cutoff index.

lift
type: Type result : Type
YR e T Int, cutoft - Ini(=0) P

nﬂm (n<)) nmm +i(n>j) TopEDTop
i i i
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Al g it g LR
I ] i,j+1 I, ] j+1
lift , lift .
A->B—pA' ->B Al (<: AB—pA | (<: A)B
I, ] l)

>B'

Replace performs a substitution and lowers the free indices.

replace
e: Type >result : Type
type: Typ index: Int, with: Type, lift: Int(= 0) P
lift
replace . CC replace . replace
n—————on (n<i) —_— n————pn-1(n>i) Top — >Top
i,Cl ,revlace i,Cl i,C
n,C1l
rgplaceDA, . replace B rgplaceDA, . replace ,
i,Cl i+1Cl+1 i,Cl i+1Cl+1
A->pBrPEe L L AL (< AB™PIE | (< Ay

I! y [Rad]

Typel de extracts the bound of atype identifier from an environment.

env: Env- typelde - >result : Type
index: Int, depth: Int(=index)
AHJDA' E typelde “B E typel de[> B
d n,d n,d
E,< AYPEICR < adpelde oo bpelde g
1,d n+1d n+1d

Termlde extracts the type of atype identifier from an environment.

termide
env: Env- -
index: Int, depth: Int(=index)

>result : Type

AEDA' EtermldeDB EtermldeDB
d n,d n,d
E':AtermldeDA, E < AtermldeDB E,:AtermldeDB
1,d n+1d n+1d

ExposeArrow strips type variables until it finds an arrow type.

exposeArrow
env:

type: Type >outType: Type
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E typel deD 2 A expoaeArrowD "

n E A-> BWDA— >B
exposeArrow
n——————pA
E
ExposeAll stripstype variables until it finds aforall type
type: TypeMmutType : Type
env: Env
Etypelde[)A AexposeAlI A o oseAl
n E Al (<: ABZPE A1 (<: 4B
exposeAll |
n———>pA
E
Sub tests subtyping between two types.
. sub
small, big: Type———n»result : { ok}
env: Env
b b PR Ak
A Top —nok n,n=—wok n T E (B#n, B#Top)
E E n, B——»ok
E
A Ao B P g A Ao BE P Lo
E E, A E E < A
A—>B,A'—>B'Su?bl>ok Al (<: ABA I (<: A)B' Su?bmk

Type checks that a pretype is well-formed and returns the corresponding type.

type
re: PreType——————presult : Type
P P env: Env(:ys)I> w
g ypelde PELYN LN L
n T type N E E: A E E< A
type oPTgop type type
n?bn S_>T?I>A_>B Al | (<: \S)T?DAl | (<: A)B
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Term checks that a preterm is well-typed and returns its type.

pre: PreTermter—mwesult: Type

env: Env(=g)
glermide s pEM g L em g
. n t op ter_mD'rop E E,: E E,<: A
n &M A E fun(: 96 Ma->B8  fun(< 9b ™Al (<: AB
E E E
b '[ermDc cexposeArrowa, _>B a termDA AA suib[>0k BreplaceDB,
E E E E LA
term
a——>bB
K a) £
bl cPORA (<A sYPa aa O gPIER g
E E E LA
H: S)ter?mDB'
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Appendix F. Typing algorithm with argument synthesis

We now extend the typing algorithm of Appendix E with type inference. The inference mechanism is
based syntactically on [Pollack 1990], and algorithmically on [Miller (to appear)].
The necessary data structures are as follows, where g=? or g is empty.

PreType
ST= n|Top|S>TIAI(g<: 9T
PreTerm
ab= n|n |top|fun(:S b|b(a) |[fun(g<: S b|b(:Y9
Env
E= ¢g|E< A|E:A
Type
A B= a|n|Top|A>B|Al(g<:AB
Subst
o= gla,ola-A og|ol|od

A substitution ¢ binds unification variables that may occur in terms, types and environments. An in-
stantiated variable appears as o — Ain the substitution. A non-instatiated variable appears as a, in the sub-
stitution, where the rank r is an index into an environment. Rank 1 points to the right of the rightmost com-
ponent of the environment; rank 2 points between the rightmost component and the one to its left, and so
on. Thisinformation encodes a mixed prefix [Miller (to appear)]: universaly quantified variables are repre-
sented by de Bruijn indices into the environments, while existentially quantified (unification) variables
have ranks pointing between components of the environment. (Therefore, the order of universal quantifiers
matters, but the order of contiguous existential quantifiers does not.)

The operations ol1and o] shift all the (free) de Bruijn indices and ranksin g by +1 or -1.

Before describing the algorithm, we give some properties of substitutions. Here is how the substitution
shifts od and ol are normalized away, and how a normalized substitution o is applied to atype A (via
Al0}J). The order of occurrence of variablesin anormalized substitution is not important.

oft=0ot,; a=0d,; gl = ¢, (@ Aa)t,=a - A0l ; (a,,0f, =a,,,ol,
At =AY all =a; i =n (n<j); M =n+i (n>j); Top!! =Top
(A->B) = Al -> gl (Al (g<: ABI =AIl (g<: At)BH*

afa,,0} =a; ala - Ad} =Aa}]; ma} =n (n<j); ma} =n+i (n>])

Top{a} =Top; (A->B){o}/ = A} ->Bo}/"; (Al(g< AB{o} =Al (q<: Ad})Bo}"

A substitution is applied to a judgment, for example a typing judgment, as follows. Indices decrease while
moving into the environment, but all indices remain positive because of rank restrictions.

(E+Atype){d}/ = E{a}] + Ala}/ type
¢{U}ij =g, (E; A){a}ul = E{U}ij-ll: A{G}ij-l ; (E<: A){U}.J = E{U}ij-l’<: A{O—}ﬂl
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Here is how an index-1-replacement operation A1 — G isapplied to atype A containing unification vari-
ables. This operation occurs in the context of some substitution o; the case ofi -« G =« isjustified by
rank restrictions that ensure that whatever o isinstantiated to, it cannot depend on i.

afi - @=a; nfi-Q=n (n<i); nn-g=0ad,,

i - G=n-1(n>i); Top{i — G=Top

(A->B){i « G=Ai « G->Bi+1-CG; (Al(g<:AB{i -« G=Al(g<:Ai - QBi+1-¢G
The notation o\a indicates removing a — Aor a, from o.

Lift increases indices above a cutoff index.

lift
e: Type result : Type
type: Typ by: Int,cutoff : Int(= 0)D P
aﬂw nﬂbn (n<j) n£>n+1(n>j) Topﬂﬂop
i,j ij iyj ij
At g it g At g It g
i, ] i,j+1 ] i,j+1
lift , lift -
A->B—pA' ->B Al(g<:AB—pA I (g<: A)B
ij iyj

Retrieve retrieves the instance or rank of atype variable from a substitution.

subst : Subst — retrieve pinstance: Type O rank : Int
lift : Int(= 0), var : TypeVar

i retrieve
At p o CR, A
i i,a
- . (B#a)
retrieve retrieve
a < A, - >A’ B~ Bg— >A
L,a ,a
o retrieveDA o retrieveDA o retrieveDA
retrieve . i,a i+1a i-La
r i Pr retri (B#a) retri retri
La B.,.o Et eveDA of et evebA al et eVe|>A
L,a ,a I, a

Replace performs a substitution with an index shift of -1 on “freeindices’. A type variable shall not depend
on the replacement index.

replace
type: Type result : Type
ype- P index: Int, with: TypeD w
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lift

C >C'
a replace n re.placebn (n<i) n-1 replacem “1(n>i) Top re.place[>_|_Op
i,C i,C nreplace i,C ,
>C'
nC

replaceDA, r_eplaceDB, replaceDA, r_eplaceDB,

i,C i+1C i,C i+1C
A—>BreP'gce>A'—>B' Al (g< AB" P A | (g < AYB

|1

Srip expands question-mark quantifiers and introduces ranked variables in substitutions.

strip

e: Type—————outType: Type, outSubst : Subst

type: Typ subst : Subst ype: yp
o retrieve 2SR o o retrieve o
S a s AZPoA G (AZa, AZA I (?<: OB)
aXPoa o aXPg o o

o o

BreplaceDB, B strlpDB,, e BreplaceDB, B St”pDB" e

La Stgl’a (o new in o) LA e g (A#Top)
Al (?2< Top)BXPup o Al (2< AP g &
o o

Typel de extracts the bound of atype identifier from an environment.

env: Env- typelde - >result : Type
index: Int, depth: Int(=index)
AEDA' £ typel deD B £ typel deD B
d n,d n,d
Ec AP o g alPRlde g g ypeide g
1,d n+1d n+1d

Termlde extracts the type of atype identifier from an environment.

termide
env: Env- - >result : Type
index: Int, depth: Int(=index)
A“—ﬁDA’ termldeDB termldeDB
d n,d n,d
E. AtermldeDA, E < AtermldeDB E: AtermldeDB
1,d n+1d n+1d
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ExposeArrow strips variables until it can find or generate an arrow type.

exposeArrow

>outType: Type, outSubst : Subst
env: Env, subst: Subst

type: Type

EtypeldeDA Aexpo;eArrowa, o oocenron
s exposeArrow 2 A-> BT o> B0
n——=mA",0' Eo
E,o
o retrleveDA AexposeArrowa, e
a E,o
a exposeArrowDA, p
E,o
retrieve
() >
a (o, a" newin o)

a exposeArrow

a'->a"),(a - (a'—->a"),a',,a", (g \ a))
E,o

ExposeForall strips variables until it can find aforall type or can generate a (non-?) forall type.

exposeAll

>outType: Type, outSubst : Subst
env: Env, subst: Subst

type: Type

EtypeldeDA AexposeAlI A O

n Eo _ exposeAll _
exposeAll . Al (g<: AB———>A | (g<: ABo
nibA ,0' ]
E,o
o retrleveDA AMDA' o
a E,o
g SXPoseAll o
E,o
retrieve
o b
a T " .
(a',a" newino)
o EPORAL 1 (< ey - (AT (<t aYa)ar a0\ a))

E,o

OccurCheck tests for circular instantiations and rank violations (variable captures).

type: Type oceurCheck >result ; Subst
var : TypeVar, varRank : Int, subst : Subst, level : Int(= 0)
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retrieve retrieve
5 >S 8 >S
#B,s<r)  ——=——— (@ #B, s2r)
occur Check (a occurCheck
————B.,(0\ ———— 0
P a,r,o,i F@\ P a,r,o,i
retrieve occurCheck |
o B »B 5 a,r,o,i "o occur Check occur Check
occurCheckM (a #B) n—a,r,a,i so(-~(n>i0n<r)) TOp—a,r,a,i >
a,r,a,i
occur Check - occur Check occur Check - B occur Check o
a,r,o,i ar+1ofi+1 a,r,o,i ar+lofi+1
Ae> BoccurChgckDOJ,U Al (g < /L\)BoccurCheicka,U
a,r,o,i 10,1
Sub tests subtyping between two types.
. sub
small,big: Type >substOut : Subst
env: Env, substin: Subst
A,Topsu—bw a,asu—bw
E, E,o
o retrleveDA AB sub - o retneveDB AB I:ub -
a B9 (B#a, B#Top) P 9 (a%p)
sub sub
a,B——n0 A B—rnpE 0
E,o E,
retrieve occurCheck retrieve occurCheck
a a,n,o (B#a, B#Top) ak (A B)

a, Bsu—bw < B/(o'\a)

typelde sub

A,p%w A \B)

E A AB g
n,n—-—ug n 1 (B#y, B#n, BZTop)
sub |
' n,B———npo
a A . gg M aa . gy M
el E; A o' E,o E<: A ,o'f
A->BA ->B 0 0 Al (qg< ABAI(g< A)B ool
E,o E,o
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Type checks that a pretype is well-formed and returns the corresponding type.

type
re: PreType >result : Type
p yp v Env(=9) yp
g ypelde_, sPe 4 TP g s, T WP p
n T type T E E, E< A
fype oPTgoP fype type
n—=—ron S->T=— E >A->B Al(g<:9T=——>Al Il (g <: AB
Term checks that a preterm is well-typed and returns its type.
term
pre: PreTerm stype: Type, substOut : Subst
env: Env(=g), substin: Subst
EtermldeDA ASt”p>A' e EtermldeDA e
n - 1 terrr;1 t op——sToOp,0
n—"pLA" o n—"pA 0 Eo
Eo E,o
type term , type term ,
S—rA b—— B0 S—rpA b—— B0
E; Aol E E,<: Aol
fun(: S)b—DA >Ba'l  fun(q <:3bts—m|>All(q < ABao'l
1 ,U
pEM g CRPOFATOW i g aMap  aa 0., preRlae g
E,o ag' E,o" E,p 1A
da) ﬂDB’ ,p‘
E,o
b cPPORAl Mg a)sp  sPa  aa 0., prEe g
Eo g E E.p 1,A
teem _,
k- 5)7 >B',p
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Appendix G. Recursion

Asexplained in section 7, two recursive types are equal only if the Rec bindings occur in the same po-
sitions. That is, unfolding a recursion does not produce, in general, an identical type. Since variables are re-
placed by de Bruijn indices, equality of recursive typesis then simple identity.

Still, precisely because of de Bruijn indices, the subtyping test for recursive typesis not trivial. The
formal subtyping rule requires that the body of two recursive types be tested for inclusion under the as-
sumption that the corresponding variables are included in one direction. But since the de Bruijn indices are
identical in both types, they will match in both directions. For example, Rec( X) X- >Bool <:
Rec(Y) Y- >Top should fail, while the de Bruijn version Rec() 1- >Bool <: Rec() 1->Top would,
naively, succeed. Hence, before testing the bodies we compute the ties between the recursion variables,
which can be positive (covariant), negative (contravariant), or both. If the ties are only positive, we test the
bodies for inclusion, otherwise we test the bodies for equality (inclusion in both directions). The ties are
computed by mimicking a subtype test.

G.1. Typing Rules

Contractivity Relation (A> X)
Y>X = YZX; Top>X; (A >B>X; (Al (Y<: AB>X
(Rec(Y)B>X = B-XOB-YOY#X

Types

(TypeRec)
E, X <: Top - Btype

E - Rec(X)Btype

(B>

Subtypes

(Sub Rec)
E - Rec(X)Btype E F Rec(Y)Ctype E,Y<: Top,X<:YFB<:C

E+ Rec(X)B <: Rec(Y)C

Terms
(Termf ol d) (Termunf ol d)

EFa: B X « Rec(X)B EF a: Rec(X)B
Er-fold(: Rec(X)B (a) : Rec(X)B Erunfold(a) : BX -« Rec(X)B
(Termr ec)

E.x: AFa: A

EFrec(x: Aa: A

Page 44



Thisis now the de Bruijn-index version.

(Rec()B! =Rec()B!*"*

A= A1, m-me n#m,
(Rec()B>n = B-n+10B>1

Types

(TypeRec)
E,<: Top F Btype

E+ Rec()Btype

(B>)

Subtypes

(Sub Rec)
E,<: Top,<: 1+ B <:
E+ Rec()B <: Rec()C

Terms

(Termf ol d)
Etra: Bl ~ Rec()B

~(B>,C>)

(Rec()Bfi - G=Rec()Bi+1 - G

Top>n; (A->B>n ; (Al (<: AB>n

(Termunf ol d)
Et+ a: Rec()B

EFfold(: Rec()B (a: Rec()B

(Termr ec)
E. Al a: A,
EFrec(: Aa: A

Etrunfold(a : Bl Rec()B
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G.2. Typing algorithm

PreType
ST

.| Rec() T

PreTerm
a, b

.| fold(: T (a) | unfold(a) |

Type
A B

.| Rec()B
lift replace

— >B' —
i,j+1 i+1Cl+1

type
E,< Top

rec(:9b

5B B contracts ok

Rec()B!'ftDRec()B' Rec()BreplaceDRec()B'
i

c sub
E,< Top

Rec()B,Rec( )Csu?bmk

ties

BC———
E,< Top

>0k

(¢ O{pos})

sub
E,< Top

ties sub

E,< Top E,< Top
sub
Rec()B,Rec( )C?mk

>ok

(¢z{pos})

T Rec()B a'@Moa p PR gy g SUD
E E 1,Rec()B E
fold(: 7 (a)ter?mDRec()B

>ok

ter

a EmD A AexposeRec

replace StypeDA
1,Rec()B E

>Rec()B B

Rec( )Tty%emec( )B

term lift

a4 ANt A g o S0
A 1

>ok

unf ol d(a)ter?mw'

Contracts tests whether atypeisformally contractivein avariable.

contracts

——result : { ok}
index: Int(= 1)

type: Type

n contracts contracts o contracts

>0k (n Zm) Top ok A >B
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B contracts S0k B contractsD
1 m+1

Rec()B COﬂU‘aC'[SDOk

ok

ExposeRec strips type variables until it finds arecursive type.

type: Type&SGE%CDOUtType: Type
: Env

env:

E typel de[> A A exposeRecD
n E
n expo;eRec A

A exposeRec

Rec()B >Rec()B

Ties computes the subtyping constraints between two recursive variables, by mimicking sub.

ties

small,big: Type result : P{pos,n
g: yp env: Env, index: Int(= 1), variance: { pos, neg}(= pos)D {pos neg}
ties ties ties EtypeldeDA A’BEWT:B al
ATop——>s{} nmn—-—s{\} nn—-={} (i #n) n : LV (B#n, B#Top)
Ei,v E,nv E,i,v nB ties o
""E,i,v
ties ties ties ties
AL A— BB —( AL A— BB —(
E,i,~v E. A',|+:I.,vI>Z E,|,ﬂv[>Z E,<: A',|+:LvDZ
. , ties , . ties ,
A—>B,A—>BE—_>ZDZ Al (< ABA I (<:A)YB —(0¢
Y LV
, ties , ties i
B,B ( BB ————
E,1 pos E,< Top,i+1lv [T O{posiO
Rec()B,Rec()B’ E“—f&‘w 0o ¢ =30
, ties , ties
B,B o/ BB —
E,1, pos E,<: Top,i+1v O(z{ pos} O
M ¢ #{}0

Rec()B,Rec()B’ Eti—iﬁp{ pos, neg}
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G.3. Typing algorithm with argument synthesis

ntract: ntract:
o O AT (g <2 4B o
m

ties ties AI’AE“'05 B& E, < ,z\m'u, ’
oV ,<: I \
@B Al AP AZY) s
v Al (g<:ABA I (g<: A')B I>Z|:|Z
lift
. .| B Breplace 5 B occurChe_ck -
ij+1 i+1C a,r+Lofi+1
Rec()Bﬂ»Rec()B’ Rec()BrepI &€ Rec()B' Rec()BMW‘U
1] I a,r,o,l
type “B Bcontractsbok BC ties »{ B.C sub -
E,< Top E,< Top E,< Top oft
56 (¢ O{pos})
Rec( )T?DRGC( )B Rec()B, Rec( )CE—M |
CESaTs al B’CE<?'Jb ﬂml c"‘3E<S$b i
< To op,o ,< Top, o
< B < ({z{pos})
Rec()B, Rec()C?Do‘ |
TP pec()B a¥Mag B P 5 4pg O .
E E,o 1R c()B E, o'
fol d(: T)(a
aterm A G AeXpOSEReC>Rec()B,o" replace .
E,o E,o' 1,Rec()B
unf ol d(a)ts—mbB' o
s A o M g4 AE>A' pa W
E E; Aol E, Ad'
term

rec(:9 (a)— bA, 0"
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exposeRec

e: Type >outType: Type, outSubst : Subst
type: Typ env: Env, subst : Subst ype- 1P
E typel deD 2 AexposeRec A O N
n E.o Rec()Bp—>Rec()B,a
exposeRec  ,
n———pA',0 ’
E,o
o retrleveDA AexposeRech, e
a E,o
a exposeRec SA O
E,o
retrieve
o DT
SOOSIRE a (@' newin o)
a TP (Rec()a'), (@ ~ (Rec()ar)ar, (0 \ @)

E,o
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