
98

The 1992 SRC Algorithm
Animation Festival

Marc H. Brown

March 27, 1993



Systems Research Center

DEC’s business and technology objectives require a strong research program.
The Systems Research Center (SRC) and three other research laboratories are
committed to filling that need.

SRC began recruiting its first research scientists in l984—their charter, to advance
the state of knowledge in all aspects of computer systems research. Our current
work includes exploring high-performance personal computing, distributed com-
puting, programming environments, system modelling techniques, specification
technology, and tightly-coupled multiprocessors.

Our approach to both hardware and software research is to create and use real
systems so that we can investigate their properties fully. Complex systems cannot
be evaluated solely in the abstract. Based on this belief, our strategy is to demon-
strate the technical and practical feasibility of our ideas by building prototypes and
using them as daily tools. The experience we gain is useful in the short term in
enabling us to refine our designs, and invaluable in the long term in helping us to
advance the state of knowledge about those systems. Most of the major advances
in information systems have come through this strategy, including time-sharing,
the ArpaNet, and distributed personal computing.

SRC also performs work of a more mathematical flavor which complements our
systems research. Some of this work is in established fields of theoretical computer
science, such as the analysis of algorithms, computational geometry, and logics of
programming. The rest of this work explores new ground motivated by problems
that arise in our systems research.

DEC has a strong commitment to communicating the results and experience gained
through pursuing these activities. The Company values the improved understand-
ing that comes with exposing and testing our ideas within the research community.
SRC will therefore report results in conferences, in professional journals, and in
our research report series. We will seek users for our prototype systems among
those with whom we have common research interests, and we will encourage
collaboration with university researchers.

Robert W. Taylor, Director



The 1992 SRC Algorithm Animation Festival

Marc H. Brown

March 27, 1993



c
Digital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part for any commercial
purpose. Permission to copy in whole or in part without payment of fee is granted
for nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the Systems Research Center of Digital Equipment Corporation in Palo Alto,
California; an acknowledgment of the authors and individual contributors to the
work; and all applicable portions of the copyright notice. Copying, reproducing,
or republishing for any other purpose shall require a license with payment of fee
to the Systems Research Center. All rights reserved.



Abstract

During the last two weeks of July 1992, twenty researchers at Digital Equipment
Corporation’s Systems Research Center participated in the 1st Annual SRC Algo-
rithm Animation Festival. Only two of the researchers had previously animated
an algorithm, and not too many more had ever written an application that involved
graphics. In this paper, we report on the Animation Festival, describing why we
did it and what we did, and commenting on what we learned.





Preliminaries

By and large, computer scientists are dogmatic about the programming language
they use and are loath to change. While this attitude is not necessarily bad (clearly
there are real costs associated with learning about and changing to a new language),
it is one of the many hurdles facing a new programming language, even one with
many technical advances.

One way to promote a new programming language is to provide an extensible
application with some “steak and sizzle” implemented in the particular language.
That is, an application that is useful for some real tasks (the “steak”), that is
fun and enticing to use (the “sizzle”), and that can be tailored to new tasks (the
extensibility).

The 1992 SRC Algorithm Animation Festival, held during the last two weeks
of July at Digital Equipment Corporation’s Systems Research Center (SRC), ex-
plored this approach to help promote the Modula-3 programming language within
university computer science departments. Modula-3 [7] is a procedural language in
the tradition of Pascal and Modula-2. It maintains the simplicity and safety of the
earlier languages, while adding features necessary for developing large systems,
such as objects, threads, exceptions, garbage collection, and a rich set of libraries.
In this paper, we report on the Animation Festival, describing why we did it and
what we did, and commenting on what we learned.

The primary goal of the Animation Festival was to promote Modula-3 by
developing a comprehensive set of animations of fundamental algorithms to ac-
company a university-level data structures or algorithms course. However, the
animations are not videotapes that one watches passively; rather, they are part of
an exploratory computer environment in which students and teachers can study
the algorithms. Furthermore, the algorithm animation environment, implemented
in Modula-3, was designed so that it would be easy for non-experts to implement
additional algorithm animations of their choice.

We did not expect professors to change their algorithms or data structures
courses to use Modula-3. Rather, we simply wanted to make professors — es-
pecially those of undergraduate courses — aware of the language. Naturally we
hoped that eventually the language would build a large following in universities
(and elsewhere) based on its technical merits; but a necessary first step is to make
professors aware the language.

We believed that it would be significantly easier for professors to incorporate
animated algorithms into their classes if the visual representations in the animations
corresponded closely to the static diagrams appearing in the textbook they were
already using. Therefore, we chose to link our animations to Robert Sedgewick’s

1



Algorithms [8]. Not only does that text have a substantial number of course
adoptions, but many of the diagrams in that text have their roots in algorithm
animations [2].

We felt it was important for students to see snippets of code displayed as part
of an animation in the same language used by the textbook, independent of the
language used to implement the algorithm animations. Our choice of textbook
presented us with an additional challenge because there are four versions of the
text—Pascal, C, C++, and Modula-3. (The Modula-3 version was written after the
Animation Festival.) We’ll return to the issue of “code views” later.

The figures in this paper are screen dumps from animations produced by the
participants during the Animation Festival. Of course, a static black-and-white
image cannot do justice to an interactive color animation.

This paper is organized as follows: The next section describes the logistics
of the Animation Festival. We then describe the software system infrastructure.
Following that, we describe the current status of the software and compare it with
other related efforts. And finally, we offer some concluding thoughts.

The Animation Festival

Preparation for the Animation Festival began in April ’92 and continued through
July. A team of six took on the challenge of building an algorithm animation system
in which a non-expert could produce animations without ever having to become an
expert. The six were to be the Animation Festival instructors. An additional twenty
people participated as algorithm animators. We assumed that all participants were
talented programmers, but without experience writing applications with graphical
output or animating algorithms.

The Animation Festival lasted for two weeks; the first week was devoted
to teaching the participants about algorithm animation, and the second week to
implementing animations. The participants demonstrated their work to the rest of
SRC during the following weeks.

The classes during the first week typically consisted of a couple of hours
of lectures in the morning followed by some specific programming assignments.
The lectures covered three general areas: using the algorithm animation system,
creating effective animations, and programming in Modula-3.

During the second week, the participants formed groups and chose an algorithm
or group of related algorithms from our “Most Wanted List” and animated them.
Participants and instructors met at the end of each day for some R&R, that is
“rushes and refreshments.” This was an opportunity for participants to demonstrate

2



what they had done that day and to get feedback from other participants and the
instructors. Most groups had a basic animation up and running within a day of
starting, and spent most of their time refining the animation.

About the participants

Of the twenty participants, two were graduate students who were at SRC as part
of its Summer Research Internship program, one was a member of Digital’s Paris
Research Laboratory, and the others were fulltime members of the research staff at
SRC. Their research interests were quite varied. Seven participants were primarily
theoreticians (analysis of algorithms, algebraic geometry, combinatorics, etc.). Six
participants were developers of interactive applications. The remaining seven
participants were library and systems builders.

The participants formed 11 groups: one group of three, 7 pairs, and 3 singletons.
The participants chose their own partners or chose to work alone. The benefits and
drawbacks of team (programming) projects are well documented in the literature,
and we certainly did not make any formal study. We observed the following
phenomena:

� The animations developed by multi-person groups were noticeably better
than those developed by single-person groups.

� All multi-person groups completed the animations they set out to develop
within the two weeks. Of the three singletons, one dropped out and the other
two finished a few weeks late.

� The members of multi-person groups were uniformly more enthusiastic about
the experience than the people who worked alone.

Each multi-person group seemed to develop its own working style: In about
half, the partners worked independently, sometimes sequentially (participants had
travel and other constraints) and sometimes concurrently (in separate offices). In
the other half, the partners did “team programming”: the majority of the coding
was done in one office by one of the partners, and the other partners looked on and
offered suggestions and moral support.

Naturally the participants had their own motives for participating. The most
common reasons were as follows:

� The Animation Festival provided participants an opportunity to work closely
with other members of SRC with very different technical interests.

3



� The Animation Festival was an excellent opportunity for participants to
learn Modula-3. (Only seven of the participants had previously written any
programs in Modula-3.)

� Finally, animations of algorithms are nifty! The Animation Festival gave
participants an opportunity to discover the magic of algorithm animation.

About the animations

As expected, the quality of the animations varied considerably. Three were consid-
ered by most viewers as outstanding and four others were on par with animations
produced by people with significant experience such as the instructors. A number
of observations are noteworthy.

An animation of Convex Hulls (Fig. 5) by Lyle Ramshaw and Jim Saxe started
with the code from the textbook and used representations similar to those in the
text. Soon, they developed a variation of the standard Package Wrap algorithm
that elegantly handled degenerate inputs (e.g., collinear points). They cleverly
named their program variables with the colors of the highlights that were used
in the animation to depict their values. The choice of variable names provided a
common reference point for relating the “code view” in the bottom-right with the
graphical views in the top-left and top-right.

Steve Glassman and Greg Nelson animated Euclid’s proof of the Pythagorean
Theorem (Fig. 9). The view in the top-left contains the prose from Euclid’s proof;
as key phrases in the proof are encountered, they are highlighted and the figure
in the graphical view at the top-right changes to reflect the proof. This animation
suggests a new and exciting area to explore: animated proofs.

Finally, all of the Animation Festival participants used smooth transitions in
their views rather than showing state changes with discrete transformations. Par-
ticipants uniformly found smooth transformations more intriguing and engaging,
both from programmer and pedagogical perspectives.

The Software System

This section describes Zeus, the software system we used in the festival for ani-
mating the algorithms. Our starting point was the Modula-2 implementation [1].
Porting Zeus to Modula-3 was straightforward; we then enhanced it in a variety of
ways.

Readers familiar with Zeus will recall that the essence of animating an algorithm
in Zeus is to separate the algorithm from each view and to create a narrow interface,

4



specific to each algorithm, between them. More specifically, an algorithm (as
one would find in a textbook) is annotated with procedure calls that identify
the fundamental operations that are to be displayed. An annotation, called an
interesting event, has parameters that identify program data. A view is a subclass
of a window, with additional methods that are invoked by Zeus whenever an
interesting event happens in the algorithm. Each view is responsible for updating
its graphical display appropriately, based on the interesting events. Views can also
propagate information from the user back to the algorithm.

We now describe Zeus from the user’s perspective, concentrating on the new
features that were added for the Animation Festival, and then outline the implica-
tions of these new features on programmers developing algorithm animations.

User Perspective

The user model in Zeus is simple: create a scene (or load it from a file) and then
run the algorithm. A scene consists of specifying an algorithm to run, providing
it with some input data, and specifying views in which to observe the algorithm.
Each view is a separate top-level window. For example, Fig. 6 contains four views
plus the Zeus control panel.

While the algorithm is running, the user can stop it and single-step through it.
The user can also control the speed of the animation. Single-stepping is done in
terms of the interesting events in the algorithm. The user can set which events
constitute a “step”; that is, the algorithm will advance until the next event from
this set is generated.

The most significant features that we added to the Modula-2 version of Zeus
were multiple algorithms, hand-simulation views, and scripting.

Multiple algorithms

The user can specify any number of algorithms to run concurrently. Each algorithm
is run in its own thread, and the threads are synchronized by Zeus after each
event. That is, all algorithm threads are allowed to advance until the next event is
generated. Then, each one waits until all algorithms have reached an event.

The figures in this paper contain two examples of multiple algorithms. Fig. 2
shows two search tree algorithms running together. The algorithm seen in the view
at the top-left is a balanced tree algorithm using red-black binary trees whereas
the algorithm in the lower-right is a standard binary search tree. Fig. 10 shows
three parsing algorithms, each with the same two views. All three algorithms are
processing the same input string.

5



Multiple algorithms are often used for algorithm races, that is, simply to observe
the relative speeds of different algorithms. However, in the two examples just
mentioned, the multiple algorithms are not being raced one against another to
compare relative speeds. Rather, they are being run simultaneously to better
understand the similarities and differences of how they operate.

In algorithm races, it is possible for a user to control the relative speeds of the
algorithms by assigning a weight to each event for each algorithm. By default, the
weight for all events is 1. Changing the weight of event e for algorithm a to 3,
say, would mean that whenever algorithm a generated event e it would not proceed
when all other algorithms also reached an event, rather, it would wait until all
other algorithms generated 3 more events. This feature allows a user to simulate
different models of execution. For example, one could run two instances of the
same Convex Hull algorithm on the same input: in one instance, data movement
might be the same cost as data access; in the other instance, data movement might
be expensive and data access cheap.

Hand-simulation views

In a canonical algorithm animation, one sees purely graphical views of the algo-
rithms, usually running on a fairly large amount of data. (Certainly more data than
you’d be willing to hand-simulate the algorithm on!) However, it is also helpful to
see the algorithm running on a small set of data, and to hand-simulate it, especially
when first learning about the details of the algorithm. Zeus provides three types
of views that are most applicable to situations where one would hand-simulate the
algorithm: a code view, a data view, and an album view.

First, a code view highlights each line of code as it is executed. See the top
two windows of Fig. 4 and the bottom-left window of Fig. 5. As we shall describe
later, a code view highlights lines of text based on markers inserted into the
algorithm; the actual text being highlighted is stored in an external file. In Fig. 4,
the Zeus programmer took advantage of this feature to display multiple code views
simultaneously: one in C and one in Modula-3. (Of course, this isn’t possible to
do for arbitrary programs; but for many algorithms, on the order of a page or so
of code, the difference between the implementation languages is mostly syntactic
sugar. The same set of markers can be used to drive different input text files.)

Fig. 9 shows another innovative use of the Zeus code view facilities. Here, the
“code” is the text of the proof, as it appears in Euclid’s Elements. Each paragraph
of the proof is a “procedure,” and a parameter to the code view causes it to display
procedure calls by replacing the caller by the callee, rather than overlapping the
caller by the callee, as in Fig. 4.

6



The second type of view for hand-simulating algorithms, a data view, displays
the values of variables each time they change. Fig. 6, top-right, shows a data view
of an integer array, and Fig. 7, top-right, shows a data view containing three integer
variables.

Finally, when hand-simulating small amounts of data, it is often useful to see
a history of the state of the views each time something interesting happens. Zeus
provides an album view to do just this: at any point, the user can select “Photo”
from a menu, and a miniature pixmap of the contents of all views will appear in the
album view; see Fig. 9. (The album view is also useful when running an algorithm
with large amounts of data, as seen in Fig. 2, where a photo was taken after every
10 nodes were added to the trees.)

Scripting

It is a challenging task to actually incorporate an animation into a classroom lecture.
There are many content issues such as which examples to show, but there are also
quite a few logistic issues such as remembering which views to create when, which
data to run when, at what speed, and so on. One tool that has proven to be very
helpful for dealing with the logistic issues is scripting. Put simply, a script is a
high-level recording of a user’s session that can be replayed.

The scripting facility works in terms of frames, or runs of an algorithm. Each
time the user starts running the algorithm, a textual description of the scene (i.e.,
algorithms, data, views, speed, and so on) is saved in the script file. At playback
time, the scene is restored from this snapshot, and the algorithm starts executing.

The scripting facility ignores most user actions, such as those that suspend and
restart algorithm execution. However, it is often useful to force a pause during
playback. This can be done using the "Future Pause" button. This interrupts the
algorithm’s execution during playback, and forces the user to click "Resume" to
continue.

Programmer Perspective

The model given to the programmer creating an animation has not changed sig-
nificantly from the Modula-2 implementation of Zeus. The addition of scripting,
the album view, and multiple algorithms does not affect the programmer in any
way; creating code views and data views, however, does require some work by the
programmer.

There are two parts to a code view: First, the programmer annotates the
algorithm with abstract line numbers. The annotation is just an interesting event,

7



Fig. 1: Pre-Festival Hacking Fig. 2: Balanced Trees

Fig. 3: Binpacking Fig. 4: Closest Point

Fig. 5: Convex Hulls Fig. 6: Directed Graphs

8



Fig. 7: Hashing Fig. 8: Network Flow

Fig. 9: Euclid’s Proof Fig. 10: Parsing

Fig. 11: Priority Queues Fig. 12: String Searching

9



but the name of the event is predefined. The code view interesting event takes a
single parameter, the abstract line number. Second, the programmer specifies a text
file that will be displayed by each code view instance. Each time that an abstract
line number is encountered when the algorithm executes, a section of text in each
code view instance is highlighted. The contents of the text files are left up to the
programmer, and Zeus provides an interactive tool for specifying which part of the
text file corresponds to each abstract line number.

The heart of the data view implementation is support provided by the Modula-3
compiler for monitoring variables. When a variable is declared, a procedure can be
registered (using a Modula-3 TRACE pragma) that will be invoked each time the
value of the variable changes at runtime. The programmer must create a graphical
user-interface for displaying the variables. This is typically done interactively
using an application builder. (By default, the variables are displayed textually, but
this code can be overridden to display variables in more interesting ways. However,
none of the Animation Festival participants explored this option.)

The most important new tool provided for programmers is a 2-D animation
package, GraphVBT [4], which is very easy to use. That package is described
elsewhere, so we won’t go into details here.

Related Work

The AACE project at MIT also plans to produce a set of animations of fundamental
algorithms [6]. Their system consists of a hypertext version of an algorithms
textbook (Introduction to Algorithms by Corman, Leiserson, and Rivest), with
animations of many of the most common algorithms and some tools to analyze
them. The system is implemented entirely in HyperTalk and runs in a standard
HyperCard environment.

The AACE system is probably easier than Zeus for students to learn to use,
primarily because it runs within the standard HyperCard environment and fol-
lows its user interface guidelines. However, because AACE is implemented as a
HyperCard stack, it does not support multiple algorithms or multiple views, two
important features available in Zeus.

We believe that learning to program a new animation is also easier in AACE than
in Zeus, since there is no system per se to learn about, just the HyperTalk language.
However, for an experienced programmer, creating sophisticated animations is
probably easier in Zeus because of the rich animation libraries it has and because
it is a framework designed specifically for animating algorithms.

Although the focus of this paper has not been on the Zeus system itself, the

10



reader interested in algorithm animation systems should refer to BALSA [3] and
TANGO [9], two systems that greatly influenced the design of Zeus, and to the
earlier report on Zeus [1].

Conclusions

As a result of the Animation Festival, a significant amount of interesting and useful
Modula-3 code was implemented. This includes animations of about a dozen
families of algorithms, an algorithm animation system, and sophisticated graphics
libraries. We are still working on our original goal of producing a comprehensive
set of animations of fundamental algorithms.

The Animation Festival had a number of intangible results that are perhaps
even more important: SRC researchers had an opportunity to work closely with
colleagues with very different technical backgrounds and interests, and many of the
participants developed new appreciations for the power of graphics and animation
as communication mediums.

Although the graphics package provided to the participants of the Animation
Festival was powerful and easy to use, the most cumbersome part of developing
an animation was still implementing the views. Steve Glassman is currently
developing a high-level, rapid-turnaround environment [5] based on Zeus and
GraphVBT.

Finally, was the Animation Festival a success? The simple answer is to state
that the 2nd Annual SRC Algorithm Animation Festival is scheduled for the summer
of 1993 and it appears to be fully subscribed! We expect some participants will
explore both audio and 3-D graphics as tools for communicating the workings of
programs, as they animate some of the many fundamental (and not so fundamental)
algorithms that have not been animated within the Zeus system,

System Availability

The Zeus system and the animations developed during the Animation Festival are
available via anonymous ftp from gatekeeper.dec.com. They are located in
the directory pub/DEC/Modula-3/release.

You can find out information about Modula-3 in the Usenet news group
comp.lang.modula3. If you do not have access to Usenet, you can be added
to a relay mailing list by sending a message to m3-request@src.dec.com.

11



Acknowledgments

The instructors in the Animation Festival were Mike Sclafani, John Hershberger,
Stephen Harrison, Steve Glassman, John DeTreville, and Marc Brown. Steve
Glassman held down the fort during the months leading up to the festival. He
and Stephen Harrison developed a sophisticated 2D animation package, and John
DeTreville implemented GraphVBT on top of their animation package. John Her-
shberger ported Zeus from Modula-2 and introduced the enhancements discussed
in this paper. Mike Sclafani implemented the tools for code views and data views.

The participants in the Animation Festival were Garret Swart, Jim Saxe, Dave
Redell, Lyle Ramshaw, G. Ramkumar, Steven Phillips, Sue Owicki, Greg Nel-
son, Rustan Leino, Solange Karsenty, Anna Karlin, Bill Kalsow, Mick Jordan,
Kevin Jones, Allan Heydon, Loretta Guarino, Steve Glassman, Hania Gajewska,
Andrei Broder, and Yossi Azar. Their assistance (and patience) in debugging and
improving the system is greatly appreciated. They were true “software pioneers.”

The Animation Festival was conceived with the help of Thomas Fogarty and
brought to realization with the help of Bob Taylor.

12



References

[1] Marc H. Brown, Zeus: A System for Algorithm Animation and Multi-View
Editing, In Proc. 1991 IEEE Workshop on Visual Languages, pages 4–9,
October 1991.

[2] Marc H. Brown and Robert Sedgewick, Techniques for Algorithm Animation,
IEEE Software, 2(1):28–39, January 1985.

[3] Marc H. Brown, Exploring Algorithms Using BALSA-II, IEEE Computer,
21(5):14–36, May 1988.

[4] John D. DeTreville, The GraphVBT Interface for Programming Algorithm
Animations, In preparation.

[5] Steven C. Glassman, A Turbo Environment for Animating Algorithms, In
preparation.

[6] Peter A. Gloor, AACE – Algorithm Animation for Computer Science Edu-
cation, In Proc. 1992 IEEE Workshop on Visual Languages, pages 25–31,
October 1992.

[7] Samuel P. Harbison, Modula-3, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[8] Robert Sedgewick, Algorithms, 2nd Edition, Addison-Wesley, Reading, MA,
1988.

[9] John T. Stasko, TANGO: A Framework and System for Algorithm Animation,
IEEE Computer, 23(9):27–39, September 1990.

13


	Abstract
	Preliminaries
	The Animation Festival
	About the participants
	About the animations

	The Software System
	User Perspective
	Multiple algorithms
	Hand-simulation views
	Scripting

	Programmer Perspective
	Related Work
	Conclusions
	System Availability
	Acknowledgments
	References



