i

The following paper was originally published in the
Proceedings of the USENIX Conference on Object-Oriented Technologies (COOTS)
Monterey, California, June 1995.

Simple Activation for Distributed Objects

Ann Wollrath, Geoff Wyant, and Jim Waldo
Sun Microsystems Laboratories

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

Simple Activation for Distributed Objects

Ann Wollrath, Geoff Wyant, and Jim Waldo
Sun Microsystems Laboratories
{ann.wollrath, geoff.wyant, jim.waldo}@east.sun.com

Abstract support object activation, we have designed an
activation protocol to address that need. We identify

In order to support long-lived distributed objects, . L i
several important goals for our activation protocol:

object activation is required. Activation allows an

object to alternate between periods of activity, where ® flexible mechanism enabling implementations of a

the object implementation executes in a process; and variety of activation models;

periods of dormancy, where the object is on disk and® simple activation scheme focused on the core

utilizes no system resources. protocol leaving special cases of activation to be
specified at a higher layer of abstraction;

®* minimal implementation requirements on servers
supporting the protocol.

We describe an activation protocol for distributed
object systems. The protocol features overall
simplicity as well as applicability to several different
activation models. We use the Modula-3 network Our implementation of the protocol is constrained by
object system as a base for our implementation; whilefollowing components of the underlying system:

we make no changes to the underlying network object,
subsystem, we suggest a minor modification that
could be made to the marshalling of network objects
to assist in lazy activation, our preferred activation 4
model.

the need to be layered on top of the network object
system without requiring changes to the network
object runtime;

the protocol should require no modification to
existing network object stub generators.

1 Introduction Other factors have influenced the design of the

- .) interfaces (more cosmetically):
Distributed object systems are designed to support

long-lived persistent objects. Given that these systemg interfaces are restricted to single inheritance

will be made up of many thousands (perhaps millions) (although this rest_ricti(_)n dic_j not interfere_with the
of such objects, it would be unreasonable for object ~ design since multiple inheritance was ultimately
implementations to become active and remain active, ot required); _ _
taking up valuable system resources, for indefinite ® interfaces reflect Modula-3 naming conventions
periods of time. In addition, clients need the ability to ~ (We have adopted the convention of naming the
store persistent references to objects so that primary interface in any moduf, following
communication among objects can be re-established ~ Modula-3 style definitions).

after a system crash, since typically a reference to a The activation protocol is specified using the Object
distributed object is valid only while the objectis Management Group's Interface Definition Language
active. (OMG IDL) [3]. In our protocol definition we use an

Such systems need to proviglgivation, a mechanism additional keywordgserverless, which denotes a pass-
for providing persistent references to objects and by-value_: object (i.e., library objects). The serverless
managing the execution of object implementations. feature is not part of standard IDL, but could be
When warranted, object servers can be started up orthought of (loosely) as an IDkt ruct.

shut down. The notion of pass-by-value objects is an attractive

As our platform for distributed objects, we use the ~ ©ONe, Since exposing a data definition explicitly via
network object system [1] provided with the Digital ~struct violates data encapsulation. A client
Equipment Corporation System Research Center ~ POSsessing a structure may manipulate that structure
distribution of the Modula-3 (M3) language [2]. without restriction, potentially altering the data in a
Given that this implementation platform does not ~ Manner not intended or expected by a subsequent

recipient. By using a pass-by-value (or serverless) Client Model

object instead, data can be hidden and a more Our basic model, from the client side, involves two
appropriate interface can control access to and distinct forms of reference for objects that are
modification of that data. We include serverless (potentially) in a separate address space. The first of
objects for just this reason. these, called tharernal reference, typically points to

The obvious drawback to pass-by-value objects in @ local surrogate or proxy for an object. From the
distributed systems is that the code for the library ~ Programmatic point of view, such internal references
object implementation must be linked into all clients |00k like references to other, local objects. These

of such an object. This requirement is much differentinternal references are the entities that are

than having to link in stubs (surrogate code) for a manipulated, used for method invocations, and passed
distributed object; all clients must link to theme around to other objects. In our system, internal

library object implementation. Clients that transmit references are simple object references that derive
serverless objects that have a different implementatiorfrom the base class &fetObj.T, the Modula-3

than the receiver expects will likely cause Network Object class.

unanticipated failure: a failure usually encountered |nternal references in this framework, however, are
during the unmarshalling process performed at the not guaranteed to refer to a valid object over various

receiver. runs of the code that implements that object. In
L particular, if an object is made passive (or crashes and
2 Activation Models is restarted) the internal reference for it may change.

In a distributed system in which the total number of If a client wishes to store a reference to a (potentially)
objects that could be used exceeds the total system rémote object as part of the persistent state of that
resources available, some way of conserving system client, some form of reference is needed that will
resource needs to be found. One way of conserving Survive those changes. We refer to this form of

resources is to distinguish betweenive objects, reference as aaxrernal reference.

which take up system resources, @asisive objects, When a client has an external reference to an object,
which do not. that reference needs to be converted to an internal
More precisely, amctive object is one that is reference if the client wishes to make use of the
associated with a process on some systepusiive object. Such a conversion can require the activation of
object is one that is not associated with such a the referred to object.

process, b.ut which can be _brou.ght into an activq staf[eEager Activation
Transforming a passive object into an active object is
a process we refer to astivation. Activation requires
that an object be associated with a process, which ma
entail loading the code for that object into a process
and restoring any persistent state for the object.

Eager (or deep) activation denotes an activation model
hereby an object, and the objects reachable from that
bject, are activated at once. In this model when a

client restores its state, all external object references

are presented as internal object references. As part of

In this section, we describe the client's model of restoring an internal reference from its external form,
activation, followed by a discussion of various the referred-to object is made active. Additionally, the
activation models and the trade-offs associated with object’'s implementation restores its state, causing
each. activation of those objects denoted by external

We will refer to the activation models that we will ~ references. Thus, when activating a single object, the
discuss asager (or deep) activationazy activation, transitive closure of objects referenced by that specific
andsplit activation. Eager activation can be object is activated.

characterized as a strategy that maintains as an This model has the advantage that it requires minimal

invariant that each reference within an active object intrusion on the client-side. A small amount of

also refers to an active object. Lazy activation, in generic code needs to be written that converts object

contrast, is a model that defers activation of an objecteferences from their external form to their internal

to the time at which an operation is invoked on that form and to call the appropriate object activation

object. Split activation combines aspects of both service. This model also has the advantage that it can

schemes. be determined at the time the object reference is
converted to its internal form whether or not that
object can be made available.

One primary disadvantage of this model is that it The lazy activation approach avoids the deadlock
doesn’t handle circular chains of reference. Circular problem of eager activation. Except for certain

chains of reference occur when an object refers backpathological cases, activation of an object never

to itself through any number of intermediate requires the activation of itself even in the case of
references (e.g., A contains a reference to B which circular references.

conta!ns a reference back to A). An object can als_o his scheme is also more scalable. Since activation is
contain a self-reference. In the eager model describe eferred until the time of first reference, an object is

above, activating an object containing a reference thaEever activated unless explicitly used. Thus, needless

even_tually r(_afer_s back to !tself_ (a circular reference) process creation (for unused objects) is eliminated as
requires activating the object itself and can lead to are activation storms

deadlock unless complicated avoidance mechanisms
are employed. A major drawback of this approach is that notification

. that an object is not available will not occur until the
Another problem with this model concerns scalability. first invocation on the object. At this point, the client
In the eager model, an object is activated when its '

; ; may have no sensible recovery strategy and its onl
external reference is read from disk rather than when y y 9y y

o . . option is to exit.

it is first dereferenced. This strategy seriously affects

the scalability of activation. Upon reading an object’s Another drawback is that two stubs exist on the client
persistent state, a potentially large number of objectsside for each non-local object. The first is the

may be activated at once if the object contains manysurrogate that performs remote method invocation.
external object references. Activating an entire tree ofThe second is the “fault block” which determines the
objects can cause an “activation storm” where activation status of the object and activates it if

cascading activation requests flood the system. needed and forwards invocations to the surrogate.

Another disadvantage to this eager approach is that ione must be careful not to expose fault blocks to the
will activate an object’ even if the object is never usedC”ent. This exposure can lead to subtle failures since
by the client. Ideally, unused object should not the client is operating under the assumption that it
consume any system resources. Consider a object holds a true reference to the object—one that can be
which contains references to 100 other objects on 10@Passed as an argument or upon which operations can
other machines. When that object restores these ~ be invoked—not a reference to a fault block.

references fro_m disk, 100 processes will be created irtgr the system to function properly, the functionality
an eager fashion regardless of whether the referencegs fault blocks must be part of the surrogate (or

are actually used by the object. Such “storms” handled somewhere in the runtime). Due to our desire
seriously effect the overall performance and not to modify the network object runtime or stub
predictability of the system. (surrogate) generators, we chose not to implement

lazy activation at this time. Clean integration of lazy
activation with the existing system requires
modification to marshalling surrogate objects and to
the runtime itself.

Lazy Activation

Lazy activation defers activating an object until a
client’s first use (i.e. the first method invocation). This
model of activation is typically implemented by
generating stubs that check to see if the target objectSplit Activation

has been made active for this process. We refer to e chose to use the hybrid model of split activation.
these stubs gault blocks. Each fault block maintains The split activation model is one in which the

a reference to the target object. If this reference is nilesponsibility for activation is divided into two parts.
the target has not been activated for this process. The first part activates a process for the object. The
Upon method invocation, the fault block (for that second part activates the object state on the first
object) then engages in the activation protocol and jnyocation of that object. Process activation occurs
retains the reference to the newly activated object. \yhen the object reference is converted from its

From that point on, all fault block stubs forward external form to its internal form. State activation
method invocations to the surrogate object that standgccyrs upon first use of the object.

in for the remote object. This scheme is analogous to .) ,
“object faulting” in persistent object systems [4] or The split model can be implemented by server-side

page faulting upon referencing non-resident memory fault blocks that perform an analogous function to the
locations. client-side fault blocks used in lazy activation. In this

scheme, a server-side fault block checks to see if the

target object is active. If not, it activates the object’s container abstraction allows the server to delegate the

state (via a server-provided callback). From that pointmanual control of activation.

on, the fault block forwards method invocations to the

active object. Split activation sits between eager and 3 The Basic Activation Protocol

lazy _act|vat|0|_1. While this appro_ach _does féUI'® This section describes the basic activation protocol in

special handling on the server side, it does not require, .. . o :
. detail. The protocol involves three entities: a client, an

any changes to the runtime system. .) o

activator, and a server process/object. The activation

This model avoids the deadlock problem of eager protocol proceeds as follows (starting with the client):

activation. State activation does not occur until first . . ,

use of the object, thus breaking potential activation 1. Obtain an external object reference. Let's say a

cycles. It also avoids the multiple-object problem that ~ client wishes to retain a reference to an object for

the lazy activation approach suffers from. Clients some period of time and to be able to store that

never deal with two forms of the object: the fault reference on disk. From a name service or the

block vs. the surrogate. Clients only deal with object itself (using an internal reference to the
surrogates. object), the client obtains an external reference for

that object. The abstraction for external object

This scheme also has the advantage that the server can |oferences will be discussed in the next subsection.

determine at process activation time whether or not

the target object can be reached. Thus, clients can 2. Request activation. At a later time, this external
learn earlier about the availability of an object than object reference (obtained previously) can be
could be done in the lazy activation approach. A client converted into an internal reference using an
may be in a better state to recover from this situation. activator, on the same host as the referenced

Note that, at any point in the future, communication
with an object may fail. A client must be able to
attempt recovery from this potential occurrence as
well. In split activation, while a client of an object has
the potential for early knowledge of failure, it does
not necessarily mean that the client will be in the
state to handle such failure.

There are some disadvantages of this approach. It cag

be potentially less scalable then lazy activation if
servers are not implemented with activation in mind.

If the server restores a large set of object references,

then a process will be created for each of those
objects causing an “activation storm”. However, this

process will not propagate beyond the first level of a 4.

tree. A child won't propagate the activation until its
state is needed. Again, this is upon first invocation.
Upon first invocation, the child will restore its state.
Any non-local object references will cause the next

level of the tree/graph to have processes created for =

objects (though no state will be activated). Thus
process activation occurs as a wavefront, but state
activation occurs on demand.

The split activation model transfers control of when
activation occurs from the runtime system to the
server. A server can choose which objects are

object, as facilitator. An activator process
(daemon) runs on each host in the system. It is the
responsibility of the activator to spawn servers (on
the local host) corresponding to certain external
references. The client hands the activator an
external reference together with a request to
“activate” that object.

Spawn server process. Upon receiving the client’s
request for activation, the activator spawns a
server process for the object, passing it relevant
data (from the external reference) for
bootstrapping purposes.

Server activates. The server process starts up and

sends the internal reference for the object back to
the activator, thus informing the activator that the

object’s activation is complete.

Reply with internal reference to client. The

activator replies to the client with the internal
reference that it received from the server process.
The client is free to invoke operations on the
activated object, using its internal (programmatic)
reference.

The client mentioned in the above protocol does not

activated by restoring its persistent state selectively. necessarily denote the client application program. An
We have designed a generic container class to deal ideal implementation would completely hide the
with such selective activation of objects. Operations Mechanisms of activation from the client.

that access elements of the container handle the
machinery of activation, thus emulating lazy

activation for those objects in the container. Using the

Activation Interfaces
The interfaces that embody the activation protocol

described above are contained in the module
Activation defined in IDL (see Figure 1).

#include "VantageID.idl"

#include "VantageObj.idl"

module Activation {

exception UnableToActivate {};

exception AlreadyActive {};
exception UnableToDeactivate {};
exception AlreadyManaged {};

exception WrongActivator ({};

typedef VantageID::T ID_T;

interface Address_T serverless {
string toText ();
boolean equal (in Address_T addr);

}i

interface Token_T serverless {
VantageID::T vid ();

string executableFileName ();
string activationData ();
Address_T activatorAddress ();
boolean isManaged ();

string toText ();

}i

interface Activatable_T
VantageObj::T {
Token_T activationToken ();
}i

interface Manager_T {
Activatable_T activate (
in Token_T token,
in ID_T activationID);
}i

interface Activator_T {

Address_T address ();
Activatable_T activate (

in Token_T token)
raises (UnableToActivate,

WrongActivator) ;

void managed (
in Manager_T manager,
in string executableFileName)
raises (AlreadyManaged);
ID_T activated (
in Activatable_T activatedObj,
in Token_T token)
raises (AlreadyActive,
WrongActivator) ;
boolean isActive (
in Token_T token)
raises (WrongActivator);
void deactivated (
in ID_T id,
in Token_T token)
raises (UnableToDeactivate,
WrongActivator) ;

}i

Figure 1. Module Activation

The Activation module refers to two other interface
definition files. The interface described in the file
“VantageObj.idl” is one supported by all objects in the
overall system we are constructing. This interface,
VantageObj::T, contains a single method, which
returns an identifier that, with a high degree of
probability, uniquely identifies the object. The
interfaceVantagelD::T, contained in the file
“VantagelD.idl", defines these unique identifiers for
objects.

The major interfaces in thictivation module are:

® Address_T - abstraction for object location (pass-
by-value),

® Token_T - abstraction for external object
references (also pass-by-value),

® Activatable_T - interface supported by those
objects capable of being activated,
Activator_T - interface to the activator,
Manager_T - interface for object servers that wish
to support multiple objects per server process.

The following subsections will describe each of these
interfaces in turn.

External Object References

An external reference to an object must contain
enough information so that some mechanism can
initiate the object’'s execution. That is, given some

form of external object reference, a client can obtain this information in the activation token to spawn a
an internal reference to an active object. server for the object.

The minimum information needed to initiate a server TheactivationData contained in the activation token is
process is the location of the server program (i.e., entirely under the control of the object (server) for
executable) and the physical host location for the which the token is created. It is up to the object
spawned server process. Additionally, the server mayimplementation to decide what information is relevant
need some bootstrap information in order to read its to start-up, and place that information in the token.
persistent state, or export itself to a name service, folFor example, the activation data for a server might be
example. a pathname to a log file for recovery.

In our system, external references are known as TheisManaged flag simply indicates whether an
activation tokens (represented by theoken_T object should share the same server process as other
interface). An activation token (or simply a token) can objects on the same node which share the same

be thought of as the meta-data for an object. These executable file name. In a later section, we explain our

tokens must supply the following information: scheme for managing multiple objects within a single
® a unique identifier for an object, SErver.

® theaddress of the object’s activator, In our system, activation tokens are self-contained

* the executable file name of the server program, entities. That is, the activator needs only the

* server-specified activation data, and information present in a token to spawn a server

® a flag indicating whether this objectriginaged. process. An alternative design (and potentially more

L _flexible) would be for an activation token to refer
Each object in our system exports a unique identifier .

(also referred to asamnrage ID or VID) which is !mpI|C|tIy_ oa data}base containing act|vat|gn
S 2 information for objects. For example, a unique
used for object identification purposes by both the . e .
identifier would be the only required component of an

activator and the spawned server itself. We use these .~ . . .
e . . e activation token if the client consulted a database to
probabilistically unique identifiers in order to

. . . } . determine the activator for an object, and each
determine object equality, since reference equality for_ "~ . . .
o) ; . activator consulted a database for further information
distributed objects is not supported in most systems. o . . .
: . N oo : on the activation attributes of an object (such as its
The unique identifier in the activation token, obtained :
. , . e executable file name).
via thevid operation, corresponds to the object’s
unique identifier. While this design may be more flexible—since it does
not fix the contents of activation tokens—it does
require that each activator have access to state
information, i.e., the database of activation
information. This introduces more complexity into the
activator and additional failure modes during
activation if databases become temporarily
inaccessible. Management of such databases
(registration of information, update, and querying)
also increases the overhead of the activation
mechanism.

The address of the activator, obtained as a result of
the activatorAddress operation, is the abstract
“location” of the activator and is implementation
specific. The abstraction for an address is the
Address_T interface which contains two operations
toText (for converting the abstract representation to
string form) anckqual (for establishing equivalence of
addresses). In our system, an activator address
essentially refers to the activator’s host.

Note that bothAddress_T andToken_T types are
denoted by theerverless keyword. Both types are
represented as pass-by-value objects as opposed to
full-fledged distributed objects which would carry the
overhead of remote method invocation for invoking
each of their operations. Addresses and activation

Note that the address of the activator is embedded in
the activation token. Since activation tokens can be
stored persistently, an activation token for an object
must not change over time, unless all objects to which
the activation token was given can be contacted with
. : " the value of the new token for the object. Thus, object
tokens must be light weight entities. Many - : ;
. . PR S mobility cannot be easily employed since the contents
implementation difficulties would arise if these o ' . :
! C . ; of activation tokens are fixed at creation time. Other
objects were to be distributed in nature (that is, pass- . . :) .
mechanisms must be built to handle moving objects in
by-reference). . .
the system. Important services that are likely to
The executable file name of the server program is theelocate in the future may be stored in a name server
pathname to the server executable (returned via the and referenced by name rather than strictly by token.
executableFileName operation). The activator uses

Server Requirements method on the activator for each activatable object in
For an object to be capable of being activated, it musthe aggregate (each having different activation data).

support theActivatable_T interface. Such an To avoid potential race conditions between servers
“activatable” object need only implement one starting up by hand, or being started via the activator,
operation activationToken, that constructs an a server that receives the exceptional return

activation token containing the appropriate meta-dataaireadyActive from theactivated operation should exit
for the object. As described above, this token containgmmediately. This exception means that two servers
the object’s identifier, executable file name, bootstrapwith the same identity were either started in parallel

data (activation data), and the address of the object'sor a server was started mistakenly by some means. In
local activator; an activatable object can query the eijther case, it is a fatal error upon start-up.

local activator (which should be a well-known entity)

for its address for inclusion in the activation token. 1Y activatable object that is created by a server

_ o _ _ started by hand or is created within a currently
Itis the responsibility of each activatable object to running server must register with the activator (via the
hand out activation tokens to those objects requestingctivated method) before handing out its reference to

the information. Also, an activatable object is any client. If this convention is not followed, the
responsible for informing the activator when it has activator will not know that such an object is
completed activation. activated, and may start up a duplicate server with the

The simplest implementation of a server is a single Same identity sometime in the future.
obje_c_t per server process. In our system, we have thgy,, Acrivator
additional notion otiggregate objects. Anaggregate

object has an object identity spanning multiple objectsIn our protocol as defined, an activator need not

(in the same address space), but which functions as gmintain any persist_ent state, and therefore requires
single cohesive unit. Objects in the aggregate share no recovery mechanism. There are two guarantees that

the same identity and cooperate to implement the the actllv.ator must make for the system to function
object’s interface. All objects which share the same property-
unique identifier (VID) are considered part of the ® Jike all system daemons, the activator must remain

same aggregate object. If the aggregate for a running while the machine is up, and

particular object identifier is “activatable”, then all ® the activator must not start servers for those
objects which make up the aggregate must implement objects which the activator has been informed are
the Activation::Activatable_T interface. active.

A server started up by the activator is passed severalfThe activator maintains a few tables, in memory, of
arguments: objects that it has participated in activating (or has
been informed are activated). These tables are kept in
order to enforce the latter guarantee.

-vid <ID> -activationData <data>

When the server starts up, it parses the arguments, The activator supports several operaticatgiress,
activates itself, and informs the activator that it is activate, managed, activated, isActive anddeactivated.

activated. In the process of “activating itself’ the The managed operation is used in the model where
server must be careful not to block. In an there are multiple objects per server process (or
implementation of a lazy model of activation, shared server model). We defer discussion of managed
blocking might be less of a problem. However, objects to the next section.

blocking still is a potential hazard if the object The address operation returns the abstract location of

3tte_mp'$] to contact any other ObJeCt‘Z (ffor exan?ple the activator. As mentioned earlier, the representation
N urlng ? SErver recovery process) before replying of an address is implementation specific.
activated” to the activator. Therefore, the server must

invoke theactivated operation on the activator as soon Theactivate andactivated operations make up the
as possible, and before blocking, so that it will not ~ core of the activation protocol. To obtain the internal
hold up the client requesting activation or cause object reference corresponding to some external
potential deadlock. reference, a client invokes thetivate operation on

. . . the activator, located at the address represented in the
For aggregate objects, all objects within the aggregate[oken, and passes the activation token as the

can be activated at once by invoking ttivated argument. This operation may or may not initiate

server execution depending on the status of the objecand thetoken of the activatable object. Once an object

(active or passive).

If the object is not already active, the activator uses
the information present itoken to spawn a process
for the server, passing the server its identifier and
activation data as arguments. If activation fails for
some reason (failure to spawn server due to lack of
system resources, for example), the activator raises
the UnableToActivate exception to the client.

When server-side activation is complete, the server
process informs the activator by invoking the
activated operation on its local activator passing the
object’s (internal) reference as the argument. The
server receives an activation identifier (of typeT)

as a result of the operation which denotes this
“instance” of activation for the object. This identifier
is used indeactivating the object (explained below).

In servicing future activation requests for the same
object (with the same activation token), the activator
replies with the internal reference previously reported
by the server. That internal reference is valid until the
object (server) deactivates.

The activator, upon receiving notification of the
object’s active status from the server, replies to the
client with the internal reference for the active object.
This internal reference is of tygetivatable_T, since

all activatable objects support the
Activation::Activatable_T interface. The client can then
narrow this reference (using a type-safe narrow), to
obtain an object of the correct type on which it can
invoke operations. Figure 2 illustrates the core
activation protocol.

1. activate 3. activate\ck
. 4. server
Host A . Host B

Figure 2. Core Activation Protocol

A server object that has not serviced any requests fo
some (lengthy) period of time, may wish to shut down
or deactivate in order to free up system resources. In
order to deactivate an object, the server calls the
deactivated operation passing two parameters: the
activation identifiefd (returned by thectivated call)

is inactive, the activator can remove all knowledge of
the object from its tables. The activation identifier
returned by thectivated call and supplied to the
deactivated call is employed so that late or duplicate
notifications of deactivation will not cause the object
to be erroneously forgotten by the activator. The
activator uses the identifier to distinguish between
valid instances of the activation protocol for a
particular object.

Note that it is possible for a server to crash without
invoking the deactivated operation. This means that
the activator will have a stale (or orphaned) internal
reference for the object. Thus, clients will receive a
stale object reference for the object until the activator
detects the object’s demise and flushes the stale
reference from its tables. The network object system
has a notifier facility for detecting object failure. In
the activator implementation, we use this facility to
detect orphaned references and clean up accordingly.
If the underlying system does not provide such a
facility, the activator must itself monitor server
process status to clean up orphaned references.

A client can check the status of an object by invoking
theisActive operation passing the activation token as
an argument. This operation retuffRUE if the

object corresponding to the activation token is
currently executing in a process and retUfALSE if

the object is currently dormant (inactive).

In each of the above mentioned activator operations,
the exceptionWrongActivator is raised if the client
directs a request to an inappropriate activator. This
situation can happen due to a programmer error.
Therefore, if theoken parameter does not contain the
same address as the one for the destination activator,
then the request is not carried out and the exception is
raised by that activator.

Managed Objects

Up to this point, the activation protocol described
enables one active object (with the same unique
identifier) per process. If the server programmer
wishes to have multiple objects per process, a private
protocol would have to be employed between active
servers so that subsequent objects can be activated in
the same process as the first one. The situation of
activating a group of objects in a process is a common

ne, so we have enhanced the protocol, via the
Manager_T interface, to handle this frequently
occurring case.

A few simple additions to the basic activation
protocol accomplish activation of a group of objects

in a single process (the group of objects being those any manager functionality (a small addition to the
that share the same executable file name). Objects activator).

using this shared server model setiéanaged flag o formance tests were run on a dual processor

in the activation token according to whether the ObjeCtSPARCstation 20 with 128 MB of memory. The first

Is “managed’— that is, it $hOU|d be activated in the _series of tests consisted of a client, the activator, and a
same process as other objects on the same node Wh'%'%rver on the same machine

share the same executable file name.
A server object that is dormant needs to be fully

activated by the activator; that is the activator needs to
create a process for the server and obtain the internal
.. reference for the object. Sufilil activation takes 700
Smilliseconds for client, activator and server running

on the same machine, all in separate address spaces.
When the activator sees an activation token indicatingThis timing includes round-trip latency between client
a managed object, it creates a process (with the switcand activator, and process creation time. Most of the
“-exec <executableFileName>" just in case the overhead associated with activation is spawning a new
manager can't figure this out on its own) to manage process for the object server which takes roughly 550
objects instead of creating one process to manage thmilliseconds. Additionally, activation time is effected
one object. Once the manager process by the amount of time the server takes to initialize
(executableFileName) starts up, it makes a call back itself before replying to the activator that the server

to the activator, using theanaged operation, passing has completed activation (by invoking the operation
both a reference to itself and the name of the activated). We keep the server initialization time to a
executable for those objects which it manages. minimum, only performing the following steps in the
server: parse arguments, import the activator, create a
server object, and reply immediately to the activator.
d Such server-side initialization takes about 100
milliseconds. Table 1 shows the breakdown for full
activation on a single machine.

We introduce the notion of a manager of objects
which is responsible for handling activation of a set of
objects in a single server process. Manager T

activation management function.

This callback informs the activator that the manager
will manage the activation of all objects with the
specified executable. The activator can then forwar
the original activation request to the manager via the
manager’sactivate operation. Since this call is
synchronous, the manager does not need to make th# an object server is currently running (that is

activated callback to the activator; when the call previously activated via the activator), the activation
returns, activation is complete and the activator can procedure consists of the activator handing back to the
reply to the client. client an in-memory reference for the server object.

Tokens subsequently received by the activator which For cI.|ent, aptwator, r_;md object Server on the same
machine, this scenario takes 3.6 milliseconds and

are “managed” and have the same executable file .

name as a current manager will have their activation mostly _reflects the tlme for a remqte method
request forwarded to that manager directly via its invocation between client and activator.

activate operation. When the client and activator are on different
machines, full activation takes 692 milliseconds. For
this same configuration, handing to the client an
already activated object takes 4.6 milliseconds. It is
We could take the radical approach that all objects argnteresting to note that full activation for a remote
managed. This approach would allow elimination of server takes less time than activation where both

The activator will still handle activate requests in the
usual way if thesManaged flag iSFALSE.

theisManaged flag in the token and thectivated client and server reside on a single machine. The
operation in the activator. increased latency for the local case is due to

contention for system resources between client and
4 Implementation and Results activator. Table 1 (below) summarizes our

The initial implementation of the activator (a network Performance results (in milliseconds).

object supporting th@ctivation::Activator interface) is —
635 lines of Modula-3 code (including comments and Activation performance:

excluding generic interface and module expansions). full activation (local) 700
The first implementation supports concurrent fL.’” activation .(remOte) 692
simple activation (local) 3.6

activation/deactivation requests, but does not include . -
simple activation (remote) 4.6

Breakdown for full activation:

fork server 550
server execution 100
other activation overhead 40

(including: GC ~4 ms; and
communication with client ~3-5 ms)

Other baseline measurements:

fork trivial Modula-3 program 151
fork empty Perl script 71
fork trivial C++ program 61
fork empty Tcl script 52
fork trivial C program 24

Table 1. Activation Results (in milliseconds)

5 Related Work

The Common Object Request Broker Architecture
(CORBA [3]) outlines a protocol for activation. This

protocol, specified as part of the Basic Object Adaptor,

(BOA), attempts to be a completely general solution
for activation providing sophisticated activation
dependency features such as co-activation and grou
activation. While these features may be needed in
some applications, our experience has shown that a
simpler protocol suffices for most applications; we
have chosen to focus on a clean protocol rather than
an ideal API.

The CORBA activation protocol embodies a multitude
of activation features which puts an unnecessary
burden upon both server implementations and
implementations of the activation mechanism itself, if
such extended features are not required by server
applications. We use a simpler model that supports
activation of a single object within a server, or
multiple “managed” objects within a server process. If
more complex functionality is required, this
functionality can be layered upon our activation
protocol.

6 Discussion

Object mobility. Currently, an activation token for an
object can not change over time (tokens are fixed
when created). Since the location of the server
machine is embedded in the token (implicitly in the
activator address), objects can not be moved to
another machine once a token for that object has bee
handed out. To overcome the restriction on mobility, a
level of indirection could be built into the token, but
this could have a significant impact on the
performance and reliability of the activation process.

As an alternative form of indirect reference, names
could be used as external references for long-lived

objects. Thus given a name, a client can contact a
name service to obtain an internal reference to an
active object currently associated with that name.

Another scheme that supports object mobility is one
in which a relocated object leaves, at its old location,
a forwarding pointer (or “tombstone”) [5] that

indicates the new location for an object. Using
forwarding information left for an object, an activator
receiving activation requests at an object’s old
location can redirect such requests to its new location
for a period of time.

The problems with this approach are three-fold. First,
the indirection introduced by employing forwarding
pointers can increase the overhead of activation, since
each activator must deal with both servicing and
forwarding requests; this dual-role can cause a
potential bottleneck at the activator. Additionally,
multiple redirections may occur for requests involving
frequently relocated objects, thus increasing the
overall service time for activation requests. Finally,
forwarding information must eventually be removed,

But determining when it is “safe” to remove such

information is difficult; there is no easy way to
determine how many objects, and specifically which
objects, contain references to a relocated object’s
previous address.

Server implementation requirements. Activation is not

a passive protocol. It requires participation and
cooperation on the part of the server. lll-behaved
servers can potentially cause deadlock during
activation of that server. Servers that fail to inform the
activator when they become active can cause
unpredictable occurrences such as duplicate servers
executing with the same identity. Since we allow
servers to be started without activator assistance,
informing the activator of an object’s status becomes
even more vital.

Type system. In our system, external references can be
exposed to both clients and servers alike. This
additional form of reference is outside the type system
and therefore can not be checked statically. In large
scale systems, non-type-checked references pose
many implementation hazards. If external references
were completely hidden from the programmer, this
would not be as much of an issue. Since no real type
[hformation is present in a token, the client and server
programs must be careful to perform a typesafe
narrow on a reference resulting from an activation
request. An activation strategy that utilized activation
tokens that are typed to reflect the objects they
represent would overcome this deficiency. Thus
ideally, either external references need to be

integrated with the type system or the runtime system[4] Hosking, Antony L., and J. Eliot B. Moss, “Towards

must hide this form of reference from the
programmer.

Need more help from the runtime. The lesson here is
that you really do need help from the runtime to make
activation seamless. Lazy activation is preferable, and

Compile-Time Optimisations for Persistence.” In
Implementing Persistent Object Bases: Principles
and Practice—The Fourth Int’l Workshop in
Persistent Object Systems, Morgan Kaufmann
Publishers, Inc. (1990), pp. 17-27.

is not easily layered on an already existing system [5] Jul, Eric, Henry Levy, Norman Hutchinson, and

(such as network objects).

As an optimization, the runtime could transmit along
with the object its activation token, so that it is more
easily accessible to a remote process, and a remote
method invocation is not required to obtain the token.
This saves times as well as eliminates a potential
failure mode if the object from which the token is
being obtained could not be reached for some reason
(e.g., network failure or processor crash). This scheme
would require modifications to the runtime to be
completely transparent to the client. Of course, the
activation token could be transmitted as a parameter
in all interfaces, but this exposes activation at the
wrong level.

The problem with making the decision not to tweak
the runtime is that artifacts of our activation protocol
end up creeping into other interfaces that we design
(as with UUIDs needing to be transmitted along with
a network object references). If we modified the
runtime, object identifiers could be transmitted along
with object references. If these two were transmitted
as one unit, then testing for equality would be little
overhead and not require a remote method invocation
to obtain the identifier for comparison. Also, we
would not have to expose object identifiers explicitly
in our interfaces since objects would inherently have a
determined, easily accessible identity.

7 Availability

The Modula-3 source code for the activator and other
libraries is freely available. In order to obtain the
release, please contact the authors for more
information.

References

[1] Birrell, Andrew, Greg Nelson, Susan Owicki, and
Edward Wobber, “Network Objects,” Digital
Equipment Corporation Systems Research Center
Technical Report 115 (1994).

[2] Nelson, Greg (ed.fystems Programming with
Modula-3, Prentice Hall (1991).

[3] The Object Management Group. “Common Object
Request Broker: Architecture and Specification.”
OMG Document Number 91.12.1 (1991).

Andrew Black, “Fine-Grained Mobility in the
Emerald System.” IACM Transactions on
Computer Systems 6, 1 (February 1988), pp. 109-
133.

