
The following paper was originally published in the
Proceedings of the USENIX Conference on Object-Oriented Technologies (COOTS)

Monterey, California, June 1995.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Simple Activation for Distributed Objects

Ann Wollrath, Geoff Wyant, and Jim Waldo
Sun Microsystems Laboratories

Abstract

In order to support long-lived distributed objects,
object activation is required. Activation allows an
object to alternate between periods of activity, where
the object implementation executes in a process; and
periods of dormancy, where the object is on disk and
utilizes no system resources.

We describe an activation protocol for distributed
object systems. The protocol features overall
simplicity as well as applicability to several different
activation models. We use the Modula-3 network
object system as a base for our implementation; while
we make no changes to the underlying network object
subsystem, we suggest a minor modification that
could be made to the marshalling of network objects
to assist in lazy activation, our preferred activation
model.

1 Introduction

Distributed object systems are designed to support
long-lived persistent objects. Given that these systems
will be made up of many thousands (perhaps millions)
of such objects, it would be unreasonable for object
implementations to become active and remain active,
taking up valuable system resources, for indefinite
periods of time. In addition, clients need the ability to
store persistent references to objects so that
communication among objects can be re-established
after a system crash, since typically a reference to a
distributed object is valid only while the object is
active.

Such systems need to provideactivation, a mechanism
for providing persistent references to objects and
managing the execution of object implementations.
When warranted, object servers can be started up or
shut down.

As our platform for distributed objects, we use the
network object system [1] provided with the Digital
Equipment Corporation System Research Center
distribution of the Modula-3 (M3) language [2].
Given that this implementation platform does not

support object activation, we have designed an
activation protocol to address that need. We identify
several important goals for our activation protocol:

• flexible mechanism enabling implementations of a
variety of activation models;

• simple activation scheme focused on the core
protocol leaving special cases of activation to be
specified at a higher layer of abstraction;

• minimal implementation requirements on servers
supporting the protocol.

Our implementation of the protocol is constrained by
following components of the underlying system:

• the need to be layered on top of the network object
system without requiring changes to the network
object runtime;

• the protocol should require no modification to
existing network object stub generators.

Other factors have influenced the design of the
interfaces (more cosmetically):

• interfaces are restricted to single inheritance
(although this restriction did not interfere with the
design since multiple inheritance was ultimately
not required);

• interfaces reflect Modula-3 naming conventions
(we have adopted the convention of naming the
primary interface in any moduleT, following
Modula-3 style definitions).

The activation protocol is specified using the Object
Management Group’s Interface Definition Language
(OMG IDL) [3]. In our protocol definition we use an
additional keyword,serverless, which denotes a pass-
by-value object (i.e., library objects). The serverless
feature is not part of standard IDL, but could be
thought of (loosely) as an IDLstruct.

The notion of pass-by-value objects is an attractive
one, since exposing a data definition explicitly via
struct violates data encapsulation. A client
possessing a structure may manipulate that structure
without restriction, potentially altering the data in a
manner not intended or expected by a subsequent

Simple Activation for Distributed Objects

Ann Wollrath, Geoff Wyant, and Jim Waldo
Sun Microsystems Laboratories

{ann.wollrath, geoff.wyant, jim.waldo}@east.sun.com

recipient. By using a pass-by-value (or serverless)
object instead, data can be hidden and a more
appropriate interface can control access to and
modification of that data. We include serverless
objects for just this reason.

The obvious drawback to pass-by-value objects in
distributed systems is that the code for the library
object implementation must be linked into all clients
of such an object. This requirement is much different
than having to link in stubs (surrogate code) for a
distributed object; all clients must link to thesame

library object implementation. Clients that transmit
serverless objects that have a different implementation
than the receiver expects will likely cause
unanticipated failure: a failure usually encountered
during the unmarshalling process performed at the
receiver.

2 Activation Models

In a distributed system in which the total number of
objects that could be used exceeds the total system
resources available, some way of conserving system
resource needs to be found. One way of conserving
resources is to distinguish betweenactive objects,
which take up system resources, andpassive objects,
which do not.

More precisely, anactive object is one that is
associated with a process on some system. Apassive

object is one that is not associated with such a
process, but which can be brought into an active state.
Transforming a passive object into an active object is
a process we refer to asactivation. Activation requires
that an object be associated with a process, which may
entail loading the code for that object into a process
and restoring any persistent state for the object.

In this section, we describe the client’s model of
activation, followed by a discussion of various
activation models and the trade-offs associated with
each.

We will refer to the activation models that we will
discuss aseager (or deep) activation,lazy activation,
andsplit activation. Eager activation can be
characterized as a strategy that maintains as an
invariant that each reference within an active object
also refers to an active object. Lazy activation, in
contrast, is a model that defers activation of an object
to the time at which an operation is invoked on that
object. Split activation combines aspects of both
schemes.

Client Model

Our basic model, from the client side, involves two
distinct forms of reference for objects that are
(potentially) in a separate address space. The first of
these, called theinternal reference, typically points to
a local surrogate or proxy for an object. From the
programmatic point of view, such internal references
look like references to other, local objects. These
internal references are the entities that are
manipulated, used for method invocations, and passed
around to other objects. In our system, internal
references are simple object references that derive
from the base class ofNetObj.T, the Modula-3
Network Object class.

Internal references in this framework, however, are
not guaranteed to refer to a valid object over various
runs of the code that implements that object. In
particular, if an object is made passive (or crashes and
is restarted) the internal reference for it may change.
If a client wishes to store a reference to a (potentially)
remote object as part of the persistent state of that
client, some form of reference is needed that will
survive those changes. We refer to this form of
reference as anexternal reference.

When a client has an external reference to an object,
that reference needs to be converted to an internal
reference if the client wishes to make use of the
object. Such a conversion can require the activation of
the referred to object.

Eager Activation

Eager (or deep) activation denotes an activation model
whereby an object, and the objects reachable from that
object, are activated at once. In this model when a
client restores its state, all external object references
are presented as internal object references. As part of
restoring an internal reference from its external form,
the referred-to object is made active. Additionally, the
object’s implementation restores its state, causing
activation of those objects denoted by external
references. Thus, when activating a single object, the
transitive closure of objects referenced by that specific
object is activated.

This model has the advantage that it requires minimal
intrusion on the client-side. A small amount of
generic code needs to be written that converts object
references from their external form to their internal
form and to call the appropriate object activation
service. This model also has the advantage that it can
be determined at the time the object reference is
converted to its internal form whether or not that
object can be made available.

One primary disadvantage of this model is that it
doesn’t handle circular chains of reference. Circular
chains of reference occur when an object refers back
to itself through any number of intermediate
references (e.g., A contains a reference to B which
contains a reference back to A). An object can also
contain a self-reference. In the eager model described
above, activating an object containing a reference that
eventually refers back to itself (a circular reference)
requires activating the object itself and can lead to
deadlock unless complicated avoidance mechanisms
are employed.

Another problem with this model concerns scalability.
In the eager model, an object is activated when its
external reference is read from disk rather than when
it is first dereferenced. This strategy seriously affects
the scalability of activation. Upon reading an object’s
persistent state, a potentially large number of objects
may be activated at once if the object contains many
external object references. Activating an entire tree of
objects can cause an “activation storm” where
cascading activation requests flood the system.

Another disadvantage to this eager approach is that it
will activate an object, even if the object is never used
by the client. Ideally, unused object should not
consume any system resources. Consider a object
which contains references to 100 other objects on 100
other machines. When that object restores these
references from disk, 100 processes will be created in
an eager fashion regardless of whether the references
are actually used by the object. Such “storms”
seriously effect the overall performance and
predictability of the system.

Lazy Activation

Lazy activation defers activating an object until a
client’s first use (i.e. the first method invocation). This
model of activation is typically implemented by
generating stubs that check to see if the target object
has been made active for this process. We refer to
these stubs asfault blocks. Each fault block maintains
a reference to the target object. If this reference is nil,
the target has not been activated for this process.
Upon method invocation, the fault block (for that
object) then engages in the activation protocol and
retains the reference to the newly activated object.
From that point on, all fault block stubs forward
method invocations to the surrogate object that stands
in for the remote object. This scheme is analogous to
“object faulting” in persistent object systems [4] or
page faulting upon referencing non-resident memory
locations.

The lazy activation approach avoids the deadlock
problem of eager activation. Except for certain
pathological cases, activation of an object never
requires the activation of itself even in the case of
circular references.

This scheme is also more scalable. Since activation is
deferred until the time of first reference, an object is
never activated unless explicitly used. Thus, needless
process creation (for unused objects) is eliminated as
are activation storms.

A major drawback of this approach is that notification
that an object is not available will not occur until the
first invocation on the object. At this point, the client
may have no sensible recovery strategy and its only
option is to exit.

Another drawback is that two stubs exist on the client
side for each non-local object. The first is the
surrogate that performs remote method invocation.
The second is the “fault block” which determines the
activation status of the object and activates it if
needed and forwards invocations to the surrogate.

One must be careful not to expose fault blocks to the
client. This exposure can lead to subtle failures since
the client is operating under the assumption that it
holds a true reference to the object—one that can be
passed as an argument or upon which operations can
be invoked—not a reference to a fault block.

For the system to function properly, the functionality
of fault blocks must be part of the surrogate (or
handled somewhere in the runtime). Due to our desire
not to modify the network object runtime or stub
(surrogate) generators, we chose not to implement
lazy activation at this time. Clean integration of lazy
activation with the existing system requires
modification to marshalling surrogate objects and to
the runtime itself.

Split Activation

We chose to use the hybrid model of split activation.
The split activation model is one in which the
responsibility for activation is divided into two parts.
The first part activates a process for the object. The
second part activates the object state on the first
invocation of that object. Process activation occurs
when the object reference is converted from its
external form to its internal form. State activation
occurs upon first use of the object.

The split model can be implemented by server-side
fault blocks that perform an analogous function to the
client-side fault blocks used in lazy activation. In this
scheme, a server-side fault block checks to see if the

target object is active. If not, it activates the object’s
state (via a server-provided callback). From that point
on, the fault block forwards method invocations to the
active object. Split activation sits between eager and
lazy activation. While this approach does require
special handling on the server side, it does not require
any changes to the runtime system.

This model avoids the deadlock problem of eager
activation. State activation does not occur until first
use of the object, thus breaking potential activation
cycles. It also avoids the multiple-object problem that
the lazy activation approach suffers from. Clients
never deal with two forms of the object: the fault
block vs. the surrogate. Clients only deal with
surrogates.

This scheme also has the advantage that the server can
determine at process activation time whether or not
the target object can be reached. Thus, clients can
learn earlier about the availability of an object than
could be done in the lazy activation approach. A client
may be in a better state to recover from this situation.
Note that, at any point in the future, communication
with an object may fail. A client must be able to
attempt recovery from this potential occurrence as
well. In split activation, while a client of an object has
the potential for early knowledge of failure, it does
not necessarily mean that the client will be in thebest

state to handle such failure.

There are some disadvantages of this approach. It can
be potentially less scalable then lazy activation if
servers are not implemented with activation in mind.
If the server restores a large set of object references,
then a process will be created for each of those
objects causing an “activation storm”. However, this
process will not propagate beyond the first level of a
tree. A child won’t propagate the activation until its
state is needed. Again, this is upon first invocation.
Upon first invocation, the child will restore its state.
Any non-local object references will cause the next
level of the tree/graph to have processes created for
objects (though no state will be activated). Thus
process activation occurs as a wavefront, but state
activation occurs on demand.

The split activation model transfers control of when
activation occurs from the runtime system to the
server. A server can choose which objects are
activated by restoring its persistent state selectively.
We have designed a generic container class to deal
with such selective activation of objects. Operations
that access elements of the container handle the
machinery of activation, thus emulating lazy
activation for those objects in the container. Using the

container abstraction allows the server to delegate the
manual control of activation.

3 The Basic Activation Protocol

This section describes the basic activation protocol in
detail. The protocol involves three entities: a client, an
activator, and a server process/object. The activation
protocol proceeds as follows (starting with the client):

1. Obtain an external object reference. Let’s say a
client wishes to retain a reference to an object for
some period of time and to be able to store that
reference on disk. From a name service or the
object itself (using an internal reference to the
object), the client obtains an external reference for
that object. The abstraction for external object
references will be discussed in the next subsection.

2. Request activation. At a later time, this external
object reference (obtained previously) can be
converted into an internal reference using an
activator, on the same host as the referenced
object, as facilitator. An activator process
(daemon) runs on each host in the system. It is the
responsibility of the activator to spawn servers (on
the local host) corresponding to certain external
references. The client hands the activator an
external reference together with a request to
“activate” that object.

3. Spawn server process. Upon receiving the client’s
request for activation, the activator spawns a
server process for the object, passing it relevant
data (from the external reference) for
bootstrapping purposes.

4. Server activates. The server process starts up and
sends the internal reference for the object back to
the activator, thus informing the activator that the
object’s activation is complete.

5. Reply with internal reference to client. The
activator replies to the client with the internal
reference that it received from the server process.
The client is free to invoke operations on the
activated object, using its internal (programmatic)
reference.

The client mentioned in the above protocol does not
necessarily denote the client application program. An
ideal implementation would completely hide the
mechanisms of activation from the client.

Activation Interfaces

The interfaces that embody the activation protocol
described above are contained in the module
Activation defined in IDL (see Figure 1).

#include "VantageID.idl"

#include "VantageObj.idl"

module Activation {

 exception UnableToActivate {};

 exception AlreadyActive {};

 exception UnableToDeactivate {};

 exception AlreadyManaged {};

 exception WrongActivator {};

 typedef VantageID::T ID_T;

 interface Address_T : serverless {

 string toText();

 boolean equal(in Address_T addr);

 };

 interface Token_T : serverless {

 VantageID::T vid ();

 string executableFileName ();

 string activationData ();

 Address_T activatorAddress ();

 boolean isManaged ();

 string toText ();

 };

 interface Activatable_T :

 VantageObj::T {

 Token_T activationToken ();

 };

 interface Manager_T {

 Activatable_T activate (

in Token_T token,

in ID_T activationID);

 };

 interface Activator_T {

 Address_T address ();

 Activatable_T activate (

in Token_T token)

 raises (UnableToActivate,

 WrongActivator);

 void managed (

in Manager_T manager,

in string executableFileName)

 raises (AlreadyManaged);

 ID_T activated (

in Activatable_T activatedObj,

in Token_T token)

 raises (AlreadyActive,

 WrongActivator);

 boolean isActive(

in Token_T token)

 raises (WrongActivator);

 void deactivated (

in ID_T id,

in Token_T token)

 raises (UnableToDeactivate,

 WrongActivator);

 };

};

Figure 1. Module Activation

The Activation module refers to two other interface
definition files. The interface described in the file
“VantageObj.idl” is one supported by all objects in the
overall system we are constructing. This interface,
VantageObj::T, contains a single method, which
returns an identifier that, with a high degree of
probability, uniquely identifies the object. The
interfaceVantageID::T, contained in the file
“VantageID.idl”, defines these unique identifiers for
objects.

The major interfaces in theActivation module are:

• Address_T - abstraction for object location (pass-
by-value),

• Token_T - abstraction for external object
references (also pass-by-value),

• Activatable_T - interface supported by those
objects capable of being activated,

• Activator_T - interface to the activator,
• Manager_T - interface for object servers that wish

to support multiple objects per server process.

The following subsections will describe each of these
interfaces in turn.

External Object References

An external reference to an object must contain
enough information so that some mechanism can
initiate the object’s execution. That is, given some

form of external object reference, a client can obtain
an internal reference to an active object.

The minimum information needed to initiate a server
process is the location of the server program (i.e.,
executable) and the physical host location for the
spawned server process. Additionally, the server may
need some bootstrap information in order to read its
persistent state, or export itself to a name service, for
example.

In our system, external references are known as
activation tokens (represented by theToken_T

interface). An activation token (or simply a token) can
be thought of as the meta-data for an object. These
tokens must supply the following information:

• a unique identifier for an object,
• the address of the object’s activator,
• the executable file name of the server program,
• server-specified activation data, and
• a flag indicating whether this object ismanaged.

Each object in our system exports a unique identifier
(also referred to as avantage ID or VID) which is
used for object identification purposes by both the
activator and the spawned server itself. We use these
probabilistically unique identifiers in order to
determine object equality, since reference equality for
distributed objects is not supported in most systems.
The unique identifier in the activation token, obtained
via thevid operation, corresponds to the object’s
unique identifier.

The address of the activator, obtained as a result of
the activatorAddress operation, is the abstract
“location” of the activator and is implementation
specific. The abstraction for an address is the
Address_T interface which contains two operations
toText (for converting the abstract representation to
string form) andequal (for establishing equivalence of
addresses). In our system, an activator address
essentially refers to the activator’s host.

Note that bothAddress_T andToken_T types are
denoted by theserverless keyword. Both types are
represented as pass-by-value objects as opposed to
full-fledged distributed objects which would carry the
overhead of remote method invocation for invoking
each of their operations. Addresses and activation
tokens must be light weight entities. Many
implementation difficulties would arise if these
objects were to be distributed in nature (that is, pass-
by-reference).

The executable file name of the server program is the
pathname to the server executable (returned via the
executableFileName operation). The activator uses

this information in the activation token to spawn a
server for the object.

TheactivationData contained in the activation token is
entirely under the control of the object (server) for
which the token is created. It is up to the object
implementation to decide what information is relevant
to start-up, and place that information in the token.
For example, the activation data for a server might be
a pathname to a log file for recovery.

The isManaged flag simply indicates whether an
object should share the same server process as other
objects on the same node which share the same
executable file name. In a later section, we explain our
scheme for managing multiple objects within a single
server.

In our system, activation tokens are self-contained
entities. That is, the activator needs only the
information present in a token to spawn a server
process. An alternative design (and potentially more
flexible) would be for an activation token to refer
implicitly to a database containing activation
information for objects. For example, a unique
identifier would be the only required component of an
activation token if the client consulted a database to
determine the activator for an object, and each
activator consulted a database for further information
on the activation attributes of an object (such as its
executable file name).

While this design may be more flexible—since it does
not fix the contents of activation tokens—it does
require that each activator have access to state
information, i.e., the database of activation
information. This introduces more complexity into the
activator and additional failure modes during
activation if databases become temporarily
inaccessible. Management of such databases
(registration of information, update, and querying)
also increases the overhead of the activation
mechanism.

Note that the address of the activator is embedded in
the activation token. Since activation tokens can be
stored persistently, an activation token for an object
must not change over time, unless all objects to which
the activation token was given can be contacted with
the value of the new token for the object. Thus, object
mobility cannot be easily employed since the contents
of activation tokens are fixed at creation time. Other
mechanisms must be built to handle moving objects in
the system. Important services that are likely to
relocate in the future may be stored in a name server
and referenced by name rather than strictly by token.

Server Requirements

For an object to be capable of being activated, it must
support theActivatable_T interface. Such an
“activatable” object need only implement one
operation,activationToken, that constructs an
activation token containing the appropriate meta-data
for the object. As described above, this token contains
the object’s identifier, executable file name, bootstrap
data (activation data), and the address of the object’s
local activator; an activatable object can query the
local activator (which should be a well-known entity)
for its address for inclusion in the activation token.

It is the responsibility of each activatable object to
hand out activation tokens to those objects requesting
the information. Also, an activatable object is
responsible for informing the activator when it has
completed activation.

The simplest implementation of a server is a single
object per server process. In our system, we have the
additional notion ofaggregate objects. Anaggregate

object has an object identity spanning multiple objects
(in the same address space), but which functions as a
single cohesive unit. Objects in the aggregate share
the same identity and cooperate to implement the
object’s interface. All objects which share the same
unique identifier (VID) are considered part of the
same aggregate object. If the aggregate for a
particular object identifier is “activatable”, then all
objects which make up the aggregate must implement
the Activation::Activatable_T interface.

A server started up by the activator is passed several
arguments:

-vid <ID> -activationData <data>

When the server starts up, it parses the arguments,
activates itself, and informs the activator that it is
activated. In the process of “activating itself” the
server must be careful not to block. In an
implementation of a lazy model of activation,
blocking might be less of a problem. However,
blocking still is a potential hazard if the object
attempts to contact any other objects (for example
during the server recovery process) before replying
“activated” to the activator. Therefore, the server must
invoke theactivated operation on the activator as soon
as possible, and before blocking, so that it will not
hold up the client requesting activation or cause
potential deadlock.

For aggregate objects, all objects within the aggregate
can be activated at once by invoking theactivated

method on the activator for each activatable object in
the aggregate (each having different activation data).

To avoid potential race conditions between servers
starting up by hand, or being started via the activator,
a server that receives the exceptional return
AlreadyActive from theactivated operation should exit
immediately. This exception means that two servers
with the same identity were either started in parallel
or a server was started mistakenly by some means. In
either case, it is a fatal error upon start-up.

Any activatable object that is created by a server
started by hand or is created within a currently
running server must register with the activator (via the
activated method) before handing out its reference to
any client. If this convention is not followed, the
activator will not know that such an object is
activated, and may start up a duplicate server with the
same identity sometime in the future.

The Activator

In our protocol as defined, an activator need not
maintain any persistent state, and therefore requires
no recovery mechanism. There are two guarantees that
the activator must make for the system to function
properly:

• like all system daemons, the activator must remain
running while the machine is up, and

• the activator must not start servers for those
objects which the activator has been informed are
active.

The activator maintains a few tables, in memory, of
objects that it has participated in activating (or has
been informed are activated). These tables are kept in
order to enforce the latter guarantee.

The activator supports several operations:address,
activate, managed, activated, isActive anddeactivated.
The managed operation is used in the model where
there are multiple objects per server process (or
shared server model). We defer discussion of managed
objects to the next section.

The address operation returns the abstract location of
the activator. As mentioned earlier, the representation
of an address is implementation specific.

The activate andactivated operations make up the
core of the activation protocol. To obtain the internal
object reference corresponding to some external
reference, a client invokes theactivate operation on
the activator, located at the address represented in the
token, and passes the activation token as the
argument. This operation may or may not initiate

server execution depending on the status of the object
(active or passive).

If the object is not already active, the activator uses
the information present intoken to spawn a process
for the server, passing the server its identifier and
activation data as arguments. If activation fails for
some reason (failure to spawn server due to lack of
system resources, for example), the activator raises
the UnableToActivate exception to the client.

When server-side activation is complete, the server
process informs the activator by invoking the
activated operation on its local activator passing the
object’s (internal) reference as the argument. The
server receives an activation identifier (of typeID_T)
as a result of the operation which denotes this
“instance” of activation for the object. This identifier
is used indeactivating the object (explained below).
In servicing future activation requests for the same
object (with the same activation token), the activator
replies with the internal reference previously reported
by the server. That internal reference is valid until the
object (server) deactivates.

The activator, upon receiving notification of the
object’s active status from the server, replies to the
client with the internal reference for the active object.
This internal reference is of typeActivatable_T, since
all activatable objects support the
Activation::Activatable_T interface. The client can then
narrow this reference (using a type-safe narrow), to
obtain an object of the correct type on which it can
invoke operations. Figure 2 illustrates the core
activation protocol.

Figure 2. Core Activation Protocol

A server object that has not serviced any requests for
some (lengthy) period of time, may wish to shut down
or deactivate in order to free up system resources. In
order to deactivate an object, the server calls the
deactivated operation passing two parameters: the
activation identifierid (returned by theactivated call)

client

activator

server

2. fork

Host A Host B

1. activate
3. activated

4. server
object

and thetoken of the activatable object. Once an object
is inactive, the activator can remove all knowledge of
the object from its tables. The activation identifier
returned by theactivated call and supplied to the
deactivated call is employed so that late or duplicate
notifications of deactivation will not cause the object
to be erroneously forgotten by the activator. The
activator uses the identifier to distinguish between
valid instances of the activation protocol for a
particular object.

Note that it is possible for a server to crash without
invoking the deactivated operation. This means that
the activator will have a stale (or orphaned) internal
reference for the object. Thus, clients will receive a
stale object reference for the object until the activator
detects the object’s demise and flushes the stale
reference from its tables. The network object system
has a notifier facility for detecting object failure. In
the activator implementation, we use this facility to
detect orphaned references and clean up accordingly.
If the underlying system does not provide such a
facility, the activator must itself monitor server
process status to clean up orphaned references.

A client can check the status of an object by invoking
the isActive operation passing the activation token as
an argument. This operation returnsTRUE if the
object corresponding to the activation token is
currently executing in a process and returnsFALSE if
the object is currently dormant (inactive).

In each of the above mentioned activator operations,
the exceptionWrongActivator is raised if the client
directs a request to an inappropriate activator. This
situation can happen due to a programmer error.
Therefore, if thetoken parameter does not contain the
same address as the one for the destination activator,
then the request is not carried out and the exception is
raised by that activator.

Managed Objects

Up to this point, the activation protocol described
enables one active object (with the same unique
identifier) per process. If the server programmer
wishes to have multiple objects per process, a private
protocol would have to be employed between active
servers so that subsequent objects can be activated in
the same process as the first one. The situation of
activating a group of objects in a process is a common
one, so we have enhanced the protocol, via the
Manager_T interface, to handle this frequently
occurring case.

A few simple additions to the basic activation
protocol accomplish activation of a group of objects

in a single process (the group of objects being those
that share the same executable file name). Objects
using this shared server model set theisManaged flag
in the activation token according to whether the object
is “managed”— that is, it should be activated in the
same process as other objects on the same node which
share the same executable file name.

We introduce the notion of a manager of objects
which is responsible for handling activation of a set of
objects in a single server process. TheManager_T

interface consists of one operation which embodies its
activation management function.

When the activator sees an activation token indicating
a managed object, it creates a process (with the switch
“-exec <executableFileName>” just in case the
manager can’t figure this out on its own) to manage
objects instead of creating one process to manage the
one object. Once the manager process
(executableFileName) starts up, it makes a call back
to the activator, using themanaged operation, passing
both a reference to itself and the name of the
executable for those objects which it manages.

This callback informs the activator that the manager
will manage the activation of all objects with the
specified executable. The activator can then forward
the original activation request to the manager via the
manager’sactivate operation. Since this call is
synchronous, the manager does not need to make the
activated callback to the activator; when the call
returns, activation is complete and the activator can
reply to the client.

Tokens subsequently received by the activator which
are “managed” and have the same executable file
name as a current manager will have their activation
request forwarded to that manager directly via its
activate operation.

The activator will still handle activate requests in the
usual way if theisManaged flag isFALSE.

We could take the radical approach that all objects are
managed. This approach would allow elimination of
the isManaged flag in the token and theactivated

operation in the activator.

4 Implementation and Results

The initial implementation of the activator (a network
object supporting theActivation::Activator interface) is
635 lines of Modula-3 code (including comments and
excluding generic interface and module expansions).
The first implementation supports concurrent
activation/deactivation requests, but does not include

any manager functionality (a small addition to the
activator).

Performance tests were run on a dual processor
SPARCstation 20 with 128 MB of memory. The first
series of tests consisted of a client, the activator, and a
server on the same machine.

A server object that is dormant needs to be fully
activated by the activator; that is the activator needs to
create a process for the server and obtain the internal
reference for the object. Suchfull activation takes 700
milliseconds for client, activator and server running
on the same machine, all in separate address spaces.
This timing includes round-trip latency between client
and activator, and process creation time. Most of the
overhead associated with activation is spawning a new
process for the object server which takes roughly 550
milliseconds. Additionally, activation time is effected
by the amount of time the server takes to initialize
itself before replying to the activator that the server
has completed activation (by invoking the operation
activated). We keep the server initialization time to a
minimum, only performing the following steps in the
server: parse arguments, import the activator, create a
server object, and reply immediately to the activator.
Such server-side initialization takes about 100
milliseconds. Table 1 shows the breakdown for full
activation on a single machine.

If an object server is currently running (that is
previously activated via the activator), the activation
procedure consists of the activator handing back to the
client an in-memory reference for the server object.
For client, activator, and object server on the same
machine, this scenario takes 3.6 milliseconds and
mostly reflects the time for a remote method
invocation between client and activator.

When the client and activator are on different
machines, full activation takes 692 milliseconds. For
this same configuration, handing to the client an
already activated object takes 4.6 milliseconds. It is
interesting to note that full activation for a remote
server takes less time than activation where both
client and server reside on a single machine. The
increased latency for the local case is due to
contention for system resources between client and
activator. Table 1 (below) summarizes our
performance results (in milliseconds).

Activation performance:

full activation (local) 700

full activation (remote) 692

simple activation (local) 3.6

simple activation (remote) 4.6

Breakdown for full activation:

fork server 550

server execution 100

other activation overhead 40

 (including: GC ~4 ms; and

 communication with client ~3-5 ms)

Other baseline measurements:

fork trivial Modula-3 program 151

fork empty Perl script 71

fork trivial C++ program 61

fork empty Tcl script 52

fork trivial C program 24

Table 1. Activation Results (in milliseconds)

5 Related Work

The Common Object Request Broker Architecture
(CORBA [3]) outlines a protocol for activation. This
protocol, specified as part of the Basic Object Adaptor
(BOA), attempts to be a completely general solution
for activation providing sophisticated activation
dependency features such as co-activation and group
activation. While these features may be needed in
some applications, our experience has shown that a
simpler protocol suffices for most applications; we
have chosen to focus on a clean protocol rather than
an ideal API.

The CORBA activation protocol embodies a multitude
of activation features which puts an unnecessary
burden upon both server implementations and
implementations of the activation mechanism itself, if
such extended features are not required by server
applications. We use a simpler model that supports
activation of a single object within a server, or
multiple “managed” objects within a server process. If
more complex functionality is required, this
functionality can be layered upon our activation
protocol.

6 Discussion

Object mobility. Currently, an activation token for an
object can not change over time (tokens are fixed
when created). Since the location of the server
machine is embedded in the token (implicitly in the
activator address), objects can not be moved to
another machine once a token for that object has been
handed out. To overcome the restriction on mobility, a
level of indirection could be built into the token, but
this could have a significant impact on the
performance and reliability of the activation process.

As an alternative form of indirect reference, names
could be used as external references for long-lived

objects. Thus given a name, a client can contact a
name service to obtain an internal reference to an
active object currently associated with that name.

Another scheme that supports object mobility is one
in which a relocated object leaves, at its old location,
a forwarding pointer (or “tombstone”) [5] that
indicates the new location for an object. Using
forwarding information left for an object, an activator
receiving activation requests at an object’s old
location can redirect such requests to its new location
for a period of time.

The problems with this approach are three-fold. First,
the indirection introduced by employing forwarding
pointers can increase the overhead of activation, since
each activator must deal with both servicing and
forwarding requests; this dual-role can cause a
potential bottleneck at the activator. Additionally,
multiple redirections may occur for requests involving
frequently relocated objects, thus increasing the
overall service time for activation requests. Finally,
forwarding information must eventually be removed,
but determining when it is “safe” to remove such
information is difficult; there is no easy way to
determine how many objects, and specifically which
objects, contain references to a relocated object’s
previous address.

Server implementation requirements. Activation is not
a passive protocol. It requires participation and
cooperation on the part of the server. Ill-behaved
servers can potentially cause deadlock during
activation of that server. Servers that fail to inform the
activator when they become active can cause
unpredictable occurrences such as duplicate servers
executing with the same identity. Since we allow
servers to be started without activator assistance,
informing the activator of an object’s status becomes
even more vital.

Type system. In our system, external references can be
exposed to both clients and servers alike. This
additional form of reference is outside the type system
and therefore can not be checked statically. In large
scale systems, non-type-checked references pose
many implementation hazards. If external references
were completely hidden from the programmer, this
would not be as much of an issue. Since no real type
information is present in a token, the client and server
programs must be careful to perform a typesafe
narrow on a reference resulting from an activation
request. An activation strategy that utilized activation
tokens that are typed to reflect the objects they
represent would overcome this deficiency. Thus
ideally, either external references need to be

integrated with the type system or the runtime system
must hide this form of reference from the
programmer.

Need more help from the runtime. The lesson here is
that you really do need help from the runtime to make
activation seamless. Lazy activation is preferable, and
is not easily layered on an already existing system
(such as network objects).

As an optimization, the runtime could transmit along
with the object its activation token, so that it is more
easily accessible to a remote process, and a remote
method invocation is not required to obtain the token.
This saves times as well as eliminates a potential
failure mode if the object from which the token is
being obtained could not be reached for some reason
(e.g., network failure or processor crash). This scheme
would require modifications to the runtime to be
completely transparent to the client. Of course, the
activation token could be transmitted as a parameter
in all interfaces, but this exposes activation at the
wrong level.

The problem with making the decision not to tweak
the runtime is that artifacts of our activation protocol
end up creeping into other interfaces that we design
(as with UUIDs needing to be transmitted along with
a network object references). If we modified the
runtime, object identifiers could be transmitted along
with object references. If these two were transmitted
as one unit, then testing for equality would be little
overhead and not require a remote method invocation
to obtain the identifier for comparison. Also, we
would not have to expose object identifiers explicitly
in our interfaces since objects would inherently have a
determined, easily accessible identity.

7 Availability

The Modula-3 source code for the activator and other
libraries is freely available. In order to obtain the
release, please contact the authors for more
information.

References

[1] Birrell, Andrew, Greg Nelson, Susan Owicki, and
Edward Wobber, “Network Objects,” Digital
Equipment Corporation Systems Research Center
Technical Report 115 (1994).

[2] Nelson, Greg (ed.),Systems Programming with

Modula-3, Prentice Hall (1991).

[3] The Object Management Group. “Common Object
Request Broker: Architecture and Specification.”
OMG Document Number 91.12.1 (1991).

[4] Hosking, Antony L., and J. Eliot B. Moss, “Towards
Compile-Time Optimisations for Persistence.” In
Implementing Persistent Object Bases: Principles

and Practice—The Fourth Int’l Workshop in

Persistent Object Systems, Morgan Kaufmann
Publishers, Inc. (1990), pp. 17-27.

[5] Jul, Eric, Henry Levy, Norman Hutchinson, and
Andrew Black, “Fine-Grained Mobility in the
Emerald System.” InACM Transactions on

Computer Systems 6, 1 (February 1988), pp. 109-
133.

